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Abstract— In single-carrier transmission systems, wider band-
width allows higher data rate by transmitting narrower pulses.
For wireless applications, however, this means that the effective
channel response is longer and the number of significant taps
increases. This results in higher computational burden at the
receiver. In this paper, we first review some well-known equal-
ization methods and their shortcomings. Then we will propose the
use of the circulant embedding method and the CG algorithm as
efficient equalizers that are specifically well suited in dealing with
long delay spread channels. These methods take advantage of the
low computational complexity of the FFT algorithm, resulting
in the same overall computational complexity of N log(N).
Furthermore, when the CG algorithm is used correctly, it may
perform better than the MMSE equalizer at a much lower cost.

I. INTRODUCTION

In recent years, driven by military application as well as
consumer products, the demand for high-data rate wireless
communication systems has been increasing at a dazzling pace.
This leads to wider bandwidth communication systems such
as ultra wideband system with bandwidth in the order of
hundreds megahertz. While the use of multiple antennas is
known to increase capacity, it comes at a significant increase
in hardware costs. Thus in practice, the best way to achieve
higher data rates in wireless communications is still to increase
the bandwidth of the wireless channel, since the channel
capacity grows linearly with the channel bandwidth. However,
simply increasing the channel bandwidth is only half the
story – there are problems associated with this approach. For
instance, channel information (CI) is harder to obtain for wide-
band channels and multipath propagation plays an increasingly
dominant role which makes equalization a challenging task.

There exist essentially two competing wireless transmission
schemes: single-carrier and multi-carrier transmission [1], [2].
A prominent example for a multi-carrier communication sys-
tem is Orthogonal Frequency Division Multiplexing (OFDM).
Comparing the two schemes, OFDM [3] has the advantage of
low receiver complexity while achieving ML decoding. The
disadvantage is paying a higher price for the transmitter with
a wide dynamic range power amplifier to handle the peak-to-
average power ratio (PAPR) problem that is intrinsic to the
OFDM scheme. Also, the ML performance is achieved by
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cyclic prefix (or postfix) which effectively reducing data rate
by transmitting redundant information. If reducing data rate
is tolerable, single-carrier with zero-padding or cyclic exten-
sion [4] may achieve ML performance as well with frequency
domain equalization [5] while avoiding the use of expensive
power amplifiers. Furthermore, single-carrier systems are less
sensitive to channel estimation error and to carrier frequency
offset.

In this paper, our interest is wideband real-time high
data rate applications with single-carrier systems. Due to the
long delay spread encountered in wideband communication
systems, there is a severe penalty in terms of loss of data
rate when employing single carrier block transmission as is
done for instance when using guard intervals or a cyclic
prefix. On the other hand the complexity of equalization
can become significant for non-block transmission schemes,
which raises the problem of how to construct numerically
efficient equalizers for this case. Therefore in this paper we
focus on designing efficient equalization algorithms for high-
data rate single carrier non-block transmissions. The proposed
algorithms are sufficiently fast to be used for (near) real-time
applications such as video streaming.

II. PROBLEM FORMULATION

Continuous and discrete models are introduced in this
section while establishing the notation that will be used
throughout the rest of this paper.

A. Communication Model

To transmit the set of discrete information symbols
{sk}∞k=−∞, it is first converted to a continuous-time signal by
a sum of weighted copies of a finite duration pulse shaping
function p(t) via

c(t) =
∑

k

skp(t− kT ). (1)

Let hc(t) represent the impulse response of the communication
channel. Throughout the paper, exact CI at the receiver is
assumed. At the receiver, the continuous-time received signal,
r(t) = (hc ∗ c)(t) is filtered with a finite duration matched
filter q(t) and then sampled to produce a digital signal so that
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it may further processes digitally with DSP chips to reduce
cost.

