
Structured graphs
a visual formalism for scalable graph based tools
& its application to software structured analysis

Submitted by Mark J. Sifer to meet the requirements of the Doctor of Philosophy in the
School of Computing Sciences at the University ofTechnology, Sydney in 1996.

CERTIFICATE

I certify that this thesis has not already been submitted for any

degree and is not being submitted as part canditure for any other

degree.

I also certify that the thesis has been written by me and that any

help that I have received in preparing this thesis, and all sources

used, have been acknowledged in this thesis.

Signature of Candidate

Production Note:

Signature removed prior to publication.

Acknowledgement

I am indebted to my principal supervisor John Potter for both his guidance and

collaboration in this work. I also wish to thank my eo-supervisor John Leaney for his

support. Some of the concepts in the second half of this thesis had their genesis while I

was a research student at Hiroshima University, under the supervision of Tadao

Ichikawa.

This work has also benefited from discussions and collaborations with Peter Eades,

Masahito Hirakawa, David Lowe, and former colleagues in the Computer Systems

Engineering Division of Computer Sciences Corporation (Australia). I also wish to

thank the thesis examiners for their detailed comments. Addressing these, has

significantly improved the clarity and presentation of the thesis. The work was funded

by an Australian government postgraduate award with a top-up from the School of

Computing Sciences.

Abstract

Very large graphs are difficult for a person to browse and edit on a computer screen.
This thesis introduces a visual formalism, structured graphs, which supports the
scalable browsing and editing of very large graphs. This approach is relevant to a given
application when it incorporates a large graph which is composed of named nodes and
links, and abstraction hierarchies which can be defmed on these nodes and links.

A typical browsing operation is the selection of an arbitrary group of nodes and the
display of the network of nodes and links for these nodes. Typical editing operations is:
adding a new link between two nodes, adding a new node into the node hierarchy, and
moving sub-graphs to a new position in the node hierarchy. These operations are
scalable when the number of user steps involved remains constant regardless of how
large the graph is. This thesis shows that with structured graphs, these operations
typically take one user step.

We demonstrate the utility of structured graph formalism in an application setting.
Computer aided software engineering tools, and in particular, structured analysis tools,
are the chosen application area for this thesis, as they are graph based, and existing
tools, though adequate for medium size systems, lack scalability.

In this thesis examples of an improved design for a structured analysis tool, based on
structured graphs, is given. These improvements include scalable browsing and editing
operations to support an individual software analyst, and component composition
operations to support the construction of large models by a group of software analysts.

Finally, we include proofs of key properties and descriptions of two text based
implementations.

Contents

Certificate

Acknowledgement

Abstract

1 Introducdon and Review
1.1 Limitations of current Graph Models and Visual Fonnalisms

1.1.1 Interacting with large graphs on a computer

1.1.2 Graph models

1.1.3 Visual fonnalisms

1.1.4 The need for a new visual fonnalism

1.2 Limitations of current graph based tools

1.2.1 Hypertext tools

1.2.2 CASE tools

1.2.3 Structured analysis tools

1.3 Levelled Data Flow Diagrams as the basis of a new fonnalism

1.4 Structured graphs

1.5 Discussion

1.6 Thesis overview

Part I Structured Graphs
2 Viewing a Structured Analysis Model
2.1 The model

2.2 Browsing and editing the model

2.3 Discussion

3 Browsing and Editing Structured Graphs
3.1 Network Abstraction

3.2 Browsing Models

3.3 Incomplete Models

3.4 Editing Models

3.5 Model Limitations

3.6 Summary

4 Ordered Sets : Background

4.1 Standard Tenninology

4.2 View Orders

5 Structured Graph Formalism
5.1 Structured Graphs

5.2 Compact and Abstract Models

ii

m

iv

1

1

2

2

4

5

5

6

6

12

14

15

16

16

18

18

20

27

28
29
35

38
40
41

45

46
46
49

53

54

54

5.3 Properties

5.4 Model Editing

5.5 Model Viewing

5.6 Limitations

5. 7 Discussion

Part 11 Structured Graph Components
6 Building with Structured Analysis Components
6.1 Example Components

6.2 The composed model

6.3 Data flow meshing

6.4 Viewing a component

6.5 Discussion

7 Typed Link Orders
7.1 Tree typed link orders

7.2 General typed link orders

7. 3 Link schema constraints

7.4 Summary

8 Component Composition
8.1 Limitations of model composition

8.2 Components

8.3 A component composition example

8.4 Component merge

8.5 Component composition

8.6 A component limitation

9 Typed Order Formalism

9.1 Labelled orders

9.2 Typed orders

9.3 Typed tree schema

9.4 Typed order schema

10 Structured Graph Component Formalism
10.1 Pre-components

10.2 The merge operator and components

10.3 The component mesh operator

10.4 The component composition operator and proper components

57

58

58

59

61

62

62

67

69

71

72

73

74
75

77

81

82

83

84
85

86

87

91

93

93

96

97

97

101

101

102

105

109

11 Conclusion

11.1 The contribution of part one: structured graphs

11.2 Limitations of structured graphs

11.3 Future work for part one

11.4 The contribution of part two: structured graph components

11.5 Limitations of structured graph components

11.6 Future work for part two

11.7 A component schema example

11.8 Final Discussion

Bibliography

Appendices

A Glossary

B Structured graph proofs

C Gofer implementation of structured graphs

D A console based structured graph tool

110

110

111

112

112

113

113

113

115

116

123

123

125

131

160

Chapter 1

Introduction and Review

The aim of this thesis is to develop a foundation for the design of software tools which

can support scalable browsing and editing of graph representations. This foundation

will be demonstrated through its application to structured analysis. The contributions of

the thesis are summarised in chapter 11, the conclusion.

Many software tools use graphs to provide visual repres.entations of relationships,

taking advantage of the display and processing capabilities of today's personal

computers and workstations. A small sample of relevant applications includes: project

planning, network management, traffic control, software analysis and design,

hypermedia, and more recently world wide web site design.

Software tools for these applications should facilitate user interaction with graph based

representations. This interaction typically includes browsing and editing of the graphs.

Ideally the user process for browsing and editing would involve the direct manipulation

of the displayed graph.

A lack of sea/ability is a problem common to many of these software tools. As the

graph representation becomes very large, browsing and editing becomes increasingly

difficult. Browsing and editing suffer from loss of perspective and an increasing

number of required user steps: this is what we refer to as a lack of scalability.

Scalability is, for us, a user perspective concern, and has nothing to do with underlying

computational complexity. A tool is scalable when it can be used to browse and edit

both small and large structures equally well.

Section 1.1 discusses a range of graph models and visual formalisms, focusing on their

limitations. The major limitation is the difficulty of supporting the flexible browsing

and editing of large graphs. A new visual formalism is proposed to address this need.

Section 1.2 presents the lack of scalability limitations discussed earlier in a variety of

application contexts, reinforcing the need for a new formalism. Levelled data flow

diagrams (DFDs), which are used in structured analysis, are then proposed as the

starting point for the new formalism in section 1.3. Section 1.4 introduces this

formalism, structured graphs, with some discussion following in section 1.5. The final

section gives an overview of the rest of the thesis.

1.1 Limitations of current Graph Models and Visual Formalisms

This section identifies a general limitation of current graph based tools (section 1.1.1),

Introduction and Review 2

then establishes a foundation for improving the design of these tools. Graph models

(section 1.1.2) then visual formalisms (section 1.1.3) are considered for this

foundation.

1.1.1 Interacting with large graphs on a computer

Designing software tools which allow a person to interact with a large relationship

(between two types of entities), which is presented visually on a computer screen as a

network of labelled nodes and links, is difficult. The interaction typically takes two

forms: reading relationships between nodes and sets of nodes, and modifying the

network. Clearly, modifications would be preceded by reading. For large and perhaps

complex relationships a single network is often incomprehensible even when presented

visually. At worst, browsing would require looking at the whole network, possibly

with a zoom and pan facility, and editing would require direct manipulation of

individual nodes and links.

This problem can be attacked in many ways. Two categories are: manipulation of the

presentation of the network, and the addition of new information to somehow structure

the network. An example of the first is geometric manipulation of the network to

highlight a portion of the network, as in fish eye views (Sarkar and Brown, 1994). In

the second, the network is structured in a way so that a person need only focus on a

meaningful portion of the network; this implies an ability to select this portion. This can

be done by adding aggregation hierarchies, usually just on the nodes, but sometimes on

both the nodes and links.

When a network is structured, as in the second category, the effort to read the network

may have decreased, as a person can see relationships between summary (aggregate)

nodes. However the effort to modify the model in some situations may have increased,

due to the overhead of maintaining the additional structuring information in a consistent

state, and it is not obvious what the additional structuring information should be.

The ideas of problem analysis can help identify what the additional structuring

information might be. Y eh and Zave (1980) isolated: partitioning, abstraction and

projection as the structuring principles used in problem analysis. Partitioning refers to

aggregation relationships, abstraction to generalisation, and projection to the use of

multiple viewpoints/perspectives.

1.1.2 Graph models

The simplest graph model is the visual depiction of a binary relation. Nodes represent

the domain (and range) elements, and arcs between two nodes represent the node pairs

that are members of the relation. A comprehensive treatment of graphs is given by

Berge (1962) and Carre (1979). When we restrict the relation to being symmetric, we

have an undirected graph with edges between nodes.

Introduction and Review 3

There are many extensions of graphs, some are: p-graphs, multigraphs, bipartite
graphs, hypergraphs, nested graphs, hypernodes, compound graphs and higraphs. P
graphs allow multiple arcs between nodes, multigraphs extend simple graphs by

allowing multiple edges between nodes, and in a bipartite graph the nodes are
partitioned into two sets, where nodes from the same partition are never directly

connected (Carre 1979).

a a
b c

ffi f- CD
0

(i) cluster graph (ii) compound graph

(iii) higrapb

Figure 1.1 Example graphs

In hypergraphs an edge between a pair of nodes is replaced by a hyperedge between
sets of nodes (Berge 1973). In compound graphs a node may represent a sub-graph,
and edges are allowed to cross abstract node boundaries to connect with a contained
node (Sugiyama 1991). Clustered graphs are restricted compound graphs where edges
may not cross abstract node boundaries (Feng 1991). Clustered graphs have been
called nested graphs in other work.

Hypernodes are nested graphs where nodes are augmented with type information so
that the nesting may be recursive (Poulovassilis and Levene, 1994), (Levene and
Poulovassilis, 1990). The hypernode model has also been proposed as an underlying
formalism for hypertext (Levene and Loizou, 1995). Higraphs are the result of

extending EulerN enn diagrams to represent Cartesian product integrated with
hypergraphs (Harel 1988). Examples of a cluster graph, compound graph and higraph

are shown in figure 1.1.

