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ABSTRACT 

The phenomenon of the increase in alpha EEG activity associated with eye 
closure has been shown to be successful for implementing environmental con
trol for disabled persons. Studies in this thesis investigate strategies which 
improve the reliability, robustness, and ease of use of alpha EEG control 
systems. Primarily, research covers the effectiveness of alpha EEG detection 
algorithms (with regard to detection time and susceptibility to artifact) and 
the construction and use of EEG sensing electrodes. 

Many new techniques for the detection of the increase of alpha EEG as
sociated with eye closure are researched, developed, implemented and eval
uated. All detection techniques are compared to a conventional method 
using a novel performance parameterisation criterion. In conjunction with 
the application of the same EEG data sets to all techniques, the use of the 
performance criteria enables a fair and quantitative comparison to be made 
between alpha detection methodologies. Detection techniques employed in
clude enhanced versions of conventional methods, localisation of apparent 
alpha sources in the brain, and preprocessing methods (such as spatial fil
tering, adaptive filtering and independent component analysis). The best 
performance of alpha EEG detection was given by the source power alpha 
localisation technique, which showed statistically significant and practically 
important improvements in performance over conventional techniques. Ad
ditionally, this localisation technique is convenient and fast to implement. 

In situations in which electrodes are intended for unsupervised use with 
environmental control systems, the evaluation of alternative electrode types 
to the conventional wet electrodes is required, as the use of wet electrodes has 
several drawbacks. The performance of wet, dry and insulating electrodes 
is compared in this research. One aspect of the quantitative comparison 
of electrodes types is the measurement of contact impedance. To enable 
the fast and accurate measurement of impedance spectra, a new impedance 
spectroscopy system was developed as part of this thesis. In addition to 
comparison of impedance criteria, electrodes were evaluated in the presence 
movement-based, and electric field induced, artifacts. The electrode compar
isons were carried out in a direct and quantitative manner in a controlled test 
environment for the first time. Results indicate that, in contrast to earlier 
reports, both dry and insulating electrode perform well with respect to arti
fact and offer a viable alternative to wet electrodes for long-term monitoring 
of biosignals from the surface of the skin. More improvements are required 
before such electrodes are suitable for EEG usage. 



Chapter 1 

Introduction 

In the current technological age, the portrayal of physiological phenomenon 

in graphical or numerical form is so commonplace that it is difficult to con

sider undertaking any study of physiology without using the 'language of 

machines'. However, until the early 19th century the act of medical diagno

sis was confined to observations of structural defects of the body, rather than 

indices of bodily functions such as circulation, temperature and respiration 

(Reiser 1978, p. 107). The use of scientifically gathered numerical data for 

diagnosis gained momentum in the mid 1800's when John Hutchinson used 

his spirometer to measure lung capacity and successfully diagnose some dis

orders. The use of became widely accepted by practitioners and 

this new method of medical examination expanded quickly. It was only a 

matter of time before the rhythms of the body were transformed into elec

trical signals. In 1874, Richard Caton discovered electrical brain signals by 

probing directly on the surface of exposed brains of animals. In 1924 Hans 

Berger recorded the first human electrical brain activity, and called such ac

tivity the electroencephalogram (EEG). Berger went on to publish 14 papers 

(in German) on the subject of his life's work, all under the same title: 'On 
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1.1 The electroencephalogram 

the Electroencephalogram of Man'. Much of this thesis is concerned with 

the acquisition and analysis of signals generated by the human brain. It is 

appropriate therefore, to begin by considering the EEG in some detail. 

1.1 The electroencephalogram 

There are many ways in which to analyse the activity observed in the EEG. A 

commonly used method is to divide the EEG signals into frequency spectra. 

These spectral bands are denoted using Greek letters, as shown in Table 1.1. 

Band identifier Frequency range (Hz] 

delta 0.5 - 3.5 

theta 4 - 7.5 

alpha 8 - 13 

beta 13 - 30 

Table 1.1: Spectral components of the EEG 

Investigations in this thesis involved particular characteristics of the alpha 

EEG rhythm. 

1.1.1 The EEG rhythm 

The International Federation and Society of Electroencephalography and 

Clinical Neurophysiology (IFSECN) defined the alpha rhythm as: 

' ..a rhythm at 8-13 Hz occurring during wakefulness over the pos

terior regions of the head, generally with higher voltage over the 

occipital areas. Amplitude is variable but is mostly below 50llV 

in the adult. Best seen with eyes closed and under conditions 
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of physical relaxation and relative mental inactivity. Blocked 

or	 attenuated by attention, especially visual, and mental effort.' 

(Shaw 1992) 

Despite this 'standard' definition, confusion still arises in alpha EEG termi

nology; for some authors it is any rhythm in the posterior region regardless 

of form, while for others it is any 10 Hz oscillation in different parts of the 

brain (Basar & Schurmann 1997). A 20 Hz harmonic of the alpha EEG is 

described and modelled by Azizi et al. (1996). Bhattacharya et al. (2000) 

defined three alpha rhythms in human subjects; 

•	 The classical posterior rhythm, mainly localised in posterior areas when 

eyes are closed with no visual information processing. 

•	 The mu rhythm (or wicket rhythm), which is well-defined at the central 

region of the scalp, over the sensorimotor cortices. This rhythm is at

tenuated by movement or imagined movement, but not by eye opening. 

•	 A third rhythm which is found over the midtemporal region, considered 

an alpha activity of the auditory cortex. This rhythm can only be 

recorded with an underlying bone defect. 

The third alpha rhythm is rarely referred to. In general, the use of the 

term 'alpha rhythm' (or 'alpha wave') denotes posterior activity, mu-alpha 

activity is usually referred to simply as the mu-rhythm. For terminology 

in this thesis, alpha rhythm denotes the EEG activity in the range 8-13 Hz 

which shows an increase upon eye closure, primarily in the posterior region 

of the head, and which is normally detected using electrodes pressed against 

the scalp. Indeed, it is the observable change in alpha EEG activity between 

eyes open and eyes closed states that forms the basis for much of the study 

in this thesis. 



4 1.1 The electroencephalogram 

The alpha rhythm has been the subject of a very large body of research 

since it was identified by Berger. Adrian & Matthews (1934) confirmed 

that the alpha signals were sourced in the cortex, rather than originating 

at the eye muscles or at other locations outside the brain. However, debate 

still occurred regarding whether the alpha rhythm was due to ocular muscle 

tremor (Lippold 1970); this idea was soon discredited (as described by Shaw 

(1992)). There are many theories on the neural origins of the alpha rhythm, 

and such theories often have their basis at a cellular level. Accordingly, these 

theories will not be covered here, but many articles are available on the theory 

and modeling of alpha EEG (for example, by Robinson et al. (1998), Azizi 

et a1. (1996), Lopes Da Silva (1991) or Dick & Vaughn (1970)). Similarly, 

models for locating the 'alpha generator(s), in the brain are common, such 

as dipole modeling by He et al. (1989), and Wilson & Bayley (1950). 

the characteristics' of the alpha EEG are routinely linked to visual 

activity, many studies have been devoted to exploring the relationship be

tween vision and alpha activity. The effect of eye closure, and the resulting 

increase in alpha EEG amplitude is a well established phenomenon (HardIe 

et al. 1984). Ghiyasvand et al. (1994) suggested that partial eye closure leads 

to an alpha activity increase, but this claim remains unsupported. Many 

studies have investigated the effects of illumination on the alpha increase 

after eye closure (Cram et al. 1977, Bohdanecky et al. 1984.) and on alpha 

activity in general (Nathan & Hanley 1975). Sinusoidally varying illumina

tion levels at frequencies in the alpha band have been shown to stabilise the 

alpha EEG frequency (Townsend et al. 1975). Increases in alpha activity are 

also observed when the eyes are rolled upwards (Mulholland & Evans 1965), 

leading to suggestions that the alpha increase is a result of a tendency for 

the eyes to defocus and relax convergence (Dewan 1967). 
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1.2 Brain-computer interfaces 

In addition to the phenomenological studies mentioned above, there have 

been scores of studies which have investigated correlations between alpha 

and all manner of psychological and behavioral variables (Shaw 1992). As 

expressed by (Mulholland 1972), in reported studies of alpha EEG, ' ... as 

an index of mental processes and behavior, it was overrated; as an orderly, 

predictable phenomenon, it was underrated'. Accordingly, for the investi

gation to be described in this thesis, it is the phenomenon of the reliable 

and predictable increase in alpha EEG after eye closure that is of primary 

interest. Specifically, this thesis will investigate issues relating to the use of 

the increase in alpha EEG activity following eye closure to enable persons 

to control their environment (Craig et al. 2000, Craig et al. 1999). This 

area of research has been given much emphasis recently due to the promise 

of environmental controls that could assist, for example, persons with se

vere physical disabilities. The use of systems which utilise EEG for external 

control are generally known as brain-computer interfaces. 

1.2 Brain-computer interfaces 

The use of the electroencephalogram (EEG) has been an essential tool in 

clinical medicine since the first human recording was done by Berger. Since 

this discovery it has been a goal of many to use the electrical signals of 

the brain for the purpose of direct control of the environment. Although 

this vision of a 'thought-controlled future' is often considered a preoccupa

tion of science fiction devotees, the development of technology which can be 

controlled via the EEG has many less frivolous applications. A significant 

group which would benefit from EEG controlled devices are those people who, 

through nerve trauma or neural deterioration, are unable to perform tasks 
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which require limb control. Such a condition may be caused by high break 

tetraplegia, amyotrophic lateral scherosis, or other high-level impairments. 

For such people, physical manipulation or simple communication may be im

possible and alternatives are required. 'When some level of dexterity remains, 

devices such as chin-press switches (Ha\vleyet al. 1992), electromyographic 

sensors (Horn 1972), mouthsticks, 'suck-puff' switches, eye blink detectors 

(Thornett 1990) and voice control units can offer assistance. However, for 

levels of disability which are more severe, devices which take commands from 

higher cognitive functions are needed. A device which can translate EEG ac

tivity into useful actions (a Brain-Computer Interface, or BCI) could possibly 

improve the quality of life of such individuals. There has been much research 

devoted to the development of BCl's, and this body of work has increased 

significantly in recent years. BCl's may be summarised into three broad 

categories, 

• Techniques which depend on mental associations or are linked 

to physical processes. Such BCl's include those which operate by 

detecting EEG changes during imagined movement of hands, feet, etc. 

(Babiloni et al. 2000, Penny et al. 2000, Pregenzer & Pfurtscheller 

1999, Schloegl et al. 1997), or during actual physical movement (Birch 

& Mason 2000, Funase et al. 1999, Barreto et al. 1996, pfurtscheller 

et al. 1994). The use of imagined limb movement has also been shown 

to be successful for amputees (Pfurtscheller et al. 2000). A specific EEG 

component which is often used for studies related to limb movement 

is the mu-rhythm - this rhythm shows attenuation over the central re

gion of the scalp, associated with self-generated movement or imagined 

movement (Pineda et al. 2000). 

A BCI may operate on detection of EEG changes brought about by 



7 

p 

1.2 Brain-computer interfaces 

mental tasks performed by the subject, such as solving a mathemat

ical problem (Skidmore & Hill. 1990, Penny et al. 2000, Anderson 

et al. 1995b), composing a letter, manipulating geometric shapes (Keirn 

& Aunon 1990, Anderson et al. 1995a, Anderson & Sijercic 1996) or 

thinking 'yes' or 'no' (Ryu et al. 1999) . 

•	 Techniques which rely on external stimuli. These types of BCI 

incorporate external stimulus. One such method utilises the P300 (or 

P3) evoked potential, which is a response to a rare (but anticipated) 

task relevant stimulus (Donchin et al. 2000, Bayliss & Ballard 2000). 

For example, if each letter of the alphabet is flashed on a PC screen, a 

P300 response will be observed when the letter on which a subject is 

concentrating on appears. 

Another stimulus may take the form of many constantly changing stim

uli, which vary at different rates. This enables an algorithm to de

termine at which stimulus the subject is looking, by monitoring the 

steady-state visual evoked response (SSVER) (Sutter 1992, Cilliers & 

der Kouwe 1996, Calhoun & McMillan 1996, Calhoun & McMillan 1998, 

Ming & Shangkai 1999). For example, if a PC monitor is split into many 

sections, and each section flashes (or changes colour) at a different fre

quency, SSVER will oscillate at the frequency associated with the 

section of the screen at which the subject is gazing. 

•	 Self-learned techniques. These BCI methods are not linked to any 

specific mental processes or stimuli, but rely on feedback from the BCI 

system, and as thus the operation of such a BCI must be 'learned' by 

the subject (Birbaumer et aI. 2000). Such systems include the control 

of a cursor by processing the EEG in bulk (Kostov & Polak 2000), or 



8 

> 

1.2 Brain-computer interfaces 

monitoring specific components, such as the mu-rhythm (not associated 

with limb movement) (Wolpaw & Mcfarland 1994, Mcfarland et al. 

1993). 

These categorisations are an approximate guide, and many BCI methods 

may apply to more than one category, or none at all. All the BCI techniques 

described above have respective advantages and disadvantages. The use of 

alpha EEG for BCI offers advantages over other methods in some areas. 

1.2.1 Alpha EEG for environmental control 

The use of alpha as a control mechanism has been demonstrated in basic 

forms by previous researchers. Dewan (1967) demonstrated a morse code 

system which was operated by a subject who increased alpha activity by 

rolling the eyes upwards. Using the system, a single letter could be typed 

approximately every 35 s. Bozinovski (1990) enabled the control of a mobile 

robot using eye closure; the robot could be instructed to start and stop 

(Bozinovski et al. 1988). More recent studies have demonstrated that reliable 

control based on alpha EEG can be achieved using eye closure (Kirkup et al. 

1997a, Kirkup et al. 1997b, Kirkup et al. 1998). The attractive features 

of using the alpha EEG in conjunction with eye closure for environmental 

control have been shown to be: 

•	 The phenomenon of alpha increase after eye closure is reliable and 

consistent. Craig et al. (1999) have shown that an increase in alpha 

EEG amplitude following eye closure was observed in at least 90% of 

disabled and non-disabled subjects. 

•	 Subjects require no training. This contrasts with some BCl methods 

which use feedback mechanisms to train suhjects to modulate con
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sciously aspects of the EEG. For example, Mcfarland et al. (1993) used 

a feedback system with the mu-rhythm to enable subjects to control a 

cursor on a screen. After several weeks, 3 out of the 4 subjects were 

able to control successfully the cursor position in one dimension (later, 

2-dimensional control was added (\Volpaw & Mcfarland 1994)). 

•	 No external stimuli are required. This allows great freedom in the 

design of the 'front end' to the BCl system, as opposed to SSVER 

or feedback systems which require specific interface designs to enable 

proper operation. 

•	 No specific mental process is required. 

•	 A minimum number of electrodes are required which may be placed 

discreetly on the scalp. This is important as, in the case of applica

tion to the disabled, unintrusive technology may significantly lessen the 

chance of reduced self-esteem that arises when equipment is necessary 

which makes the user 'look more disabled'. 

Basic forms of alpha EEG manipulation using eye closure have been demon

strated previously. However, for efficient control using alpha EEG the method 

which detects a change in the alpha signal must act quickly and in a robust 

manner. This entails the time interval between eye closure and detection of 

an increase in alpha to be small, and the ability to filter, attenuate, or ignore 

artifact signals which may cause false detection of alpha EEG increase. Ad

ditionally, the physical aspects of the BCl should be convenient for the user. 

The functional design of a BCl is not part of the research for this thesis, 

rather, the emphasis is on aspects which will enable an alpha-based BCl to 

operate more effectively, and with greater reliability for the user. This em

phasis can be segmented into two investigative objectives which are required 

- -
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for a successful BCl using alpha EEG: 

1.	 Convenient and reliable pickup of EEG signals from the scalp using 

electrodes. Conventional electrodes, which use conductive gels, are de

signed primarily for clinical use and are not suitable for application by 

the user or carer. Some expertise is required when attaching electrodes 

to avoid impairing electrode effectiveness through gel smearing. Also, 

the performance of conventional electrodes degrades after periods of 

time, which is unsuitable for devices such as BCl's which are required 

for sustained usage. Long-term use of conductive gels can also lead to 

skin irritation. 

2.	 Effective processing of the alpha EEG signals associated with eye clo

sure. This involves detection of expected alpha changes, and rejection 

of artifact signals from a wide range of sources. 

Sources of artifact common in EEG recording are briefly described in the 

following section. 

1.3 Artifact sources in EEG 

There are several sources of artifact which may be present in EEG record

ings. This discussion does not include the influence of powerline noise and 

other electric fields, which can be attenuated by effective circuit design and 

electrode construction (as shall be investigated in Chapters 6 and 7). Major 

sources of artifact are: 

Muscle artifacts The movement of muscles in the neck, jaw, and face rou

tinely contaminate EEG recordings. The occurrence of eye blinks1 and 

1 blink artifacts are not strictly caused by muscle activity, but by changes in ocular 

conductance produced by contact of the eyelid with the cornea (Jung et al. 2000). 
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eye movement (saccadic activity) will also cause the appearance of un

wanted signals in the EEG. 

Electrode movement The movement of electrodes with respect to the skin 

may disrupt electrochemical or electrical balances, causing the appear

ance of an artifact signal. The type and severity of artifact depends on 

the electrode construction, as will be investigated in Chapters 5 and 7. 

Skin potential There is an electric potential present across the top layers 

of the stratum corneum. This potential changes when the skin sweats, 

stretches or is under mechanical pressure (Webster 1984, Burbank & 

Webster 1978). Thus movement of the skin (or an electrode on the 

skin) will cause an artifact signal. 

In principle, all of these artifacts could be minimised by ensuring that the 

EEG subject remains completely still. This may be feasible for short, clinical 

trials where a subject can be asked to remain still, and eye blinks manually 

removed after recording, but for a system intended for long-term unsuper

vised use the presence of some artifacts must be accepted and accounted for. 

Even for the target group, those people with high level impairments, some 

muscle movement may still remain, or indeed there may be involuntary mus

cle tremor (Srikureja et al. 2000). Thus a BCI system needs to be sufficiently 

robust to cope with artifact signals. A further constraint is that any system 

designed to exploit changes in EEG activity must be able to operate in real 

time, as offline analysis is of no practical use for control applications. 
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1.4 Objectives for this thesis 

A substantial amount of research has been devoted to the characteristics 

of alpha EEG activity. However, for its use in a BCl, investigations are re

quired in order to develop signal processing algorithms which perform quickly 

and robustly in unconstrained environments, i.e. environments in which the 

subject is allowed freedom of movement. Additionally, the electrode technol

ogy to be used with such a BCl requires research, as traditional gel-based 

electrodes are not ideal for long-term, unsupervised use. Therefore, broad 

objectives for the studies in the thesis are: 

•	 To develop new methods for the detection of alpha EEG increases as

sociated with eye closure. The new techniques should be capable of 

rapid detection of the increase in alpha activity following eye closure, 

and should operate reliahJy in the presence of artifact signals. 

• To derive a means of directly and evenly comparing the performance 

of alpha detection methods. 

•	 To compare the performance of conventional, and newly developed al

pha EEG detection algorithms through studies on volunteers. The per

formances should be established and compared when sources of artifact 

are present, and when they are absent. 

•	 To investigate the use of electrodes for application to EEG, with par

ticular emphasis on long-term, unsupervised EEG monitoring. 

•	 To quantitatively compare the performance of bioelectric electrodes. 

This includes the impedance characteristics of such electrodes, and per

formance in the presence of electrode-related artifacts. 
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1.5 Structure of thesis 

This thesis is structured as follows: 

Chapter 2 introduces conventional methods for alpha EEG detection 

and monitoring. These methods will be compared with each other, and with 

enhanced algorithms developed by the author which offer potential advan

tages in detection time and errors encountered. Techniques in this chapter 

use signals from a differential pair of EEG electrodes. The chapter intro

duces a new method for comparing the performance of methods designed to 

detect the increase in alpha signals. Comparisons are made using EEG data 

gathered from human subjects. This new quantitative comparison technique 

is also utilised in Chapters 3 - 4. 

Chapter 3 describes preprocessing techniques which can be applied to 

EEG signals before the alpha EEG detection techniques described in Chap

ter 2 are applied. The algorithms described take advantage of EEG signals 

recorded from many electrode sites. 

Chapter 4 describes research into the development of alpha EEG detec

tion methods which are based on monitoring the apparent location of alpha 

activity in the brain. 

Chapter 5 introduces electrode construction techniques which are able 

to be used for EEG recording, and presents respective advantages and disad

vantages. The impedance characteristics of such electrodes is also explored. 

Chapter 6 investigates the impedance of the skin/electrode interface, 

and its effect on bioelectric signal fidelity. Impedance measurement tech

niques are investigated and the design of a new measurement system is de

scribed. This system is evaluated using data gathered on volunteers. 

Chapter 7 compares the performance of three types of bioelectric record

ing electrodes in a direct and quantitative manner. The performance with 
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regard to impedance and susceptibility to artifacts is investigated. 

Chapter 8 describes conclusions of the study and suggestions for further 

work. 

At the beginning of each chapter, a survey of the literature pertaining to 

specific studies in that chapter is presented. Some of the work reported in 

this thesis has been published in the literature or presented at conferences, 

as detailed in Appendix A. 



Chapter 2 

Methods for detection of alpha 

activity in the EEG 

2.1 Introduction 

Much of the literature concerning the detection of alpha wave activity derives 

from biofeedback studies which aim to use alpha signals as the basis of an 

indicator that facilitates enhancement of the alpha signals, or as a measure 

of physiological state. Alpha EEG feedback treatment has been applied to 

hyperactivity in children, anxiety disorders (Hare et al. 1982), epilepsy, ob

sessional neuroses and pain suppression. Alpha feedback techniques have also 

attracted attention among competitive sportsmen as a tool for psychologi

cal preparation for competition (Druckman & Bjork 1992). The wide range 

of applications for alpha wave feedback (and a period of 'alpha obsession' 

(Gatchel & Price 1979, Shaw 1992) in the 1960's and 70's) has meant sub

stantial research and commercial venture has been dedicated to the area. Un

fortunately, the popularisation of alpha wave technology did not necessarily 
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produce a significant improvement in the standard of equipment available1
. 

There are few instances in the literature where the main goal is to effect 

control via alpha waves (rather than simple feedback), and fewer still where 

the control is effected by eye closure. As outlined in Section 1.2.1, such 

control via eye closure is attractive because of its reliability, simplicity and the 

lack of training requirements. For control use, either a binary output (onloff) 

or a graded output (to enable, for example, cursor control) is required. In 

this study we concentrate on a binary output, but it is a straightforward 

task to convert any graded measure to a binary one by using a thresholding 

operation. 

An overview of past alpha quantification methods and the use of alpha 

EEG in control situations follows. 

2.1.1	 Conventional methodologies for alpha wave de

tection 

The alpha wave detection techniques utilised by researchers in published 

studies all differ from each other to some extent. A large proportion of these 

studies use alpha quantification methods that can be categorised as either 

percent time or integration techniques. 

2.1.1.1	 The Percent Time and Integration alpha measurement 

methods 

The percent time method (also called criterion alpha, alpha abundance or 

alpha index) monitors the amount of time in which the maxima of the alpha 

EEG signal (suitably bandpass filtered) are above a selected threshold. This 

lOne manufacturer recommended the use of its equipment in large, open fields, away 

from power lines (Gatchel & Price 1979, p. 188) 

l 
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threshold can be defined as a voltage (a voltage threshold has limitations 

due to possible dependence on the equipment used (Lansky et al. 1979b) and 

electrode locations) or a relative measure using various statistics of the EEG 

maxima. Although the process used to produce the output signal differs be

tween researchers (Knox 1980, Valle & Levine 1975, Mulholland 1971, Mul

holland & Evans 1965), the results are similar: a visual or audible repre

sentation of the fraction of time that alpha characteristics are present in 

the EEG signal. Bohdanecky et al. (1978 a) favour the median (or quan

tile) values of the EEG maxima when determining threshold level, as this is 

less affected by artifact presence during the threshold determination period 

(Lansky et a1. 1979b, Maras et a1. 1979). These methods can be adapted 

to indicate the presence or absence of alpha waves as a binary output. For 

example, an 'alpha period' may be denoted when three peaks occur above a 

threshold in 140 ms (Bohdanecky et al. 1984., Bohdanecky et a1. 1978b) 

The integration method gives an output proportional to the time integral 

of the full wave rectification of the bandpass filtered EEG signal (Basmajian 

1983, Kemp & Blom 1981, Boudrot 1972). Although not usually stated, the 

integrator needs to be imperfect (or lossy) to avoid the output saturating at 

a value close to the supply rails (or reaching a maximum value in a software 

implementation), as the input is consistently positive. 

Hardt & Kamiya (1976) expressed preference for the integration method 

over the percent time technique for alpha EEG detection due to its continu

ous, analogue output, and the absence of a threshold (in feedback studies). 

These works also assert that the percent time method does not take EEG am

plitude into consideration: the signal is simply above or below the threshold 

regardless of how far above the threshold a signal may be. Further claims are 

that alpha-enhancement studies using biofeedback have succeeded when us
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ing the integration method, and failed when using the percent time method. 

This view is supported by Knox (1980). Lansky et al. (1979a) present a 

contrary viewpoint that the percent time measure can also be represented as 

a continuous, analogue form. Further, they contend that the values of the 

percent time measure are meaningful and in a known range (0-100%) com

pared to the possible infinite values obtainable from the integration method, 

and that the damping effect of the integration introduces a delay into the 

feedback process. There have also been experiments using hybrid alpha wave 

detection techniques (Hare et al. 1982), for example, Cram et al. (1977) uses 

integration methods to find a threshold, which is then applied to percent 

time calculations. 

2.1.1.2 Other methods 

Various techniques that do not fit into the broad percent time or integra

tor categories have been applied to alpha wave detection. As with methods 

mentioned above, the applications were primarily feedback studies. Zhang 

& Chen (1988) use spectral analysis in preference to integration and percent 

time methods for feedback studies for reasons of accuracy and reliability. 

Spectral methods are also used by Ray & Cole (1985) to return a power es

timate in the 8-15 Hz band. An extension of the percent time technique is 

employed by Bozinovski (1990), using a training session to obtain a distribu

tion of raw EEG amplitudes and waveform periods for eyes open and closed 

periods. This distribution is then used as a basis for comparison during 

real-time operation. 

Classifiers have also been applied to the task of alpha wave detection; Shi

mada et al. (2000) trained neural networks and Keirn & Aunon (1990) used 

a Baysian classifier trained on frequency spectra. These researchers returned 
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data containing other EEG information, in addition to alpha information. 

In contrast to the experiments which utilise the changing amplitude of the 

alpha waves, there have also been investigations into the temporal charac

teristics of alpha EEG. For instance, de Rooij & Smeyers (1974) monitored 

variance in the periods between zero crossings of bandpass filtered EEG, 

from which promising results were reported for discrimination between eyes 

open and eyes closed cases. Although the periods showed little difference be

tween eyes open and eyes closed segments, the variance in periods did exhibit 

change. 

The experiments by Morrow & Casey (1986) used thresholded EEG to 

create a series of digital pulses when the signal exceeded a set limit. A mi

crocomputer continuously monitored the pulse stream, determining whether 

the data was 'in or out' of the alpha band by using an algorithm in which the 

number of pulses a given time period were llsed as a guide to the presence 

of alpha activity. Similar experiments were done in which a digital pulse 

was returned proportional to the time between zero crossings of EEG; alpha 

was reported only when the height of these pulses fell between an upper and 

lower limit (Basmajian 1983). 

Few biofeedback studies directly use the Root Mean Squared2 (RMS) 

value of the alpha EEG as a feedback indicator, possibly because its 'waxing 

and waning' (Kemp & Blom 1981) characteristics are too variable for feed

back that is understandable. Boudrot et al. (1978) used the RMS voltages as 

feedback by directly using a moving iron meter. In a different way, Pasquali 

(1969) demonstrated a polyphase envelope detector that does not suffer from 

the distortion or exponential lag inherent in a rectify-then-lowpass-filter cir

cuit. Another method to detect the alpha EEG envelope is complex de

2VRMS =
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modulation (HardIe et al. 1984, Dick & Vaughn 1970). Finally, Ghiyasvand 

et al. (1994) noted differences in EEG covariance between eyes open and eyes 

closed, but little data was presented in the literature. 

Kirkup et al. (1998) report a study in which three methods of alpha de

tection were compared; The integration method, a power spectrum method 

(using a 1 s sliding window to monitor frequencies in the alpha range) and a 

peak counting technique which used a differentiated EEG signal as the input. 

These workers found that the spectral method was marginally more effective 

than the integration technique, and significantly better than the peak count

ing method. Although the time to detect alpha onset was consistently less 

than the other methods, the spectral method also gave more false positive re

sults compared to the integration method over the range of threshold settings 

used. 

2.1.2 Alpha as a control mechanism 

Any of the techniques mentioned in Section 2.1.1 could be modified to give a 

binary output denoting the presence or absence of alpha activity in an EEG 

signal (by adding a threshold to the output, or by some other simple means). 

Some experiments are now considered whose principle aim was to use alpha 

as a control mechanism, rather than in a feedback study. The alpha-driven 

morse code experiment (using eye closure) by Dewan (1967) used a bandpass 

filter (10 Hz) on EEG from left and right occipital locations. The filtered 

signal was digitised by a Schmitt trigger (with a controlling threshold) and 

fed to a computer. A computer program determined if the resulting pulse 

train was a dot or dash, depending on length, or whether the pulse train was 

artifact (too short to be either a dot or dash). 
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Ghiyasvand et a1. (1995) monitored the shift of the dominant alpha wave 

frequency during eye closure to investigate the possibility of using the shift in 

frequency for control of prosthetic devices. Favorable results were reported, 

though it is not known whether the use with prosthetics was a success. In 

order to control a small mobile robot, Bozinovski et a1. (1988) used a distri

bution of EEG peak values to decide whether the subjects eyes were closed 

or open (for example, if three successive peaks were inside the distribution 

space, the eyes were determined to be closed (Bozinovski 1990)). This is 

similar to the method used by Kirkup et a1. (1998). 

To test cursor control for use with disabled persons Patmore et a1. (1994) 

used the alpha EEG envelope (rectifier and band-pass filter) and an EMG 

• sensor on the cheek (presumably over the masseter muscle). An increase in 

alpha activity due to eye closure changed the direction of cursor movement 

from lateral to longitudinal, or vice versa. Using a typing program, typing 

speeds of 3.0 - 6.3 keys per minute were reported. 

Other methods of control using the EEG introduced in Chapter 1 will not 

be covered again in detail here. However, it should be noted that although the 

mu-rhythm (or wicket rhythm) occupies approximately the same frequency 

space as the alpha rhythm (8-12 Hz), the signal is located centrally rather 

than occipitally, and is associated with motor activity rather than visual 

(Shaw 1992). Some experiments using the mu-rhythm, however, do employ 

similar detection techniques to those described above; for example Mcfarland 

et a1. (1993) used the average spectral power in the 8-12 Hz range to control 

a cursor. 

I. 
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2.1.3 Alpha EEG detection and artifacts 

For reliable, unsupervised control of devices using alpha EEG the detection 

process needs to be sufficiently robust to cope with many sources of artifacts 

(as introduced in Section 1.3). Reliability is an especially important require

ment if the alpha EEG detection system is to be used with disabled subjects. 

The effect of artifact on alpha EEG detection is an aspect not addressed in 

previous studies discussed in this chapter (apart from Patmore et al. (1994), 

who mention that the muscle artifact over the occipital area for one subject 

led to his exclusion from the study). One reason for this is that artifact is not 

as significant a problem in biofeedback studies, which form a large proportion 

of alpha wave detection work. 

Apart from exploring new possibilities for alpha EEG onset determina

tion, the aim of of the following study involved investigations into the effect 

of different artifact types, and strategies to minimise their interference. In or

der for the data collected for this study to reflect the environments in which 

we may envisage such a system being used, minimal constraints must be 

placed on the subjects involved. Many studies put a number of restrictions 

on subjects, for example, Ghiyasvand et al. (1995) required subjects to avoid 

body movement, eye blinks and eye movement. This is acceptable for the 

study in question but such requirements do not suit the study undertaken 

and reported in this thesis. It is unlikely that a person using an alpha EEG 

control system would be able to minimise such activity for long periods of 

time, especially eye movement. The only instructions for subjects in the 

study reported here were to remain comfortably still and curtail excessive 

head movements. 
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2.1.4 Scope of alpha wave detection study 

The following study provides a comparison of many of the alpha detection 

methods discussed in this overview. Each methods performance was rated 

its on ability to 

• detect an alpha EEG increase due to eye closure 

• time to detect an alpha EEG increase due to eye closure 

• the number of false positive errors 

• resistance to artifact signals 

The methods of data collection for the study are outlined, followed by descrip

tions and results for the alpha detection techniques. All detection methods 

are applied to the same data sets to facilitate a fair comparison of perfor

mance. 

2.2 Data Collection 

The EEG data was collected using a custom made elastic headband em

ploying 19 evenly spaced electrodes. This number was chosen because of 

the minimum inter-electrode spacing (to avoid electrolyte smearing between 

electrodes) and channels available on the recording equipment. EEG sig

nals were acquired using the Neurosearch-24 (Lexicor Medical Technology, 

Boulder, Colorado), which has 19 channels available for EEG, and auxiliary 

channels for EMG and EeG. Electrodes were 10 mm cup type, gold plated. 

The non-standard electrode positions were chosen to be consistent with the 

most probable electrode geometry for use with an alpha signal detection 

system. The locations of the electrodes are shown in Figure 2.1 and are 
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Figure 2.1: Positions of the 19 electrodes on the head band. Coordinates are 

mm. 

I labeled E1-E19. These labels are used as the electrodes positions are 'non

standard' and do not correspond to the standard 10-20 placement system 
J 

(see Appendix B). The procedure for determining the electrode positions is 

described in Appendix C. 

I 
2.2.1 EEG recording procedure

[ 
Eleven subjects agreed to take part in the study (mean age 29.8 yr, standard 

deviation 8.3 yr). One subject was found to have no change in the alpha 

signal amplitude upon eye closure. Data from this subject was not used in 

these studies. The headband containing the electrodes was fitted to each 

subject, and conductive gel applied through holes in the cup electrodes by 

/ 
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means of a syringe with a blunt needle. Reference electrodes were applied to 

both earlobes using clips, and a ground electrode (a self-adhesive Red Dot™ 

EeG electrode) was attached to the forehead. Three self-adhesive electrodes 

were applied over the masseter muscle on one side of the face (the subject's 

right side) to record EMG signals from the jaw region. All data were recorded 

with sampling rate of 512 Hz, and a gain of 90 dB. Subjects were asked to 

perform four tasks, each of 90 s duration. These tasks were as follows: 

Eye closure Subjects to remain still with eyes open for initial 30 s, then 

close eyes for 30 s, and have eyes open for the final 30 s. 

Clenching of jaw muscle Subjects remain still with eyes open for an ini

tial 34 s, then clench their jaw muscles in periods 34-37 s, 41-44 s, 

48-51 sand 55-58 s. The subject then remained still for the rest of the 

trial (32 s). 

I 

Movement of Head Subjects remained still with eyes open for initial 34 s, 

then turn their heads left and right alternately at times 34, 37, 41, 44, 

48, 51, 55 and 58 s. The subject remained still for the rest of the trial 

(32 s). The subject was given objects to look at (at fixed positions), 

and asked to turn their heads and look at these objects by turning their
1 

I

heads only (rather than changing their gaze).
 

I 

Reading out aloud Subjects remained still with eyes open for initial 30 s, 

then to read aloud from a book for 30 s, then remain still and silent for 

the final 30 s. 

"1 

All tasks were repeated four times for each subject. The subjects' blinking 

and saccadic eye movement were not restricted. An audible short duration 

tone was used to alert subjects to perform tasks at the required times in a 
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consistent manner. The last three tasks were designed to simulate situations 

where a previously reported analogue alpha signal detection system (Kirkup 

et al. 1998, Kirkup et al. 1997b) failed to perform satisfactorily. That is, 

false positive readings often occurred when a person clenched his/her teeth, 

moved around (causing movement of the electrodes relative to the head) or 

engaged in conversation. 

Figure 2.2 shows EEG spectra averaged over the 10 subjects for eyes open 

and eyes closed periods3. The change in the 8-13 Hz region is distinct. Fig

(b)5 

4
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1 
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4 

o
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Figure 2.2: Spectra for (a) eyes open and (b) eyes closed, averaged over 10 

subjects. The spectra are normalised to the mean value in the 8-13 Hz range 

during eyes open. 

me 2.3 shows separate spectra for all tasks performed by the subjects; for 

clarity the spectra have been smoothed using cubic splines. The wideband 

artifact signals introduced by clenching the jaw (O'Donnell et al. 1974), mov

ing the head and talking are apparent, and the overlap of such signals into 

the 8-13 Hz region ultimately means that such artifacts cannot be separated 

from the alpha rhythm by simple frequency domain filtering techniques. 

3Before averaging, each spectra was normalised to the mean value in the 8-13 Hz band 

during eyes open. 
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Figure 2.3: EEG spectra averaged over 10 subjects showing eyes open, eye 

closure, jaw clenching, head movement and talking. For clarity spectra have 

been smoothed using cubic splines. The spectra are normalised to the mean 

value in the 8-13 Hz range during eyes open. 

2.3 The Integration method 

The integration method is examined first as it has been used in previous 

experiments implemented in an analogue hardware form (Kirkup et al. 1998, 

Kirkup et al. 1997b). The hardware implementation produced an output pro

portional to the integrated RMS value of the bandpass filtered EEG signal 

input. The circuit is summarised in Figure 2.4. Previous experiments with 

this system utilise three electrodes; one placed at 014 , one at T5 and a driven 

reference placed on the forehead. The EEG signals are passed through DC

4 using the 10-20 electrode position classifica.tion system: see Appendix B 
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J 

I

I
I
I

I 

I

coupled (gain 26 dB) and AC-coupled (gain 50 dB) amplifiers. A biquadratic 

bandpass filter (centered at 10 Hz, bandwidth of 2 Hz) selects the alpha por

tion of the EEG spectrum. An RI'vIS-to-DC converter followed by a lossy 

integrator (with a time constant of 2.3 s) provides a slowly varying DC rep

resentation of the alpha component present in the EEG signals. Finally, a 

comparator (with hysteresis) was used to give a binary output at a selected 

threshold. Hysteresis is used to prevent the production of 'bounce' signals 

as the input to the comparator moves past the threshold level. 

bandpass RMS to d.c.
DC amplifier AC amplifier integrator hysteresis

filter converter
01 

RMS
DC gain 

to
26 dB JJfDC 

T5 
2.35=Ie = T10 Hz 

BW = 2 Hz 

Schematic diagram of the analogue alpha detection system. The 

system consists of amplification, a bandpass filter, RMS-to-DC converter, a 

lossy integrator and a comparator (with hysteresis). 

2.3.1 Implementation 

The analogue signal conditioning shown in Figure 2.4 was emulated digitally 

using C code. The input used was data from the Neurosearch-24 data files 

for electrodes E2 and E4 (see Figure 2.1). The differential signal was ob

tained by taking the difference between these two data arrays, followed by 

filtering. Filtering was done by a 512 tap Finite Impulse Response (FIR) 

bandpass filter with 3 dB points at 8 Hz and 13 Hz, using a triangular win

dow (the response for this filter is shown in Figure 2.5). The lossy integration 

was achieved by convoluting the data (after filtering and RMS-to-DC con

version) with an exponential decay function (y(t) =
 e- t
/ 

T
) truncated to 512 
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Figure 2.5: Frequency response for the 512 tap FIR bandpass filter. 

samples. The time constant used was T = 2.3 s, consistent with the hardware 

implementation (Kirkup et al. 1997b). 

2.3.2 A note on algorithm implementation 

All signal processing programs and data manipulation routines for this thesis 

were written in entirety by the author, with the exception of an eigendecom

position function 5 
. All programming was done in standard C code, and run 

on a Linux 2.0.32 operating system. At the beginning of these studies, rou

tines were performed using MathematicaTM, but processing times involved 

with the large EEG data files were prohibitively long. The C implementa

tions in showed completion times up to two orders of magnitude lower 

than using Mathematica This does not imply that Mathematica™ is a 

product of limited value, but rather that it is more appropriate for symbolic 

mathematics than it is for number crunching. 

5The eigendecomposition function was linked from a Mathematica™ library 
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2.3.3 Threshold determination 

When using the analogue system in normal laboratory circumstances th

threshold voltage empirically chosen. It is determined by examining th

subjects' integrated alpha signal with the aid of a voltmeter. For a rigorou

study, a pre-defined strategy for determining the threshold level is required

This study continues the use of a statistical method of threshold setting

as introduced by Kirkup et al. (1998). The method determines a baselin

level by sampling the output of the algorithm described in Section 2.3.1 an

determining a mean, and standard deviation, sx, of the data while th

subject is sitting still with eyes open (this is the 'baseline'). Threshold level

can then be defined using these statistics. For this study the nth threshol

is defined as 

nth threshold level =
 +
 n Sx (2.1

Figure 2.6 shows a sample of the output for the integration method with th

10th threshold level indicated. 

2.3.4 Interpretation of results 

The data presented here is for the integration method. To allow for efficien

comparisons,- the procedure used to format results is followed for all th

techniques of EEG signal processing to be used in this thesis. The dat

for the 10 subjects were processed by the integration algorithm at threshol

levels ranging from 1 to 20 standard deviations. The data were also processe

by the algorithm with the integration step omitted (this will be called 'RMS

only') for comparison. 

The results from processing the EEG data via these algorithms is char

acterised by: 
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Figure 2.6: An example of the output from the integration method. The 

subject holds both eyes open for the first 20 seconds. At t=20 s the subject 

closes both eyes. An example of threshold selection is also shown; the first 

20 seconds are used to determine the mean and standard deviation of the 

baseline (eyes open) signal. The 10th threshold is shown for illustration at 

32.9 + (10 x 12.4) = 157.2. 

Detection Time During eye closure trials, the time after eye closure for the 

processed signal to rise above the threshold level. The time is measured 

from the moment when the audible signal is given, and thus the time 

includes each individual's reaction time to the audible signal. 

Eye Closure Errors Errors encountered during the 90 second eye closure 

trials. Three kinds of errors defined are 

• Baseline errors	 (1) : The signal exceeds the threshold level when 

the eyes are open (before the eyes closed period), thus giving a 

false positive. 

•	 Baseline errors (2) : The signal exceeds the threshold level when 
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the eyes are open (after the eyes closed period), also giving a false 

positive. 

•	 Threshold errors: The eyes are closed but the signal fails to exceed 

the set threshold. 

