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ABSTRACT 

The phenomenon of the increase in alpha EEG activity associated with eye 
closure has been shown to be successful for implementing environmental con
trol for disabled persons. Studies in this thesis investigate strategies which 
improve the reliability, robustness, and ease of use of alpha EEG control 
systems. Primarily, research covers the effectiveness of alpha EEG detection 
algorithms (with regard to detection time and susceptibility to artifact) and 
the construction and use of EEG sensing electrodes. 

Many new techniques for the detection of the increase of alpha EEG as
sociated with eye closure are researched, developed, implemented and eval
uated. All detection techniques are compared to a conventional method 
using a novel performance parameterisation criterion. In conjunction with 
the application of the same EEG data sets to all techniques, the use of the 
performance criteria enables a fair and quantitative comparison to be made 
between alpha detection methodologies. Detection techniques employed in
clude enhanced versions of conventional methods, localisation of apparent 
alpha sources in the brain, and preprocessing methods (such as spatial fil
tering, adaptive filtering and independent component analysis). The best 
performance of alpha EEG detection was given by the source power alpha 
localisation technique, which showed statistically significant and practically 
important improvements in performance over conventional techniques. Ad
ditionally, this localisation technique is convenient and fast to implement. 

In situations in which electrodes are intended for unsupervised use with 
environmental control systems, the evaluation of alternative electrode types 
to the conventional wet electrodes is required, as the use of wet electrodes has 
several drawbacks. The performance of wet, dry and insulating electrodes 
is compared in this research. One aspect of the quantitative comparison 
of electrodes types is the measurement of contact impedance. To enable 
the fast and accurate measurement of impedance spectra, a new impedance 
spectroscopy system was developed as part of this thesis. In addition to 
comparison of impedance criteria, electrodes were evaluated in the presence 
movement-based, and electric field induced, artifacts. The electrode compar
isons were carried out in a direct and quantitative manner in a controlled test 
environment for the first time. Results indicate that, in contrast to earlier 
reports, both dry and insulating electrode perform well with respect to arti
fact and offer a viable alternative to wet electrodes for long-term monitoring 
of biosignals from the surface of the skin. More improvements are required 
before such electrodes are suitable for EEG usage. 
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