HIERARCHICAL INFORMATION VISUALIZATION USING ENCCON MODEL

Quang Vinh Nguyen and Mao Lin Huang
Faculty of Information Technology
University of Technology, Sydney

Australia :

Abstract

This paper describes a new efficient approach for
visualizing large hierarchical information. Our technique
is based on the comnmection + enclosure visualization
model [1] from which the area division is used for the
recursive positioning of nodes, while a node-link diagram
is still drawn to present the entire hierarchical structure.
We inherit the advantages of Space-Optimized (SO) Tree
technique [1] that can enhance the usability of display
space by using area division. However, we replace a set of
polygons used in SO Tree by a set of rectangles for the
area division. This not only decreases the computation
cost in calculating geometrical polygons, but also greatly
reduces the human perceptual and cognitive loads spent
on understanding the underlying hierarchical structure.
We use semantic zooming technique to enlarge a
particular viewing area and filter out the rest of structure
that is less interested. The navigation is accommodated by
animation in order to preserve the mental map [2].

Key Words

information visualization, tree visualization, node-link
diagram, tree-maps, hierarchical information, navigation.

1. Hierarchical Data Visualization

With the rapid growth of information, the size of data sets
increases significantly each year, and to find out efficient
information visualization techniques for the viewing,
understanding, navigation and manipulation of such large
data sets has become one of the crucial tasks. In fact, most
advanced high-quality visualization techniques often rely
on the capacities of super Computer Graphics
Workstations with high display resolution and CPU
power which are usually expensive. Therefore, it is
important and economical to develop optimized
visualization techniques that can be applied on ordinary
PCs or Unix stations that are often available in normal
labs or personal offices. Although several techniques [2,
3, ..., 17, etc] have been proposed and implemented to
deal with large relational hierarchies, only few are good
candidates in term of space efficiency, low run time and
less complexity.

418-174

129

Researches in hierarchical visualization can be roughly
classified into two main streams: connection and
enclosure. They are both effective approaches for the
visualization of hierarchies and which one we should use
depends primarily on the properties of the data in a
particular application domain. The connection approach is
effective for hierarchies that have uneven shapes while
enclosure approach is effective for trees where the nodes
include quantitative variables, particularly when large
values are important. Now we would like to discuss in
more detail of both connection and enclosure approaches.

1.1. Connection Approaches

These are natural ways of presenting graphs/tree
structures by using a node-link diagram. A set of visible
graphical edges are drawn in the diagram to link nodes
from the parents to their children. The nodes present the
data while these edges are used to present relationships
among data items. There are many researches in this
direction have been done, such as cone-tree [3],
hyperbolic browser [4, 5], radial view [6], balloon view
[7], disk tree [8], classical hierarchical view [9), h-tree
layout [10], botanical visualization [11], NicheWorks
[12], Rings [13], Narcissus [14], etc. The advantage of
using a node-link diagram to present hierarchical
structures is that the viewer can directly see these
relationships that are drawn as a set of graphical edges
appearing in the diagram. This makes it easier for the
process of human perception to understand the relational
structures of the information. These techniques, however,
are not often efficient in term of utilizing display space
(see [1] for detailed discussion).

1.2. Enclosure Approaches

Another way to visualize hierarchical data is to use
enclosure. Unlike connection, enclosure is the method of
using enclosure to represent the tree structures. Figure 1 is
an example of an enclosure technique: free-maps [15].
This technique maps each node into a rectangular area,
then that area is subdivided in horizontal or vertical
direction to show the relative size of the children of the
node. The process is recursively applied to the child nodes
with the subdivisions on the X- or Y-axis. There are also
some researches in this direction that have been well

done. Typical examples of this type of visualization
techniques are tree-maps [15], cushion tree-maps [16],
squarified tree-maps [17] and Venn diagram [18].
Although enclosure techniques are more optimal in term
of using displaying space, they do not show directly the
relational structures of information. This costs extra
cognitive effort of viewers in understanding the relational
structures that are presented in the enclosure manner (see
the discussion in [1]).