Artifact Errors Errors encountered during the 90 second trials involving 

jaw clenching, head movement and talking. There are three kinds of 

errors defined: 

•	 Baseline Errors (1) : The signal exceeds the threshold level before 

the activity period, giving a false positive. 

•	 Baseline errors (2) : The signal exceeds the threshold level after 

the activity period is complete, giving a false positive. 

•	 Artifact errors: The specified artifact activity causes the signal 

to rise above the threshold, which is incorrectly assigned as eye 

closure. 

The results for the detection times after eye closure for the integration, 

and RMS-only algorithms are shown in Figure 2.7. The detection times 

increase with the threshold level, as would be expected. The detection times 

for the RMS-only algorithm are less than that for lower threshold levels by 

around 1 second. This reduced detection time is offset by the large number 

of errors generated when using the RMS-only algorithm, as compared to the 

integration algorithm. These error results (for eye closure only, not due to 

induced artifact) are shown in Figure 2.8. The numbers of errors caused by 

both algorithms decrease as the threshold is increased, though the integration 

algorithm shows little change above a threshold setting OHOUL Removing the 

lossy integrator improves eye closure detection time slightly, but the increase 
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Figure 2.7: Detection times after eye closure for 10 subjects using the inte

gration algorithm, and RMS-only algorithm. Mean and standard deviations 

are shown, along with numerals indicating the number of eye closure trials 

(out of 40) for which RMS-only detection was unsuccessful at each threshold 

setting. 
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Figure 2.8: Errors experienced during eye closure trials for 10 subjects using 

the integration algorithm, and RMS-only algorithm. Mean and standard 

deviations are shown. 

in errors is more than 100% for threshold settings less than four. From 

Figure 2.8 it could be assumed that the optimal threshold for use of the 

integration algorithm would be a value of n = 4. At this point the number 

of errors is at a minimum. Although the number of errors does not increase 

with larger thresholds, the detection time will increase (refer Figure 2.7). 

The opposing results from the error and detection time plots make a decision 

regarding the optimum threshold setting problematic; a lower threshold gives 

a reduced detection time but more errors. The threshold setting decision 

process also needs to include information about errors caused by artifact; 

this data is not included in Figure 2.8. Figure 2.7 may also be misleading as 

it does not denote how many subjects were able to reach a given threshold 

during eye closure. A low detection time result for a given threshold may 

mean that, on average, the method detected the alpha EEG increase for all 

subjects quickly, or perhaps that only one or two subjects managed to reach 

, 

J 
\ 

i 
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the threshold (and did so quickly) whilst the other subjects did not reach the 

threshold at all, and as such their detection times were not included in results. 

Therefore the low detection time results do not reflect the possibility that 

the method may have been unsuccessful at a particular threshold setting. 

2.3.5 An alternative method of comparing results 

To enable a fair determination of the best threshold setting which can be used 

. for many different alpha detection methods, the detection time data will be 

plotted against total errors (which includes the errors encountered during 

the eye closure trials and during the artifact trials). To ensure that data are 

representative of the majority of EEG trials, results are shown only when 

at least 75% of eye closure trials are successful in reaching the threshold. r 

I	 That is, the data point for a threshold setting is only shown when at least 

75% of all eye closure data (including all subjects) show success in reaching 

I	 the threshold level. This prevents data from a subject who has a very large 

and fast change in alpha amplitude after eye closure from causing a poor 

detection method to look very effective. Thus, data points linked to different 

thresholds displayed in plots for the figure of merit represent results from all 

data sets (i.e. from all subjects). Figure 2.9 shows a plot of this type for data 

from integration and RMS-only methods. Using this plot the best threshold 

setting can be denoted as the point closest to the origin (thus having the 

smallest combination of detection time and total errors). A figure of merit 

will be used in this study to denote the distance from the origin to a data 

point, denoted as (since the value is an average of many data sets). In 

'. Figure 2.9 the best threshold setting (giving a value of X=4.13) is for the 

I integration method, at a threshold of 3 standard deviations. Importantly 

this scheme weights errors and detection times in such a manner that a

I 
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Figure 2.9: Data for detection times and total errors (eyes closed errors 

and artifact errors) for the integration and RMS-only methods. A range of 

threshold settings are shown (for which at least 75% of the data sets showed 

successful detection during eye closure) and the best threshold identified. 

I' 

reduction in detection time of one second is regarded of equal importance 

to a decrease in total errors by one. If different weightings of importance 

in favour of detection time or total errors were required, the data could be 

scaled so that the best threshold setting was still closest to the origin. For 

investigations with specific applications or subjects in mind, these scalings 

could be set-for a variety of reasons; this is not the case for the general study 

in the thesis, and the scales will be left as a ratio of 1:1. 

2.3.6 Combinations of electrode pairs

I The integration method applied in Section 2.3.1 used the electrode positions 

j E2 and E4 (refer to Appendix C, Figure C.1), as these are closest to the 01 

and T5 locations that have been used in previous experiments (Kirkup et al. 

1 
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1998, Kirkup et al. 1997b). Other combinations of electrodes on the headband 

can be used, perhaps with better results. The integration method was applied 
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Figure 2.10: Results for all possible combinations of the 19 electrodes for all 

subjects using the integration alpha detection technique. 

to all data sets using each possible combination of the 19 electrodes shown 

in Figure C.l. There are a total of = 171 combinations. Figure 2.10 

shows results for the 171 combinations averaged over all data sets for the 10 

subjects. lowest value came from the electrode pair E4 - E18 (at a

I threshold level of 4 standard deviations), although the difference between the 
,! pairs which show low values is not great. The ten electrode pairs which 

showed the lowest results are illustrated in Figure 2.1l(a). The pair used 

originally (E2-E4) do not appear in the top ten 'scores'. The value for the 

E2-E4 electrode pair was 22% higher than the best electrode pair E4-EI8. 

For comparison, the difference between the best and tenth electrode pair 

(rated on values) was 9%. 

4 567 B 

Detection time [sj 
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Figure 2.11: Results from applying the integration technique to all possible 

combinations of electrode pairs. The 10 electrode pairs with the smallest 

values are shown in (a); in bold is the E4-E18 pair which showed the lowest 

value. Plot (b) indicates those electrode pairs which did not perform 

satisfactorily for any threshold setting. 
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Figure 2.11 (b) shows the electrode pairs which showed poor performance. 

These were 36 pairs of electrodes which failed to detect an alpha rise (for at 

least 75% of eye closure trials) using any threshold setting. As might be 

anticipated, these pairs are concentrated at the front of the head, whilst the 

best electrode pairs occur at the rear of the head, near the occipital region 

where, in general, alpha activity is recognised to be greatest (Shaw 1992). 

Some of the best performing electrode pairs do make use of electrodes in the 

anterior region, which agrees with results found by Craig et al. (1999) who 

report that high activity resulting from eye closure is found in central and 

anterior regions, not just the occipital region. 

The results for the integration method will be compared with many other 

alpha detection techniques in this thesis. For those methods which use a 

differential EEG signal, a common pair of electrodes need to be chosen so 

that all methods can be compared evenly, and the E2-E4 pair will be used 

for this purpose. Although this pair did not show the best performance in 

the integration trials, the E2-E4 pair will be used because of many studies in 

the past (e.g. Cram et al. 1977, Mulholland 1971) that have used differential 

readings from this cranial area (thus being useful for comparison) and because 

it cannot be assumed that the electrode pair that was best for the integration 

method will be equally good for other techniques. Although it would be ideal 

to compare all possible electrode combinations for all techniques to be used, 

the computing time required does not make this realistically possible. The 

processing for the integration technique required around 8 days of computing 

time to process all electrode combinations, and other methodologies to be 

introduced require even more computational resources, making the gathering 

of such results infeasible. 



40 2.3 The	 Integration method 

2.3.7	 An extension to reduce the influence of false pos

itive results 

As shown in Figure 2.3, the frequency spectra from artifacts, such as EMG 

and head movement, overlap the alpha EEG frequency spectrum. The con

sequence of this is that signals from artifact sources may cause false positive 

results (i.e. the threshold may be exceeded despite the absence of an in

crease in alpha activity). Filtering in the frequency domain will not separate 

the true alpha EEG and artifact sources as the spectra overlap. However, 

since the alpha EEG is narrowband and the artifact signals show compara

tively wideband spectral characteristics it is possible to detect the presence of 

artifact signals regardless of the current level of alpha EEG activity by mon

itoring the spectral power at frequencies outside the alpha band (8-13 Hz). 

In this way the output of the alpha EEG detection method can be disabled 

while the 'artifact activity' is high, on the assumption that high spectral 

power outside from the alpha band implies high spectral power inside the 

alpha band due to artifact. To implement this concept the following scheme 

was used: 

1.	 Monitor the alpha EEG activity using the integration detection method 

(as described in Section 2.3.1). 

2.	 Simultaneously monitor spectral power in the 'artifact band' (chosen to 

be 28-33 Hz). This was accomplished using the same algorithm as for 

the alpha integration detection method, but in this case the bandpass 

filter was set from 28 to 33 Hz (rather than 8-13 Hz). The thresholds 

were set in the same way as for alpha EEG (see Section 2.3.3). The 

threshold level used to denote the presence of 'artifact activity' was 

fixed at n = 10 standard deviations. 
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3.	 If the threshold for the 'artifact activity' was exceeded then the lossy 

integrator used for alpha activity was set to zero. Thus, while artifact 

activity is present the alpha activity output is disabled. 

The operation of the 'artifact rejection' algorithm is demonstrated in Fig

ure 2.12. Graphs (a) and (b) show the level of alpha EEG activity, as deter

mined using the algorithm, during eye closure and jaw clenching respectively. 

Graphs (c) and (d) show the corresponding level of 'artifact activity' in the 

28-33 Hz band. During eye closure, the level of alpha activity increases (Fig

ure 2.12(a)) while the artifact activity is unchanged (Figure 2.12(c)). During 

the jaw clench trial, the artifact activity shown in Figure 2.12(d) is apparent, 

and while the artifact activity exceeds the threshold the 'alpha activity' out

put is disabled (Figure 2.12(b)). Plot (b) also shows what the alpha activity 

output would indicate without the use of the artifact rejection: the peak 

around 40-50 s would have caused a false positive result. This is prevented 

by the monitoring of the 28-33 Hz band by the artifact rejection algorithm. 

Results obtained when the artifact rejection extension to the integration 

alpha EEG detection method was applied to all data sets are shown in Fig

ure 2.13. The results are compared to values obtained when the original 

integration alpha detection method was used. As Figure 2.13 shows, the de

tection times for the two methods are the same for the range of thresholds 

shown, but the errors encountered when using the artifact rejection algorithm 

are consistently lower. Though the artifact rejection algorithm is incorpo

rated in the integration alpha EEG detection method here, any of the other 

alpha detection techniques to be described in this chapter could be similarly 

modified. 
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Figure 2.12: Operation of the artifact rejection algorithm. Plots (a) and (b) 

show the output of the integration alpha detection method with and without 

the artifact rejection algorithm. Plot (a) shows eye closure data (eyes closed 

from 30-60 s while plot (b) shows data from a jaw clenching trial (also in the 

period 30-60 s). Plots (c) and (d) show the 'artifact activity' corresponding 

to the eye closure and jaw clenching trial. Note that no artifact is detected 
I

during the eye closure trial (plot (a)), thus the two curves in this plot overlap I
 
exactly. 
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Figure 2.13: Results obtained when using the artifact rejection algorithm, 

applied to all EEG data sets for a range of threshold settings. The integra

tion alpha EEG detection method (without artifact rejection) is shown for 

comparison. 

2.4 The Percent Time method 

This alpha detection method relies on the statistics of the alpha EEG sig

nal to indicate when an alpha increase associated with eye closure occurs. 

Specifically, the distributions of peak amplitudes of the bandpass filtered, 

rectified EEG signals are calculated. The change in the statistics from eyes 

open to eyes closed periods can be used to detect an increase in alpha activity 

following eye closure. 

2.4.1 Distributions of peak EEG amplitudes 

Dick & Vaughn (1970) have found that the alpha EEG can be described 

effectively as narrow-band gaussian random noise. The probability density 

function for peaks of narrow-band gaussian random noise is given by the 
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Rayleigh probability density function (Nikookar & Hashemi 1993). 

(2.2) 
x<o 

where is the variance of the narrow-band gaussian random noise. An 

advantage of the Rayleigh probability density function is that it is described 

using a single parameter, 0". In Figure 2.14 the averaged distributions of peak 

alpha amplitudes for the 10 subjects are shown for periods of eyes open and 

eye closure. The best fitting Rayleigh distributions are also shown for the 
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Figure 2.14: Probability distribution functions of rectified alpha EEG max

ima for eyes open and eyes closed periods. The data is averaged over 40 data 

sets (10 subjects). Rayleigh distribution curves are shown for comparison. 

eyes open and eyes closed cases. 

Some studies (de Rooij & Smeyers 1974, Bozinovski 1990, Ghiyasvand 

et aI. 1995, Basmajian 1983) have, in addition to amplitude distributions, 
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used distributions of the time interval between EEG peaks to assist in de

termination of alpha activity. Data collected in this study did not show 

any appreciable difference bet-ween eyes open and eyes closed periods for the 

time intervals between successive maxima, and thus this information is not 

included in any algorithms used here. This was shown using a single factor 

ANOVA test: there was no significant difference between the distributions of 

time interval values in each eyes closed or eyes open period. An illustrative 

time series example showing the periods between maxima for rectified EEG 

is shown in Figure 2.15. 
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Figure 2.15: Pe!iods between rectified EEG maxima. There is no appreciable 

change from eyes open to eyes closed sections. 

An attractive method for detecting changes m alpha EEG during eye 

closure would be to track the EEG maxima distribution, finding the best 

fit to a Rayleigh distribution and use the (J parameter as an indicator as to 

alpha EEG activity. Unfortunately the amount of data required to produce a 

reasonable distribution is too great, and thus the detection process would be 

very slow (assuming that rectified alpha EEG is used, approximately 20 data 

i 
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points per second would be produced). The statistics of the distributions 

shown in Figure 2.14 are still valuable, and their use shall be demonstrated 

in alpha detection techniques in Sections 2.4.2 and 2.5. 

2.4.2 Percent Time implementation 

For the percent time alpha detection method the EEG signal is bandpass 

filtered, rectified and the distribution of amplitudes obtained with the eyes 

open. The percentage of time that the signal remains over the median peak 

amplitude is measured. To give a continuous measure of the percent time 

spent over the median a sliding window of predetermined width is required. 

In this implementation the algorithm counts the number of peaks above the 

median in the window; this gives a measure proportional to a percentage. 

This process is outlined in Figure 2.16. The mean and standard deviation 

of the resulting percent-time curve are obtained for eyes open (as in Sec

tion 2.3.3). The errors and detection times for each standard deviation level 

are determined. This process is repeated using window sizes of 512, 1024, 

2048 and 4096 samples (corresponding to 1, 2, 4 and 8 seconds). 

2.4.3 Results 

Results from aPlJlying the percent time algorithm to all subject EEG data 

are shown in Figure 2.17(a). The best results comes from using a sliding 

window size of 2048 samples (4 s) at a threshold of 2 standard deviations. 

The EEG data were also processed by a modified version of the percent time 

algorithm in which a cutoff level of 90% quantile of the eyes open distribution 

was used instead of the median. Figure 2.17(b) shows the results when using 

a 90% quantile cutoff. The plots reveal that the higher cutoff level produces 
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Figure 2.16: The process for the percent time alpha detection method. The 

EEG signal is (a) bandpass filtered, rectified and (b) peaks are identified. 

The distribution of peaks during eyes open is found and the median deter

mined: the median value is shown as a horizontal line in (b). A sliding 

window moves along the set of peaks which are above the median (c), and 

the number of peaks in the window are counted giving a result such as (d) . 

For this example the window size was 512 samples (1 s). 
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Figure 2.17: Results for Percent Time calculation method using a median 

cutoff (a), and using a 90% quantile cutoff (b). Parameters for best results 

are shown. 

a better result. Noticeably, the number of errors experienced is less and the 

detection time is slightly faster. 

2.5 The Peak Counting method 

This alpha detection method is a modification of the percent time technique. 

As in the percent time technique (Section 2.4.2) the EEG signal is bandpass 

filtered, rectified, maxima located and a distribution of the peak amplitudes 

during eyes open found. The number of peaks with amplitudes above the 

median value are monitored. If the number of consecutive peaks with am

plitudes above the median exceeds a preset count limit then the algorithm 

I 
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sets an alpha 'flag', indicating that EEG alpha activity has been detected. 

Similarly, once alpha EEG has been detected (the flag has been set) the same 

number of peaks consecutively below the threshold must be counted for the 

alpha flag to be reset (indicating that alpha EEG activity is not present). 

The threshold for this implementation will be quantile levels of the eyes open 

peak amplitude distribution (an example of which was shown in Figure 2.14). 

The threshold is varied from the 5% quantile to the 100% quantile in 20 steps. 

As before, the errors and detection times are calculated for all subjects for a 

range of threshold settings. 

2.5.1 Results 

Results for the peak counting method using a range of count settings are 

shown in Figure 2.18. The plot shows that the lowest value is achieved 
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Figure 2.18: Results for the Peak Counting method using the peak amplitude 

distribution during eyes open 

using the 65% quantile of the eyes open distribution as a threshold, and 

, 



-----

i 

2.5 The Peak Counting method 50 

requiring 20 counts to denote the presence of alpha EEG. 

All statistical information used by the alpha EEG detection methods 

described thus far to set threshold levels has been from the amplitude distri

bution of signals during the eyes open periods. The peak counting method 

was also modified slightly to use the distribution of amplitudes found during 

eye closure. As many artifact signals are larger than the EEG signal present, 

it may be possible to limit the false information received from artifact signals 

by applying an upper threshold as well as a lower threshold. Thus a peak will 

only be counted if its amplitude exceeds a lower threshold (as before), but is 

also less than an upper threshold (thus preventing peaks of large amplitude, 

which may be due to artifact, from causing a false positive alpha EEG read

ing). This was done by obtaining the eyes closed peak amplitude distribu

tion and only counting peaks which are between a lower threshold and upper 

threshold. As for results in Figure 2.18, the lower threshold is varied as 

a quantile of the distribution (this time between 4.5% and 90%) while the 

upper threshold is fixed at the 95% quantile level. This procedure requires 

prior knowledge of the eyes closed peak amplitude distribution for each sub

ject. This information was obtained by taking the average of the distribution 

for eye closure during each of the four eye closure trials that each subject 

undertook (see p. 25). The results for the peak counting method using two 

thresholds and eye closure distribution are shown in Figure 2.19. The lowest 

value shown in this plot requires 15 counts in the window to denote alpha 

activity, with a threshold setting at the 22.5% quantile of the eyes closed peak 

amplitude distribution (and the upper threshold at the 95% quantile level). 

This implementation of the peak counting method using the eyes closed dis

tribution and an upper and lower threshold performs slightly worse than 

when using the eyes open distribution with a single (lower) threshold (shown 

1 
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Figure 2.19: Results for the Peak Counting method using the peak amplitude 

distribution for eye closure with an upper and lower threshold. 

in Figure 2.18). Results for the eyes closed distribution (Figure 2.19) are 

noticeably stretched along the horizontal axis, indicating increased detection 

times. It is surmised that the upper threshold is causing higher detection 

times by ignoring peaks that are not artifact, but are actually true alpha 

EEG. This has to occur to some extent since the distribution is taken from 

the eye closure trials for each and the upper threshold is set to the 

95% quantile the distribution. Unfortunately, the increase in detection 

times due to the the upper threshold are not offset by lower total errors 

as hoped. To confirm that the upper threshold is affecting detection time, 

Figure 2.20 shows the results using the eyes closed distribution, but without 

the upper threshold. The results show a large improvement over those when 

using the upper threshold in Figure 2.19, and the best settings (using a 25% 

quantile threshold and a required peak count of 20) show better performance 

than those using the eyes open distribution (Figure 2.18). 
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Figure 2.20: Results for the Peak Counting method using the peak amplitude 

distribution for eye closure without upper threshold 

2.6 A comparison of results and discussion 

Variability between subjects makes the direct comparison of results from 

different alpha EEG detection methods difficult. The large standard errors 

in data due to inter-subject variability means that comparing the mean 

values may give misleading results. Instead a paired t-test is used to rank 

the different methodologies. To facilitate this all methods developed in this 

chapter will be compared to the integration alpha EEG detection technique, 

as this method has been investigated in past studies (Kirkup et al. 1998, 

Kirkup et al. 1997b). A value for is calculated using EEG from each of 

the 10 subjects applied to each alpha EEG detection method, and In(x) 

taken. The threshold used for each technique is the setting which was found 

previously to give the lowest value for that technique. A p value from a 

paired t-test is found for each alpha detection technique compared against the 

. 
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integration method using the ten In(x) values (one for each subject). Using 

the p value for each test the methods can be ranked in comparison to each 

other; the mean In(x) value for each method is used to determine whether the 

p value indicates a difference which is higher or lower than the integration 

alpha detection method. The rankings are shown in Table 2.1. Table 2.1 

reveals that the use of the integration method with artifact rejection gives the 

best ranking. Also ranked highly were the peak counting method using the 

eyes open distribution (see Figure 2.18) and peak counting method using the 

eyes closed distribution (using one threshold). The peak counting method 

using the eyes closed distribution with two thresholds shows a relatively 

poor rank due to slower detection times caused by the more rigid algorithm 

(unfortunately the extra threshold did not reduce errors as anticipated). 

The rankings for the percent time algorithms show that the performance 

depends very much on the quantile level used: results which used a cutoff 

at the 90% quantile level of the eyes open distribution are ranked much better 

than those at the median (50% quantile) setting. The difference between the 

two quantile level settings for the percent time alpha EEG detection method 

is also evidenced by the small number of usable parameters for the 50% quan

tile results (few data points in Figure 2.17(a)) compared to the 90% quantile 

setting in Figure 2.17(b). The integration method fared better, as expected, 

than the RMS-only technique (which was affected by increased numbers of 

errors). However, in this study marginal improvements in detection time and 

error rates are of little importance even if they are found to be statistically 

significant. It is possible that, due to the smaller sample size, some detec

tion methods may be considered as not a significant improvement over the 

Integration method, whereas a large sample size may give a different result; 

this is known as a type-2 error. In this study guarding against type-2 errors 
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Alpha Detection Method mean value and std error p value rank .... 
0 

Integration with artifact rejection 1.347 ± 0.102 0.139 1 0 

Peak Counting: eyes open distribution 1.275 ± 0.092 0.281 2 

Peak Counting: eyes closed distribution (one threshold) 1.277 ± 0.090 0.326 3 -
Percent Time (90% quantile) 1.343 ± 0.082 0.541 4 

Integration 1.392 ± 0.093 5 .... 
Peak Counting: eyes closed distribution (two thresholds) 1.462 ± 0.080 0.601 6 

RMS-only 1.472 ± 0.107 0.503 7 

Percent Time (50% quantile) 1.732 ± 0.157 0.110 8 

Table 2.1: Ranking of results fwm alpha detection techniques introduced in Chapter 2. Techniques are ranked using 

the p value from a paired two-tailed t-test, compared against the integration alpha EEG detection method. 
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is less important than finding an approach to detect the onset of alpha with 

low error rates that is shown to be superior than the other techniques, even 

with a small sample size. If the differences between results from methodolo

gies are so slight that a type-2 error is likely to occur, then the advantage 

that the new method gives will be very slight, and thus not of interest anyway. 

Four methods of alpha EEG detection have been introduced in this chap

ter. Two of these techniques are commonly used in alpha EEG feedback 

studies; the integration method and the percent time method. The results 

from this study show that the percent time method has a better performance 

ranking than the integration method, though the difference is marginal and 

the percent time algorithm is highly dependent on the percent quantile set

ting used (using a 90% quantile setting showed a significantly better value 

than when a 50% quantile was used). However, the use of artifact 

rejection improves the results obtained with the integration method, and it 

is anticipated that this improvement would be found if the artifact rejection 

algorithm were used with other alpha EEG detection methods. The compar

ative success of the integration and percent time alpha detection methods 

found in this study will not necessarily transfer to the application to feed

back studies, where there is less emphasis on artifact rejection or detection 

time. 

The method with the highest ranking in Table 2.1 was the integration 

method (when used with artifact rejection). \iVhen artifact rejection is not 

employed, the highest ranking detection technique was the peak counting 

technique (using the eyes open amplitude distribution for a reference). The 

same method using the eye closed distribution (with one threshold) was also 

highly ranked (this reflects results found in an exploratory study using a 
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smaller data set by Kirkup et al. (1998)). Peak counting alpha detection 

methods are additionally attractive as their algorithms are simple, and could 

be easily run on a small microcontroller (or other simple dedicated electron

ics). One drawback is that the EEG peak amplitude distribution for each 

subject needs to be known prior to the algorithms use, thus a short training 

period for the algorithm is necessary. Further study is required to determine 

the optimal amount of data required to construct a satisfactory amplitude 

distribution for use with peak counting alpha EEG detection methods, and 

to decide whether an a-priori average distribution from a wide population can 

be successfully used. The results obtained when an upper and lower thresh

old were used in an effort to reduce the influence of artifact errors (rather 

than a single lower threshold) with the peak counting algorithm proved to 

be unsuccessful. The values obtained from the use of two thresholds were 

larger than those obtained when a single threshold was used. 

Chapter 3 will investigate the improvements offered by preprocessing 

EEG signals before the application of alpha EEG detection methods. The 

preprocessing techniques will involve the use of many electrode sites, rather 

than a differential pair as used for methods described in this chapter. By 

employing many electrodes, spatial information may be used in addition to 

amplitude information to prevent false positive detection of alpha activity in 

the presence of artifact signals. 

__



Chapter 3 

Multi-electrode methods for 

alpha EEG detection 

3.1 Introduction 

The alpha EEG detection methods described in Chapter 2 employed dif

ferential signals obtained from two EEG channels. Such methods perform

satisfactorily, but in the presence of artifact false positive results may occur.

In an effort to produce a faster and more reliable alpha detection system,

more complicated techniques are introduced in this chapter which use the

information from many electrodes, rather than from a single pair. Although

the techniques to be described add complexity to the alpha detection process,

it is anticipated that the new methods in this chapter will offer benefits such

as: 

•	 Using many electrodes to extract information specific to alpha EEG

will decrease the detection times for alpha. 

•	 By reducing the presence of non-alpha signals, lower threshold settings

l 



58 3.2 Array sensor processing 

can be used in the detection algorithms, thus enabling lower alpha EEG 

detection times. 

• The number of artifact errors encountered will decrease 

The procedures explored in this chapter have not been applied to the detec

tion of alpha activity in EEG previously and thus the production of successful 

techniques is not a certainty. It will be shown that some of the alpha de

tection techniques developed in this chapter offer performance improvements 

over those described in Chapter 2. 

The techniques described in this chapter can all be considered as filter

ing operations; these filters act on the array of EEG channels and create a 

single output signal. The resulting output signal may then be applied to 

an alpha detection method. Thus the topics introduced in this chapter can 

be considered as preprocessing operations to the alpha detection methods 

covered in Chapter 2. To enable a comparison between all methods to be 

described in this chapter, the same alpha detection method will be used after 

the preprocessing is done. The integration alpha EEG detection method (see 

Section 2.3.1) will be used, though any of the detection methods in Chapter 2 

would be equally suitable for the task of comparing the preprocessing tech

niques. Before the first filtering technique is described, the basic concepts 

which will be for many of the preprocessing techniques in the chapter 

are introduced. 

3.2 Array sensor processing 

Many of the concepts in this chapter originate from communications and 

radar theory, as these fields often utilise many antennae (i.e. a sensor array) 

to obtain desired effects than cannot be achieved using a single antenna. As 

l 
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an example, arrays of antennae are routinely used to select the direction from 

which to receive a signal, while signals propagating from other directions are 

rejected. Conversely the antenna array can be used to determine from what 

direction a selected signal has arrived. These principles can be applied to the 

context of EEG in this chapter in that signals originating in one region of the 

head can be amplified, while signals from elsewhere can be attenuated. The 

task of investigating neural sources in the brain responsible for activity has 

long been a central focus of neurophysiological research because anatomical 

correlates are useful for many tasks (e.g. in studies of epilepsy or evoked 

potential work). The signals from a neural source at a required physical 

position may be extracted directly using depth electrodes, but this process 

cannot monitor every possible point in the brain, and is an highly invasive 

procedure. Thus the use of external processing methods to enable the probing 

of different locations in the brain is very useful. Since it is widely accepted 

(refer to Section 1.1.1) that alpha waves are prominent in the posterior region 

of the head, a filter could be constructed which uses all of the EEG electrodes 

to focus on signals from the posterior area, while signals which originate from 

the front ofthe head (which may contain artifact, e.g. eye blinks or forehead 

EMG) can be attenuated. An introduction to the theory behind sensor arrays 

is contained in Section 3.2.1 and the mathematical notation that will be used 

in this chapter is summarised in Table 3.1. 

3.2.1	 Representation of signals impinging on sensor 

arrays 

To introduce the concept of the sensor array, assume there exists a sinusoidal 

signal source s(i) and a number of sensors capable of detecting signals from 

that source (Cadzow 1990). Figure 3.1 shows a source and an arrangement 
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\Vave velocity c Frequency, wavelength 

Angular Frequency w Wave number 

Vector, Matrix a,A Values of a are complex 

Complex Conjugate A* Hermitian Transpose 

Unit matrix I Covariance of A 

k = 
C C 

AT = (A*)T 

Cov[A] 

= 

= 

60 

(AT)* 

Table 3.1: Mathematical notation for sensor array processing 

signal 
source 

Ys) 

Figure 3.1: A signal source and four sensors, with propagation time to each 

sensor 

of sensors. The time for a wavefront i to travel from the source at (xs, Ys) 

to the ith sensor at (Xi, Yi) is given by 

(3.1) 

The input at sensor i will be Xi(t), 

Xi(t) - s(t - + n(t) 

s(t)e-jwT
; + n(t) (3.2) 
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where n(t) is a noise term. Thus the signals x received by an array of L 

sensors can be conveniently expressed in vector form as 

x(t) = a(x, y)s(t) + n(t) (3.3) 

where a(x, y) = (3.4) 

Vector a is known as the steering vector or army propagation vector for the 

source with coordinates (x, y). If this model is extended to so that it includes 

sources rather than one, we have 

81 (t) 

+ nJ(t) (3.5)x(t) = [a(xl, ... a(xM' YM)] 

8M(t) 

or x(t) A(e) s(t) + net) 
(3.6) 

LxI LxM Mxl Lxl 

Where all elements are complex valued: x, A, s, 

3.2.1.1 Propagation speed of alpha waves 

To use the equations in Section 3.2.1 either the wave speed or wavelength for 

the alpha EEG rhythm is required. The wave speed is not equal to the trans

mission speed- between neurons (vVright & Liley 1996), as this speed varies 

from 1 m·s- 1 (thin unmyelinated neurons) to 10 m·s- 1 (thick unmyelinated) 

to 100 m·s- 1 (myelinated). 

Work done on the propagation of electrical signals in the brain has re

vealed phase velocities of7 m's- 1 to 11 m·s- 1 (Burkitt et al. 2000). This range 

confirms theoretical predictions (Nunez 1995, Thatcher et al. 1986) which are 

calculated using mode frequencies and Maxwell's equations. For calculations 

in this study the alpha EEG wave velocity c is taken to be 10 m·s-1 . 
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3.2.2 The Uniform Linear Array (ULA)
 

If the situation in Figure 3.1 is simplified so that the signal is in the far field
 

(i.e. the signal source is far enough away that wave fronts incident on the 

sensors can be assumed as parallel) and the sensors are linearly aligned with 

equal spacing d, the situation as shown in Figure 3.2. This is called a 

d cos () 
wavefronts

I ... 

--e--e

= 

sensors 

d d 

Figure 3.2: The Uniform Linear Array. 

Uniform Linear Array (ULA). The delay in signal reception experienced by 

one sensor relative to an adjacent sensor is given by 

d cos ()
(3.7) 

c c 

The steering vector in Equation 3.4 becomes 

1 

e-jkdcos(} 

a(()) = (3.8) 

e-jk(L-l)dcos(} 

Vectors with this type of structure are also known as Vandermonde vectors 

(Stoica & Nehorai 1989). Equation 3.3 becomes (neglecting the noise term) 

x(t) = a(())s(t) (3.9) 

I 
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The response of a sensor array to a signal can be found by summing its 

i=l 

L 

S(t) e-jk(i-1)dcosO (3.10) 

The signal magnitude for a signal arriving from direction () at aULA 

can be shown to be (Clarkson 1993), 

111
 e-jkdL cos I 
IG(B)! = L 1 e-jkdcosO (3.11) 

The effects of varying the number of array sensors on the gain can be seen 

in the polar plots of Figure 3.3. 
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Figure 3.3: Effect of array size on the sensor array response for aULA. 

proaching the sensor array in the range 00 < < 180 0 The highest gain is• 

found at () = 900 As the number of sensors L increases the selectivity of the• 

array increases (i.e. the beamwidth decreases), but more sidelobes appear. 

Just as the sensor arrays in Figure 3.3 are selective towards signals coming 

from = 900 
, the array can be made to be selective to other directions of 

arrival by including coefficients w as in Equation 3.12. 

y(t) 
L 

'W;Xi(t) (3.12) 

or y (3.13) 
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An example (using L = 11) is shown in Figure 3.4, where the array is con

figured to focus on signals coming from a direction of = 70°. This process 

L=ll = 
1.0 

0.8 

0.6 

0.4 

0.2 

0.0 
0.4	 0.2 0.0 0.2 0.4 

gain 

Figure 3.4: Using a coefficient array to steer the array gain to = 70°. 

of constructing a suitable w to achieve a desired magnitude response (or 

'beamshape') is called beamforming. 

3.3 Beamforming 

As shown in Figure 3.4, a simple ULA beamformer can be used to select 

a desired direction for maximum gain. Returning to the generalised signal 

model (Figure 3.1) where the signal is not assumed to be in the far field, 

nor are the sensors assumed to be in a given geometry, beamformers can be 

used to focus on signals located at a desired point in space. In this way the 

beamformer is acting as a spatial filter. The beamforming equation is given 

by 

(3.14)
 

The operation of a beamformer (a spatial filter) is directly analogous to Finite
 

Impulse Response (FIR) filtering in the frequency domain. Thus windowing
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65 3.3 Beamforming 

operations on the coefficients will reduce the sidelobes seen in Figure 3.4 in 

an analogous way that ripple is reduced in a frequency domain filter. 

The gain response of any beamformer to a signal at location (x, y) can 

be found from 

r(x,y) = Iwta(x,y)1 2 (3.15) 

where a is given by Equation 3.4. The performance of a beamformer is 

dependent of the characteristics of the signal, the geometry of the sensors, 

and the choice of coefficients w. EEG signals are recorded there is often 

little choice regarding sensor position or signal parameters, and therefore the 

determination of w has a significant effect on the beamformer. Considerable 

effort has been put into methods which determine the filter coefficients for 

different applications such as ultrasonic imaging (Sammur & Hutchens 1987) 

and hearing aid design (Greenberg & Zurek 1992). Two design techniques 

are outlined in the following sections. 

3.3.1 The Bartlett, or Conventional, beamformer 

The Bartlett beamformer is the simplest type and has a data independent 

design process. The aim of this beamformer is to maximise the signal power 

arriving from a point (x, y). The non-trivial solution can be shown (Krim & 

Viberg 1996) to be 

Wbart = a(x, y) (3.16) 

where a is given by Equation 3.4. If the coefficients are constrained to jwl = 

1, then 

a(x,y) 
(3.17)

Jat(x, y)a(x, y) 

1
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66 3.3 Beamforming 

This is an intuitive solution, since the coefficients of a equalise the delays 

from the chosen location (x, y), so that the summation is maximised at the 

sensor array. Figure 3.5 shows an example of a Bartlett beamformer in two 

gain 
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0.6 

0.4 
0.8 

0.2 0.4 
0.0	 0.0 Y coordinate 

-0.8 -0.4 
0.4 0.8 -0.8 

x coordinate 

Figure 3.5: The response of an example Bartlett beamformer with L = 10, 

w = a(-0.2,0.0). 

dimensions. The sensors (L = 10) are arranged in a circle of radius 0.6 around 

(0,0), with the beamformer focused at (-0.2,0.0), i.e. w = a( -0.2,0.0). The 

waveform parameters were f = 10 Hz and c = 10 m·s- 1 
. Figure 3.5 shows how 

a beamforrner can be used to focus the gain at a chosen point in space (in this 

case, in a 2-D plane). This approach can be extended to EEG data, in which 

L = 19 electrodes, and with the coordinate system shown in Figure C.l. 

3.3.2 Results from the application a Bartlett beam-

former 

A number of Bartlett bearnforrners were applied to EEG data sets for all 

subjects (N = 10, as detailed in Section 2.2.1). The calculations required to 

determine electrode coordinates are described in Appendix C. The procedure 

was 
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1.	 Choose coordinates (x, y) for the focus of the Bartlett beamformer and 

calculate filter coefficients w. 

2.	 Filter EEG data using Equation 3.14, which gives a resulting signal y. 

3.	 Use signal y as the input to the the integration alpha detection algo

rithm (refer Section 2.3.1). 

4.	 Calculate detection times and errors for each data set (as III Sec

tion 2.3.5). 

EEG data were filtered using five beamformers. As the alpha activity during 

eye closure is generally higher in the occipital region of the head, it is expected 

that filters with foci at the posterior of the head will give the best results. 

Such a filter would concentrate on occipital areas, while rejecting frontal areas 

which are more likely to be prone to eye and jaw artifact. For comparison, 

filters were tested which focus on the front of the head. The results are 

shown in Figure 3.6(a) for five different focus locations. The locations of 

focus points tested are shown in Figure 3.6(b). Only the coordinate for 

the y-axis (front/back) are shown; the x-axis coordinate was always set to 

zero (centered). Experiments using filters with x values set to values other 

than zero have shown that there is no improvement (i.e. symmetrical results 

are obtained, the best being at x = 0). Also shown in Figure 3.6 for 

comparison is the result for a unity filter, i.e. all w coefficients are set to one 

(this gives the same results as using a focus at coordinate 0.00). Applying 

a unity filter is equivalent to finding the sum of all 19 EEG signals. The 

parameter (as introduced in Section 2.3.5) will be used to compare the 

performance of techniques in this chapter. The results in Figure 3.6 show 

that the spatial filters which focus at the rear of the head (using coordinates 

of -0.09 and -0.20) give the lowest values, as expected. The unity filter 

1
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Figure 3.6: (a)	 Results obtained by applying a Bartlett beamformer to the 

19 channels of EEG. Results for 5 different filters are shown: each filter is 

focused at a different y-axis coordinate, shown in (b). The result for a unity 

filter is also shown. 

and Bartlett filters which focus at the front of the head (using coordinates of 

+0.09 and +0.20) give higher results. It is interesting that the filter with 

the lowest value is designed with a focal point which is outside the confines 

of the head. There are no boundary conditions in the design procedure 

which prevent this, and the result reveals a drawback when using spatial 

filtering of this type with alpha EEG: the performance is limited by the 

spatial resolution. 

3.3.2.1 Spatial resolution of beamformers 

The frequency (10 Hz) and wavespeed (10 m·s- I
) used for the calculations 

result in a wavelength of 1 m. This is much larger than the dimensions of 

the head and leads to reduced resolution in the spatial filters used. This is 
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illustrated by Figure 3.7. Plots 3.7(a) and (b) show the gain of spatial filters 

(a) focus (0.00,0.00) (b) focus (0.00,-0.09) 

1.0 

o 
y coordinate [m] 0.1 0.2 

(c) focus (0.00,0.00) (d) focus (0.00,-0.09) 

1.0 r 1.0 

0.8 0.8 

0.6 0.6 

0.4 0.4 

0.2 02 

Figure 3.7: Gain of four different Bartlett beamformers. Dark regions indi

cate the confines of the head. Plots (a) and (b) use f= 10 Hz, c = 10 m·s- 1 , 

with the foci at two different locations. For comparison plots (c) and (d) 

use f = 50 Hz and c = 10 m·s-1. Note that scales for the z-axis differ. 

(designed as Bartlett beamformers) using f = 10 Hz and c = 10 m·s- 1 
. Two 

different focus locations are shown: (a) uses (0.00,0.00), and (b) uses (0.00,

0.09). The area of the head is shown as a darkened region. The filter which is 

focused at (0.00,0.00) shows localisation at the required point (although the 

gain does not drop to below 0.8). When the focus is shifted to (0.00,-0.09) 

the filter shows poorer characteristics; the rolloff around the focus point is 

low. This is due to the low spatial resolution, a direct result of the 1 m 

1
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wavelength of the signals in question. To show how this resolution affects 

filter design, the same filter characteristics are displayed in Figure 3.7(c) and 

(d) using a frequency of 50 Hz rather than 10 Hz (thus wavelength is 0.2 m). 

The rolloff for both focal points is much higher, and the gains away from the 

focal points are much closer to zero when compared (a) and (b). 

Since the curvature of the filter characteristics is low, designing a filter 

with a focal point outside the physical head area may give a better filter than 

one with a focal point within the head, as with the result using focal points 

of (0.00,-0.02) shown in Figure 3.6. 

3.3.3 Capon's beamformer 

Capon's beamformer is also known as the mmzmum-variance beamJormer, 

Capon's estimator or adaptive beamJormer. Unlike the Bartlett method, it 

is dependent on the data used. This beamformer works by minimising the 

total power output by the filter while constraining the gain of the filter at 

the focal coordinates to be a constant. The effect of this is to steer nulls in 

the directions of the interfering signals so that such signals do not contribute 

to the array output power. The weight vector w(x, y) is given by 

-la(x, y) 
w (x y) - (3.18)

capon , - t ( R -1 ( )a x,y x a x,y 

where a(x, y) is the steering vector. R x is the array-covariance matrix, esti

mated using 

E [x(t )X t (t) ] 

1 N 

N x(t)xt (t) 
t=] 

xxt (3.19) 

1
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where the sample size of x is N. The result in Equation 3.18 comes from 

solving the following relations 

w(x, y) = arg min E{lw tx(t)1 2 
} (3.20) 

w 

(i.e. minimise the power output of the beamformer) subject to 

(3.21)
 

This beamformer is actually of a class of more general beamformers (lin

early constrained minimum variance beamformers (Veen et al. 1997)) where 

Equations 3.20 and 3.21 are changed to 

w(x, y) = min 
w 

(3.22) 

subject to 

(3.23) 

The solution to this general form is 

(3.24)
 

Linearly constrained minimum variance filtering will be used further in Sec

tion 3.4. 

