HABITAT REQUIREMENTS AND HABITAT USE OF THE RED-CROWNED TOADLET *PSEUDOPHRYNE AUSTRALIS* AND THE GIANT BURROWING FROG *HELEIOPORUS AUSTRALIACUS* IN THE SYDNEY BASIN

Andrew G. Stauber BSc (Hons)

Thesis submitted for the degree of Doctor of Philosophy

Department of Environmental Sciences

University of Technology, Sydney

2006

CERTIFICATE OF AUTHORSHIP / ORIGINALITY

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Production Note:

Signature removed prior to publication.

Andrew Stauber

June 2006

COPYRIGHT NOTICE

This work is copyright. Information presented in this document may be reproduced, in part only, for study, training purposes or the management of animal or plant species, subject to the inclusion of acknowledgement of the source and provided that no commercial useage or sale of the material occurs.

i

ACKNOWLEDGEMENTS

I'd like to thank both my supervisors David Booth and Brad Murray for their encouragement and support. Karen Thumm provided help in the field, with the discussion of ideas and the reading of chapters, without which this work would never have become reality. Michael Mahony taught me the micro-chipping of frogs, implanted all radio-transmitters used, and helped greatly with the discussion of ideas. Alf Britton provided invaluable help in the field with the installation of pit traps, searching for frogs, and by sharing his wealth of knowledge on the whereabouts of both frogs studied. Jacquie Recsei handed me all her literature and data books, and Mathew Crowther helped out with BIOCLIM. Grant Hose gave useful advice on data analysis. Marion Anstis helped with tadpole identification and provided illustrations from her book before its publication. Narelle Richardson and staff of the Department of Environmental Sciences, UTS, were always ready to provide advice and help with logistical matters. I thank all these individuals for their involvement.

Furthermore, the research was supported by New South Wales National Parks and Wildlife Service (NPWS), State Forests of New South Wales, AGL and Transgrid. This partnership was in conjunction with an Australian Research Council (ARC) SPIRT scholarship C00107346. I'd like to thank the ARC, the industry partners, and Tom Chambers and Ross Wellington for their support. Additional funding was provided by the Peter Rankin Trust Fund, and Geberit Australia donated lids for the pit traps. The project was carried out under NPWS Scientific Investigation Licence A2842, and was covered by the following Animal Care and Ethics Committee approvals: RNSH/UTS protocols 0107-048A and 0210-038A (including amendments).

Some personal comments

This research program provided me with a unique opportunity to learn more about some of the animals I feel passionate about. Working on these threatened frogs, I learned that it is often difficult to reach conclusions due to low sample sizes. Nevertheless, it is my belief that conservation efforts for any threatened species can only be maximised if they are based on information of that particular species.

The threatened status of both frogs was more than once the catalyst for restrictions on experimental procedures and sample sizes imposed by the Animal Care and Ethics Committee. The numbers of animals encountered in the field were generally low because of both species' rarity, and the ongoing drought may also have interfered with sample sizes. I am strongly convinced however, that the numbers of animals identified and measured for this report are the highest ever recorded for both species.

Occasionally things do not work out the way they were planned. I had manufactured and installed 192 buckets and fencing in three replicated sandstone areas in a layout that would have allowed me to test for differences in abundance based on relative distance from a road, relative distance from a water course, and vegetation structure. Over six months, 1824 bucket nights yielded 10 individual *H. australiacus*. Shortly after trapping had started, an arson attack to a trapping site meant that 16 buckets had to be relocated to a new, unburnt site. After six months, 75% of all traps had become inoperable as a result of four different fires. Those fires spelt the end of that exercise.

It was not all doom and gloom. I acquired many new and useful skills and saw many wonderful things during all those days and nights in the bush. I also got the opportunity to learn the developmental stage at which *H. australiacus* tadpoles hatch from their eggs, a fact previously unknown (Anstis, 2002). My work also led to the first record of a snake parasite *Sphaerocephalus rotundicapilatus* in an amphibian (many thanks to Prof. Lesley Warner for identifying the organism).

I hope the work I put into this program will eventually be used to benefit both the "lively perky little frog" as well as the large one whose "rarity must apologise for its deformity" (a statement I disagree with; see Chapter 1, Sections 4 and 5).

