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1 INTRODUCTION 

During the incident which occurred at Hillsborough Stadium on 15 April 1989, 
two bays, 2\3 and 3\4, of barrier 124A, Fig 1, were broken down. This report 
attempts to calculate collapse loads for the barrier and compares these loads 
with the pressures likely to have been generated by the crowd. 

Examination and mechanical testing of the broken barrier by staff of the 
Health and Safety Executive (HSE), revealed that the upper rail had been 
manufactured from wrought iron and was probably over sixty years old. The 
vertical supports were made from mild steel (Ref 1). The tube was attached to 
the supports by straps, underneath which considerable corrosion of the tube 
had occurred. 

, 2 MATERIAL PROPERTIES 

Tensile tests from 2 specimens taken from the tube gave average tensile 
strength of 366 MPa, 0.2% proof stress 259 MPa and an estimated elastic limit 
of 150 MPa. Because of the considerable work hardening which occurs after 
yield in this material and the sensitivity of the yield stress to prior load 
history, there is an ambiguity about what single value of yield (or flow) 
stress should be used to calculate a fully plastic moment. 

Two full scale uniform bending tests were carried out on similar wrought iron 
tubes from barrier 129, as described in Appendix 1. From the experimentally 
determined plastic collapse loads and the geometry of the tube, representative 
flow stresses, of, were determined from each test. The values obtained were 
298.2 MPa and 290.9 MPa. The difference in the two values of flow stress 
obtained by experiment gives an indication of the reliability of the material 
property input to the collapse calculations, i.e. +/- 1.2%. The average of 
these values, 294.6 MPa was used in the subsequent collapse calculations. This 
value is some 5.7% less than that obtained by using the approximation of the 
average of the tensile strength and the 0.2% yield stress obtained in a 
tensile test. An average value of Young's Modulus, E, (in flexure) of 
190.5 GPa was also obtained from these experiments. 

3 SECTION PROPERTIES OF THE BARRIER TUBE 

Second moments of area, I, for a tube of outside diameter D and uniform wall 
thickness, t, were calculated from the formula: 

Equation (1) and the formulae which follow can be found in standard references 
(e.g. Ref 2). 

Fully plastic moments Mp were calculated as a product of the flow stress af 
and Zp the plastic modulus: 



The nominal dimensions of the tube, 60 mm outside diameter and 4 mm wall 
thickness are used in the preliminary calculations in the bent two sections. 

ELASTIC DEFLECTIONS UNDER TEST LOADING 

The elastic deflection (6) at the centre of a beam of length L, built-in at bot 
ends and subjected to a uniformly distributed load W, is given by 

If the ends are simply supported, the deflection is increased by a factor of 
five . 

For a span between supports (L) of 2.2 m, the length of spans 2\3 and 3\4 of 
barrier 124A, subjected to the test loading of 6 kN/m, a figure prescribed by 
the "Green Guiden (Ref 3), a central deflection of 6.9 mm is obtained. If the 
ends are free, the deflection increases to 34.5 mm. In the calculation which 
follows, the central span (2\3) of barrier 124A has been treated as having 
built-in ends. The outer span (3\4), has been treated as having end 3 built-in 
and end 4 simply supported. 

YIELDING UNDER TEST CONDITIONS 

For the span 2\3, the clamping moments are wL2 First yield will occur when 
these moments equal 2uY X I/D. If ay corresponds to the measured elastic limit 
of the material (150 MPa), then first yield corresponds to 3.4 kN/m or just 
over half of the test load. 0.2% proof stress gives a first yield load of 
5.9 kN/m. Thus some yielding occurs on first loading up to the test load of 
6 kN/m. Subsequent loading up to this test load will be elastic because of the 
strain-hardening capabilities of the material. 