The adaptivity of the Capon beamformer comes from the inclusion of 

x, the input signal, in the design equations so that the coefficient vector 

changes with the characteristics of the waveforms. Thus, a moving source 

of interference would still be nulled by a Capon beamformer. This leads to 

two possible techniques for the design of a Capon filter. The first way is to 

update the filter adaptively according to the data encountered. The second 

method is to design a Capon filter using simulated data, so that null point(s) 
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can be chosen before the filter is used on real data. This means that there is 

less overhead during the filtering process (the w coefficients are not updated 

continuously using Equation 3.18), but the process is no longer adaptive. 

The use of simulated data can lead to problems when using the design 

Equation 3.18. To find a suitable w the inverse of the covariance matrix 

R x must be computed. The inverse matrix is often not computable due to 

deficient rank (see Appendix D.1). In situations where R x is rank deficient 

there are several possible solutions 

• Veen	 & Buckley (1988) use a pseudo inverse A+ = (AAt)-lA. How

ever, this still requires that AA t is invertible. 

•	 a more general pseudoinverse is computable (see Appendix D.3) but 

this has to be used with caution, as it can easily become unstable and 

the results become meaningless. 

•	 It is also possible to use Cholesky decomposition (Appendix D.4) to 

obtain v = -la by solving Rxv = a, as a numerically efficient 

method. However, this requires real valued covariance matrices, and 

thus introduces errors when (as in this study) imaginary components 

are required. 

•	 Add G-aussian noise to the signal, thus ensuing a full ranked 

The preferred method is the addition of Gaussian noise as it is reliable and 

stable, and guarantees an invertible R x . The use of Gaussian noise with sim

ulated data to design a Capon beamformer is demonstrated in Section 3.3.3.1. 
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3.3.3.1	 Design of an example Capon beamformer using simulated 

data 

In this example the same sensor geometry is used as for the Bartlett beam

former example (Figure 3.5). The focus for the filter is again (-0.2,0.0), but 

it is assumed that there is an interfering signal at the location (0.0,0.0). A 

matrix x is constructed that simulates a sinusoidal signal at each sensor from 

a signal at (0.0,0.0). Using Singular Value Decomposition (SVD) (see Ap

pendix D.2) it can be shown that the rank of R x = xxt is equal to 1. This 

is to be expected as there is only one signal source, and further indicates 

that the array R x will be singular. Gaussian noise is added to the 

signal matrix x, we find that R x now has full rank (equal to L = 10 in this 

case), and thus it is now nonsingular. Equation 3.18 can now be used to find 

suitable filter coefficients. The resulting beamformer response (found using 

gain 

1.0 

0.8 

0.6 

0.4 
0.8 

0.2	 0.4 

0.0	 0.0 y coordinate 
-0.4 

O.B -0.8 
xcoordinate 

Figure 3.8: The response of an example Capon beamformer with L = 10, 

w = a( -0.2,0.0). 

Equation 3.15) is shown in Figure 3.8. A maximum is found as required at 

(-0.2,0.0), and there is now a null (compare to Figure 3.5) at (0.0, 0.0). 

,
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3.3.4 Results using Capon beamformers
 

As for the Bartlett beamformer, a number of Capon beamformers were com

pared. The procedure for this was 

1.	 Choose coordinates (x, y) for the focus of the Capon beamformer. 

2.	 (a) If the filter is to be updated adaptively according to the EEG data, 

Equation 3.14 is used to create a new vector of filter coefficients 

w once for every second of input EEG data. 

(b)	 If the filter is to be created artificially (using simulated data), 

choose a null point and calculate filter coefficients w as in Sec

tion 3.3.3.1. 

3.	 Filter EEG data using Equation 3.14, which gives the resulting signal y 

4.	 Use the signal y as the input to the the integration alpha detection 

algorithm (refer Section 2.3.1) 

5.	 Calculate detection times and errors for each data set (as ill Sec

tion 2.3.5) 

The focus point used with the adaptive w updating was (0.00,-0.09). For 

Capon beamfouners with predetermined focus and null coordinates, four 

sets of focus/null coordinates were used. The results of all Capon filters used 

are shown in Figure 3.9; focus and null coordinate positions are as shown in 

Figure 3.6(b). The most conspicuous result is the poor performance of the 

adaptive Capon beamformer. On examination of the spatia] gains produced 

during the course of the algorithm it was discovered that the filters produced 

were not useful, and almost random in their gain characteristics. This is 

another side effect of the poor spatial resolution with alpha waves in the 
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Figure 3.9: Results obtained by applying a Capon beamformer to the 19 

channels of EEG. Results for six different filters are shown: One adaptive 

Capon beamformer, and five beamformers made with simulated data, with 

focus and null at different y-axis coordinates. The result for a unity filter is 

also shown for comparison. 

EEG (refer Section 3.3.2.1). In an effort to steer a null toward interference 

the algorithm effectively destroys the characteristics of the filter. This shows 

how the filter design strategy for the Capon beamformer (to minimise output 

power) can also cause cancellation of the desired signal, as it also contributes 

to the output power (Veen & Buckley 1988). The Capon filters designed us

ing simulated data worked more effectively as shown in Figure 3.9, with the 

lowest score produced by a filter with a focus/null at (-0.09)/(+0.09), and 

a threshold set at 4 standard deviations. The unity filter showed poor perfor

mance when compared to the Capon beamformers designed with simulated 

data. 

1
I
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3.4	 LCMV Filtering using the forward solu

tion to EEG 

Previously applied methods such as the beamforming techniques in Sec

tion 3.3 have assumed that signals from the brain propagate through an 

infinite, homogeneous medium. This is a satisfactory approximation for an 

initial and simple investigation. However, intuition suggests that this may 

not be a satisfactory representation of the human head, which consists of 

many differing tissue types with varying characteristics. To account for the 

smearing effect that the combination of different tissues has on EEG signals, 

a model of the head is used in this section which allows the formulation 

of a forward solution. This forward solution maps activity in the brain to 

potentials seen on the scalp. Such a forward solution can then be used to 

create appropriate spatial filters that account for the influence of the head 

on EEG signals. The forward solutions may also be used to localise regions 

of activity in the brain. The filter design method to be used will be Linearly 

Constrained Minimum Variance (LCMV), of which the Capon beamformer 

(Section 3.3.3) was a special case. 

3.4.1	 Electrically modeling the head 

To produce a forward solution explaining the behaviour of signals in the 

head appropriate representations of the cranium and the neural signals are 

required. The cranial model used needs to incorporate anatomical dimen

sions and electrical properties of tissue types found in the head. A popular 

model is to represent the head by one or more concentric spheres, and to 

approximate the brain activity as dipolar sources. A single dipolar source in 

a homogeneous medium will result in lines of electric potential as shown in 

l 
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x 

Figure 3.10: Lines of electric potential resulting from a dipolar source in a 

homogeneous medium. 

Figure 3.10. 

Earliest modeling attempts (used for cardiac applications) involving dipoles 

used a single homogeneous sphere (Wilson & Bayley 1950). A more accurate 

representation for the head is given by a 3-sphere model (Salu et al. 1990) 

where the three shells describe the brain, skull and scalp. A further develop

ment was given by the formulation of the 4-sphere model, which includes the 

cerebrospinal fluid (CSF) layer (Mosher et al. 1993, Cuffin & Cohen 1979). 

The 4-sphere model will be used in this study. 

As the electrodes used in these experiments are in a headband (and thus 

are located in a plane), the model has been adapted to inc!ude only 2 di

mensions. The head is modelled as in Figure 3.11. The diagram shows the 

head (with outer radius R) and the four spheres representing the brain, CSF, 

skull and scalp. The radii of the spheres are shown (as fractions of R) along 

with their respective conductivities These conductivities are as used 

by Mosher et al. (1993) and Cuffin & Cohen (1979). Many other researchers 

(8 out of the 13 surveyed in the literature) use a unity conductivity value 

for the scalp and brain, and an equivalent skull conductivity of 80. Though 
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Conductivities 
= 3.3 x 10-3 S/cm 
= 10 X 10-3 S/cm 
= 4.2 X 10-5 S/cm 
= 3.3 X 10-3 S/cm 
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(SF 
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Figure 3.11: Four-sphere model for the head which enables the calculation 

of the potential at the electrode due to a dipole on the y-axis. This diagram 

represents a horizontal cross-section of the head (looking from above). 

these values are not realistic, the ratio between conductivities are approxi

mately the same and thus localisation results are not changed. The model 

in Figure 3.11 allows the computation of the potential (referenced to infinity 

(Mosher et al. 1993)) at an electrode due to a dipole on the y-axis. The elec

trode is positioned on the scalp (radius R) at an angle from the y-axis. The 

dipole, which has an x and y component1 sits on the y-axis at a radius f R. 

The dipole also have a z-component, but in this 2-D model it does not 

contribute to surface potentials. The potentials (in the x and y directions) 

are given by Equations 3.25 and 3.26 (modified from Mosher et al. (1993)). 

00 

x cos (3.25) 
n=l 

00 

w(n)aynPn cos (3.26) 
n=l 
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w(n) 
1 fn-l(2n + 1)4(cd)2n+l 

nf(n) 
(3.27) 

= d2n+1 (b2n+1n(k1 - 1)(k2 - 1)(n + 1) 

+ c 2n+1(k1n + n + 1)(k2n + n + 1)) 

. ((k3n + n + 1) + (n + 1)(k3 _1)d2n+1
) 

+ (n + 1)C2n+1 (b 2n+1(k 1 - 1)(k2n + k2+ n) 

+ c2n+1 (k1n + n + 1)(k2 -1)) 

. (n (k3 - 1) + (k 3n + k3 + n) d2n+ 1
) (3.28) 

(3.29)
 

where ax,y are dipole moments. The Legendre Polynomials (PI) and Asso

ciated Legendre Polynomials are calculated numerically as outlined in 

Appendix D.5. For Equations 3.25 and 3.26 it was found that computation 

up to a value of n = 60 was sufficient for consistent results. To compute 

the scalp voltage seen by an electrode due to a dipole at a given point, the 

coordinates are transformed so that the dipole sits on the y-axis. 

A survey of previously applied values for the thicknesses of the scalp, skull 

and CSF is shown in Table 3.2, along with values of head radii. The values of 

skull, scalp and thickness used in this study were the approximate mean 

value of previously used dimensions. This gave radius coefficients (referring 

to Figure 3.11) of b = 0.852, c = 0.875 and d = 0.932. The value of the outer 

radii R used in this study was an average of the head width and head length 

found using 14 subjects (see Appendix C), which resulted in R = 88 mm. 

The effect of applying Equations 3.25 and 3.26 is shown in Figure 3.12. 

This figure shows the potential experienced at an electrode (located at point 

'A') due to a dipole in the x-y plane at varying positions within the confines 

l 
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Reference Head Radius Thickness [mm] 

[mm] Scalp Skull CSF 

\Vard et al. (1998) 

Veen et al. (1997) 

Yvert et al. (1995) 

Fletcher et al. (1995) 

Mosher et al. (1993) 

Roth et al. (1993) 

Veen et al. (1992) 

Cuffin (1990) 

Salu et al. (1990) 

Cuffin & Cohen (1979) 

92 

82.5 

90 

100 

88 

92 

80 

95 

104.5 

88 

7 

7 

7.2 

8 

3 

7 

5 

5 

8.36 

3 

5 

3 

4.5 

5 

4 

5 

7 

6 

5.225 

4 

2 

2 

mean 91.2 6.05 4.87 2.0 

this study 88 G.O 2.0 

Table 3.2: Dimensions used in previous studies involving the 3- or 4-sphere 

model, and values used in this study. 

of the head. The effect of dipoles orientated in both the x and y directions 

are shown. In contrast to the expected performance of a single homogeneous 

sphere, the potential for this 4-sphere increases nonlinearly as the dipole 

moves closer to the electrode position. The notch visible in the response to 

the x-orientated dipole is caused by the null point in the line of potential for 

a single dipole (refer Figure 3.10). 

3.4.1.1 The suitability of the sphere-type head models 

The 4-sphere model is an important step toward a satisfactory electrical 

representation of the head, but it should be emphasised that other models 



-

-

81 3.4 LCMV Filtering using the forward solution to EEG 
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Figure 3.12: Potential at an electrode (point 'A') on the scalp due to dipoles 

(in the x and y directions) at various positions in the head. Potential values 

in this example are arbitrary. 

of the head exist. The two major issues with the spherical model concern 

the shape of the head, and its tissue properties; a sphere is not the most 

accurate representation of the heads geometry, and the conductivities used 

assume that the tissue is locally homogeneous and isotropic, which is a gross 

simplification. Below is a brief discussion of more advanced models, and how 

they compare with sphere-type models. 

As mentioned, the modeling of tissue layers in a homogeneous manner is 

a simplification: 'Ven et al. (1999) and Arthur & Geselowitz (1970) investi

gated the effect of inhomogeneous tissues on models for the head and heart 

respectively. Similarly, Awada et al. (1998) found that uncertainties in con

ductivity values used were contributing factors to poor model performance, 

and that of these conductivities, the skull and scalp were most sensitive. The 

report also found that the conductivity values used by researchers varied by 

more than an order of magnitude. 

Variations on spheres, such as the eccentric model, have been shown 

(Cuffin 1990) to improve on dipole localisation tests, but by less than 1 em. 
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Head models with realistic shapes can be constructed using finite element 

analysis with Magnetic Resonance (MR) images as templates (Chen et al. 

1998, Yvert et al. 1995). These have improved localisation of dipoles by 

a few centimeters (Roth et al. 1993, Cuffin 1996), although for best re

sults every subject would need to undergo the lengthy and expensive MR 

imaging procedure. Optimisation of such finite element problems (Awada 

et al. 1997, Fletcher et al. 1995) have improved efficiency of realistic head 

models, but such processes remain a computationally demanding exercise. 

Though it is desirable to achieve the best resolution possible, computa

tional tradeoffs mean that for the study described in this thesis the 4-sphere 

model is the appropriate choice. More advanced models are better suited to 

clinical environments involving evoked responses, where exact localisation is 

paramount, and processing time is a secondary issue. If real-time monitoring 

is required, as is the goal here, a simpler model is needed. Localisation of 

alpha sources will not return a discrete location, but instead the centre of a 

distributed region of activity (Lopes Da Silva 1991), thus a high resolution 

method is less crucial. This contrasts with evoked potential studies (e.g. in 

Cuffin (1996)) which may aim to pinpoint or target very small regions of 

activity in the brain. 

3.4.1.2 Incorporating the head model in a LCMV filter 

The filters to be designed in this section differ from those used in Section 3.2 

in that it is assumed for this study that the propagation delay is negligi

ble (Spencer et al. 1992), whereas the previous beamformer design method 

used the delay between signal arrivals as its discriminating factor. For this 

localisation technique the LCMV design procedure uses the differences in 

amplitude between sensors rather than concentrating on temporal disparity 

l 
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and assuming equal signal amplitudes. 

In order to spatially discriminate between signals using the 4-sphere head 

model two filters are required, one for each dipole orientation (x and y). The 

two filters w can be combined as W, so that the spatial filter operation will 

be 

y = WTx (3.30) 

This will give a 2 xl y vector for each time interval, representing the response 

to the two dipole orientations. For convenience, the magnitude of this dipole 

moment vector is used as the filter output. 

Let H(q) be an N x 2 matrix representing the potential at N electrodes 

due to a dipole source at location q with unit dipole moments in the x and 

y directions. So, referring to Equations 3.25 and 3.26, 

r 

YC1,q) 

H(q) YC2,q) 

YCL,q) 

where represents the 

voltage at electrode n due to 
(3.31) 

an x-orientated dipole at 10

cation q 

The ideal filter will satisfy the condition 

{ (3.32) 

This means that the gain is unity at the location qo and zero elsewhere. It 

is mathematically possible to design a filter to suit the constraints in Equa

tion 3.32, but the number of degrees of freedom that are used in doing so may 

result in poor filter performance (Veen et al. 1997). The Linearly Constrained 

Minimum Variance (LCIVIV) filter design methodology instead satisfies the 

first (passband) requirement in Equation 3.32 while minimising the variance 

l 



84 3.4 LCMV Filtering using the forward solution to EEG 

in the filter output. This creates an optimal filter with minimised signal 

response in the stop band (i.e. the region q qo). The filter coefficients are 

calculated using (Veen et al. 1997), 

W(qo) = [HT (qo)C-1(x)H(qo)r1
H T (qo)C-1(x) (3.33) 

where C(x) is the data covariance matrix 

given by (Veen et al. 1992), 

C(x) xxT assuming = 0 (3.34) 

3.4.2 Results using the LCMV filter 

Filters designed using the four sphere head model and LCMV algorithm 

were applied to EEG data sets for N = 10 (as described in Section 2.2.1) 

subjects, using a range of focal coordinates. The x-coordinate was always set 

to zero, and the y-coordinates were set to -0.09, -0.07, -0.04, +0.04; +0.07 

and +0.09. As with the filters designed using beamforming procedures in 

Section 3.3, it is expected that the coordinates that focus in the occipital 

area will give the best performing filters. Because the head model used 

in this section incorporates boundary conditions, coordinates outside the 

physical dimensions of the head are not meaningful (unlike the beamforming 

design process, where it was possible to use any desired coordinate value). 

After filtering, the resulting signal is processed by the integration alpha EEG 

detection method, and detection times and errors recorded, as previously 

described in Section 2.3.4. 

Data resulting from the application of filters to EEG data is shown in 

Figure 3.13. Two groups of data can be seen in Figure 3.13(a), the plot shows 

a distinction between results recorded from filters focused at the anterior 

(positive focal coordinates) and posterior (negative coordinates), with the 

results for filters focused at the posterior of the head giving better results 

I 
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Figure 3.13: Results (a) obtained by applying filters designed using the four 

sphere head model and LCMV algorithm to EEG data. Six different focal 

coordinates in the y-axis were used as, shown in (b). 

(The mean of the confidence intervals that show the posterior filters give 

better results than the anterior filters is 72%). There are no major differences 

between the filters focused at the rear of the head; the lowest value is given 

when the filter is focused at (0.00,-0.04), using a threshold of n = 3 standard 

deviations. 

All filters showed a poor performance with regard to error rates; notice 

that there is an almost asymptotic effect at total errors:::::; 1.8, where most 

detection methods discussed thus far approach very low error counts. On 

closer inspection of data collected the higher error count is primarily due 

to artifact errors encountered during jaw clenching trials. This reveals a 

limitation of the filter design process: the use of signal amplitude information 

rather than temporal characteristics has led the filter to assume that the 

EMG signals from the jaw are in fact EEG signals produced in the occipital 

region. Thus the use of the four sphere head model and LCMV filter design 

method as described here are more suitable for spatial filtering of clean signals 
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(such as in evoked potential tests) but do not perform well in an unregulated 

environment where artifact with high amplitudes are present, such as the 

data used in this study. 

3.5	 Adaptive filtering using all. artifact refer

ence 

The first three sections in this chapter have dealt with preprocessing filtering 

methods that use the location of desired and unwanted signals for filter design 

strategies. The filtering method described in this section instead uses the 

characteristics of unwanted signals as a basis to produce clean EEG alpha 

data, a process generally referred to as 'adaptive filtering'. 

An adaptive filter uses two source signals: the input signal which has 

been affected by some artifact, and a reference signal which ideally contains 

only the artifact source. To achieve this there must be a source of the artifact 

signal available for use with the filter. In this study the adaptive filter is used 

to iteratively adjust itself so that it can remove a version of the reference 

(artifact) signal from the input signal, leaving an output signal free from 

artifact. 

3.5.1	 Introduction 

The adaptive filter consists of coefficient vector w(n) of size N which is 

continuously adjusted according to the characteristics of the input signal d(n) 

and a reference signal x (n). The filter attempts to model the relationship 

between x(n) and d(n). The relationship can be used in many ways, in this 

implementation the filter will be used to separate unwanted artifact signals 
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from EEG data, using a reference signal which contains a 'clean' verSIOn 

of the artifact in question. A representation of a general adaptive filter is 

shown in Figure 3.14. An algorithm is used to continuously update the filter 

d(n) 

Adaptive y(n)
x(n) Filter 

w(n) 

Figure 3.14: Functional diagram for an adaptive filter 

coefficients w(n). An example of the operation of an adaptive filter is shown 

in Figure 3.15. This data shows a simulated EEG alpha (10 Hz) signal as 

d(n) which becomes contaminated with EMG (30 Hz) signal at t=l s. The 

reference signal r(n) contains only the EMG signal which is assumed to have 

been collected at a different location to the EEG signal. The signals y(n) and 

e(n) correspond to Figure 3.14; y(n) is the output from the filter and e(n) 

is the error signal and also the desired output. The filter quickly adapts to 

the change in the reference signal and separates the unwanted noise (visible 

as y(n)) which is subtracted from the original EEG leaving a signal clean 

from EMG as e(n). The difference in using an adaptive filter as opposed 

to simply subtracting the noise signal from the EEG is that the adaptive 

filter continuously adjusts the amplitude of the noise signal to be subtracted. 

A simple non-adaptive subtraction may (depending on the relative signal 

levels) actually introduce more artifact into the resulting signal than was 

originally present. The amplitude disparity of the EMG signals present in 

the reference data (which may be typically millivolts) and EEG data (which 

may be typically tens of microvolts) causes no problem to the algorithm. 

1 
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y(n) 

1 2 

Time[s) 

Figure 3.15: A demonstration of adaptive filter operation. An EEG signal 

d(n) has been contaminated at t=l s by EMG artifact. A clean source of this 

artifact is available as the reference signal x(n). The filter quickly adapts to 

the change and separates the noise signal into y(n) which is then subtracted, 

leaving a clean EEG signal e(n). 

3.5.2 The adaptive filter algorithm 

The filter uses a coefficient vector w of size N 

(3.35)
 

The signals shown in Figure 3.14 are related by 

y(n) w(n)Tx(n) (3.36)
 

e(n) d(n) - y(n) (3.37)
 

where x(n) is a vector of the last N values of x(n). The algorithm used
 

to update the filter coefficients w(n) in this study is the Least-mean-square 

(LMS) algorithm. The algorithm has the form 

w(n + 1) = w(n) + 2fie(n)x(n) (3.38) 

1
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where is a step size parameter. The choice of Nand have a significant 

effect on the performance of the filter; a smaller N and larger will give faster 

convergence but poorer adaption than a filter with larger N and smaller 

The stability of the filter depends largely on the value of the step size 

(Douglas 1998). For stationary signals the filter can be shown to be stable 

(i.e. the filter coefficients converge) when (Diniz 1997, p. 26) 

1 
0< < (3.39) 

max 

where is the largest eigenvalue in the correlation matrix of x. Equa

tion 3.39 cannot be used for the data used in these studies due to the nonsta

tionary nature of the signals (especially during trials such as jaw clenching). 

Although the value could be updated continuously using Equation 3.39 

the calculation of correlation matrices and eigenvalues would add a signifi

cant computation burden to the process. Instead a more approximate but 

easily computable method is used here, where the step size is determined by 

(Douglas & Rupp 1998) 

(3.40)
 

where is the input signal power. 

Although many filter structures and algorithms are available, the LMS al

gorithm is applied here due to its computational simplicity, stable behaviour 

and proven convergence (at least in stationary environments). Figure 3.16 

shows performance examples for the LMS adaptive filter algorithm using 

real data. Figure 3.16(a) shows EEG data (d(n)) from electrode E4 (refer 

Figure C.1) contaminated with EMG signals, caused by clenching the jaw. 

The reference signal x(n) is taken from electrodes placed over the masseter 

muscle. As the filter output (y(n)) shows, a large amount of EMG signal is 

separated from the EEG input. Although the signal has been cleaned to some 
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o 2 3 4 5 6 0 

Time [s] 

2 3 4 5 6 
Time[s] 

Figure 3.16: Examples of signals (taken from electrode E4) applied to adap

tive filters showing input signal d(n), reference signal x(n), extracted compo

nent y(n) and 'cleaned' signal e(n). Plot (a) shows the EEG contaminated 

with EMG due to jaw clenching, with the reference signal tal(en from over 

the masseter muscle. Plot (b) shows an artifact in EEG created by head 

movement, the reference signal is taken from an EEG electrode at the front 

of the head. 

extent, the output e(n) reveals that there is still evidence of the EMG signal 

contaminating the EEG data. Figure 3.16(b) uses EEG data from electrode 

E4 which has been affected by movement artifact (during movement of the 

head). The reference signal x(n) is taken from electrode E10. As the output 

signal e(n) shows, the artifact has been removed effectively by the adaptive 

filter. 

1
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3.5.3	 Results from the application of the adaptive fil

ter algorithm 

The LM8 adaptive algorithm was applied to EEG data for all 10 subjects 

using a range of filter lengths and reference electrodes. The input signals 

for the filter (d(n)) were taken from electrodes in the occipital regions, E2 

and E4. Both signals were adaptively filtered separately, then the difference 

of the output signals computed. This differential signal was then processed 

by the integration alpha detection method (see Section 2.3.1) and detection 

times and error counts determined as previously described. Filter sizes used 

were N = 10,20,50,100 and 200. The reference signal (x(n)) was taken from 

electrodes E5, E7 or E10, as well as from the EMG electrode located over 

the masseter muscle. It is expected that the choice of reference signal will 

have a large influence on the results obtained: the EMG reference contains 

no EEG signal, but is far from the occipital region, thus the EMG present 

in the EEG signal may not be sufficiently correlated to the reference EMG 

to allow sufficient matching by the adaptive filter. Conversely, using EEG 

electrodes (such as E5) as the reference may show highly correlated EMG (or 

other) artifact, but desired signals such as the alpha EEG component may 

also be removed by the adaptive filter, as the alpha signal may be present in 

both reference and EEG electrode data. 

Figure 3.17(a) shows results obtained when the adaptive filter algorithm 

is applied to EEG data for all subjects using the EMG signal (on the jaw) 

as the reference, and using a variety of filter lengths. The overlap of the 

data points reveals that the filter length has little effect on the performance 

of the algorithm in this situation. Tests for other choices of reference elec

trode showed similar findings; a change in filter length did not produce an 

appreciable change in alpha detection performance. Figure 3.17(b) shows the 
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Figure 3.17: Results obtained by applying EEG data from all 10 subjects to 

the LM3 adaptive filter. Plot (a) shows results when the EMG electrode is 

used for the reference with varying filter lengths. Results in (b) use a filter 

length of 1'1 = 200 with different reference electrodes. 

performance of the adaptive algorithm using a filter length of 1'1 = 200, and 

using different electrodes as the source for the reference signal. The lowest 

value is obtained when using the EMG electrode as a reference and a thresh

old of n = 3 standard deviations. In general, however, the use of electrode 

E5 as the reference produces consistently low values compared to the other 

electrode choices. 

These results argue against the assertion that using a reference electrode 

close to the sites used for alpha detection will cause the alpha component 

of the EEG to be adaptively removed. In fact, the use of electrode E5 as 

the reference electrode to filter artifact from E2 and E4 electrodes shows 

promising results compared to the use of EEG electrodes which are further 

away on the head (E7 and E10). 

To confirm whether the inclusion of the adaptive filter provides any ben

efit to the alpha EEG detection problem, results using the adaptive filter 

1 
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Reference Electrode 
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E5 x 
No filter • 
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__
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Figure 3.18: Comparison of alpha detection results when EEG data is applied 

to an adaptive filter (using reference electrodes E5 and and when the 

data is processed by the integration method without adaptive filtering. 

(N = 200) with reference electrodes from the jaw (EMG) and E5 are com

pared to results obtained without using the adaptive filter (i.e. using the 

integration alpha detection method only, no preprocessing). These three sets 

of results are shown in Figure 3.18. Again the results using E5 electrode 

as the reference show consistently good results compared to the unfiltered 

method over many threshold settings. The results for the EMG electrode 

are less convincing, though the lowest value is given by this electrode at 

threshold n = 3. 

3.6	 Blind Source Separation using Indepen

dent Component Analysis 

The preprocessing methods introduced so far in this chapter have relied on 

some form of external information to enable the successful filtering of the 
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EEG electrode array data. For example, the beamforming method used 

location information to focus on the occipital area, and the adaptive filter 

used information from a reference electrode which is assumed to contain 

artifact signal. The filtering method to be described in this section uses no 

outside information, but instead performs its operations 'blindly'. 

3.6.1 Introduction 

Blind source separation (BSS) methods aim to decompose a set of data into 

many separate components without prior knowledge ('blindly'). Previously 

applied methods in this study, such as in the beamformers (Section 3.3) or the 

spatial filters using the forward head model (Section 3.4), have used location 

information in order to separate EEG and EMG signals. Blind methods use 

only information contained in the signals themselves to attempt separation 

of mixed signals. 

One method that has shown recent promise for the blind separation of 

EEG signals is Independent Component Analysis (ICA) (Hyviirinen & Erkki 

1999). The technique has also shown encouraging results for many other 

applications, such as separation of audio signals and finding structure in 

stock returns (Back & Weigend 1997). In this section the ICA algorithms 

will be used to separate alpha EEG signals from the other waveforms in the 

data sets (other EEG, EOG, artifact, etc.). Once separated, the alpha EEG 

signal will then be used as the input to the previously discussed integration 

alpha detection method. In principle this will offer better performance as 

only the alpha EEG will be present, and interfering signals or extraneous 

EEG will be discarded. 

The ICA model is that of a linear mixture of independent signals 

x = As (3.41 ) 

1
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where s are latent sources that cannot be observed directly, A is a linear 

mixing matrix, and x are the observed values. For EEG, x are the signals 

as recorded by the Neurosearch-24, the mixing matrix A is an unknown 

function dependent on the the conductivities of the brain, scalp, skull and 

cerebrospinal fluids, as well as the type and locations of the electrodes used. 

The s signals are the many neural sources in the brain, ocular artifacts, 

electromagnetic interference and so on; these are the so-called 'independent 

components'. The aim of BBB is to find the mixing matrix A (which is 

effectively a set of spatial filters), so that the original source signals s may 

be computed, as shown below; 

s (3.42) 

(3.43) 

The matrix W is assumed to be time invariant. 

Additionally, a set of EEG signals may be 'cleaned' of an artifact which 

has been separated into a component and visually identified. The corrected 

EEG signals x' can be gained using 

x' = W-1s' (3.44) 

where S' is the matrix of independent components with artifact components 

set to zero. For the purposes of this thesis we investigate whether ICA can 

be used to isolate the alpha 'source' component, which can then be further 

processed to detect the increase in alpha EEG associated with eye closure. 

3.6.2 Theory 

In general, the ICA algorithm makes the assumptions that (a) the source 

signals Si are statistically independent, and (b) that they have nongaussian 

distributions. The algorithm works most effectively when (Makeig et al. 1995) 

1 
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the medium is linear 

11	 propagation delays are negligible 

iii	 the time courses of the source signals are independent 

iv	 the number of sources is equal to the number of sensors (N) 

Volume conduction in the head is thought to satisfy (i) and (ii) (though in 

Section 3.3 for filtering purposes it was assumed that propagation delays 

were finite). Point (iii) is acceptable since ECG, EMG, ocular artifacts etc 

are not locked to the mechanisms of EEG. Though (iv) is uncertain, it has 

been numerically shown that the algorithm performs well even with a large 

number oflow-level independent sources (Jung et al. 2000). The first issue is 

to determine how one measures the independence of one signal compared to 

others. Different approaches to lCA use various measures of independence in 

order to separate the components. Some of the more successful methodologies 

include, 

•	 minimising higher order cumlflants (or moments) (Back & Weigend 

1997, Vigario et al. 1997, Hyvarinen & Oja 1997). This approach stems 

from use of the Central Limit Theorem, which predicts that (under 

certain conditions) the distribution of the sum of random variables 

tends toward the gaussian distribution - i.e. the sum of two random 

independent random variables has a distribution that is more gaussian 

than either of the original variables. The fourth-order cumulant (or 

kurtosis) can be used as a measure of how close a signal is to being 

gaussian in nature (or its 'gaussianity') (Hyvarinen & Erkki 1999), and 

thus as a measure of independence. 

1 
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•	 minimisation of mutual information, or maximisation of the entropy, of 

the outputs (Bell & Sejnowski 1995, Hyvarinen 1999, Lee et al. 1999, 

Jung et al. 2000) 

The structure of many of the algorithms used for ICA often leads them to 

be labeled as neural network algorithms. Although not the first treatment of 

the subject, much work on ICA stems from the development of algorithms 

by Bell & Sejnowski (1995), who used information maximisation (infomax) 

to facilitate component separation. 

Advantages of lCA 

•	 many classes of artifact may be dealt with using one method 

• does not distort (in principle) signals, compared to spectral 

filtering which may remove parts of required signals 

•	 does not require one 'clean' artifact reference (as in adaptive 

filtering, Section 3.3). 

Limitations of lCA 

•	 cannot determine ordering of IC's (thus running the algo

rithm repeatedly may produce the same IC's but in an un

predictable order) 

•	 can only resolve at most N signals (where N is the number 

of sensors, only a problem when N is small) 

•	 requires sufficient data for training 

•	 needs visual inspections of results 

•	 EEG signals may not satisfy nonstationarity conditions 
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3.6.3	 Selection of leA algorithm 

Many variations of the ICA algorithms have been developed. Two algo

rithms have been chosen to test on EEG data here, the Fixed Point algorithm 

(Hyvarinen 1999, Hyvarinen Oja 1997) and the Extended ICA algorithm 

(Lee et al. 1999). The preprocessing required for the application of these 

methods to EEG are described below, along with the two algorithms and 

reasons for their suitability. 

3.6.3.1	 Are the signals of interest in this study gaussian or non

gaussian? 

Since the overall success of lCA depends on how gaussian the signals are, 

we consider the statistics of some of the the signals we are interested in. 

Firstly 50 Hz line interference was 
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Figure 3,19:· Probability density functions of signal amplitude for (a) 50 Hz 

line noise and (b) alpha component of the EEG. 

signal using an FIR bandpass filter (f3dB = 49,51 Hz). The probability density 

function (pdf) for this signal is shown in Figure 3.19(a), along with a reference 

gaussian distribution with the same standard deviation as the data, and zero 

mean. To confirm how 'gaussian' the signal is the value of the kurtosis is 

examined (Smith 1994). The kurtosis gives a measure of the flatness or 

30 
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peaked-ness of a distribution. 

kurtosis (3.45) 

If a signal is gaussian, the kurtosis will be zero. If the kurtosis is less than zero 

the signal is described as sub-gaussian (or platykurtic), and if the kurtosis 

is greater than zero, the signal is described as super-gaussian (or leptop

kurtic). Thus, the powerline interference signal shown in Figure 3.19 (a) is 

sub-gaussian. 

To establish the characteristics of the alpha EEG component, the fil

tered output from the differential E2-E4 signal of 4 different EEG trials (all 

from the same subject) was extracted. Only artifact-free signals during eye 

closure were used to create pdf's. The average of the 4 pdf's is shown in 

Figure 3.19(b). This suggests that the alpha component of the EEG dur

ing eye closure is approximately gaussian, which agrees with the statistical 

hypothesis by Dick & Vaughn (1970) and the Rayleigh distributions shown 

in Section 2.4. Since nongaussianity of the source signals is an assumption 

of the rCA algorithms (see section 3.6.2) this may mean that the alpha sig

nal will not be able to be successfully separated from the other components. 

It is worth noting that the central limit theorem indicates that a mixture 

of non-gaussian components will appear gaussian, especially if there are a 

large number of sources (as may be present in the brain). Thus the apparent 

gaussian nature of EEG signals does not necessarily preclude them from use 

with the rCA algorithms (Makeig 1998) as the underlying nature of neural 

activity may still be non-gaussian. 
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3.6.3.2 Preprocessing 

Before the algorithms are applied the data is centered (the mean is sub

tracted) and whitened (Hyvarinen & Erkki 1999). vVhitening (or sphering) 

linearly transforms the data variable x so that the components are uncorre

lated and their variance equals unity, i.e. the transformed matrix is 'white', 

and E {xxT} = I. This transformation is llseful since the mixing matrix to 

be found (A) is now orthogonal, and thus the number of parameters to be 

estimated is reduced. \Vhitening can be achieved a number of ways, though 

a simple method is to modify x by the whitening matrix V, 

(3.46) 

where A is a matrix with eigenvalues of covarince of x on the diagonal 

E is a matrix with eigenvectors of covariance of x as columns 

Covariance is found by C = 
xxT 
- (p is sample size) 

p 

3.6.3.3 The Extended ICA Algorithm 

This is an adaptation and extension of the Bell & Sejnowski (1995) algorithm 

(which is deficient in separation of sub-gaussian components: sources which 

have a negative kurtosis). The Extended lCA algorithm (Jung et a1. 2000, 

Lee et a1. 1999) is derived using the maximum likelihood formulation and is 

shown to be able to separate super-gaussian (eg. some sound sources) and 

sub-gaussian (50 Hz noise in EEG signals) into individual components. By 

contrast, the algorithm of Bell & Sejnowski (1995) spreads the 50 Hz noise 

over many components. 

IThe Extended lCA Algorithm I 

Parameters required: 
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L Learning rate 

LF Learning rate adjustment coefficient (LF < 1) 

B Data block size (B < p) 

Momentum term (affects rate of convergence) 

J Number of iterations to perform 
Procedure: 

1.	 Randomly permute x values to ensure stationarity of the 

input signals (Makeig et al. 1995) 

2.	 Perform whitening on x 

3.	 Set initial W as a unitary matrix 

4.	 For each Xi in x (where Xi is a data block of size N x Band 

N is number of input channels): 

(a)	 u = xTW 

(b)	 W = L(I - K tanh(u)uT - uuT)W 

where K is a matrix with diagonals ki 

ki = sign - E(Ui tanh(ui))) 

(c)	 W = W + + -1)) 

(d)	 If W coefficients blow up, lower L rate 

5.	 L = Lx LF 

6.	 Repeat from (4) until maximum iteration count j is reached 

3.6.3.4 The Fixed Point Algorithm 

This algorithm concentrates on a compact design with fast convergence. It 

avoids the need to find matrix inverses, and has cubic convergence (Hyvarinen 

1999, Hyvarinen & Oja 1997, Vigario et al. 1997). 



3
)

102 3.6 Blind Source Separation 

IThe Fixed Point ICA Algorithm I
 

Parameter required:
 

Convergence limit for change in W
 

Procedure:
 

1.	 Perform whitening on x 

2.	 Initial W is a random matrix 

3.	 Normalise W 

4.	 Decorrelate inputs: 

a W=W/JIIWWTII
 

b 
2 2 

Repeat (4b) until convergence 

5.	 U=xTW 

6.	 
p 

- 3W (p is sample size of x) 

7.	 Calculate change in W:
 

change = 1 - [min ( abs(diag(W;Wi _ 1)))]
 

8.	 Repeat from (3) until change< 

3.6.3.5 Comparison of the two algorithms 

The characteristics of these techniques are shown in Table 3.3. For an ex

ample, both algorithms were trained on a sample of EEG from one subject. 

The segment of EEG data used is shown in Figure 3.20. At t = 30 s the 

subject was instructed to close both eyes and hold them closed. An eye blink 

can be seen at t = 28.5 s (especially prominent in electrodes near the front 

of the head), and a larger (clipped) artifact at t = 30 s when the subject 

closes both eyes. Alpha rhythm is evident in occipital electrodes (El-5 and 

E16-19) after t = 30 s. 
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Fixed point algorithm 

Advantages: 

Requires only one user-defined parameter 

Fast convergence 

Disadvantages: 

Sub- and super-gaussian components cannot be separated well 

without further processing 

Extended leA algorithm 

Advantages: 

Improved ability to resolve sub- and super-gaussian compo

nents. 

Disadvantages: 

Algorithm requires many parameters which can have a large 

effect on quality of resulting IC's. 

Slow convergence (speed also highly dependent on supplied 

parameters) 

Table 3.3: Comparison of two ICA algorithms 
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Figure 3.20: A segment of the EEG data collected usmg the 19 channel 

headband. At t = 30 s the subject closed both eyes and held them closed, 

Electrode numbering refers to Figure C,l 
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Figure 3.21: Independent Components separated using the fixed point ICA 

algorithm applied to EEG data shown in Figure 3.20. 

The results of applying the two lCA algorithms to the 90 seconds of EEG 

data can be seen in Figure 3.21 (Fixed Point) and Figure 3.22 (Extended). 

The IC's found by both algorithms have readily identifiable signals, especially 

that of the major eye blink (IC 10 in Figure 3.21, and IC 2 in Figure 3.22). 

The alpha increase due to eye closure is evident (as the signals become domi

nated by lower frequency contributions) chiefly in components IC 2 and IC 3 

for fixed point- ICA, and in components IC 8 and IC 15 for extended ICA. 

On inspection the components containing alpha separated by the extended 

ICA algorithm are cleaner than those found using the fixed point algorithm, 

suggesting that other signal components are being separated along with the 

alpha rhythm by the fixed point algorithm. Thus it appears that the ex

tended algorithm performs well on alpha signals, despite their gaussianity. 

Another distinction between the results from the two ICA algorithms in 

Figures 3.21 and 3.22 is the difference in scale between components for each 
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Figure 3.22: Independent Components separated using the extended ICA 

algorithm applied to EEG data shown in Figure 3.20. 

algorithm. The scaling of each component cannot be predicted beforehand, 

nor can it be determined after the algorithm has been run. In order to be able 

to compare different components in a single data set, or between components 

in many data sets, the scales must be fixed. In order to do this each com

ponent is projected back onto the electrode sites; i.e. the contribution from 

a component at each electrode site is determined (Jung et al. 1998). This 

is done by applying W-1 to the selected component from Equation 3.42. 

An example of this projection is shown in Figure 3.23, where independent 

component 2 (which contains EOG artifact) from Figure 3.22 is projected 

onto electrode sites. The contribution from these components at each site is 

evident (compare to Figure 3.20) especially at frontal electrode sites. Now 

that it is possible to compare components on equal scales, the ability of each 

of the two ICA algorithms to separate alpha signals can be tested. To do 

this the Fourier transform was used to find the average spectral power in the 
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Figure 3.23: Independent Components projected onto electrode sites. These 

curves show the contribution to all electrodes resulting from component num

ber 2 in Figure 3.22. 

