APPLICATION-ORIENTED SPATIAL GRAPH GRAMMARS

Jun KONG1 Kang ZHANG2 Maolin HUANG3

1,2 Department of Computer Science, The University of Texas at Dallas, USA
3 Department of Computer Systems, University of Technology, Sydney, Australia

Abstract: The Reserved Graph Grammar (RGG) is a general graph grammar formalism that expresses a wide range of visual languages. This paper presents an extension to RGG with the capability of spatial specification. Graph transformation satisfying the spatial specification can be performed in the process of parsing. The RGG with spatial specification can be applied to various types of applications. The paper demonstrates an example for mathematical expression recognition.

Key Words: visual languages, spatial specifications, graph grammar, pattern recognition

1. Introduction
Motivated by the theoretical support for pattern recognition, compiler construction, and data type description, graph grammars originated in the late 60s have stepped in a period with theoretically sound and well-established foundation [1]. Graph grammars provide a natural approach to describing complex structures graphically. Moreover, graph transformation can be viewed as a model to present a dynamical evolution starting from an initial graph. So, the number of applications interacting with graphs has increased dramatically. There are already many well-known graph formalisms, such as Petri nets, Statecharts, flowcharts, and UML diagrams.

Compared to text, a graph can visually convey relationships and naturally represent structural information. With well-established theoretical foundation, graph grammars are powerful syntax formalisms to define logic relations among constructs of a graph. It, however, does not usually specify how those constructs look like. In many applications, spatial information plays an important role. For example, in graph layout, a graph grammar introduces a formal framework to generate a syntax-directed layout, which captures the internal structure of a graph. In multimedia design, the approach based on graph grammars provides the power of design validation and automatic presentation. Also, graphs are intuitive to present the logic and spatial relation among objects and graph transformation techniques have been applied to symbol recognition. We argue that a mechanism in the grammar for the designer to explicitly specify the physical layout for a graph apart from the internal structure is extremely useful for a wide range of applications.

Reserved Graph Grammar [2][3] is one of the context-sensitive graph grammar formalisms. Because of its context-sensitive with a parsing complexity of polynomial time [4], RGGs can be applied to many applications. Though the RGG formalism provides a powerful approach to specifying internal structures, it ignores the spatial relations. This paper presents an extension to RGGs with the capability of spatial specification and applies it to mathematical expression recognition.

Section 2 introduces graph transformation and Reserved Graph Grammars. Section 3 defines spatial relations. Section 4 gives an example. Section 5 discusses related work, followed by the conclusion in Section 6.

2. Graph Transformation
For textual languages, there exist some general grammar formalisms such as context-free grammars and application tools such as YACC. Defining a general and expressive graph grammar formalism with an efficient parsing algorithm, however, has been an obstacle in the applications of visual languages. Even for the most restricted classes of graph grammars, the membership problem in the parsing process is NP-hard [5]. Consequently, a parser may not recognize a syntactically correct graph or be inefficient in analyzing a large and complex graph.

Another obstacle in restricting applications of graph grammars is that most proposed parsing algorithms [6][7][8] are context-free, while many interesting graphs cannot be specified by pure context-free grammars. Additional control mechanisms are necessary to provide context-sensitivity. It is, therefore, hard to apply context-free graph grammars to some applications, where the logic structure of a graph is too complex to define without context information.

A graph grammar is made up of a set of rewriting rules called productions. One production consists of two subgraphs, called left graph and right graph. A graph transformation is a sequence of applications of productions. Applications are classified into L-application and R-application. An L-application/R-application is to replace a sub-graph in the host graph, which is isomorphic to the left/right sub-graph of a production (commonly called match), with the right/left sub-graph of a production. In other words, rewriting a graph h into a graph h' is to replace a sub-graph m in h by another graph of d and to embed d into the remainder of h. Different graph grammars employ different embedding approaches.
The most difficult issue in graph transformations is to decide which matches are allowed and which are not.

The Reserved Graph Grammar (RGG) [3] is a context-sensitive graph grammar formalism with a parsing complexity of polynomial time. It provides a powerful mechanism to represent structures graphically and to perform automatic syntax validation through the automatically generated parser. Compared to context-free grammars, a RGG is more intuitive in defining syntax because of its context-sensitive property.

Since RGGs require a format that is suitable for the grammar, a host graph is first translated into the format, called a node-edge form. The translation is quite straightforward. Each node in the node-edge form is organized into a two-level hierarchy. A large rectangle is the first level called a super-vertex with embedded small rectangles as the second level called vertices. Each vertex is labeled by a unique character.

RGG employs a marking technique to solve the embedding problem and to avoid ambiguities. If a super-vertex or a vertex is marked, it will reserve its outgoing edges connected to vertices outside the replaced sub-graph in the application of a production. On the contrary, if a super-vertex or a vertex is not marked, the replaced sub-graph must contain all of the edges connected to this un-marked vertex. Otherwise, the so-called dangling condition [10], which is not allowed in RGG, will occur. Therefore, the marking technique is useful in distinguishing the context and eliminating dangling conditions.

The process of parsing a graph can be viewed as: select a production from the grammar and apply a R-application to the host graph. This process is continued until no production can be applied. If the host graph is eventually transformed into an initial graph (i.e. λ), the parsing process is successful and the host graph is considered to belong to the language defined by the graph grammar. One of the difficulties in the process of parsing is to select an appropriate production when multiple choices exist, i.e. how to process ambiguities during parsing. The selection outcome will affect the parsing efficiency and final result, since if the current path fails, we must backtrack to test other paths, which costs computational time. RGGs use a deterministic parsing algorithm, called selection-free parsing algorithm (SFPA), which only tries one parsing path [3]. Zhang et al. proves that the time complexity of SFPA is polynomial [4][11].

3. Spatial Relations

Spatial relations specify the geometrical relationships among graph nodes. We classify the specifications into four categories: Length, Direction, Alignment and Size specifications.

Length specification defines the distance among graph nodes. This type of specifications is introduced by the fact that if two nodes are close/remote semantically, they should be placed tightly/loosely in the graph. It consists of three relations: Close, Remote and Spring.

Direction specification expresses the direction information among nodes, such as left-to, above-of etc. Such information plays an important role in applications such as graph layout, mathematical expression recognition etc. Direction relations are transitive. For example, if node A is left-to node B and node B is left-to node C, we can induce that node A must be left-to node C. We can set up a partial order deduced from direction relations among nodes. The partial order, through which we can distinguish two nodes' relative positions, provides a global view of a graph. Based on the partial order, we can perform a spatial reasoning over the host graph.

Alignment specification addresses a special relation between two nodes along X-axis or Y-axis. Two nodes hold an alignment relationship if they are projected to X-axis or Y-axis, and the starting, ending or central points of the nodes are mapped to a same point on X-axis or Y-axis.

Size specification is used to indicate the size of a node, which can have practical meanings in applications. For example, we may use a node with large size to represent large data processing capability. Size specifications are defined by three measurements: large, medium and small.