Though not quite a visual formalism, GraphLog is a query language which merges

logic based queries with graph based visualisation (Consens, Mendelzon, Ryman,

1991). Queries are posed as graphs. They regard a query "as defining a template for
matching subgraphs of a graph". They also use a variation of Higraphs for display.
Hypemodes also have an associated logic based query language.

Introduction and Review 4

1.1.3 Visual formalisms

A visual formalism is a diagrammatic notation with a formal syntax and formally

defined browsing and editing operations. Generally a visual formalism is concerned

with diagram topology rather than its geometric layout David Harel introduced the term

visual formalism when presenting Higraphs: the formalism behind statecharts. The

article, "On Visual Formalisms" (Harel 1988) provided motivation for visual

formalisms:

The intricate nature of a variety of . . . systems and situations can, and in our opinion should, be

represented by visual formalisms: visual because they are to be generated, comprehended, and

communicated by humans; and formal, because they are to be manipulated, maintained, and

analyzed by computers ... We believe that in the next few years many more of our daily technical

and scientific chores will be carried out visually ... The languages and approaches we shall be

using in doing so will not be merely iconic in nature (e.g. using the picture of a trash can to

denote garbage collection), but inherently diagrammatic in a conceptual way ... [emphasis in

original] .I

Harel also made the distinction between diagram topology and geometry, with visual

formalisms being concerned only with the former. That is, they are concerned with

which diagram elements are connected or contained rather than how they are laid out In

the description of the Higraph visual formalism his mathematical model describes only

what the allowable structures are. No browsing or editing operations are specified.

Johnson et al. (1993) developed the idea of a visual formalism further. They were

interested in using visual formalisms for frameworks which facilitate the construction

of applications. They provide the following definition:

Visual Formalisms are diagrammatic displays with well-defined semantics for expressing relations.

They give tables, graphs, plots, maps and others as examples. However, when it

comes to an implementation of a visual formalism they include operations:

The purpose of implementing Visual Formalisms as application frameworks is ... to provide

strong representational, editing, and browsing capabilities ... An implementation of a Visual

Formalism should provide editing and browsing capabilities that make sense for the formalism.

Such operations should be intrinsic to the formalism itself, rather than something to be

added at the implementation stage, because editing operations should be structure

preserving. Formal definition of the operations ensure structure preservation. A visual

formalism could then be considered a visual abstract data type: a mathematical definition

of some data structure, associated structure preserving operations (including browsing

1 This quote is repeated from Johnson et al. (1993)

Introduction and Review 5

and editing), and with a corresponding visual representation.

This section has motivated the use of a visual formalism for the problem this thesis is

addressing, in terms of it being better to solve a more generic problem. There are other

reasons for creating a visual formalism when one's goal is an improved tool design. A

formalism provides a clear specification from which tool designers can work. The

proofs associated with the formalism give the designers greater confidence in the

specification. Formal properties and their associated proofs identify what some

limitations of the tool will be. By abstracting away from specific applications, the

mathematical modelling is easier, as there are fewer entities to deal with; for example,

we deal with nodes rather than processes, stores and process activation tables.

1.1.4 The need for a new visual formalism

This thesis aims to provide a foundation for the design of improved graph based tools.

Section 1.1.1 has asserted that an area in which improvement is required is scalability.

Section 1.2 will establish this assertion by identifying the lack of scalability in a number

of application settings.

Existing graph models and visual formalisms have been examined. The graph models

describe a representation but not editing operations so they can not be a complete

solution. Cluster graphs, compound graphs or hi-graphs which incorporate summary

graphs could however be starting points for a representation.

The foundation needs to be a visual formalism, to include browsing and editing

operations with the diagrammatic representation. However existing visual formalisms

do not meet the scalability requirements. This thesis presents a new visual formalism,

as the foundation for meeting these requirements.

1.2 Limitations of current graph based tools

To get a clearer idea of the need for improved scalability and how it should be

addressed, a range of application areas needs to be examined. In this section hypertext,

a range of CASE tools, and structured analysis tools will be examined.

In the following sub-sections, a common need for scalable editing and browsing will be

shown. We will also see there have been many attempts to formalise the data models of

these applications, where a part of this model is describing a graph representation. So

providing a foundation for designing new graph based tools may also assist with

creating formal descriptions of, reasoning with and classifying existing tools and the

graph representations they manipulate.

Introduction and Review 6

1.2.1 Hypertext tools

Tools for hypertext (Conldin 1987) and more recently hypermedia are graph based

tools, with similar problems to graph based CASE tools. Such tools are concerned with

allowing the online presentation of large amounts of loosely structured information

(Nielsen 1990), whilst CASE tools are concerned with allowing both the online

presentation and editing of large amounts of information. In the latter, the information

is relatively cohesive. However, both are graph based, concerned with online visual

presentation and with scale.

Feiner (1988) described a hypertext tool. To overcome the tendency for users to

become disoriented as they browse, some hypertext tools allow the display of the

whole hypertext graph. He introduces the general difficulties of the online presentation

of large graphs: when arcs cross, as occurs in most large graphs, visual comprehension

becomes difficult. Selective display and distortion of a graph using techniques such as

fish eye views (Sarkar and Brown, 1994) allow a viewer to focus on a portion of the

graph, but at the cost of making it difficult for a viewer to relate multiple view instances

together. He proposes combining a strict tree hierarchy with an arbitrary directed graph

structure. The fmal model resembles a compound graph, in which portions are visually

displayed using a nested topology similar to that used in higraphs. The rule used for

showing links between summary nodes is:

When preparing to display a link between two nodes, IGD [the tool] traces the chapter ancestries

[the non-leaf nodes] of both nodes to fmd their first common ancestor, which in the limit is the

document itself. An arc is drawn between the two children of the common ancestor that are on the

path to the two original nodes.

This rule is shown in full here because of its similarity to a simple structured graph as

presented in this thesis. The resultant tool IGD (Interactive Graphical Documents) uses

the hierarchy to allow a variety of information hiding and decluttering techniques to

reduce the amount of detail displayed.

1.2.2 CASE tools

This subsection is concerned with work on graph based CASE tools which focuses on

the issue of scale: how to cope with very large models. In particular, we are interested

in tools which facilitate the online interaction with models using graph based

visualisations. First we consider the range of CASE tools.

Software engineering encompasses a wide range of activities which include: planning,

analysis/design, construction, testing, maintenance, project management,

process/quality assurance, and configuration management. CASE clearly has a role to

play in all these activities and Forte and McCulley (1991) have surveyed them. Each of

Introduction and Review 7

these areas alone may use a range of tools, for example construction could include

(Fuggetta, 1993): assemblers, compilers, cross-assemblers, cross-compilers,

debuggers, interpreters, linkage editors, precompilers/ preprocessors, code generators

and code restructurers. Some but clearly not all of these tools could be graph based, in

the sense that they allow a user to interact with information via graphs. Areas which

make significant use of graph based tools include: program visualisation/reverse

engineering, project planning and analysis/design.

A substantial portion of software engineering is system maintenance. To assist the

maintenance of large systems where the documentation is either missing or out of date

reverse engineering tools have emerged. An important subclass of these, are tools for

design recovery, which transform code into analysis/design notations. RE-Analyser

(O'Hare and Troan, 1994) is a system which transforms code into structured modelling

abstractions: DFDs, ERDs and finite state machines. RECAST (Edwards and Munro,

1993) takes COBOL code and derives a no-loss representation of the system in a

structured systems analysis and design method format. The IAASys (Canfora et al.,

1992) tool converts ADA into dynamic DFDs and also supports animation.

Khan and Miyamoto (1993) and Khan (1994) have also produced HVIEW

(Hierarchical View) a program visualisation system. Unlike the previous two systems

they do not generate a traditional analysis or design model, for example DFDs and

structure charts. Rather, they produce a model with which a person can interact. They

note:

Various graphical techniques have been used informally to facilitate program representation and

analysis both in forward and reverse engineering, such as flow graphs ... A common problem with

most of these ... is that their apparent size and complexity grow intractably from the human

perception point of view with the size and complexity of the software system.

They then give as their requirement:

In reverse engineering, where the purpose is to produce effective process perception in a human

expert ... The size and complexity of the visual information can seriously effect the quality and

response efficiency of human understanding ... Program visualization therefore, in addition to multi

perspective support, requires decomposability of the representation formalism and the reducibility

of the information volume in the visualization schema.

Their system represents code as a network. They also introduce two abstraction

hierarchies: for data and for functions. Browsing of the model is done by selecting the

desired data and function abstraction levels; by taking cross-sections of the hierarchies.

The results of the browsing is a network at the selected abstraction levels. Their rule for

deriving the relationship between abstract data items and abstract function is domain

specific. For example when an abstract function contain a part which "reads" a data

Introduction and Review 8

item, and another which "writes" the data item, the derived relationship between the

abstract function and the data item could be "reads then writes". The significance of this

work for us is the use of two orthogonal hierarchies to facilitate flexible abstraction on

an underlying network.

MultiView (Read and Marlin, 1996) is another project concerned with software

visualisation and maintenance. MultiView tools provide multiple views of software

which can be independently edited while maintaining overall consistency. These views

include: a text view of code, a tree view and a flow graph view. An interesting feature

of this work is their approach to the data model behind the various views. They state:

One approach to maintaining multiple viewpoints in an environment (such as a programming

environment) is to store the object of interest in terms of some suitable canonical representation

and then derive various viewpoints from this canonical representation. This is the approach we

have adopted in our Multi View programming environment

This approach makes maintaining consistency easier, and simplifies the specification of

editing operations.

Other work on software visualisation which is concerned with scale includes,

Kimelman (1995) and Storey and Muller (1995). The former paper is concerned with

the visualisation of a dynamic system, that is an executing program.

The paper proposes a combination of "abstraction" or "reduction" techniques for reducing the visual

complexity of a graph, while preserving or even enhancing the significant information that it was

ment to convey. A number of means are provided for automatically selecting nodes and edges ...

Operations are then provided for "disposing" of these selected nodes: "ghosting" (relegating nodes

to the background visually), "hiding" (removing nodes from the display entirely), and "grouping"

(grouping nodes under a single meta-node).

Storey and Muller take a different approach to the visualisation of software structures.

They combine the geometric distortion of a fish eye lense with nested graphs. Their

motivation was:

A basic incentive for writing this tool (their S.imple Hiera{Cbical Multiple ferspective views,

SHriMP tool) is to provide a mechanism for visualizing detail of a large information space and at

the same time provide contextual cues concerning its context.

Better contextual cues are provided for the visualizer as they navigate the hierarchy

implicit in the nested graph because:

All steps in the path travelled are visible, in the form of nested nodes. A user can elect to return to

any subsystem in the branch travelled, and elide the information contained in that system.

