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Abstract. Although there are many formal representations of architec-
ture, actually determining what an architecture should be when systems
are merged is largely based on context and human intuition. The goal of
this paper is to find a mathematical model which supports this context
and determines the architecture when the systems have been merged. A
category of architectural models is presented, and the pushout in this
category provides the unique minimal merger of two architectures by
way of an abstraction of the desired intersection. We conclude by identi-
fying deeper aspects of architectural type which should be incorporated
into this theory, and how the whole model might be automated.

1 Introduction

An Architecture Description Language (ADL) provides means for a formal model
of systems’ components and their connections. A model clarifies the purpose of
the components and their interactions and, for the most part engineers represent
these architectures using graphs [18], such as UML architectural diagrams [5)].

It often happens (for example, when companies merge) that their computer
systems with overlapping functionality also need to be merged with minimal
duplication of functionality in the resulting system. Because the architecture of
two systems merged is not a simple cut-and-paste, one hopes for formal and
well-defined ways to merge system designs without errors.

1.1 Related Work

Modelling systems has been addressed at many levels from syntax, through logic
based theories to abstract graph representations. At each level, maintaining the
known properties of systems being merged is a core issue.

At the syntactic level, the process of merging two modifications of the same
code has been dealt with extensively using the well established computation of
text differences. Although the process of merging them has been semi-automated
in projects such as the ArchStudio version control system [3], determining the
merger is far from obvious. Niu et al. [14] have modelled the code as a graph
labelled by Fuzzy logic values (which are essentially a partially ordered set) and
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merging the models of two programs has been implemented using the categorical
pushout.

At the architectural level, merger has been attempted for systems modelled
with a logic based ADL. Moriconi and Qian [13] merge two architectures by a
union of their theories and provide a method for determining whether a com-
position of two systems is faithful, which is to say there is no collapse in the
separation of components apart from those specified. Using logic to define the
smallest architecture containing a set of properties, Caporuscio et al. [2] give a
method to test whether the theories are contradictory. While this is not specif-
ically about system merger, it could clearly be a bottom-up approach. With a
logic based model of program specifications, Goguen and Burstall [10} provide a
very similar categorical approach as presented below, using the colimit (a gener-
alization of pushout) to merge several specifications. In a slight deviation from
the logic approach, algebras have also been used to model software specifications
[11] with merger being defined to be the pushout when certain conditions are
met.

In spite of its rigour, logic does not fit comfortably in an engineer’s intuitive
graphical approach. The purpose of this paper is to formulate a graph based
ADL as a mathematical model which accommodates some of the context of the
systems being merged [6]. Le Metayer [12] uses a graph grammar to describe
the process of adding and removing components of a system, while Baresi et
al. [1] use graph homomorphisms to model architectural abstraction. Modelling
architecture by graphs labelled by a poset of component types, Denford et al. [4]
give an approach to refine an abstract description into a model closer to the
implementation level. As with Fahmy and Holt [7,8] one of the main topics is
an abstraction with only the parts of the architecture relevant to the activity at
hand - in our case, the systems being merged.

1.2 Contents of this Paper

In Section 2 we illustrate an example of systems to be merged, together with
the obvious intuitive solutions. Section 3 formalizes the notion of connection and
component types and gives a mathematical representation for the relationships
of their attributes. An architectural type (or as we refer to it, archetype) is
presented in Section 4 as a graph of component and connection types. Together
with the components and connections themselves, an architecture is then defined
in Section 5 as a graph projected upon an archetype by graph morphism.

In Section 6 the examples will demonstrate that on this categorical basis,
the merging of two architectures using pushout seems close to human intuition.
Furthermore, the fact that it is a pushout means that it is the unique and smallest
architecture which contains both of its sub-architectures.

In the conclusion we summarize how the aims of this paper have been achieved
and identify possible approaches to issues yet to be addressed such as automa-
tion.



2 Three Examples of Merging

Suppose two companies have merged and they need their two IT systems (Figure
1) to become a single system.

System A

Outiook Outlook

Fig. 1. Email services of two companies, with SMTP connections over Ethernet (E) or
PPP (P)

The differences between the two systems account for different activities, for
example Sendmail has already been setup for dealing with email over dialup con-
nections (PPP), while Exim has not, and to change (according to management)
would be an unnecessary expense. In this sense, Sendmail has more attributes
of value to the new organization.

Regarding the client side, many claim [16] that Fudora (relative to Outlook)
has serious inefficiency with large folders but is better for control filters.

Generally, there are three ways the new IT team might solve this problem
which are depicted in Figure 2.