TABLE OF CONTENTS

Certificate of authorship / originality		
List of	of Contentsiv f Figuresix f Tablesxi f Abbreviationsxiii	
Abstra	act1	
Chant	er 1 - General Introduction3	
Chapt 1	Amphibian population declines	
2	Habitat protection – an integral part of conservation biology4	
2	2.1 Habitat requirements and habitat use	
	2.2 Roads as habitat components and their effects on flora and fauna	
3	Research questions and aims	
4	Pseudophryne australis species profile	
•	4.1 Species description 11	
	4.2 Distribution 12	
	4.3 Habits	
	4.4 Status and threats	
	4.5 Habitat information	
	4.6 Summary of additional published studies	
5	Heleioporus australiacus species profile	
	5.1 Species description	
	5.2 Distribution 17	
	5.3 Habits	
	5.4 Status and threats	
	5.5 Habitat information	
	5.6 Brief summary of additional published studies20	
6	A brief preview of the main chapters20	
	6.1 The Habitat requirements of Pseudophryne australis and Heleioporus	
	australiacus (Chapter 2)	
	6.2 Adaptive phenotypic plasticity in the larval period of Heleioporus	
	australiacus (Chapter 3)22	
	6.3 Habitat associations and movement patterns of Pseudophryne australis and	
	Heleioporus australiacus (Chapter 4)23	

	6.4 Pseudophryne australis, Heleioporus australiacus and environment: do natural and artificial track-side breeding sites reproductive success (Chapter 5)?	allow equa
	6.5 Heleioporus australiacus movement and habitat use in the track (Chapter 6)	
Chapte	er 2 - The Habitat requirements of <i>Pseudophryne australis</i> and	Halajonorus
	diacus	
1	Introduction	
2	Materials and methods.	
	2.1 Locality data	
	2.2 Habitat scaling and variables analysed	
	2.2.1 Extra-broad scale habitat analyses	
	2.2.2 Broad scale habitat analyses	
	2.2.3 Medium scale habitat analyses	
	2.2.4 Fine scale habitat analyses	
3	Results	
	3.1 Extra-broad scale habitat analyses	
	3.1.1 Geological association	
	3.1.2 Elevation	
	3.1.3 Relative position in topography	44
	3.1.4 Aspect	
	3.1.5 Slope	46
	3.1.6 Climatic variables	46
	3.2 Broad scale habitat analyses	53
	3.2.1 The habitat of Pseudophryne australis	
	3.2.2 The habitat of <i>Heleioporus australiacus</i>	54
	3.3 Medium scale habitat analyses	
	3.3.1 Fine scale habitat analyses	62
	3.4 Discussion	63
Chapt	er 3 - Adaptive phenotypic plasticity in the larval period of Heleioporus	
1	Introduction	
	1.1 Population regulation in amphibians	
	1.2 Ephemeral habitats provide growth opportunities	
	1.3 Phenotypic plasticity in larval duration	
	1.4 H. australiacus tadpole environment	
2	Materials and methods	
	2.1 Pool drying experiment	
	2.2 Duration of larval period in the field	79
	2.3 Comparison of laboratory and field animals	
3	Results	

	3.1 Pone	d drying experiment	80
	3.2 Dura	ation of larval period in the field	83
		parison of laboratory and field animals	
4	Discussion.		86
	4.1 Resp	oonse of H. australiacus tadpoles to decreasing water levels	86
	4.2 Resp	oonses of other anuran tadpoles to decreasing water levels	89
	4.2.1	Species that accelerate development with pond drying	
	4.2.2	Species that do not accelerate development with pond drying.	89
	4.3 Size	at metamorphosis and pond drying	89
	4.4 Size	at metamorphosis and larval period	93
		er determinants of phenotypic plasticity in tadpoles	
	4.5.1	Temperature effects on larval development	
	4.5.2	Food and competition effects on larval development	95
	4.5.3	Predator effects on tadpole behaviour and morphology	96
	4.5.4	Stress-related developmental rates	97
	4.6 Ben	efits of plasticity in larval period	97
		ation of the larval stage of H. australiacus	
	4.8 Is pl	nenotypic plasticity in the larval period of H. australiacus adap	tive?99
	4.8.1	Factors influencing fitness	99
	4.8.2	Adaptive plasticity	100
Pseud 1	* *	ralis and Heleioporus australiacus	
1		1	
		itat associations	
	1.1.1 1.1.2	Pseudophryne australis Heleioporus australiacus	
		spatial distribution of <i>Pseudophryne australis</i> and <i>H</i>	
		sindividuals	*
		vement patterns of <i>Pseudophryne australis</i> and <i>Heleioporus au</i>	
	1.5 107	venione patterns of 1 seudopin yne dustratis and 11etetoporus di	isii uiiucus
2		nd methods	107
_		udophryne australis	
	2.1.1	Microhabitat associations	
	2.1.2	Temporal stability of microhabitat	
	2.1.3	Nearest-neighbour distances	110
	2.1.4	Individual movements	112
	2.2 Held	eioporus australiacus	112
	2.2.1	Association with vegetation structure	
	2.2.2	Association with creeks and artificial track drainage structures	
	2.2.3	Nearest-neighbour distances	
	2.2.4	Individual movements	
	2.2.5	Do individuals located far from creeks move further than	those near
_	creeks?		
3	Reculte		116

