
1 Introduction

In the near future, intelligent mobile wireless sen-
sors will be extensively deployed in military operations,
under-sea explorations, hazardous environments, etc.
The objectives for the nodes in such mobile wireless
sensor networks is to move rapidly, probe, process and
transmit information to other nodes. At the end of the
“operation” only a subset of the sensor network nodes
are recovered (the rest are either lost or severely dam-
aged). Information is retrieved from what is stored in
the subset of recovered nodes. Since the sensors have
limited computational power, the nodes have to bal-
ance between energy conservation and fault-tolerance
while transmitting information.

Gossip algorithms lend themselves well to such ap-
plications where each node selects at random a neigh-
bor and transmits a quantum of information (refered
to as gossip). There are several articles in the open lit-
erature on gossip algorithms (such as Haas et al [4] on
routing, Vogels et al [11] on robustness, and Servetto
and Barrenechea [10] on scalability). A complete lit-
erature review is not performed due to space restric-
tions. Only a limited number of research articles such
as Koldehofe [7] consider analytical models for perfor-
mance analysis of gossip algorithms. In addition, only a
few articles such as Kowalczyk and Vlassis [8] explicitly
consider stopping criteria in their gossip algorithms.

The remainder of this paper is organized as follows.
In Section 2 we propose a gossip algorithm suitable
for applications described above. Then in Section 3
we model the information flow and node states using
a Markov chain. By suitably modifying this Markov
chain, we analyze the performance to obtain mea-
sures such as: time to transfer information and frac-
tion of nodes receiving information in Section 4. We
describe numerical results and findings in Section 5.
Then we compare our algorithm to existing stopping-
criterion based gossip algorithms in Section 6. Finally
we present our concluding remarks and directions for
future work in Section 7.

2 Gossip Algorithm Description

Consider a mobile wireless sensor network with N
nodes. We propose a gossip algorithm for nodes to dis-
sipate sensed information to as many nodes as possible
in the network. We specifically concentrate on a sce-
nario where the sensor nodes move around, they sense
and process information which they periodically trans-
mit to other nodes. The transmission times are far
apart that the nodes would have significantly moved
between two transmissions. Between successive trans-
missions, the nodes sense, process and store informa-
tion. We assume the synchronous time model described
in Boyd et al [1] and used in Karp et al [5] as well
as Kempe et al [6] (extending it to the asynchronous
time model described in Boyd et al [1] would be fairly
straightforward and in fact easier). In the synchronous
time model, all nodes at a prescpecified transmission
time, synchronously transmit a set of information to
one of their neighbors. Each node selects one neighbor
and transmits only the information that the neighbor
does not posses. To describe the algorithm as well as
for analysis, we will consider only a single piece of in-
formation that we call gossip to study how fast and
wide it can spread.

Note that the nodes (i) have local knowledge, (ii)
have limited computational power, (iii) make dis-
tributed decisions, and (iv) move rapidly over time.
With those in mind, we propose the following gossip
algorithm. Consider a gossip that was originated at a
certain node. During the next transmission phase the
node picks one of its neighbors at random to trans-
mit the gossip. Since the nodes are moving rapidly,
we assume that the probability that a certain node is
selected is 1

N−1 , even though all nodes may not be can-
didate neighbors. At the next transmission phase each
of these two nodes that know the gossip, selects a neigh-
boring node at random with probability 1

N−1 . In this
manner during every transmission phase, every node
that has the gossip (and has not stopped spreading it)
selects one of the N − 1 other nodes to check if it has
the gossip. If the selected node already has the gossip,
then the transmitting node not only does not transmit
the gossip but also stops speading it; else it continues



spreading the gossip. If two or more nodes attempt to
transmit the gossip to a node that does not have the
gossip, then only one of the nodes transmits the gos-
sip but all the nodes involved continue to spread the
gossip.

It is worthwhile to notice the following characteris-
tics with respect to the proposed gossip algorithm: (i)
there is an explicit stopping criterion for each node to
stop spreading the gossip, i.e. when the node attempts
to transmit to another node that already has the gossip;
(ii) at each transmission phase, there are three types
of nodes, those that are actively spreading the gossip,
those that stopped spreading the gossip and those that
do not have the gossip; (iii) the algorithm ends when
there are no actively spreading nodes with gossip and
it is not necessary that all nodes get the gossip even-
tually; (iv) when the algorithm ends, the number of
transmissions that occured is one less than the number
of nodes that have the gossip (thus computing power
is used prudently). With these characteristics in mind,
we can now model and analyze the process of gossip
spreading via the algorithm proposed above.