8-13 Hz band for each component (projected onto electrode sites) found by 

the two algorithms, averaged over all 10 subjects. The eye closure trials were 

used, as described on p. 25 in Chapter 2. The W coefficients were found for 

each of the four eye closure trials done by each subject. Each component was 

projected onto the electrode sites (so that scaling was correct) and the alpha 

spectral power in the seven posterior electrodes was averaged for the eyes 

open and eyes closed periods. The components were sorted by average alpha 

spectral power as the ICA algorithms will not necessarily deliver the IC's in 

the same order over successive trials. Finally, the average over all subjects 

was taken. The results are shown in Figure 3.24. The figures show that both 

algorithms concentrate the majority of alpha power during eye closure into 

a handful of components. The Extended ICA algorithm performs slightly 
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Figure 3.24: Average alpha spectral power for each of the 19 components 

found using Extended rCA and Fixed Point rCA algorithms during eye clo

sure. Values for eyes open and eyes closed are shown. 
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better than the fixed point algorithm, with the power in the former's IC's 

dropping rapidly compared to the main alpha component. The Extended 

ICA algorithm concentrates 75% of the normalised alpha spectral power into 

the first three components, as opposed to 67% for the Fixed Point algorithm. 

This indicates that alpha EEG is being successfully separated from other 

EEG signals by the algorithms. 

\Vhile these results are encouraging in that alpha signals are separated 

during eye closure, it needs to be established that the 8-13 Hz component 

of artifact signals is not separated into the same components as alpha EEG 

during eye closure. i.e. are the algorithms separating alpha from all other 

biological signals present, or do artifact signals appear in the component 

which was previously thought to contain only alpha EEG? Data presented 

in Figure 3.25 confirms that the components that have been separated with 

high alpha spectral power are due to eye closure, and not other artifact 

signals. Figure 3.25 shows the performance of the two ICA algorithms using 

W coefficients trained on four different eye closure trials (all from the same 

subject). The sets ofW coefficients are applied to 16 EEG data sets. The 16 

EEG data sets incorporate eye closure, clenching of the jaw, head movement 

and reading out loud. Each of the four W's are used to separate IC's from the 

16 sets of data The average alpha spectral power for the each of the 19 IC's 

(projected onto the electrode sites) is computed. The most prominent feature 

of these graphs is the large increase in alpha power for some components in 

the jaw clenching trials. The ideal component choice is one which shows high 

alpha power during eye closure and low alpha power for all other test types. 

This would indicate that that the component contains alpha EEG but not 

other artifact signals. Components which show this quality have been marked 

in bold on the plots in Figure 3.25. Each of the four W matrices obtained 
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Figure 3.25: Comparison of performance of the Extended and Fixed Point 

rCA algorithms with regard to alpha EEG spectral power. The algorithms 

were applied to four sets of EEG data (81-4) involving eye closure. The 

ICA coefficients from these trials were then used to separate 19 Ie's for 16 

different EEG data sets involving eye closure, clenching of the jaw, moving 

the head and reading out loud (as labeled on the x-axes). The IC's visually 

determined to be satisfactory for alpha separation are shown as a bold line. 
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by using the Extended ICA algorithm show at least one component which 

has the desired characteristics. The Fixed Point algorithm did not perform 

well in this regard, with only two satisfactory components found; all other 

components which showed high alpha power during eye closure also contained 

high alpha power during artifact trials (especially during jaw clenching). The 

graphs in Figure 3.25 support two important findings: 

•	 The Extended ICA algorithm is superior to the Fixed Point algorithm 

for the purpose of alpha signal separation, despite initial concerns that 

no ICA algorithm would satisfactorily separate alpha rhythms due to 

the gaussian nature of alpha EEG signals, and EEG signals in general. 

•	 Coefficients which are gained by training on one set of data are suitable 

for use on other data sets from the same subject, recorded during the 

same session. 

Accordingly, the Extended ICA algorithm will be used for the remainder of 

ICA experiments in this thesis. 

3.6.4 Results obtained for leA analysis 

The Extended ICA algorithm was applied to eye closure EEG data sets for all 

subjects and the resulting W coefficients recorded. To determine the most 

appropriate IC to use for each data set the components must be visually ex

amined. To enable a decision to be made as to which component contained 

the most alpha EEG signal (while avoiding artifact signals) plots similar to 

those in Figure 3.25 were constructed for each eye closure data set. i.e. the 

W coefficients found for each eye closure data set are applied to all EEG data 

for that subject, and the alpha power in each of the 19 components is plotted. 

In this way the best W coefficients and Ie are found for each subject. It 
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was found that for, 5 out of the 10 subjects, determination of an appropriate 

component to use was immediately obvious, and a straightforward choice was 

made. The choice of component for the remaining 5 subjects was more diffi

cult; it was noted that for these same 5 subjects convergence using the fixed 

point ICA algorithm was slower when compared to the remaining subject 

data sets. 

The chosen IC for each subject is separated in all sets of EEG data for 

that subject. This component is then used as the input to the integration 

alpha EEG detection method, and detection times and errors are calculated 

as previously shown. Note that the components do not need to be projected 

onto electrode sites for this procedure as the integration alpha EEG detection 

method is scale independent (since the threshold is set by the mean and 

standard deviation of the baselines, see p. 30). The detection time and errors 

obtained when the ICA components are used as an input to the integration 

alpha detection algorithm are shown in Figure 3.26. Despite problems in 
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Figure 3.26: Results obtained when using ICA components as an input to 

the integration alpha detection method. 

separating appropriate components for use with alpha detection algorithms 
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in some subjects, the results are good, showing low detection times and error 

counts. The best result is obtained when using a threshold setting of 4 

standard deviations. 

3.7 A Comparison of results and discussion 

A comparison of results for preprocessing methods used in this chapter is 

shown in Figure 3.4. The rankings are determined as described previously in 

Section 2.6 (p. 52). The rankings show the significantly poorer performance 

of the simple filtering methods; the unity and Bartlett filter which suffered 

from poor spatial resolution. Also evident is the very disappointing results 

for the adaptive Capon filter, whose algorithm was not able to cope with the 

poor spatial resolution of the alpha EEG, and damaged the characteristics 

of the filters designed. rather than enhancing them. The results using simu

lated data to design Capon filters are much better, showing that appropriate 

algorithm choice can overcome some of the the problems caused by the low 

spatial resolution inherent with the alpha EEG signals. 

Adaptive filtering using reference electrodes showed some improvement 

over the integration algorithm used with no preprocessing, but the improve

ment is marginal. Similarly the use of the four sphere head model and LCMV 

filter design algorithm did not give the low values that were expected. This 

was primarily due to the poor performance of the filter with respect to artifact 

signals; the filter design which uses signal magnitude rather than temporal 

disparity was not able to discriminate sufficiently between EEG signals and 

the overpowering presence of artifact, especially EMG from the jaw. 

The most highly ranked preprocessing method was the Independent Com

ponent Analysis technique, using the Extended ICA algorithm. This algo
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Alpha Detection Method mean value and std error p value rank 

Independent Component Analysis 1.220 ± 0.071 0.107 1 

Capon's Filter (simulated data focus: -0.09 null: +0.09) 1.238 ± 0.101 0.185 2 

LM8 Adaptive Filter (reference electrode: EMC) 1.292 ± 0.053 0.333 3 

LM8 Adaptive Filter (reference electrode: E5) 1.307 ± 0.063 0.343 4 

Integration 1.392 ± 0.093 - 5 

LCMV filter using four sphere head model (focus: -0.04) 1.471 ± 0.065 0.546 6 

Unity filter 1.780 ± 0.141 0.037 7 

Bartlett Filter (focus: -0.20) 1.653 ± 0.118 0.030 8 

Capon's filter (adaptive w update) 2.087 ± 0.143 <0.001 9 

....
 
0 

0 

....
 

....
 
0 

Table 3.4: Ranking of results from alpha detection techniques introduced in Chapter 3. Techniques are ranked using 

the p value from a paired two-tailed t-test, compared against the integration alpha EEG detection method. 
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rithm proved successful despite concerns that the algorithm would not cope 

with the apparent gaussian nature of EEG (and alpha EEG in particular), 

and despite findings that the separation of components for some subjects was 

much more efficient than for others. Since the time that ICA experiments 

for inclusion in this thesis were completed, a report by other researchers 

has been published with demonstrates the ability of the ICA algorithm to 

enhance EEG signals in preparation for brain-computer interfacing. The ex

periments by Makeig et al. (2000), which concentrate on the fL-rhythm, show 

that preprocessing by the ICA algorithm improved the performance of the 

methods used, as it does for alpha EEG detection in this thesis and demon

strated in Section 3.6. Unfortunately, the ICA algorithm is also the most 

computationally demanding of all the methods covered in this chapter (as an 

example, the time to separate components for a single EEG data file was an 

order of magnitude longer than the time it took to process a EEG data file 

using the integration alpha detection method). Although the algorithm only 

needs to be trained once to obtain a W matrix for each subject, data needs 

to be inspected visually to choose an appropriate component to use, and W 

coefficients may not necessarily be suitable for use over successive trials (i.e. 

a subject on two different days may give very different W matrices due to 

electrode placement differences. 

The preprocessing techniques covered in this chapter have all been used as 

an input to the integration alpha EEG detection method introduced in Sec

tion 2.3.1. The preprocessing filters described could similarly be applied to 

any of the other alpha detection methods that have been mentioned. Chap

ter 4 will introduce alpha detection methods which again use many electrodes 

in an attempt to produce a fast and reliable alpha detection technique. In 

contrast to all methods discussed so far in this study, which use amplitude 
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information to enable the detection of alpha onset following eye closure, the 

methods described in Chapter 4 will use the apparent location of alpha EEG 

activity in the brain as a discriminator between alpha and non-alpha peri

ods. 



Chapter 4 

Location-based methods for 

alpha EEG detection 

4.1 Introduction 

The concept of the sensor array was discussed in the introductory section 

of Chapter 3. As well as the spatial filtering operations which were used 

in Chapter 3 to select regions of the head from which to receive signals, 

sensor arrays may be used to determine the regions of highest EEG activity 

in the head. This leads to a possible method of alpha EEG detection: rather 

than assuming the location of alpha EEG in the head, constructing a spatial 

filter to focus on that region and processing the resulting signal, it may 

instead be possible to track the location of highest alpha EEG activity in 

the head, and use this as an indicator of an increase in the alpha EEG 

activity caused by eye closure (Searle Kirkup (2001)). Although this does 

not imply that the source of alpha activity moves, it may be feasible to 

monitor the location of highest alpha EEG activity. Between periods of 

eyes closed and eyes open the region of dominant alpha activity may shift 

l 
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in the brain; this chapter will investigate whether this shift can be utilised 

for eye closure detection. Techniques introduced in this chapter will use the 

estimated location of highest EEG activity to indicate alpha EEG changes. 

4.2	 Source localisation using a Bartlett beam-

former 

One method of signal source localisation can be implemented using beam

formers. This is achieved by scanning the area of interest with a beamformer 

and testing the signal power at each location. A physical area to be moni

tored is selected and a series of beamformers are designed with focus points 

directed at evenly spaced locations covering the chosen region. The power 

of the signal from each beamformer is calculated and the point of maximum 

power is designated as the signal source location. The signal power from a 

Bartlett beamformer focused at (x, y) can be found by (Krim & Viberg 1996) 

P(x, y)	 = at(x, y)Rxa(x, y) (4.1) 

where R x is the covariance matrix (Equation 3.19) and a is the steering 

vector (Equation 3.4). An example of source localisation using Equation 4.1 is 

shown in Figure 4.1. This plot shows the result of localisation using artificial 

EEG data, simulating a single 10 Hz point source at coordinates (-0.04,

0.04). A maxima is present at the source location, though the limited spatial 

resolution means that it is not well defined. 

To see how localisation using the Bartlett beamformer performs on real 

EEG data (which is assumed to have sources which are distributed in nature, 

rather than single point sources) illustrative EEG data from four eye closure 

trials were processed, and the results shown in Figure 4.2. The area was 
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I 
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Figure 4.1: Example of source localisation using a Bartlett beamformer. Data 

used was simulated EEG of a point source at coordinates (-0.04,-0.04). The 

darkened area represents the area covered by the head. 
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Figure 4.2: Localisation using a Bartlett beamformer applied to illustrative 

EEG data from eye closure trials. The plots show results averaged over four 

eye closure trials for periods of (a) eyes open and (b) eyes closed. The 

darkened area represents the area covered by the head. 
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4.2 Source localisation using a Bartlett beamformer 

divided into a 40 x 40 grid, and Equation 4.1 was used to calculate the signal 

power from each point on the grid during eyes open and eyes closed periods 

(30 s each). The results for eyes open and eyes closed periods from the four 

EEG data sets (all from the same subject) were averaged. Coordinates used 

in in Figure 4.2 correspond to those used previously (see Figure C.1). There 

are no maxima discernible in Figure 4.2 which indicate specific locations of 

alpha activity, however the results from the eyes open and eyes closed cases 

are sufficiently different to warrant the investigation into the use of Bartlett 

beamformer localisation for alpha EEG detection. That is, it may still be 

possible to use the kind of non-specific results in Figure 4.2 to differentiate 

between eyes open and eyes closed states. 

4.2.1	 Using the Bartlett beamformer for alpha EEG 

detection 

To use the localisation process for alpha EEG detection the EEG data was 

processed in blocks b samples long. Smaller blocks mean better temporal 

resolution, (i.e. the use of a data block 2 seconds long means a result can 

only be obtained once every 2 seconds), larger blocks will give better spatial 

resolution. An alpha EEG detection algorithm needs a parameter to operate 

on, ideally for localisation methods this parameter would be an estimate of 

the source location. The absence of maxima in the results obtained from 

applying a Bartlett beamformer to EEG data (e.g. Figure 4.2) means that a 

search of the result surface for a maxima will not give a meaningful parameter. 

As an alternative, the gradient of the surface for coordinates at the rear of the 

head will be calculated and used as the defining parameter in the detection 

algorithm. It is expected that lack of neural activity (when a subject has 

eyes open and resting) will give a small gradient (as in Figure 4.2(a)), while 

I
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high occipital alpha activity associated with eye closure will produce a surface 

with a large positive gradient (as in Figure 4.2(b)). Artifact will produce high 

signal activity at the front of the head (or evenly distributed over the head) 

thus giving a negative or near-zero gradient. Thus alpha EEG detection can 

be achieved by monitoring the presence of positive gradients. The algorithm 

for alpha detection using localisation is: 

• Divide the EEG data into blocks b samples in length 

• For each data block 

- Perform localisation by applying Equation 4.1, using coordinates 

covering the head area in a 20 x 20 grid 

Construct a surface of the signal power from the beamformers at 

each point 

Calculate the gradient of the surface parallel to the y-axis at the 

rear of the head 

Additionally, this algorithm may be modified to significantly lower computa

tional expense, as it implies that only a few points are required to calculate 

the gradient at the rear of the head. Examples obtained by applying this 

algorithm to data are shown in Figure 4.3. The EEG data sets used 

in the example were an eye closure trial and a jaw clench trial (see p. 25 

for details) using a data block size of b = 256 samples (of duration 0.5 s). 

Results for one eye closure trial in Figure 4.3(0,) shows that the period of eye 

closure is distinct from the eyes open periods by the positive gradient values. 

As predicted, artifact is visible as negative or low-valued gradients as shown 

by the jaw clench trials shown in Figure 4.3(b). 
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Figure 4.3: Results from the alpha EEG detection using Bartlett beamformer 

localisation. Two EEG data sets are shown, (a) an eye closure trial and (b) 

a jaw clench trial. Periods of eyes open, eyes closed and jaw clench are 

indicated. 

4.2.2 Application of a sliding window averager 

Even though the major features in the plots of Figure 4.3 are discernible 

there is still significant variability in the gradient values, thus smoothing of 

the gradient points needs to be performed before the final step of calculating 

alpha detection times and error rates. The smoothing is done by a moving 

window averager which has a length dependent on the data block size b. The 

alpha EEG detection algorithm using Bartlett beamformer localisation will 

be tested using five different b sizes. The corresponding averager window 

length i for each block size is shown in Table 4.1. The window lengths were 

chosen so that 1280 samples (= 2.5 s). This time product of 2.5 s was 

discovered empirically to give best results for a range of data block sizes, but 

also closely corresponds to the 2.3 s time constant successfully used with the 

integration alpha EEG detection technique (see p. 29). 

Once the gradient values have been averaged by the sliding window, 

thresholds for detection are set using the baseline and standard deviation 

of the eyes open period, as previously described in Section 2.3.3. 
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data block size averaging 

samples (b) seconds window length (l) 

128 0.25 10 

256 

512 

I 0.50 

1.00 

I 
5 

3 
I 

1024 2.00 2 

2048 4.00 1 

Table 4.1: Averaging window sizes to use with different data block lengths 

4.2.3 Results using Bartlett beamformer localisation 

The alpha EEG detection method using Bartlett beamformer localisation 

was applied to EEG data for all subjects, and detection times and errors 

were calculated as previously described in Section 2.3.5. The results are 

shown in Figure 4.4. The plots show good performance despitp the poor 
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Figure 4.4: Results obtained for alpha EEG detection using Bartlett beam

former localisation. 

spatial resolution of the Bartlett beamformer with EEG signals. The smaller 

blocksizes show lower values compared to larger (b = 1024 and 2048) 

blocksizes, which suffer from high detection times. The lowest value is 
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found when using a blocksize of b = 512 and a threshold of n = standard 

deviations. 

4.3	 Minimum variance beamformer for source 

localisation 

The minimum variance approach used to create a spatial (Capon) filter as 

described in Section 3.3.3 can also be used for signal source localisation. The 

array output power of a Capon beamformer at coordinates (x, y) is given by 

(Gonen & Mendel 1998) 

1 
P(x. y) = 1	 (4,2)\ ( )x ax,y 

(compare to the Capon beamformer design criteria, Equation 3,18). 

Utilising the same artificial EEG test data used for Figure 4.1, the re

sults of performing localisation using Capon's beamformer are shown in Fig

ure 4.5. Localisation using Capon's beamformer with artificial EEG data 

gives a sharp peak at the source coordinates. As indicated in Section 3.3 

the superior characteristics of Capon's beamformer over the Bartlett beam

former using simulated EEG data did not translate to good performance on 

real EEG data. This is also found to be the case here, as indicated by the 

illustrative data shown in Figure 4.6. These plots show localisation curves 

using Capon's beamformer applied to four sets of eye closure EEG data (all 

from the same subject, as used for Figure 4.2). Figure 4.6 reveals that there 

is little difference between the localisation results for eyes open and eyes 

closed cases. This difference is too small to enable an algorithm to success

fully detect the onset of alpha EEG due to eye closure. Upon inspection 

of results obtained using the Capon beamformer localisation on EEG data 
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Figure 4.5: Example of source localisation using Capon's beamformer. Data 

is simulated EEG of a point source at coordinates (-0.04,-0.04). The darkened 

area represents the area covered by the head. 

for all subjects (N=10), the lack of consistent and usable difference between 

eyes open and eyes closed results was found in all cases. The poor perfor

mance of Capon's beamformer on EEG data (as discussed in Section 3.3.4) 

can be attributed to the inability of the algorithm to steer nulls effectively 

due to the poor spatial resolution inherent with alpha EEG. In addition to 

disabling the filter characteristics, the attempt at nulling also sacrifices noise 

suppression capability (Krim & Viberg 1996). 

4.4	 MUSIC 

(MUltiple SIgnal Characterisation) 

The beamforming methods for source localisation (apart from having low 

spatial resolution) are limited physically by the signal to noise ratio (SNR) 

of data provided. This section introduces a source localisation method which 

has no theoretical SNR limit (Le. the results the method returns are inde
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Figure 4.6: Localisation using Capon's beamformer applied to illustrative 

EEG data from eye closure trials. The plots show results averaged over four 

eye closure trials for periods of (a) eyes open and (b) eyes closed. The 

darkened area represents the area covered by the head. 

pendent of SNR in an ideal situation.) This is achieved by using properties 

of second order statistics in signals, namely the covariance matrix R. The 

basis of the technique, called MUltiple SIgnal Characterisation (MUSIC), is 

based on separating signal characteristics into signal and noise subspaces. 

4.4.1	 Signal and noise subspaces 

The sensor array model was introduced in Section 3.2.1 as 

x = As+ n	 (4.3) 

The spatial covariance matrix of x is R x (estimated by Equation 3.19) which 

can be represented as 

R x	 Cov[x] 

Cov[As] + Cov[n] 

-0.10 
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and using the 'Law of separation of errors this gives 

R s and R n are the signal and noise covariance matrices. If it is 

assumed that all signals are uncorrelated, and that the noise is spatially 

white (i.e. the noise is uncorrelated among all sensors and has a common 

variance at all sensors) then Equation 4.4 becomes 

(4.5) 

This assumption that signals are not correlated has significant impact on the 

performance of the algorithm, as will be demonstrated. A k x k matrix can 

be expressed in terms of its k eigenvalue/eigenvector pairs (Johnson 1998), 

k 

B = (4.6) 
i=l 

where and ei are eigenvalues and eigenvectors of B respectively. This is 

called eigendecomposition. Furthermore (Swindlehurst & Kailath 1992), 

B 

kxk 

P 

kXk 

A 

kxk 

pt 

kxk 
(4.7) 

where 

o 
A 

o 0 

lThe Law of Separation of Errors states (Johnson 1998, Monzingo & Miller 1980), 

if Y Ax 

COylY] = ACov[x]At 
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So, continuing from Equation 4.5 

(4.8) 

If we have a L sensors, and M independent (or partially correlated) signal 

sources, it can be shown (Gonen & Mendel 1998) ARsAt has rank M. 

Thus ARsAt has non-zero eigenvalues and M' = L - zero eigenval

ues. Consequently (Krim & Viberg 1996) R x has M' eigenvalues equal to 

and M eigenvalues that are larger than We can partition the eigen

value/eigenvector parts into noise eigenvectors (corresponding to eigenvalues 

= ... = = and signal eigenvectors (corresponding to eigenvalues 

... > Thus Equation 4.8 can be separated into 

pt
n 

(4.9) 
LxL LxM MxM MxL LxM' M'xM' M'xL 

The matrices P sand P n are called the signal and noise subspaces. 

4.4.2 The MUSIC algorithm 

Utilising either the noise or signal subspace, the MUSIC 'spatial spectrum' 

is given by 

at (x, y)a(x, y) 
(4.10)D(x, y) at (x, y) n a(x, y) 

n - pnpnt 

I-PsPst (4.11) 

The denominator of Equation 4.10 is small at source locations (x, y), and 

thus maxima are produced for source positions. In practice the noise vari

ance is not known, so to separate the noise and signal subspaces the number 
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of signal sources M must be predetermined. The performance of the MUSIC 

algorithm is compared to beamforming (Bartlett and Capon) in Figure 4.7. 

The example curves in the figure are created using = 3 simulated far

field signal sources. Due to the source being in the far-field, direction of 

arrival (angle) is shown, rather than a source location. The plots show the 

ability of the l\IUSIC algorithm to resolve closely spaced sources (graphs (a) 

and (b)); the Bartlett beamformer fails to resolve the sources when they 

are close together. Under low SNR (graph (c)) the MUSIC algorithm shows 

superior performance to both beamformers: if the covariance matrix were 

able to be computed exactly, the SNR would have no effect on the MUSIC 

spectrum, only computational rounding lowers the SNR performance. One 

complication with the MUSIC algorithm (and Capon beamformer) is shown 

in Figure 4.7(b); when signals are correlated the sources are unable to be 

resolved. In contrast, the Bartlett beamformer suffers little degradation in 

performance when the signals are correlated. Figure 4.7 highlights similar

ities between the Capon beamformer and MUSIC algorithm: the MUSIC 

algorithm is equivalent (Ganen & Mendel 1998) to the Capon beamformer 

when the covariance matrix is exact, and the SNR infinite. 

4.4.3 EEG data and the MUSIC algorithm 

It has been established that source localisation using the Capon beamformer 

(Section 4.3) is not suitable for use as a basis for alpha EEG detection. Tests 

in this section will determine whether the superior SNR performance of the 

MUSIC algorithm will enable source localisation with alpha EEG. 

As shown in Section 4.4.2 the number of signal sources must be known 

before the MUSIC algorithm can be applied (to allow the separation of R x 

into signal and noise subspaces). Experiments with alpha EEG data have 
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Figure 4.7: Comparison of the Bartlett beamformer, minimum variance 

(Capon) beamformer and MUSIC source localisation algorithms. Plots show 

the signal strengths arriving from different angles (specified on the x-axis). 

Plot (a) shows. results using three far-field sources with frequencies of 9, 10 

and 11 Hz (all of equal amplitude). Arrows show source directions, and the 

SNR of the test signals is 50 dB. (b) shows the same signals with two sources 

moved closer together. (c) shows the signals with a SNR of 10 dB. (d) shows 

the results when all three signals have the same frequency of 10 Hz. 
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shown that setting the number of signal sources to = 1 returns the best 

results, though higher settings do not change the results considerably. Tech

niques are available to estimate the number of signals, for an overview see 

Krim & Viberg (1996). 

For the MUSIC algorithm to perform successfully, the input data needs to 

have a real and imaginary component (Le. an analytic signal). To make the 

EEG data analytic, the Hilbert transform is applied (see Appendix D.6 for 

details) before the algorithm is used. Figure 4.8 shows the results 

from applying the MUSIC algorithm (Equation 4.10) to EEG data from 

eye closure trials. There is a visible difference between the eyes open and 

1.0 r (a) 
1.0 

0.9 

O.B 

-0.10 

0.7 ·0.05 0.7 -0.05 

0.00 0.00 

0.00 
0.05 x coordinate 1m] 0.05 x coordinate [m] 

y coordinate [m) 
0.05 0.10 0 . 10 

y coordin 0.10 0.10 ate 

Figure 4.8: Localisation using a music beamformer applied EEG data from 

to eye closure -tests. The plots show results averaged over four eye closure 

trials for periods of (a) eyes open and (b) eyes closed. The darkened area 

represents the area covered by the head. 

eyes closed states. As with Bartlett beamformer source localisation it is 

not possible to use maxima from the surfaces, thus the gradient technique 

is applied again. Example plots of gradient values found using the MUSIC 

algorithm with an eye closure and jaw clench EEG data set are shown in 
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I Figure 4.9: Gradient values obtained after applying the MUSIC algorithm to 

I 
(a) eye closure and (b) jaw clenching EEG data sets. A blocksize of b = 256 

samples was used. 

Figure 4.9. The blocksize used in the example was b = 256 samples (of 

duration 0.5 s). There is a change in the data trend during eye closure 

there though it is not as distinct as the example shown for the Bartlett 

beamformer (Figure 4.3). As Figure 4.9(b) shows, artifact presence causes 

, negative gradient values. As in the method using Bartlett beamformer source 
! 
I localisation, an averaging sliding window will be used to smooth the gradient 

values before detection times and error rates are computed. 

I 4.4.4 Results 

The results when the MUSIC algorithm is applied to all sets of EEG data 

(from subjects as described in Section 2.2.1) are shown in Figure 4.10. There 

are noticeably few results obtained (as mentioned in Section 2.3.5, only 

threshold settings which successfully detect the alpha activity increase due 

to eye closure in at least 75% of subjects are displayed) and the two settings 

shown have relatively high values. The lower of the two uses a blocksize 

of b = 128 samples (=0.25 s), and a threshold setting of n = 3 standard 

deviations. Since the spatial resolution and SNR performance of the MUSIC 
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Figure 4.10: Results obtained when the MUSIC algorithm is applied to all 

sets of EEG data. Five different blocksize settings were used (though only 

two provide satisfactory results). 

algorithm arc superior to the Bartlett beamformer this leads to the conclu

sion that it is the poor resolving power of the MUSIC algorithm when dealing 

with coherent signals that leads to the disappointing results shown in Fig

ure 4.10. This problem with coherent signal sources also reflects on the poor 

performance of minimum variance (Capon) beamformer localisation, smce 

there is a strong link between it and the MUSIC algorithm. 

4.5	 Use of the LCMV forward solution for 

source localisation 

The construction of spatial filters using the four sphere head model and 

LCMV design algorithm was introduced in Section 3.4. The same head model 

can also be used for the localisation of signals. This section will test the 

localisation algorithm using the four sphere head model to see whether the 

change in location of alpha EEG can be tracked and used to determine eye 
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closure successfully. 

As with the Bartlett (and Capon) beamformer, localisation is performed

by testing neural activity at many locations over a grid. Since the four

sphere head model is used here, localisation is focused on dipole activity.

Dipole localisation is measured in this case by the variance of activity at

location qo, estimated by 

(4.12)

where Hand C are given by Equations 3.31 and 3.34 respectively, and tr(·)

represents the trace of a matrix. To perform localisation, Equation 4.12 is

evaluated at many qo locations resulting in a result matrix that is easily

displayed as a surface. This method assumes that regions of large variance

are regions of substantial neural activity. This method does not presume

sources of activity radiate from single dipoles but rather a weighted

combination of dipoles (de Munch et al. 1992) 1 thus source geometries may

be distributed in nature. Another advantage with this localisation method

(especially when compared to the MUSIC algorithm, Section 4.4) is that no

assumptions are made about the number of neural sources. 

One possible problem with the LCMV localisation approach is that noise

signals (in this case interference or background EEG) may be nonuniformly

spatially distributed. This means that the variance of the noise signal will be

larger in some regions of the head, and thus when the localisation algorithm is

applied maxima will appear at these locations and may lead to mislocalisatio

of alpha EEG signals. This may be corrected by normalising the previous

result of Equation 4.12, 

tr ([HT(qo)C-1(x)H(qo)] -1) 
(4.13)

tr ([HT(qo)Q-lH(qo)r1
) 
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Here Q is the noise covariance matrix. As the noise covariance matrix is 

unlikely to be known, an estimate may be calculated using a signal that is 

free of the source to be investigated. The assumption is that the noise signals 

will be stationary, thus the results from Equation 4.13 will only show changes 

in remaining, nonstationary signals. 

4.5.1 Example of source localisation 

Examples of source localisation are shown in Figure 4.11 using the unnor

malised (Equation 4.12) and normalised (Equation 4.13) localisation algo

rithms. The data used in these figures was collected from the eye closure 

trials (see p. 25). Localisation was performed on segments of EEG data with 

a blocksize of b = 1024 samples (2 s), and the resulting surfaces averaged 

over the eyes open and eyes closed periods. For normalisation, the Q co

variance matrix was estimated using the first 30 seconds of the trial (during 

eyes open). Both pairs of plots show a discernible difference between the 

eyes open and eyes closed scenarios. Note that the normalised graph for eyes 

open (Figure 4.11 (c)) shows little activity because normal 'baseline' alpha 

behaviour has been recognised as 'noise' due the the calculation of the Q 

matrix using the initial 30 seconds of the trial. Also apparent in Figure 4.11 

is the effect of the boundary conditions for the head model: activity is zero 

outside the dimensions of the head. This was not true for localisation when 

using the Bartlett beamformer or MUSIC algorithm. The results using the 

four sphere head model algorithm do not suffer from the poor spatial resolu

tion which affects the beamforming and MUSIC algorithms (which gives the 

localisation surfaces from these methods the (curved' appearance). This is 

because the four sphere head model uses amplitude information rather than 

temporal characteristics to achieve localisation. 
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Figure 4.11: Results from source localisation using unnormalised, and nor

malised algorithms. Graphs show the average of four data sets from the same 

subject. EEG data was processed using a blocksize of b = 1024 samples (2 s). 

Coordinates are as used in Figure C.l, where negative y-values denote the 

rear of the head. 
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In addition to suggesting that the bulk of alpha EEG activity occurs i

the posterior region, the results in Figure 4.11 are useful in distinguishin

between eyes-open and eyes-closed states by tracking the focus of neura

activity. A basic procedure for monitoring the surface maxima location woul

not be appropriate, since there are many local 'spiky' minima which ma

mislead an algorithm. Rather the 'centre of gravity' (COG) of the generate

surface data will be used to give an indication of shifting neurological activit

locations. It was empirically found that the surface of localisation is (o

average) symmetrical across the x-axis, and thus the COG is always in th

center (at x = 0). Since little information is gained from the data in th

x-axis (the left-right axis of the head) the COG will be computed only fo

the y-direction (front to back). The procedure to find the COG is shown i

Figure 4.12. The surface plot is 'compacted' into two dimensions by summin

3 

2 

30 

20 

10 

o
0-10 -10 0 10 -10 0 10[em] 

iemJ [em) 

Figure 4.12: Procedure to find the centre-of-gravity (COG) for a source lo

calisation surface. The surface of localisation results in summed over th

x-coordinates, then Equation 4.14 is applied to find YCOG' 

all data across the x-dimension, then the COG of this data is found usin

Equation 4.14. 

x y 
YCOG (4.14
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4.5.2 The influence of the data block size 

In order to use COG as a localisation method the EEG data must be pro

cessed in finite blocks. As with the Bartlett beamformer and MUSIC lo

calisation algorithms, an important consideration in the estimation of the 

neural activity location is the size of the data blocksize b to use with Equa

tion 4.12 or Equation 4.13. To use the technique for eyes open/eyes closed 

determination, a short data block size is desirable (to give more COG loca

tion estimates per second and thus a faster detection time), but conversely 

a small data block size may give poor positional discrimination compared to 

large block sizes. The influence of the data block size on COG values during 

eye closure is shown in Figure 4.13. EEG data from eye closure trials for all 

subjects was processed, and histograms of the predicted COG locations were 

derived separately for eyes open and eyes closed periods. The processing for 

the example in Figure 4.13 was performed with Equation 4.12 (without the 

noise normalisation) using five different data block sizes. The ideal result for 

eyes open and eyes closed data on these plots would be a large separation 

between the means for the two COG distributions, with each distribution 

having a small standard deviation. Figure 4.13 shows that as the block size 

increases, the separation in means of the eyes open and eyes closed distri

butions increases, and standard deviations decrease. This is emphasised in 

Figure 4.13(f) which plots the change in separation of means, and the stan

dard deviations for each distribution as the data block size changes. Thus 

the most ideal distributions are given when using a blocksize of 2048 sam

ples. However, as will be seen in Section 4.5.4, a blocksize of such length may 

lead to longer detection times for alpha EEG increases, despite the better 

discrimination between eyes open and eyes closure cases. 
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Figure 4.13: Histograms (plots (a)-(e)) showing the probability density fUllctions (pdf) for estimated COG values 

(YCOG) for eyes open and eyes closed periods data using the non-normalised method for five different data block 

sizes. Data from all eye closure data sets from all subjects were used to create the histograms. Plot (f) shows 

the separation of means, and standard deviations of the eyes open and eyes closed distributions from the COG 

histograms in Plots (a)- (e ). 
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Figure 4.14: Example of localisation using the four sphere head model and 

YCOG during (a) an eye closure and (b) jaw clenching trial. Blocksize b = 256. 

4.5.3 Examples of localisation 

The use of source localisation using the four sphere head model is demon

strated in Figure 4.14, which shows the change in YCOG during eye closure 

and jaw clench trials. The blocksize used is n = 256 samples (of duration 

0.5 s). The eye closure is visible the decrease in YCOG values, caused by 

increase occipital alpha EEG activity. The positive YCOG values during ar

tifact (Figure 4.14(b)) are also apparent. Due to the variability of the YCOG 

values, a sliding window averager is required (as used with the Bartlett beam

former and MUSIC algorithm). The size of the window is determined by the 

blocksize, and window lengths are as described in Section 4.2.2. 

After smoothing by the sliding window the thresholds for detection can be 

computed, and detection times and errors calculated. One minor difference in 

the procedure in this section (compared to Bartlett beamformer or MUSIC) is 

that eye closure leads to a decrease in the parameter used in alpha detection; 

as is evident in Figure 4.14, YCOG decreases upon eye closure. This means 

that the smoothed data needs to be inverted about YCOG = 0 so that the 

previously described threshold determination (Section 2.3.3) and detection 

time calculation (Section 2.3.4) procedures (which assume the parameter 

o 10 20 30 40 50 60 70 80 90 

TIme!s) 
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increases with alpha activity) can be followed. 

4.5.4	 Results for alpha EEG detection using localisa

tion with the four sphere head model 

The alpha detection method using the four sphere head model was applied 

to all sets of EEG data, and detection times and errors computed as pre

viously described. The results for the algorithm with and without noise

normalisation, and for five different blocksize settings are shown in Fig

ure 4.15. The plots reveal that the use of normalisation gave lower scores 

10 
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Figure 4.15: Results obtained for alpha EEG detection using the four sphere 

head model for source localisation. 

for the range of blocksizes tested. The lowest score was given using nor

malisation with a blocksize of n = 128 (=0.25 s) and a threshold setting of 

5 standard deviations. 

l
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4.6	 Localisation using the power source loca

tion coefficient 

This technique uses source localisation as a basis but does not return an 

estimate of the source location that is physically meaningful. This lack of a 

physical relation is irrelevant for the purpose of this study as the result is 

nonetheless useful for the detection of the increase in alpha EEG activity. 

Appropriately, the result is termed a location coefficient (rather than a loca

tion estimate) so as not to be misleading. This determination of the power 

source location coefficient uses a direct approach which is computationally 

simple, and thus can be implemented easily. This contrasts with the other 

localisation techniques discussed so far in this chapter which require many 

calculations, especially the MUSIC algorithm and four sphere head model. 

The power source location coefficient method uses signal amplitude informa

tion (as does the four sphere head model) rather than temporal information 

(as the MUSIC and beamformer localisation methods use). The algorithm 

uses the alpha (8-13 Hz) power present in the EEG signal at each of the 19 

electrodes to indicate the location of highest alpha EEG activity in the head. 

If the position of electrode i is denoted by a vector and the alpha EEG 

power present at that electrode is the process can be represented by 

L 

= (4.15) 
i=l 

where is a vector which gives an indication of source location, and the 

number of electrodes is L = 19. The vector does not give a physically 

meaningful result as its units are not of displacement. An example of the 

resulting vectors during eye closure are illustrated in Figure 4.16. The 

figure shows that vectors relating to electrodes at the posterior of the head are 
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Figure 4.16: Graphical example of the power source localisation technique. 

This figure shows vectors for the 19 electrodes during eye closure. 

noticeably larger compared to those for other regions. Though this method is 

not useful for clinical source localisation, it is sufficient for the requirements 

here, where the actual location is unimportant, so long as there exists an 

appreciable difference between the alpha and non-alpha states. 

The y-component only of the location coefficient will be used for alpha 

EEG detection, as it was found that the x component does not offer any 

contribution to the determination between alpha and non-alpha periods. The 

results when Equation 4.15 is applied to EEG data (in segments of length 

b=blocksize, as previously used) is shown in Figure 4.17. The periods of 

high alpha activity are evident in Figure 4.17(a) by the negative dy values. 

Other baseline activity or artifact signal (Figure 4.17(b)) primarily results in 

positive dy values. Two notable EOG artifacts are visible in Figure 4.17(a) 

as two positive spikes at the beginning and end of the eye closure period 

(t=30 sand 1,=60 s) when the subject closes, then opens both eyes. 

I
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Figure 4.17: The y component of the location coefficient (dy ) obtained when 

Equation 4.15 is applied to example EEG data sets containing (a) eye closure 

and (b) jaw clenching trials. For this example data was processed with a 

blocksize of b = 256 samples. 

The data from eye closure trials shows that no information regarding al

pha increase is present in the positive dy values, and thus they may effectively 

be discarded. The algorithm for the power source localisation technique is 

• Apply Equation 4.15 to EEG data in segments of blocksize b 

• Use only the y component of the location coefficient (dy ) 

dY 
• Set all values dy = 0 

{ 

•	 Negate values such that alpha EEG activity now gives positive val

ues. 

• Determine threshold setting as in Section 2.3.3 

•	 Compute detection times and error rates as previously described m 

Section 2.3.4 

The removal of positive dy values gives a lower standard deviation of the 

baseline when threshold settings are calculated: this leads to lower thresholds 
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and thus lower detection times (and conversely the possibility of more errors). 

4.6.1	 Results using the power source location method 

The alpha EEG detection algorithm using power source localisation was ap

plied to all sets of EEG data and detection times and errors rates computed. 

Five different blocksizes were used for comparison. The results are shown 

in Figure 4.18. The results show noticeably low detection times for smaller 

Figure 4.18: Results after applying the power source localisation alpha EEG 

detection method to all sets of EEG data. Five blocksize settings b were 

tested (no results were obtained for b = 1024 or b = 2048). 

blocksizes; larger blocksizes (b = 1024 and b = 2048) did not return results 

for any threshold settings. The lowest value was found using a blocksize of 

b = 512 samples (=1 s) and a threshold setting of n = 9 standard deviations. 

4.6.2	 A simplification of the power source localisation 

method 

In essence the power source localisation method monitors whether the ma

jority of alpha EEG activity is apparently occurring at the front or rear of 
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the head. This may be achievable using only two electrode positions (one at 

the front, and one at the rear of the head) rather than using all 19 electrodes. 

To test the effectiveness of this modification, the power source localisation 

algorithm was applied to all EEG data again, but using only electrode po

sitions E2 and E10 (refer to Figure C.1). The results using the simplified 

algorithm are shown in Figure 4.19 The plots show that good results are 
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Figure 4.19: Results after applying the simplified power source localisation 

alpha EEG detection method to all sets of EEG data. Five blocksize settings 

b were tested (no results were obtained for b = 1024 or b = 2048). 

still achieved with the simplified method, though localisation using all 19 

electrodes (Figure 4.18) gives lower values in general. The lowest value 

using the simplified method was found using a blocksize of b = 512 samples 

(=1 s) and a threshold setting of = 11. 

4.7 A comparison of results and discussion 

The performance of the location-based alpha EEG detection techniques dis

cussed in this chapter were compared against the integration technique fol

lowing the ranking method outlined in Section 2.6. The rankings are shown 

1
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Alpha Detection Method mean value and std error p value rank 

Source power localisation 0.930 ± 0.080 <0.001 1 

Source power localisation (simple) 0.945 ± 0.176 0.006 2

Bartlett beamformer localisation 1.187 ± 0.141	 0.165 3 

Four sphere head model localisation (noise normalised) 1.360 ± 0.146 0.787 4 

Integration 1.392 ± 0.093	 - I

Four sphere head model localisation (not noise normalised) 1.540 ± 0.162	 0.256 6 

MUSIC algorithm localisation 1.985 ± 0.162	 0.001 I 

Table 4.2: Ranking of results from alpha detection techniques introduced in Chapter 4. Techniques are ranked using 

the p value from a paired two-tailed t-test, compared with the integration alpha EEG detection method. 
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in Table 4.2. The highest ranking alpha EEG detection technique was the 

source power localisation method (Searle & Kirkup (2001)), which showed 

statistically significantly lower values compared to the integration method. 