6 CALCULATIONS OF PLASTIC COLLAPSE LOADS 

The wall thickness of the tube under straps at 2, 3 and 4 was found to be much 
reduced by corrosion. The reduction in thickness was not uniform round the 
circumference; calculations of the plastic moduli of the as-measured sections 
have been made by area integration, described in Appendix 2. The following 
table results : 

Section dimensions Plastic modulus Fully plastic momen 
(uf - 294.6 MPa) 

D mm t mm Z, mm3 MP = of X Zp kNm 

Tube 2\3 End 2 Corroded 5,007+ 
Tube 2\3 Centre 60.80 3.90 12,646* 
Tube 2\3 End 3 Corroded 8,279+ 
Tube 3\4 End 3 Corroded 8,504+ 
Tube 3\4 Centre 60.40 3.90 12,398* 
Tube 3\4 End 4 Corroded 8,269+ 

+ By area integration from measured irregular cross section (Appendix 2) 
* By Equation (2) 



The general case of p l a s t i c  collapse fo r  a beam of length L i s  shown below: 

W / unit length 

where MA-and are  the moments a t  the supports and & is the moment a t  the 
centre of the beam. The collapse load i s  

The standard case we take i s  for  the or ig ina l  beam b u i l t - i n  a t  both ends, i . e .  
span 2\3 of bar r ie r  124A. Denoting the collapse load fo r  t h i s  case as  W, and 
noting MA = 4 = h = Mp, the f u l l y  p l a s t i c  moment a t  the uncorroded centre,  

Now fo r  the span 3\4, assuming end 4 t o  be simply supported, the  calculation 
above can be repeated with MC = 0, and MA = Mg = 3.65 kNm, giving a collapse 
load of 9.05 kN/m. 

For the spans i n  a corroded condition, the cen t ra l  p l a s t i c  moment can be 
assumed to  remain unchanged, but the appropriate p l a s t i c  moments i n  the 
above table  can be subst i tuted fo r  end moments. The following t ab l e  
r e su l t s  : 

Collapse Loads: kN/m 
Bu i l t - i n  (Span 2\3) One end simply supported 

(Span 3\41 ( h  = 0) 

Original 
thickness 

Corroded condition 9.40 (1.57) 8.11 (1.35) 

The figures i n  brackets a re  the calculated collapse loads as  multiples of the 
t e s t  load (6 kN/m). 



For the unsymmetrical calculations i n  the previous table ,  the inner p l a s t i c  
hinge does not occur exactly a t  the centre of the span. The e f fec t  of t h i s  on 
the calculated collapse loads is  negligible and smaller than other sources of 
uncertainty. 

Tests performed by D r  Eastwood (Ref 4) on a s imilar ,  but not ident ica l  
bar r ie r ,  a f t e r  the incident,  showed tha t  a load of 9 kN/m ( t e s t  load X 1.5) 
was suf f ic ien t  t o  cause very large permanent deformation of the tube. The 
calculated collapse loads therefore appear to  be r e a l i s t i c  values. 

7 COLLAPSE MODE 

I f  we assume the shear strength to  be only 50% of the t ens i l e  strength,  
then to  shear a 1.5mm wall thickness of tube d i rec t ly ,  a load of 48 kN/m i s  
required. Even the worst corroded end had an average wall thickness of t h i s  
value, yet the shear f a i lu re  load i s  many times higher than the p la s t i c  
collapse load. This evidence, together with the bent shape of the tube a f t e r  
the incident, supports the view tha t  ba r r i e r  fa i lure  occurred by p la s t i c  
collapse of the tube. Because of i t s  posi t ion,  span 3\4 would f a i l  before span 
2\3. I f  collapse of the legs had taken place pr ior  to  the f a i lu re  of the tube, 
the tube would not have been bent i n  the manner which was observed. Thus, of 
the loads calculated i n  Section 6 ,  the value of collapse fo r  span 3\4 i n  the 
corroded condition governs the problem. 