3 Markov Model

As described in Section 2, at the beginning of a
transmission phase, each node is in one of the following
three states: knows gossip and is spreading it, knows
gossip but stopped spreading, and does not know gos-
sip. In that light, we define the following: let Xn be the
number of actively spreading nodes at the nth trans-
mission phase; let Yn be the number of nodes that have
not heard the gossip upto the nth transmission phase,
and let Zn be the number of nodes that have heard
the gossip until the nth transmission, but have stopped
spreading it. Note that since Zn = N − Xn − Yn, we
really need only Xn and Yn to describe the state of the
system and Zn is defined purely for notational conve-
nience. Also, X0 = 1, Y0 = N − 1 and Z0 = 0 is the
initial state when one node has the gossip and the re-
maining N − 1 do not know it. Further, in order to
predict the state (Xn+1, Yn+1) all we need to know is
(Xn, Yn). Therefore the process {(Xn, Yn), n ≥ 0} is a
discrete time Markov chain (DTMC).

For this DTMC model, the next step is to obtain
the transition probabilities. Let pi,j(i − l + m, j −m)
be the probability of transitioning from state (Xn =
i, Yn = j) to state (Xn+1 = i − l + m,Yn+1 = j −m).
That happens when l of the i nodes that are active
in spreading the gossip end up attempting to spread to
nodes that already have the gossip. Also, the remaining
i− l nodes spread the gossip to a set of m nodes out of
the j nodes that do not have the gossip. There are some

constraints such as 0 ≤ m ≤ min(j, i− l) and 0 ≤ l ≤ i.
In order to obtain an algebraic expression for pi,j(i −
l+m, j−m), consider the following matching problem:
there are W eligible women and M eligible men in a
society and each of the W women selects a man at
random (assuming all men are equally desirable!) and
writes a letter.

Lemma 1 The number of combinations of m of the M
men receiving letters (that means M−m do not receive
letters) is Ω(M,W,m) and is given by

Ω(M,W,m) =
(

M

m

) [
m∑

x=1

(−1)m−x

(
m

x

)
xW

]
.

Proof. By principle of mathematical induction. De-
tails are omitted.

Such combinatorial problems have received atten-
tion in the literature, especially the stable marriage
problem (see Gusfield and Irving [3]). Now, using the
above Lemma 1, we can obtain an algebraic expres-
sion for pi,j(i − l + m, j − m), the probability that
Xn+1 = i− l + m and Yn+1 = j−m given that Xn = i
and Yn = j. Let Zn = k where k is the number of
nodes that have stopped spreading the gossip. Clearly,
k = N− i−j. Also Xn+1 = i− l+m and Yn+1 = j−m
imply that Zn+1 = k + l. The following theorem de-
scribes the transition probability pi,j(i− l +m, j−m).

Theorem 1 For m = 0, (and l = i hence)

pi,j(i− l + m, j −m) =
(

i + k − 1
N − 1

)l

and for 1 ≤ m ≤ min(j, i− l) and 0 ≤ l ≤ i,

pi,j(i− l + m, j −m) =(
i

l

) (
i + k − 1
N − 1

)l (
j

N − 1

)i−l Ω(j, i− l,m)
ji−l

.

Proof. The event that l nodes stop spreading the gos-
sip is when l of the i nodes that are actively spreading
the gossip end up spreading to nodes that already know
the gossip. In other words, out of the i nodes, l of them
choose to tell nodes who already know the gossip and
i− l of them choose to tell nodes that do not have the
gossip. That happens with probability(

i

l

) (
i + k − 1
N − 1

)l (
j

N − 1

)i−l

.

Now, of the j nodes that have not received the gossip,
m of them get it from the i− l nodes mentioned above.
Clearly some (or all) of the m nodes may have been
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contacted by more than one of the i−l nodes. The total
number of different ways j nodes can get the gossip
from i− l nodes is ji−l ways. Of these ji−l ways, based
on Lemma 1, exactly Ω(j, i − l,m) would result in m
different new nodes hearing the gossip, where

Ω(j, i− l,m) =
(

j

m

) [
m∑

x=1

(−1)m−x

(
m

x

)
xi−l

]
.

Hence the expression for the transition probability in
Theorem 1.

Care must be taken while constructing the DTMC
to ensure that impossible states are removed from the
DTMC. For example (1, N − 1) is the only state for
which Xn = 1. Also there cannot be states such as
(0, N) or (0, N − 1). In essence, all states that are
unreachable from (1, N−1) in one or more steps should
be removed. Let P be the transition probability matrix
of the remaining states of the DTMC such that P =
[pi,j(i−l+m, j−m)], i.e. a matrix of pi,j(i−l+m, j−m)
values. Now that the state of the system is modeled
as a DTMC with transition probabilities obtained from
Theorem 1, the next step is to analyze the DTMC to
obtain performance measures such as time for gossip
spreading to end and fraction of nodes receiving the
gossip.