Mathematically, define pk = p(t− kT ), we are discretizing
the continuous-time function

b(t) = (r ∗ q)(t) =
∑

k

sk(hc ∗ pk ∗ q)(t) (2)

to, depending on the sampling rate, produce discrete sequences
b(ti,j) and hd(i, j) = (hc ∗ pk ∗ q)(tij) where ti,j is the
sampling time that takes on values from the set {...,−2T/a−
jP,−T/a−jP, 0−jP, T/a−jP, ...., iT/a−jP, ...}. We have
in general three cases: Nyquist sampling (if a = 1, P = 0),
Q-fold integer over-sampling (if a = 1, P = T/Q and
j = 0, 1, ..., (Q−1) for some natural number Q) and fractional
sampling with a sampling period of P (if a > 0 is not an
integer, P = T/(aQ) and j = 0, 1, ..., (Q−1) for some natural
number Q).

B. Algebraic Formulation

The following notational conventions are used throughout
the rest of the paper: (1) capital italic letters such as H denote
finite dimensional matrices. (2) Lower case italic letters such
as x or h are finite dimensional vectors. (3) For matrices,
subscript like x in Hx refers to the x-th row of the matrix H
if x is a number, otherwise it is a naming of the matrix, and Hj

is the j-th column of H . Similarly, hi is either the i-th entry in
the vector h or an element from the set {hi}, it should be clear
from the context. (4) Superscript with parenthesis like H(k)

(or x(k)) refers to different matrices (or vectors) for different
integer k. (5) Bold letter such as H is the infinite dimensional
counterparts of H and other conventions, such as subscript or
superscript, for finite dimensional matrix or vector hold for
the infinite dimensional one as well. (6) For random variables
in matrix or vector form, bold slanted letters such as n are
used.

To develop numerical algorithms, it is often convenient
to formulate the problem in terms of algebraic equations.
Discretizing b(t) enables us to do just that. For the Nyquist
sampling case, we have the bi-infinite dimensional system

Hx = b (3)

where

H =




. . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . hL hL−1 ... h1 0 ... 0
. . .

. . . 0 hL hL−1 ... h1
. . .

...
. . .

. . .
...

. . . . . . . . . . . . . . .
...

. . .
. . . 0 ... 0 hL hL−1 ... h1

. . .
. . . . . . . . . . . . . . . . . . . . . . . . . . .




is a bi-infinite band Toeplitz matrix formed by the length L dis-
crete equivalent channel h = [hd(1, 0), hd(2, 0), ..., hd(L, 0)]T

and x = [..., s−1, s0, s1, ...]T . Since the above linear system
is infinite dimensional, we need to trunacte it before we can
deal with it numerically. However, it remains rank deficient

regardless of how large the system is in finite dimensions. In
the absence of noise, a sampling rate higher than the Nyquist
rate, i.e., with a > 1, is required for perfect (FIR) equalization
[6]. For practical purposes, we consider integer oversampling
only in this paper. For the case of Q-fold oversampling, the
finite channel matrix H has block Toeplitz structure with a
block size of Q rows:

H(Q) =




h(L) h(L−1) ... h(1) 0 ... 0

0 h(L) h(L−1) ... h(1)

. . .
...

...
. . . . . . . . . . . . . . .

...
0 ... 0 h(L) h(L−1) ... h(1)




(4)
where h(l) = [hd(l, 0), h(l, 1), ..., h(l, Q − 1)]T . For the rest
of the paper we tacitly assume two-fold 1 oversampling, drop
the H(2) notation and simply use H .

To be more accurate, a two-fold oversampled single-carrier
system that also models noise and interference with a random
vector n is

Hx + n = b. (5)

For simplicity, throughout the rest of the paper, the following
assumption are made: (1) xk = 1 or −1, i.e., we consider
BPSK modulation scheme. (2) When the transmitting symbols
are considered as random variables, we consider them as
independent and identically distributed (i.i.d) with zero mean
and equally likely. (3) The entries of the noise vector n is
normally i.i.d. with zero mean and variance σ2.

Incidentally, the formulation for the integer oversampling
case is the same as for a single-input-multiple-output (SIMO)
communication system [7]. For the Q-fold oversampled case,

h(m) = [hd(1,m− 1), hd(2,m− 1), ..., hd(L,m− 1)]T (6)

where m = 1, 2, ..., (Q − 1) or Q is the equivalent m-th
receiver discrete channel. Therefore, the results in this paper
are applicable directly to SIMO single carrier transmission
systems.