8 ESTIMATES OF CROWD FORCES ACTING ON BARRIERS 

A theoret ical  model of the forces generated by a crowd behind a bar r ie r  has 
been developed, see Appendix 3. Values from t h i s  model are  shown on Fig 2 ,  onto 
which values for  the various calculated collapse loads have been added. For a 
crowd density of 8/sq m ,  measured from photograhs (Ref l ) ,  span 3\4 i n  the 
original condition would withstand a crowd depth of approximately 6.4 m before 
collapse. This would reduce t o  6 m i f  it were i n  the corroded condition. 
Because span 3\4 of bar r ie r  124A was unprotected by bar r ie r  136, a crowd of 7 
m was able to  exert  pressure on t h i s  pa r t  of the bar r ie r .  Given tha t  the crowd 
was not of uniform density throughout and the approximate nature of the crowd 
loading model, these figures adequately explain the collapse of the bar r ie r .  
Once span 3\4 had f a i l ed ,  span 2\3 would become simply supported a t  end 3 and 
the ver t ica l  support would t w i s t ,  causing collapse of span 2\3 a t  a similar 
load level .  I f  the crowd had been r e s t r i c t e d  to  5.4/sq m, the crowd depth to  
cause collapse would be 8 m and 7.5 m i n  the or iginal  and corroded conditions 
respectively. This l a t t e r  value i s  i n  excess of the depth of crowd a t  t h i s  
location and indicates tha t  the span would have survived had the crowd density 
been so res t r ic ted .  

I f  bar r ie r  136 had been complete, the crowd depth behind ba r r i e r  124A would 
have been limited to  3.5 m depth. The maximum load generated, as predicted by 
the 'leaning crowd' model, by a crowd as dense as 10/sq m would have been some 
20% less  than the t e s t  load. 

Given that  the gap i n  the row of ba r r i e r s  behind 124A was greater  than tha t  
recommended i n  the Green Guide (Ref 5 ) ,  the t e s t  load of 6 kN/ m  was 
inadequate. A t  5.4/sq m the model predicts tha t  a crowd of 7 m depth would 
generate a load some 22% greater than the t e s t  load. 



9 CONCLUSIONS 

9.1 Collapse loads have been calculated for  the spans 2\3 and 3\4 of barr ier  
124A which was broken down during the Hillsborough Stadium incident. 

9.2 I f  the bar r ie rs  had been of the or iginal  thickness a t  the supports, loads 
of 2 . 1  and 1.51 times the t e s t  load of 6 kN/m would have been needed to 
collapse the bar r ie r  a t  spans 2\3 and 3\4 respectively. With the reduced 
wall thicknesses as measured, these ra t ios  f a l l  t o  1.57 and 1.35 X t e s t  
load. 

9.3 These figures have been compared with bar r ie r  loads generated from a 
'leaning crowdf model. 

9.4 I n  the corroded condition f o r  a crowd of measured density 8/sq m, the 
span 3\4 of the ba r r i e r  would have been broken down by a crowd of 
approximately 6 m depth behind the bar r ie r .  A crowd of some 7 m depth 
existed direct ly  behind span 3\4. 

9.5 I f  a crowd density of 5.4/sq m is  assumed, the same tube would have 
required about 7.5 m of crowd to break it down. 
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APPENDIX 1 

BENDING TESTS TO DETERMINE THE MECHANICAL PROPERTIES OF THE WROUGHT 
IRON TUBULAR TOP RAIL FROM BARRIER 129 

A L Collins 
K Heenan 
J C Moore 
D Waterhouse 

Al.l THE NEED FOR BENDING TESTS 

Calculations of the loading to cause the collapse of barrier 124A requires a 
knowledge of the mechanical properties of the wrought iron used in spans 2\3 
and 3\4 of the top rail of the barrier. 

RLSD's Metallurgy and Materials Section conducted tensile tests on two 
specimens cut from the wrought iron tube used in spans 2\3 and 3\4 of barrier 
124A. 
tests 

(i> 

(ii) 

(iii) 

However, there were reservations about the use of the results of these 
in calculations of the collapse load of this barrier because: 

tests conducted on small specimens of a material that is known to have a 
heterogeneous structure may not provide results that are representative 
of a large sample; 

the tubes that had formed spans 2/3 and 3/4 were found to be permanently 
bent when they were recovered after the incident; it is known that the 
yield stress of wrought iron is likely to be affected by its previous 
loading history, and that wrought iron is sensitive to post-yield 
strain-hardening; 

bending moments introduce compressive stresses as well as tensile 
stresses into the tube; we did not have data about the compressive 
properties of wrought iron that could be applied with reasonable 
confidence in calculations of the collapse load of barrier 124A. 