The first solution is easy but may make any retrenchment of employees in-
feasible. The second solution is possible because the Sendmail server has all the
necessary functionality. Having both Fudora and Outlook may keep the users
happy as they both have distinct but useful features, but it would be an ex-
pense to the company to have two different client packages to buy and maintain.
Therefore, the third solution would be to seek out an entirely different email
client which satisfies all the staff requirements.

For the remainder of this paper it is shown that these three approaches
can be formally modelled so that known system requirements are satisfied and
which ensures that the erroneous models (such as replacing Sendmail with Exim)
cannot occur.
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Fig. 2. Three possible email services of the new company where E is an Ethernet based
SMTP connection and P is a PPP based SMTP connection.

3 Posets of Types

In the examples there are two sets of types: component types such as Exim and
Sendmail, and connection types - SMTP over PPP (P) versus SMTP over the
Ethernet (E).

There is no exact definition of these types other than the code which im-
plements them. But rather than giving up, we propose formalizing relations of
these types based on the attributes which are important to the stake-holders of
the given situation.

A partially ordered set or poset is a set X together with a binary relation
(which we write as <) which is reflexive (for all z € X, # < z), antisymmetric
(for all z,y € X, z <y and y < z implies that z = y) and transitive (for all
2,9,z € X,z <yand y < z implies that £ < z). Most importantly, in a partially
ordered set it may be the case that for some z,y € X, neither £ < y nor y < z.

We can form a poset II of the component types and a poset A of the connec-
tion types by the definition that x > y if and only if # has all the attributes of
y in the given situation. We depict the posets related to our example in Figure
3 using a graph with an arrow £ — y meaning & > y. The basis of this work
is that if £ > v in the poset of component types, a component of type y can
be replaced with a component of type z. Similarly for connection types. Fur-
thermore, writing Outlook V Eudora we mean “some minimal application which
covers both of their attributes”.



Fig. 3. Posets of component and connection types

4 Archetypes and Architectures

In this section we extend the notion of type from components and connec-
tions to architectures. A architecture’s type (in short, an archetype) is simply
a graph labelled by elements of the posets of component and connection types.
An archetype is not in itself an architecture, but merely the description of the
component and connection types which exist in an architecture. For example,
the archetypes of the architectures depicted in Figure 2 are given in Figure 4.

Archetype 1 Archetype 2 Archetype 3

Fig. 4. Archetypes of Solutions 1, 2 and 3 in Figure 2.



Now, we show an architecture to be a graph morphism from an unlabelled
graph (the actual components and their connections) to the graph of its archetype,
which defines the types. The following section gives a concise formalization of
these notions, and their consequences through category theory. Thenceforth, we
are able to show the main result - a formal model of merging architectures.

5 A Category of Architectures

As introduced in Section 3, IT is a poset of component types and A is a poset
of connection types. An archetype (also known as a poset labelled graph) G is
a tuple (Vg, Eg, sa,ta, e, A\g) where Vg and Eg are sets of components and
connections respectively; sg,tg : Eg = Vg define the source and target of a
connection; and g : Vg — IT and Ag : Eg — A are the types of the components
and connections.

A morphism ¢ : G — H of archetypes is a pair {¢v : Vo = Vy,¢E :
Eg — Ejp) such that for all e € Eg: sp(ode(e)) = dv(sgle)) and ty(oe(e)) =
ov (tc(e)) meaning ¢ preserves the structure of the graphs; and such that for all
z € Vg, e € Eg, ¢ has lax preservation of the types, that is:

7r(¢v (7)) > me(z) and Au(dE(e)) = Aa(e) (1)

— a component (connection) of one type can only be mapped to a component
(connection) of greater or equal type as per the posets of types. In case the
mappings in Equation 1 are all equalities, we say that ¢ is strict.

It is easy to see that the composition of morphisms, as pairs of functions, is
another morphism. Associativity and identity are inherited from the category of
sets and functions. Therefore, with posets IT and A fixed as above, archetypes
(poset labelled graphs) and their morphisms form a category which we denote
by Graphp 4.

5.1 Formalization of Architecture

Let U : Graphp 4 — Graph be the functor which forgets the labelling of an
archetype, and consider the comma category Graph/U. An object of Graph/U is
apair (T, X : G = UT) (often simply written as X) we call an architecture. The
architecture X consists of a typed graph T, called the archetype, and the graph
G, called the component graph, equipped with the graph morphism X from G
to the underlying ordinary graph of T. An arrow (architectural morphism) is a
pair (f,t) such that the following diagram commutes

c— g

X Y

U(t)
ur — uT'



Definition 1. Given a category Graphy 4, of archetypes and the functor U :
Graphyy 4 — Graph, then the comma category Graph/U is called a category of
architectures.