An emerging area which utilises graph based models is software architecture (Dean and

Introduction and Review 9

Cordy, 1995). The example architectural language they use is based on typed directed

multigraphs; which provides typed nodes and edges and permits more than one edge of

a given type between nodes, extended by allowing edges with arbitrary arity. If these

diagrams become large, then the issues of scalable browsing and P.diting may emerge.

A current concern though of software architecture is building systems through the

composition of components. Shaw et al. (1995) describe a system as:

Systems are composed from identifiable components and connectors of various distinct types. The

components interact in identifiable, distinct ways. . .. Components may be either primitive or

composite Similarly, connectors may be primitive or composite.

A motivating factor in the design of an architecture is given as:

To build truly composable systems we must allow flexible, high-level connections between

existing systems in ways not foreseen by their original developers. ... Components and

connectors must be reusable in different settings, ...

The concern with flexible composition of components appears to be a key concern here.
Shaw et al. (1996) contrast current approaches with the inflexibility of early module

interconnection languages.

[they] require considerable prior agreement between the developers of different modules. For

example, they assume that simple name matching can be used to infer inter-module interaction, ...

Flexible composition could also be desirable when constructing other graph based

models. Very large graph based models require a team effort. This effort would
proceed more easily, if each team member could build their own components, which

can be flexibly composed to form the final model.

Project planning is another area of software engineering that makes significant use of

graph based tools. Traditional project planning use a precedence network to show the

dependencies between tasks. The alternative representation is PERT charts which show

dependencies between events. For any significant project these networks are very large.

Interacting with this network was traditionally done by looking at a large wall chart

produced by a plotter. A work breakdown structure (WBS) was used to describe the

hierarchy of tasks.

Structured planning (Sifer, 1988), (Wilson and Sifer, 1988), (Wilson and Sifer, 1990),

(Potter and Sifer, 1988) is the application of functional decomposition to project

planning. A project task with its inputs and output deliverables can be successively

decomposed. This results in a set of levelled work flow diagrams, which include the

WBS and a deliverable dictionary. A tool was created to allow the flexible browsing
and editing of a structured planning model. Like HVIEW this flexibility was achieved

Introduction and Review 1 0

by allowing a person to select the desired task level and deliverable level of abstraction

and then show the precedence network at this level. However, the structured planning

tool also allowed the direct editing of any abstract network. The limitations of this work

were: the editing operations were not formally defined, the implicit formalism was

expressed in terms of tasks and deliverables only, the hierarchies were limited to trees

and only top-down editing was supported. Further work on structured planning was

done by Cimitile and Visaggio (1994). They have extended structured planning by

providing a dynamic interpretation of structured planning networks using Petri nets and

evaluated its use.

There has been an evolution in analysis and design tools. A change from supporting

structured methods to object oriented tools mirrors the change in popular

methodologies. A list of earlier CASE tools is given in (Davis, 1990). For real time

analysis, two major tools in commercial use are: Software Through Pictures and

Teamworkc. These supported the construction of both DFD and ERD models. These
two tools have since been evolved into object oriented analysis tools, which still

support a DFD model (or functional model) as a part of the OOA model. However, the

browsing and editing capabilities of these models have not changed significantly. The

next work discussed does address this.

Teorey et al. (1989) introduced Entity Relationship clustering to aid user browsing of

large ERDs. Their motivation was:

When the scale of a database or information structure is large and includes a large number of

interconnections among its different components, it may be very difficult to understand the

semantics of such structure and to manage it, especially for the end users or managers.

They then justify their introduction of clustering with:

The clustering concept is . . . important because it provides a method to organise a conceptual

database schema into layers of abstraction, and it supports the different views of a variety of users.

Clustering is on the entities. This clustering may be recursive, effectively inducing an

abstract entity hierarchy on the underlying ERD. They define a number of heuristics for

clustering, including an abstraction grouping, which uses generalisation, aggregation,

classification and membership to form an entity cluster. Their clustering process has

been defmed in a bottom-up manner.

Chen and Chung (1991) argue that a major limitation of existing DFD tools is the

difficulty of restructuring such models. "Using basic editing operations to restructure

large systems with voluminous data-flow diagrams is tedious, laborious and error

prone". They define a set of restructuring operations and prove they are consistent.

Consistent means the operations do not change the underlying network of leaf

Introduction and Review 11

processes and data flows. The major limitation of this work is a lack of support for

composite data flows. Their formal treatment has processes, stores, terminators and

flows. This results in a more complex model than if they had abstracted to just nodes

and links for their core model. Also, like other formal treatments described in this

section the process hierarchy is limited to a tree.

Guindon (1992) discusses at length the requirements for the graphical interface of a

software design assistant. This is based on her previous empirical studies on the early

stages of software design (Guindon et al., 1987), (Guindon, 1990a), (Guindon,

1990b). She says:

The most influential fmding is that the early stages of design are opportunistic and do not follow a

top-down dynamic, and moreover, this is good design practice.

She states the behavioral characteristics of opportunistic design include:

(1) interleaving the development of partial solutions at various levels of abstraction and in different

subsystems,

(2) inference of new requirements and design constraints throughout the solution development.

often leading to drastic restructuring of the design solution, [My italics]

(3) extensive mental simulations of scenarios in the task domain triggering the discovery of new

requirements in widely different levels of abstraction and subsystems.

Having established the requirements, the key features of her visualization tool are

given:

(1) The display of any software modules at arbitrary levels of abstraction ...

(2) The simultaneous display of software modules from different subsystems,

(3) The unrestricted, smooth navigation between these displayed software modules ...

Her displays show nested code stubs, which may be a module down to a code block,

with their inputs and outputs, shown as horizontal line entering or leaving the blocks.

Blocks may also be nested in other blocks. Feature (1) is achieved by replacing a block

with its child blocks perhaps recursively; the layout is done automatically. Feature (2) is

simply achieved by displaying modules in separate windows and allowing multiple

windows to be displayed. Feature (3) is achieved by allowing all displayed objects to

be mousable; an object can be selected with the mouse, a user can expand it, go to an

inputting or outputting object, or edit it.

1.2.3 Structured analysis tools

In this subsection the scalability problem this thesis is addressing is introduced by

considering the use of a structured analysis tool on a large project. A short history of

structured analysis is then given, followed by a review of formal treatments of

Introduction and Review 1 2

structured analysis.

A major problem with structured analysis tools (such as Cadre, 1990) is that large

models containing a few hundred processes develop editing inertia, that is, editing

becomes increasingly difficult as the model grows in size. For sub-models containing

up to a hundred processes many structural variations can be tried. However, few

variations would be tried for the overall model structure because the manual effort to

revise all the affected data flow diagrams (DFDs) is too great. For example, in my

experience it can take three weeks of manual work to completely restructure a model

containing five hundred processes with thirteen levels, to one with seven levels, whilst

preserving all data flow dependencies.

In summary, as a model under consideration grows larger, restructuring operations on

the whole model become significantly more time consuming. This is because each

affected diagram has to be manually edited to maintain a balanced model; a model is
balanced when each DFD's external inputs and outputs matches the DFD's parent

process inputs and outputs. For example, adding a data flow could require a change to
the DFD in which the producer process appears, a change to the DFD in which the
consumer appears, and changes to all higher level DFDs in which the data flow is

present, to maintain a balanced model. But from the tool user's perspective the change
is the addition of a single data flow, which can be specified by nominating the producer

and consumer processes. The user is required to make a series of DFD changes to
maintain model balance where the number of such changes increases with the size of

the model. If the intention is to move a sub-model to a new position in the overall
model, rather than just adding a data flow, the situation is far worse. This need to

manually adjust all affected DFDs, thus results in a lack of scalable editing.

Structured analysis was introduced by the works of Ross and Brackett (1976), Ross

and Schoman (1977), Ross (1977). These early papers authored by Ross introduced

what would become the structured analysis and design technique, commonly known as

SADT. Though SADT does not use DFDs, its diagrams have the same levelled

structure, generated by performing a structured decomposition. In Ross's 1977 paper

titled Structured Analysis: A Language for Communicating Ideas, his aim seems more

general than just providing a technique and notation for software requirements

definition. He states:

... the language of structured analysis (SA), a new way of putting together old ideas, provides the

evolutionary natural language appropriate to the needs of the computer field.

He states further:

The only function of SA is to bind up, structure, and communicate units of thought expressed in

any other chosen language. Synthesis is composition, analysis is decomposition. SA is structured

Introduction and Review 1 3

decomposition, to enable structured synthesis to achieve a given end.

This implies that the lowest level boxes and edges on his diagrams are place markers

for other content. The approach of this thesis to treat the SA notation of DFDs in a

generic fashion is consistent with Ross's original ideas.

DeMarco (1979), Gane and Sarson (1979) and Yourdon and Constantine (1979),

described the methodology of structured analysis which was to be captured on paper by

the notation of data flow diagrams, a data flow dictionary and process specifications.

Structured analysis and its notation has been extended to support real time systems by

Ward (1986), Goma (1986), Hatley and Pirbai (1987), Hashimoto (1987), Peters

(1988) and Shoval (1988). Formal treatments of DFDs extended to support real time

include: (Richter and Maffeo, 1993) using Petri nets, and (Beek 1993) using timed

statecharts.

The next evolution of structured analysis was as part of object oriented analysis (OOA).

The object modelling (OMT) technique of Rumbaugh et al. (1991) had three

components: a object model, a dynamic model and a functional model. The function

model used a variation of data flow diagram notation. So structured analysis which

describes the functional decomposition of a system had been incorporated in OMT as

the functional model. A discussion of structured analysis and object oriented analysis

was given in the conference panel lead by Champeaux (1990). There is also work

which builds on both OMT and the logical relational design methodology (LRDM)

(Teorey 1986) to create a methodology which provides a closer integration of a entity

relationship models with a DFD model (Kuo 1994). Earlier work with a similar aim is

(Ward 1989), (Lee 1990), (Fuggetta et al., 1993).

Since the late eighties several formal treatments of structured analysis models have been

published. This work was partly motivated by a desire to improve the structured

analysis based CASE tools of the time. Adler (1988) provided an algebra which

describes process decomposition. It describes not only what the allowable data flow

diagram models are, but also the decomposition transformations, which are top-down.

The data flow hierarchy is not included. He also describes a set of quality measures for

good decomposition. Arndt and Guercio (1992) asserted that Adler's algebra does "not

correspond to the intuitive notion of good decomposition" and "leads to an inefficient

decomposition process". They provide an alternative which addresses these issues.