4 Performance Analysis

The DTMC modeled in Section 3 is reducible and
transient, since states such as (0, j) are absorbing (i.e.
p0,j(0, j) = 1) and state (1, N − 1) cannot be reached
from any other state. Although it is possible to analyze
reducible DTMCs, for the purposes of this paper, it is
more convenient to transform the DTMC into an irre-
ducible and positive recurrent one (such DTMCs are
sometimes called ergodic, for definition and properties
refer to Kulkarni [9]).

4.1 Modified DTMC

Consider a modification to the transition probability
matrix P such that for all j ≤ N −2, p0,j(0, j) = 0 and
p0,j(1, N − 1) = 1. Let P̂ be the new transition prob-
ability matrix, but with the same states as the origi-
nal DTMC. The modification implies that as soon as
a gossip spreading ends, a new gossip begins. There-
fore every time state (1, N − 1) is reached, it is like
starting a new replication in a simulation. This mod-
ified P̂ matrix is such that the DTMC is irreducible
and aperiodic. Note that everytime the system reaches
(1, N −1), it denotes the gossip spreading ended in the
previous transisition. Also if (1, N − 1) was reached

from (0, j) then N − j nodes ended up receiving the
gossip. In that light the two performance measures
we are interested are: how long does it take to revisit
(1, N − 1) (i.e. how many transmission slots does the
gossip algorithm last which is a function of how often
state (1, N − 1) occurs); and how many nodes end up
receiving the gossip.

For that, we compute the steady-state distribution
of the modified DTMC. Let πi,j be the steady-state
probabilities of the DTMC with transition probability
matrix P̂ . Therefore,

πi,j = lim
n→∞

P{Xn = i, Yn = j}.

Clearly the row vector π of πi,j values (π = [πi,j ]) can
be obtained as the left eigen vector of P̂ corresponding
to eigenvalue of 1 and normalized so that

∑
i,j πi,j = 1.

In other words, π is the solution to

π = πP̂

πe = 1

where e is a column vector of 1’s. Now, using the πi,j

values, we develop the performance measures of inter-
est in the next section.

4.2 Performance Measures

For all states (i, j) in the DTMC, πi,j can be ob-
tained numerically. Using that, we derive some perfor-
mance measures in terms of πi,j . The first measure of
performance of interest is the time to complete spread-
ing the gossip. In other words, this is the time for the
gossip algorithm to end and the original DTMC to end
up in state (0, j). Define τ as the average number of
time slots for completion (i.e. stop spreading the gos-
sip).

Theorem 2 τ =
1

π1,N−1
− 1.

Proof. For the modified DTMC, since state (1, N −1)
is reached every time the gossip spreading is completed,
1/π1,N−1 denotes the average amount of time to leave
state (1, N−1) and return back for the first time. This
is one extra transmission phase over when the gossip
ended. Hence the average time for gossip to end in
terms of number of transmission slots is given in The-
orem 2.

The second performance measure of interest is the
number of nodes that end up getting the gossip when
the algorithm completes. This is called reach. Let µ
and σ be the average and standard deviation of reach,
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i.e. the mean and standard deviation of the number of
nodes that receive the gossip. Clearly,

µ =
N∑

r=2

rρN−r

σ2 =
N∑

r=2

r2ρN−r − µ2

where ρj is the probability that j nodes do not receive
the gossip when the algorithm ends. In order to com-
pute ρj , we state the following theorem.

Theorem 3 ρj =
π0,j∑N−2

i=0 π0,i

.

Proof. Straightforward conditional probability that
the algorithm ends in node j given that the DTMC is
in one of the algorithm-ending nodes, i.e. of the form
(0, i).

Having derived the performance measures τ , µ and
σ, the next step is to obtain them numerically. This is
done in the next section.

5 Results

Notice that N is the only parameter in the DTMC
modeled in Section 3. Therefore for various values of
N , we obtain the performance measures τ , µ and σ
numerically. For each N , we obtain P first, then con-
vert to P̂ and finally the steady-state probabilities πi,j .
Using the steady-state probabilities, we obtain perfor-
mance measures τ , µ and σ. In this paper we used
MATLAB to compute the numerical values.

Figure 1. τ versus N

Figure 1 is an illustration of how τ , the average num-
ber of transmission phases for the gossip algorithm to

complete, varies with N . From the figure, it is evident
that as the number of nodes N increases, τ increases at
a much slower rate and the rate of increase decreases
with N . It appears as though τ would eventually flat-
ten out. This implies that the proposed gossip algo-
rithm is extremely scalable.

Figure 2. µ versus N

The most remarkable finding of this paper is that
in Figure 2. Notice that the average number of nodes
reached (µ) is linear with respect to N . In fact, nu-
merically it can be shown that µ ≈ 0.826N for N ≥ 5.
What this implies is that for any N , µ can be imme-
diately predicted without even running the algorithm.
In other words, on an average 82.6% of the nodes can
be reached via the gossip algorithm presented in this
paper. Notice that 0.826 is a parameter-free constant.
Although this is an asymptotic result, it works for even
small values of N .