The simplified source power localisation method (using only two electrodes) 

also showed significantly lower values, though its performance was not as 

good as when all 19 electrodes are used for localisation. The Bartlett beam

former localisation technique also ranked well despite concerns about its low 

spatial resolution. The more complicated localisation techniques fared poorly 

in the rankings shown in Table 4.2. Localisation using the four sphere head 

model did not show a significant improvement over the integration method 

(though the use of noise-normalisation ranked more highly than when the 

algorithm is used without noise-normalisation). The lowest ranking method 

shown in Table 4.2 is the MUSIC algorithm. Despite the advantages of im

proved spatial resolution and better performance in situations of low SNR, 

the MUSIC algorithm's inability to deal with coherent signals caused signif

icantly higher values compared to the integration method. This problem 

with coherent signals also explains why the Capon beamformer showed poor 

localisation ability when compared to the simpler Bartlett beamformer. Work 

on localisation techniques for alpha EEG detection developed in this chapter 

have been reported in the literature (Searle & Kirkup (2001)). 

4.8 Discussion of alpha EEG detection tech
.nlques 

This chapter concludes the extent of investigation into methods for the de

tection of alpha activity increase in EEG associated with eye closure. Three 

approaches to alpha EEG detection have been investigated, 
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1.	 The techniques in Chapter 2 used EEG information from a pair of 

electrodes, and determine an increase in alpha activity using amplitude

based techniques. The methods which gave the lowest values were the 

integration technique (when used with artifact rejection) and the peak 

counting technique (used with the distribution of amplitudes during 

eyes open). 

2.	 The methods described in Chapter 3 were used as preprocessing al

gorithms for the alpha detection techniques in Chapter 2. These pre

processing techniques used information from 19 electrodes in order to 

enhance the alpha EEG signals. The enhanced alpha EEG signal could 

then be used with the detection techniques from Chapter 2. The tech

niques which resulted in the lowest values were the Independent 

Component Analysis (ICA) algorithm, and the Capon spatial filter 

(designed using simulated BEG data). 

3.	 Chapter 4 used the location of highest alpha EEG activity in the head 

to detect the onset of alpha increase associated with eye closure. This 

contrasts with the methods used in Chapters 2 and 3, which used am

plitude of EEG signals to detect the alpha activity increase. The most 

successful location-based methods were the source power localisation 

technique, the Bartlett localisation technique. 

The detection times and error counts for the most successful methods investi

gated are shown in Figure 4.20, the result for the integration method is shown 

for comparison. Only the result corresponding to the threshold with the low

est value for each technique is presented. Additionally, the ranking of these 

techniques compared to the integration method is shown in Table 4.3. As 

described in Section 2.6, the rankings are based on the p value from a paired 
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Figure 4.20: Results for the best alpha EEG detection techniques discussed in 

Chapters 2 - 4. Only the data corresponding to the threshold which gave the 

lowest value for each technique is displayed. The result for the integration 

method is shown for comparison. 

t-test, compared to the integration method. The data in Figure 4.20 and Ta

ble 4.3 clearly shows that the power source localisation method gives the best 

performance. This technique is also computationally very simple (and still 

operates successfully with reduced numbers of electrodes, as demonstrated 

in Section 4.6.2). The technique which ranks second in Table 4.3 is the lCA 

algorithm which, in contrast with the mathematical simplicity of the power 

source localisation method, is computationally intensive. An indication of 

the relative computational expense of the best performing alpha detection 

techniques is shown in Table 4.4. The normalised times shown are an ap

proximate guide, as there are numerous factors and optimisations that could 

be applied to the processes. Preprocessing times are shown for two meth

ods: the Capon spatial filter (time taken to calculate the filter coefficients) 

and lCA (time to separate components in EEG data). The time required 

to visually inspect lCA components (as described in Section 3.6.4) is not 
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Alpha Detection Method p value rank 

Source power localisation <0.001 1 

Independent Component Analysis 0.107 2 

Integration with artifact rejection 0.139 3 

Bartlett beamformer localisation 0.165 4 

Capon's Filter (simulated data focus: -0.09 null: +0.09) 0.185 5 

Peak Counting: eyes open distribution 0.281 6 

Integration 7 

Table 4.3: Ranking of the best results, chosen from all alpha detection tech

niques discussed in this thesis. Techniques are ranked using the p value 

from a paired two-tailed t-test, compared with the integration alpha EEG 

detection method. 

Alpha Detection Method Normalised Time 

Processing Preprocessing 

Source power localisation 1.0 

Peak Counting: eyes open distribution 1.5 

Integration 2.5 

Capon's Filter (simulated data) 2.5 0.1 

Integration with artifact rejection 2.9 

Bartlett beamformer localisation 6.5 

Independent Component Analysis 2.7 19 

Table 4.4: Processing time for the alpha EEG detection methods listed in 

Table 4.3. Times are normalised to the source power localisation method. 
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included, but is substantial. The coefficients for the Capon filter need only 

be calculated once, but the components from ICA need to be recomputed for 

every subject, and each time a subject has electrodes re-applied. The good 

performance of the ICA alpha EEG detection method is negated by the high 

computational expense, and the need for human intervention in the process. 

The inclusion of artifact rejection to the integration method showed a 

consistent improvement, as indicated in Table 4.3. Data in Figure 4.20 reveals 

that the improvement, though consistent, is not substantial. Note that the 

artifact rejection extension (Section 2.3.7) to the integration alpha detection 

technique could also be used with any of the other detection techniques used 

in Chapter 2. This also applies to the preprocessing methods introduced in 

Chapter 3 (including ICA and the Capon beamformer, shown in Figure 4.20), 

they could be performed as a front end to any of the Chapter 2 alpha EEG 

detection techniques. The use of alpha detection techniques, other than the 

integration method, after the preprocessing algorithms may result in further 

improvements with regard to reducing detection time and error counts. It 

is unlikely that any improvements will match the consistently low values 

obtained when using the power source alpha EEG detection method. The 

very high statistical significance of the improvement in performance shown for 

this method compared to the benchmark integration technique (even though 

the subject sample size is not large) means that the use of extra electrodes 

for the algorithm is justified. 

If any of the alpha detection methods are to be used in an environmental 

control system, it is a requirement that the processing can be feasibly done 

in real time (either digitally, or with an analogue system). Of the methods 

shown in Figure 4.20 and Table 4.3, those which could easily be implemented 

in real time systems are the integration method (already used in analogue 
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form (Kirkup et al. 1998, Kirkup et al. 1997b)), the source power method, 

peak counting method and integration with artifact rejection (also demon

strated in analogue form (Kirkup et al. 1997a)). More complicated, but still 

feasible, are Capon spatial filtering and lCA (once the preprocessing task 

of separating components has been completed). The use of Bartlett beam

former localisation for real time alpha EEG detection would require the most 

optimisation. 

The remainder of this thesis considers the use of electrodes in an unsuper

vised alpha EEG detection system designed for long-term use. This involves 

an introduction to electrode types and background theory, as well as common 

causes of electrode- based artifacts and their dependence on skin/electrode 

impedance. The performance of 'traditional' electrode types will be com

pared to less widely used construction techniques. 

1
 



Chapter 5 

Electrodes for biosignal sensing 

applications 

5.1 Introduction 

Chapters 2 - 4 described and investigated new methods for the detection of 

the increase in alpha EEG activity following eye closure. The EEG data for 

use in these studies were recorded using gold-plated electrodes and saline gel. 

The use of such (and similar) electrode arrangements is widespread for the 

monitoring of EEG and many other bioelectric signals. It is recognised that 

one of the most aspects of acquiring, analysing and interfacing 

electrical activity of the brain is the performance of the electrodes used to 

sense the biosignals. It is important to evaluate in a qualitative manner the 

performance of electrodes used to sense biosignals so that their potential for 

application to EEG-based control systems can be considered. The processing 

of any signals is much simplified if the signals as tranduced by electrodes are 

of low noise, reliable and have long-term stability. 'While wet (AgjAgel) 

electrodes have a dominant position in biosignal sensing, the assessment of 
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other electrodes should be considered for specialist applications such as the 

long-term monitoring of alpha activity. For an alpha detection system in

tended for long-term, unsupervised usage, the necessity for an electrolyte 

gel will become a hindrance. The unaided application of electrodes which re

quire gels (especially to the head) is difficult, messy and time consuming, and 

long-term performance degrades as the electrolyte dries. As a consequence, 

research into alternative electrode methods is warranted. 

This chapter introduces the major types of electrodes, as well as their 

respective advantages and disadvantages. The source of electrode-based ar

tifacts associated with the different construction techniques will be discussed. 

Chapter 6 will investigate the combination of the skin/electrode impedance, 

and its influence on signal quality. Chapter 7 will detail a study on the com

parison of three types of electrode and the relative effects of artifact on each. 

Some of this work on contact impedance and electrode performance has been 

reported in the literature (Searle & Kirkup 1999, Searle & Kirkup 2000). 

5.1.1 Historical background 

The use of electrodes for detecting electrical signals from the body are now 

commonplace, both in research and clinical environments. Some of the earli

est electrophysiological transducers were immersion electrodes. As an exam

ple, buckets of saline solution into which the subject would place their extrem

ities l were not uncommon. The use of plate electrodes (metal plate and cot

ton soaked in saline) and suction electrodes (metals cups which used suction 

to adhere to the body and make better contact) soon followed. A. D. Waller 

1 This method is still used occasionally, as by Yamamoto & Yamamoto (1977) where a 

conventional electrode was used on the arm, while the ankle was placed in a saline filled 

container. 
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advanced the science of biopotential recording by measuring the electrical 

activity of the heart in 1872. This was achieved by attaching electrodes 

(constructed from zinc covered in chamois leather and moistened with brine) 

to the front and back of the chest. Willem Einthoven furthered developed 

Figure 5.1: Einthoven's electrocardiograph with immersion electrodes (taken 

from Aston (1990)). 

the instrumentation with his string galvanometer variation (see Figure 5.1), 

and after much work in the area he received the Prize for Medicine in 

1924. Electrodes for use in recording bioelectric events can be classed into 

the following broad categories: 

Wet	 A gel or other liquid electrolyte is used in conjunction with a metal elec

trode to enable ionic conduction. The most commonly used electrolyte 

is dilute saline gel. 

Dry	 An electrode technique, almost always using bare metal, which does not 

require an artificial electrolyte, but depends on perspiration or other 

body secretions for ionic pathways. 

Insulating These electrodes do not have a direct current path, but use 
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capacitive coupling to detect bioelectric activity. 

There are also electrodes which do not directly fit into any of these categories 

but have advantages of their own, these are outlined in Section 5.5. The most 

commonly used bioelectric electrode is the wet type. Most work in the area 

of alternative electrode types (i.e. those which are not of the wet type) 

has involved EMG or ECG, few reports are found which utilise alternative 

electrodes for EEG use (with the exception of Taheri et al. (1994), Taheri 

et al. (1995) and Gevins et al. (1990)). 

In biomedical literature it is commonplace to describe both dry and in

sulating electrodes as "dry". Engineering literature makes the distinction 

between the two more clearly, and this distinction will be adopted in this 

thesis. The following sections cover the characteristics for each of the three 

electrode types, as well as the electrochemistry involved. 

5.2 Wet electrodes 

A factor to be considered when measuring biopotentials (be it ECG, EMG, 

EEG or other) is that current in the body (which for the moment can be con

sidered simply as a bulk electrolytic solution) is carried by ions, whilst in the 

electronic equipment current is carried by electrons. The sensing electrode 

needs to provide a mechanism where the ionic conduction can be transduced 

into useful electron currents. This occurs at the electrodeIelectrolyte inter

face. 

5.2.1 The electrode/electrolyte interface 

\Vhen a metal and an electrolyte are brought together, a charge distribution 

is created as metal ions go into solution, and ions in the electrolyte combine 
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at the metal surface. Since no free electrons exist in the electrolyte, nor 

free cations in the metal, the reaction depicted in Figure 5.2(a) takes place, 

where Cn+ are the cations and represent anions. In the region near 

C ;=;c i- ne

rne

X 

DLmetal electrolyte 

(a) (b) 

Figure 5.2: (a) Reactions at an electrode/electrolyte interface and 

(b) Stern's model for charge distribution at the interface, where DL is the 

'Double Layer Region' 

the electrode, charge neutrality is not maintained, thus the bulk of the elec

trolyte is at a different potential to the solution near the metal. A number of 

models exist for the charge distribution at this interface, for example, that of 

Helmholtz, Gouy, Stern and others (Geddes & Baker 1989); Stern's model is 

shown in Figure 5.2(b). The region of activity close to the electrode is called 

the 'Electrolyte Double Layer Region'. According to standard electrochem

istry, the potential developed across this region is the cell potential' 

(measured relative to a Pt(Hz)H+ electrode). Some typical figures for half 

cell potentials are shown in Table 5.1. The standard half cell potentials only 

apply when there is no current flowing through the cell; in practice however 

this is rarely the case and when current does flow the observed potential 

is different. This observed and theoretical difference is referred to as the 

over-potential. 
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Metal and Reaction Potential at 25c C [V] 

+3e -1.662 

Pt(Hz)H+ 0.000 

Ag+CI = AgCI+e +0.2225 

Cu=Cu+ + e +0.521 

Ag=Ag+ + e +7.991 

Table 5.1: Electrode half cell potentials 

5.2.1.1 Overpotentials and electrode polarisation 

The overpotential has three main components: 

Ohmic Overpotential This is due to the potential difference created by 

the current flow through the resistance of the electrolyte. Depending 

on the ionic concentration this does not necessarily follow Ohm's law. 

Concentration Overpotential Because the half cell potential results from 

the charge distribution at the electrode/electrolyte interface when the 

reactions shown in Figure 5.2(a) are in equilibrium, any current flow 

will disturb this equilibrium and affect the potential developed. 

Activation Overpotential The oxidation/reduction reactions involved are 

not entirely reversible. For metal ions to go into solution, the atoms 

need to overcome an activation energy, and vice versa for the reduction 

of cations in the electrolyte. The oxidation and reduction activation 

energies are not necessarily the same. Thus, depending on the direction 

of current flow, oxidation or reduction will dominate and the difference 

in energy will appear as the Activation Overpotential. 

When overpotentials are present the electrode is popularly said to be po

larised. Because polarisation has a dependence on current density, the prob

l 
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lem can be reduced by increasing the electrode area. The effective surface 

area of an electrode may also be increased by sandblasting, possibly followed 

by platinizing (were the metal surface is plated with colloidal platinum black, 

which is characteristically grainy). This procedure can increase the effective 

surface area by up to 104 (Ferris 1974). Electrode polarisation is not a prob

lem when monitoring signals with frequencies which are higher than 1 kHz, 

but can present difficulties at frequencies less than 20 Hz, which is a region 

where many bioelectric signals are found. In biomedical fields, electrodes are 

often classed into the following theoretical performance categories 

Perfectly Polarisable No charge passes across the electrode/electrolyte in

terface when current is applied. The flow is only by displacement cur

rent, thus the electrode behaves capacitively. 

Perfectly Nonpolarisable In this opposing case, current is able to flow 

freely and no energy is required to make the transition. (Thus there 

are no overpotentials). 

Although neither of these electrodes can be made in practice, some materi

als come reasonably close. Inert metals display close to perfect polarisable 

properties, since they are difficult to oxidise and dissolve. By far the most 

commonly used bioelectric electrode is the silver/silver chloride (Agj AgCl) 

type, which displays many qualities of perfectly nonpolarisable electrodes. 

The properties of Ag/AgCl electrodes will be discussed in the following sec

tion. 

5.2.2 Silver/silver chloride 

Silver jSilver Chloride electrodes are constructed from silver (or a coating of 

such) plated electrochemically with silver chloride. The availability of silver 
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loaded graphic inks has also made possible the production of screen printed 

sensors (Zhou et al. 1994). Two reactions occur in the electrode system: 

Ag Ag+ + e (5.1 ) 

Ag+ + Cl- AgCl (5.2) 

The reaction shown in Equation 5.2 occurs soon after the formation of the 

Ag+ ions in Equation 5.1. The solubility of AgCl in water is low, so most 

of the compound precipitates onto the electrode, contributing to the silver 

chloride deposit. The concentration of Cl- in biological fluid is high, but even 

so an intermediate electrolyte is used containing the anion, usually saline gel 

(NaCl), or sometimes KCl solution. The use of Ag/AgCl electrodes externally 

has been reported to have no toxic effects (Jackson & Duling 1983) but skin 

reactions may result from chronic use and skin preparation rituals (Godin 

et al. 1990, David Portnoy 1972, Bergey et al. 1971). 

5.2.3 Wet electrode impedance 

Because the electrode/electrolyte region contains two layers of opposing charge, 

this theoretically indicates some capacitive behaviour. Due to the molecular 

dimensions between the layers, the capacitance can be reasonably large per 

unit area. All electrodes also display resistive effects since no electrode is per

fectly polarisable. At first inspection the electrode/electrolyte interface can 

therefore be modelled as a resistor and capacitor in series (Warburg (1899) 

was one of the first to propose this). The components in this series equivalent 

model are frequency dependent such that the resistance and reactance vary 
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in the following way; 

R (5.3) 

where	 f is frequency 

Rs is a resistive coefficient 

Cs is a capacitive coefficient 

and are constants, and many researchers have found that 0.5 

and X, where 

(5.4)
 

although effective surface areas will alter these coefficients (Geddes 1973b). 

These resistive and reactive elements are often lumped into a "Warburg imp

edance" (McAdams et al. 1995) denoted as Zw, 

(j = (5.5) 

This expression uses a 'diffusion coefficient', = R = X. This model can 

be converted in a way that it lends itself to physical analogies of the elec

trode/ electrolyte interface, and which allows the experimentally observed 

passage of DG current. This involves conversion of the Warburg series model 

to its parallel equivalent and coupled with an additional resistance, as shown 

in Figure 5.3. The voltage Ehc source represents the half cell potential, Ca 

and Ra are due to interface effects and polarisation mechanisms, and Rb is 

caused by interface effects and electrolyte impedance. Component values Ca 

and Ra are still frequency dependent. It was reported that many materials 

did not always conform to this rather restrictive model, especially at low 

frequencies. The reference to capacitors and resistors which are frequency 
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Figure 5.3: Model for electrode/electrolyte interface using frequency depen

dent components 

dependent is also confusing, so a more flexible and abstract model is pre

ferred. 

To allow for variations in the phase angle so that its value is not nec

essarily 45°, a circuit element called a Constant Phase Angle Impedance, 

or ZCPA, is used. At a given frequency, the relation between the complex 

impedance and the phase angle is 

X 
R - tan (5.6) 

2 
(5.7) 

Equation 5.7 is also known as Fricke's Law (Geddes & Baker 1989). Using 

the constant phase angle impedance element, two models of electrode imped

ance are needed (McAdams & Jossinet 1994a), one for high frequencies and 

another variation for low frequencies. At these frequencies the impedance is 

modelled as (McAdams & Jossinet 1995, McAdams Jossinet 1994a, de Boer 

& Oosterom 1978): 

high frequencies Z = ZCPA (5.8) 

low frequencies Z 
Rc 

1 + 
(5.9) 

Equation 5.8 is the constant phase angle impedance and, although it implies 

infinite impedance at DC, it is more commonly used than Equation 5.9. 

ZCPA may also be referred to as a constant phase element or polarisation 
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impedance. The term Warbnrg impedance is used occasionally but this may 

create confusion with the commonly used Warburg model where R = X 

and = 45°. 'When = 1 the ZCPA element is purely capacitive, when 

= the element is purely inductive, and ,8 = 0 gives a resistive effect 

(Kontturi et al. 1993). In biological systems the value of is usually around 

0.8 (McAdams et al. 1995). The low frequency representation (Equation 5.9) 

is equivalent to a ZCPA element in parallel with a resistor, Rc, whose value 

is not frequency dependent. The behaviour of these equations is depicted 

in Figure 5.4. The distinction between "high" and "low" frequencies is not 

(a) High Frequency Model (b) Low Frequency Model 

Increasing 

----
-

Figure 5.4: Plots for the Electrode/Electrolyte Interface Impedance using the 

Constant Phase Angle Models. At high frequencies (a) the change of phase 

angle impedance locus is shown, varying as in Equation 5.7. At low 

frequencies (b) the impedance locus of Equation 5.9 traces a semicircular 

path with a depressed centre, approaching Z = 0 as f 00. 

rigid, but for a general guideline, figures from Nowotny & Nowotny (1980) 

and McAdams et al. (1995) indicate 1 Hz as the lower limit. Below 1 Hz the 

high frequency model no longer applies. 

As well as being highly dependent on frequency, the impedance of the 

R 

L 
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electrode/electrolyte interface is affected by the current density used. At 

higher current densities (for a given frequency) the resistance decreases and 

capacitance increases. At low frequencies this effect is more pronounced. The 

term 'limit current of linearity' was introduced by Schwan (1968). Studies 

show (Schwan 1968, Onaral & Schwan 1982) that this limit of linearity ap

proaches zero as frequency decreases. This suggests that caution should be 

exercised when using electrodes of small surface area: as the electrodes area 

gets smaller and smaller, the system will be permanently in the nonlinear 

region, regardless of current density. In the high frequency range the 'limit 

current of linearity', can be represented (McAdams & Jossinet 1998, Simp

son et al. 1980, Onaral & Schwan 1982) as 

(5.10) 

where is the same coefficient used in Equations 5.6 and 5.7. 

Some researchers have instead defined a voltage limit of linearity. de Boer 

& Oosterom (1978) represent this voltage limit in the constant phase angle 

model (Equation 5.8) as a pair of opposing zener diodes in parallel with the 

interface impedance. Sadasivan & Dutt (1994) present a treatment where 

they show that the voltage limit gradually increases with frequency between 

two limits, whereas it was previously thought to be independent of frequency. 

The motivation for the extensive volume of work that has been done 

in formulating analogous models for all kinds of electrode behaviour is the 

convenience of attaching parameters to experimental data. The ability to fit 

data points to a modelled curve and find these parameters allows researchers 

to easily compare results with other data, and with that of other published 

works (if a similar model has been utilised). Thus it is most convenient to 

have the least possible number of elements/parameters in the model used. 

Taking this idea of minimal characterisation coefficients even further, some 
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research has been reported on fractal models for electrodes. One of the fractal 

concepts is that the roughness of a surface can be characterised by a single 

parameter, and since the effective surface area has such an enormous impact 

on the electrode's performance this parameter may be able to singularly 

describe this activity. So far this type of model is not widely used or accepted 

(McAdams et al. 1995). 

5.2.4 Limitations of wet and Ag/Agel electrodes 

The ubiquitous application of wet (especially AgjAgCl) electrodes suggests 

they are reliable and provide good performance. However, wet electrodes 

have some limitations. Movements of wet electrodes relative to the skin cause 

voltage artifacts due to the disruption of the charge gradient at the double 

layer region (termed the electrokinetic effect by Khan & Greatbatch (1974)). 

This artifact can be minimised by using recessed electrodes (Toole 1977), so 

that the electrodejelectrolyte interface is protected by a bulk of electrolyte 

solution and less likely to be affected by extraneous movement. 

It could be assumed that two like electrodes in an electrolyte would show 

no net potential, however in practical situations fluctuations in voltages be

tween electrodes occur. For AgjAgCI electrodes this has been found to be 

between mV, which is quite large when it is considered that biopotential 

readings are in the low mV or V range. This artifact is often at a frequency 

lower than the standard recording bandwidths (Tassinary et al. 1990). If left 

to settle to equilibrium over hours these fluctuations decrease, but minute 

impurities or scratching of the AgCI coating will upset the steady state of the 

system and produce this artifact once more. It is for this reason that many 

researchers keep reusable AgjAgCI electrodes in saline solution with all leads 

short circuited when not in use, amongst a host of other complicated storage 
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arrangements (Tassinary et al. 1990). 

Silver/Silver Chloride electrodes are photosensitive (Geddes 1973a), such 

that changes in light will produce a potential, and chronic exposure will 

damage reusable electrodes. An experiment conducted for this thesis using 

commercially available Ag/AgCI electrodes2 , illustrated in Figure 5.5, shows 

this phenomenon. To perform this experiment, two Ag/AgCI electrodes were 
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Figure 5.5: Photosensitivity of Silver/Silver Chloride electrodes. (a) Baseline 

voltage. (b) Waving hand between electrodes and light source. (c) Switching 

light source on and off. 

connected to a biopotential amplifier. Electrodes were positioned facing a 

light source with a bridge of saline solution between them. It can be seen that 

changing the illumination by moving a hand over the electrodes, or turning a 

light source on and off causes a substantial deviation in the electrode voltages. 

This is especially applicable to EEG studies where the artifact seen in these 

tests is the same order of magnitude as signals that scalp recordings will 

2Red Dot™ 2258 EeG electrodes 

10 15 20 25 30 

time lsI 
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produce. although in practical situations the face of an electrode will not 

face outward, caution is advisable in experiments using highly changeable 

lighting conditions (e.g. evoked potential studies). 

Skin irritation and growth over long recording periods (days), and dry

ing of the electrolyte degrades electrode performance. (Ko & Hynecek 1974, 

Richardson et a1. 1968, Richardson 1967). Furthermore, if many electrodes 

are close together, gel can smear and cause conductive bridges between elec

trodes. Such conductive bridges would effectively 'short-circuit' the bioelec

tric signals. This is especially a problem in EEG when hair movement can 

quickly disperse gel and render electrode sites useless: short of washing and 

drying the hair completely other sites must be used. If hair is damp or wet, 

or if excessive perspiration is on the skin, this will also degrade the signal 

quality significantly. This problem is illustrated by difficulties faced by 

suda & Sadoyama (1988). These researchers constructed an electrode array, 

consisting of a grid of 30 x 24 gold plated electrodes 2.54 mm apart to in

vestigate the spatial activity of muscle motor units. Gel was used to lower 

contact resistance, but to avoid short circuiting contacts a small amount of 

gel was spread evenly over the recording area. Because of the tiny amount 

of gel involved it dried almost immediately, and the site had to be washed 

and the gel reapplied every few minutes. 

Some of these disadvantages are addressed by using hydrogel electrodes 

(Perrault 1998, McAdams et a1. 1994) which are 'solid' gels and have hy

drophilic properties. These characteristics mean that contact areas are more 

exact, there is no shorting due to gel spread and some designs allow reposi

tioning of electrodes. 
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5.3 Dry electrodes 

5.3.1 Usage 

Dry electrodes offer an advantage to wet electrodes when the drying of elec

trolytic gels over long periods or skin irritation is a concern, or if elec

trolyte use is not practical. Dry electrodes work in same manner as wet 

electrodes, in that an electrode/electrolyte interface is created. The dif

ference is that the skin supplies the electrolyte in the form of perspiration, 

rather than relying on an artificial electrolyte. This accumulation of moisture 

has been verified by a number of sources (McLaughlin et al. 1994, Geddes 

et al. 1973, Geddes & Valentinuzzi 1973, Bergey et al. 1971). Furthermore, 

Lewes (1965)3 collected and analysed this perspiration to determine the NaCl 

content (which was found to be 6 mg under an electrode area of 15 cm2). 

The impedance of dry electrodes can be much higher than that for wet elec

trodes, so a buffer must be used to convert high impedance to low imp

edance. The necessity of low contact impedance and techniques associated 

with this problem are discussed in Chapter 6. The most common material 

for dry electrodes has been stainless steel (Nishimura et al. 1992, Padmad

inata et al. 1990, Luca et al. 1979, \Veinman & Mahler 1964, Geddes & 

Valentinuzzi 1973). Other materials include silver (Geddes et al. 1973), dry 

Ag/AgCl (Griss et al. 2000, McLaughlin et al. 1994) and a tin/lead alloy 

(Gevins et al. 1990). Weinman & Mahler (1964) compared the performance 

of stainless steel, platinum and tungsten, finding that the impedance of the 

tungsten electrodes varied depending on the signal amplitude present at the 

electrodes. This is more of a problem for stimulation or impedance mea

3Interestingly, this author also compared the performance of traditional EeG jelly to 

such items as toothpaste, mayonnaise, mustard and tomato paste. 
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surement electrodes but the lack of an explanation for this behaviour makes 

other, more consistent, metals more attractive. Bergey et al. (1971) investi

gated aluminium, among other metals mentioned, and found that that signals 

received were too noisy for any useful bioelectric information to be obtained. 

A comparison of metals for dry electrode use will be presented in Chapter 7. 

5.3.2 Dry electrode impedance 

As the mechanism of signal conduction is the same as for the wet electrode 

type, the theory introduced in Section 5.2.3 holds for dry electrodes. How

ever, since the accumulation of perspiration is not instantaneous, the inter

face impedance decreases steadily from an initially high value. Geddes et al. 

(1973) found that, when using silver discs for electrooculography, the resis

tance decreased exponentially with time. Lewes (1965) conducted temporal 

measurements using dry electrodes and displayed how, in addition to the 

impedance, the interference in ECG readings decreased steadily over 6 min

utes to a level comparable to measurements taken with artificial electrolyte 

added. Geddes & Valentinuzzi (1973) compared the performance of stain

less steel and silver electrodes, concluding that the impedance achieved with 

silver was nearly half that for steel. In order to reduce the skin/electrode 

impedance for their dry Ag/AgCI electrodes, Griss et al. (2000) formed the 

face of electrodes with spikes 100 long) to pierce the high impedance 

upper layers of skin. 

5.3.3 Limitations of dry electrodes 

Dry electrodes suffer from many of the problems that affect wet types (see 

Section 5.2.4) since the recording mechanism is still dependent upon ionic 

conduction at the electrode/electrolyte interface. Namely, fluctuations due 

l 
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to changes in the chemical composition of the electrolyte (principally per

spiration) and disruption of the charge gradient in the double layer interface 

(which cannot be protected by recessed electrodes as in wet types). Dry elec

trodes do offer the advantage that no gel is needed (thus reducing problems 

with skin irritation and conductive bridging from gel) but time is needed for 

satisfactory impedance between skin and electrode to be achieved (Geddes 

et al. 1973, Lewes 1965). Dry electrodes require extra impedance conversion 

circuitry because of their naturally higher impedance levels compared to wet 

types. This topic is discussed in Chapter 6. 

5.4 Insulated electrodes 

Insulating electrode types depend on capacitive coupling between the metal 

electrode and the body for signal transmission. The body and electrode 

substrate are separated by an insulating, or dielectric layer. AC coupling 

eliminates DC drift that is a problem (due to overpotentials and differing ion 

activity) in wet and dry electrode types. 

5.4.1 Usage 

Some of the insulating materials used in the past are shown in Table 5.2. 

Authors often state many possible uses for these electrodes, but only the ac

tual application demonstrated in the literature is shown in Table 5.2. Until 

the work of David & Portnoy (1972) all films had been grown by electro

chemical or thermal oxidation. To obtain a wider range of dielectrics with 

less dependence on substrate material, David & Portnoy employed sputtering 

deposition methods to create their electrodes. 
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Year Insulating Material Author Use 

1967 Anodic A120 3 Richardson ECG 

1968 Anodic A120 3 Richardson et al. ECG 

1969 Anodic A120 3 Lopez & Richardson ECG 

1969 Silica (Si02) Wolfson & Neuman ECG 

1970 Pyre Varnish Potter & Menke EMG 

1971 Tantalum Oxide (Ta205) Lagow et al. ECG 

1972 BaTi03,Ti02,Ta205,Si02 David & Portnoy ECG 

1973 Barium Titanate (BaTi03) Matsuo et al. EEG 

1974 Silica (Si02) Ko & Hynecek ECG 

1994 Silicon Nitride (Si3N4 ) Taheri et al. EEG 

1995 Silicon Nitride (Si3N4 ) Taheri et al. EEG 

Table 5.2: Insulating materials used in bioelectric measurements 

Matsuo et al. (1973) found that signal noise when using their barium ti

tanate electrodes was less than that for AgjAgCl type. Furthermore the noise 

was shown to be constant over the recording period regardless of electrolyte 

presence, whereas wet and dry electrode types need some time to settle and 

for contact impedance to drop. However, these workers found that mechan

ical stress on the barium titanate electrodes would give large values of noise 

(order of 10mV) which was later attributed to the piezoelectric properties 

of the BaTi03. 

Because the capacitive electrode type has no direct current path, some 

interesting grounding precautions have been required. Lagow et al. (1971) 

used grounded electromagnetic shields surrounding their electrodes, a pair of 

which were used for ECG sensing. They found that if both ground shields 

made suitable ohmic contact with the skin (by the same mechanism as for 

l 
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dry electrodes) then the bioelectric signal was effectively short circuited. If 

neither ground shield made contact only powerline interference noise was 

present in the signals. If the patient is grounded (or if one ground shield 

made good contact whilst the other was insulated from the patient) then a 

suitable signal was obtained. 

In contrast to most authors, Bergey et al. (1971) asserted that capacitive 

electrodes have characteristics which make them less suitable than dry types. 

They compared alumina coated electrodes with dry electrodes, in situations 

involving dry and perspiring skin. They observed that the alumina electrodes 

had a fall in skin/electrode impedance at lower frequencies (more than the 

dry electrodes displayed). A reason for this was not suggested, and whether 

this is due to corrosive problems caused by chloride ions is not clear. 

5.4.2 Insulated electrode impedance 

Experiments have shown (David & Portnoy 1972, Taheri et al. 1994, Bergey 

et al. 1971) that, as would be expected for a capacitive element, the elec

trode impedance for an insulating electrode decreases as frequency increases. 

Taheri et al. (1994) proposed that, for the use of insulating electrodes, it 

is important to maintain electrode contact impedance dominant over the 

skin as the skin impedance is not constant (unlike the electrode 

contact impedance). As the electrode impedance becomes lower at high fre

quencies, variations in the bioelectric signal sensed will result if the variable 

skin impedance, rather than that of the electrode contact impedance, be

comes dominant, as the two impedances are in series. No studies have been 

performed which investigate the relationship between capacitive electrode 

impedance and signal variability. 

L
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5.4.3 Limitations of insulated electrodes 

In his early work, Richardson (1967) reported that motion induced artifacts 

were a problem with insulating electrodes. This may be partly explained by 

the dependence of capacitance value on the distance between the skin and 

metal. If the electrode is considered as one side of a plate capacitor, and the 

skin is the other plate, the capacitance, C, of the combination will vary with 

the distance, d, between the skin and electrode, as governed by: 

C -
d 

(5.11) 

where C capacitance [F] 

A area of capacitor [mZ
] 

permittivity [Fm- I 
] 

d distance between layers [m] 

Any movement will change the d value and thus substantially change the 

capacitance. The problem of variation in coupling distance was reiterated 

in further work by Richardson et al. (1968), and later by Griffith et al. 

(1979). Lagowet al. (1971) noted that, despite promising initial results, fur

ther testing of their anodic alumina electrodes (Richardson 1967, Richardson 

et al. 1968) revealed that they became noisy and unreliable over time. This 

was caused by the structure and chemical characteristics of Alz0 3 . Alumina 

(especially when electrochemically deposited) is porous and will absorb per

spiration from the skin. The chloride ions in the solution attack the dielectric 

causing it to break down and reduce electrical resistivity. The group opted 

to use tantalum oxide (Taz05) which they reported to form a denser film. 

This film is easier to manufacture and is resistant to chloride activity. This 

problem with alumina films was also described by Potter & Menke (1970) 

and Ferris (1974), and may explain unsatisfactory results by Bergey et al. 
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(1971) when using dry aluminium electrodes, as mentioned on p. 173. 

5.5 Miscellaneous electrode structures 

5.5.1 NASICON ceramIC 

NASICON (Na Super Ionic Conductor) is the name of a proprietary ceramic 

material which is a good conductor of Na+ ions at room temp (conductiv

ity = 0.1 Sm-1) (Gondran et al. 1992). This material (chemical formula 

Na3Zr2Si2P012) is described as mechanically resistant, machinable, and able 

to be deposited in thin films. In a bioelectric environment the NASICON 

conducts Na+ ions from the skin. However, as with all electrodes involving 

ionic conduction (wet and dry types) there must be a transduction from ionic 

to electron currents. As shown in Figure 5.6 this is done using saline gel and 

electric contact 

saline 

NASICON 

Figure 5.6: NASICON electrode construction 

Ag/AgCI in the same way as for wet electrodes, described in Section 5.2.2. 

The advantage with NASICON electrodes is that the saline solution is not in 

contact with the skin so it does not need to be applied, cleaned or replaced. 

The sodium ions in the skin are conducted through the ceramic and saline 

solution to react with the silver/silver chloride wire. This construction is en

capsulated in a non-reactive housing with only the electrical contact and the 

NASICON accessible externally. This electrode offers the advantages of the 

(nearly) non-polarisable Ag/Agel wet electrode without the need for gels, 

1
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but the increased complexity in construction (and therefore size) may disad

vantage it in comparison to dry and insulated electrodes, which are mechan

ically simple. The NASICON electrode is reported (Gondran et al. 1995) to 

be temporally stable, with no significant electrode impedance increase over 

a month. Excess noise was found in the low frequency region «100 Hz) 

which could not be attributed to thermal noise or polarisation overpoten

tials, but is thought to be of chemical origin (Yacoub et al. 1995, Gondran 

et al. 1996). This noise can add signals of 5-60 pp, which may limit use in 

EEG applications. 

5.5.2 Balsa 

Richardson et al. (1968) used balsa wood impregnated with Lithium Chloride 

(LiCl) as an alternative to previously discussed types. The electrodes were 

specially designed for long-term ECG recording in space-flight simulations. 

The lithium chloride was impregnated using a vacuum method which left the 

balsa feeling "soapy" but not wet. Although the wearer took off the special 

belt holding the three electrodes when bathing during chronic recording tri

als, the actual electrodes were not modified physically or chemically during 

the 32 day trial. No skin reaction effects were reported at the end of this trial, 

nor during_a subsequent 21 day trial. This electrode type suffered from the 

problem of motion induced artifact, similar to those indicative of insulated 

and some dry electrode types. 

5.6 Conclusion 

In this chapter the basic types of bioelectric recording electrodes have been 

introduced, along with the mechanisms by which they operate. Depending 

I 

I 
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on their nature, electrodes may be classed as polarisable or nonpolarisable. 

In practice, electrodes do not exclusively exhibit the characteristics of a single 

class. Three types of electrode construction were introduced; wet, dry and 

insulating. An overview of characteristics for the three electrode types is 

Advantages Disadvantages 

Wet Type Close to non-polarisable Electrolyte required
 

(Assume
 Reduced motion artifact Gel smearing
 

AgjAgCl)
 Requires time for impedance 

the shelf' 

Common, available 'off 

to drop 

Dry Type electrolyte required Highly polarisable 

Easy construction Requires long time 

Easy application for impedance to drop 

Movement artifacts 

Insulating No electrolyte required High input impedance 

Type Easy application Static interference 

No impedance settling time Movement artifacts 

No skin preparation Requires local power supply 

Reusable for buffers 

Table 5.3: Comparison of Electrode Types 

contained in Table 5.3. For electrode experiments conducted for this thesis 

(to be described in Chapters 6 and 7), the AgjAgCI electrodes used were 

commercially available. By contrast, the dry and insulating electrodes were 

designed and constructed by the author specifically for this thesis. 

The behaviour of electrodes is of interest to researchers involved in electro

physiology, and a common parameter to study is that of electrode impedance. 

The characteristics of this impedance were introduced in Sections 5.2.3, 5.3.2 

J 

1
I 
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and 5.4.2. Many models have been utilised in the past to explain such be

haviour during changes in frequency, current density and electrode surface 

area. There is no 'universal' model which can be applied in all situations. 

Chapter 6 considers the impedance of skin (which can be modeled electri

cally in similar ways to the electrode impedance) and the influence that the 

combined skin/electrode impedance has on the sensing of bioelectric signals. 

Methods for monitoring the skin/electrode impedance are introduced, and a 

new measurement method described. 

l 



Chapter 6 

Skin/electrode impedance: 

characteristics and a new 

measurement method 

6.1 Introduction 

Signals derived from electrodes used for bioelectric monitoring applications 

must be of acceptable quality, regardless of the respective ease of use of the 

electrodes. A primary influence on signal quality is the amount of external 

interference present in the signal, and in turn this is significantly affected 

by the skin/electrode skin impedance. This chapter considers the imped

ance contribution from the skin, and the effect that contact impedance (a 

combination of skin and electrode impedance) has on signal fidelity. Mea

surements are required to quantify the effect of contact impedance on bioelec

tric signals. Existing methods for impedance measurement are introduced, 

and a new method for skin/electrode impedance monitoring is described. 

This novel method of impedance spectroscopy is used to demonstrate the 

/ 
I
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influence of electrode contact impedance on bioelectric signal fidelity. Ele

ments of work in this chapter have been described in the literature (Searle 

& Kirkup 1999, Searle & Kirkup 2000). 

6.2 The electrical properties of skin 

The impedance characteristics of electrodes were introduced in Chapter 

involving wet electrode impedance (Section 5.2.3), dry electrode impedance 

(Section 5.3.2) and insulated electrode impedance (Section 5.4.2). Another 

important factor that requires consideration when using bioelectric record

ing electrodes is the impedance characteristics of the skin. Researchers have 

suggested electrical models to explain the properties of skin and its changes 

with time, temperature, test frequency and psychophysiological state. The 

basic structure of skin is shown in Figure 6.1(a). The stratum corneum is a 

Stratum Corneum 

Flesh 

Sweat 
Follicle 
Shaft 

(a) (b) 

Figure 6.1: (a) Skin Structure and (b) Major impedance areas in skin mea

surements as seen by two surface electrodes. 

collective term for the upper layers of skin, and these layers exist in varying 

stages of hydration. The outermost layer is mainly dead, dry skin and as 
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a result has very high impedance. Many practitioners scrape through this 

barrier with light sandpaper or a blunt needle to expose more hydrous lay

ers below, and thus reduce skin/electrode impedance. \Vhen describing the 

measurement of skin impedance, the basic framework shown in Figure 6.1(b) 

can be considered (Khalafalla et al. 1971). As long as the electrodes are 

not close together the surface impedance Zo (which is very high due to dry 

upper layers of skin) can be neglected. This is also true for the impedance 

of the deep flesh, Zj, because the impedance here is very low. The major 

components of impedance are contained in the stratum corneum, denoted by 

Zskl and Zsk2' The resulting skin impedance measured using two electrodes 

will be Zskl + Zsk2, though this is rarely mentioned, and in most cases is it 

sufficient to lump the sum of these two impedances into one value. 

If the real and imaginary components of skin impedance are measured 

and plotted on an argand plane with varying frequency, the result is similar 

to that shown in Figure 6.2. The plot is an arc with its centre below the 

axis, subtending an angle with the real axis. This plot is often referred to 

R, 

Figure 6.2: Impedance locus for skin 

as a 'Cole-Cole plot'l, stemming from the much cited paper by Cole & Cole 

(1941), though the description is often attached to many other representa

tions of data which are not strictly of this type (McAdams & Jossinet 1995). 

lCole acknowledged that the idea came from the work of Carter (1925). 

.I
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In this thesis, plots of this type will be referred to as an impedance locus. 