It was the opinion of Smith and Games that data obtained from a bending test on 
an undeformed sample of a similar wrought iron tube would be likely to be more 
representative than the data obtained from tensile tests on small specimens. 

A1.2 SELECTION OF THE TEST SAMPLE 

Barrier 129 was a six-span barrier situated in the North-West Pen (Pen 5) of the 
West terraces. It appeared to be of a similar construction to barrier 124A and 
its top rail was not obviously bent. We assisted in the removal of the 
complete assembly of barrier 129 from the West terraces to RLSD's premises. 
Mr J G Tattersall of RLSD's Metallurgy and Materials Section confirmed that 
the length of the top rail selected for testing was made from wrought iron. 



METHOD OF TESTING AND CALCULATION OF THE REQUIRED DATA 

NEUTRAL 
AXIS 

Fig Al.l Symmetrical 4-point loading of a beam 

Bending Moment (M) at a section A-A of the beam: 

W x a  W X (L - 1) 
M = -  for a ,< (L/2 - 1/2) ; i.e. greatest value of M = 

2 4 

W x a  (L - 1) 
and M = - - Y - ] for (L/2 - 1/2) _I a 4 (L/2 + 1/2) 

2 2 

W X (L - a) W X (L - 1) 
and M = for a >, (L/2 + 1/2); i.e. greatest value of M = 

2 4 

The greatest bending moment is therefore imposed along the full length of the 
central span (1) of the beam and has a uniform value of: 



Determination of the vield stress of the material 

The elastic bending equation is expressed as: 

where M is the bending moment applied to the beam 
I is the second moment of area of the cross-section 
a is the fibre stress on the material of the beam 
y is the distance of a fibre from the neutral axis 
E is Young's Modulus for the material of the beam 
R is the radius of curvature of the neutral axis at the cross-section 
considered 

The second moment 
be : 

4 4 
n x ( D - d )  

I = 

6 4 

where D and d are 

of area (I) for a circular section tube can be shown to 

the outer and inner diameters, respectively, of the tube 

X Y  
from (2) a=- (4) 

I 

Equation (4) shows that as the bending moment is increased the outermost 
fibres will be the first to reach the yield stress (ay) of the material. The 
relationship between load and deflection will cease to be linear when the 
outermost fibres are subjected to the yield stress of the material. Plastic 
deformation will be initiated and will spread inwards towards the neutral axis 
if the bending moment continues to increase. The outermost fibres of a hollow 
circular section of outer diameter D are situated at a distance D/2 from the 
neutral axis, i.e. y = D/2. 

where My is the bending moment at which yielding commences 

Substituting for MY from (1) and I from (3) in (5) 

where ay the yield stess 
Wy is the load when yielding commences, i.e. the load at which the graph 
relating force and deflection ceases to be linear 



Therefore, if WY can be obtained from the force\deflection graph, the yield 
stress (ay) can be determined. 

Determination of Young's Modulus (E) for the material 

M x R  
From(2) E --  . . . . . . . . . . . . . . . . . . . .  (7) 

I 

E and I are both constants, therefore R is proportional to M. Equation (1) 
shows that M is uniform over the central span (1) of the beam. Provided the 
loaded beam remains in an elastic condition, its radius of curvature R over 
the central span will also be uniform i.e. the deflected shape of the central 
span will be an arc of a circle. 

From the geometrical properties of a circle it can be shown that if 1 >> c: 

where R is the radius of curvature of the central span 
1 is the length of the central span 
c is the mid-span deflection of the central span 

substituting for M from (l), I from ( 3 ) ,  and R from (8) in (7) 

W/c is the gradient of the elastic, linear region of the load-deflection 
curve, which can be measured from the graph obtained from the bending test. 
The remaining terms in Equation (9) are known constants and therefore E can be 
evaluated. 

Comparison  of theoretical and experimental maximum bending strengths 

Appendix 2 expresses the maximum theoretical bending strength (Mp) of a beam 
in the form: 

a[ is a limiting constant stress which, dependent upon the properties of the 
material of the beam, may be the yield stress (ay) or a 'flow stress' (of). 