Figure 1. An example of Tree-maps.

1.3. Connection + Enclosure Approach

To overcome the above limitations of existing
hierarchical visualization techniques, a new information
technique called Space-Optimized Tree (SO Tree) [1] was
proposed. It takes advantages of both worlds; the
connection and enclosure, and so called a connection +
enclosure approach. This technique can be used to
optimize the drawing of trees in a geometrical plane and
maximize the utilization of display space by allowing
more nodes and links to be displayed at a limited screen
resolution. Space-Optimized Tree recursively positions
children of a sub-tree into polygon areas and still uses a
node-link diagram to present the entire hierarchical
structure (see Figure 2). The use of polygon partitioning
effectively addresses the problem of space utilization,
while the use of a node-link diagram addresses the
problem of human comprehension of the underlying
hierarchical structures.

However, the polygons are sometime not a good sharp to
percept for some viewers, and also much hard to calculate
than other kind of sharps, such as rectangles and circles.
The calculation of angles for every polygon is quite
computational expensive.

130

Figure 2. An Example of SO-Tree using polygon
partitioning.

1.4 Our ENCCON Model

This paper proposes a new Enclosure and Connection
(ENCCON) approach for the visualization of large
relational tree-hierarchies. This paper describes a new
efficient approach for visualizing large hierarchical
information. Our technique inherits the advantages of SO
Tree technique that can enhance the usability of display
space by using area division. This technique is more
straightforward than SO Tree, which uses the rectangles
for the area division instead of polygons as SO tree. This
not only decreases the computation cost in recursively
calculating geometrical polygons, but also greatly reduces
the perceptual and cognitive loads spent on understanding
and perception of the underlying hierarchical structure.
We use the semantic zooming to enlarge a particular
viewing area and filter out the rest of structure that is less
interested. The navigation is accommodated by animation
in order to preserve the mental map [2]. The detail of
ENCCON will be described at the next section.

2. Technical Specification

Our ENCCON technique can only be applied to rooted
trees. We now review the terminology that is used in our
technique.

2.1. Terminology

A tree is a connected graph without a cycle. A rooted tree

consists of a tree T and a distinguished vertex r of 7. The
vertex r is called the root of 7. In other words, T can be

Figure 3a. An example of a rectangular area division,
using C = 0.45.

viewed as a directed acyclic graph with all edges oriented
away from the root. If (1, v) is a directed edge in T, we
then say w is the father of vand vis a child of 1 A leafis
a vertex with no children. If T contains the vertex v, then
the sub-tree T(v) rooted at v is the sub-graph induced by
all vertices on paths originating from v. We also use a
node to represent a vertex v with its displaying properties.
This terminology is mainly mentioned in display section.
Each vertex v has an associated value w(v), which we call
the weight. The local region R(v) of the vertex v is a
rectangle, and it contains the drawing of a sub-tree T(v).

The rectangle R(v;) is proportional to the weight w(v,) of
the vertex v,

2.2. Geometrical Layout

This part is responsible for defining the position of all
vertexes of the given tree hierarchy in 2-dimentional
space. Each vertex v; is bounded by a rectangular local
region R(v;) that the drawing of the sub-tree T(v;) is
restricted within the area of R(v;). The position of vertex v;
is at the centre of the rectangle defined by R(v;). See the
examples in Figures 3a and 3b.

Weight calculation: we assign a weight w(v) to each
vertex v for the calculation of the local region P(v) that
relates to the regions of its father and siblings. The
calculation is done recursively from leaves to a vertex
using the following formula:

w(v) :1+CZ":W(V1) o)

Where C is a constant (0 < C < 1), and w(v;) is the weight
assigned to the i” child of vertex v. Constant C is a scalar

that determines the difference between the vertexes’ local

131

Figure 3b. An example of a rectangular area division,
using C = 0.10.

region with more descendants and vertexes’ local region
with fewer descendants (see Figures 3a and 3b). All
screen snapshots in this paper use the value C = 0.45.