The negation of the imaginary axis is a common convention used to place 

the information in the first quadrant of the plot. 

One of the earliest electrical analogue models proposed to explain the 

behaviour shown in Figure 6.2, and one which is still used extensively, is the 

'three-component model' by Lapicque in 1907 (McAdams & Jossinet 1995), 

shown in Figure 6.3. Referring back to the argand diagram, it can be equated 

C 

r 

Figure 6.3: Simple 'three component' skin electrical model 

that r = Ro - Roo and R = Roo. It is apparent that this model does 

not account for the depressed centre of the locus seen experimentally, and 

shown in Figure 6.2. From 1932 to 1940 K. S. Cole developed the idea 

of using frequency dependent components in the skin impedance models to 

better approximate physical impedance observations. He used a constant 

phase element (discussed on p. 163 in reference to electrode impedance) in 

parallel with a frequency independent resistor to achieve a locus plot which 

displayed the depressed arc centre. This model is shown in Figure 6.4(a). 

The impedance of the constant phase element is given by 

(6.1 ) 

(6.2)
2 

where the angle is shown on the impedance locus for a constant phase 

element in Figure 6.4(b). In this chapter the exponent is used in the 

ZCPA, to distinguish it from the exponent used in the electrode impedance 

models in Chapter 5 (e.g. Equation 5.8). 
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r 

(a) (b) 

Figure 6.4: (a) Skin impedance model using constant phase element and 

(b) Impedance locus for a constant phase element only 

A general form for an equation to describe the impedance locus for skin 

was first used by Cole in 1940, and later by Cole & Cole (1941) in this more 

complete form, 

z (6.3)
 

= 
2 

The angle subtends the arc in the argand diagram, and Ti is termed the 

'relaxation time'. Most often Equation 6.3 is used with = 1. Confusion can 

arise when using Equation 6.3 as some reports use the exponent '1- a' (e.g. 

Cole & Cole (1941)) and others use (as in McAdams et al. (1995) and 

is used here). The exponent used depends on the reference angle used, or 

in Figure 6.2 It can be shown (see Appendix D.7) that the model using 

resistance in parallel with a constant phase element, as in Figure 6.4(a), gives 

the same impedance locus as the empirical model in Equation 6.3. 

Although it is not possible to achieve a depressed arc with conventional 

frequency independent components, Rajewsky attempted in 1938 (Khalafalla 

et al. 1971) to formulate an electrical analogue by constructing a model which 

2For additional confusion, the exponent is also referred to in literature as m or /3. 

(m is usually associated with the angle e). 

l 
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mirrored the physical construction of skin. The model included parameters 

for extra-cellular fluid, the skin membrane, and cell membranes. In a similar 

fashion Montagu & Coles (1966) based their model on the activation of sweat 

glands, mainly to account for the mechanism of Galvanic Skin Response 

(GSR), which can serve as a physiological indicator of arousal. The model 

is similar to the three component skin model, except that a number of extra 

resistive elements may be added in parallel to the capacitor to simulate the 

hydration of skin. However, despite its many parameters it could not describe 

the arc accurately with a finite number of frequency independent components. 

In his paper of 1957, Schwan (Khalafalla et al. 1971) formulated a mathe

matical model which included an infinite number of R 11 C elements in series, 

with the relaxation times (T) for each element assigned according to a distri

bution. This treatment explained the behaviour observed in skin impedance 

(in fact, Equation 6.3 is a special case of this model). This 'distributed 

relaxation time' or 'transmission line' model is not favoured by many re

searchers (Khalafalla et al. 1971) as the distribution does not allow a direct 

correspondence between parameters in the model and physiological indica

tors, even though results correlating such parameters and physical processes 

(Yamamoto & Yamamoto 1978, Qiao & Morkrid 1995) are variable. Fortu

nately, for those researchers less interested in detailed mathematics, a simple 

ZCPA is mathematically equivalent to using a distribution ofrelaxation times 

(Kontturi et al. 1993) since the constant phase element can be described as 

an infinitely long network of resistors and capacitors. This concept is also 

discussed by Kontturi & Murtomaki (1994), who consider the inclusion of an 

inductive element in the transmission line unit, as well as the usual resistor 

and capacitor. 

Burton et al. (1974) used an analytical technique to obtain a skin imped

I

I
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ance model which in contrast to much of the work already mentioned, made 

no assumptions about the biological system under investigation. The tissue 

was treated as a 'black box', and investigated using the technique of Bode 

which is a popular and important tool in electrical circuit theory. 

The procedure allows the formulation of an equivalent circuit based only 

on the frequency response of the system under test3 . The circuit obtained 

using this procedure was the same as the popular three component model 

(Figure 6.3). This requires an explanation, as the three component model 

cannot produce an arc with a depressed centre due to its frequency indepen

dent components. This is explained by an important restriction inherent in 

Bode analysis, in that the analysis is only valid for non-distributed elements. 

This omits transmission line and constant phase elements, and thus it is not 

possible for the Bode analysis to produce an electrical model of skin imped

ance which gives a locus with a depressed centre. Although this restriction 

prevents the Bode method giving the 'universal' model (Equation 6.3), it is 

interesting to those who prefer a more analytical approach rather than the 

more popular physiological simulation method. 

Other forms of the frequency dependent model have been created since 

Cole's early work. For example, the circuit model in Figure 6.5(a) used 

by Yamamoto & Yamamoto (1978), refined from a more complex form in 

Yamamoto & Yamamoto (1977). The values for Co and Ro are 

Co 

Ro = 

(6.4) 

(6.5) 

This model can be shown to be equivalent to the simpler model which uses 

ZCPA in parallel with a resistor (see Appendix 0.8). Simpler again, but 

engineering literature this may also be referred to as the Device Under Test (DUT). 

I
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(a) (b) 

Figure 6.5: (a) Frequency dependent impedance model used by Yamamoto 

& Yamamoto (1978) (b) model Used by Khalafalla et al. (1971) 

still equivalent to the empirical depressed-locus formula, is the model (Fig

ure 6.5(b)) used by Khalafalla et al. (1971). 

6.2.1 Nonlinearity 

As with electrodes (see p. 165), the skin exhibits nonlinearity effects when 

is applied. The volume of research into this effect is much less than 

that concerned with electrode nonlinearities. This is mostly due to much of 

the electrode research being undertaken by chemists as part of their studies 

into the impedance of chemical solutions, but who are not concerned with 

similar effects in biological tissue. As with electrode nonlinearity, the effect 

in skin is more pronounced at higher current densities and low frequencies 

(Yamamoto et al. 1996). Yamamoto & Yamamoto (1981) demonstrated that 

the skin impedance locus reduces toward the origin as current densities in

crease. The choice of current density to be in an experiment remains 

a tradeoff between linearity considerations and the need to achieve sufficient 

voltage levels on the skin in order to avoid signal-to-noise ratio problems. 
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6.3 Impedance and signal fidelity 

Standard practice in bioelectric recording dictates that electrode contact imp

edance (i.e. the combination of skin/electrode impedance) should be as low 

as possible (Iguchi et al. 1994). The major reason for this requirement is to 

minimise interference from powerline sources. There are many possible rea

sons for the appearance of powerline interference in bioelectric recordings, 

some of the significant mechanisms are: 

(a) Time-varying magnetic fields induce voltages into conductive loops. This 

may be avoided by twisting cables together (thus minimising loop area). 

(b) Electric fields from power lines capacitively couple onto the body, induc

ing displacement currents. This displacement current flowing through 

the impedance of the body causes a fluctuating common mode voltage. 

Additionally, two electrodes placed on the body experience a potential 

difference due to the displacement current flowing through the portion 

of body impedance which exists between the electrodes. 

(c) Unequal skin/electrode impedances effectively convert	 common mode 

voltages on the body to differential voltages, by acting in series with \ 
amplifier input impedances. This is called the 'potential divider effect' 

(\Van & Nguyen 1994, Overton 1974). 

(d)	 Currents induced due to capacitive coupling onto leads cause differential 

voltages at amplifier inputs if skin/electrode impedances are unequal. 

For the purposes of the study described here, only the causes which are 

influenced by electrode and/or skin impedance are considered (points (c) 

and (d)). Although these effects can be reduced by guarding cables and using 
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a driven-right-leg circuit, contact impedance still has a large influence on in

terference voltages at amplifier outputs. For details regarding other sources 

of powerline interference, several review articles are available (Chimene & 

Pallas-Areny 2000, Marshall & Neilson 1984, Webster 1984, Overton 1974). 

After considering the causes of powerline interference, it can be seen that the 

major reason for the common requirement oflow electrode/skin contact imp

edance is that this minimises the impedance mismatch between electrodes. 

The mismatch between impedance at electrode sites is a major influence on 

the quality of signals obtained, rather than the magnitude of contact imped

ance. Thus the primary objective is to minimise electrode contact impedance 

mismatch, which occurs as a consequence of lowering the contact impedance 

of both electrodes: a reduction in magnitude of both contact impedances also 

has the effect of reducing the impedance difference between them. The effects 

of impedance mismatch can be illustrated by pairing two electrodes of differ

ent design and measuring the powerline interference suffered. For this thesis, 

an experiment was conducted to illustrate this effect using three electrode 

pairs (Searle & Kirkup 1999) on one subject (male, aged 27). Table 6.1 shows 

the 50 Hz interference component for the three pairs of electrodes 20 minutes 

after application to the forearm. One pair of electrodes was stainless steel, 

Electrode pair Interference [,uVRMS ) 

Two Ag/AgCl 3.2 

Two Stainless Steel 74.2 

One Ag/AgCl, One Stainless Steel 762.7 

Table 6.1: Powerline interference evident in bioelectric recordings from three 

electrode pairs made up of 2xwet, 2xdry and a mixed pair 

one pair was disposable Ag/AgCl ECG electrodes, and the third mismatched 
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pair used one of each electrode type. All six electrodes were positioned at the 

same time with 30 mm between their centres. The signals were not buffered 

at the electrode sites. nor were cables shielded. Results showed that, due to 

higher contact impedance, the impedance mismatch for stainless steel elec

trodes was higher than that for Ag/Agel, and as a result more powerline 

interference occurred. The increase in powerline interference suffered by the 

mismatched electrode pair (caused by the large difference in contact imp

edance of the dissimilar electrodes) is significantly larger than that for the 

other two electrode pairs. 

Although this degree of contact impedance mismatch is unlikely in op

erational situations, the results emphasize the need for low, stahle contact 

impedances in electrodes. Other work has shown that manually matching 

the contact impedances using capacitors and a potentiometer significantly 

reduced powerline interference (Adli Yamamoto 1998). The effect of the 

skin/electrode impedance, and skin/electrode impedance mismatch will be 

demonstrated in Section 6.6. 

There are many ways to prepare the skin to further reduce the skin/electrode 

impedance, such as abrasion with fine sandpaper, scraping the stratum corneum 

I 
with blunt needles and cleaning with alcohol and other fluids (Wan Nguyen 

1994, Geddes Baker 1989). An effective reduction in impedance when using 

dry and insulating electrodes is achieved by using an amplifier of unity gain, 

or buffer, at the electrode site. Electrodes which use this active impedance 

conversion are often termed 'active electrodes', 

I 
6.3.1 Active impedance conversionI, 
Bioelectric signals are often buffered electronically at a location spatially 

immediate to the electrode site. This has two main advantages: 
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•	 The bioelectric process 'looks into' a very high impedance, thus cur

rent load on the signal is very low and associated artifacts are min

imised. Since the input impedance is very high compared to normal 

skin impedance, there is less emphasis on skin preparation and artificial 

electrolytes. 

•	 The buffered signal is transmitted along wires to ancillary equipment 

with a low output impedance driver, thus reducing the effect of induced 

current noise in trailing leads. 

The circuitry of impedance conversion also comes under the terms 'buffer', 

'[source] follower' and 'unity gain amplifier'. It is advantageous to have this 

buffer circuitry spatially immediate to the electrode, with power supplied 

either locally by batteries or through the trailing leads from a distant source. 

Caution should be given against using a spatially local instrumentation am

plifier with high gain connected to a 'non-polarisable' electrode pair, even if a 

differential bioelectric signal is desired. The half cell potentials from the elec

trodes often cause the amplifier to saturate (even if the AC signal of interest 

is tiny) so it is advisable to use a medium gain in the initial instrumentation 

amplifier, then an AC-coupled second stage amplifier may be used for the 

remainder of the required gain (MettingVanRijn et al. 1996, MettingVanRijn 

et al. 1994). It is most common, however, to use unity gain buffers at the 

source of each electrode and process signals away from the subject. 

The utilisation of impedance converters is usually restricted to dry and 

insulated electrode types due to their habitually high impedance compared to 

wet types. Impedance converters are, however, occasionally used in conjunc

I 
I tion with 'low' impedance AgjAgCl electrodes to allow longer leads, less con

cern about skin preparation and impedance levels (Dunseath & Kelly 1995), 

and when concerns about AC power pickup in trailing leads are present 
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(Iguchi et al. 1994). It has been shown (Hagemann & Luczak 1985) that 

some motion artifacts are also reduced when these active electrodes are used. 

This is because of a reduction in lead flexing artifacts; the movement artifact 

due to disruption of the double layer interface will not be changed by the use 

of buffers. One drawback is that power must be supplied to the sensing area, 

though this is a minor problem since the power may be supplied through the 

same bundle of leads used to transmit signals, or by using batteries (Burke & 

Gleeson 2000, Taheri et al. 1994). Some commonly used buffering techniques 

are outlined in the following sections. 

6.3.1.1 FET buffers 

I 

The very high impedance at the input of field effect transistors (FETs) makes 

them suitable choices for use in electrode buffer amplifiers. A brief introduc

tion to FET devices can be found in Appendix E. A unity gain amplifier 

can be made incorporating a FET with a minimum of additional parts, for 

I 
example, the circuit in Figure 6.6 modified from Wolfson & Neuman (1969), 

which uses only a single current limiting diode in addition to the MOSFET4 . 

The current limiting diode is simply a prepackaged JFET with the gate con-

I 

f 

I Figure 6.6: FET input active buffer with high input impedance, modified 
I 

from Wolfson & Neuman (1969) 

r 4Metal Oxide Semiconductor Field Effect Transistor. 

I 

output 

lN5288 

2N3796 
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nected to the source internally, acting like a constant source and improving 

the performance of the voltage follower (see section E.1.2). Constant-current 

source-followers are also used by Luca et al. (1979) and Palko et al. (1995), 

using BJT transistor arrangements for the active load, while Matsuo et al. 

(1973) uses a zener/ JFET combination for the current source. The input re

sistance for this configuration is reported to be about 10 ID Ko & Hynecek 

(1974) investigated the performance of many FET-input buffers, which they 

integrated into single chip packages. The size and shape of 'metal can' FET 

casings (often made of steel) has been utilised by Norris (1983) and Luca 

et al. (1979), as the impedance conversion and signal pickup can be per

formed by one discrete component. In both cases the steel surface of the 

cans were polished to provide a suitable electrode surface. 

6.3.1.2 Operational amplifier buffers 

Integrated circuit technology and smaller package sizes (especially with Sur

face Mount Technology, SMT) means that it is convenient to use operational 

amplifier packages as buffers at the electrode site (Ko 1998). The buffer con

figuration is shown in Figure 6.7. Op-amps with inputs incorporating FET 

Figure 6.7: Operational amplifier buffer 

technology have comparable input impedances to discrete FET devices used 

for buffering. This buffer type has been utilised by Iguchi et al. (1994) and 

Nishimura et al. (1992) using dual-in-line (DIL) packages, and by David & 
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Portnoy (1972) using a metal can type. Although it is not recommended due 

to dangers of saturation from polarisation voltages (with wet and dry elec

trode types), Dunseath & Kelly (1995) used an op-amp in a non-inverting 

configuration, with a gain of 10. A pair of opposing diodes in parallel across 

the inputs of the op-amp, in conjunction with a resistor prevented possi

ble damage from static electricity, while not compromising input impedance. 

Padmadinata et al. (1990) fabricated an integrated BJT op-amp device of 

their own design, enabling them to have the circuitry on the same substrate 

as the electrode, thus minimising the physical size of the sensor. 

6.3.1.3 Using buffers with insulating electrodes 

A further consideration must be made when using insulating electrodes with 

buffers. Assuming that the electrode is purely capacitive, the electrode and 

the input impedance of the buffer form a high pass filter, as shown in Fig

ure 6.8. Thus the lower 3 dB frequency5 of the filter depends very much on 

C 

Figure 6.8: Combination of electrode capacitance and input impedance form

ing a high pass filter 

the values of the electrode capacitance and input impedance of the buffer 

(Matsuo et al. 1973). For the simple R-C combination in Figure 6.8, the 

5The 3 dB frequency is defined as the frequency at which the output signal from the 

filter has dropped to 71% of its original level. 

l 
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3 dB frequency is given by 

1 
(6.6) 

where T = RC 

David & Portnoy (1972) found f3dB frequencies for various dielectrics and 

dielectric thicknesses to be between 0.012-1.1 Hz. Further caution is required 

due to the fact that it is most common for the signals to be applied to a 

differential amplifier after buffering. The differing values of capacitance and 

input impedances will mean different effective gains for each buffer, and this 

may affect the Common Mode Rejection Ratio (CMRR) of the electrode 

system. 

The product of Rand C, or T is also known as the time constant and is 

directly related to the time taken for a capacitor to discharge through a resis

tor to 37% of its starting voltage in the presence of a DC step. This becomes 

a problem when large capacitances and input impedances are used because 

large artifacts will take considerable time to dissipate (Ko & Hynecek 1974). 

Some work has been done (David & Portnoy 1972) where an earthing re

sistor is used at the input of the buffer to prevent charge buildup on the 

capacitive electrode which would ultimately saturate the amplifier (or even 

destroy a FET device). This naturally introduces a tradeoff between the in

put impedance (now reduced effectively to that of the earthing resistor) and 

a requirement to dissipate unwanted electrical charge. This charge effect was 

also noticed by Ko & Hynecek (1974) who showed that, even with grounded 

shielding around electrodes, the output was affected by electrostatic fields 

near the devices. This charge sensitivity of insulating electrodes has also 

been reported by Bergey et al. (1971) and Lagow et al. (1971). 

In order to investigate the effect of skin/electrode impedance on signal 

I 
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quality further, a method which is capable of measuring impedance for the 

skin/electrode system in real time is required. Established techniques for 

impedance measurement are introduced in Section 6.4, and the development 

of a new system impedance monitoring is described in Section 6.5, as has 

been reported in the literature (Searle & Kirkup 1999). 

6.4	 Techniques for the measurement of the 

skin!electrode impedance 

Many methodologies have been used previously to measure the impedance of 

skin and/or electrodes. Some of these techniques are also common to imped

ance measurements in other scientific fields. Depending on the method used 

for measurement, the skin/electrode impedance may be measured as a single 

entity, or reduced into the skin impedance and electrode impedance sepa

rately. Electrode impedance has already been introduced in Chapter 5. There 

are a number of possible methods to measure the impedance of skin without 

the effect of electrodes. One is to measure the impedance of two electrodes 

with their recording surfaces touching (face-to-face), concurrent to the mea

surements taken of the skin/electrodes impedance (Khalafalla et al. 1971). 

The electrode-only impedance can then be subtracted from the measured 

skin impedance (which in fact is the skin + electrode impedance). There are 

also methods, by using multiple electrodes, that can separate the impedance 

components, as will be outlined in Section 6.4.1. This section outlines the 

possibilities concerning the number of electrodes used in the measurement, 

and the measurement techniques themselves. 
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6.4.1 Electrode configurations 

The placement and arrangement of the electrodes used in impedance mea

sures needs to be understood before the interpretation of results, or before 

the design of equipment can be undertaken. 

6.4.1.1 Two electrode configuration 

This is the most basic and intuitive setup to measure impedance. One pair 

of electrodes is used to supply current and simultaneously to measure the 

voltage across the impedance sample. The simplest such setup is a power 

source in series with the subject and a resistor of low value to indicate the 

current magnitude (Lykken 1970). Unfortunately the impedance of the elec

trodes will affect the voltage read, and thus the impedance result will be 

the summation of the skin and electrode impedances. The effect will depend 

on the electrode type used and the frequency of the current supply. Fig

ure 6.9(a) shows the setup. The use of small electrodes is specified in this di

(a) (b) 

Figure 6.9: Two and four electrode configuration (using small electrodes) 

agram: alternatives to small electrodes such as plate, concentric (Yamamoto 

et al. 1986) or band (Baker 1989) electrodes result in different current density 

distributions and thus gives different impedance values. 
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6.4.1.2 Four electrode configuration 

This has also been termed the tetrapolar current method (Palko et al. 1995). 

In this configuration, shown in Figure 6.9(b), two outer electrodes are used 

to supply the excitation current, whilst two inner electrodes detect the dif

ferential voltage across a portion of skin. Since no current flows through 

the sensing electrodes (assuming the differential amplifier is of instrumenta

tion quality) there is no electrode impedance effect present in the resulting 

waveform of Although the use of this method requires slightly more 

complicated circuits and increased electrode counts, its proven accuracy 

make it a popular choice for many researchers (Ristic et al. 1995, Lozano 

et al. 1990, Ackmann 1993). 

6.4.1.3 Three electrode configuration 

The three electrode technique allows readings to be taken from a single elec

trode site, with the remaining two electrodes acting as current source/sink 

(Yamamoto & Yamamoto 1981). As in the four electrode configuration 

the electrode effect can be neglected if a high input amplifier is used, thus 

assuring that no current flows through the sensing electrode (Yamamoto 

et al. 1996, McAdams et al. 1994). Some researchers have not taken this pre

caution (Qiao & Morkrid 1995), instead using a current to voltage converter 

after the sensing electrode, providing a path for small currents which could 

possibly affect impedance values by the inclusion of the sensing electrode 

impedance. 

6.4.1.4 Multiple electrodes 

Devices which use impedance to image parts of the human body (known 

as Electrical Impedance Tomography, or EIT) frequently employ large num

i 
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bers of electrodes for good spatial resolution. Most often these are arranged 

evenly, surrounding the area of interest. For example, Hutchison & Kulka

rni (1995) used 16 electrodes, sequentially using two electrodes for current 

injection whilst the other fourteen electrodes monitored the resulting volt

ages (in a similar fashion to the four electrode technique). In contrast, Cook 

et al. (1994) used 32 electrodes and one ground reference, using all sites to 

supply current and detect voltage simultaneously, akin to the two electrode 

approach. Note that some EIT systems do not necessarily use large electrode 

arrays, but may employ as few as two electrodes (Lozano et al. 1990). 

6.4.2 Impedance measurement techniques 

The measurement of currents through biological specimens was restricted 

mainly to DC (resistance) instrumentation before the widespread use of the 

vacuum tube around 1910 (McAdams & Jossinet 1995) made the generation 

of high frequency AC signals more convenient and reliable. At this stage 

impedance measurements, which require AC waveforms, became possible. 

Improvements in instrumentation have paralleled the advances made in the 

analysis and use of the electrical models. A brief survey of methods used 

since the early 1900's follows. 

6.4.2.1 Impedance bridges 

Early measurements of complex impedances were performed accurately with 

Wien impedance bridges. The unknown impedance was in one arm, and a 

variable capacitance and resistance (Hague & Foord 1971) on another, the 

theory being that the resistive, then the capacitive components are matched 

separately (Coombs 1995, Geddes 1973b), using an AC source for excitation 

at various frequencies. This makes the assumption that the impedance Zx 

l 
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is comprised of a capacitive and resistive part (Cx and Rx ). The variable 

capacitance and resistance may be in series or parallel configuration, as shown 

in Figure 6.10. In both diagrams the unknown quantity is Zx. The null 

(a) ) 

Figure 6.10: Impedance measurement circuits in the (a) series and (b) par

allel configuration 

detector (D) shows the out-of-balance error signal, and the values of Rc and 

Cs are adjusted until a zero reading is obtained (or in more practical terms, 

when the error signal is indistinguishable from the noise level.) For both 

series and parallel techniques the values for Cx and Rx , once the bridge has 

been balanced, are given by 

(6.7) 

(6.8) 

Ra and Rb are ratio resistances, usually preset and of high precision. In the 

case of biological impedances, commonly Ra = Rb and Ra » \Zxl so that the 

sample under test (Zx) is assured of a constant current (Geddes 1973b). Note 

that this impedance is only valid for the frequency which is employed in the 

exciting current. The null detection system must have a good signal-to-noise

ratio (SNR) so that the error signal (which in many biological sample cases is 

L 
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only a few millivolts) can be determined with some accuracy. Problems arise 

when harmonics are generated by the sample, since near balance the second 

harmonic amplitude will be far greater than the base frequency, making 

visual minimisation difficult on a cathode display. Differing magnitudes of the 

impedance components can lead to reduced sensitivity in the determination 

of the minor component, since the SNR affects the observation of balance of 

one component more than it does the other. In response to both of these 

difficulties, a phase-sensitive detection system can be employed. 

In phase sensitive detection (Armstrong et al. 1968) the error signal is 

phase-shifted by a variable amount and, along with the signal from the AC 

source, is fed into a phase detector. The phase detector gives a DC voltage 

proportional to the fraction of phase-shifted error signal that is in phase with 

the oscillator signal at the exact same frequency. The term phase sensitive 

detection is also used in a wider sense in quadrature techniques, to be de

scribed in Section 6.4.2.5. Using this method the effect of SNR is reduced 

(since a DC signal is used for display, and a coil or digital meter can be used 

as the null detector) and each component of Zx has comparable accuracy. 

It is often assumed (Ackmann 1993) that bridge techniques restrict the 

observations to two electrode configurations (Sec 6.4.1.1), however the use 

of more advanced 'double bridges' have been used with three and four elec

trode configurations (Barnett 1938), allowing the advantage of skin imped

ance readings free from electrode impedance contributions. 

6.4.2.2 Phasemeters 

Early researchers were mostly concerned with finding the phase angle (and 

not so much the magnitude (Barnett 1938)) of the body impedance. Phaseme

ters simplified the determination of phase angle by offering a way to find the 
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phase reading directly, with only one adjustment required. Simple phaseme

ters were made of three separate components; an oscillator, phase changer 

and an indicator (to act as the null phase instrument). The phase changer 

is adjusted until the body phase is accounted for, and a direct reading can 

be made from the null indicator by replacing the body by a purely resistive 

component. A single phase measurement could be made by this method in 

the order of two minutes (Barnett 1935). 

6.4.2.3 Lissajous' figures 

Lissajous' figures are formed by the composition of two perpendicular wave

forms, most commonly this is done on an oscilloscope. From these curves the 

relative phase and frequency of the two waveforms can be established. The 

Figure 6.11: An example of a Lissajous' Diagram 

phase is gained from the x-y plot on an oscilloscope, plotter etc. as follows. 

If it is assumed that there exist two signals of the same frequency, and with a 

phase difference then the vertical and horizontal deflections are governed 
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by the equations (Malmstadt et al. 1963), 

y (6.9) 

csin(wt) (6.10) 

Consider the case where y = a when = 0 (see Figure since this gives 

values of a and b which are easily gathered from the Lissajous image, the 

phase difference is given by 

= - = 0,1,2 ... (6.11 ) 
b 

The value of n is usually simply set to zero. Lissajous' figures have the 

advantage over sinusoidally driven universal bridge techniques in that it is 

immediately apparent when nonlinearity effects are present. The graphical 

nature of the approach lends itself to signals of low frequency, since the fig

ure can be traced on an x-y plotter (paper, digital or otherwise). Where the 

technique is applied to biological impedance, the input current (usually from 

a constant current source) and the resulting output voltage are applied to the 

two axis of the recording device to produce the Lissajous' figure (Plutchik 

& Hirsch 1963, de Boer & Oosterom 1978). Yamamoto & Yamamoto (1981) 

used this technique to examine the nonlinear effects which occur at low fre

quencies and high currents. 

6.4.2.4 Active- impedance conversion 

The circuit shown in Figure 6.12 can be used to deliver a controlled current 

to an impedance sample, under the proviso that the sample does not require 

one grounded terminal, since the op-amp provides only a virtual ground 

(Greef 1978). To minimise the offsets due to bias currents in the op-amp, set 

R x R111Z. The current through Z is 

(6.12) 

L
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Figure 6.12: Active impedance converter 

This is essentially an inverting amplifier circuit, thus the output and imped

ance value is 

(6.13)
R] 

VoutR 1
Z = (6.14) 

Using Equation 6.14 the magnitude of Z can be directly determined us

ing or the signal can be split into rcal and imaginary components 

using quadrature techniques (Section 6.4.2.5) or Fourier transforms (Sec

tion 6.4.3.1). 

6.4.2.5 Quadrature techniques 

This is also commonly known as Phase Sensitive Demodulation or Phase Sen

sitive Detection, but not to be confused with the phase sensitive detection 

method used in AC bridge measurements (Section 6.4.2.1). Variations on 

this method use the waveform providing excitation to the impedance sample 

as a reference to extract in-phase and quadrature6 results. A current propor

tional to a sinusoidal signal is driven through the impedance sample. The 

resulting voltage across the sample is then amplified and multiplied either by 

the driving waveform, or by a quadrature version of the driving waveform. 

690 0 out of phase from the reference signal 
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The products are then low-pass filtered and the resulting voltages are pro

portional to the real and complex impedance (Rs and X s ) for the sample. 

There are many variations in the driving circuitry (Ristic et al. 1995) and 

the sampling stage, where digital techniques are an attractive alternative to 

analogue multiplication and filtering; integrators with sample-and-hold are 

utilised instead (Cook et al. 1994). Commercial phase sensitive detectors are 

available and are usually termed Lock-in Amplifiers. Often these instruments 

can be programmed to sweep through frequencies, thus making the gather

ing of readings much simpler. Most commercial lock-in amplifiers are not 

designed for biological signal testing, so external amplification and isolation 

circuits are usually required (.I\ckmann 1993). 

6.4.2.6 Step input and square wave applications 

The use of to the transient response of circuit ele

ments is standard in electrical engineering methodologies (Kuo 1991, p. 308). 

The application of a square wave can be considered equivalent to a series of 

step impulses, so long as the period of the waveform is significantly longer 

than the expected time constant of the system under test. 

All methods thus far have utilised techniques to gather impedance infor

mation at set frequencies, and if the impedance locus is to be plotted this 

requires a large number of readings, or at least an automatic sweep of fre

quencies. It is known that the skin impedance can change rapidly (Geddes & 

Valentinuzzi 1973), and thus over the course of a number of readings the re

sults can change dramatically. Some early researchers (Teorell 1947, Tregear 

1974) realised that using square waves could allow them to obtain impedance 

values at many frequencies in one measurement, thus avoiding the need to 

repeat impedance measures over a range of frequencies. 
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6.4.3 Multifrequency measurement techniques 

In this thesis the term 'multifrequency' relates to a multitude of frequency 

components combined into a single waveform, with results for each frequency 

available simultaneously. reports, particularly those involved with EIT 

use multifrequency when referring to "dual-frequency" systems, or to those 

where the frequency spectrum is swept (Gudivaka et al. 1996, Griffiths 1992, 

Palko et al. 1995). 

6.4.3.1 Fourier analysis 

According to Fourier Theory, all waveforms can be considered as comprising 

of a number (often an infinite series) of sinusoidal components. For example 

the Fourier expansions for a square wave and a sawtooth wave are shown in 

Equations 6.15 & 6.16, with their associated spectra shown in Figure 6.13 

(where the amplitudes of the waveforms are A = and respectively, 

and V is the amplitude of the base frequency component). 

amplitude amplitude 

Wo 9wo 3wo 5wo 7

(a) (b) 

Figure 6.13: Spectra for square and sawtooth waveforms 

fsquare(t) 

f sawtooth ( t) 

(6.15) 

(6.16) 
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The sawtooth waveform has all discrete harmonics, whereas the square spec

tra only contains odd harmonics. Despite this, the square wave is almost the 

only waveform used for impedance studies due to the simplicity of its gen

eration. Tregear (1974) stated that the use of a square wave voltage would 

be 'theoretically elegant', but that in practice the use of a sinusoidal volt

age at a series of different frequencies would be easier. However, 28 years 

earlier Teorell (1947) had used exactly this technique to examine the skin of 

frogs under the effect of NaCl and KCl. Using fourier equations the sinusoidal 

components of the square waves can be examined, thus allowing the determi

nation of impedance at a large number of frequencies simultaneously. Using 

photographs of responses on an oscilloscope and manual fourier calculations, 

Teorell obtained an impedance locus diagram with a total of 6 data points 

(from 12 waveform coordinates). More recently Yamamoto et aJ. (1996) used 

computers (taking advantage of the Fast Fourier Transform, FFT) to 

quire and process waveforms resulting from square wave current application 

to palmar skin. 

A major disadvantage inherent in both of these techniques is that the 

amplitude of the sinusoidal components in the square wave drops off rapidly 

(following a series) at higher harmonics, thus making readings at higher fre

quencies less accurate (refer to Figure 6.13(a)). The sawtooth function shown 

in Figure 6.13(b) has more harmonics, but the amplitudes also follow an in

verse law. The ideal spectra for instantaneous multifrequency measurements 

would be one which has all frequency components at an equal amplitude: in 

other words a flat, or "white", spectrum. If the fourier equations are applied 

to this approach we find 

1 roo 
f(t) = = {l} = 21T ejwtdw = (6.17) 

The current waveshape that is needed, is the delta impulse function; a 
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pulse approaching zero width and infinite height, with an area equal to one 

unit. Besides being impractical to implement, such a current spike would be 

damaging to the skin, and possibly ancillary electrical equipment. There are 

alternatives which can produce fiat spectra, at least over a selected range, 

without being impractical. Kinouchi et al. (1997) used an approximation 

to the impulse function, which was stored on a computer and generated 

via a DAC. Creason et al. (1973) undertook a thorough investigation into 

various waveforms which could be produced by computer for use in imped

ance measuring instruments. These included white noise (bandwidth limited, 

pseudo-random and phase varying), rectangular pulses, odd-harmonic arrays 

and near-periodic signals. 

6.4.3.2 Commercial spectrum analysers 

'iVith the addition of some current conversion and isolation circuitry, commer

cial equipment can be utilised to obtain the impedance locus, though most 

analysis equipment sweeps through a range of selected frequencies (McAdams 

& Jossinet 1994b, Onaral & Schwan 1982, Patterson & Latterell 1995, Arm

strong et al. 1977) thus allowing for errors due to temporal skin imped

ance changes. Some newer spectrum analysers operate with FFT algorithms 

(Nowotny & Nowotny 1980) and thus can take full advantage of characteris

tics described in section 6.4.3.1. However, a customised system offers many 

advantages over spectrum analysers, which are rarely devised with biologi

cal applications in mind. Specialised impedance analysers are also available, 

usually intended for testing of discrete components or systems. Many such 

analysers have the facility for four-terminal testing (equivalent to a four elec

trode configuration), but Ackmann (1993) warns that some instruments have 

these terminals connected internally and so are in effect two terminal devices. 
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6.5	 A new method for impedance plots with 

arbitrary frequency components 

As outlined in Section 6.4, many methods for measuring impedance are avail

able. \iVhen the impedance spectrum (i.e. the impedance of a sample at many 

different frequencies) is required, the options become more limited, especially 

when the impedance characteristics of the sample are nonstationary, as is the 

case with skin/electrode impedance. The impedance measurement system 

described in this chapter, and reported in the refereed literature (Searle & 

Kirkup 1999), offers the following advantages: 

•	 It is capable of measuring impedance at many frequency values simul

taneously. 

•	 The system is flexible; the frequencies at which to measure are arbitrary 

in value and number. 

•	 The impedance measurements have equal fidelity at all frequency values 

(unlike, for example, methods which use a square wave for excitation). 

•	 The impedance spectrum may be determined at a fast rate, limited 

only by the lowest frequency value utilised. 

•	 The system is inexpensive and may be constructed from readily avail

able parts. 

The term 'impedance spectrum' is used rather than 'multifrequency imped

ance analysis' as the latter term is usually applied to bioimpedance techniques 

which sample at a limited number of preset frequencies (Griffiths 1992), 

or else sweep across a range of frequencies to build a complete spectrum 

(Gudivaka et al. 1996, Palko et al. 1995). Examples of contact impedance 

1
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using the new impedance spectroscopy system are examined, and in Sec

tion 6.6 the system is used to demonstrate the effect of contact impedance 

on bioelectric signal fidelity. 

6.5.1 Introduction 

Since changes in the skin impedance (and the skin/electrode interface) char

acteristics occur over short time periods (of the order of seconds), a method 

that determines the impedance at a large number of frequencies simultane

ously was required. If the impedance monitoring method restricts the user 

to a single impedance value per measure, many separate evaluations must be 

performed to construct a complete spectrum. In situations where temporal 

information is required, the delay in constructing the entire impedance spec

tra may distort the final result. For comparison, to sweep from 1 Hz-l kHz 

at discrete steps of 1 Hz, and assuming we need only one complete sinusoidal 

cycle at each frequency for a measurement, then a sweep would take (using 

divergent harmonic series) 

1000 1 
t = - = 7.48 S (6.18) 

1=1 f 

If the total time delay for processing, which includes a short break between 

frequency steps, 10 ms per frequency, this results in a sweep time of nearly 

20 s. The effect of long sweep times on the impedance locus (discussed in 

more detail by McAdams et al. (1993)) is shown in Figure 6.14 (Searle & 

Kirkup 1999). This figure shows impedance spectra of skin with applied 

Ag/Agel electrodes. Three loci are displayed, two of which were measured 

at time t=O sand t=90 s. These spectra were obtained in a single mea

surement (using the method to be described) every 3 s, with values at 30 

separate frequencies over the range 1-950 Hz. The third, intermediate curve, 
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Figure 6.14: The effect of swept impedance readings, as opposed to imped

ance spectra obtained from a single measurement. Two impedance curves 

are shown whose loci were determined in single measurements at t=O sand 

t=90 s. The intermediate curve displays the effect if readings were instead 

taken at single frequencies over the same time period 

simulates the result that would occur jf the frequency range was stepped 

through at three seconds per frequency, rather than three seconds per com

plete impedance locus. The form of this distorted data depends on whether 

the impedance increases or decreases during the readings, and on the direc

tion of frequency sweep; in this simulation the impedance was decreasing 

and the sweep begins at low frequencies. It is clear that the resulting imp

edance locus is not representative of the true data, thus the swept frequency 

method is unsuitable for measuring the impedance spectra of samples which 

have temporally changing electrical characteristics, such as some biological 

tissues. 

As introduced in Section 6.4.3, methods exist to measure the impedance 

at many frequencies simultaneously, but all have disadvantages with respect 

to use with biological samples which have nonstationary characteristics. The 

new technique developed in this study and described here uses a waveform 
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which is the summation of a finite number of sinusoids. It was designed 

to be useable on an IBM compatible computer with a DAQ (data acquisi

tion) board, convenient to construct (minimum of external componentry and 

specialised equipment), yet to still be able to operate in real time with a rea

sonable impedance spectra refresh rate. To the author's knowledge there are 

no reports in the open literature or commercial literature of an instrument 

which offers these facilities and performance. 

6.5.2 Description of system 

The impedance measurement system, shown schematically in Figure 6.15, 

consists of a PC with data acquisition board, and an impedance conver

sion circuit. The DAQ board has analogue-to-digital (ADC) and digital-

DIGITAL
 
WAVEFORM
 

Impedance
 
: CALIBRATION
 Conversion 

DATA CPU Circuit 

: I RESULTS I 

DISK 
Z-LOCUS 

PC PLOT 

Figure 6.15: Physical layout of impedance spectroscopy system. 

to-analogue (DAC) converters capable of simultaneous analogue input and 

output (National Instruments PCI-MIO-16E-4). The software was written 

in the graphical programming language Labview 4.0 (National Instruments, 

Austin, TX, USA). The impedance conversion circuit is shovm in Figure 6.16. 

This circuit is used to deliver a current proportional to to an electrically 
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Figure 6.16: Impedance conversion circuit 

floating sample. 

The development of this technique enables the monitoring of impedance 

of the electrode-electrolyte-skin interfaces over time, utilising different met

als for electrode construction, as well as the study of the impedance change 

of conventional wet electrodes. This allows a comparison between wet and 

dry electrodes. Thus it is of interest to observe the contributions due to the 

presence of recording electrodes, as well as impedance of the skin tissue itself 

and for this reason the two-terminal method is used. Other applications may 

benefit from the three terminal method (Section 6.4.1.3) which can measure 

the impedance from one electrode/skin interface and a portion of tissue (de

pending on the configuration) or the four terminal method (Section 6.4.1.2) 

which measures tissue impedance only. The current through the sample, Z, 

is controllable via Rcurrent' as in Equation 6.19, 

1 
Rcurrent 

-
- R (6.19) 

current 

The value for IRcurrent should be chosen with consideration of the skin imp

edance, such that the voltage created across the skin does not exceed the 

maximum voltage for the amplifier and induce clipping of the waveform. In 

experiments carried out using this system, currents used were usually less 
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than 50 The output voltage and impedance values are given by, 

(6.20)
RCUTTent 
- VoutRcurrent

Z (6.21) 

Using Equation 6.21 the magnitude of Z measured with a sinusoidal signal 

can be directly determined using \lout. Alternatively, an applied waveform 

composed of many frequency components may be used, and the FFT applied 

to the input and output waveforms. If the discrete time series for the digitised 

versions of the applied and result waveforms are fa[k] and fr[k] respectively, 

the spectral components can be determined by the FFT: 

(6.22)
 

Thus an array of impedance magnitude values is obtained as in Equation 6.23. 

]Z[ "]1 = IFr[j]!Rcurrent (6.23)
J [PaU] I 

FaU] and Fr[j] are the Fourier coefficients, as described in Equation 6.22. 

Alternatively the real and imaginary components of the impedance may be 

obtained by applying complex Fourier transform methods. 

6.5.2.1 Frequency determination 

As discussed in Section 6.2, the basic form for an impedance spectrum for 

skin (only) can be electrically modelled by the 'three component model', as 

shown in Figure 6.3, which has a semicircular locus on an argand diagram. 

If impedance values are obtained at frequencies which are evenly spaced, the 

resulting impedance locus will have few data points in the low frequency re

gion, and many clustered points as the frequency approaches infinity. This 

is demonstrated in Figure 6.17, which simulates impedance values using the 

I 
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three component model (refer Figure 6.3) with C = 22 nF, r = 47 and 

R = O. Impedance values were calculated from 1-1000 Hz in steps of 50 Hz. 

25,.----------------...,
•• 

20 

15 

I
•• • 

10
 

o
o .) 10 20 30

R 

Figure 6.17: Theoretical impedance values calculated from the three compo

nent model at evenly spaced frequencies between 1 and 1000 Hz. 