3.1 Length Specification

Motivated by the fact that the distance between two nodes in a graph can reflect their semantic relations, we define length relations among nodes. For example, if two cities are located closely, the line connecting the two cities in a map should be short.

• Close relation
A close relation is represented by a line with an arrow labeled "close". Semantically, close relation means that the nodes are highly related; in layout, it means that the nodes should be placed as tightly as possible.

• Remote Relation
On the contrary to the close relation, a remote relation represented by a line with an arrow labeled "remote", means that two nodes are loosely related semantically and placed as far as possible when they are drawn.

• Spring Relation
A spring relation represented by a line with an arrow labeled "spring", indicates that the distance ranges from close to remote relation.

The above three relations as illustrated in the left portion of Figure 1 provide a way to specify the distance qualitatively. It, however, is not sufficient to describe complex graphs, where we need to identify the variation
of the spring relation. The above three relations will be refined by adding quantitative mechanism. We divide the distance into 11 scales indexed from 0 to 10. A distance index will be assigned to a length relation. Larger index denotes longer distance. So, “1” is assigned to close relation and “10” to remote relation. The spring relation can range from 2 to 9. “0” indicates that two nodes are touched.

It is undesirable for the user to design the length specifications without any system help. First, it is tedious to adjust the length manually; second, the length of manually produced lines cannot exactly reflect the scale of the distance index. We will develop an authoring tool to ease the design task. The user only needs to choose the distance index and the tool will automatically generate an appropriate line.

![Length specification and direction specification](image)

3.2 Direction Specification

We divide a planar into nine districts. In order to determine the direction relation between two nodes, one node is chosen as the anchor node, which is placed in the central district. There are eight possible directions for another node relative to the anchor node. Each of those directions is represented by a line labeled with N, W, S, E, NW, NE, SW or SE as illustrated in the right portion of Figure 1. If a node falls into more than one district and we identify its direction by the district where the main part of this node lies.

![Sub-cases in NW direction](image)

Obviously, the above eight direction relations are not sufficient to describe a complex graph. For example, if two nodes hold a NW relation, we need to differentiate that one node leans to N or W direction. Figure 2 lists three sub-cases of NW relation. The sub-cases for other seven directions are similarly defined. A specification tool for direction specifications can be easily implemented. The user first chooses one of eight directions, and three icons representing three relative sub-cases will be displayed. When the user clicks one of the icons, the system will automatically adjust the layout and generate desirable relation.

3.3 Partial Order

Direction specification

Direction specification expresses the geometrical relation between two nodes, and is transitive among multiple nodes. For example, if n1 is left to n2 and n2 is left to n3, we can conclude that n1 is left to n3. We, therefore, can derive a geometrical order, which achieves a global view of relative positions among nodes in a graph.

- **Partial order along Vertical Direction**

 We define \(n_1 \prec_y \text{direction} n_2 \) if and only if \(n_1 \) has a S, SE or SW relation with \(n_2 \). The relation POVD (partial order in vertical direction) is defined as follows:
 \[
 \text{POVD}=\{(n_1,n_2) | \; |n_1\prec_y \text{direction} n_2 \} + \{(n,n) | \; n \in N\}
 \]

- **Partial order along Horizontal Direction**

 We define \(n_1 \prec_x \text{direction} n_2 \) if and only if \(n_1 \) has a W, NW or SW relation with \(n_2 \). The relation POHD (partial order in horizontal direction) is defined as follows:
 \[
 \text{POHD}=\{(n_1,n_2) | \; |n_1\prec_x \text{direction} n_2 \} + \{(n,n) | \; n \in N\}
 \]

Four special elements are defined as follows based on the partial order:

- **Bottom**: The maximal element in the \((V,\text{POVD})\) is called bottom denoted by “\(_\)”,
- **Top**: The minimal element in the \((V,\text{POVD})\) is called top denoted by “\(_\)”,
- **Left**: The minimal element in the \((V,\text{POHD})\) is called left denoted by “\(_\)”,
- **Right**: The maximal element in the \((V,\text{POHD})\) is called right denoted by “\(_\)”,

3.4 Alignment Specification

If two nodes are projected to X-axis or Y-axis, and the starting, ending or central points of the nodes are mapped to the same point on X-axis or Y-axis, then we define that the two nodes have an alignment relation. Alignment relation along Y-axis is called horizontal alignment, and that along X-axis is called vertical alignment.

- **Horizontal Alignment**

 In a graph, some nodes should be placed on a horizontal line. We define this relation as the horizontal alignment relation, represented by a line with an arrow labeled “HA”. If two nodes with the HA relation is of the same size, we can align either the upper-left point or the lower-left point. But if two nodes are of different sizes, we must explicitly specify how to align the two nodes. So, we divide HA relation into three sub-cases as illustrated in Figure 3: bottom alignment denoted by HA-Bottom, top alignment denoted by HA-Top and central alignment denoted by HA-Cen.
Vertical Alignment
Vertical alignment is similar to horizontal alignment except that it is along X-axis. Its three sub-cases are denoted by VA-Left, VA-Right and VA-Cen.

3.5 Size Specification
In a map, a large city is typically represented by a large circle and a small city by a small one. So, the size of a node may convey useful information and we introduce the size specification into the definition of the grammars. The size of one node can be classified into three categories: large, medium and small. A large node is represented by 10\times10 grids, and a small node by 1\times1 grids. A medium node ranges from small size to large size.

4. Mathematical Expression Recognition
The previous sections introduced the extended RGG with the capability of spatial specifications. This section presents the application of mathematical expression recognition to illustrate how to use the extended RGG.

In the electronic age, it is useful to convert paper document into an electronic form, which can be indexed, stored and retrieved in computers. Text can be recognized by Optical Character Recognition (OCR) [12]. But, a more sophisticated mechanism is required to recognize hand-written mathematical expressions, which has been researched for several decades [12].

A pattern recognition problem is often solved in the following three steps [13][14]. First, define a set of primitives and relations; second, recognize the primitives and build up relations among primitives over an input; third, interpret the input according to the recognized primitives and relations. Mathematical expression recognition is one of the pattern recognition problems. An approach based on PROGRES has been used to the mathematical expression recognition [14]. In this section, we will present how to recognize mathematical expressions based on the extended RGG.

A handwritten or typed mathematical expression is first scanned into an image. We use a node contained in a bounding box to represent each mathematical symbol. In order to illustrate the process, we use a simplified expression. Totally, nine types of symbols organized in a hierarchy are defined in Figure 4. The root labeled as Terminal conveys general information, which can also represent its child nodes. On the other hand, a leaf conveys more specific information.

Generate a graph with unnecessary spatial relations
Trimmed graph

Set of nodes
First phase
Second phase
Third phase
Interpretation

Construting Rules
Rebuilding Rules
Parsing Rules

Figure 5 Phases in mathematical expression recognition

We will perform a graph transformation over the set of nodes through three phases as presented in Figure 5: constructing, rebuilding and parsing. In the first phase, four spatial relations among nodes will be built. A mathematical formula is often expressed in an irregular convention. For example, numbers may not be written along the same line, or not in the same size. Incorrect spatial relations may be introduced in the first phase. So, the host graph will be passed to the second phase to remove unnecessary spatial relations. At last, the trimmed graph will be interpreted by a parser.