Tao and Kung (1991) in their paper "provide a formal basis for the DFD on which

consistency in process decomposition and completeness of a DFD specification can be

formally checked". Though they do not include the data flow hierarchy in their formal

treatment, they state "it is a straightforward extension to allow data flow decom

position" and indicate how this could be done. Olive (1983) used an "is-used-to-

Introduction and Review 14

produce" relation in his discussion of information derivability analysis for logical

information systems. Tao and Kung (1991) is an extension of both Adler's and Olive's

work.

Tse and Pong (1989) have produced a formal DFD model. Tse in his (1991) book, has

provided a formal models for Y ourdon structure charts, DeMarco data flow diagrams

and Jackson structure texts. He then identifies the categorical mappings between these

three systems. The aim of this work was to demonstrate the commonality of the three

methods, to specify refinement operations and to establish measures for the

structuredness of a model. Tse et al. (1994) have implemented a tool to transform

DFDs into structure charts using Prolog. Boloix et al. (1992) provided a formal

treatment of DFDs and structure charts, and established mappings between their formal

representations. Butler et al. (1995) has provided a formal model of DFDs which

includes a semantics based on a formal process algebra.

1.3 Levelled Data Flow Diagrams as the basis of a new formalism

In this subsection we try to draw out the generic aspects of levelled DFDs. This is done

by considering a levelled DFD as an abstraction of a single large DFD. We then

highlight the other application areas where a levelled DFD approach has been used.

This establishes the fact that a levelled DFD structure, when cast in terms of nodes and

links, can abstract large graphs. However, this is only a start. In addition to a visual

representation, a visual formalism must also have browsing and editing operations

defined for it.

A DFD model comprises a collection of DFD diagrams and a data dictionary. Each DFD

diagram also has a nominated parent process. So a DFD diagram includes two

relationships: a parent to child process relationship, and data flow connectivity between

sibling processes. In totality, a DFD model then consists of data flow to process/store

relationships, a process hierarchy and a data flow hierarchy, together with some flow

balancing constraints between levels.

The DFD modelling approach can be used to improve the scalability of browsing large

graphs. We have already discussed the difficulty of interacting with large networks. A

structured analysis model does not directly fit into this mould of a single network.

However, if all leaf processes (processes which are not further refined) are joined by

matching leaf data flows, a single network is formed. Each DFD is then a summary of a

portion of this underlying network; this improves browsing but can make modification

of the model less scalable. Again, this will be expanded upon in chapters two and three.

The levelled DFD model has a generic nature. In structured analysis a DFD model is

used to represent the function decomposition of a system using processes and data

Introduction and Review 1 5

flows. However, the interesting (for this thesis) aspect of a DFD model, is not the

interpretation of an individual DFD but the way a collection of DFDs form a model, and

the balancing rules this implies. This levelled collection of diagrams has similarities

with a compound graph. However, unlike nested graphs, a DFD model also has a link

hierarchy.

A sense of the generality of the topological aspects of a DFD model can be seen from

the range of other (not structured analysis) areas to which it has been applied. Other

areas include: visual programming (Kodosky 1991), formal specification (Randell

1990), (Fraser et al., 1991), (France 1993), (Liu 1993), and project planning (Wilson

and Sifer, 1990), (Cimitile and Visaggio, 1994).

1.4 Structured graphs

A major contribution of this thesis is the concept of a structured graph. A structured

graph is a generalisation of the DFD model, supplemented with scalable browsing and
editing operations. Nodes and links replace the processes and data flows of DFDs. The

key requirement for structured graphs to be applicable to a given graph based
application is that node and link abstraction hierarchies can be defmed on an underlying

graph of nodes and links.

A structured graph comprises two partially ordered sets of nodes and links, and

accompanying producer/consumer relationships. Canonical representations for

structured graphs are identified in this thesis, to support network abstraction and design
refinement. This provides the basis for formally defining viewing and editing
operations on such graphs.

A structured graph can be considered from two perspectives: firstly as the closure (with

respect to an operator which adds implied content) of a structured graph, and secondly

as the minimal information required to generate the former. An analogy with directed

acyclic graphs (DAG) representing partial orders would be: firstly the reflexive and

transitive closure of the graph, and secondly the graphs unique basis graph which is the

covering relation for a partial order.

In simple cases, from the first perspective a structured graph is a labelled bipartite graph

whose vertices are labelled leaf nodes and leaf links, supplemented with node and link

ordered sets whose leaf elements include those participating in the graph. Such a

bipartite graph is a richer structure than a hypergraph for apart from the labelling, the

connections between nodes are directed. In a hypergraph the representation of a

hyperedge is as a subset of the node set, which does not contain any arc direction
information.

Unlike bipartite graphs and hypergraphs, structured graphs are not just a visual data

Introduction and Review 1 6

representation structure, but are a full visual formalism as they include browsing and

editing operations.

1.5 Discussion

A common aim of related work has been to facilitate the modelling of large systems

with graphs or extensions of graphs, such as hypergraphs and bipartite graphs.

However, as several authors have pointed out, these are not adequate by themselves, as

a graph becomes very large its previous advantages in assisting human comprehension

are lost. A common approach to address this problem has been: allow a user to interact

with the graph based model at varying levels of abstraction without getting lost.

The proposed solutions to this problem in various contexts have been to decompose the

large graph in some way. One way has been by recursive nesting of graphs as in:

nested graphs, hypemodes, Higraphs, structured analysis, ERD clustering and

Guindon's design assistant. Another approach has been to add one or more hierarchies

to facilitate network abstraction as in: HVIEW, structured planning and IGD. This

work has focused on scalable browsing while Chen and Chungs' (1991) work,

described in section 1.2.2, focused on scalable editing.

The structured graph formalism follows both approaches. In our treatment we

generalise the hierarchies supported, from the tree structures used in most of the above,

to partially ordered sets. We also provide well defmed scalable editing operations both

locally within a structured graph, and as the flexible composition of structured graph

components, which can be applied to incomplete models in a top-down, bottom-up or

arbitrary fashion.

1.6 Thesis overview

This thesis is presented in two parts, and each part has three layers. The first part

covers basic structured graphs. The second part covers the extension of structured

graphs to support the flexible composition of structured graph components. Across

both parts, the top layer is the application of the formalism (to structured analysis), the

second layer is a generic presentation of the graphical notation and capabilities of the

formalism, and the bottom layer presents the actual mathematical definitions and

properties of the formalism. Proofs of the properties presented in part one, are given in

appendix B, while part two presents properties as unproved conjectures. A summary of

introduced terminology is given in appendix A. A text based implementation of part one

structured graphs, implemented in Gofer, a functional language, is given in appendix

C, and in C++ in appendix D.

In summary, the two major contributions for this thesis are: (i) creating the design for a

scalable structured analysis tool and (ii) creating structured graphs, a visual formalism

Introduction and Review 1 7

to assist the design of scalable graph based tools in general. The thesis provides a

rigorous treatment of structured graphs, of structured graph components and their

composition including definitions and properties. Proofs of properties and text based

implementations are in appendices.

There are two recommended ways to reading this thesis: firstly just in chapter order,

and secondly in layer order. This is shown in figure 1.2. Reading in layer order

(reading the part one before part two chapters though) would give a complete overview

of the capabilities of structured graphs first. This includes: the scalable browsing and

editing in a structured analysis setting, the extended structured analysis notation to

support data flow types, and a demonstration of further scalable editing by constructing

a model with components.

Part I Partll

Layer 1

Structured Analysis Chapter 2 Chapter 6
Example

Layer 2

Generic Chapter 3 Chapters 7,8
Fonnalism

Layer 3

Mathematical Chapters 4,5 Chapters 9,10
Definitions

Figure 1.2 Thesis organisation

Figure 1.3 is provided as an additional reading aid. It shows the dependencies between

chapters.

2 6

1 1
3 8 --If---- 7

1 1
------- 10 ---r---- 9

4

Figure 1.3 Chapter dependencies

Chapter 2

Viewing a Structured Analysis Model

In this chapter we will browse and edit a structured analysis model, thus demonstrating

aspects of a design for an improved structured analysis tool. Recall, in the introduction

two major contributions for this thesis were identified: (i) creating the design for a

scalable structured analysis tool and (ii) creating structured graphs, a visual formalism

to assist the design of scalable graph based tools in general. This chapter demonstrates

how a hypothetical tool for the former would be used.

To best demonstrate scalable browsing and editing of a structured analysis model we

would like to use a large example. Space does not allow this, so a small example is

used here. However, another example is presented in Appendix D. First the example

model is presented, then we will walk through a couple of updates to the model.

2.1 The model

Figure 2.1 shows a partial model which describes an aircraft landing simulator. Four

DFDs are given including a context diagram. The data dictionary is also included. The

process hierarchy is separated from the collection of levelled DFDs and shown

explicitly in figures 2.2 and 2.3 in two different ways. Figure 2.4 shows the data flow

hierarchy.

Note in figure 2.1 the jumbo_display flow appears in the context diagram while its

parent game_display appears in the trainer DFD. At first glance this seems

unbalanced, but jumbo_display is part of the session_display flow which is

also in the context diagram, ensuring the model is balanced.

Neither the process nor data flow hierarchies are trees. The process timer shown in

figure 2.2 has two parents: game and debrief. The data flow time_command

shown in figure 2.4 also has two parents. One of these parents instructor_

debrief_command does not appear as a flow in the DFDs.

When the process or data flow hierarchy is browsed by the user, it could be presented

using the layout of figure 2.3. Each process appears as a horizontal bar, with children

under their parents. The total space between children bars is a fixed proportion of the

parent's bar length, ensuring the proportions of this diagram are invariant under

zooming. As the process timer has two parents, it appears twice. It is also shaded to

indicate this repeated appearance in figure 2.3.