Local region partitioning: we firstly define the local
region of the root to be the entirely rectangular display
area. Then, the root vertex is placed at the centre of this
rectangle. The partitioning starts from the root and ends
when all the leaf vertexes are reached. Suppose that the
local region R(v) of the vertex v is defined, the position of
v is at the centre of R(v). We need to calculate the local
regions {R(vy), R(vy), ..., R(v;)} for all the children {v;, v,
..., v,} of vertex v. The partitioning ensures that the area
that the area of rectangle R(v) is proportional to the
weight W(v)) of the vertex v,

The division of R(v) into sub-regions {R(v;), R(v,), ...,
R(v,)} is processed as below:

1. Suppose the vertex y is the parent of vertex v and we
firstly find the initial side of rectangle R(v) on which

the vector uv cuts the rectangle R(v) or the side

which is closest to . If v is the root then the initial
side is defined as the bottom side. We start the
partitioning on the opposite side of the initial side,
and the partitioning is applied respectively to each of
four sides of R(v) in a clock-wise direction (see
Figure 5).

2. On each side, the partitioning creates and fills in m
(m<n) rectangular sub-regions of the same width (or
height). Thus, these sub-regions will form a large
filled rectangle and leave a remaining empty region
(see Figure 4) which is also a rectangle. Then, this
rectangle is used for the partitioning on the next side.
The number m is determined by the size of the
remaining rectangle as well as the smallest
width/height ratio A..; of all ratios {247, Apezr..oidicim b
where we have:

1= wR(v,)

" hR(v,) @
!

Suppose that the partitioning is on one side of the
remaining rectangle. We firstly check the numbers of
children that can be added into this side. We want to
maximize the number m, but also ensure that every
sub-rectangle on the side is not too thin, which mush
satisfy with the following equation:

l</1i<p (3)
P

Where wR(v;) and hR(v)) are respectively the width
and height of a sub-rectangle R(v). p is a constant
that equals 1.43 in our implementation.

3. Suppose that there are m children {vi.;, Viis, ..., Virmd
of vertex v need to be added into a side of the
remaining rectangle, with respectively local regions:
{R(vi+1), R(viea), ..., R(Viam)}. R(visy) are rectangles
and each has a width wR(v,.;) and height AR(v;.).
Suppose that the widths of sub-rectangles are same as
the direction of the division-side, and the length of
this side is /; and the length of the other side is /,.
Then the width wR(v;,;) and height hR(v,,) of the
rectangle R(vi.;) are calculated by the following

formulas:
wR@hgzgﬁgﬁkﬁ— 4)
z w(vk+j)
j=t
Z w(vk+j)
hR(v,.;) = b,)

RW

Where w(v) is the weight of the vertex v. RW is the
temporary weight of the remaining rectangle. RW is
initially defined as the total weight of all the children
{v1, vs, ..., v,}. The value of RW after this division is:

RW =RW =) w(v,,,) (6)
Jj=!

The above formulas ensure that the area of each child is
proportional to the weight of the child If the division
cannot be completed, we increase the initial weight of RW
and implement the division again. The algorithm works
best with the list of vertexes in ascendant order of weight.
Thus, the list of vertexes {v, v, ..., v,} is sorted in
increasing order of weights before we calculate the sub-
regions for these vertexes. Figure 4 illustrates the
partitioning on the left-hand side of the remaining
rectangle.

The remaining
rectangle after
the partitioning
on side /;

The remaining
rectangle before
the partitioning
on side /;

v

Figure 4. An example of the partitioning on the left-hand
side of the rectangle.

Example of the partitioning: suppose we have a
rectangle with width 6 and height 4, we need to divide
this rectangle into 5 rectangles whose weight are
respectively {4, 4, 2, 2, 1}, and the starting partitioning
side is the left side. The weight of this rectangle is 13.