Construting phase: In this phase, four types of geometrical relations, left, above, superscript and subscript, are set up among nodes. Those four relations are defined as follows:

- **Left**: One node is left to the other node.
- **Above**: One node is above to the other node.
- **Superscript**: One node is located North-East to the other node.
- **Subscript**: One node is located South-East to the other node.

Figure 6 shows two of the productions in this phase. Through performing a calculation over the coordinates of the bounding box, we define several functions to test if one of the four spatial relations holds between the nodes.

A handwritten or typed mathematical expression is first scanned into an image. We use a node contained in a bounding box to represent each mathematical symbol. In order to illustrate the process, we use a simplified expression. Totally, nine types of symbols organized in a hierarchy are defined in Figure 4. The root labeled as Terminal conveys general information, which can also represent its child nodes. On the other hand, a leaf conveys more specific information.

Generate a graph with unnecessary spatial relations
Trimmed graph

Set of nodes
First phase
Second phase
Third phase
Interpretation

Construting Rules
Rebuilding Rules
Parsing Rules

Figure 5 Phases in mathematical expression recognition

We will perform a graph transformation over the set of nodes through three phases as presented in Figure 5: constructing, rebuilding and parsing. In the first phase, four spatial relations among nodes will be built. A mathematical formula is often expressed in an irregular convention. For example, numbers may not be written along the same line, or not in the same size. Incorrect spatial relations may be introduced in the first phase. So, the host graph will be passed to the second phase to remove unnecessary spatial relations. At last, the trimmed graph will be interpreted by a parser.

Construting phase: In this phase, four types of geometrical relations, left, above, superscript and subscript, are set up among nodes. Those four relations are defined as follows:

- **Left**: One node is left to the other node.
- **Above**: One node is above to the other node.
- **Superscript**: One node is located North-East to the other node.
- **Subscript**: One node is located South-East to the other node.

Figure 6 shows two of the productions in this phase. Through performing a calculation over the coordinates of the bounding box, we define several functions to test if one of the four spatial relations holds between the nodes.
Rebuilding phase: Since a mathematical expression can be written in an irregular way, spatial relations may be built up incorrectly. Obviously, those errors will affect the final interpretation. So the purpose of the second phase is to eliminate noise-relations. For example, we need to delete any spatial relation across a fractional line, and combine two digits and a point into a number. The grammar rules for this phase and next phase are omitted due to the space limit.

For example, if we need to recognize the mathematical expression: \((a+b)\div d\div c\) illustrated in Figure 7, Figure 8 illustrates the recognition procedure. Graph A presents the graph generated in the first phase. Obviously, some unnecessary spatial relations are created such as the spatial relation between \(a\) and \(e\), and that between \(d\) and \(e\). Graph B shows the result after eliminating noise relations. Graph C illustrates how to parse a graph passed from the second phase.

5. Related Work

Graphs are very suitable for describing objects with a complex structure in a direct and intuitive way, so graphs are a hot research field in computer science. Originated in 60's, graph grammars provide a formal approach to modeling the evolution of static graphs by the application of productions. Though the research in graph grammars has been conducted for decades, little work has been done on developing graph grammars supporting spatial relations explicitly. Drawing algorithms based on graph grammars (DAGG) [15], such as the algorithm in [16], introduced a formal approach to graph layout. Its central idea is to determine the node placement by an attribute evaluator. The spatial specification is addressed by the equation/in-equation between attributes which contain such information as co-ordinates. Since spatial relations are not represented visually, users may not catch the geometrical specification at the first glance. In order to complete layout in a polynomial time, DAGG uses a context-free graph grammar. Zhang et al. presented a layout algorithm based on RGGs [17]. This approach is used for graph layout. Its geometrical specification is limited to direction specification. We will compare the aforementioned approaches according to the following criteria as listed in Table 1:

<table>
<thead>
<tr>
<th>Underlying graph grammar</th>
<th>Application field</th>
<th>Spatial relation representation</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAGG [16]</td>
<td>Context-free</td>
<td>Layout</td>
<td>Equation/in-equation</td>
</tr>
<tr>
<td>Zhang et al. [17]</td>
<td>Context-sensitive</td>
<td>Layout</td>
<td>Graph</td>
</tr>
<tr>
<td>Our approach</td>
<td>Context-Sensitive</td>
<td>General purpose</td>
<td>Graph</td>
</tr>
</tbody>
</table>

Table 1 Comparison among graph grammars supporting spatial specification

6. Conclusion:

Spatial information is useful in many applications. In this paper, we have proposed to expand the RGG with the capability of spatial specification. We applied this spatial grammar to the applications of mathematical expression recognition.

Using a graph grammar based approach, we can benefit in the following aspects:

- **Visual**: Graph grammars provide a theoretical foundation for a visual approach to specifying the logic and spatial relations among the constructs of a graph.
• **Automatic:** A set of spatial constrains can be automatically deducted in the process of parsing from the spatial specifications embedded in the productions.

We plan our future work in the following two directions:

• **Enrich Spatial Relations:** Spatial relations extended in the RGG are far from complete. For example, topological relations are also an important aspect in spatial relations.

• **Embed Temporal Relations:** In addition to spatial specifications among media objects, temporal specifications offer another important dimension, which is useful in the design of multimedia documents.

References:

For each IASTED conference, the following review process is used to ensure the highest level of academic content. Each full manuscript submission is peer reviewed by a minimum of two separate reviewers on the International Program Committee / Additional Reviewers list. The review results are then compiled. If there is a conflict in reviews, the paper is sent to a third reviewer.