Viewing a Structured Analysis Model 1 9

Context

~'::~ ~~!)L_ r:::l ~ ~ 700~
~8rainer - . ~
session_display ~ay

Trainer

~B~ gArklf_ game :';ay debrief display

~- ~-
command command

Game

~ tower command 7
umbo

~ _,..,. jumbo
- Bower jumbo_radio 8

..__-_ .;...... ti~ ~ ~~isp- ~ ~ ·~ ~ ~G·mer 4. _ ~splay
environ ..,.-- time_
ment - commaoo - .. env_command

Debrief
tower_

replay_@ display tower ~ replay @·umbo
......._ .;...... ti~ replay ~

env ~ ~

~=:;@ ~a~ ;:= ~ env_ ..,.-- 0 ti display
~play me_

Data Flow Dictionary

instructor_comrnand
= instructor_game_comrnand
+ instructor_debrief_command

session_ display
= game_display
+ debrief_display

env_state = ...
jumbo_command

commaoo

instructor_game_command
= tower_command
+ env_commaoo
+ time_command

instructor_debrief_comrnaoo
= time_command
+ archive_commaoo

time = ...
tower_ visual
jumbo_radio

game_display
= jumbo_display
+ tower_display
+ env_display

debrief_display
= jumbo_replay_display
+ tower_replay_display
+ env_~play_display

tower_radio

~------ .. ------------~~~-----~~~-----------~~~~~~~~~~-

Figure 2.1 Aircraft landing simulator model

Viewing a Structured Analysis Model 20

context

/I~
instructor trainer student

/~
game debrief

tower~l.\me;;f ~=~
Figure 2.2 Aircraft landing simulator process hierarchy

1 Context 1
~~~~ LI _________________ T_~_in_er ________________ ~l 1~1 

L..,_l __ G_ame __ __.l .__I __ Deb_rte_f __ I 

BBG 
Figure 2.3 An alternative process hierarchy visual interface 

2.2 Browsing and editing the model 

Suppose the user wishes to connect the flow tower_ visual between tower and 

student. Traditionally this is done by selecting each DFD between tower and 

student, and adding the tower_ visual flow to the diagram. With our approach 

the user brings up the process view hierarchy and selects the processes tower and 

student. The selected processes in the hierarchy view are highlighted with a thick 

box border. The associated model view, the graph showing the selected processes and 

their flows, is automatically generated. This is shown in figure 2.5 where we can see 

there are no flows between the two processes. 

Now the user adds the flow tower_visual between the tower process and 

student terminator. The current model view is updated and is shown in figure 2.6. 



Viewing a Structured Analysis Model 21 

env_ 
state 

jumbo_ 
command 

instructor_ 
command 

time 
tower_ 
visual 

/ 
instructor_ 
game_ 
command 

instructor_ 
debrief_ 
command 

/ I ""' I \ 
tower_ 
command 

jumbo_ 
radio 

env_ 
command 

time_ 
command 

session_ 
display 

archive_ 
command 

tower_ 
radio 

/ "-.. 
game_ 
display 

/1\ 
tower_ jumbo_ env_ 
display display display 

debrief_ 
display 

tower_/ j~mb~ env_ 
replay_ replay_ replay_ 
display display display 

Figure 2.4 Aircraft landing simulator data flow hierarchy 

I Context I 
IN~rl ~~----------------T-~_Imw ________________ ~l ~~~ml 

I Gan. I I Oebr.t I 
BEJG •• EJc;Jc;;J 

:::- f Jumbo;;-
\ radio 

~8 command 
tower 

tower 

::V ti~ 

~~student I 
command 

/_._ 
display 

Figure 2.5 User interface before adding a flow 

The system has automatically updated all model views affected by this change. The 

resulting context, trainer and game model views appear in figure 2.7. Using 

conventional tools this would have taken three steps to add the flow and re-establish 

model balance, taking one step to change each DFD affected. With our approach it takes 

one step to add the flow. 



Viewing a Structured Analysis Model 22 

radio- jumbo_ 
radio 

tower ( ;/ 

~8 command 
tower 

~:~y / ~ 

' ~~:nA c::l 
~~ 

tower_ visual 

:J __ 

Context 

Trainer 

Game 

display 

~ time~ 

Figure 2.6 The new model view of tower and student 

Instructor 

instructor_ 
command 

jumbo_ 
command 

~---...J student 

~8r&JMr~} 
session_dlsplay ~ 

tower_vlsual 

command 

~command tower_radio ~/ 

~e~--~eumbo ~ 
tower_display . time 8 ~ 

time t1mer ~ . _ :;;;,;y-~ 
environ .------ time_ 
ment - command 

Figure 2. 7 The updated aircraft landing simulator model 

Consider the resulting model, if the user now added the tower_visual flow as an 

input to the instructor terminator, and made tower_visual a child of 

game_display. There would be no change to the context, trainer and game 



Viewing a Structured Analysis Model 23 

model views, as tower_visual is a component of game_display and 

session_display flows, which already appear in the process parent path between 

tower and instructor. This illustrates that flow interfaces between processes are 

shown at their most summarised level possible, making full use of the data flow 

dictionary. 

Now suppose the user wishes to remove the tower_display flow. The user selects 

the data flow hierarchy which is displayed as shown in the top of figure 2.8, then 

selects the tower_display data flow. The model view of tower_display, 

which includes its producer and consumer processes (the instructor terminator and 

tower process) is displayed as shown in the bottom of figure 2.8. The user then 

selects the tower_display flow in the model view and removes it. The updated 

model view is shown in figure 2.9. 

session_ display 

game_dlsplay 

tower_dlsplay 

Instructor 
trainer 

game 8 
tower_display·~-1---+--- tower 

Figure 2.8 The model view before removing the tower_display flow 

Instructor 
trainer 

game 

8 
Figure 2.9 The model view after removing the tower_display flow 



Context 

Instructor 

Trainer 

Game 

Viewing a Structured Analysis Model 24 

instructor_ 
command 

tower_radio 

jumbo_ 
command 

~--.J 

Figure 2.10 Updated model 

student 

The user has removed the tower_ visual flow with essentially one step, while the 

system ensured all other model views are kept consistent. If the user were to view the 

context, trainer, and game model views they would appear as shown in figure 

2.10. In the game model view tower_display itself has been removed. In the 

trainer model view game_display has been replaced by jumbo_display and 

env_display. In the context model view the session_display flow has 

been replaced by: debrief_display, jumbo_display and env_display, as 

this is the most summarised representation of session_display minus 



Viewing a Structured Analysis Model 2 5 

tower_display. Using conventional tools this change would have taken at least 
three steps to remove the flow and re-establish model balance, taking one step to 
change each DFD affected. With our approach it takes one step to remove the flow. 

Next let us look at a larger change to the model. We decide that Lhe timer process 
should not appear twice and should be moved under the trainer. Traditionally this 

would mean updating three diagrams. All flows to timer in the game and debrief 

DFDs must be changed to off-page flows; also, the timer process itself must be 

removed from these diagrams. Then the timer process must be added to the trainer 
DFD and time flows into the game and debrief processes must be added. This 
would be about eight user steps. 

With our approach the user selects a process view of timer and its connected 
processes: those processes which have flows between them and timer. The user 

selects to show only timer's flows. Again, the seven processes in the selected view 
are shown with a thick border box in figure 2.11. The associated model view is 
automatically generated and shown in figure 2.11. 

Context 

Trainer 

I ~---------G-am_e--------~~ ~~-------~--oo-·e_'------~ 
BBG r;;;;;::lr.;;--ljto;'l 

~~~ 

command

Figure 2.11 The user interface before moving timer

Context

Trainer

Game

Viewing a Structured Analysis Model 26

Debrief

r;:::-,~~
L:::..J~~

Figure 2.12 The process hierarchy after moving timer

To achieve the move the user clicks the timer process and selects the move menu,

then chooses trainer as the destination parent. Again, the system automatically

updates all model views affected by this change, keeping the model balanced. Also the

process hierarchy view is updated. The move has not affected the current model view

though; all connections between timer and environment, jumbo, tower and the

respective replay processes are unchanged. The process hierarchy has changed and is

shown in figure 2.12. The resulting trainer, game and debrief children model

views are as shown in figure 2.13.

This move has taken the user essentially one step. Even in this small model, this move

would have taken around eight steps with conventional tools to move the process and

re-establish model balance. If the model was more realistic and larger, many more steps

could be required for a similar move process operation. But with this system it would

still only be one user step.

Another property to note distinct from editing is the flexible browsing capability. Any

set of non-comparable processes can be selected as the current process view, and the

associated graph of flow between these processes can then be shown in one user step.

Viewing a Structured Analysis Model 2 7

Trainer

~~:V ,
~"' ~ ~e/=-

~a-411me=-
jumbo_ 0 command
command

Debrief tower_

~=;@ ~tower
replay

env_ ~

~:::v@ lime ~ env_ .---
replay

Figure 2.13 The model after moving timer

2.3 Discussion

In this chapter browsing and editing of a structured analysis model using a hypothetical

structured graph based tool has been demonstrated. The browsing was scalable as a

user is able to directly view the data flow diagram formed by a selection of arbitrary

processes. The user's effort is required, only to choose the processes of interest, using

the process hierarchy display. The editing was scalable as any DFD view generated

when browsing can then be directly edited, so the data flows can be directly added

between arbitrary processes. Further more, the entire model can be restructured by

editing the process hierarchy, to move a sub-model to a new location whilst keeping the

model balanced.

The major limitation is: a user only determines the process hierarchy, and the producer

and consumer processes of each data flow are; semi-automatic layout of model views is

required to position processes and data flows. In practice a user would indicate the

positions of most processes and some data flows in the traditional DFD views leaving

the system to generate layouts for other model views. There are other limitations, but

these will be given in the more general context of structured graphs which are presented

in the next chapter.

Chapter 3

Browsing and Editing Structured Graphs

Structured graphs were designed to generalise the scalable viewing approach described

in Chapter two. There, a structured analysis model was browsed and edited in a

scalable fashion with a hypothetical tool. The constraints which facilitated the scalable

operations, that the model is always balanced and interfaces are shown summarised,

were not dependant on the interpretation of the diagrams just on their structure. Model

structure was determined by the parent to child relationships between processes and

data flows, and the input and output relationships between processes and data flows

(stores were not considered). So it is the relationships between processes and other

processes, data flows and other data flows, and between processes and data flows that

is relevant here. A structured graph captures just these relationships.

Structured graphs are used to provide a visual representation of models within a

problem domain, be it software analysis, project planning or network management for
example. The use of structured graphs could extend these tools, so that a tool user is

given more representation choices in their modelling. Their modelling vocabulary and
their ability to flexibly compose this vocabulary could increase. For example, traditional

structured analysis models use process and data flow hierarchies which are trees,
structured graphs when applied back to structured analysis, would allow arbitrary

process and data flow hierarchies to be supported. Also, browsing and editing is with
respect to an arbitrary view rather than just sibling views (DFDs).

Recall the second contribution of this thesis, stated in section 1.6, was to present a

general formalism, structured graphs. Such a formalism should use terminology which

is not specific to a particular application. For example, the graph elements in structured

analysis are processes and data flows, whilst in project planning they are tasks and

deliverables. The more generic terms, nodes and links, are used for structured graph

elements. Further, in the following structured graph will sometimes be abbreviated to

model. A listing of definitions for these and other terms introduced in this thesis, is in

Appendix A, Glossary. An example, which presents a model as structured nodes and

links, and then as DFDs of processes and data flows, is in Appendix D.