The alternative approach used in the technique described here is to generate 

a waveform which has specific frequencies such that the resulting data points 

will be evenly spaced around the theoretical impedance locus. This involves 

estimating the component values for the three component model that will 

match the anticipated skin impedance. Additionally, the desired frequency 

range and number of data points are also needed for the calculation. Al

though experimental data shows that the three component model generally 

does not fully explain the skin's electrical behaviour (in that the experimen

tal locus has a depressed centre), this approximate model is sufficient for 

the purpose of frequency selection. Equations 6.24 and 6.25 are utilised' to 

calculate the frequencies required, 

-1 [2 ]e(f) = cos (f 0)2 - 1 (6.24) 
r· + 1 

- 1f/f(e) = 2 (6.25) 

7 see Appendix D.9 for derivation details. 
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where corresponds to the angle in Figure 6.17, and C,r correspond to values 

in the three component model. The maximum and minimum values for can 

be determined by substituting values for r and the maximum/minimum 

frequency required, ], into equation 6.24. The angular increment can be 

determined by dividing this range by the number of points required, and 

finally the frequencies required for the evenly spread points are found from 

Equation 6.25. 

For example, if impedance values for 20 points in the frequencies range 

1-1000 Hz are required: using Equation 6.24, the start and finish values 

would be ()(1 Hz)=0.74° and ()(lOOO Hz)=162.50°. The span of these angles 

can be divided into 20 values, and the respective frequency values found using 

Equation 6.25: ](0.74°) = 1.0 Hz, ](8.83°) = 11.8 Hz, ](16.9°) = 22.8 Hz, 

and so on. 

The impedance monitoring system developed includes a program with a 

graphical interface so the user can select the values for C, frequency range 

and the number of points, and the algorithm will calculate the required fre

quency values. Alternatively the program may produce a set of frequencies 

evenly spread across the spectrum in steps, or the user may manually specify 

each individual frequency. Once required frequencies are calculated the val

ues are rounded to integers, the waveform is constructed digitally of sinusoids 

with equal amplitudes, and finally stored on hard disk. 

6.5.2.2 Calibration 

A calibration is performed once settings have been finalised to account for 

distortion due to gain and phase transformations in the preamplifier and an

tialiasing filter, and to avoid the need to enter data regarding the settings for 

Rcurrent and preamplifier gain (as these can be determined from calibration 

1
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data). A resistive element of known value is used in the calibration. The 

phase and magnitude for each selected frequency in the applied signal and 

resulting waveform are recorded for ten repetitions. The average of the ten 

results is calculated for each frequency in order to improve estimates of the 

phase and magnitude corrections. 

6.5.2.3 Acquisition 

During acquisition the stored waveform was applied via the DAC and the 

result simultaneously recorded through the ADC. For experiments reported 

in this thesis, the lowest frequency used was 1 Hz, thus the composite wave

form needs to be of 1 s duration to contain at least one complete cycle for 

each frequency component used. For use with lower frequency components, 

waveforms of longer duration would be required. To avoid transient effects 

at the initial application of the waveform, the signal was applied twice over 

a 2 s time period, and the last second only was used as data. Because the 

waveform was constructed from sinusoids which all have an integer number 

of periods within the waveform data set, spectral leakage was avoided and 

windowing operations before the application of the FFT were therefore un

necessary (Benetazzo et al. 1992, Ramirez 1985). An FFT was performed on 

the applied and result waveforms. The phase and magnitude of the Fourier 

coefficients for the result waveform were adjusted by the values calculated 

in the calibration procedure, described in Section 6.5.2.2. The impedance 

values for each applied frequency were then determined using Equation 6.23. 

The impedance spectrum was plotted in real time, thus observations and 

equipment/subject adjustments may be made without the need to record 

and process data offline. When desired, the impedance spectra values were 

able to be transferred to disk without restarting the program. 
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6.5.3 Results 

To test the fidelity of the system for a known locus, a parallel combination 

of a 47 resistor and a 22 nF capacitor were used to provide a semicircular 

plot. The result is shown in Figure 6.18. The experimental points are shown, 

20 

61Hz 

10
 

950Hz
 

- Theoretical Curve
 
• Experimental Values 

o 10 20 30 50 
R [HI] 

Figure 6.18: Impedance values when the system was tested on a parallel RC 

combination with R = 47 and C = 22 nF. The theoretical locus is also 

shown for comparison. 

along with a curve of the theoretical values for the parallel R-C combination. 

The driving waveform was a composite of 30 frequency components covering 

7-950 Hz, chosen such that the data points will be evenly spaced around 

the impedance locus (see Section 6.5.2.1), as is evident in Figure 6.18. The 

waveform was acquired at 5000 samples/s, with a peak current of 128 (in a 

biological sample, a current of this magnitude may introduce nonlinearities). 

To further explore the benefits of the arbitrary waveform method for 

impedance spectroscopy, as compared to the use of a square wave, tests were 

done to examine the stability of locus results. Power spectra were recorded 

over 100 trials for waveforms applied to a resistive element. Two waveforms 

were used: the first was a simple square wave, and the second a composite 
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waveform comprised of 30 evenly spaced frequencies spread from 1 Hz to 

950 Hz. The coefficient of variation ('Ux ) of impedance magnitude for the 

data sets was calculated as in Equation 6.26 across the frequency range being 

considered, and expressed as a percentage. 

V x = Sx 
x 100 [%]	 (6.26) 

x 

Here Sx is the sample standard deviation for the sample, and is the sample 

mean. Figure 6.19 shows the results. V x for the composite waveform is 
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Figure 6.19: Comparison between coefficient of variation of power spectra 

for arbitrary and square waveform methods. Insert shows detail in frequency 

range DC-200 Hz. 

constant at around 0.015%, whereas Vx for the square wave spectra grows 

steadily with increasing frequency, due to the decrease in the magnitude of 

the waveform's spectral components. 
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6.5.3.1 Application of system to skin/electrode impedance mea

snrements 

Examples of the system applied to physiological samples are shown in Fig

ures 6.20 and 6.21. Figure 6.20(a) shows the variation in the impedance 

.:-; [kIf 
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Figure 6.20: Variation over time of the impedance locus for stainless steel 

electrodes (a) and pre-gelled AgjAgCl electrodes (b) in contact with skin. 

Figure 6.21: Variation over time of impedance values at each recorded fre

quency for stainless steel electrodes (a) and pre-gelled AgjAgCI electrodes 

(b) in contact with skin. 

spectrum for stainless steel electrodes in contact with skin over 13 minutes. 

The skin was lightly stroked with sandpaper before the application of the 

electrodes, but no gel or other liquid was applied to the skin. Impedances 



I 

I , 
6.5 A new method for impedance plots 220 

were monitored at frequencies in the range 1-500 Hz at a peak current of 

42 Figure 6.20(b) shows the change in impedance spectrum of pre-gelled 

Ag/AgCI electrodes in contact with skin over 120 s. Again, the skin was 

lightly stroked with sandpaper before application. Impedances were moni

tored at frequencies in the range 1-950 Hz at a peak current of 23 Both 

sets of measurements were done on the forearm (antibrachium). Clearly, the 

Ag/AgCI electrodes stabilise more rapidly, and have lower impedance values, 

consistent with expectations (Geddes & Valentinuzzi 1973). Figures 6.21(a,b) 

show a different representation of the same data used in Figure 6.20, over 

the same time periods. Figure 6.21 plots the variation in the impedance at 

each frequency (in Figure 6.21(a) some curves have been omitted for clarity). 

Although it was not the purpose of this experiment to draw further con

clusions from this illustrative data, the effect of a natural accumulation of 

perspiration under the dry electrodes used in Figures 6.20/6.21(a) contrasts 

with the use of an artificial electrolyte (the gel used in Figures 6.20/6.21(b)). 

In another example, as illustrated in Figure 6.22, the superposition of 

contributions from the skin impedance and the electrode interface imped

ance can be seen. The plot shows the change in the electrode/skin interface 

impedance on the forearm using Ag/Agel electrodes. Before the application 

of the electrodes the skin was scraped with sandpaper (more so than for 

the previous examples), and thus the impedance values obtained are lower 

(compare to Figure 6.20(b)). As the skin impedance is low, the separate 

impedance contributions from the electrode interface and skin can be seen 

clearly. The skin impedance appears as the semicircular portion (dominant 

at higher frequencies), and the electrode impedance contributes the nearly 

linear portion at lower frequencies (this is described by the high frequency 

electrode impedance model, see Figure 5.4(a)). The data in Figure 6.22 were 
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Figure 6.22: Variation over time of the impedance locus for two Ag/Agel 

electrodes applied to the forearm. The different contributions from the elec

trode impedance and skin impedance are visible. 

obtained using impedance values measured at frequencies ranging from 1 Hz 

to 1 kHz, with measurements taken over two minutes. 

6.6	 The relationship between contact imped

ance and powerline interference, revisited 

The influence of the skin/electrode impedance (and more importantly, the 

skin/electrode impedance mismatch) was explored in Section 6.3. The de

velopment of a fast and reliable impedance monitoring system enables the 

exploration of the dependence of signal fidelity on skin/electrode impedance, 

and the effect of active electrodes. These experiments have been reported in 

Searle & Kirkup (2000). 
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To establish the relationship between impedance and powerline interfer

ence the following test was conducted on one subject (male, aged 27). Three 

identical pairs of stainless steel electrodes (diameter 11 mm) were placed on 

the forearm, all with the same distance between their centres (20 mm). One 

pair was used to monitor the contact impedance at 57 Hz using the method 

described in Section 6.5. The remaining two electrode pairs were used to 

simultaneously monitor the 50 Hz signal component. Of these, one pair was 

actively buffered at the electrode site (using OPA132 op-amps in unity gain 

configuration) while the other pair was not. A standard Ag/AgCl electrode 

was used as a reference on the wrist and no attempt was made to shield the 

cables. Recordings were performed for 20 minutes. Figure 6.23 shows how 

- -------------------------------
0.1 Contact Impedance --

Drv Hz interference ---- 
Hz interference ..... 

0.01 . 
.... 

• ···• 1 •••••
0.001 __ __ __ __ __

o	 200 400 600 800 1000 1200 
Time (seconds) 

Figure 6.23: Interference performance of two pairs of stainless steel electrodes 

compared to contact impedance. One pair of electrodes is actively buffered. 

the powerline interference reduces directly with contact impedance (which 

decreases as perspiration accumulates under electrodes) for both dry and 

dry-active electrode pairs. The dry-active pair results in interference approx

imately two orders of magnitude lower owing to its reduced output impedance 

(and thus reduced impedance mismatch). The skin/electrode impedance still 
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influences the interference of the dry-active electrodes, revealed by the initial 

decrease in the curve in Figure 6.23. This is due to capacitive coupling onto 

the electrodes and wires that occurs before the buffers, and the finite in

put/output impedance of the buffers. These results reflect data reported by 

Chimene & Pallas-Areny (2000), and by Nishimura et al. (1992), who found 

in experiments with EMG that the averaged power spectra at 50 Hz for the 

electrodes with impedance conversion was 1% of that for a passive type. 

The change in skin/electrode impedance over time appears to follow an 

exponential decay; this can be seen in Figures 6.20, and more clearly for a 

single excitation frequency in Figure 6.23. Although the impedance Z(t) at 

a given excitation frequency appears to decrease exponentially (as noted by 

Olson et al. (1979) and Geddes et al. (1973)), to obtain an acceptable fit a 

polyexponential function must be used, of the form 

(6.27)
 

where aI, a2, b], b2 , and c are constants. An example is shown in Figure 6.24, 

which shows the impedance at 15 Hz for two Ag/AgCI electrodes applied to 

the forearm over 13 minutes. The plot shows that the double exponential 

function gives a good fit to the experimental data points. This function 

worked equally well for impedance data from 6 subjects tested, and for all 

excitation frequencies which were used. One possible reason for the struc

ture of Z(t) is that two slightly differing processes occur at each of the two 

electrodes. However, this is in conflict with the parameters obtained from 

fitting procedures, shown in Figure 6.24. Specifically, the analysis indicates 

that bl and b2 consistently differ by an order of magnitude for all electrodes 

(the short and long time constants are approximately 27 seconds and 200 

seconds respectively). Similar processes occurring at each of the two elec

trodes should lead to Z(t) being adequately described by a polyexponential 
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Figure 6.24: Impedance values for two Ag/Agel electrodes applied to the 

forearm. Impedance data at 15 Hz is shown, along with best fit, fitting 

parameters and standard error in fitting parameters. 

equation in which bl is similar to b2 . More work is required in the future to 

resolve the mechanism responsible for the form of the curves appearing in 

Figure 6.24. 

6.6.1 Conclusion 

The new system introduced in this section obtains an impedance spectrum 

from the singular application and acquisition of a driving waveform (Searle 

& Kirkup 1999). This is preferable to traditional swept-frequency methods 

which may distort results if impedance characteristics of the sample (in this 

case the skin/electrode interface) change with time. The system employs 

a digitally constructed waveform with arbitrarily selected frequency compo

nents. The equality of all frequency component magnitudes offers improve

ments over previously used square wave methods, which experience reduced 

precision at high frequencies due to l/n attenuation. The system will be 

useful for studies where there is an interest in the temporal change in imped
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ance values, including psychophysiological phenomena (such as rapid changes 

in skin impedance with mental state), characterisation of differing electrode 

and electrolyte designs, and other dermal properties. The impedance spec

troscopy system will be further applied in Chapter 7 for comparison of the 

performance of differing electrode types. 
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Chapter 7 

A Comparison of electrode 

types for biosignal sensing 

7.1 Introduction 

There is a substantial amount published literature regarding the respec

tive advantages and disadvantages of alternative electrode types for sens

ing biosignals. This includes dry and insulating electrodes, as introduced in 

Chapter 5. Making a direct comparison of performance for these electrode 

types is difficult as most experimental data on these electrodes is qualitative, 

or have been gathered in isolation from other electrode types. A quantitative 

comparison of the performance of electrode types is important if informed 

decisions are to be made about the merits of a particular bioelectrode for any 

application. The work described in this chapter compares and contrasts the 

performance of wet, dry and insulating electrodes. To the author's knowledge 

such a direct comparison of the performance of bioelectrodes has not been 

attempted by other researchers. Some of the work described in this chapter 

has been reported in the literature (Searle & Kirkup 2000). 
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Some studies suggest that dry and insulating electrodes are unacceptable 

for biosignal use due to, for example, excessive movement artifact and charge 

sensitivity. By contrast, other workers in the area have reported favorable 

findings, or fail to mention any difficulties. The aim of this study was to 

compare the three electrode types in the same test environment. To achieve 

this all measurements were made on three electrode pairs simultaneously, 

and on tissue which had a contiguous area large enough to accommodate all 

electrodes. The study detailed in this chapter assessed the three electrode 

types over a number of parameters, including susceptibility to movement 

artifact and moving electric charges. 

7.1.1 Background 

Reasons given for past investigations into alternatives to gel-based electrodes 

for bioelectric applications include: 

•	 The performance regarding powerline interference of wet types is lim

ited by electrode/skin contact impedance (as described in Sections 6.3 

and 6.6). The use of active electrodes (where buffering/amplification 

takes place at the electrode site) provides much less emphasis on the 

skin-electrode impedance (Fernandez & Pallas-Areny 1996, Taheri et al. 

1994, Nishimura et al. 1992, Ko & Hynecek 1974) . 

•	 The use of an electrolyte is inconvenient. For long-term use, the re

liance on an electrolyte leads to reduced signal quality as the gel de

hydrates (Padmadinata et al. 1990, David & Portnoy 1972, Lagow 

et al. 1971, Richardson et al. 1968, Richardson 1967) and the reap

plication of gel may not be feasible. The recording may be in a sensi

tive area (near the eyes, for example, (Geddes et al. 1973)), previous 
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skin treatment may disable standard electrodes (such as the use of 

petroleum based burns ointment (Oosterom & Strackee 1983)) or the 

spacing required between electrodes may be so small that smearing of 

the electrolyte (and thus short circuiting of the bioelectric signal) may 

occur (Taheri et al. 1994, Godin et al. 1990). Additionally, and perhaps 

most importantly, the application and removal of electrolyte gels is a 

somewhat unpleasant process for the subject, and time consuming for 

the clinician or carer (McLaughlin et al. 1994, Taheri et al. 1994, Pad

madinata et al. 1990, Luca et al. 1979, Ko & Hynecek 1974, Lopez & 

Richardson 1969, Richardson 1967) . 

•	 There are toxicological concerns with electrolyte gels. Although, as 

expressed by Cochran & Rosen (1980), dermatitis from gels used in 

bioelectric recordings is "exceedingly rare", concerns regarding der

matological responses are common (Godin et al. 1990, Padmadinata 

et al. 1990, Oosterom & Strackee 1983, Ko & Hynecek 1974, David 

& Portnoy 1972). The few reports of dermatitis in the literature 

indicate a variety of possible gel ingredients as the culprit (Uter & 

Schwanitz 1996, Dwyer et al. 1994, Coskey 1977). Naturally, if an al

ternative to wet electrodes is sought, the new construction material/s 

must be toxicologically acceptable. 

The results of many experiments involving dry and insulating electrodes are 

available. A cross section of these are outlined in Table 7.1, along with a 

brief description of the findings, if any were provided. Hybrid electrode con

struction, such as the NASICON ceramic types introduced in Section 5.5.1, 

are not considered here. The main concerns that are expressed in the articles 

listed in Table 7.1 regarding dry and insulating electrodes are: 

l 
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Reference 

1995 Taheri et al. • 

1994 McLaughlin et al. • 

1994 Taheri et al. • 

1992 Nishimura et al. • 
1990 Padmadinata et al. • 
1989 Geddes & Baker • • 

1979 Griffith et al. • 
1979 Luca et al. • 
1974 Ko & Hynecek • 

1973 Matsuo et al. • 
1973 Geddes et al. • 
1972 David & Portnoy • 

1971 Bergey et al. • • 

1971 Lagow et al. • 
1970 Potter & Menke • 
1969 Wolfson & Neuman • 
1969 Lopez & Richardson • 
1968 Richardson et al. • 
1967 Richardson • 

Construction findings 

Si3N4 High signal-to-noise ratio (SNR). Uses four re
dundant sites 

Screenprinted AgjAgel (no 
gel) 
Si3N4 on steel High SNR. Low frequency signal present due to 

electrode movement 
Stainless Steel 
Silver, Stainless Steel 

Effective dielectric thickness changes with dry 
skin layer and perspiration 

Tantalum Pentoxide Films robust until heavily scratched 
Stainless Steel 
Si02 on Si Electric field problems. Motion artifact a prob

lem due to long settling time from RC constant 
Barium Titanate Material is Piezoelectric 
Silver 
BaTi03, Ti02 , Ta205, Si02 Insulated electrode less affected by movement 

artifact. Some loss of low frequency information 
Ag, Au, brass, Stainless Steel, Charge sensitive, erratic. Movement ar-
Anodised Al tifact least with stainless steel, most with Al20 3 
Anodised Ta and Al Careful Shielding arrangement required 
Pyre Varnish 
Silicon Oxide 
Anodised Aluminium 
Anodised Aluminium Movement artifacts 
Anodised Aluminium 

Table 7.1: Summary of literature published since 1967 dealing with dry and insulating electrodes 

o 

.... 
o 



230 

T
 
7.2 Silicon as a substrate for insulating electrodes 

•	 Movement artifact caused by absence of a thick electrolyte layer (as is 

present in gels, which provides a "shock absorber" function). An added 

concern with insulating types is that the large RC constant (existing 

at the input of the unity gain amplifiers) prolongs the effect of large 

artifacts (as described in Section 6.3.1.3). By contrast David & Portnoy 

(1972) cite improved movement artifact performance when insulating 

electrodes are used. 

• The effect of charged bodies near electrodes.	 This problem is caused 

by the high input impedance of the amplifiers (as introduced in Sec

tion 6.3.1.3). Insulating electrodes especially have been described as 

acting "as an electrometer" (Bergey et al. 1971). 

The above-mentioned concerns and related issues are considered and tested 

experimentally in this chapter. The capacitive electrodes developed for ex

periments in this chapter were made from silicon dioxide (on a silicon sub

strate). The manufacture and characterisation of these electrode films is 

described in Section 7.2. Section 7.3 describes experiments carried out to 

compare the performance of wet, dry and insulating electrodes. Finally, 

Section 7.4 demonstrates practical use of the electrodes. Portions of the 

work presented in this chapter has been published in the literature (Searle & 

Kirkup 2000). 

7.2	 Silicon as a substrate for insulating elec

trodes 

The use of silicon as a substrate for thin films provides a clean, continuous 

surface, and offers a medium which lends itself to electrical uses. Silicon diox
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ide is is stable in water and at elevated temperatures, an excellent electrical 

insulator, and capable of forming a nearly perfect electrical interface with 

its substrate. Silicon and its oxide do not have major toxicological concerns, 

and are biocompatible (Hoogerwerf & Wise 1994, Williams 1981). Although 

silicon and its insulating oxide have these desirable qualities, making an elec

trical connection to the surface of a silicon substrate is not as straightforward 

as to a metallic substrate, where the application of conductive cement gives 

a satisfactory bond. The contact to a silicon substrate may result in rectifi

cation of signals if the bond is not created correctly. The issues concerning 

the electrical contact to silicon are described in Section 7.2.3.1. Firstly, the 

method of oxide production is outlined. 

7.2.1 Thermal growth of silicon dioxide 

Thermally grown silicon dioxide is used extensively in a large array of mi

croelectronic devices. This has resulted in a large body of research into the 

growth mechanisms of the oxide. The oxidation process may be done in either 

dry oxygen or water vapor. Equations 7.1 and 7.2 show these reactions. 

dry Si + O2 Si02 (7.1) 

wet Si + 2H20 Si02 + 2H2 (7.2) 

One of the more widely accepted models for the Si/Si02 oxidation process 

was developed by Deal & Grove (1965). This model assumes that the oxidant 

is transported from the bulk gas through the oxide layer to the silicon/oxide 

interface, where it reacts to form new Si02 . The model involves reactions 

occurring at both boundaries of the oxide layer, as well as the diffusion 
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process. The thickness varies with time as in Equation 7.3. 

8DC*(t - T) 
(7.3)1+ -1x(t) D ks h h - ks )2 N 

( ksh 

D Diffusion coefficient of oxidant through oxide
 

ks Rate constant of oxidising reaction at interface
 

h gas transfer coefficient
 

C* Equilibrium concentration of oxidant in oxide
 

N Number of O2 molecules in unit volume of the oxide
 

Offset to account for a pre-existing native oxide layer
 

Two simplifications of Equation 7.3 can be made. For short oxidation times 

the equation is the linear relationship 

(7.4)
 

For longer oxidation times the thickness is given by the parabolic relation 

x(t) (7.5) 

The transition between the linear and parabolic behaviour for the oxide oc

curs when the -thickness reaches approximately 100 nm (Grovenor 1989). 

Equations 7.3-7.5 are often collectively referred to as the Deal-Grove or linear

parabolic relationship. The Deal-Grove model is accepted to be accurate for 

wet oxidation generally, and for dry oxidation above 750°C and with film 

thicknesses greater than 500 A. 

During the oxidation process a 1 thick layer of silicon dioxide is pro

duced for every 0.44 of silicon consumed (Grovenor 1989, p. 293). The 

rate determining factor in these reactions is the indiffusion of O2 (or H2 0) 
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from the oxide surface to react at the Si/Si02 interface. Since the volume 

increase is localised at this interface, large stresses can occur with very thick 

films, especially during cooling. Besides temperature and treatment time, 

the orientation of the silicon wafer can also effect the oxide growth rate 

(Grovenor 1989, p. 297). 

For insulating electrodes used in this thesis, a silicon dioxide layer was 

produced by heating a silicon wafer for 1 hour at 1000°C; this produced a 

Si02 layer 150 nm thick. The thickness of this layer (and other films produced 

during testing) was determined using a technique developed for this study, 

incorporating optical spectroscopy. 

7.2.2	 Thin film thickness determination using optical 

spectroscopy 

In order to thermally grow silicon dioxide films to a desired thickness, a 

method of determining the thickness is required. Direct measurement meth

ods such as step profilometry cannot be used, as the Si02 film is grown 

rather than deposited (step profilometry is routinely used for films created 

using vacuum deposition methods). Due to the hostile environment of the 

furnace, in-situ monitoring of the thickness is not feasible. Ellipsometry mea

surements can -provide accurate thickness measurements of multi-layer films 

(Lu & Cheng 1984, Yamabe & Taniguchi 1985, Naito et al. 1986), but such 

an instrument was not available at the time of these experiments. X-ray 

reflectivity can indirectly provide thickness values by fitting curves from the

oretical models to the experimental data. However, alignment of the x-ray 

equipment before use, and lengthy acquisition times makes the use of this 

technique infeasible to scan more than a handful of samples. As an ellip

someter was not available, an alternative optical method was devised for 
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measurement of films prepared as part of the experimental studies for this 

thesis, using a spectrophotometer. 

The method to be described involves obtaining the optical reflectivity 

spectrum of the thermally grown oxide film using a spectrophotometer. The 

data obtained can be matched to a calculated spectrum, thus giving the 

thickness of the film. The spectrophotometer obtains the reflectance spec

trum by stepping over a range of wavelengths, measuring the intensity at the 

detector for each wavelength value. The operation of the spectrophotome

ter is briefly described in Appendix F. The reflectance spectrum is denoted 

by A theoretical model of the spectrum for the Si02 on Si film 

can be compared to the reflectance spectrum, to determine the 

thickness of the sample film. 

The calculation of the reflectance spectrum requires knowledge of the 

optical properties of the oxide and the substrate, the wavelengths used, and 

the thickness of the oxide. In this case the thickness is unknown, thus this 

parameter is used to obtain the closest fit of the model to the measured 

reflectance spectrum, The substrate and film can be represented 

as in Figure 7.1. Note that the indexes nl and n s are complex, and so are 

Figure 7.1: Reflectance for a single layer film on substrate 
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more correctly written 

The index is air in this case, and so only carries a real unity value. Two 

reflected beams are shown in Figure 7.1, for two traversals of the thin film, 

the phase difference between these two reflected waves is 

= t cos (7.6) 

For the normal case (01 = 00 
). The reflectance R is given by 

(7.7)
 

where (see Appendix G), 

- cos + i - sin 
r = (7.8)

+ cos 6 + i + sin 6 

A consideration when forming the mathematical model is that the refractive 

and absorptive indexes (n,k) vary with wavelength for each material present 

in the sample. Discrete values of nand k are available from standard texts, 

such as Palik (1985). For example, Figure 7.2 shows the refractive index 

(n) for silico.n, varying with wavelength. To enable fitting of experimental 

data at wavelengths for which (n,k) is not given, a piecewise continuous 

function was constructed by interpolating between available data points (the 

use of a high order polynomial approximation to nand k was investigated 

but was found to be unsatisfactory). Fitting was done using a recursive 

linear search on the thickness parameter; the modeling and fitting algorithms 

were implemented by the author in C code, as this approach offered greater 

speed. Similar methods using spectrophotometer to obtain silicon 
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Figure 7.2: Data for n of silicon (raw data from Palik (1985)). 

dioxide thickness have been applied by Reizman (1965) and Barrick (1971), 

who used minima/maxima pair(s) from the reflectance spectrum to estimate 

thickness, rather than fitting the entire spectrum as described here. 

7.2.2.1 Results 

To verify the accuracy of the oxide thickness determination method described 

in Section 7.2.2, three films consisting of Si02 on a Si substrate were prepared 

using E-beam vacuum deposition. This method is more time consuming 

and complex than using thermal oxidation, but it allows the use of step 

profilometry, and thus samples with films of a known thickness can be used 

to verify the usefulness of the optical measurement technique. The three films 

manufactured using the E-beam were 550 A, 2400 and 4400 in thickness, 

respectively. Reflectance spectra for the three Si02 films were obtained using 

the spectrophotometer. The thickness value, t, which gave the best fitting 

theoretical reflectance spectra (calculated using Equations 7.7 and 7.8) were 

found. The experimental and the best fit theoretical reflectance spectra are 

shown in Figure 7.3. 

The results show that the use of reflectance spectra of silicon dioxide for 
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Figure 7.3: Experimental data and best fits for reflectance spectra of Si02 

on Si substrate, showing three different thicknesses of Si02 . 
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oxide thickness determination gives values which average to within 10% of 

those obtained using profilometry. These are regarded as satisfactory for the 

purposes of this studyl. 

7.2.3 Metal-semiconductor heterojunctions 

Making ohmic contact to a silicon substrate is more challenging than mak

ing a good electrical contact to a metal. The join between a metal and a 

semiconductor has characteristics which need to be understood before the 

join can be made, so that an ohmic contact can be created, rather than a 

rectifying one. First, conditions that lead to the formation of a rectifying 

contact will be covered. 

7.2.3.1 Rectifying contacts 

When a metal is brought into contact with an extrinsic (doped) semiconduc

tor, the connection is not ohmic, but may form a rectifying contact known 

as a Schottky barrier diode. The transport mechanisms and electrical be

haviour in such a metal-semiconductor (heterogeneous) diode are different 

to that in a p-n (homogeneous) semiconductor diode. As an example con

sider, an n-type semiconductor (with a work function of and a metal 

(with a work function of Figure 7.4(a) shows the metal and semicon

ductor before joining when > The vacuum level is used as a reference 

point. Figure 7.4(b) shows the junction once the two materials are joined. 

To make the fermi levels2 equal throughout the system, electrons flow from 

1It should also be noted that the optical constants of E-beam deposited oxide may vary 

from that of thermally grown oxide 

2The energy level at which half of the possible energy levels in a band are occupied by 

electrons. 
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Figure 7.4: (a) The metal and semiconductor before being joined, and 

(b) the heterojunction after joining 
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the semiconductor into the metal. In the metal the electrons fill lower energy 

states while positively charged donor atoms remain in the semiconductor, 

creating a charge space region. The barrier height seen by electrons in the 

metal trying to move into the semiconductor is given by = 

This barrier is called the Schottky barrier. Similarly, on the semiconductor 

side, the potential barrier is If a positive voltage is applied to the 

semiconductor with respect to the metal the semiconductor barrier height 

is increased by this is the reverse bias case. The electrons in the 

reverse bias case need to overcome the Schottky barrier (which remains 

unchanged). Conversely, if a positive voltage is applied to the metal with 

respect to the semiconductor, the semiconductor-to-metal barrier decreases 

by allowing easier flow of electrons from the semiconductor to the metal. 

The value of is again unchanged. This is the forward bias condition. 

1.2.4 Ohmic contacts 

Ohmic contacts can be grouped into two categories: the ideal non-rectifying 

barrier, and the tunneling barrier. A heterojunction where > (for an 

n-type semiconductor), will result in a rectifying contact. If a different metal 

and/or n-type semiconductor combination is used such that < an 

ohmic, rather tha:n a rectifying contact will be produced3 
. When the metal 

and semiconductor are joined in this scenario, electrons flow from the metal 

into the semiconductor, making the surface of the semiconductor more n-type 

(Neamen 1997, p. 326) shown in Figure 7.5. If a positive voltage is applied to 

the metal with respect to the semiconductor, there is no barrier to stop the 

electrons flowing from the semiconductor to the metal. If a positive voltage 

3If p-type semiconductor is used, the < case will give a rectifying contact, while 

materials with > will form an ohmic contact. 

L 
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Figure 7.5: Ohmic heterojunction 

is applied to the semiconductor with respect to the metal, the barrier height 

seen by electrons in the metal is which will be small for a moderately 

doped semiconductor. This is an ideal non-rectifying, or ideal ohmic, contact. 

In practice, surface states alter this ideal model, and consequently ohmic 

contacts of this definition with a perfect I-V characteristic are rare (one ex

ception is the contact between indium and n-type cadmium sulphide). Since 

a metal does not generally exist with a low enough work function to yield 

a low barrier (Sze 1981, p. 306), a variety of techniques have been de

veloped to force materials to approximate an ideal ohmic contact, most of 

which involve using a heavily doped surface layer. As the doping in the semi

conductor surface increases the width of the depletion region decreases, and 

thus the probability of tunneling through the barrier rises until it becomes 

the dominant current mechanism. This is shown in Figure 7.6. One way to 

Figure 7.6: A pseudo-ohmic tunneling heterojunction 

achieve this heavy surface doping is to in-diffuse aluminium into a p-type 
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silicon substrate by applying a heat treatment. The aluminium acts as the 

p-type dopant and the contact resistance that results from the tunneling 

mechanism is of the order of 10-6 -2 (varies depending on fabrication 

method). Another initial advantage of this process is that the aluminium 

will decompose locally any silicon dioxide on the silicon surface, whether this 

is the native oxide layer or was produced by other means. Thus, for silicon

aluminium heterojunctions there are two practical possibilities: Al on n-type 

silicon (lightly doped) will give a Schottky diode with barrier 0.7 eV, while 

Al on p-type silicon (heat treated) will result in Pseudo-ohmic contact with 

barrier 0.4 eV. Thus for this study p-type silicon wafers were used. 

Experiments conducted for this thesis have found that heating the silicon 

in contact with aluminium in an oven at a temperature of 620 0 for 20 min

utes results in a good ohmic contact. The aluminium used is in the form 

of wire (99.9% AI) which has been flattened. At higher temperatures the 

in-diffusion of aluminium is excessive, and in extreme cases the molten metal 

eventually diffuses to the opposite side of the wafer. This heat treatment 

does not cause any appreciable silicon dioxide accumulation, as the growth 

rate at these temperatures is less than lA/hour (Lee et al. 1993). 

The production of silicon dioxide films and the preparation of reliable 

ohmic contacts, as described here, allows for the development of capacitive 

electrodes and permits comparison of these electrodes with the conventional 

wet and dry types. The comparison of wet, dry and insulating electrode 

types is detailed in Section 7.3. 
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7.3	 A comparison of wet, dry and insulating 

electrode types 

Sections 7.3.1 to 7.3.3 consider experimental data relating to the major con

cerns for electrode use, as introduced in Section 7.1. Section 7.3.1 examines 

the temporal change in contact impedance for a number of electrodes. Sec

tion 7.3.2 describes the effect of non-stationary charged bodies near recording 

electrodes. Section 7.3.3 quantifies the effect of electrode movement artifact 

on the three electrode types. This work has been reported in Searle Kirkup 

(2000) . 

During experiments where signals were recorded from the electrodes (in 

Sections 7.3.2 and 7.3.3), the dry and insulating electrodes incorporated ac

tive buffers, whereas the wet electrodes did not. This reflects the 'way each 

design is normally used. AgjAgel electrodes are consistently used 

"as is" (with the exception of Fernandez Pallas-Areny (1996), and Iguchi 

et al. (1994)), whereas dry and insulating electrodes are rarely used without 

buffering, for reasons outlined in Sections 6.3 and 6.6. No skin preparation 

was done before the trials, as cleaning the skin would introduce another 

experimental variable which cannot be easily controlled or quantified. Ad

ditionally, this reflects an environment where the electrodes are used by a 

person or carer, in a way which is consistent with requirements that such 

electrodes to be quick and easy to apply. For all waveform recording a data 

acquisition card (sampling rate 5 kHz) was used with the Labview program

ming language, along with pre-amplification and antialiasing low pass filters 

(10th order, f3dB = 1 kHz). The input impedance of instrumentation ampli

fiers utilised was 1010 

I 

1 
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7.3.1 Temporal dependence of contact impedance 

The influence of electrode/skin contact impedance has been described in Sec

tion 6.3 and an additional illustrative example shown in Section 6.6. This 

section examines the influence of electrode construction on contact imped

ance by monitoring the contact impedance of four different electrodes simul

taneously. The four electrode pairs were compared over time when applied 

to the forearm (posterior surface oflower arm). These measurements include 

the bulk tissue impedance that exists between the electrode pairs, but as 

this can be considered equivalent for all electrode pairs, a fair comparison 

can be made. Insulating electrodes were not included in this experiment as 

the mechanism of signal sensing does not rely on ohmic contact. Although 

the issue of skin/electrode impedance would seem to be irrelevant when ac

tive buffers are employed, the initial decrease shown in the RMS interference 

of the dry-active electrode pair, as indicated in Figure 6.23(p. 222), suggests 

that the electrode to skin interface still deserves attention. 

7.3.1.1 Experiment 

The four types of electrodes used were stainless steel, titanium, aluminium, 

and disposable Red Dot™ 2258 Ag/AgCI ECG electrodes. The metals were 

chosen for their _biocompatibility, and/or their use in previously published 

reports. The three pairs of metal electrodes (all 12 mm diameter) were 

mounted together on a plastic assembly with 14 mm between their centres. 

This assembly was held in place on the forearm with a Velcro strap, as 

shown in Figure 7.7. The Ag/AgCl electrodes were placed adjacent to the 

dry electrodes so that the same distance (14 mm) separated their centres. 

The contact area of the Ag/AgCl electrodes is the same (assuming that the 

saline gel does not smear) as for the metal electrodes. Using the technique 
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Wet electrodes 
(self-adhesive) 

I 
(a) 

Velcro 

Figure 7.7: (a) Location on the forearm of wet electrodes, and of the assembly 

containing the three dry electrode pairs. (b) Cutaway view showing relative 

positions of electrodes. 

described in Section 6.5 (Searle Kirkup 1999), the impedance between 

each pair of electrodes was recorded over 20 minutes. It is not possible to 

monitor the impedance of all four electrode pairs at exactly the same time 

due to the close proximity of the electrodes; the potential difference due 

to current injected to one electrode pair will be present at other electrodes 

sites, thus the impedance contributions from each site cannot be separated. 

As the impedance for all pairs could not be monitored at the same time, a 

multiplexing system was designed and constructed to apply the stimulating 

current (peak value 500 nA) to each electrode pair alternately. The multi

plexing circuitry is shown in Figure 7.8. The switch positions (implemented 

using a MAX313 analogue switch) were controlled by digital outputs from the 

Labview program. The impedance of the analogue switches is accounted for 

during the calibration of the impedance spectroscopy system (as described in 

Section 6.5.2.2). Using the multiplexing circuits, the impedance for all elec

trodes (at 20 frequency values, over a range of 1-950 Hz) was recorded every 

12.8 seconds. Only data for impedances at 57 Hz will be presented here for 

the five subjects used (ages yr, yr). While impedance values 

recorded here are useful for comparing the relative performance of electrodes, 
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V in 

Figure 7.8: Operation of multiplexing device to monitor the contact 

impedances (21- 4 ) for four electrode pairs. 

the individual values obtained will vary with electrode location, size, excita

tion frequency and excitation current (Onaral & Schwan 1982, Yamamoto & 

Yamamoto 1981). 

7.3.1.2 Results 

Figures 7.9(a-d) show the averaged impedance change with time for the four 

electrode pairs, along with the minimum and maximum values for the five 

subjects. Figure 7.10 presents the average curves on one plot; all data sets 

display a similar shape as the buildup of perspiration reduces the contact 

impedance. All curves representing the reduction of contact impedance 

over time shown in Figure 7.9 and 7.10 can be shown to exhibit a polyexpo

nential relationship between impedance and time, as described in Section 6.6. 

As anticipated, the AgjAgel pair had a considerably lower contact imp

edance, though time is still required for the electrode impedances to settle to 

a constant value. All three pairs of dry electrodes converge to approximately 

the same value with time. None of the dry electrode pairs have imped

ance values which show a statistically significant difference to any other pair 
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Figure 7.9: Contact impedance vs time for four electrode pairs, averaged over 

five subjects. These plots also show minimum and maximum data sets for 

each electrode type. 
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Figure 7.10: Contact impedance vs time for four electrode types, averaged 

over five subjects. 
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(using two tailed t tests at p<0.05). The electrode positions on the arm 

(Figure 7. 7(b)) will have some effect on the impedance values measured, es

pecially the relative values of the three dry electrode pairs. The important 

finding from the data in Figures 7.9 and 7.10 is that the differences between 

each of the dry electrode impedances is small (and not significant) when 

compared to the variation between subjects. The data recorded for a single 

subject (male, age 27) over five days shows a similar trend: the diurnal vari

ation was much larger than the difference between the three metals in any 

one recording. 

7.3.2 Charge sensitivity of electrodes 

A major problem noted previously for dry and insulating electrodes is the 

charge sensitivity of the devices due to their very high input impedance, espe

cially with insulating types, as described in Section 6.3.1.3. The experiments 

in this section were designed to investigate the effect of an electrically charged 

object moving near wet, dry and insulating electrodes, and the effectiveness 

of shielding used around these electrodes. 

7.3.2.1 Experiment 

To allow the continual and reproducible creation of a time-varying electric 

field, the following experiment was devised. Three pairs of electrodes were 

used; 

1.	 one pair Red Dot™ AgjAgel electrodes. 

2.	 one pair dry stainless steel (11 mm diameter) buffered using OPA132 

op-amps. 

I 
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3.	 one pair of insulating electrodes constructed from a high purity silicon 

wafer, with a 150 nm layer of silicon dioxide grown thermally (1000°C 

in air for 1 hour, as described in Section 7.2), buffered using OPA132 

op-amps. Each insulating electrode was 9 mmx8 mm. 

The insulating and dry electrodes were mounted flush on a plastic plate, 

and contained in the same housing (50 mm x 60 mm). The housing was 

built in such a way that the back casing was interchangeable between plastic 

and steel (grounded), so that the effects of shielding the electrodes could be 

observed. The electrodes were placed on the arm as shown in Figure 7.11. 

The wet electrode pair was not buffered, but the cables were shielded up to 

I	 Rotorspinningatl.2Hz, _--
maintainedat4kV __ 

I Casing enclosing __ 
and buffers 

I 

Figure 7.11: Experimental arrangement for charge sensitivity tests. The
I 

rotor was moved along the arm in a distal direction. 

I 
the alligator clips used for attachment; this shielding arrangement is typical 

use for AgjAgCI electrodes in a clinical environment (Wan & Nguyen 1994). 
,I

The moving charge was supplied by a metal strip (32 cm long) connected to 

I a small gearbox, such that it acted as a rotor. The frequency of rotation was 

set to 1.2 Hz (the frequency of rotation was monitored by an optical gate). 

The rotor was maintained at a voltage of 4 kV by a high voltage supply, in I 
I	 series with 150 so that negligible current would flow if accidental contact 

occurred between rotor and arm. A value of 4 kV is not unusually high, as 
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walking on carpet can generate a potential of tens of kilovolts on the body 

with respect to ground (Elliott & Gianetti 1995). The rotor was adjusted 

so that it was 70 mm above the electrodes, and the wrist supported such 

that the electrodes sat horizontally. A period of 15 minutes was allowed to 

elapse before measurements were taken so that the three pairs of electrodes 

had time to settle to steady state contact impedance levels. This is done so 

that changes in interference levels may be related to differences in shielding 

used, and not to variations in contact impedance. The rotor was moved 

slowly along the arm, so that all electrode pairs experienced a point where 

the electrical interference due to the charged rotating strip was a maximum. 