Abstracted by INSPEC

Copyright © 2003 ACTA Press
International Program Committee

E.M.A. Abed - Electronics Research Institute, Egypt
M.A. Abouelaze - York Univ., Canada
S.M. Abu-Soud - Princess Sumaya Univ. of Technology, Jordan
N. Adly - Alexandria Univ., Egypt
A.J. Almeida - King Fahd Univ. of Petroleum & Minerals, Saudi Arabia
G. Aloisio - Univ. of Lecce, Italy
H. Amano - Keio Univ., Japan
K. Arabi - Hokkaido Univ., Japan
J. Baker - Kent State Univ., USA
B. Benatallah - Univ. of New South Wales, Australia
L. Bengtsson - Chalmers Univ. of Technology, Sweden
J. Bila - The Czech Technical Univ. in Prague, Czech Republic
A.I. Bouguettaya - Virginia Tech, USA
G. Brewka - Univ. of Leipzig, Germany
M. Broy - Technical Univ. of Miinchen, Germany
A.E. Campos - Pontificial Catholic Univ. of Chile, Chile
K. Chan - The Hong Kong Polytechnic Univ., PRC
P. Chaudhuri - Univ. of the West Indies, Cave Hill Campus, Barbados
S. Christodoulakis - Technical Univ. of Crete, Greece
W. Chu - Univ. of California - Los Angeles, USA
P.-J. Chuang - Tamkang Univ., Taiwan
O. Clua - Buenos Aires Univ., Argentina
R.E. Davis - Santa Clara Univ., USA
B. De Baets - Ghent Univ., Belgium
V. De Florio - Catholic Univ. of Leuven, Belgium
N. Deo - Univ. of Central Florida, USA
V. Devedzic - Univ. of Belgrade, Yugoslavia
W. Dosch - Medical Univ. of Lübeck, Germany
B.K. Ehmann - Southern Illinois Univ., USA
M. Fayad - Univ. of Nebraska, Lincoln, USA
D. Fensel - Vrije Univ. of Amsterdam, The Netherlands
A.W. Fu - Chinese Univ. of Hong Kong, PRC
H. Gall - Technical Univ. of Vienna, Austria
K.M. George - Oklahoma State Univ., USA
A.K. Goel - Michigan Tech, USA
W.I. Grosky - Univ. of Michigan - Dearborn, USA
H.W. Guesgen - Univ. of Auckland, New Zealand
S. Hariri - Univ. of Arizona, USA
H. Hosseini - Univ. of Wisconsin - Milwaukee, USA
S. Huang - Univ. of Houston, USA
H. Hussmann - Dresden Univ. of Technology, Germany
H. Jin - Huazhong Univ. of Science and Technology, PRC
B.S. Joshi - ITN Energy Systems, Inc., USA
M.H. Kim - Korea Advanced Institute of Science and Technology, Korea
K. Kontogiannis - Univ. of Waterloo, Canada
A.W. Krings - Univ. of Idaho, USA
E.V. Krishnamurthy - Australian National University, Australia
S.-Y. Lee - National Chiao Tung Univ., Taiwan
E. Lever - Holon Academic Institute of Technology, Israel
E.-P. Lim - Nanyang Technological Univ., Singapore
L. Lundberg - Univ. of Karlskrona - Ronneby, Sweden
H. Lutfiyya - Univ. of Western Ontario, Canada
B.M. Maggs - Carnegie Mellon Univ., USA
V. Marik - Czech Technical Univ., Czech Republic
R.V. Mayorga - Univ. of Regina, Canada
S. Miksch - Vienna Univ. of Technology, Austria
A. Mili - West Virginia Univ., USA
A.M. Moreno - Polytechnic Univ. of Madrid, Spain
J.F. Myoupo - Univ. of Picardie - Jules Verne, France
S. Nishio - Osaka Univ., Japan
M. Oudshoorn - The Univ. of Adelaide, Australia
M. Oudshoorn - The Univ. of Adelaide, Australia
O.-E.-K Aktouf-Benkahla - France
A. Alkadi - USA
J. Allen - USA
J.M. Alonso-Weber - Spain

Additional Reviewers

B. Abderezek - Japan
C.A. Acosta Calderon - UK
S.T. Acuna Castillo - Argentina
S. Aggarwal - India
J. Ahonen - Finland
O.-E.-K. Aktouf-Benkahla - France

Continued on next page
Additional Reviewers - continued

I. Anagnostopoulos - Greece
I. Andre - France
A. Andrzejak - USA
C. Angeli - Greece
R. Anthony - UK
B.O. Apdushan - Japan
V. Ayala-Ramirez - Mexico
F. Azuaje - UK
Y. Baghdadi - UAE
T. Baidyk - Mexico
L. Bartek - Czech Republic
C. Bouras - Greece
J. Carmo - Portugal
D. Camacho - Spain
Z.Q. Cai - Singapore
Z. Bubnicki - Poland
J. Cangussu - USA
C.-A. Brunet - Canada
P. Breznay - USA
C.-A. Brunet - Canada
Z. Bubnicki - Poland
Z.Q. Cai - Singapore
D. Camacho - Spain
Z.Q. Cai - Singapore
Z. Bubnicki - Poland
J. Cangussu - USA
C.-A. Brunet - Canada
P. Breznay - USA
R. Gitzel - Germany
C. Grelck - Germany
M. Grzenda - Poland
M.S. Hamdi - UAE
C. Heinlein - Germany
P. Heinzlreiter - Austria
M. Hericko - Slovakia
H. Higaki - Japan
S. Hope - UK
B. Horvat - Slovenia
F.-H. Hou - Taiwan
B. Hu - UK
H. Hu - UK
S. Huang - PRC
Y.-F. Huang - Taiwan
E. Izquierdo - UK
J. Izy - Iran
C.K. Ji - PRC
M. Jiang - PRC
Y. Kazutani - Malaysia
G. Kennedy - Australia
M. Kikuchi - Japan
H.-G. Kim - Korea
P. S. Kim - Korea
S.H. Kim - Korea
A.C. Koch - Austria
T. Koita - Japan
K. Kono - Japan
A. Kornecki - USA
S. Kornienko - Australia
C. Kuhn - Germany
S. Kuilkov - Poland
O. Kum - USA
S. Kuskabe - Japan
S. Kwok - PRC
M. Larrea - Spain
M. Lazarecu - Australia
C. Lee - Taiwan
D.W. Lee - Korea
J.I. Lee - Korea
R. Lenczевич - USA
C. Li - PRC
K.C. Li - USA
Y. Li - Taiwan
X. Liang - Japan
B. Lilburne - Australia
C.-G. Lim - Korea
H. Liu - PRC
Y. Liu - PRC
F. Louerque - France
M. Lytras - Greece
S. Maud - Germany
D.A. Maluf - PRC
C. Mancas - Romania
M. Marin - Chile
H. Masuyama - Japan
H.C. Mayr - Austria
I. Miladinovic - Austria
R. Mitchell - UK
R. Monroy - Mexico
E. Monteiro - Portugal
S. Montero - Spain
I. Moughrab - Lebanon
M. Mounir - Tunisia
A. Movaghar - Iran
A. Muntic - Croatia
R. Marfil Garcia - UK
I. Nagasaki - Japan
A. Navarra - Italy
E.J. Nemer - USA
J.J. Neto - Brazil
T. Niculiu - Romania
C.F. Nourani - USA
F. O'Brien - Australia
S. Ono - Japan
M. Ostojic - Canada
T. Ould Brahim - France
M. Ould-Khassou - UK
G. Pallis - Greece
A. Paradkar - USA
G. Park - Korea
J.H. Park - USA
T.J. Park - Korea
C. Peng - Finland
G. Perichinsky - Argentina
T. Peschel-Findeisen - Germany
J. Polpinij - Thailand
V. Ponomaryov - Mexico
A. Prodan - Romania
J. Pu - Canada
L. Pyeatt - USA
T. Rabie - Canada
W. Radner - Australia
S. Radu - Romania
H. Ramampiaro - Norway
H. Ren-Juan - Taiwan
P. Robertson - USA
D. Roy - India
V. Ryabov - Finland
Y.-S. Ryu - Korea
S. Sadouzi - Canada
G. Sakarian - Germany
T. Sakata - Brazil
S. Sakurai - Japan
M.O. Salim - Saudi Arabia
A.A. Salman - Kuwait
R. Salomon - Germany
M. Sanchez - Spain
P. Sapiecha - Poland
P. Schlecht - Austria
V. Sebest - Czech Republic
Y.-Y. Seow - Singapore
M. Serge - France
P. Seung-Hwan - Korea
S. Shafford - Canada
Y. Shen - USA
L.B. Sheremetov - Mexico
K. Shindo - Japan
M. Sigmund - Czech Republic
V. Sikka - USA
A.R. Silva - Portugal
G. Singh - India
P.S. Singh - India
V. Sivaraman - India
F. Smain - France
G. Solar - UK
C.-F. Sorensen - Norway
G. Spezzano - Italy
K. Starkov - Mexico
J.P. Stitt - USA
M. Sree - Venezuela
G. Stuer - Belgium
R.K. Subramanian - Malaysia
P. Sung Ho - Korea
L. Sung-B - Korea
M. Szychow - Poland
N. Tagou - UAE
I. Tah - Egypt
T. Takahashi - Japan
H. Takeda - Japan
H. Takizawa - Japan
J. Talag - Bahrain
S. Tang - PRC
Y. Tang - PRC
A.-A. Tarek - France
W. Tarng - Taiwan
C.-S. Tau - Taiwan
J. Teunola - Finland
R. Thulasiram - Canada
T. Torabi - Australia
M. Torres - Mexico
M. Tounsi - France
E. Tovar - Spain
I. Traore - Canada
A.K. Turuk - India
B. Ustundag - Turkey
J. Valls - Spain
S. Vilakamkagaram - Australia
J. Vincent - UK
K. Votis - Greece
X. Wang - Canada
S. Williams - UK
M.Y.L. Wong - PRC
M.-Y. Wu - USA
C.-W. Xu - USA
P. Xu - PRC
I.E. Yairi - Iran
T. Yairi - Japan
S. Yang - PRC
Y. Yu - PRC
Y.Y. Yu - Belgium
S. Zein-Sabato - USA
K. Zhang - USA
X. Zhao - PRC
Y. Zhao - Canada
T. Zhe - Singapore
X. Zou - USA
TABLE OF CONTENTS

