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Abstract 
This paper describes investigations into Direction–Of–
Arrival (DOA) estimation of a wideband signal by a two–
dimensional array antenna, which employs only spatial 
signal processing for beam forming. The elements of this 
array are arranged in a horizontal rectangular lattice to 
steer a beam in azimuth over a wide frequency band. By 
applying the concept of interpolated array, a composite 
covariance matrix is produced. This composite 
covariance matrix is a simple addition of covariance 
matrices of narrowband virtual arrays, being stretched or 
compressed versions of a nominal array, all featuring the 
same radiation pattern. DOA is estimated by eigen–
decomposition of the composite covariance matrix using 
the narrowband MUSIC algorithm. The performance of 
the proposed DOA estimation method is demonstrated by 
computer simulations. The obtained results indicate that 
the two–dimensional array provides better estimation of 
DOA than the one–dimensional one when the 
interpolated array technique in conjunction with the 
MUSIC algorithm is applied. 
 
 
1. Introduction 
 

It has been recently argued that the performance 
requirements of future wireless systems can not be met 
without the use of smart antennas [1]. It has been 
postulated [2] that the use of a smart antenna can increase 
the spectral density and the Signal-to-Noise Ratio (SNR) 
for both Wireless Fidelity (WiFi) and Worldwide 
Interoperability for Microwave Access (Wi–MAX). This 
opinion forms the ground for the claim that smart antenna 
techniques will play a significant role in the development 
of future wireless systems. Because of the demand for 
high speed data transmission it can be expected that the 
main focus will be on wideband smart antennas.    

Wide band smart antennas have been the subject of 
investigations in [3]–[10]. In [3] and [4], space-time 
signal processing is investigated to achieve wideband 
beamforming. Time–Delay Lines (TDLs) are used in each 
array branch to equalize the signal delay across a wide 

frequency band. In [5] and [6], the bank of frequency 
filters is employed to decompose the received wideband 
signals into non-overlapping narrowband signals so that a 
narrowband weighting scheme can be applied for beam 
formation. The works described in [7]–[9] aim at 
avoiding TDLs and frequency filters to perform wideband 
beamforming. To this purpose, a two-dimensional array 
antenna (instead of one-dimensional) arranged in a 
rectangular lattice is used to perform signal processing in 
both space and frequency domains. Amongst the three 
alternatives, the fully spatial method of wideband 
beamforming seems to be attractive because it eliminates 
the use of filters and TDLs. Furthermore, it requires only 
real-valued constant weights at individual antenna 
elements to achieve wideband beamforming. Such 
weights can be easily realized in practice, in an analog 
manner, using amplifiers or attenuators.  

Designs of smart antennas based on the spatial signal 
processing concept [7]–[10] rely on the assumption that 
DOA of desired signal is known to the system, for 
example, using one of the already existing DOA methods. 
Unfortunately, many of them, such as the ones described 
in [11]–[16], are not suitable for the 2–D spatial 
beamformer. The reason is that they rely on the 
application of TDLs, which this type of beamformer 
avoids. However, the DOA estimation methods of 
wideband signals such as those described in [17]–[19] are 
worthwhile considering.  The method described in [17] 
utilizes the covariance matrix of received signals by 
assuming that all sources have a flat power spectrum over 
the frequency band of interest. As this is not a realistic 
assumption in many commonly occurring situations, this 
approach is not pursued here. The method shown in [18] 
and [19] concerns a direction finding algorithm for 
multiple wideband signals received by one-dimensional 
array. It applies an interpolation technique to generate a 
set of virtual arrays, each for a different frequency band, 
having the same array manifold. The covariance matrices 
of these arrays are added up to produce a composite 
covariance matrix. DOA estimates are produced by eigen 
decomposition of this composite covariance matrix using 
the narrowband Multiple Signal Classification (MUSIC) 



algorithm. This approach looks attractive from the point 
of view of applying it to the 2-D spatial beamformer 
described in [7]–[10]. However, it requires a suitable 
extension from the 1-D to 2-D array case.  