III. SINGLE CARRIER EQUALIZERS

Any left matrix inverse of H , denoted by H†, may be used
as an equalizer for the single-carrier system (5). And any row
from the matrix H†, termed an FIR equalizer, may be used
to decode symbols one at a time by taking inner product of
the time synchronized received vector and the FIR equalizer.
Particulary for wideband wireless single-carrier system, the
matter of which FIR equalizer to choose among the rows of
H† is relevant; we will come back to this point in section
V-B. In this section we will discuss some well-known and
some not so well-known equalizers and point out some of
their properties.

A. State of the Art Equalizers

Various types of equalizers are known, notably linear equal-
izers such as zero-forcing (ZF) equalizer and minimum-mean

1However we note that the results hold true with trivial modifications for
any integer oversampling rate.
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square error (MMSE) equalizer and they are respectively

H†
ZF = (H∗H)−1H∗ (7)

and
H†

MMSE = (H∗H + σ2I)−1H∗. (8)

Non-linear equalizers like decision feedback equalizers (DEFs)
are effective and simple to implement when the channel delay
spread is short or sparse with few significant taps. However, for
channels with many significant taps, error propagation limits
the use of them. In terms of performance, the best equalizer
is the maximum-likelihood (ML) equalizer given by

argmin
x∈S

||b−Hx||, (9)

where S is the set of all possible solutions. In general, ML is
too costly or even impossible to implement in practice due to
its high computational complexity.

B. Practical Solutions

The main disadvantage of the MMSE solution is the cubic
computational complexity in inverting the matrix (H∗H) +
σ2I . For the Nyquist rate sampling case, sub-optimal solution
via the efficient FFT are known [2] and the basic idea is to
approximate the baud rate Toeplitz matrix Hb by a circulant
matrix Cb. In matrix notation, the solution is

H†
b = (C∗b Cb + σ2I)−1C∗b (10)

However, in the oversampling case, the structure of H is block
Toeplitz and the FFT approach in [2] does not apply. For
the case of overampling, we introduce the class of circulant-
embedding (CE) equalizers. These are the ideas of approximat-
ing not H but (H∗H) by a circulant matrix C, thus the cost
of matrix inversion may still be in the order of N log N due
to the efficient FFT algorithm. Variances of the CE equalizers
deriving from approximating the ZF and MMSE equalizers are
the zero-forcing circulant-embedding (ZFCE) equalizer

H†
ZFCE = C−1H∗ (11)

and the regularized circulant-embedding (RCE) equalizer

H†
RCE = (C + σ2I)−1H∗ (12)

Now, before we get to the convergence properties of the
solution by the ZFCE equalizer to the bi-infinite model ZF so-
lution, the circulant matrix construction needs to be addressed
since the solution will depend on it. Recalling that H is a
bi-infinite block-Toeplitz matrix, it is interesting to analyze
the structure of the finite model matrix H∗H which can be
represented as

(H∗H) =



∗ ∗ 0
∗ TH∗H ∗
0 ∗ ∗


 ,

where TH∗H is a (2L−1) band hermitian positive definite (PD)
Toeplitz matrix. The positive-definiteness of TH∗H follows
from the Cauchy interlacing theorem and the fact that H∗H is
PD [8]. From this observation, we can conclude that, although
both Hx = b and H∗Hx = H∗b are bi-infinite linear system,

we may truncate the systems into Hx = b and TH∗Hx = bT

where bT is the appropriate truncation of H∗b so that equality
holds. Thus, instead of comparing the infinite model directly,
we may compare the finite model solution. Also, having a
finite Toeplitz matrix TH∗H to work with we are in a better
position to discuss the construction of the circulant matrix C.
There are various ways to do this, in this paper we consider
the embedding method. That is, C is constructed first by
embedding TH∗H into a larger matrix and then modifying only
the lower-left and upper-right corner entries appropriately so
that it becomes a circulant matrix [9]. Therefore we may write
C = TH∗H +W for some W that depends on TH∗H . Although
H is not Toeplitz, TH∗H is and to compute its row or (column)
which is needed to construct C, FFT may still apply and the
overall computational complexity of ZFCE or RCE equalizer
remains in the order of N log N .