COVER PAGE

INTERNATIONAL PROGRAM COMMITTEE

ADDITIONAL REVIEWERS

PUBLICATION INFORMATION

I. ARTIFICIAL INTELLIGENCE AND APPLICATIONS (AIA)

Machine Learning and Data Mining

- An Immune-inspired Approach to Learning and Classification
 *F. Awa*je .. 1

- Learning Topological Structures of POMDP-based State Transition Models by State Splitting Method
 T. Yairi, M. Togami, and K. Hori 7

- Acquisition of a Concept Relation Dictionary for Classifying E-mails
 S. Sakurai, A. Suyama, and K. Fume 13

- A Formal Analysis of Classifier System and Interface between Learning System and Environment
 I. Nagasaka, M. Kikuchi, and S. Kitamura 20

- Reinforcement Learning with Decision Trees
 L.D. Pyeatt ... 26

- Data Mining: Understanding Data and Disease Modeling
 A. Fazel Famili and J. Ouyang 32

- The Data Mining Techniques in the Macroeconomic Field
 L. Bordoni and S. Spadaro 38

Intelligent Databases

- Concept-based Search System using Context-conserving Extension based on Conceptual Graph
 H.-K. Bae, S.-J. Park, and K.-T. Kim 44

- SPARROW: A Spatial Clustering Algorithm using Swarm Intelligence
 G. Folino and G. Spezzano 50

- EOM Layered Implementation of Life Cycle
 U.-D. Choi and J.-H. Park 56

- Towards Modelling an Intelligent Calendar Agent with LUPS
 J.C. Acosta Guadarrama and M.J. Osorio Galindo 60

- Intelligent Concurrent Systems
 F. Akkawi, A. Bader, and T. Elrad 66

- Diagnosing Faulty Situations during Alliance Formation Process
 V. Mashkov and V. Marik 72

- A General Framework for the Transformation of Structured Data into Vector Representations
 R.C. Mintram and J. Vincent 79

Genetic Algorithms

- The Force Model: Concept, Behavior, Interpretation
 R. Salomon .. 85

- On the Scalability of a Parallel Genetic Algorithm based on Domain Decomposition
 J. Vincent and R. Mintram 91

- A Multiobjective Ant Colony System for Vehicle Routing Problem with Time Windows
 B. Baran and M. Schaerer 97

- A Novel Approach for Parameter Extraction and Characteristics Simulation of Deep-Submicron MOSFET's with a Genetic Algorithm
 Y. Li and Y.-Y. Cho .. 103

- Minimization of Transitions by Complementation and Resequencing using Evolutionary Algorithms
 R. Drechsler and N. Drechsler 109

- Modelling of Explosive Welding Process using GMDH-type Neural Networks and Genetic Algorithms
 N. Nariman-zadeh, A. Darvizeh, and G.R. Ahmad-zadeh 115
Artificial Intelligence and Applications I

Impact on Information Technology Usage and Organizational Performance in Taiwanese Business Organizations
F.-H. Hou ... 121

An Adaptive Color Segmentation Algorithm for Sony Legged Robots
B. Li, H. Hu, and L. Spacek 126

An Agent Architecture for Information Fusion and its Application to Robust Face Identification
P. Robertson and R. Laddaga 132

A Decision of Agent-based Interface Among Nursing Support Services
T. Takahashi, Y. Nagasaki, T. Takeshita, T. Aoki, and H. Fudaba 140

Developing a Personal Multilingual Web Space
R. Chau, C.-H. Yeh, and K.A. Smith 145

XML Technology for the Diffusion of the Awareness of Water Resources
A. Colagrossi and A. Scaringella 151

Flexible Manufacturing Process Planning based on the Multi-agent Technology
S. Kornienko, O. Kornienko, and P. Levi 156

Improvements to a Dialogue Interface for a Library System
L. Bárték .. 162

Intention Recognition for Vehicle Driving by Sensing of User and Environment
I.E. Yairi, T. Yairi, and S. Igi 166

Large-scale Ubiquitous Information System for Digital Museum
K. Shindo, N. Koshizuka, and K. Sakamura 172

Seismic Signal Analysis using Correlation Dimension
S. Ezekiel, M.J. Barrick, and M. Long 179

Artificial Intelligence and Applications II

Visually Augmented POMDP for Indoor Robot Navigation
M.E. López, R. Barea, L.M. Bergasa, and M.S. Escudero 183

SRAKA: A Case of Web Portal Architecture Centered around Horizontal Services
B. Horvat, M. Ojistersek, and Z. Cajic 188

An Intelligent Architecture for Mobile Digital Television Applications
C. Peng and P. Vuorimaa 194

Segmentation of Thai Handwritten Word using Heuristic Method based on Distinctive Features
K. Kiratiratananaphrarg, S. Kunarutintanapruk, R. Budsayaplakorn, and S. Jitapunkul 200