	3.1 Pseu	udophryne australis	116
	3.1.1	Microhabitat associations	
	3.1.2	Temporal stability of microhabitat	
	3.1.3	Nearest-neighbour distances	
	3.1.4	Individual movements	
		rioporus australiacus	
	3.2.1	Association with vegetation structure	
	3.2.2	Association with creeks and artificial track drainage structures	
	3.2.3	Nearest-neighbour distances	
	3.2.4	Individual movements of H. australiacus	
	3.2.5	Do individuals located far from creeks move further than those	
	creeks?		11001
4			129
7		itat associations and movement patterns of Pseudophryne australis	
	4.1.1	Microhabitat associations	
	4.1.1	Nearest-neighbour distances.	
	4.1.2	Individual movements	
	4.1.3		
		Limitationsitat associations and movement patterns of <i>Heleioporus australiacus</i>	
	4.2 Hab		
	4.2.1	Association with vegetation structure	
	4.2.2	Association with creeks and artificial track drainage structures	
		Nearest-neighbour distances	
	4.2.4	Individual movements	
	4.2.5	Do individuals located far from creeks also move further?	
	4.2.6	Differences among transects	
	4.2.7	Limitations	
	4.3 Con	clusions	143
		ophryne australis, Heleioporus australiacus and the track environn	
Do nat	tural and Arti	ficial track-side breeding sites allow equal reproductive success?	145
1	Introduction	1	145
2	Materials ar	nd methods	148
	2.1.1	Data analyses	150
3	Results	•	151
	3.1 Hyd	roperiod of Pseudophryne australis breeding pools	151
		er habitat characteristics of Pseudophryne australis breeding pools	
		fic and track works	
	3.4 Hyd	roperiods of Heleioporus australiacus breeding pools	157
		er habitat characteristics of <i>Heleioporus australiacus</i> breeding pools.	
		fic and track works	
4	Discussion.		
		udophryne australis breeding sites	
		cioporus australiacus breeding sites	
		v important are track breeding sites to P. australis and H. australiacu	

	4.4 4.5	LimitationsRecommendations	
Chapt	er 6 -	Heleioporus australiacus movement and habitat use in the track	
1	Intro	duction	
2		erials and methods	
3		lts	
	3.1	Distances between burrows and movement patterns	177
	3.2	Distance of burrows from track structures (including drains)	182
	3.3	Number of times burrows were used	
	3.4	Micro-habitat descriptions of burrow locations	
	3.5	Fate of individuals	•
4		ussion	
	4.1	Heleioporus australiacus and the track habitat	
	4.2	Distance of burrows from the track	
	4.3	Movement patterns and home range	
	4.4	The number of burrows used	
	4.5	Borrowing locations	
5	4.6	Limitationselusions and Recommendations	
	Con	clusions and Recommendations	191
Chant	er 7 - 0	General Discussion	193
1		are the habitats of <i>P. australis</i> and <i>H. australiacus</i> best described?	
2		do P. australis and H. australiacus use their habitats?	
3		ack-side habitat beneficial to P. australis and H. australiacus?	
4		re research	
5		agement recommendations	
	5.1	Fire hazard reduction burning.	
	5.2 aust	The spatial requirements of <i>Pseudophryne australis</i> and raliacus	Heleioporus
	5.3	Management of the track environment	
A	di 1		212
Relial	oility o	of ventral pattern mapping as an identification technique in anuran re	
H	eleiop	orus australiacus voucher specimens lodged with the Australi	an Museum,
Litera	ture ci	ted	229