Models can be built in a bottom-up or top-down manner. Sections 3.1 and 3.2 present

models from a bottom-up perspective. They present a model as an underlying network

of nodes and links, upon which node and link hierarchies have been built. A collection
of summary networks for browsing can then be automatically derived. Section 3.3
extends models to include incomplete models built top-down. In our formalism

Browsing and Editing Structured Graphs 2 9

complete models are a special case of these. Section 3.4 briefly presents editing.
Section 3.5 describes limitations of models, the need for context dependent links in

special cases and the inability of some links to ever appear in a model view. In

summary, we show structured graphs support both bottom up abstraction and top

down refinement.

3.1 Network Abstraction
The starting point for a model is a network of nodes and links. For an application,

nodes and links are usually distinguished by unique labels. Each node may have several

input links and several output links, while each link may have several producer nodes

and several consumer nodes. This is more general than say Data Flow Diagram (DFD)

graphs, where a data flow is restricted to a single producer, but having this symmetry

between nodes and links allows a more general model to be described, while allowing a

simpler formal description. An example network is shown in figure 3.1.

Figure 3.1 A network of nodes and links

When a network of nodes and links becomes large it is difficult to browse and edit.
Clearly some kind of abstraction is needed. One technique is to partition the network

into blocks, where each block is a small network, then to treat each block as an abstract

node. Note as the network is symmetrical, the partitioning into blocks could have been

done on nodes or links, but partitioning on nodes matches the conventions of typical

applications. Usually this partitioning into blocks will need to be applied recursively to

the abstract nodes (blocks).

When the abstract nodes are ordered by set inclusion (of nodes), they form a tree. An

example of this is shown in figure 3.2. The whole network is represented by Z, and

this has been partitioned into two blocks, X and Y. In figure 3.2 the partitioning is

firstly shown as a division of the network, then secondly as an order, where blocks are

ordered by set inclusion of the underlying nodes. A nested partition when so ordered

will always be a tree.

Browsing and Editing Structured Graphs 30

z
X I y

s~
~ I U

Ad/_'-~-

~\'' v~-w
T~

~ Node Order

z~
X/ y

/I"" /1~
A S T U V W

Figure 3.2 A partitioned network

Sometimes more than one partitioning may be appropriate, so the final node hierarchy
which is the superposition of these trees is not a tree, but an ordered set. Figure 3.3

shows this. The network is represented by two alternative partitionings, Z and Q. The
Q partition comprises the blocks M and N. In general an arbitrary number of alternative
partitions can be used, with each partition giving rise to a tree.

z
X I y

I

s~

--,----J ___ :_ ~-- M

~\ h w
N

I V

T~

a

.U, Node Order

Figure 3.3 A multiply partitioned network

We have seen how partitioning the network into blocks results in networks which

contain a comprehensible number of abstract nodes, but the situation for links has got
worse. As blocks get bigger, the number of links between blocks increases. This is

Browsing and Editing Structured Graphs 31

alleviated by replacing groups of links by summary or abstract links. When this is done

recursively the result is a link order. This is shown in figure 3.4.

z
X I y

I

s~
I U

R~ w
I V

T~

~ model view of {X, Y}

[~ J
x::::- s1 -v
~

(i)

a
/ ' introduce

b c
/ \ I ' link order

g d I

z
X I y

I
s g

I
I u
I

d R I w I
I c V

I I

T I

~ model view of {X, Y}

[x- !! -v J (ii) I
I
I

Figure 3.4 A partitioned network with summarised interfaces

Once a link order is established as in figure 3.4 there is a choice of interface, though all

choices will have the same underlying links. In 3.4 the choices are {a}, { b,c},

{ b,f}, { g,c} and { g,d,f}. The choice used {a}, was the most summarised interface.

The most summarised (maximum) interface is used because this can be completely

Browsing and Editing Structured Graphs 32

derived from the underlying links and the link order. No additional user input is

required. This minimises the number of input and output links appearing in a model

view when the link order is a tree or tree like.

Future work could allow additional information to be added so that specific model

views have non-maximal interfaces, but this could impact on the scalability of editing

operations. This thesis does not address the generation of a model view's graph layout.

It is assumed to be automatic by default, with a user having the option to modify a

layout. However, allowing layout modification would add layout information for

specific views to models, and this could also impact on the scalability of editing

operations. There is a substantial body of research on automatic graph layout (Di

Battista et. al, 1994) and this should be considered in any future full graphical

implementation of this work.

We have started with a network of nodes and links, and after partitioning the network

and summarising interfaces, node and link orders have been generated. With this

approach, it is the underlying network which captures all dependency information

between nodes and links. Abstract nodes and links are just summaries of the underlying

nodes and links, and networks of abstract nodes and links are just summaries of the

underlying network itself. It is this perception of models which results in all models

having convexity of producer nodes: that is, if a node and its ancestor node produce a

link, then any nodes between these also produce the link, and the same applies to

consumers.

Traditional CASE tools, for example structured analysis tools, support a different

perspective of a model. They represent a model as a collection of DFDs which are

networks of nodes (processes) with summarised link (data flow) interfaces. Each

process appears in only one DFD with its siblings (the other children of the process's

parent). Because such tools directly implement the original paper based system, no

networks of nodes from different diagrams are available for display to a user.

However, using our perspective of an underlying network there is no reason to restrict

the abstract networks which a user can see to just abstract networks containing sibling

nodes. Networks can be generated from the underlying network, and node and link

orders. Such networks are shown in figures 3.5 and 3.6. These figures also show how

a user selects model views, by first selecting the domain (the submodel of interest),

then selecting the nodes and links of interest.

If the model is very large the user first selects the submodel to be viewed, the domain.

All nodes in the selected domain are shown shaded. In the example shown in figure 3.5

the whole model is chosen. Next a cross-section of nodes is chosen; this would be

done while the user is looking at the node order, keeping in mind each node in this

cross-section represents some portion of the underlying network. Nodes X,U,V and W

Browsing and Editing Structured Graphs 33

are selected. Finally the user may restrict which links appear in the resultant view. All

links are selected in the example. Note while the node selection is flat (that is all nodes

are non-comparable), the link selection must be down complete (that is, for each link

included, its descendants are included as well). An example where the user does restrict

the domain and links is shown in figure 3.6.

(i) select a domain ... Z

••••••
(ii) select a node view

••••••
(ill) select links ... all

••
•••• n model view

i
__ ____ -···--···· --

\
'----~--------------------~--------------- ----------·-·-·------~------

Figure 3.5 Selection of a model view (I)

I
I

I
__ ______)

Browsing and Editing Structured Graphs 34

(i) select a domain ... Y

I z

I X I
00[2]

(iii) select a node view

(ii) select links ... c,e,h

z

I a ~--
1 b I

W0••
~ model view

Figure 3.6 Selection of a model view (IT)

A model is an underlying network of nodes and links with a node and link order. This

is different to the user perspective of a model. Their perception comes from how they

interact with the model. They are able to browse a model by looking at model views.

So for a user a model could be the collection of all model views. Figure 3.7 shows

such a model. Each node is shown with its summarised interface and links. A desired

property for models is that node interfaces should be context free as this will provide

the least surprise to a user. This has been achieved by our network layout style, which

Browsing and Editing Structured Graphs 35

allows the merging and splitting of links, combined with net interfaces. This will be

explained in more detail in the next section. Given that the local interface of each

abstract node is context free, a model view can be constructed by collecting nodes with

their local interfaces, then joining an output link to an input link when they have some

common underlying links. In this way figure 3. 7 shows enough information to

construct all model views, and because these local interfaces are already summarised

the link order is not further required.

Figure 3.7 The local interfaces of a model

3.2 Browsing Models
This section will look at model browsing in more detail. A major challenge in

generalising the model browsing in Sifer and Potter (1995) was determining the

interface between two abstract nodes which overlap. Consider figure 3.8 which shows

examples of this. Firstly (from left to right), it shows a node order above an underlying

network, then it shows the underlying network partitioned into P and Q, and rightmost

it shows the model view of {P,Q}. The rule used in the figure is: an abstract node

produces a link as a net output when the link is produced within the portion of the

underlying network that the abstract node represents, and the link is consumed by a

node in the underlying network which is outside the network represented by the

abstract node.

Figure 3.8 (i) shows a straightforward example where the node order is a tree. Link a is

produced in P by node V and consumed outside P by X so it appears as an output of P.

Also, link a is consumed in Q by node X and produced outside Q by V so it appears as

an input of Q. In case (ii) a link appears between P and Q for similar reasons except the

underlying nodes involved are V and Y. Case (iii) is different however, abstract node P

produces link a but Q has no input in the model view of { P, Q}. Here, link a is a net

output of P but not a net input of Q because, though link a is consumed within Q it is

not produced outside Q. In case (iv) the model view of { P,Q} contains no links, as the

link a is internal to both abstract nodes P and Q.

Browsing and Editing Structured Graphs 36

(i)
p a ~ I\ I\

u V X y p

~ ~ ~ a

~
P-a

~ y

(ii)
p a ~ I\ I\

V X y p

~ ~ ~ a

I v- 'x~v I

P-a

~
(iii)

p a ~ I\ I\
V X y

~ a I

CSJ
~ ~ p~

e y

(iv)
p a ~ 1\V!\

y

u V X y

~
~

~ ~ p a

e y

Figure 3.8 A comparison of rules for generating a net interface

Another consequence of our definition of the underlying network is, there can not be

two links with the same name but which have different producer and consumer sets.

Once a link's producers and consumers are identified, we say that all producers connect

via the link to all consumers in the underlying network, and given the definition of net

interfaces for abstract nodes this will apply to abstract producers and consumers too.

(i)

(ii)

(iii)

(iv)

Browsing and Editing Structured Graphs 3 7

Link Order a

I \
b c

/I"-/'\.
d • g

Leaf Link View

b x-v

~y
X ~.,

z

User View

Figure 3.9 Networks with branching and splitting links

The network layout style used in this thesis was used in previous structured planning

work (Wilson and Sifer, 1990). Figure 3.9 shows some examples of network layout.

The left hand side of 3.9 shows underlying networks and the right-hand side shows the

same network with summarised interfaces. Each node's inputs and outputs are

summarised separately, so in (ii) the output of node X is summarised to b, while inputs

to Y and Z are left unchanged as they cannot be summarised. The diagram should be

read as: X produces link b, the d portion of b is consumed by Y, and thee and/portion

of b is consumed by Z. In cases (iii) and (iv) all interfaces have been summarised. Case

(iv) also shows an example with multiple producers. Again, each nodes inputs and

outputs have been summarised separately then joined up when the leaf links they

represent intersect. It is the combination of, this network layout style and net interfaces,

which achieves the aim of a context independent node interface under model viewing.

In this style of figure we sometimes show connections between producers and

consumers but need not do so.