Classifying Glaucomatous Progression using Decision Trees
M. Lazarescu and A. Turpin 205

Application-oriented Spatial Graph Grammars
J. Kong, K. Zhang, and M. Huang 210

Speaker-specific Long-time Spectrum
M. Sigmund and T. Dostal 216

Medical Image Segmentation using Multifractal Analysis
S. Ezekiel ... 220

Forecasting Electricity Demand using Clustering
R. Mitchell .. 225

Facial Features Tracking Applied to Drivers Drowsiness Detection
L.M. Bergasa, R. Barea, E. López, M. Escudero, L. Boquete, and J.I. Pinedo 231

Neural Networks

An Artificial Neural Network Approach for Classifying E-Commerce Web Pages
I. Anagnostopoulos, G. Kouzas, C. Anagnostopoulos, I. Psoroulas, D. Vergados, V. Loumos, and E. Kayafas .. 237

Image Recognition System for Microdevice Assembly
T. Baidyky, E. Kussul, and O. Makeyev 243

Forward Integrated Feature and Architecture Selection Algorithm using Neural Networks
E. Dawit and T. Sorrakul 249

A Comparison Study of Vector Quantization Codebook Design Algorithms based on the Equidistortion Principle
H. Takizawa, T. Nakajima, K. Sano, and H. Kobayash .. 255

A Decision Criterion to Relocate Codewords for Adaptive Vector Quantization
H. Takizawa .. 262
Comparison of Training Algorithms for Optimal Neural Controllers
J.B. Galván .. 269

How the Selection of Training Patterns can Improve the Generalization Capability in Radial Basis Neural Networks
J.M. Valls, I.M. Galván, and P. Isasi 275

Modified Self-organizing Maps for Line Extraction in Digitized Text Documents
J.M. Alonso-Weber, I.M. Galván, and A. Sanchis 281

Identification of Handwritten Digits
M.H. Ahmad Fadzil and A.M. Intan Mastura 287

Fuzzy Visual Servoing for an Active Camera
A. Pérez-Garcia, V. Ayala-Ramírez, and R. Jaime-Rivas 292

Diagnostic and Learning Interaction System for Historical Text Comprehension
G. Tsaganou, M. Grigoriadou, and T. Cavoura 297

Knowledge Acquisition, Representation, and Reasoning
Semi-Automatic Parsing for Web Knowledge Extraction
D. Camacho, M.A. López, and R. Aler 303

Knowledge Acquisition and Energy: A Case Study
S. Dembicz, P. Knezević, and M. Sokele 309

Robotic Societies: Elements of Learning by Imitation
C.A. Acosta Calderón and H. Hu 315

Representation of Multimedia Concepts and Objects in a Virtual Education Environment
M.M.F. Yusof and E.T. Yeoh 321

Infusion: A Hybrid Reasoning System with Description Logics
B. Hu, E. Compatangelo, and I. Arana 327

Linguistic Modifiers and Approximate Reasoning
M. El-Sayed and D. Pacholczyk 333

Knowledge-based System for Supervision and Control of a Fed-batch Fermentation of BT
L. Valdez-Castro, A. Loza-Vázquez, J.M. Rodríguez-Morales, and J. Barrera-Cortés 339

Developing the User Interface for an Online Knowledge-based System
C. Angeli, L. Vrizidis, and A. Chatzinikolaou 345

Industrial Diagnostics using Algebra of Uncertain Temporal Relations
V. Ryabov and V. Terziyan 351

On the Three Forms of Non-deductive Inferences: Induction, Abduction, and Design
M. Kikuchi and I. Nagasaki 357

A Rearrangement System for Floor Layouts based on Case-based Reasoning and Constraint Satisfaction
S. Ono, Y. Hamada, K. Mizuno, Y. Fukui, and S. Nishihara .. 363

Natural Language Processing
A Polish Document Summarizer
N. Suszczanska and S. Kulików 369

Treating "Hata"- Construction in Korean-Chinese MT
Y.-A. Seo, Y. Huang, M. Hong, and S.-K. Choi 375

A Natural Language Interface to a B2C System
U. Loerch and M. McKessar 381

Grounding Atom Formulas and Simple Modalities in Communicative Agents
R. Katarzyniak ... 388

Planning and Scheduling
Dynamic Path Consistency for Interval-based Temporal Reasoning
M. Mouhoub ... 393

Experimenting the Performance of Abstraction Mechanisms Through a Parametric Hierarchical Planner
G. Armano, G. Cherchi, and E. Vargiu 399

AP-IRMA: Planning with Intentional Attention Toward Chances
C.K. Ji ... 405

Approximation Algorithm for Multi-Facility Location
L.P. Gewali, P. Kodela, and J. Bhadury 411

II. PARALLEL AND DISTRIBUTED COMPUTING AND NETWORKS (PDCN)

Architecture, Algorithms, Programming, and Applications
The J2EE-Adapted TINA Model: Integrating TINA Solutions to Internet
E. Yanaga, L. Nacamura Jr., and E.L. Bodanese 417
Dynamic Value Prediction using Loop and Locality Properties
P.-J. Chuang, Y.-T. Hsiao, and Y.-S. Chiu 423

Multicast Algorithms in Torus Network
H.A. Harutyunyan and X. Liu ... 429

Detection of Generalized Conjunctive Predicates for Debugging Parallel Distributed Programs

An Experimental Result for Broadcast Time
H.A. Harutyunyan and B. Shao ... 441

AN SNMP Enabled System for Enhanced Monitoring of E-commerce Statistical Indicators
T. Kontsilieris, J. Anagnostopoulos, S. Kalogeropoulos,
A. Michalas, V. Loumos, and E. Kayafas 446

A Java Reliable MultiPeer Protocol for Distributed Virtual Environments
G. Stuer, J. Broeckhove, and F. Arickx 450

Parallel Bidirectional Search on Message Passing Environment
K. Cha, J. Hong, and O. Byeon ... 456

Functional Bulk Synchronous Parallel Programming in C++
F. Dabrowski and F. Loulergue 462

A Fair and Starvation Free Version of Lamport's Fast Mutual Exclusion Algorithm
S. Vijayaraghavan .. 468

Loop Shifting Conversion for the Parallelizing Compiler
K. Iwasawa and T. Kusaba ... 472

A Multithreaded Compiler Backend for High-level Array Programming
C. Greick ... 478

A Proposed Methodology to Improve the Performance of Agent-based Applications through the Identification of the Optimum Visited Sequence
S. Kalogeropoulos, T. Kontsilieris, Moshe Sidi,
H. Gazit, and J. Tuch ... 485

Fast Recursive Data Processing in Graphs using Reduction
J.H. ter Bekke and J.A. Bakker 490

Cluster and Heterogeneous Computing

Hardware Impact on Communication Performance of Beowulf LINUX Cluster
Y. Tang, Y.-Q. Zhang, J.-C. Sun, and Y.-C. Li 495

Intelligent Fault Tolerant Architecture for Cluster Computing: A High Level Overview
S. Corsava and V. Getov .. 501