Zp is a plastic section modulus, which for a hollow circular section of 
uniform wall thickness (t) may be expressed in terms of its outer and inner 
diameters, or in terms of its outer diameter and wall thickness. 

- iv- 



Therefore 

If an appropriate value is known for at, then the theoretical maximum bending 
strength may be calculated from Equation (12) and its value compared with the 
experimental maximum bending strength obtained from the test to check the 
validity of the calculation. 

Equipment  for conducting the bending tests 

We designed and constructed equipment of the type shown diagrammatically in 
Fig Al.l that was suitable for installation in RLSD's 1 MN (100 tonf) 
tension\compression testing machine. The equipment was designed to accept a 
sample with an overall span of 2 m and a central span of lm, the objective 
being to minimize the point loads applied to the tube within the constraints 
imposed by: 

(i) the overall length of sample available for testing; 
(ii) the loading range of the testing machine; 
(iii) maximizing the length of tube subjected to a uniform bending moment 

in order to obtain representative results 

A spring-tensioned potentiometric displacement transducer was used to measure 
deflections of the tube. The transducer had a range of 760 mm and was actuated 
by a flexible wire, the end of which was attached to the mid-span of the tube. 
The transducer was mounted on the loading rig so as to measure deflections of 
the central span between its loading points. 

The output from the potentiometric transducer was connected to a digital 
voltmeter and the assembly calibrated and adjusted to provide a direct digital 
reading of displacement, in millimetres, with a resolution of 0.1 mm. The 
calibrated testing machine was operated on the lowest range of 100 kN, the 
force being displayed in digital form with a resolution of 0.1 kN. Fig A1.2 
shows a general view of the assembled equipment prior to conducting a test. 

The testing machine was controlled manually whilst simultaneous readings were 
taken of force and deflection. Fig A1.3 shows a sample in an advanced stage of 
plastic deformation. Two samples from the top rail of barrier 129 were tested, 
and the force\deflection graphs obtained from the results of these tests are 
shown in Figs A1.4 and A1.5. 

Values of yield stress, Young's Modulus, and maximum bending moment were 
calculated for both samples of tube, using data on the force\deflection graphs 
and Equations (6), (9) and (1) respectively. The theoretical maximum bending 



moment for each sample was also calculated using Equation (12) with at - ay, 
the yield stress determined from the same bending test. 

A1.4 RESULTS OBTAINED FROM THE BENDING TESTS MADE ON SAMPLES 
FROM BARRIER 129 

Sample No 1 Fig A1.4 Sample No 2 Fig Al. 5 

Outer diameter 60.13 mm 
Inner diameter 51.61 mm 
Wall thickness 4.26 mm 

Yield stress 256.1 MPa (16.6 tonf/sq in) 244.6 MPa (15.8 tonf/sq in) 
(Equation 6) 

Young's Modulus 193.6 GPa (12,500 tonf/sq in) 187.4 GPa (12,100 tonf/sq in 
(Equation 9) 

Theoretical max 3,413 Nm (1.12 tonf ft) 3,237 Nm (1.07 tonf ft) 
bending moment 
(Equation 12) 

Experimental max 3,975 Nm (1.31 ton£ ft) 3,850 Nm (1.27 ton£ ft) 
bending moment 
(Equation 1) 

The theoretical maximum bending moments were 15% and 16% less than the 
experimental maximum bending moments obtained from Samples 1 and 2 
respectively. It was the opinion of Smith and Games that these discrepancies 
were too great to justify using the experimentally determined yield stresses 
to calculate the collapse load of barrier 124A. 