The first step is to add a single rectangle with the weight 4
into the first division side (hR, = 4*6/13, wR, = 4). Next,
we add the second rectangle (weight 4) above the first, i.e.
they share the common left side from the original large
rectangle. This two rectangles will have the dimension
respectively of (hR; = 8*6/13, wR, = 4*4/8) and (hR; =
8*6/13, wR, = 4*4/8). Step 3 inserts the third rectangle
(weight 2) on top of two rectangles. However, this step is
dismissed because the last produced rectangle is too thin
(hR; = 10*6/13, wR; = 2*4/10, A, =0.174). We now

start the second partitioning circle, moving from the left
side to the top side. In the remaining rectangle, the
division continues on the second side (on the top). Two
more circles are repeated on other two sides of the
remaining rectangle until all rectangles have been
positioned (see Figure 5).

step 6 step 7
Figure 5. An example of the partitioning.

VU BE S

i

%§§§§§5 i;, = e - s‘% == wm
Figure 6b. An example of implementing animated Figure 6d. An example of implementing animated
zooming in after a left mouse-click. zooming out after a right mouse-click.

g

1

L S - SO T A,

[S I

IR NI

Figure 6¢c. An example of the layout after animated

) -Xar Figure 7a. An example of implementing our layout
zooming out by clicking on a node.

algorithm with a medium size data (approximately 190
nodes)

134

2.3. Navigation and Animation

We use semantic zooming for the viewing and navigation
of the hierarchical structure in our ENCCON system.
When a particular node v is selected by a left mouse-
clicking, the selected node v moves smoothly forward to
the center position of the root (i.e. center of the
rectangular display area) and the surrounded area of v is
zoomed in. The display region of node v now expands to
the entire display area. In other words, we only visualize
the sub-tree of selected node and the rest of the
hierarchical structure is filtered out. This viewing
technique requires the recalculation of positions of all
vertexes of the sub-tree that is currently appearing after a
corresponding left mouse-click occurs (see Figure Sc).
The system implement zoom out (move back to the
display of father’s hierarchy) when the user clicks on the
right button.

The animation is also accommodated with the navigation
in order to preserve the mental map [2] during the
navigation. The animation is achieved by smoothly
moving the nodes to the new location, and fading in and
fading out the nodes. Particularly, the animation process
can be described below:

e Zoom in (corresponding to the left mouse-click on a
node): the focused sub-tree expands smoothly to
occupy the entirely display area. The size of nodes in
this sub-tree also increases to reach their new size.
Simultaneously, the color of nodes, which is visible
at the previous state, is fading out to the background
color (see figure 6b).

e Zoom out (corresponding to right mouse-click): the
nodes of the sub-tree (from the previous state) move
smoothly to their new location, and their size
decreases to the new size. Simultaneously, the
parent’s hierarchy is smoothly fading in from the
background color to the node color (see figure 6d).

2.4 Display Property

As same as the other area division approaches where a
child’s area is always smaller than its father, we also
apply this rule to our viewing technique. The size of
nodes and the width of edges we choose are proportional
to their levels in the hierarchy. This means that, the closer
to the root, the larger of nodes and the wider of edges.
This rule, some how, improves the clarity of the
presentation of tree hierarchies.

2.5 Examples

Figures 7a and 7b are examples of applying our technique
on a medium large and a very large data set. A demo of

ECCON system (implemented in Java Applet) is available
at: http/Awww-staff.it.uts.edu.au/~guvnguye/eccon/

3. Conclusion and Future Works

We have presented our ECCON approach for visualizing
and manipulating large hierarchies. This technique is
extended from SO Tree [1] and is effective and efficient
for visualizing large amounts of tree structured relational
data. The layout algorithm can draw the entire tree
structure of large data sets using enclosure manner. The
system allows the viewer to navigate and view any part of
the large tree structure using a semantic zooming
technique. Animation is also accommodated in order to
preserve the mental map and reduce the human cognitive
loads during the navigation. Although this technique
needs further optimization and improvement, we believe
that it is a valuable tool for visualizing a variety of the
large real tree-structural data sets in many application
domains.

Next step, we will investigate new layout algorithms to
improve the efficiency of using display space. We will
also investigate new focus+context [18] viewing
techniques that can keep the global view of the entire tree
structures in a small region while a detailed view of a part
of the tree can be displayed in the large region during the
navigation. In addition, we will work on usability test to
demonstrate the benefits of using our technique.