LSWS: A Linux-based Secure Web Switch
C.E. Chow, G. Godavari, and Y. Cai 507

Enhance Features and Performance of a Linux-based Content Switch
C.E. Chow and C. Prakash ... 513

A Transparent Communication Layer for Heterogenous, Distributed Systems
T. Fuerle and E. Schikuta .. 519

Implementation and Evaluation of Resource Allocation for a Genomic Application Program on the Grid
T. Koita, Y. Kojune, Y. Inoue, and A. Fukuda 524

Equivalent Query Transformer for Semantic Query Optimization in Distributed Computing Environment
N. Pandey and G.K. Sharma ... 529

Task Scheduling for Jobs of a Non-constant Workload over a Heterogeneous Network
C. Maple, Y. Wang, and J. Zhang 535

Web Delay Analysis and Reduction by Use of Load Balancing of a Dispatcher-based Web Server Cluster
Y.-W. Bai and Y.-C. Wu ... 541

Building Clusters on Modern Desktop Operating Systems
S. Juhasz and H. Chara .. 547

Mobile Computing and Networks I

Software Testing for Ubiquitous Computing Devices
I. Satoh ... 553

Multimedia Systems Adaptation in Mobile Environments
F. André and B. Deniaud .. 559

Distributed Optimal Admission Controllers for Service Level Agreements in Interconnected Networks

An Ethernet based Metropolitan Area Open Access Architecture
N. Mors, A. Pettersson, and M. Jonsson 571

A Performance Evaluation of the Mobile Agent Technology in Comparison to the Client/Server Paradigm for QoS Configuration in DiffServ Domains
S. Kalogeropoulos, T. Kontsilieris, G. Karetsos,
A. Michalas, V. Loumos, and E. Kayafas 577

iv
CAC, Resource Reservation and Scheduling for QoS Provisioning in GPRS
A.C. Barreiras Kochem, E.L. Bodanese, and L. Nacamura, Jr .. 583

Hierarchical Handoff Mechanism based on Situation Learning
T.J. Park and S.M. Park .. 589

Traffic Modeling and Simulation based Performance Analysis of Mobile Multimedia Data Services

PRAM Simulation in Hierarchical Interconnection Networks through Hypercube Embedding
P.T. Breznay .. 602

Congestion Control for High Performance Virtual Cut-through Networks
L. Fernández and J.M. Garcia .. 608

Mobile Computing and Networks II
Corner-First Tree-based Region Broadcasting in Mesh Networks
H. Haddad and M. Mudawwar .. 615

Key Issues in Implementing an Optoelectronic Planar Free-space Architecture for Signal Processing Applications
H. Forsberg, M. Jonsson, and B. Svensson 621

SLA Admission Controller for Reliable MPLS Networks
J. Pu, M. Akbar, E. Gowland, G.C. Shoja, and E. Manning .. 630

The Utilization of Distributed Processing on Signaling Calls in High Speed ATM Network: Architecture, Modeling, Simulation & Performance Analysis
R. Citro and S. Ghosh .. 636

Jitter Equalization to Maintain QoS for Multimedia Traffic
H. Elsayed and T. Saadawi .. 643

How to Evaluate the Quality of Service of Satellite based Content Delivery Networks
H. Hlavacs and G. Aschenbrenner .. 649

Wrapped System-Call: Cooperating Interactions between User and Kernel Mode in an Operating System for Fine-grain Multi-threading
S. Kusakabe, Y. Nomura, H. Taniguchi, and M. Amamiya .. 656

Preemptive Resource Management: Defending against Resource Monopolizing DoS
W. Kaneko, K. Kono, and K. Shimizu .. 662

On the Choice of Checkpoint Interval
J. Hong, S. Kim, and Y. Cho .. 670

Applying Active Networks to Networked Control Systems
X. Zheng, C. Jin, and J. Ju .. 676

Routing and Scheduling
Hierarchical Load-balanced Routing Via Bounded Randomization based on Destination Node
S. Bak and S.-Y. Kang .. 681

On Behavior of Fuzzy Norms and F Learning Automata in Distributed Multicriteria Network Routing
K. Lukac, Z. Lukac and M. Tkalic .. 686

Optimum Interval Routing in k-Caterpillars and Maximal Outer Planar Networks
G.S. Adhar .. 692

A Control Interface for Router Extension
M. Alutoin and P. Raatikainen .. 697

A New Algorithm for the Ring Loading Problem with Demand Splitting
Y.-S. Myung and H.-G. Kim .. 703

A Heuristic Algorithm for the Static Scheduling on Multiprocessors
J. Brest and V. Zumer .. 707

Scheduling Nested Loops with the Least Number of Processors
T. Andronikos, M. Kalathas, F.M. Ciorba, P. Theodoropoulos, G. Papakonstantinou, and P. Tsanakas .. 713

Parallel Processing and Computing
Debugging Distributed Computations by Reverse Search
A. Andrejak and K. Fukuda .. 719

SPaM – A Simple Parallel Machine in CORBA
C.-W. Xu and W. Lee .. 726

Implementation and Evaluation of MPI+OpenMP Programming Model on Dawning3000
Y. Chen, G. Chen, Y. Xu, and J. Shan .. 732
III. SOFTWARE ENGINEERING (SE)

Software Architecture, Programming Languages, and Embedded Systems

An Adaptive Architecture for Presenting Interactive Media Onto Distributed Interfaces
J. Hu and L. Feijs .. 899

Extracting High-level Architecture from Existing Code with Summary Models
N. Mansurov and D. Campara 905

Water Resources Modelling and Simulation Software: An Integrated Approach
F. El Dabaghi, D. Ouazar, and N. Souissi 913

Why Functional Programming Really Matters
P.A. Bailes, C.J.M. Kemp, I.D. Peake, and S. Seefried 919

Incremental Enhancement of the Expressiveness of a Reengineering Tool Development Platform
P.A. Bailes and I.D. Peake .. 927

Service-based Development of Dynamically Reconfiguring Embedded Systems
M. Trapp, B. Schürmann, and T. Tetteroo 935

Experimental Software Schedulability Estimation for Varied Processor Frequencies
S. Fabritius, R. Lencevicius, E. Metz, and A. Ran 942

XML Schema for Software Process Framework
T. Torabi, T. Dillon, and W. Rahayu 948

Applying Practices of Extreme Programming
H. Heričko, M.B. Jurčič, M. Rostaher, and P. Repinc 955

Automated Generation of Code Compliance Checkers
S.K. Aggarwa and, R.S.V. Raghavan 961

Software Design, Specifications, Development, and Reusability

Developing Pattern Implementation Knowledge for Reinforcing Software Design Patterns
Y. Zhao .. 967

Specification Support to the Synergy of Compound Design Patterns

Comparison of Frameworks and Tools for Test-driven Development
M. Pančur, M. Ciglarić, M. Trampus, and T. Vidmar ... 980

Function Points in Object Oriented Analysis and Design
A. Žíkovcić, M. Heričko, and I. Rozman 986