The following theorem shows that, in the absence of noise,
the solution of the ZFCE equalizer converges exponentially
fast to the solution of the bi-infinite ZF equalizer. A detailed
proof of this result (as well as other theoretical results) will
be given in the journal version of this paper. To be concise,
for N ∈ N and y ∈ l2(Z) or l2(2N + 1) let’s define the
orthogonal projection operator P(N) by

P(N)y = [· · · 0 y−N · · · yN 0 · · · ]T (13)

and the truncation operator T(N)y = [ y−N · · · yN ]T .
Theorem 3.1: Suppose T is a band bi-infinite hermitian PD

Toeplitz matrix. Let x ∈ l2(Z), y = Tx, T(N) = P(N)TP(N)

and C(N) is a size (2N + 1) circulant matrix constructed
from the −N -th to the N -th rows and columns of T(N) by
the embedding method. Define approximate solution x(N) =
P(N)

(
C(N)

)−1
T(N)y. Then there exists N such that for all

M > N
||P(M)x− x(M)|| ≤ c1e

−c2M (14)

is true for some constant c1, c2 > 0 that are independent of M
and depend only on the condition number and the bandwidth
of the matrix T.

IV. SUBSPACE METHODS IN THEORY

The solution to the noisy linear system is well established in
the theory of regularization. The methods may be categorized
into direct and iterative schemes. Direct methods cost as much
as inverting a matrix so we will only focus on the efficient
iterative methods that are fast enough to be used in real time.
In particular, we will consider Krylov subspace methods based
on the conjugate-gradient (CG) algorithm.

A. The CG Algorithm

There are various algorithms that are considered as Krylov
subspace methods; the first of these is the by now classical
CG algorithm, cf. [10] for a detailed discussion of CG. Due
to its many nice properties, CG is also a natural candidate as
efficient algorithm for equalization for single-carrier commu-
nication systems. While the CG method has become a standard
tool in numerical analysis, its practical use in the context of
equalization is not straightforward at all and requires some
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careful modifications and adaptations. And this is the topic
for most of the rest of this paper.

The CG method, applying to a symmetric positive definite
(SPD) linear system Ax = y, produces a sequence of iterates
x(k), k = 1, 2, . . ., which converge monotonically to the true
solution in the noise-free case, if the matrix A is invertible, in
finite number of iterations. The computational complexity of
the algorithm is determined by a matrix vector multiplication
in each iteration. When the matrix is not SPD, as is the case in
(5), the CG algorithm can be applied to the associated normal
equations and there are variations of CG like CGNE (CG
algorithm applied to normal equations) that avoid the explicit
computation of the matrix product H∗H; instead it only costs
another matrix vector multiplication with H∗y for some vector
y in each iteration[10]. Throughout the rest of the paper, we
will refer both CG and CGNE algorithm as CG algorithm; it
should be clear from the corresponding linear systems which
one is meant.

B. Stopping Criteria

The CG algorithm is widely used today due to its nice
convergent properties [10]. If the eigenvalues of the matrix
A are clustered or bounded away from zero, it converges
fast. However the convergence properties are more delicate
in the presence of noise. As mentioned, in the noise-free
case CG produces a sequence x(k) that converges to the
true solution x. Unfortunately, in the presence of noise the
monotone convergence of this sequence to the true solution
is no longer guaranteed, this fact is also true for CGNE [10].
The iterates x(k) may first converge, but later diverge from
the true solution. A rule is needed to determine which one in
the sequence is the best choice. Furthermore, the evaluation
of such a rule must also be efficient so that it may be applied
in real time applications. One such efficient rule is the so-
called Discrepancy principle [11]. This principle depends on
a parameter ε and the solution index k is the smallest integer
such that

||r(k)||2 ≤ ε (15)

is satisfied. The advantage of this rule is that it is simple to
compute. However, it requires to chose a sensitive parameter
ε. This parameter should be a function of the noise power
for example. We found that ε as a simple linear function of
noise power is not a robust SC to use across a wide range of
signal-to-noise ratio (SNR) values. Figure 1 demonstrates the
difficulty in using this principle as well as the importance of
a good stopping rule. Another well-known stopping criterion,
the L-curve [12], has also turned out to be unreliable in the
context of equalization.