They decided to use a 'flow stress' in their calculations of the collapse load 
of barrier 124A. The 'flow stresses' of Samples 1 and 2 were obtained by 
transposing Equation (10) into the form: 

where af is the 'flow stress' for the material 
M, is the maximum bending moment determined experimentally from a 
bending test 

The 'flow stresses' obtained from the bending tests made on samples taken from 
barrier 129 are shown in the following Table: 

Sample No 'Flow stress' (af) 

1 298.2 MPa (19.3 tonf/sq in) 

2 290.9 MPa (18.8 tonf/sq in) 

Mean value 294.6 MPa (19.1 tonf/sq in) 



Fig.Al.2 - View of the bending equipment and the 
sample prior to testing 

Fig.AI.3 - View of the bending equipment with 
the sample at an advanced stage of plastic deformation 

CROWN COPYRIGHT 







APPENDIX 2 

EVALUATION OF THE PLASTIC SECTION MODULUS OF CROSS-SECTIONS FROM 
SPANS 2\3 AND 3\4 OF BARRIER 124A 

A L Collins 
and 

D Waterhouse 

A2.1 PREDICTION OF THE PLASTIC COLLAPSE OF A BEAM 

Bending moments are produced on a beam by the load that it is supporting. 
These bending moments are resisted by moments of resistance produced by 
tensile and compressive stresses developed on the cross-sectional area of the 
beam. 

A beam of ductile material, with a span that is large in comparison to its 
cross-sectional dimensions, will fail by plastic collapse when the bending 
moment creates sufficient plastic hinges along its span to transform the beam 
from a structure to a mechanism. A plastic hinge is formed when the tensile 
and compressive stresses exceed the yield strength of the material throughout 
the depth of the beam's cross-section. 

If the moments of resistance that are developed at the plastic hinges can be 
determined, then the principle of Virtual Work may be used to calculate the 
bending moment, and therefore the loading, that will cause the beam to 
collapse. 

Simple plastic theory expresses the maximum moment of resistance (Mp) that can 
be developed by a cross-section of a beam (its maximum plastic moment of 
resistance) as the product of its plastic section modulus (Zp) and a limiting 
constant value of stress (at). 

This relationship makes the following assumptions about the material of the 
beam: 

(i) an idealized rigid-plastic relationship exists between stress and strain, 
i.e. deformation does not occur until a limiting value of stress (aI) is 
reached, after which large deformations are developed whilst this stress 
remains constant; 

(ii) the behaviour of the material is the same in compression as in tension. 

The tensile yield stress of the material (aY) is commonly used in Equation (1) 
when strain-hardening (work-hardening) of the material may be neglected. When 
strain-hardening of the material cannot be ignored then it is customary to use 
a 'flow stress' (af) having a value between the yield stress and the ultimate 
stress. 

i.e. 01 - uy (strain-hardening neglected) 
or a1 = uf (strain-hardening included) 



Experience has shown that this simple plastic theory can predict the failure 
of beams by plastic collapse with an accuracy that is acceptable for practical 
purposes. 

DETERMINATION OF THE PLASTIC SECTION MODULUS 

If the material of a section that is subjected to pure bending exhibits the 
same ideal rigid-plastic behaviour in both tension and compression, then Zp 
can be shown to be equal to the First Moment of Area of the cross-section 
about its neutral axis (or unstrained fibre). Furthermore, in these 
circumstances, the neutral axis will coincide with the centroid of the area of 
the cross-section. 

The fully plastic section modulus for a hollow circular cross section of ideal 
rigid-plastic material and uniform wall thickness can be shown to be either: 

where D = outer 
and d = inner 

diameter 
diameter 

where t - wall thickness 
Mr J G Tattersall of RLSD's Metallurgy and Materials Section had made 
ultrasonic measurements of the wall thicknesses of the wrought iron tube that 
had formed the top rail of crush barrier 124A. These measurements caused us to 
conclude that it was reasonable to use Equation (2) to calculate Zp for the 
top rail in the mid-span region of spans 2\3 and 3\4 of barrier 124A. The 
measured dimensions and their corresponding plastic section moduli are shown 
in the following Table. 

Mid- span Outer Inner Wall Plastic section . 
diameter (D) diameter (d) thickness (t) modulus (Zp) 

3 
mm mm mm mm 

Both ends of the tubular sections that had formed spans 2\3 and 3\4 had 
fractured; the ends of the spans were deformed, severely corroded, and had 
variable wall thicknesses. It was our opinion that the variability of the wall 
thicknesses rendered Equation (2) unsuitable for calculating values of Zp at 
the ends of spans 2\3 and 3\4, and that these values would have to be 
determined by numerical integration. 