Figure 6a. An example of displaying the entire hierarchy
before the navigation.

http://www-staff.it.uts.edu.au/-quvnguye/ecconl

Figure 7b. An example of implementing our layout
algorithm on a very large data set of a file system (with
approximately 11100 nodes)

References

[11 Q.V. Nguyen, M.L. Huang, Space-optimized tree: a
connection + enclosure approach for the visualization of
large hierarchies, Information Visualization Journal,
Palgrave, 2(1), 2003, 3-15.

[2] L. Bartram, Perceptual and interpretative properties of
motion for information visualization, Technical Report
CMPT-TR-1997-15, School of Computing Science,
Simon Fraser University, 1997.

[3] G.G. Robertson, J.D. Mackinlay, S.K. Card, Cone
trees: animated 3D visualizations of hierarchical
Information, Proc. CHI'9] on Human Factors in
Computing Systems, ACM Press, New Orleans,
Louisiana, USA, 1991, 189-194.

[4] J. Lamping, R. Rao, The hyperbolic browser: a
focus+context technique for visualizing large
hierarchies”, Journal of Visual Languages and
Computing, 1, 1995, 33-55.

[5] T. Munzner, Exploring large graphs in 3D hyperbolic
space, [EEE Comp. Graphics & Applications, 18(4),
1997, 18-23.

{6] P. Eades, Drawing free trees, Bulleting of the Institute
of Combinatorics and its Applications, 1992, 10-36.

135

[7] G. Melancon, 1. Herman, Circular drawings of rooted
trees, Reports of the Centre for Mathematics and
Computer Sciences, INS-9817, ISSN 1386-3681, 1998.

[8] Ed H. Chi, J. Pitkow, J. Mackinlay, O. Pirolli, R.
Gossweiler, S.K. Card, Visualizing the evolution of web
ecologies, Proc. ACM CHI'98 Conference on Human
Factors in Computing Systems, ACM Press, Los Angeles,
California, 1998, 400-407, 644-645.

[9] E.M. Reingold, J.S. Tilford, Tidier drawing of trees,
IEEE Transactions on Software Engineering, 7 (2), 1981,
223-228.

{101 Y. Shiloach, Arrangements of planar graphs on the
planar lattices, Ph.D Thesis, Weizmann Institute of
Science, Rehovot, Israel, 1976.

[11] E. Kleiberg, H.V. Wetering, J.J. Wijk, Botanical
visualization of huge hierarchies, Proc. IEEE Symposium
on Information Visualization (InfoVis’01), San Diego,
CA, 2001, 87-94.

[12] G.J. Wills, NichesWorks — interactive visualization
of very large graphs, Journal of Computational and
Graphical Statistics, 8, 1999, 190-212.

{131 S.T. Teoh, K.L. Ma, Rings: A technique for
visualizing large hierarchies, Proc. Graph Drawing (GD
2002), 2002, California, 268-275.

[14] RJ. Hendley, N. Drew, A. Wood, R. Beale,
Narcissus: visualizing information, Proc. '95 Information
Visualization, Atlanta, 1995, 90-96.

[15] B. Johnson, B. Shneiderman, Trec-maps: a space-
filling approach to the visualization of hierarchical
information structures, Proc. The 1991 IEEE
Visualization, Piscataway, NJ, 1991, 284-291.

[16] J.J. van Wijk, H. van de Wetering, Cushion
treemaps: visualization of hierarchical information, Proc.
1EEE InfoVis '99, San Francisco, California, 1999, pp. 73-
78.

[17] M. Bruls, K. Huizing, J.J. van Wijk, Squarified
Treemaps, Proc. VisSym '00, Amsterdam, the
Netherlands, 2000, 33-42.

[18] I. Herman, G. Melangon, & M.S. Marshall, Graph
visualization in information visualization: a survey, /[EEE

Transactions on Visualization and Computer Graphics, 6,
2000, 24-44.