In this paper, we modify the concept of the 
interpolated array technique for a 1–D array [18]–[19] 
and adapt it to the case of the 2–D spatial wideband 
beamformer described in [10]. The considerations 
commence with the 2–D array signatures. By applying 
the interpolated technique the composite covariance 
matrix is produced. Next, the MUSIC algorithm is used 
to the composite covariance matrix to estimate DOA of 
the desired wideband signal. The performance of the 
DOA estimation algorithm for the 2-D array is compared 
against the one for the 1–D array in [19]. 
 
2. Signal Model 
 

The configuration of a wideband smart antenna that 
employs a fully spatial signal processing for beam 
forming [7]–[10] is shown in Fig. 1a. It is constituted by 
N1xN2 wideband antennas arranged in a rectangular 
lattice in which amplifiers or attenuators connected to 
individual array elements produce weighting coefficients. 
Then, the signal is combined by a summing network. 
From Fig. 1a, d1 and d2 represent array spacing in two 
orthogonal directions and are usually chosen as half-
wavelength at the highest frequency of a given frequency 
band of operation. Antenna elements are denoted by 
indices m1 and m2, where –M1 ≤ m1 ≤ M1 and –M2 ≤ m2 ≤ 
M2. The relation between N and M is Mi = (Ni–1)/2.  

In order to see the difference between this array 
antenna and the conventional 1–D wideband antenna 
with TDLs, the configuration of the latter is shown in 
Fig. 1(b). The two configurations have the same task of 
beam forming in azimuth (the x–y plane). In the 2–D 
array the function of TDLs is somehow performed by a 
rectangular structure of the 2–D array. As the signal is 
assumed to arrive from the direction not perpendicular to 
the array’s plane, the 2–D array’s elements receive the 
signal’s replicas with different phases. This results in a 
set of signals, which can be used for processing both in 
frequency and angular domains.  

In order to form a beam in a specific direction, the 
signal weights have to be properly chosen in the two 
types of arrays. The algorithms for generating these 
weights have already been given in [10] and [20] and are 
not repeated here. However, it can be noted that in both 
cases, these weights are real-valued.  

Having explained the operation of the two types of 
wideband array antennas, we are ready to move to 
describing the DOA estimation algorithm based on the 
interpolation technique that was described in [18]–[19].  
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Fig. 1: (a) Configuration of fully spatial wideband smart
antenna (b) Configuration of a conventional wideband
smart antenna. 
By assuming K radiating sources in azimuth direction 
(φ), being in the plane of the array, the signal at the output 
of each array element is given by 
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where Sk is the radiated signal and qm1,m2 is the noise 
signal. The parameter ψk,m1,m2 stands for the delay 
associated with the signal propagation time from kth 
source to the (m1,m2)th element of array. This parameter 
contains the information about location of sources as 
shown in (2). 
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where  φk is DOA from kth source in azimuth. The time-
domain signal given in (1) can be transformed to 
frequency-domain as shown in (3). 
 

 ( ) ( )∑
−

=

∆−∆=
1

0

2
,, 2121

1 N

n

tnfj
mmimm

ietnx
N

fX π    (3) 

 
where ∆t = 1/fs, ∆f∆t = 1/N, fs is sampling frequency and 
N is the number of frequency bins. Using (3), (1) can be 
rewritten in terms of frequency, as shown in (4) 
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where Sk(fi) and Qm1,m2(fi) are the Fourier coefficients of 
sk(t) and Qm1,m2(t) at the frequency bin fi respectively. 
Then, (4) can be simplified to the equation as given in (5) 
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In practice, one can obtain the frequency response (5) 
from a number of snapshots (samples) in time domain. 
Assuming Ns is the number of snapshots, and the number 
of frequency samples (L) is equal to Ns–N+1, the 
covariance matrix of each frequency bin can be evaluated 
by averaging over L times as shown in (6) 
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Note that † stands for the conjugate and transpose 
operation (Hermitian operation). From (6), it can be 
noticed that the covariance matrix has the structure 
similar to the narrow band case [21]. This analogy 
enables the use of an efficient subspace search technique 
like the one offered by the MUSIC algorithm. Note that 
before implementing the MUSIC algorithm, N sets of 
covariance matrix from N frequency bins has to be 
considered. In order to tackle this problem, the concept of 
interpolated array [19] is adapted. It allows for 
transferring the steering vector of any frequency bin into 
the specific frequency’s steering vector which is usually 
chosen at the center frequency of the band of operation. 
 