LIST OF FIGURES

Figure 1	Locations of <i>P. australis</i> and <i>H. australiacus</i> field sites visited for broad-scale habitat analyses
Eigung 2	Distribution of <i>P. australis</i> and <i>H. australiacus</i> locality records within the Sydney
Figure 2	Basin43
Figure 3	Frequency distribution of P. australis locations based on their relative positions in
	the topography45
Figure 4	Frequency distribution of H. australiacus locations based on their relative
	positions in the topography45
Figure 5	P. australis core habitat and range as predicted by BIOCLIM51
Figure 6	H. australiacus core habitat and range as predicted by BIOCLIM51
Figure 7	First two principal components of bioclimatic variables for the Sydney Basin and
riguic /	likelihood of occurrence of <i>P. australis</i> as predicted by BIOCLIM52
Eigene 0	
Figure 8	First two principal components of bioclimatic variables for the Sydney Basin and
T' 0	likelihood of occurrence of <i>H. australiacus</i> as predicted by BIOCLIM52
Figure 9	The larval periods and pooled proportions of <i>H. australiacus</i> tadpoles that had
	metamorphosed under simulated constant and decreasing water levels in the
	laboratory82
Figure 10	The larval periods and proportions of H. australiacus tadpoles from each of three
	populations that have metamorphosed under simulated constant and decreasing
	water levels82
Figure 11	Mean body mass of H. australiacus metamorphs grouped by population and
	experimental treatment as a function of larval period83
Figure 12	Comparison of <i>H. australiacus</i> larval periods in the laboratory and the field84
Figure 13	Boxplot of body mass changes in a wild population of <i>H. australiacus</i> tadpoles
	84
Figure 14	Association of P. australis locations with leaf litter piles, and temporal changes in
	leaf litter location along three transects
Figure 15	Frequency distribution of nearest-neighbour distances of active P. australis120
	Distances moved by recaptured male and female <i>P. australis</i> over time121
	Frequency distributions of H. australiacus locations as a function of distance to
	the nearest creek, mitre drain and culvert.
Figure 18	Relative distances of male and female <i>H. australiacus</i> from the nearest culvert
1150110	
Figure 19	Frequency distribution of nearest-neighbour distances of active <i>H. australiacus</i>
riguio 19	
Figure 20	Displacement distances between locations of first and last capture as a function of
1 15410 20	time between captures for <i>H. australiacus</i> males and females
Figure 21	Maximum displacement distances of 43 <i>H. australiacus</i> as a function of their
1 iguic 21	location from the closest creek
Figure 22	Locations of hydroperiod sampling sites of <i>P. australis</i> and <i>H. australiacus</i> 149
	The maximum hydroperiod of each <i>P. australis</i> breeding pool
rigure 24	Hydroperiods of 14 track and 14 non-track P. australis breeding pools153

	Twelve-month water temperature profiles of 28 <i>P. australis</i> breeding pools154 Depths of 28 <i>P. australis</i> breeding pools monitored over 12 months
_	Chronologically ordered hydroperiods of each <i>H. australiacus</i> breeding pool sampled over twelve months
Figure 28	Hydroperiods of 5 track and 6 non-track H. australiacus breeding pools159
	Twelve month water temperature profiles of 11 <i>H. australiacus</i> breeding pools
Figure 30	Depths of 11 H. australiacus breeding pools monitored over 12 months160
Figure 31	Burrow locations in relation to the point of release and habitat features of radio-tracked <i>H. australiacus</i> #43179
Figure 32	Burrow locations in relation to the point of release and habitat features of radio-tracked <i>H. australiacus</i> #62
Figure 33	Three dimensional plot of weekly displacements and direction of movement based on the burrow locations of <i>H. australiacus</i> #62180
Figure 34	Burrow locations in relation to the point of release and habitat features of radio-tracked <i>H. australiacus</i> #160
Figure 35	Burrow locations in relation to the point of release and habitat features of radio- tracked <i>H. australiacus</i> #161
Figure 36	Burrow locations in relation to the point of release and habitat features of radio- tracked <i>H. australiacus</i> #162
Figure 37	Three dimensional plot of weekly displacements and direction of movement based on the burrow locations of <i>H. australiacus</i> #162
Figure 38	Frequency distribution of weekly displacements based on burrowing locations for each of five radio-tracked <i>H. australiacus</i>
Figure 39	Frequency of burrowing locations of 5 individual radio-tracked <i>H. australiacus</i> as a function of their proximity to tracks or artificial track drains

.