C. Two Different Uses of the CG Algorithms

Before discussing optimal stopping criterion for the CG
algorithm, we want to point out that by properly formulating
the problems, the CG algorithm can be used to compute both
the matrix system and the FIR solution and different solutions
require a different SCs.

Applying the CG algorithm in the straightforward manner,
we may use it to solve x in the noisy linear system (5) directly.
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||b−Hx(k)||

Fig. 1. Actual and residual error.

On the other hand, we may first solve for an FIR equalizer
g and then find the desired solution via decoding (gT b). The
latter approach motivates the use of the CG algorithm to solve
the following linear equation

HT g = a(k) (16)

where a(k) is a vector consisting only of zeros entries except
at the k-th entry, which is equal to 1.

D. SC for the CG Algorithms
Given full knowledge of the channel information H , for any

FIR equalizer g, the BER may be analyzed. Suppose, without
lost of generality, x1 is the desired decoding symbol. Define
a vector d = gT H and assuming d1 6= 0, otherwise, the BER
for x1 is 0.5. By normalizing the vector g as g(1) = (1/d1)g,
we may expand

(
g(1)

)T

b = x1 + (1/d1)
N∑

k=2

dkxk +
M∑

k=1

g
(1)
k nk. (17)

Thus, the BER may be computed by analyzing the total
noise distribution that consists of interference noise due to
the neighbor symbols x2, ... xN (the second term in the
above equation) and the equalized noise (the third term). The
interference noise may be modeled with a sum of Bernoulli
distributions x1, ..., xN−1 that have zero-mean and variance
|d2/d1|2, ..., |dN−1/d1|2. The equalized noise is a sum of
normal distribution with zero mean and variance (|g1|σ)2, ...
(|gM |σ)2, thus it is still normally distributed with zero mean
and variance (||g||σ)2. The total noise is then modeled as

N−1∑

k=1

xk + ||g||σn, (18)

where n is normally distributed RV with zero-mean and unit
variance. Therefore an optimal SC is possible, at least in
theory, for the CG algorithm when it is used to compute FIR
equalizers. The actual computational complexity is 2N , due
to mainly the interference noise. For large N , the exponential
complexity renders the optimal SC impractical. A suboptimal
SC based on second order statistics, discussed in the next
section, is much cheaper to compute and thus may be used
in practice.

For direct computation of x by the CG algorithm, from the
ML solution, it is reasonable to minimize the metric

||b−Hx(k)||2 (19)
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as a SC. In practice however, the above expression requires
modification, which is also discussed in the next section.

V. SUBSPACE METHODS IN PRACTICE

Applying the CG algorithm in practice requires some ad-
ditional consideration such as finding a low cost SC with
acceptable performance and implementing the same algorithm
more efficiently. These are the topics of this section.

A. MMSE-SC for FIR Equalizers
For the application of wireless communications, we know

that the solution x belongs to a finite alphabet set and we
should take advantage of this information when developing
SCs. Now, consider the case that the entries of x be uncor-
related zero-mean unit energy RV with Bernoulli distribution
again. Assume the transmitted symbols and the receiver noise
are uncorrelated as well, i.e., E {xinj} = 0,∀ i, j ∈ Z.
When the CG algorithm is applied to the linear system in
(16), a sequence of approximate FIR equalizers, {g(k)}k∈N, is
produced. For each of these solutions, say g(n), written as GT

n

for notational clarity, we may analyze them, similar to (17),
by separating the signal and noise components as

Gnb = (GnH)kxk +
∑

i6=k

(GnH)ixi + Gnn. (20)