Mr Tattersall provided us with sketches that showed wall thicknesses at the 
fractured ends of spans 2\3 and 3\4. We used a computer-aided draughting (CAD) 
system to draw our best impression of the cross-section at each end of spans 
2\3 and 3\4 before deformation failure occurred. Our re-construction of the 
cross-sections are shown in Figs A2.1 to A2.4. 

We used the facilities of the CAD system to assist us with the numerical 
integrations. Each cross-section was divided into strips of 2 mm width, with 
the exception of the last strip whose width was determined by the outer 
dimension of the section. A vertical axis was then drawn in the estimated 
position of the centroid (neutral axis). Each elemental area of tube 
thickness, with the exception of those adjacent to the estimated position of 
the centroid was successively magnified by the CAD system and then accurately 
cross-hatched. The CAD system then automatically calculated the area of each 
cross-hatched element. 

The sum of the elemental areas to the right of the estimated centroidal axis 
were compared with the sum of those to the left; the centroidal axis being in 
its correct position when it divides the cross-sectional area into two equal 
parts. The position of the centroidal axis was adjusted and the process 
repeated iteratively until the areas to the right and the left of the axis 
were equal. 

Each known elemental area of the tubular wall was then mutiplied by its 
distance from the centroidal axis to obtain the First Moment of Area of each 
element. A summation of the First Moments of Area for all the elements 
provided total First Moment of Area for the complete cross-section. The 
results obtained during successive stages of the calculation are tabulated in 
Figs A2.1 to A2.4. 

The plastic section moduli that we obtained by numerical integration of the 
re-constructed cross-sections at the ends of spans 2\3 and 3\4 from barrier 
124A are shown in the following Table. 
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Fig A 2 . 1  BARRIER No 1 2 1 A  SPAN 2/3 ,END No 2 
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F l g  A 2 . 2  B A R R I E R  No 1 2 1 A  SPAN 2/3 END No 3 
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F l g  A2.4 BARRIER No 121A SPAN 3/4 END No 4 



APPENDIX 3 

A 'LEANING CROWD' MODEL TO ESTIMATE THE LOADS GENERATED BY 
A BARRIER 

Consider a person on the nth s tep behind a bar r ie r .  The whole crowd i as sum 
to be up on i t s  toes,  inclined forward a t  an angle 8, i n  a fashion which would 
be adopted t o  obtain a view of an incident i n  f ront  of the crowd. The 
spectator is leaning forward on a support provided by the person i n  front and 
is  thus subject to  supporting force P,, from the f ront  and to  a toppling force 
P,-,, from the person behind, of fse t  by the terrace step height h.  

h = Step H e l g h t  

H = C e n t r e  o f  Mass H e l g h t  

H' = Push H e i g h t

U =  S t e p  W i d t h

m g =  W e i g h t o f  S p e c t a t o r  

h 
v 

Equilibrium of person on the nth s tep,  moments about 0 

i e  a recurrence relationship of the form: 

P, = A + BP,-, , A ,  B constants 

P, = A(Bn-l)/(B-1) (Sum of geometric progression) 



For the person immediately behind the barrier, if the barrier is at the push 
height, then clearly P, would be transmitted to the barrier. In general the 
barrier is lower than this, and the push is probably transmitted to the 
barrier by bending at mid-height for the few rows of people just behind the 
barrier. If this were not so, the person at the barrier would be subjected to 
a large turning moment. The exact details of this force feed to barrier height 
are not yet clear, but for this purpose it is assumed that P,, where n is the 
number of steps behind the barrier in question, is the force on the barrier. 

If the crowd density is N/sq m, then there are Nw persons/unit length on each 
step, thus we obtain the force/unit length on the barrier as: 

N W mg H sine h 
Force/unit length - - 

h 

which is the expression evaluated on Fig 2. A 'lean' angle of 10 deg has been 
estimated as a reasonable value to use in the calculation; other parameters are 
declared on the Figure. 

It should be noted that no previous work can be found in the literature 
concerning this type of calculation. Existing design rules for barriers appear 
to rely on empiricism together with limited experimental testing. Caution 
should be exercised in the use of this new model, which requires experimental 
substantiation. 