3. Interpolated array technique 
 

The concept of interpolated array for estimating DOA 
of wideband signals has been described in [18]–[19].  In 
this concept, a wide frequency band is divided into 
multiple narrow bands with center frequencies fi. In each 
band the signal is assumed to be received by a virtual 
array, which is “stretched” or “compressed” version of 
nominal array. The stretch/compress factor is such that all 
of the virtual arrays have the same response (radiation 
pattern). Because the virtual arrays have the same 
response (at their operating frequencies) it is possible to 
combine the covariance matrices for the different 
frequencies by simple addition. The outputs from virtual 
arrays are obtained via interpolation technique from the 
real one-dimensional array. The interpolation coefficients 
are selected so as to minimize the interpolation error for a 
signal arriving from a given sector (a range of bearing 
angles), at a particular frequency. The size of the sector is 
chosen to give good estimates of the virtual array outputs. 
The design of interpolator is done once and off-line.  

By assuming a constant matrix Bi, the relation between 
the steering vector of frequency bin fi and the center 
frequency fc for any angle of arrival φ within the limited 
sector [φ1, φ2] can be shown in (7) 
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The steering matrix AB(fi) which is needed to 

determine Bi appeared in (7) is formed by a set of steering 
vectors a(fi,φ) cooperating with the set of angles within 
the sector as given in (8). 
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The interpolated matrix Bi is then given by (9). 
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The interpolation accuracy has been described in [19] and 
therefore is not discussed here. 

As seen in (7), different steering vectors of each 
frequency bin fi can be transformed into the steering 
vector at the center frequency of the band. By using this 
transformation, the composite covariance matrix R is 
obtained as given in (10) 
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4. MUSIC algorithm 
 

The MUSIC algorithm is considered to be an effective 
algorithm to estimate DOA of multiple narrowband 
signals in a wireless system. It has gained a considerable 
attention in the last decade. This is because of its 
advantages in terms of hardware implementation as well 
as due to its simplicity against other well-known DOA 
techniques [21]. Steps required in the MUSIC algorithm 
can be summarized as follows [21]: 
 
1. Perform eigen decomposition on R from (10) 
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2. Assuming K sources, the covariance matrix C is given 
in (12). 
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3. The MUSIC spectrum is obtained using (13) 
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Here, this algorithm is applied to DOA estimation of 
multiple wideband signals when the interpolation array 
algorithm, described in the previous section of this paper, 

is applied to convert the wideband DOA estimation 
problem to the narrowband DOA estimation problem.   

 
Fig. 2: Frequency spectrum of wideband signals 

 
5. Simulation results 
 

The proposed wideband DOA estimation method for 
the 2–D spatial beamformer of [10] was assessed via 
MATLAB® simulations. In particular, its performance 
was compared with the 1-D case, described in [18], [19].  

Throughout the simulations, for the 2-D configuration 
of Fig.1a, the 4x4–antenna array [10] was considered. In 
this array antenna elements are spaced half–wavelength at 
the highest frequency (fs/2). For the 4x1 wideband 
beamformer, a 4x1 linear array with uniform spacing of 
half–wavelength at the highest frequency (fs/2) was 
assumed. In the two cases, the frequency was normalized 
by setting fs equal to 1. The center frequency was set at 
0.4 and the number of frequency bins N was assumed to 
be 100. The simulated results were obtained using 400 
snapshots. In order to take into account the random nature 
of noise, the results were evaluated over 50 experiments. 
The sector used in the interpolated technique was 
assumed to be from 0° to 60° with the step size of 1°. The 
wideband signal extending from fl to fh having the 
Fractional Bandwidth (FB) defined as 
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was created assuming frequency bins of equal amplitude 
and phase shift. Examples of spectra of wideband signals 
with different values of FB are shown in Fig. 2.   