By formulation, we know (GnH)k is supposed to converge
to 1. We may initialize g(0) to be the matched filter, i.e., the
conjugate of the k-th row of HT . Thus, it is reasonable to
make the following approximation

(GnH)k ≈ 1. (21)

Therefore, minimizing the (total) noise power may be used as
a SC. This suggests the following noise power metric

P
(1)
FIR−SC = E





∣∣∣∣∣∣

∣∣∣∣∣∣
∑

i 6=k

(GnH)ixi + Gnn

∣∣∣∣∣∣

∣∣∣∣∣∣

2




= ||GnH||2 − |(GnH)k|2 + (||Gn||σ)2.

(22)

By the approximation in (21) and the definition of the residual,
(22) may be approximated by

P
(2)
FIR−SC = ||a(k) − r(n)||2 + (||Gn||σ)2 − 1. (23)

Computationally, this may still be further simplified since the
value ||r(n)||2 is known in each iteration and a(k) is non zero
only at the k-th entry which is one. An efficient SC is then

P
(3)
FIR−SC = ||r(n)||2 + (||Gn||σ)2. (24)

Consider the case that the approximation in (21) is not good
due to for example taking the initial approximation to be the
zero vector, which is often done in practice so that the residual
converges monotonically. In this case, we want to maximize
signal minus noise power. This leads to another SC rule

P
(4)
FIR−SC = E

{
|(GnH)kxk|2

}

− E





∣∣∣∣∣∣

∣∣∣∣∣∣
∑

i6=k

(GnH)ixi + Gnn

∣∣∣∣∣∣

∣∣∣∣∣∣

2




= 2|(GnH)k|2 − ||GnH||2 − (||Gn||σ)2

(25)

The above SCs are different due to the quality of approxima-
tion of (GnH)k by one. When normalizing the FIR equalizer
Gn such that

(GnH)k = 1 (26)

we found that the the expected error of the the k-th entry of
x is

E {|xk − x̃k|2
}

= (||GnH||2 − 1) + (||Gn||σ)2. (27)

The proof is a straight forward computation. Note, SCs (22)
and (25) will give a same solution as SC (27) when (26) is
true. Therefore, if the SNR is known, the above mean-square
error (MSE) expression may be used as a practical SC. In fact,
we found that it is the best SCs among the ones presented in
this paper for the CG algorithm for computing FIR equalizers.
Such SC actually determines the MSEs from a set of FIR
equalizers that are computed by the CG algorithm, thus it is
the minimum mean-square error SC or MMSE-SC.

From the two terms in the above metric we may see that
the ‘best’ equalizer, in the presence of noise is the one that
balances between equalizing the channel (the interference in
the first term) and not amplifying the noise too much (the last
term). The above SC is only suboptimal since it is possible
to have two different (total) noise distributions with the one
corresponding to the smaller BER may actually have a larger
variance.

One last point to be addressed to complete the discussion
on FIR equalizer computation with the CG algorithm is that
which symbol (entry) in x is the best to be equalized. That
is, what value should we choose for k in a(k) from equation
(16). We will provide a partial answer to this question in the
next subsection since it is related to the observation from our
experiment that the BER for the symbols in the middle entries
of x is much better than the ones on the boundary.

B. Matrix Solution

As mentioned in section III, the ML metric may be used
as a SC for the CG algorithm when computing x directly. In
practice, due to the finite model approximation to the infinite
model, the truncation of the finite model leads to unequal
MSE for different entries in the solution vector x. The full
analysis of this BER behavior includes the effect of the noise
and it is too involved. For this reason, we will only analyze
the loss of signal energy due to truncation in this paper.
In the absence of noise, let us consider any one particular
transmission of the signal x. In the finite model formulation,
refer to Eq. (4), the energy in the first transmitted symbol x1

is spread out by the channel by the taps h
(1)
L and h

(2)
L and

arrives at the receiver, captured by the samples b1 and b2. To
capture the maximum energy of this symbol, the match filter
g(1) = [h(1)