Browsing and Editing Structured Graphs 38

3.3 Incomplete Models

In a complete model all links have leaf producer and consumer nodes. A model which

is not complete is incomplete. Incomplete models must be supported to allow flexible

user editing, so final producers and consumers of a link can be left undefined. This

allows a link's producers or consumers to be defined first. But, at all intermediate steps

the model needs to be viewable, so any model viewing system must support browsing

and editing of incomplete models. The formal description in the next sections will deal

with incomplete models rather than complete models.

(i) a (ii) a (iii) a
P-a p---...Q p---...Q

I\ I\ I \ I \ \ I
u V X y V X y X

~possible completions

(i') a (ii') a (iii') a
P- --.a p---...Q p---...Q

I\ I\ I \ I \ I \ I \
u~ v X ~y V~ X ~y V~ X ~y

Figure 3.10 Three incomplete models which contain undistributed flows

A model may be incomplete in two ways. Firstly, some leaf flows may have producers

and consumers but no leaf producers or consumers. These are called undistributed

flows. Our interpretation of this model is, that the flow's producers and consumers will

later continue to be made more specific, until all lowest producers and consumers are

leaf nodes. But until this is done, the producer and consumer relationship between

nodes and links is not fully captured by the underlying network.

Examples of incomplete models with undistributed flows are show in figure 3.10 with

some possible completions. In (i) link a has sources (lowest producers and consumers)

P and Q which are not leaf nodes. This is read as, it is not known at the moment which

nodes below P and Q will produce and consume link a. A possible completion for this

incomplete model is shown in (i'). Case (ii) is similar except P and Q overlap. In case

(iii) the node order itself must be extended to get a completion. Making node X the

producer and consumer would not work for two reasons. Firstly, it would introduce a

cycle into the underlying network as X would output and input the same flow.

Secondly, even if a cycle was allowed, letting X produce and consume link a would

leave P with no net output and Q with no net input so this change would not preserve

the existing views and hence not be a completion.

Browsing and Editing Structured Graphs 39

(i) T (ii) T (iii) T (iv) T

I \ I \ I \ I \
P....!..c> a P....!..c> a P....!..c> a!..c>P....!..c> a

u~
I.\ I.\

u-v u-v

Z....!..c>

~possible completions

(i') T (ii') T (iii') T (iv') T

I \ I \ I \ I.\
P~a P~a P~a P~a

I \ I \ I \
u...!.. u.--!.--v u_..!....v X_.!...... V

ZJ...

Figure 3.11 Four incomplete models which contain half flows

The second reason a model may be incomplete is: a link may have missing producers or

consumers (half flows). Half flows make a model incomplete as the underlying

network cannot capture what the flow's highest producers or consumers should be.

Examples of models with half flows and possible model completions are shown in

figure 3.11. Half flows are visually distinguished from full flows by having an empty

arrow head, so their presence highlights a model's incomplete state. A non-leaf flow is

shown as a half flow when it summarises at least one leaf half flow. In (i) and (ii) link a

has only producers, but in (iii) link a has a full flow from node U to V and a half flow

fromP.

The property required of all half flows, as shown in (i)-(iv), is that there is no gap in

the flow path. That is, a half flow's producer or consumer node set is convex.

Completions for (i) to (iii) are straight forward but note in (iv) that the node order

needed to be extended. This avoids having a cycle in the underlying network, the same

problem encountered in figure 3.10 (iv). Also in (iv'), the view {P,Q} contains a link a

from Q to P, as X in Q produces link a and V outside Q consumes link a. This is a

reminder that for every flow, 3.11 producers connect to all consumers.

Recapping: an incomplete model is a model that cannot be fully described by an

underlying network with node and link orders. The incomplete model will be described

by: a network of nodes (underlying or abstract) and leaf links, the highest producers

and consumers of half flows, and node and link orders.

Browsing and Editing Structured Graphs 40

3.4 Editing Models

This section will demonstrate some model editing: adding a flow and removing a flow.

These operations must preserve the constraints which define a model. These are: node

interfaces are to be context free, the maximum amount of abstraction is used, and all

interfaces are to be net interfaces. Some examples of editing are shown in figure 3.12.

(i) T T

I \ add[~ Y] I.\
p Q ~ P-a

I \ I \ I \ I \
u..--!-v X y u..--!-v X .A.y

(ii) T T

I.\ add [X..!.] I.\
P-a ~ P~Q

I \ I \ I \ I \
u..--!-v X .A.y u..--!-v x.....!-.v

(iii) T T

I I
p add [P ..!.] P..!.c>

I ~ I
R R..!.c>

I\ I\
x..--!-v x..--!-v

(iv) T T

I.\ move p under a I
P-a ~ Q

I \ I \ I\~
u..--!-v X .A.y p~y

I \
a

u~v

(v) a

I \
b c b c

I \ remove a I \
d 8

~
d 8

i
I a P~Q I P-a
L_ __

Figure 3.12 Examples of model editing

In (i) link a gains an additional consumer node Y, so P becomes a net producer of link a

and Q a net consumer of link a. Case (ii) extends (i) by making node X a producer of

link a, so Q becomes a net producer of link a and P a net consumer of link a. Now both

Browsing and Editing Structured Graphs 41

P and Q output and input link a, but these are only apparent cycles, which indicate that

link a must have multiple producers and consumers, with at least one producer and

consumer in P and Q. Case (iii) shows P becomes a producer of link a, keeping the

producer set convex, R also becomes a producer. In (iv) node Pis moved under Q,

note this has only changed the node order, there is no change to the underlying

network. In (v) abstract link a is removed from the link order, so the summarised

interface between P and Q becomes links b and c.

3.5 Model Limitations

It is a claim of this thesis, that structured graphs have scalable browsing and editing

operations. In this section the model properties (or constraints) which ensure that

browsing is scalable are given. Three limitations of structured graphs are then given: a

lack of explicit external flows in some situations, the occurrence of apparent half flows

in some model views, and the inability of some links to appear in any model view.

These limitations can be partially resolved but at the cost of decreasing scalability.

Three properties allow model browsing to be scalable. Firstly, a node in a user's view

always has the same set of link inputs and outputs independent of the other nodes

which appear in the view. We call this the context free property for node interfaces. It

allows a user to associate a fixed node interface with each node. The second property

ensures each node's input and output links are shown at their maximum level of

abstraction. The third property is the critical one: it defmes the content of non-leaf node

interfaces. A non-leaf node is an abstraction of its collection of descendant leaf nodes.

A non-leaf node produces a given link when one of its descendant nodes produces the

link and an outside leaf node consumes the link. A non-leaf node consumes a given link

when one of its descendant nodes consumes the link and an outside leaf node produces

the link. Such non-leaf nodes have a net interface. Note the symmetry between

producers and consumers. These three properties guide how a user perceives a model

via browsing and editing.

Scalability of model browsing and editing for a user is a result of the maximum net

interfaces constraint (the combination of properties two and three). However, given this

constraint there are three intrinsic limitations of models. Two of these limitations

became apparent only with the generalisation of the node and link hierarchies to ordered

sets from trees, so they did not appear in our earlier structured planning models.

The first limitation is a lack of explicit external flows in some situations. This limitation

is due to the context free property of maximum net interfaces. When a partial model

view is selected, it does not abstract the whole underlying network so there are leaf

nodes outside the view. Figure 3.13 (i) shows a model view containing nodes X and Y

with node Q being outside this view. Whether a node produces a link which is only

Browsing and Editing Structured Graphs 42

consumed locally (by a node also in the model view), or by a local node and an external

node there is no diagrammatic difference. In figure 3.13 (ii) an external consumer, node

Q, is introduced but there is no change to the net interface model view of nodes X and

Y. The key problem is: existing structured analysis tools do highlight the existence of a

external consumer with a flow which has no consumer node as is shown in (iii). We

would like model views to show these external links without violating the context free

node interface property.

(i)

T

I.\
P-a

I \
x_.!....y

(ii) (iii) (iv)

Figure 3.13 Models with and without external flows

To ensure node interfaces remain context free, external flows are shown as a flow to a

hidden environment node. The environment node represents all the nodes outside the

current view. For example, in figure 3.13 (iv) link a has a local consumer Y, and an

external consumer indicated by the second arrow which has no local consumer node.

The rules for adding an explicit external flow are:

(i) Link a appears as an external input to the environment when: it is produced locally

(in the current model view) and is consumed by an external node (which is non

comparable to all nodes in the model view).

(ii) Link a appears as an external output from the environment when: it is consumed

locally (in the current model view) and is produced by an external node (which is non

comparable to all nodes in the model view).

With these rules, external flows are added whilst context free node interfaces are

retained, though the additional external flows are model view dependent. The formal

description in Chapter four covers only the context free portion of the model, and does

not discuss external flows.

The second limitation: the occurrence of apparent half flows in some model views, is

due to the generalisation of models to include node ordered sets. When the node order

is not a tree, a situation can arise where a model is complete, so all links have producer

Browsing and Editing Structured Graphs 43

and consumer nodes, but in some model views there are still half flows. An example of

this is shown in figure 3.14. This is a consequence of the overall requirement for node

input and output interfaces to be context independent, that is for a node's interface to be

the same regardless of what model view it is in.

P a
I\ I\

V X~Y

.lJ, Select view {P,Q}

P....._ a

Figure 3.14 A model which contains apparent half flows

The problem is: when the user looks at the model view {P,Q} it appears in figure 3.14

that P produces link a and Q does nothing. Though there is a consumer of link a within

Q there is no leaf producer of link a outside Q, so Q contains a consumer of link a (is a

gross consumer of a) but not a net consumer. If the model view is only { Q} then it is

natural for no input of link a to be shown, but for the model view of { P, Q} we would

like to see link a input into Q. Clearly doing this would violate the property of node

interfaces being context free.

This limitation can be contained by the introduction of virtual half flows. A virtual half

flow converts the apparent half flow to a full flow. To distinguish them, virtual flows

are shown with a dotted line, as in figure 3.15.

In general a virtual flow for link a is added to a node Q when:

(i) Q appears in a model view where link a is a net output of P, which is also in the

model view and Q is a gross but not net consumer of link a.

(ii) Q appears in a model view where link a is a net input of P, which is also in the

model view and Q is a gross but not net producer of link a.

In situation (i) a virtual consumer is added, in situation (ii) a virtual producer is added.

Again, these virtual flows are context dependent, and the formal model in Chapter four,

which describes only context free interfaces, will not include virtual flows.

Browsing and Editing Structured Graphs 44

[~1 P-=----~---··• 0 _I j
Figure 3.15 A model which contains a virtual flow

The third limitation: the inability of some links to appear in any model view, is due to

the generalisation of models to include link ordered sets. When models are restricted to

link trees, it is possible for every link to appear as a flow in some model view.