LIST OF TABLES

Table 1	Snout-urostyle lengths and weights of live male and female <i>H. australiacus</i> measured in the field
Table 2	Topographic map sheets (1:25000) covering the distribution of <i>P. australis</i> and <i>H. australiacus</i> in the Sydney Basin31
Table 3	Factors analysed at the extra-broad scale level
Table 4	Number of locality records for <i>P. australis</i> and <i>H. australiacus</i> within each of the geological formations of the Sydney Basin
Table 5	Summary statistics of altitude for <i>P. australis</i> and <i>H. australiacus</i> locations in the Sydney Basin
Table 6	Summary statistics of <i>P. australis</i> and <i>H. australiacus</i> locations based on their relative positions in the topography
Table 7	Frequencies of <i>P. australis</i> and <i>H. australiacus</i> locations assigned to 45 ^o aspect segments
Table 8	Summary statistics of <i>P. australis</i> and <i>H. australiacus</i> locations based on slope of the terrain
Table 9	The bioclimatic envelopes of <i>P. australis</i> and <i>H. australiacus</i> in the Sydney Basin predicted by BIOCLIM48
Table 10	Factor loadings, Eigenvalues and variance statistics for the first four principal components of climatic variables across the Sydney Basin50
Table 11	Details of broad scale descriptions of <i>P. australis</i> and <i>H. australiacus</i> habitat based on field collected data
Table 12	Microhabitat descriptions of individual burrows of 5 radio-tracked H. australiacus
Table 13	Locality data and collection dates of <i>Heleioporus australiacus</i> tadpoles used in the laboratory experiment
Table 14	Summary statistics of <i>H. australiacus</i> larval periods in days since estimated hatching date by population and treatment80
	Anuran species that accelerate larval development in response to decreasing water levels
Table 16	Anuran species that do not accelerate larval development in response to decreasing water levels91
	AMG coordinates and main characteristics of seven monitored <i>P. australis</i> breeding sites
	Mean leaf litter availability at three transects and the proportions of shelter types utilised by <i>P. australis.</i>
	Leaf litter availability along three natural drainage lines inhabited by <i>P. australis</i>
Table 20	Sample sizes, densities and aggregation indices <i>R</i> based on nearest-neighbour distances of <i>P. australis</i> along three natural drainage lines and an artificial mitre drain
Table 21	Summary statistics of the total distances moved by P . australis which were captured more than twice (n = 39) and their displacements121

Table 22	Association of <i>H. australiacus</i> with structural vegetation types122
Table 23	Summary statistics of half-distances between creeks, mitre drains and culverts along three <i>H. australiacus</i> transects
Table 24	Chi-square statistics of <i>H. australiacus</i> associations with creeks and artificial track drainage structures along three transects
Table 25	Sample sizes, densities and aggregation indices based on nearest-neighbour distances of <i>H. australiacus</i> along three transects
Table 26	Summary statistics of the total distances moved by recaptured <i>H. australiacus</i> and their displacements
Table 27	Summary of hydroperiod maxima, number of dry episodes and their duration for monitored track and non-track breeding pools used by <i>P. australis</i> or <i>H. australiacus</i>
Table 28	Median physical attributes of monitored <i>P. australis</i> hydroperiod sites in track and non-track environment, and tadpole presence and absence comparisons 155
Table 29	Scores for motor bike and car traffic, their sums and tadpole presence for 13 <i>P. australis</i> track sites
Table 30	Larval periods and fate of individuals from 11 monitored <i>H. australiacus</i> breeding pools
Table 31	Median physical attributes of monitored hydroperiod sites for <i>H. australiacus</i> in track and non-track environments.
Table 32	Scores for motor bike and car traffic and their sums and maintenance work details for 5 <i>H. australiacus</i> track sites
Table 33	Heleioporus australiacus identification numbers, gender, recapture histories and AMG positions of the locations of their capture and release prior to commencement of the radio-tracking study
Table 34	Summary statistics of weekly distance displacements and estimated home range size of five radio-tracked <i>Heleioporus australiacus</i> , based on burrow locations
Table 35	Surface substrate, depth and distance from track structure of individual <i>H. australiacus</i> burrows
Table 36	Summary of tracking success for Heleioporus australiacus
Table 37	Registration numbers of <i>Heleioporus australiacus</i> metamorphs lodged with the Australian Museum, Sydney

LIST OF ABBREVIATIONS

ACEC	Animal Care and Ethics Committee
AM	
AMG	Australian Map Grid (always Zone 56 in this text)
Culvert	pipe or similar structure used to direct water under the track
E	Easting (AMG Reference)
GIS	Geographic Information System
IUCN	International Union for Conservation of Nature and Natural Resources
LMF	Digital Location Map of animals where they were First encountered
	metre (unit of length)
	drain to conduct runoff from the shoulders of a track
	to a disposal area away from the road alignment
	Mann-Whitney statistical test
	Numbers, sample size
	NSW National Parks and Wildlife Service
	Nature Reserve
	protected lands including NP, NR, as well as SF
	Standard Error
	State Forest land
	State Forests of New South Wales
	side drain of a track running adjacent to and parallel with
	the shoulders and forming part of the track formation
WA	Atlas of NSW Wildlife