Without moving the dry/insulating electrode housing from the arm, the back 

casing was changed from plastic to steel (electrically grounded), and the rotor 

arrangement was moved slowly along the arm again. 

7.3.2.2 

The maximum interference signal observed for each electrode type for the 

shielded and unshielded situations was extracted from each data record and 

averaged. The results are shown in Figure 7.12. The insulating electrodes 

showed more interference than the dry pair when unshielded. For both dry 

and insulating electrode pairs, the use of a grounded shield reduced the in

terference significantly. However, it was not anticipated that the interference 

levels for wet electrodes would be comparable to, or higher, than that for the 

dry and insulated electrodes in the unshielded case. The average interfer

ence reduction achieved by using shielding was 26 dB for dry electrodes, and 

32 dB for the insulating electrodes. When compared to the wet electrodes, 

the interference levels experienced were 40 dB and 34 dB lower for shielded 

dry and insulating electrodes respectively. 
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Figure 7.12: RMS interference resulting from a moving, charged rotor near 

three electrode types: wet, dry and insulating. The dry and insulating types 

I 
I 

7.3.3 Effect of electrode movement 

were tested whilst (unsh)ielded and (sh)ielded. Bars represent standard error 

of the mean for the five subjects. 

To enable reproducible motion of electrodes, a mechanical device which os

cillates at a predictable rate was attached to the three pairs of electrodes 

I under test. 

I 
I 
I 

7.3.3.1 Experiment 

A solenoid with a small mass attached to its bore was encased in a metal 

J , 

shield and to the back of the electrode case which housed the dry and 

insulating electrodes (described in Section 7.3.2.1). As shown in Figure 7.13, 

( the wet electrodes (held to the arm by their self-adhesive) were connected 

rigidly to the housing via their snap connectors by a plastic template so that 

all three electrode pairs vibrate together. The total mass of the bore was 

37 g, and the stroke length was 10 mm. The solenoid was set to oscillate in 

a direction parallel to the arm at a frequency of 5 Hz, and the RMS voltage 
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(a) Solenoid 

Casing enclosing 
electrodes and buffers

Figure 7.13: (a) Experimental arrangement for electrode movement artifact 

tests with (b) closeup of rigid connection to wet electrodes. 

produced at this frequency was recorded over 15 minutes. Recording was 

done from the moment of electrode application to the forearm (posterior 

surface of the lower arm). A baseline recording was taken initially with the 

solenoid detached from, but still adjacent to, the electrode casing to ensure 

that signals recorded were not due to electromagnetic interference generated 

at the solenoid coil. 

7.3.3.2 Results 

Figure 7.14 shows artifact levels at the start and end of the trial. Artifact 

signals apparent in this test came from two sources; disruption of the elec

trode/skin interface and skin potential artifact. These sources are sum

marised below. 

The mechanism for electrode/skin interface disruption differs depending 

on whether the signal path is ohmic or not. For wet and dry electrodes dis

turbance of the double layer region at the electrode/skin (or more precisely 

the electrode/electrolyte) interface causes unwanted signals, as described in 

Section 5.2.4. For insulating electrodes, bioelectric signals are capacitively 

coupled from the hydrated tissue beneath dry layers of skin (this effectively 

forms the other 'plate' of the capacitor). Variation in the separation of the 
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Figure 7.14: 5 Hz RMS artifact caused by vibration of three electrodes types: 

wet, dry and insulating. The artifact levels are shown for the start and end 

of the 15 minute recording interval. Chart shows averages and standard error 

of the mean for 5 subjects. 

two plates of this capacitor causes an artifact signal, as outlined in Sec

tion 5.4.3. 

The skin potential artifact (also known as the skin-stretch artifact or skin

motion artifact) arises from the change in voltage between the inner and outer 

layers of the skin under deformation. Skin movement can produce a change 

in potential at the skin surface of several millivolts (refer Section 1.3). 

Figure 7.14 indicates that dry and insulating electrodes show a significant 

drop in the artifact suffered over the length of the trial, whereas the RMS 

voltage from the wet electrodes was relatively unchanged. The final artifact 

values for all electrode types are a combination of electrode/skin interface 

disturbance and skin potentials, whereas the decrease apparent in the dry 

and insulating electrodes is due principally to a reduction in skin/electrode 

interface effects. Though it has been shown that there is a slight reduction in 

skin potential artifact in repetitive tests (de Talhouet & Webster 1996), the 

large reduction in artifact with time for dry and insulating electrodes is more 

I 
i 

l 
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likely to be due to the accumulation of perspiration under the electrodes. As 

perspiration builds up and hydrates the dry skin layer, the effective dielectric 

thickness in the insulating electrode 'capacitor' reduces. Accordingly, the 

effect of the change in this distance is also reduced which in turn lowers 

artifact levels (Geddes & Baker 1989). For dry electrodes, artifacts arise 

from the disturbance of the double layer region at the electrode surface. The 

effect of perspiration buildup is to act as a physical "shock absorber". This 

is similar to, but less effective than, the action of gel used in wet electrode 

types. Artifact for dry and insulating types also reduces over time because the 

electrodes and their housing will tend to adhere to the skin as perspiration 

accumulates, reducing the relative movement between skin and electrode 

surfaces in the local area. 

Higher initial artifact levels shown in Figure 7.14 for dry electrodes com

pared to insulating types indicates that the disruption of the double layer 

region at the stainless steel/skin interface generates a greater signal from 

electrochemical means than arises from changes in the effective dielectric 

thickness in the insulating electrodes. Artifact levels for wet electrode types 

vary little, as would be expected, over the recording period. A more interest

ing and unexpected result is that this wet artifact level was higher than that 

for the final artifact levels for dry and insulating electrode types (final dry 

and insulating values are lower compared to final wet values with significance 

levels of p = 0.09 and p = 0.13 respectively). While initial RMS artifact val

ues for dry and insulating electrodes were 20 dB and 11 dB higher than wet 

electrodes respectively, final values were 8.2 dB and 6.8 dB lower. This out

come may be attributed to the larger contact area of the case which houses 

the dry and insulating electrodes compared to the wet types. The dry and 

insulating electrode pairs are mounted flush on a plastic plate which, coupled 

l 
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with adhesion due to perspiration, distributes the skin disturbance further 

from the sensing sites, lessening the artifact experienced. The contact area4 

for a wet electrode (including adhesive skirt) is less by a factor of 4 than 

the dry and insulating electrode housing, thus the skin potential artifact oc

curs closer to the sensing site for the wet electrodes. This suggestion that 

electrode geometry has an effect on the amount of skin potential artifact 

experienced has been explored previously by Odman (1982). 

7.3.4 Discussion 

In the study described in this chapter all three electrode types showed vari

able performance with no one type consistently performing 'best' in all cir

cumstances. In summary, 

Wet	 electrodes suffered from moving charge artifact more than the dry and 

insulating electrodes types (RMS interference was up to 100 times more 

for wet electrodes than for the other two electrode types when shielding 

was used). In movement tests the artifact experienced by wet electrodes 

varied little over the 15 minute trial period, and proved superior to 

dry and insulating pairs at the commencement of the trials. Notably, 

in the latter stages of the trials, the wet electrodes experienced more 

artifact dry and insulating types, though this may be dependent 

on the geometry of the dry/insulating electrode housing. The contact 

impedance of wet electrodes was consistently half that of the metals 

tested. 

4This is not the electrical contact area, but rather the total area of the electrode 

which contacts the skin. This includes the adhesive skirt (for wet electrodes) and plastic 

mounting plate (for dry and insulating electrodes). 

l 
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Dry electrodes were least affected by moving electric charge when shield

ing was not employed, and showed a large reduction when shielding 

was in place, with the RMS interference falling by 26 dB. In movement 

artifact tests the dry type initially fared worst compared to wet and 

insulating types, but after this settling time they performed marginally 

better than the insulating and wet types. Again, this will change with 

electrode geometry. Contact impedances of the three metals tested for 

dry electrode use (stainless steel, titanium and aluminium) showed a 

decrease over time of a reproducible shape. The average difference be

tween the performance of the three metals was not significant when the 

deviation between different subjects (or between consecutive tests on a 

single subject) was considered. After settling, all three metal electrodes 

displayed approximately the same average contact impedance values, 

being double that of wet electrode types. For future studies, stainless 

steel (which is more commonly available than titanium) is preferable 

to aluminium, which has been shown to have problems due to the 

chemical response of its oxide to perspiration (Taheri et al. 1994, Luca 

et al. 1979, Potter & Menke 1970). 

Insulating electrodes used without shielding were influenced by moving 

electric charge more than the dry electrode type, but not to the same 

degree as wet electrodes. As with the dry electrodes, this interfer

ence was reduced effectively by the use of a shield (RMS interfer

ence decreasing by 32 dB). Tests for movement artifact with insulat

ing electrodes showed high initial RMS levels (still comparable to dry 

types) which reduced with time. The RMS artifact experienced fell be

tween that for dry and wet electrode types after some initial time had 

past, and this contrasts with several reports in the literature (Bergey 

,
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et al. 1971, Richardson et al. 1968) which indicate more severe move

ment artifact problems with insulating electrodes. 

Concerns that movement artifact and charge induced interference would ef

fectively disable dry and insulating electrodes have not been supported by 

the experiments conducted for this thesis. The dry and insulating types gen

erally performed in a manner comparable to, or better than wet electrodes. 

Movement artifact for dry and insulating electrodes was initially higher than 

that for wet types, but reduced over time to levels less than that for wet 

electrodes. Such a result may be dependent on the geometry and size of 

the dry/insulating electrodes. The use of shielding for dry and insulating 

electrode types dramatically reduces the interference from moving electric 

charge to levels far below that experienced by wet types. 

7.4 Example data for bioelectric recording 

Some illustrative examples of bioelectric data obtained using dry, insulating 

and wet electrodes are shown in Figure 7.15. The electrodes used were 

one pair Red Ag/AgCI electrodes. 

one pair dry stainless steel electrodes. These were constructed 

using Bpring-Ioaded probes with a rounded stainless steel tip of 

diameter 1.3 mm. The probes were mounted on (but insulated 

from) a grounded metal casing such that the tip of the probe 

retracted flush with the case when force was applied. OPA132 

op-amps were used inside the casing to buffer the signal. 

one pair of insulating electrodes constructed from a high purity 

silicon wafer, with a 150 nm layer of silicon dioxide grown ther

mally (lOOODC in air for 1 hour, as described in Section 7.2). 

1
 
I 



258 

2 

r 
7.4 Example data for bioelectric recording 

4 
2 

2 

0 
0 

E -2 E 
-1 

-4 
-2 

o 2 4 6 8 10 12 14 o 0.5 1 1.5 
timers] timers] 

(b) Wet electrodes (over hair) 4 

2 

0 

E -2 

-4 
-2 

o 2 4 6 8 10 12 14 o 0.5 1 1.5 2 
timers] timers] 

4 
2 

2 

0 
0 

E -2 E 
-1 

-4 
-2 

o 2 4 6 8 10 12 14 o 1 2 

4 

2 

0 

E -2 

-4 

timers] time [s] 

(d) Dry electrodes (over hair) 
2 

0 
E 

-1 

-2 
o 2 4 6 8 10 12 14 o 1 2 

timers] [s] 

4 (e) Insulating electrodes 

2 
2 

0 

E -2 E 
0 

-1 
-4 

-2 
o 2 4 6 8 10 12 14 o 0.5 1 1.5 2 

4 

2 

0 

-2 

-4 

time [s] 

(f) Insulating electrodes (over hair) 
2 

0 
E 

-1 

-2 
o 2 4 6 8 10 12 14 o 0.5 1 1.5 

time [s] time [s] 

Figure 7.15: ECG recordings for wet (a,b), dry (c,d) and insulating (d,e) 

electrodes from one subject. Recordings were done on the chest in areas 

with and without hair for comparison of performance. 2 s of detail for each 

recording is included. 
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As with the dry electrodes, the silicon wafer was held on (but 

insulated from) a grounded metal casing. OPA132 op-amps 

were used inside the casing to buffer the signal. The sensing 

area for each insulating electrode was 9 mmx8 mm. 

ECG signals were recorded using the three sets of electrodes held firmly on 

the chest. Each pair of electrodes were applied to the same subject (male, 

age 27) in two different positions on the chest, such that both electrodes 

were placed over hair, then in positions where no hair was present. The 

same sets of positions were repeated for wet, dry and insulating electrodes. 

A ground electrode (AgjAgCl) was placed on the wrist, no shielding of cables 

or 'driven right leg' circuitry were used. The metal casing of the electrodes 

were covered in plastic, so that the grounded shields would not make ohmic 

contact with the skin, in accordance with shielding guidelines described in 

Section 5.4.1. The signals were recorded from the moment of application to 

the chest, as shown in Figure 7.15. Two seconds of detail for each record

ing are also displayed in Figure 7.15. The signals obtained are not intended 

for ECG analysis, but rather to indicate the characteristics of the electrode 

types. The baseline for the signals from the wet electrode pair settles quickly 

for the positions over hair (Figure 7.15(b)) and without hair (Figure 7.15(a)). 

The ECG characteristics are visible almost immediately. The signals from 

dry electrodes shown in Figure 7.15(c-d) display a variable baseline which 

does not settle after 14 s, although the features of the EeG trace are dis

cernible. The signals recorded from positions over hair, and in the region 

without hair do not differ greatly. This variability in the baseline is due the 

the very small surface area of the electrodes. Comparisons with dry elec

trodes of larger contact area has shown that the spring-loaded electrodes are 

more susceptible to movement than electrodes with a large, flat surface area. 
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Insulating electrodes produced satisfactory recordings, though the baseline 

takes longer to settle when compared to wet electrodes. the electrodes 

are placed over hair (Figure 7.15 (f)) the ECG trace takes some time to be

come visible while the instrumentation amplifier is saturated. Additionally, 

the baseline for the insulating electrodes over hair is more variable than for 

electrode positions where no hair is present. 

I 

Experiments with EEG signals using dry and insulating electrodes have 

shown results with characteristics resembling those displayed in Figure 7.15, 

but the problems experienced with EEG recordings were more severe. The 

EEG signals were severely affected by presence of hair in the recording area, 

especially for insulating electrodes. The signals for dry electrodes showed ex

treme variability in baselines, such that useable signals could not be obtained. 

This reveals a problematic tradeoff with dry and insulating electrodes: in 

I order to obtain bioelectric signals free from movement artifact, electrodes 

with sufficient contact area are required (to avoid signals such as those from I 
the dry electrodes used for Figure 7.15 (c-d)). However, larger contact area 

j 
means that hair in the recording area becomes a problem, as experienced by 

the insulating electrodes (and in experiments by Taheri et al. (1994)). At the 
\ 

conclusion of these studies the dry and insulating electrodes did not enable 

j reliable, high fidelity recordings with EEG signals. The examples of ECG 

signals show that these electrode are capable of detecting bioelectric signals 

with good characteristics, however more work on the mechanical design for 

such electrodes is required before their continued use in the EEG recording 

field. 
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7.5 Conclusion 

This chapter examined the performance of three electrode types simultane

ously and in a controlled test environment, so that meaningful quantitative 

comparisons could be made for the first time. The design and manufacture 

of insulating electrodes by thermal growth of silicon dioxide (as outlined in 

Section 7.2), along with methods to create an ohmic contact with the sil

icon substrate, provide useable electrodes with comparable performance to 

dry and wet electrodes. The details of a procedure which was developed to 

determine the oxide film thickness was described in Section 7.2.2. 

The study of the comparative performance of wet, dry and insulating elec

trodes in Section 7.3 revealed that no single electrode consistently gave the 

best result on tests conducted to study contact impedance, artifacts from 

electrode movement and the effects of electric fields. In contrast to some 

previously published reports, dry and insulating electrodes showed better 

performance compared to wet types in some circumstances. Work for this 

comparative study can be found in the literature (Searle & Kirkup 2000). Fi

nally, Section 7.4 showed illustrative examples of bioelectric signals obtained 

using wet, dry and insulating electrodes, which indicates that all three elec

trode types are a viable option for ECG recording. 

The work conducted for this thesis involving wet, dry and insulating 

electrodes has shown that all electrode types can offer good signal fidelity 

for biosignal use. When dry and insulating electrode contact areas are of 

reasonable size, good signals are obtained, thus all electrodes are suitable for 

use with ECG and EMG signals. The use of electrodes with smaller contact 

area can lead to baseline variability. 

Although their performance is comparable to dry electrodes, insulating 

electrodes require extra fabrication, whereas dry electrodes are mechanically 
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simple. This means that dry electrode types are preferable for biosensing 

applications, as demonstrated by the number of recent ECG studies using dry 

electrodes (Burke & Gleeson 2000, Griss et al. 2000, MettingVanRijn et al. 

1996). By contrast, reports of studies using capacitive electrodes are now rare 

(the last literature found is by Taheri et al. (1995)). For dry and insulating 

electrode use with EEG, the presence of hair leads to signal degradation. 

This is especially apparent with insulating electrode types, making them 

less suitable for EEG use. The small electrode size required to avoid hair

related problems can lead to artifacts from electrode movement. For EEG 

applications using dry electrodes, the physical stability of electrodes is of 

concern, and further work on dry electrodes for EEG use will need to give 

this aspect serious consideration. 

The dominance of wet electrodes in clinical settings will most likely re

main unchallenged by dry and insulating types for a number of reasons: wet 

electrodes are simple and lightweight, and each requires only one lead. Dry 

and insulating types require circuitry for buffers, and extra cables for power, 

which adds bulk and weight (although surface mount and VLSI technology 

(Padmadinata et al. 1990) means that this consideration is becoming less im

portant). Additionally, the availability, relative cheapness and disposability 

of wet electrodes overcomes hygiene concerns, and initial contact impedances 

are sufficiently low to allow good recordings. However, in specialist domains 

such as long-term, unsupervised monitoring and spatially dense recordings, 

insulating and dry (especially) electrodes can offer benefits over wet electrode 

technology. There remains problems when applying such electrodes to EEG 

signals, such as the tradeoff between sensor contact area and obstruction by 

the presence of hair, as described in Section 7.4. Because of this, the physical 

construction details of an EEG electrode will be as important as the type 

1
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(wet dry or insulating) utilised. 

l 
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Chapter 8 

Summary, conclusions and 

suggestions for further work 

The research presented in this thesis has investigated issues which involve 

the detection of alpha EEG synchronisation that occurs following eye closure 

for purposes of environmental control. The research has focused on aspects 

crucial to the utilisation of the alpha rhythm in an environmental control 

system which could be used by, for example, disabled persons. These were 

(i) the effectiveness of signal processing algorithms, and (ii) the utilisation of 

surface electrodes for biosignal sensing. Conclusions follow relevant to each 

research based chapter in this thesis. 

Chapter 2 

The application of alpha waves to assistive technology has been the focus 

of many research projects. To date there has been little attention directed 

to the choice and optimisation of detection algorithms for use in an uncon

strained operating environment, Le. an environment in which subjects are 

allowed freedom of movement. Additionally, there is a lack of data concerning 
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the performance of alpha EEG detection methods in the presence of artifact 

signals. 

Chapter 2 considered conventional methods of alpha EEG monitoring. 

These methods were reviewed, adapted and enhanced for use as detectors 

of alpha EEG increase associated with eye closure. An original method for 

comparing the alpha EEG detection methods was described and implemented 

using the statistic which is consistently used in this thesis as a 'figure of 

merit'. This statistic parameterises a technique's performance with regard 

to detection time and false positive errors. To the author's knowledge this 

is the first time that such a parameter has been defined and utilised which 

incorporates both detection time and error rates. To enable a qualitative 

comparison between alpha detection methods, EEG data were recorded from 

10 subjects using an electrode headband constructed for this thesis by the 

author. Data were recorded during activities which included eye closure, and 

a number of tasks designed to generate artifact signals (such as from 

jaw clenching). The algorithms researched were intended for use in real time 

systems, however in order that the same EEG data be used on all alpha de

tection methods, the processing was performed offline. All techniques were 

shown to be successful in detecting the increase in alpha activity following 

eye closure. The use of the parameter allows the different detection meth

ods to be ranked against an appointed 'standard' method reported in past 

literature, namely the integration method. None of the conventional or en

hanced detection techniques showed a statistically significant improvement 

over the integration method. From this work we concluded that further re

search into such conventional methods of alpha detection should be given 

much less emphasis as it is unlikely that this research will yield a practical 

improvement in activation times or error rates. 

L 
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Chapter 3 

New methods for preprocessing EEG signals in preparation for alpha EEG 

detection were developed and implemented, including spatial filters, Indepen

dent Component Analysis, adaptive filters and a head model using dipolar 

sources. This is the first time that such preprocessing techniques have been 

applied to the problem of alpha EEG detection. Of these, preprocessing using 

ICA showed the best performance. However, the visual inspection required 

for ICA as well as its computational complexity, reduces its suitability for 

inclusion in BCI real time systems which require minimal user intervention. 

The improvement shown after preprocessing by adaptive and spatial filters 

can be regarded as marginal; when computational requirements of these tech

niques are considered these techniques are regarded of limited value. 

Chapter 4 

Novel location-based alpha EEG detection methods were researched, devel

oped, implemented and evaluated. To the author's knowledge, the use of 

source location has not been used as a method for alpha EEG parameterisa

tion in previous studies. The techniques compared included source localisa

tion using beamformers and the dipolar head model, the MUSIC algorithm 

and source power localisation. All methods were successful in detecting the 

increase in alpha EEG activity following eye closure, with the exception of 

the MUSIC technique which gave unsatisfactory results (showing that val

ues were statistically significantly worse when compared to the integration 

method). Based on data gathered, the source power, Bartlett beamformer 

and dipolar head model localisation techniques were shown to be improve

ments over the conventional integration method. More specifically, the source 

L
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power localisation technique was shown to be significantly better than the 

integration method, with p<.OOl. From a practical viewpoint, the param

eter showed a reduction by 37% compared to the conventional method. Of 

all the methods researched and utilised the source power method is the most 

promising. This location-based technique is convenient to implement and, 

although it performed best with 19 electrode sites, it is usable with only 

2 sites (and still shows good performance). Further investigations into the 

use of alpha EEG detection methods for BCl's should focus upon the source 

power method. Still to be established is the performance of the algorithm 

using small numbers of electrodes, and the effect of the position of such elec

trodes. Further optimisation of the algorithm will enable its real time use 

in microcontrollers. Possible further work on other alpha detection meth

ods includes the investigation of parametric source location methods (Krim 

& Viberg 1996, Valaee et al. 1995), and MUSIC-related methods which are 

able to deal with the presence of coherent signals. It remains to be estab

lished whether the performance of these techniques will exceed that of the 

source power method. We conclude that future investigations into alpha de

tection techniques should use a direct comparison parameter, in the manner 

described in this thesis. In particular, the power source detection method 

should be compared, using a larger sample of subjects and in the presence of 

an increased number of artifact sources, using the conventional integration 

detection method as a 'benchmark'. 

Chapter 5 

It is recognised that the signal processing task is eased considerably when 

the signal of interest is of high fidelity, and corruption of the signal is min

imised. Arguably, the most critical component for ensuring signal fidelity is 
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the electrical contact between the body and sensing bioelectrode. Electrode 

types were extensively reviewed and relative merits considered, with partic

ular reference to long-term monitoring of biosignals. The main varieties of 

bioelectric recording electrodes were grouped into three types: wet, dry and 

insulating. Basic electrode operating principals were discussed with special 

regard to electrode impedance, and factors which effect these impedances. 

Chapter 6 

In order to critically and quantitatively evaluate the performance of elec

trodes the impedance characteristics of the skin/electrode combination must 

be established. This chapter dealt with the contribution of skin impedance 

and the effect of contact impedance on signal fidelity. As part of this work 

it was essential to devise, implement and evaluate a new system capable of 

real time monitoring of impedance spectra. Additionally, such a system was 

required to be fast and flexible in its operation. The system designed had 

several advantages over other techniques, such as consistent accuracy across 

all selected frequency components, and prevention of 'smearing' of imped

ance loci for samples which have impedance characteristics which change 

over time. This system will be useful for any experiment in which fast imp

edance measurements are required, and where characteristics of the sam

ple are nonstationary. The system was used to demonstrate the shapes of 

skin/electrode impedance loci (which qualitatively match theoretical models) 

and their changes over time. The variation of powerline noise with contact 

impedance was demonstrated using dry electrodes, along with the advantages 

of using active electrodes. Data were acquired relating to the polyexponential 

decay in contact impedance with time (not a simple exponential decay, as 

reported in previous literature). This data introduces many new questions, 
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T 
and would benefit from a comprehensive and quantitative study on the mech

anisms that affect skin impedance, using the impedance spectroscopy system. 

Chapter 7 

In order to make a balanced judgement on the merits of bioelectrodes, a di

rect and quantitative comparison of the three electrode types was required. 

Such quantitative data, to the knowledge of the author, do not exist in the 

literature. Therefore, experiments were conducted to determine the charac

teristics of wet, dry and insulating electrodes applied to skin. This chapter 

considered the construction and relative performance of bioelectrodes. In 

particular, wet, dry and insulating electrode were compared. \iVith regard 

to dry and insulating electrodes, these and the ancillary electronics were de

signed and constructed by the author. The insulating electrodes were based 

on silicon dioxide, thermally grown on a silicon substrate. For these films 

to be produced, a film thickness determination system had to be custom

developed, incorporating a photospectrometer, which involved fitting of the

oretical curves to reflectance data. The susceptibility of the three electrode 

types to various artifact sources was considered and evaluated simultaneously 

in a controlled test environment for the first time. These artifacts had been 

identified as problems in previous reports on dry and insulating electrodes, 

but results from experiments in this thesis revealed that such artifacts were 

not a significant problem when precautions were taken (such as the shielding 

of electrodes and active buffering). We conclude that all electrodes used in 

this research are viable alternatives as surface electrodes for sensing of biosig

nals, and all were shown to be successful in detecting ECG signals. For ECG 

use, the application of dry electrodes is recommended, as active buffering 

enables useable signals to be obtained within seconds. Although insulating 
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electrodes also showed equally good performance, they require more fabri

cation than dry electrodes without added performance benefits. It was seen 

that the presence of hair caused some problems with electrodes of large con

tact surface area, but conversely electrodes with very small contact area have 

stability problems. A possibility for further research is to design dry elec

trodes for EEG applications (which would require a reduction in electrode 

contact area while retaining physical stability), to compare with wet and in

sulating electrodes. 

The research presented in this thesis has found new and successful meth

ods for the reliable detection of the increase in alpha EEG activity associated 

with eye closure. These techniques will enable the more robust use of Bel 

systems in an unconstrained operating environment, such as those currently 

being developed to assist persons with high level impairments. Investigations 

into alternative bioelectric sensing electrodes and methods of characterisa

tion have yielded profitable results, however more work is required to enable 

their efficient use for EEG signals. 
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Appendix B 

The International 10-20 System 

of EEG Electrode Placement 

Figure B.1 shows the International 10-20 system for EEG electrode place

ment. The name refers to the 10% and 20% interelectrode distance used in 

the convention. The preceding letters denote Frontal, Temporal, Central, 

Parietal and Occipital regions of the brain (although there is no 'central 

lobe', the convention is used for identification purposes). Odd numbers re

fer to the left hemisphere of the brain, while even numbers denote the right 

hemisphere. Smaller numbers are closer to the midline, with z being on the 

midline. 
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Figure B.1: The International 10-20 System of EEG Electrode Placement 
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Appendix C 

Calculation of electrode
 

positions on headband
 

The results of a survey of head dimensions from 14 randomly sampled people 

(mean age 29.1 yr, standard deviation 9.1 yr) is shown in Table C.l. For 

Mean std. dev. 

78.8 mm 3.8 mm 

Depth 98.0 mm 4.9mm 

Table C.1: Mean and standard deviation of head sizes surveyed 

many algorithms-used in this thesis the cartesian coordinates of the electrodes 

(which are evenly spaced around the headband) are required. To compute 

these coordinates a parametric description of the headband shape is used, 

which is assumed to be an ellipse. 

x(O) = a cos(O) (C.l) 

y(O) = b sin(O) (C.2) 

I 

l 
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where a is the head width and b is the head depth. In order for the electrodes 

to be placed evenly, an accurate calculation of the circumference derived from 

a and b is required. Two approximations for the circumference of an ellipse 

are shown below, however these proved to be inaccurate for the purposes of 

this study. 

2 

c +
2 

b (C.3) 

b) [1 4(a + b) 64 (a + b)]c ( (C.4)a + + (a + b)2 + (a + b)4 

One can more accurately compute the circumference by finding the arc 

length, using 

c Jo + (C.5) 

)0 + [b (C.6) 

Equation C.6 results in an elliptic integral, which is non-analytic. In order 

to evaluate such integrals it is necessary to use lookup tables, numerical 

integration or approximations methods (e.g. Walter & Fournier (1996)). 

The simpler method adopted here was to sum the length of many linear 

segments (the start and end points determined by Equations C.1 at Band 

+ A sufficiently small gave an answer comparable to that given by 

Equation C.6 to four decimal places. The same method was used to deter

mine the locations of electrodes, placed every The resulting 

coordinates are shown in Figure C.l. Using the average values for a and b 

shown in Table C.1, the circumference calculated is 557.6 mm 
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Figure C.l: Positions of the 19 electrodes on the head band. Coordinates 

are III m. 
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Appendix D 

Mathematical definitions 

D.I Matrix rank 

The rank of a matrix is a measure of the linear independence of its rows and 

columns. The row rank of a matrix of order M by N is the number of linearly 

independent rows in the matrix, while the column rank is the number of 

linearly independent columns. The row rank will be between 0 and M, the 

column rank between 0 and N. If the row rank is equal to M, the matrix 

is said to have maximal or full row rank; there are corresponding terms for 

column rank. 

For a square matrix, of order N, the row and column ranks will be equal. 

A square matrix is nonsingular if and only if it has maximal row rank; in 

other words, if no row is a linear combination of the other rows, and simi

larly for columns. A square matrix with full rank has an inverse, a nonzero 

determinant, and Gauss elimination with pivoting can be used to solve linear 

systems involving the matrix. 

If the rank of a matrix is actually desired, a reasonable method is to 

compute the QR factorisation. Very small diagonal terms in the R factor 

1
 
I 
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may indicate linear dependence of the corresponding columns of the matrix. 

The singular value decomposition (Appendix D.2) will also give this sort of 

information. 

D.2 Singular Value Decomposition (SVD) 

The SVD of a matrix A is a factorisation of the form 

A = USyT (D.l) 

where S is a diagonal matrix containing the singular values of A, and U and 

Yare orthogonal matrices. 

D.3 The pseudoinverse 

The pseudoinverse is a generalisation of the idea of the inverse matrix, for 

cases where the standard inverse matrix cannot be applied. Such cases in

clude matrices A which are singular, or rectangular. 

The inverse of a matrix A can be defined as the unique matrix B such 

that: 

AB BA=I (D.2) 

ABA A (D.3) 

BAB B (D.4) 

The pseudoinverse can be used in a way similar to the wayan inverse is 

used. For instance, given the rectangular set of linear equations Ax = y a 

solution can be computed as x = Cy. If the equations are consistent, then 

x will actually satisfy the equations. Otherwise, x will be a best possible 
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solution, in the sense that it minimises the Euclidean norm of the square 

residual error. 

The pseudoinverse can be computed from the information contained in the 

singular value decomposition, as 

(D.5) 

where st is the matrix S with all nonzero values on the diagonal inverted. 

D.3.1 Example 1: A non-singular matrix 

(D.6) 

using the SVT we get 

-0.2897 -0.9571]u= [
-0.9571 0.2898 

(D.7) 

0.6872 -0.7265]v= [
-0.7265 -0.6872 

because the matrix is nonsingular the pseudoinverse is the same as the inverse 

0.2 -0.2] 
(D.8)

c = [ 0.2667 0.0667 

D.3.2 Example 2: A singular matrix 

(D.9)
 



D.4 Cholesky decomposition 

using the SVT we get 

u= [ 
-0.7071 00] 

-0.7071 

s= 

281 

(D.lO) 

-0.4472 v= [
-0.8944 

because the matrix is singular (note only one value in the diagonal for S) 

inverse does not exist. The pseudoinverse is 

C = l0.1 0.1] (D.ll) 
0.2 0.2 

D.4 Cholesky decomposition 

Every positive definite square matrix A can be factorised in the form A = RRT 

with R being a lower triangular matrix with positive definite elements. 

Cholesky decomposition finds the matrix R; this is similar to LU decomposi

tion except that the upper triangular part is in fact formed by the transpose 

ofthe lower triangular matrix, RT. Using this we can solve a matrix equation 

Ax=b (D.12) 

by first solving 

Ry=b (D.13) 

by forward substitution and then 

(D.14)
 

by backward substitution. R is found via the Cholesky decomposition of A. 
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D.5	 Numerical evaluation of Legendre and 

Associated Legendre polynomials 

The value of an associated Legendre polynomial F1m(x) can be found using 

the following relations (Press et al. 1997). Starting with 

(D.15) 

(x) = x(2m + (D.16) 

If we set (x) = 0, then using Equations D.15 and D.16 the value of any 

associated Legendre polynomial can be found with 

(D.17) 

The Legendre polynomial can then be found using 

(D.18) 

D.6	 The Hilbert transformer 

The Hilbert Transformer can be used to create an analytic signal, that is a 

signal with real and imaginary components (Reilly et al. 1994). The method 

works in the frequency domain as shown in this example. 

y = (b X (D.19) 

where x[k] is the input array of size N, and b[k] is given by 

1 < k < 
b[k] = { (D.20) 

<k< N2 

The example in Figure D.1 shows an input signal which contains only a real 

part. The signal is made of two sinusoidal components, at 2 Hz and 20 Hz, 

l 
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D.6 The Hilbert transformer 

with the signal sampled at 256 Hz. Figure D.2 shows F(x) and b[k] for the 

same signal. Figure D.3 is the output signal after Hilbert transformation, 
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Figure D.l: Real and imaginary parts of original signal, with 2 Hz and 20 Hz 

components. 

the signal now has an imaginary part, with the phase of each frequency 

component offset by relative to the real part. 

1.0 

2,5 

1.0F(x) b[k] 

-1.0 __ __ 0.0 __ __

o	 100 0 
[Hz] 

Figure D.2: Imaginary part of FFT for the input signal, and the vector b[k]. 
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Figure D.3: Real and imaginary parts of signal after Hilbert transform. 

D.7 Equivalence of constant phase element 

model and empirical formula 

The following shows that the use of a constant phase element in parallel with 

a resistor, Rp , is equivalent to the empirical formula for the impedance locus 

in Equation 6.3. Here Rp = Ro Roo and K = 

(D.21) 

(D.22) 

z 

z = 

Equation D.22 is equivalent to Equation 6.3 on p. 183. 

l 
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D.8	 Equivalence of frequency dependent com

ponent model and constant phase ele

ment model 

Referring to Figure 6.5(a) the total impedance for the model is 

1 1 1 
(D.23)Z = 1 (R2 + CO/w1-f3 + R /w (3 )

/ o

where 

Ro = 

(D.24) 

(D.25) 

Therefore the impedance becomes 

1z = (D.26) 

(D.27)
1 + (TW)f3(cos + jsin 

R2 
(D.28)

1 + (jwT)f3 

This is to the empirical depressed-locus Equation 6.3 (p. 183) when 

Roo = 0 and i = 1, which has been previously shown (see Equations D.21

D.22) to be equivalent to a model comprising of a ZCPA in parallel with a 

frequency independent resistor. 
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D.9	 Derivation of equations used for equal 

frequency spacing in impedance measure

ments 

The frequency components used in impedance spectroscopy can be calculated 

so that the data points are evenly spaced around the locus, if an approximate 

'three component' model is used. The three component model is shown in 

Figure D.4. Measurements using this model will result is a locus such as the 

C 

Figure D.4: Simple 'three component' skin electrical model 

one in Figure D.5. The impedance of the three component model can be 

IJ

R R+r 

Figure D.5: Impedance locus for skin 

expressed as 

(D.29)
 

The real component of Z is 

Re[Z] (D.30) 

l 
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If the centre of the locus is shifted to the origin by defining 

Z2 = Z 
r 

R-
2 

(D.31) 

then the angle in Figure D.5 for a given excitation frequency can be com

puted using 

(D.32)
 

Equations D.29 - D.32 can then be combined to get the desired angle in terms 

of excitation frequency (where w = j), or required frequency in terms of 

angle 

1 
= cos- + 1 - 1] (D.33) 

= -It' (D.34) 

1
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Appendix E 

FET devices 

E.l Introduction to FET types 

A FET (field effect transistor) is similar to the more common BJT (bipolar 

junction transistor) type, in that both three terminal devices where the 

current flowing between two terminals is controlled by the third "control" 

terminal. The FET family consists of two major devices, that is, the JFET 

(junction field effect transistor) and the MOSFET (metal oxide semiconduc

tor field effect transistor). Whereas a BJT transistor requires a current flow 

through the control terminal (or base) to achieve this effect, conduction in 

the FET channel is controlled by an electric field, produced by voltage ap

plied at the control terminal (or gate). Thus no current flows through the 

gate, and this is the advantage of FET devices; resulting in input impedances 

up to 1014 

In a MOSFET (see Figure E.1) the gate is separated from the current 

channel by a layer of (most commonly) Si02 , an electrical insulator. In an 

n-channel MOSFET current flows from the drain to source (assuming the 

drain is positive relative to the source terminal) when the gate voltage is 
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n-channel MOSFET n-channel JFET 

DRAIN DRAIN 

SOURCE SOURCE 

Figure E.l: n-type FETS 

positive relative to the source. The oxide layer is extremely thin and makes 

the devices susceptible to dielectric breakdown damage by static electricity. 

Handling a MOSFET incorrectly can easily destroy the device. 

In JFET devices the gate is separated from the current channel by a semicon

ductor channel. Operation is based on reverse biasing the junction between 

the gate semiconductor material and the bulk of the channel; this is called 

a pn juncLioll amI equivalent tu reverse biasing a diode. Even though the 

junction is reverse-biased a leakage current still flows (as in common diodes) 

to the order of 10-9 A. Thus the gate impedance is orders of magnitude less 

than that for MOSFETS, and small currents may flow if the gate is forward 

biased with respect to the channel. In circuit design this leakage current is 

often assumed to be zero. 

E.l.1 Simple follower 

A simple follower circuit using a JFET is shown in Figure E.2. The circuit can 

be described (Horowitz & Hill 1989, p. 133) with the equations E.l and E.2. 
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v+ 

G 

Figure E.2: JFET Source Follower 

Vs (E.l) 

(E.2) 

where 9m is the transconductance 

R9m ].'. = g (E.3)[1 + Rg vm 

So with R » 1/9m the gain of the follower approaches (but is always less 

than) one. For most operating situations 9m is less than 10. 

E.1.2 Active loads 

By replacing the resistor in Figure E.2 with a current source the performance 

can be improved. The source acts like a very high value resistance and the 

constant current reduces nonlinearities by keeping vgs constant. A constant 

current source may be made from BJT transistors or simply a JFET with its 

gate tied to the source terminal. 

J
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Appendix F 

Reflectance measurement using 

a spectrophotonleter 

The spectrophotometer obtains the reflectance spectrum of a sample by step

ping over a range of wavelengths, measuring the intensity at the detector for 

each wavelength value. To enable an absolute reading, the spectrophotome

ter stage uses three mirrors, configured as shown (not to scale) in Figure F.1. 

As this figure shows, the light beams are not incident at exactly 90° to the 

sample surfaces. It is sufficient in this case, however, to assume that the 

light beams are normal to the sample surfaces, and this assumption is used 

in all calculations for this method. The initial measurement is a baseline 

calibration, to determine a 100% reflectance level across the spectrum. To 

achieve this the central mirror is placed (referring to Figure F.1) at the bot

tom (baseline) position; no samples are in the stage at this time. The central 

mirror is then replaced in its top position, and a spectrum of the reference 

film is measured. In this study a thick aluminium film is used for the ref

erence, and to obtain this spectrum the reference film is placed so that it 

occupies both the 'sample' and 'reference' positions (denote this spectrum as 

1
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Reference Beam 

From Source mirrors To der.ector 

• I
 
I I
 
• I
 
I I
 
• I
 
I I
 
• I
 

" 
baseline position 

Figure F.I: :l\1easurement stage of the spectrophotometer 

Finally the sample is introduced to one half of the stage, with the 

aluminium reference in the other half, and a spectrum taken. (denote this 

spectrum as The measurements remain absolute (referred to the 

baseline measurement taken) owing to the fact that all measurements involve 

the same three mirrors. The reflectance of the sample can be calculated by 

dividing the values for by the reflectance for aluminium. Since the 

aluminium spectrum measurement, involved two reflections from 

the film, the square root of these values must be used. Thus the reflectance 

for the sample is 

Rs,al
Rsample (F.I)

Ral ,al (
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Appendix G 

Short derivation of reflectance 

for a single layer film 

The representation shown in Figure 7.1 can be shown in detail to illustrate E 

and B electromagnetic fields near the interfaces, shown in Figure G.1. The 

electric fields, E, point out of the page, whilst the magnetic fields, B, (not 

shown) have a direction determined by the direction of propagation of the 

electromagnetic wave, given by E x B. The magnitudes of magnetic and 

Figure G.1: Reflectance for a single layer film on substrate 

J
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electric fields can be related by 

B = (G.1) 

where is the permittivity, and is the permeability, of free space. In all 

equations considered here, the light beam is considered to be normal to the 

film, thus all angles (00 , are equal to zero. The relationship between the 

) net fields at the boundaries is 

cos(
(G.2)

[ 

where = (G.3) 

The 2x2 matrix in equation G.2 is termed the transfer matrix for the film, 

and can be used to extend this procedure to multilayer films. Equation G.2 

is written more simply as 
I 

(G.4) 

The boundary conditions for the interfaces (Pedrotti & Pedrotti 1993) re

quire that the magnitudes of E and B fields are equal on either sides of the 

interfaces. Thus, using equation G.1 

(G.5) 

(G.6) 

(G.7) 

(G.8) 

Now equation G.2 may be written as 

(G.9)[ ] 

1
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where I is as defined in Equation G.3. We now introduce the reflection 

coefficient 

r = (G.I0) 

Equations G.g and G.I0 can be combined to give 

+ m21 -
r = (G.ll)

+ + m21 + 

Finally, expanding I terms and including the transfer matrix elements 

- cos + i - sin 
r = (G.12)+ cos + i + sin 

R is then given by 

R (G.13) 
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