Informally identifying T and UT, for any component v of G define the com-
ponent X (v) of T to be the archetype of v while n(X (v)) € IT is the type of v.
Define archetype and type similarly for connections.

Let ¢ : Graph/U — Graph map an architecture to its graph of components
and connections, and let a : Graph/U — Graph; 4 map an architecture to its
archetype. It can be shown that there is a natural transformation [ : ¢ —» Ua.

Figure 5 illustrates the way that objects of Graph/U represent architectures.
The top part of the diagram is the object in Graph and the bottom part is its
archetype in Graphy 4.

Graph

- Fig. 5. An architecture — an object of Graph/U

6 Merging Architectures by Pushout

As a quick reminder before launching into the pushout of Graph/U consider the
first example of pushout in most textbooks — the union of sets.

For example, let X = {1,2,3} and ¥ = {2,4,6} then the union of these
two sets, denoted X UY is equal to {1,2,3,4,6}. This is, the unique smallest
set containing the elements of both X and Y. One can express this category
theoretically by saying, let f : Z =+ X and g : Z — Y be injective functions,
which define Z as the intersection of X and Y. Then the pushout is an object P



together with a pair of arrows 4 : X — P and i2 : Y — P such that the inner
square of Figure 6 commutes (that is, ¢ f = i29), and furthermore, that given
any other diagram (ji,j2, @) there is a unique arrow from P to @ making the
whole diagram commute. (In the example of sets, this unique arrow is simply
indicating that any set which contains both X and Y contains {1,2, 3, 4,6}, but
could be larger.)

Therefore, the pushout is a formal construct that ensures the containment
is complete, unique (up to isomorphism) and minimal. In the remainder of this
section we present the mathematical details of the pushout for architectures.

z—F ,x
g i1
It
Y-—2 ,p
~_ ‘\
\
P~ A
\‘Q

Fig. 6. Pushout diagram

It is a straightforward consequence of [15, Lemma 3.9] that
Proposition 1. Graphy 4 has pushouts along strict monomorphisms.
and more generally

Theorem 1. In Graph/U there are pushouts along errows n if its archetype part
Ta 18 a strict monomorphism.

However in trying to model merger, it is not helpful to demand that 7, be strict,
so instead we assert that IT and A have least upper bounds. It can be shown
that

Theorem 2. If IT and A have least upper bounds, then Graphp 4 has pushouts
(and, in fact, all its colimits) and the architecture category Graph/U has all
pushouts (and all its colimits).

Note that although real-world component and connection types will not gen-
erally have least upper bounds, the join operation (for example Outlook vV Eudora
of Figure 3) produces any necessary types which can then be analysed to deter-
mine how they will be implemented in practice. Therefore we can now formalize
what it means to merge architectures:

Definition 2. The merger of architectures X and Y over the archetype Z with
monomorphisms X < Z 4 Y is the pushout of X and Y over Z.



In the next section we use this framework to identify two subsystems of the
merging systems which are similar enough that a single subsystem can replace
them both in the architecture of the merge.

6.1 Three Examples of Merging (again)

It should now be clear that the examples in Section 2 are each a pushout in
the category of architectures. Solution 1 (see Figure 2) comes about when the
intersection architecture is empty. Solution 2 is the pushout when the intersection
architecture is a single Email Server. The archetype pushout ensures that as this
maps to both Sendmail server and an Exim server, the result is a Sendmail
server. The most difficult example (Archetype 3 in Figure 4) is illustrated in
Figure 7 where a least upper bound appears as the join of Outlook and Fudora,
alerting one to the decision which needs to be made on the new type of these
components.

7 Conclusion

The goal of this paper was to find a mathematical model of architecture which
is intuitive, yet rigorous when determining architectural merger. By “intuitive”
it is meant to be close to the way in which engineers think about architectures
and this has been done by using graph-like representations.

The rigour required for merging two systems is to maintain the structure of
both systems while avoiding any unnecessary duplication. This was achieved by
formalizing the contextual and intuitive definition of types and implementing
the merger as a categorical pushout. At the core of this process is identifying
the intersection of the systems as different parts which, by abstraction, are the
same.

Although this is a well controlled model of types, there are many sets of
attributes which apply to an archetype - and not merely the sum of the attributes
of its parts. For instance, there are several properties determining architectural
style [9] such as ensuring that a particular type of connection has only one
server to many clients. It may therefore be helpful to move from types to a
single (infinite) poset of archetypes (together with some constraint on the comma
category) creating a more detailed definition of architecture.

An interesting project would be to modify a graph transformation based
program such as PROGRES [8] or AGG [17] to incorporate architectures as
defined in this paper and automate the pushout once the intersection is chosen
by the user.
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