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Abstract 

This thesis reports an investigation from the “bedside” back to the “bench”. That 

is, from the economic evaluation of a medical intervention to basic research and 

development of a contractility assay. The underlying theme of this thesis is 

cellular contractility, which was stimulated from our laboratory’s work in the 

microvascular complications of Diabetic Retinopathy (DR). 

The health economic perspective of this thesis evaluates the cost effectiveness 

and cost utility of DR prognosis using the prog-DR test.  This novel prognostic 

test developed in our laboratory relies on the contractile response of blood 

vessels to detect subjects with high risk of developing DR.  Markov modeling 

based on information in the literature was used to estimate the outcomes of a 

hypothetical population.  The costs, health and utility outcomes of DR were 

compared to the potential outcomes if the prog-DR test was used. The model 

show that the prog-DR test can improve the health of the hypothetical 

population as measured in the number of life years (LY), sight years (SY) and 

quality-adjusted life years (QALY).  The prog-DR test was more cost effective 

than the benchmark of annual or bi-annual screening and the incremental cost 

effectiveness ratio (ICER) appears to be at an acceptable level.  Scenario and 

sensitivity analysis also show that the cost effectiveness of the prog-DR test 

can be improved by (i) better blood glucose management post prog-DR test, (ii) 

targeted screening (as opposed to population-wide screening) and (iii) reduced 

costs of both screening and management of DM and DR. 

The physiological perspective of the thesis aimed to develop a contractility 

assay for DR that was based on a 3D scaffold, which was affordable, easy to 

make and mimicked the three dimensional physiological environment of blood 

vessels.  The contractility assay was developed using a 3D, hollow scaffold 

(PE-PAH capsule) and involved (i) the selection of the optimal core material, (ii) 

optimisation of the manufacturing process, (iii) characterisation of the scaffold 

and (iv) ensuring that cells can be grown on it. The cyto-biocompatibility of the 

candidate polyelectrolyte Poly(Sodium 4-Styrene Sulfonate)  (PSS) and 

Poly(Allylamine Hydrochloride) (PAH) in the thin films format were investigated 

using three different cell lines and the effects of these thin films were also 
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compared to titanium and titanium nitride thin films.  In essence, PSS and PAH 

are not cytotoxic and was used to develop the contractile scaffold, PE-PAH 

capsule.  This scaffold is relative elastic and the contractile force exerted by the 

3T3-L1 cells was calculated based on the deformation of the PE-PAH capsule.  

The contractility assay was sufficiently sensitive to detect the nano-Newton 

magnitude of force developed by individual cells and discriminated the change 

in force due to disruption of the F-actin cytoskeleton by forskolin and 

cytochalasin D. 
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