C-QM: A Practical Quality Model for Evaluating COTS Components
S.D. Kim and J.H. Park .. 991

Software Testing and Security

Attacking End Users' Applications by Run Time Modifications
M. Trampus, M. Ciglarić, M. Pančur, and T. Vidmar 997

Enhanced Authentication Key Agreement Protocol

Design of an Autonomous Anti-DDoS (A2D2) Network
A. Cears and C.E. Chow .. 1007

Selecting Small Yet Effective Set of Test Data
A. Paradkar .. 1013

On Automating the Formulation of Security Goals under the Inductive Approach
R. Monroy and M. Carrillo .. 1020

Web-based Systems and Applications

A Web-based Review System and its Usability in a Small Software Organization
E. Yanbaş and O. Demirör · .. 1026

Experience Paper: Migration of a Web-based System to a Mobile Work Environment
C.-F. Sørensen, A.I. Wang, and Ø. Hofstun 1033

A Comparison of Two Different Java Technologies to Implement a Mobile Agent System
A.I. Wang, C.-F. Sørensen .. 1039

A DTD Complexity Metric
R. McFadyen and Y. Chen .. 1045

A Framework for the Analysis and Comparison of Hypermedia Design Methods
S. Montero, P. Diaz, and J.Aedo 1053

Localizing XML Documents through XSLT
Y. Yu, J. Lu, J. Xue, Y. Zhang, and W. Sun 1059
Realizing Web Designs with the Cobana Framework
R. Gitzel, A. Korthaus, and N. Matloumi 1065

Version Control of XML Documents using Sparse Version Stamps
G. Park and C. Wu .. 1072

Y. Baghdadi .. 1078

Software Engineering and Applications
An Investigation on Requirements Elicitation Issues in Computer-supported Collaborative Learning – Malaysian Experience
M.K. Zarinah and S.S. Siti .. 1084

Software Quality Issues in Extreme Programming
S.V. Nagarajan, O. Garcia, and P. Croll 1090

Software Distribution Environments for Workflow Management Systems – The Case of MQ Series Workflow
R. Anzböck, S. Dushtdar, and H. Gall 1096

Derivation of a Measurement for Defining Ideal Number of Comments in Code
H.H. Yang, S. Williams, and R. McCrindle 1103

Effort Estimation based on Data Structures in Entity-relationship Diagrams
G.J. Kennedy .. 1109

A Method for Teaching a Software Process based on the Personal Software Process
Z. Car ... 1115

Generational Change Model in the Software Life Cycle
E. Chang, J. Aisbett, and N. Jayaratna 1121

A Generic Approach for a CORBA-LDAP Gateway Implementation for Enterprise Telecommunication Systems
W. Radinger, M. Jandl, A. Szep, and K.M. Goeschka 1127

A Logical Abstract Machine for Mobile Communicating Agents
I. Moura and P. Bonzon ... 1133

Software Reliability and Requirements
Assessment of Software Safety Via Catastrophic Events Coverage
A.J. Kornecki .. 1139

Analysis and Theoretical Validation of Object-oriented Coupling Metrics
J. Alghamdi and M.O. Saliu ... 1145

Requirement Indicators for Mobile Work: The MOWAHS Approach
H. Ramampiaro, A.I. Wang, C.-F. Sørensen, H.N. Le, and M. Nygård ... 1153

CM²: Problem Management: Taxonomy of Activities
M. Kaiko-Mattsson ... 1161

Software Modelling, Simulation, and Optimization
Convergence Assessment of the Calibration Algorithm for the State Variable Model of the Software Test Process
J.W. Cangussu .. 1167

An Industry Proven Software Engineering Process Model for Small Companies
J.J. Ahonen, T. Junttila, and S.-K. Taskinen 1173

A Fuzzy Global Optimization Method for Parallel Computation
B. Ustundag and O.K. Erol .. 1179

Syntax for Tables
T. Kirishima, T. Motohashi, T. Arita, K. Tsuchida, and T. Yaku ... 1185

IV. DATABASES AND APPLICATIONS (DBA)
Knowledge Discovery, Data Mining, and Data Warehousing
A Test Bed for Information Retrieval Experimentation
Y. Zhang and V. Dasigi ... 1191

On Modeling First Order Predicate Calculus using the Elementary Mathematical Data Model in MatBase DBMS
C. Mancaš, S. Dragomir, and L. Crasovschi 1197

Fast Frequent Itemset Mining using Compressed Data Representation
R.P. Gopalan and Y.G. Sucuhyo 1203

Hybrid Concurrency Control in Multilevel Secure Database Systems
J.R. Getta .. 1209
Information Retrieval, Management, and Documentation

Establishing a Health Community Knowledge Management System
C. Tatsiopoulos, G. Vardangalos, and D. Alexandrou .. 1215

An Arabic Auto-indexing System for Information Retrieval
R.A. Haraty, N. Mansour, and W. Daher 1221

Knowledge Representation and Acquisition in Supporting Document Filing and Retrieval
X. Fan, F. Sheng, G. Thomas, and P.A. Ng 1227

ADMIS: Generalized Administrative System
S. Nešković and B. Lazarević, and G. Soldar 1233

Web Technologies and XML

Efficient Search of Multimedia Metadata on XML Database Systems using Information Retrieval Approach
S. Qiu and S. Li ... 1239

Making Spatial Analysis with a Distributed Geographical Information System
M. Torres, M. Moreno, R. Menchaca, and S. Levachkine ... 1245

A Comparison of Structure-generic Relational Storage Schemes of XML Data
W. Zhang and D. Pollok ... 1251

Efficient Accessibility Lookup for XML
M. Jiang and A.W.-C. Fu ... 1257

A Documentary View on Distributed Databases – Thanks to an XML Schema
T. Ould Braham ... 1263

A Comparative Performance Study of Threshold Methods for Actual Documents Recognition System based on Post-PC Environment
S. Ji, C. Yunkoo, K. Taeyuen, and K. KyeKyung ... 1269

ADDITIONAL PAPERS

Computer-supported Collaborative Knowledge Construction using KC-Space: The Approach and Experimental Findings
S.S. Salim and S.S. Abdul Rahman ... 1273

Evolving High-Dimensional, Adaptive Camera-based Speed Sensors
R. Salomon ... 1278

PAPERS FROM OTHER LASTED CONFERENCES:

351-366
An XML Viewer for Tabular Forms for Use with Mechanical Documentation
O. Inoue, K. Tsuchida, S. Nakagawa, T. Arita, and T. Taku ... 1284

362-345
Preventing Computational Chaos in Asynchronous Neural Networks
J. Barhen and V. Protopopescu ... 1290

365-119
Automated Negotiation with Multiple Concept-based Alternatives in Multi-agent Systems
Z. Yan and S. Fong ... 1296

374-125
Domain Knowledge Representation: Using an Ontology Language
R. Lu and Z. Jin ... 1302

374-126
Involving End Users in Requirements Elicitation and Goal-Oriented Analysis
Z. Jin and D.A. Bell ... 1308

AUTHOR INDEX

* ix