Simulation results concerning various aspects of DOA 
estimation are presented in Fig.3 to 6. They are divided 
into four issues: DOA detection, effect of fractional 
bandwidth, effect of SNR, and effect of angle separation. 



Here we provide detailed comments with respect to each 
of the four issues. 
 
5.1. DOA detection 

Fig 3 shows the results for DOA using 2–D array and 
1–D array when the desired signal comes from the angles 
of 30° and 40° off boresight direction. The plot indicates 
that the proposed method using 2–D array provides DOA 
estimation as good as the original 1–D array described in 
[18] and [19]. 
 
5.2 Effect of fractional bandwidth 

Here the Mean Square Error (MSE) of DOA is used to 
assess the performance of the DOA detecting algorithm.  
According to Fig. 4, the use of the 2–D array provides 
less error in DOA estimation compared with 1–D array. 

The reason for this improvement can be due to the fact 
that the 2-D array uses more antenna elements to perform 
DOA estimation. 

Fig. 3: MUSIC spectrum, SNR = 10dB, FB =50%, 
interpolated sector [0° 60 °], N=100, Ns=400, 50 
experiments. 

Fig. 4: DOA MSE (dB) versus fractional bandwidth (%), 
SNR = 10dB, φ  = 30° and 40°, interpolated sector [0° 
60°], N=100, Ns=400, 50 experiments. 

Fig. 5: DOA MSE (dB) versus signal-to-noise ratio (dB) 
for, φ = 30°, FB = 25% and 50%, interpolated sector [0° 
60°], N=100, Ns=400, 50 experiments. 
 

Fig. 6: DOA MSE (dB) versus DOA separation (degree) 
for FB = 50%, SNR = 10dB, φ  = 0, interpolated sector [0° 
60°], N=100, Ns=400, 50 experiments. 

 
5.3 Effect of Signal-to-Noise Ratio 

Fig. 5 shows the error in DOA estimation (MSE) as a 
function of SNR. As can be seen in Fig.5, for FB of 50% 
the use of 2–D array provides less error than 1–D array. 
This is especially true for low values of SNR. The 
advantage of the 2-D array becomes more pronounced for 
the signals having FB=25%. 

 
5.4 Effect of angle separation 

In this simulation, two correlated and coherent signals 
were generated with different DOA. Fig. 6 shows an error 
in DOA detection when the angle separation between two 



sources is varied. It can be seen that the 2–D array and the 
1–D array offer nearly the same capability of detecting 
signal direction when the separation is small i.e. 10°. As 
the separation angle increases, the 2–D array shows lower 
MSE compared with the 1–D array.  

By summarizing the findings obtained with respect to 
the four investigated issues 5.1–5.4, it can be stated that 
DOA estimation method of a wideband signal based on 
the interpolated technique produces superior results when 
the 2-D antenna array of [10] instead of the 1-D array 
[18], [19] is used. 
 
6. Conclusion 
 

In this paper, a method of DOA estimation of a 
wideband signal based on the interpolated array technique 
in conjunction with the MUSIC algorithm has been 
investigated. The performance of this method has been 
assessed for two– and one–dimensional wideband arrays. 
MATLAB simulations have been used as the assessment 
platform. The simulation results have shown that the 2–D 
spatial beamformer introduced in [7]–[10] offers better 
quality DOA estimation of a wideband signal than its 1–D 
counter part described in [18], [19].  

The presented DOA algorithm completes the design of 
a wideband smart antenna with only spatial signal 
processing. By combining the work presented in [10] and 
the one described in this paper, the smart antenna 
designer is able to estimate DOA of a wideband signal 
arriving from any direction in azimuth and generate a 
desired wideband radiation pattern by using the two–
dimensional array introduced in [10]. 
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