Figure 3. σ versus N

Since the number of nodes the gossip reaches is a
random variable, in order to study the variability of
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this random variable, in Figure 3, we plot σ (the stan-
dard deviation of the number of nodes that receive the
gossip) as a function of N . Although σ does increase
with N , the rate of increase reduces with N . From the
figure it appears as though σ has an upper bound of
2.5 + 0.025N . Therefore for larger values of N , σ can
be approximated as 2.5 + 0.025N .

Figure 4. σ/N versus N

In Figure 4, we study the standard deviation of the
fraction of nodes the gossip reaches. Clearly that quan-
tity, i.e. σ/N is a decreasing function of N . An inter-
esting observation one can make is that with 99% confi-
dence one can state that at least two-thirds of the nodes
would receive the gossip, especially for large N . The
claim is made using central limit theorem and strong
law of large numbers.

Figure 5. σ/µ versus N

Finally, in Figure 5, we study the coefficient of vari-
ation of the number of nodes that receive the gossip
(also equal to the coefficient of variation of the frac-
tion of nodes that receive the gossip). First of all no-

tice that the coefficient of variation is extremely small.
Secondly it is reducing with N which means that the
random variable is less varying as N increases.

6 Comparisons

The next question to ask is how our proposed gos-
sip algorithm compares against other algorithms. In
order to make our comparison meaningful, we select
algorithms that have explicit stopping criteria. There
are two such algorithms in the literature. First is the
random walk algorithm that several researchers have
used for comparison. The second is an adaptation of
the multicast gossip in Ganesh et al [2] modified to our
scenario. We now briefly explain the algorithms and
compare the performance measures τ and µ against
the proposed gossip algorithm in this paper.

6.1 Random Walk

The random walk algorithm works in the following
manner: the initial node with a gossip selects one of
its neighbors at random and transfers the gossip; then
the initial node stops speading the gossip. Then the
node with the gossip selects a neighbor at random to
spread the gossip: if the neighbor already has the gos-
sip, the node with the gossip picks another node, other-
wise the node stops spreading the gossip and gives it to
the neighbor. The algorithm continues until all nodes
have the gossip. Notice that at any given time only 1
node has the gossip. Clearly τ > N − 1 because it the
best case it would take N − 1 transmission phases to
spread the gossip to all the nodes. This is much higher
than our proposed algorithm. However µ = N because
all nodes eventually receive the gossip. Applied to our
scenario, this random walk algorithm would be slow
and reliable.

6.2 Multicast Gossip

The multicast gossip algorithm works in the follow-
ing manner: the initial node with a gossip selects few of
its neighbors at random and transfers the gossip using
a multicast scheme; then the initial node stops spead-
ing the gossip. Then the nodes with the gossip select
few neighbors at random to spread the gossip: whether
the neighbors already have the gossip or not, the node
stops spreading the gossip and gives it to the neigh-
bors. If a node that already has the gossip receives it
from a neighbor, it does not spread it but remains pas-
sive. The algorithm continues until all nodes are pas-
sive (some with the gossip and others without). Usu-
ally τ is better than our proposed algorithm in this
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paper. However µ is worse than our proposed algo-
rithm Applied to our scenario, this multicast gossip
algorithm would be fast but not-so-reliable.

7 Concluding Remarks

In this paper we proposed a gossip algorithm (with
explicit stopping criterion) to route information to as
many nodes as possible. In the literature typically gos-
sip algorithms are analyzed using simulations, however
we use an analytical model based on Markov chains
to obtain performance measures. Also, most gossip
algorithms in the literature do not consider stopping
criteria explicitly. Besides the gossip algorithm and
method of analysis, another contribution of this pa-
per is the curious finding that the average fraction of
nodes that eventually receive the routed information
is a parameter-free constant. We compare the perfor-
mance of our algorithm against others in the literature
and claim that our algorithm performs very well with
a dual objective of being both reliable and fast.

There are a few limitations for this paper. First of
all, the algorithm works well only under the framework
of the setting mentioned in the paper: nodes move
rapidly and only periodically they are in a transmis-
sion phase; in addition, it is enough if many (but not
all) nodes receive the information. Secondly, numerical
studies for only upto N = 100 were made. The reason
is that the factorial of a large number ends up higher
than the largest number in MATLAB. This can be cir-
cumvented in the future by either approximations or
usage of logarithms cleverly for the factorials. The gos-
sip algorithm itself can certainly be improved such as:
continue gossiping until 2-3 attempts result in nodes
already knowing the gossip; contact more than 1 neigh-
bor during a transmission phase. These upgrades will
be considered in future, however obtaining an analyti-
cal model may be difficult in those cases.
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