L , h
(2)
L , 0, · · · ]∗ is applied which gives

gT
(1)b =

(
|h(1)

L |2 + |h(2)
L |2

)
x1 +

L∑

k=2

fkxk. (28)

Similarly, the analysis for the symbol, WLOG, xL is

gT
(L)b =

(
||h(1)||2 + ||h(2)||2

)
xL +

∑

k 6=L

f̃kxk. (29)
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The first terms in the right hand side of equations (28) and
(29) represent the equalized signal while the second terms
are interference noises due to neighbor symbols which we
are ignoring. Therefore, we see that unless the energy of each
sub-channel is well concentrated in the last taps, the equalized
signal energy for the entries in the middle of the vector x, e.g.,
xL is larger than the boundary entries such as x1.

Now, we are at a better position to answer the question from
the last sub-section – which symbol in x should we equalize?
For the matched filter case, we see that it is possible to extract
the maximum signal energy for xL, xL+1, ..., xN−L+1. Thus,
equalizing any one of this symbol is equally good. Taking
noise and interference into consideration, the matter is not so
straight forward. Equation (27) offers an elegant but expensive
solution if H is large. For a general guideline, we recommend
equalizing exactly the middle entries, though, this is not always
the best choice.

Applying the CG algorithm to the noisy linear system (5),
with enough number of iterations, the algorithm will produce
the ZF solution. However, this is not a good solution due to
the amplification of noise. There are two different ways to deal
with the noise enhancement problem and produce a regularized
solution similar to the MMSE equalizer. One way to do this
is stopping the CG algorithm earlier with a good stopping
rule. For real time application, the process of solution selection
should be done automatically at the same time would stop
the algorithm as soon as the ‘best’ solution is produced. The
above analysis suggests not to used the boundary entries in the
solution x(k) for the SC since they are naturally worst solution
than the ones in the middle. A ‘safer’ way to avoid too much
noise amplification, however, is by explicitly regularizing the
linear system with a regularization parameter η, i.e., we are
applying the CG algorithm to the regularized linear system

(H + η2I)x = b. (30)

When η is chosen to be equal to the noise power σ, the
algorithm converges to the MMSE solution instead of the ZF
one. An even better solution, we found, is that in each step the
regularization parameter is chosen from a set of values and it
may vary from one CG iteration to the next. By implementing
the (modified) CG algorithm correctly, it is still a very low
cost equalizer. Notice the similarity in the two different uses
of the CG (or CGNE) algorithm, section IV-C, they all require
the matrix vector multiplications Tu and T ∗v for some block
Toeplitz matrix T and some vector u and v. In the theory
regularization, it is well-known that these may be computed
efficiently with the FFT algorithm [9]. Thus, the efficient FFT
algorithm reduces the over all CG algorithm computational
complexity to N log(N), which is a still low even when N
is large. An efficient implementation of the CG algorithm for
the regularized linear system (30) may be found in [13].

VI. SIMULATION RESULTS

The BER simulations of a 64-tap length sub-channel are
shown in Fig. 2. We are comparing the performance of the
MMSE, RCE, GC-FIR and CG-direct methods. The MMSE
and RCE curves are overlapped due to good approximation

of the CE method. The CG-FIR performance is slightly worst
than the MMSE one. Linear equalizers such as the MMSE
equalizer use only the channel and noise power information.
In contrast, when solving x directly, the CG algorithm make
uses all the information available, including the received vector
b, it is able to outperform even the MMSE solution. From
our simulations with various channels, we observed that the
number of CG iterations needed to compute the FIR equalizer
or approximate x directly is small – two to seven iterations
across a wide range of SNR values. Many researchers also
observe this rapid convergent behaviour of the CG algorithm
that is due to its (still not fully understood) inherent regu-
larization property that the algorithm iterates extract first the
dominant directions/subspace(s) of the matrix, and only later
those directions that are associated with the samll singular
values [12]. Due to limited space constraint, other simulation
results will be presented in the journal version of this paper.
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Fig. 2. Equalizer performance comparison of an 64-tap sub-channel.
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