However, when the link order is not a tree the situation can arise where, given a link

order there are some links that could never appear in any model view of any model. An

example of this is shown in figure 3.16. In case (i) the abstract link a is added, so link

b no longer appears in the model view { P, Q}. The limitation is: regardless of changes

to the underlying network, link b can never appear in a model view as link a is the

maximum summary of link b. In case (ii) the interface between P and Q in the model

view { P, Q } is links { a, c}. The limitation is that, regardless of changes to the

underlying network, link a can never appear in a model view by itself, it will always

appear with link c, as links { a,c} is the maximum summary of links { eJ,g}.

(i) (ii)
P .,. a] p___.!!...-a - .

.tJ, Add a .tJ, Add a,b,c,d

a
a / '

b c d

b I AAI
• g

.tJ, view {P,Q} .tJ, view {P,Q}

I
p__.!.-Q

I

! P~Q
I

Figure 3.16 Two models which contain unviewable links

This third limitation is a consequence of node input and output interfaces in model

views being maximum interfaces. Given an arbitrary link order, there may be some

links which can not be part of any maximum link view or cannot appear alone. This

limitation can only be overcome with the introduction of a model which allows non

maximum interfaces.

Browsing and Editing Structured Graphs 45

3.6 Summary

This chapter has described with examples what complete and incomplete models are,

and demonstrated model browsing and editing. The aim was to establish models as a

structure which abstracts an underlying network, via node and link orders. This was

further extended to allow incomplete models. Also, the intricacies caused by allowing

non-tree node and link orders, and by allowing incomplete models have been covered.

The following two chapters will provide the formal treatment of structured graphs.

Chapter 4

Ordered Sets : Background

This chapter introduces definitions and notation for ordered sets, required by the next

chapter where structured graphs are formally defined. We have used the books by

Davey and Priestley (1990) and Carre (1979) as our references.

4.1 Standard Terminology

Definition 4.1 An ordered set (also referred to as partially ordered set) is a set P

equipped with a binary relation :Son P such that, for all x,y,z e P:

• x :Sx (reflexive)

• X $; y and y $; X imply X = y (anti-symmetric)

• X $; y and y $; Z imply X $; Z (transitive) 0

Definition 4.2 A order relation :S on P gives rise to relations, < of strict inequality

and 11 of non-comparability such that, for all x,y e P:

• x < y if and only if x :S y and x :t:- y

• x 11 y if and only if x 1;, y and y 1;, x 0

Definition 4.3 Let (P,:S) be an ordered set and let x,y e P. Then x -< y, read as x is

covered by y is given by:

x -< y iff x < y and x :S z < y implies z = x for all z e P 0

Finite orders can be diagrammatically represented as covering relations. These are

called Hasse diagrams. If x is covered by y then x is placed below y in the diagram,

and x and y are joined by a line. The node and link orders shown in figures 2.2 and 2.3

are Hasse diagrams. Once we are working with the covering relation we can use the

terms parent and child so that, x is covered by y can be restated as x is a child of y. For

finite ordered sets the reflexive transitive closure of the covering relation gives back the

original ordering relation.

Definition 4.4 Let P be an ordered set and let e e P and S ~ P. Expressions le, i.e,

ie, +e are respectively the down set of e, the strict down set of e, the up set of e and

Ordered Sets : Background 4 7

the strict up set of e.

• le = {x:PixSe}

• ± e = {x:Pix<e}

• i e = {x:PieSx}

• te = {x:Pie<x}

Expressions ls, ±s, iS, and tS are the set versions obtained by distributed union of the

pointwise operators over S. D

The strict down set of e can be read as all descendants of e, while the strict upset of e

can be read as all ancestors of e.

Maximals are those elements at the top of an order, while minimals are those at the

bottom of an order. Note that maximals and minimals may contain more than one

element. Often we are interested in the local maximals and minimals of a subset of an

ordered set.

Definition 4.5 Let P be an ordered set and letS ~ P. Then maximals, minimals,

upper bounds (SU), lower bounds (S1), upper-lower bounds (.YJ1) and span are subsets

of S which satisfy:

• maximalsS = {m:S ltmnS=0}

• minimals S = { m : S I ± m n S = 0 }

• SU = { m : P I ('Vs e S) s S m }

• S1 = { m : p I ('Vs E S) s '?. m }

• spanS = minimals ls D

The span of a subset S is the set of minimal elements in P below S.

Because we use the functions maxima is and minimals frequently, we adopt a more

compact notation:

• S = maximals S

• S. = minimals S

Ordered Sets : Background 4 8

Definition 4.6 Let P be an ordered set and S!;; P. The predicates chain, flat, leaf,

siblings and convex are given by:

• chain S = 'V x,y : S • x ::;; y or x ~ y

• flat S = T;j X ,y : S • X ~y ~ X 11 y

• leaf S = S ~ E.

• siblings S = 3 p : P • 'V x : S • x -<. p

• convex S ='V x,y: S, z: P • x < z < y ~ z e S D

A chain is a linear suborder. A subset of Pis flat when it is an anti-chain (all elements

are non-comparable). A subset is leaf when all subset elements are minimals of P. A

subset satisfies the siblings predicate when they have a common parent element. A

subset is convex when there are no order 'gaps' in the subset.

Definition 4.7 Let P be an ordered set and S ~ P. The convex closure of Sin Pis

given by:

lS = is n LS D

The convex closure of a set, adds all elements between the highest and lowest elements,

to the set.

Some of the functions defined above are closure operators. In fact, they form

complementary pairs of the form: compact (C) and abstract (A), giving different

representations of the same ordered set. The compact operator reduces the size of the

set, while the abstract operator increases the size. They are complementary in that, C

reverses the effect of A, and vice versa. The complementary operators are:

(i) A = i
C = (minimals)

(ii) A = l
C = - (rnaximals)

(iii) A = l

C = : (rninimals union maxirnals)

Case (i) holds for ordered sets with no infinite descending chain, (ii) hold for ordered

sets with no infinite ascending chain, and (iii) hold for ordered sets with no infinite

Ordered Sets : Background 4 9

chain. These properties provide the underpinning, for the definitions used in the next

chapter.

4.2 View Orders

Now views can be formally introduced. The terminology of this subsection is not

standard.

Definition 4.8 Let P be an ordered set and V c P. Subset V is a view of P when the

predicate flat V is true. Let V, W be views of P. The view order Sv on views of P is

given by:

V Sv W if and only if lv c lw D

Furthermore, views and downsets are equivalent, as each view is the set of maximals

of some downset. So views can be reasoned about using either representation. The set

of all views (equivalently downsets) forms a complete lattice. A view V of P is

complete when span V equals span P. Several orders with their complete view orders

are shown in figure 4.1.

a

b

{a}

I
{b}

(i)

a b

lXI
c d

{a,b}

I " {a} {b}

'\ /
{c,d}

(ii)

a
I \

b c

1\ 1\
d e f g

{a}

I
{b,c}

/ "' {b,f,g} {c,d,e}

"' /
{d,e,f,g}

(iii)

Figure 4.1: Three orders with their view orders

Orders (i) and (iii) have the maximum view {a}, while order (ii) has the maximum view

{ a,b} which contains two elements.

Theorem 4.1 Let P be a finite ordered set. Let V be the set of all views on P. The

function span is a lattice homomorphism from V to V. It partitions the set of all views

Ordered Sets : Background 50

into equivalence classes (views having the same span), where each equivalence class

has a maximum element (view). 0

Proof. Appendix B Section B.l.

Definition 4.9 Denote the function from views on P to the maximum element of their

equivalence class as maxv. 0

The function span factors the ordering on views into the ordering between views with

the same span, and the ordering between the span equivalence classes. Now given any

finite poset P, the map from each span of P to maximum spanning views can be

constructed as follows:

Proposition 4.1 Let P be an ordered set and S ~ P. The maximum view over S is

called maxv S, and given by:

maxv S = { x : fS I span x c;; span S } 0

In the next chapter some limitations in taking views of a model are discussed. The

following definitions are required to support this discussion.

Definition 4.10 Let P be an ordered set then Pis an inclusion order if and only if it

satisfies:

= span x !;;;;;; span y for all x,y e P. 0

So an inclusion order can be represented as a family of sets ordered by set inclusion.

Note that:

X$; y :: lx C !y

holds in an arbitrary ordered set. In this case the complete down sets are required for

the order isomorphism to work, whereas for an inclusion order the minimal views are

sufficient to characterise the order.

Ordered Sets : Background 51

a a a
I \ / \. I \

b c b c b c

/\ /\1\ /lXI\
d e d e f d e f g

(i) (ii) (iii)

Figure 4.2: Three inclusion orders

Example inclusion orders are shown in figure 4.2. Order (i) and (ii) are semi-lattices

while (iii) is not, as e andfhave no least upper bound.

A chain is not an inclusion order, as all elements in a chain have the same span. In

general, an order will be a non-inclusion order when: two elements have the same span,

or there are two non-comparable elements whose leaf views are ordered. Some non

inclusion orders are shown in Figure 4.3.

a a a
I \ / '\ b/c~d b c b c

/\ \ lXI IX XI
d e f d e e f g

(i) (ii) (iii)

Figure 4.3: Three non-inclusion orders

Orders (i) and (ii) are non-inclusion orders because, in (i) both c and /have the same

span: {f}, and in (ii) a, band call have the same span: {d,e}. Order (iii) is a non

inclusion order because a and c are non-comparable and span c is a subset of span a.

The maximum view over span { e,f,g} in order (iii) is { a,c}, not {a}. Lets look at the

relationship between maximum views and inclusion orders.

Proposition 4.2 Let P be an ordered set. Every singleton set of P is a maximum

spanning view if and only if P is an inclusion order. 0

Definition 4.11 Let P be an ordered set, P is a semi-inclusion order if and only if

every element of P appears in a maximum view. 0

The following proposition provides a constructive definition of semi-inclusion orders.

Proposition 4.3 Let P be an ordered set. Then Pis an semi-inclusion order if and

Ordered Sets: Background 52

only if it satisfies:

spanx=spany ~ x=y forallx,ye P. 0

In 2 semi-inclusion order every element has a unique span, but some elements; whose

span is comparable, may not be comparable in the order. Semi-inclusion orders are a

weaker form of inclusion order, so inclusion orders are semi-inclusion orders but some

non-inclusion orders are semi-inclusion orders. Semi-inclusion orders do not contain

chains or chain like structures. An example was shown in figure 4.3 (iii), where every

element has a unique span but element a which has a span greater than element c' s

span, does not cover c. Orders (i) and (ii) are not semi-inclusion orders because of the

chain or chain like structure they contain.

Proposition 4.2 indicates when each element in an order can appear by itself in a

maximum view. While defmition 4.11 indicates just when each element can appear in a

maximum view, possibly never by itself. This classification of orders will be important

when we use leaf views as a representation for maximum views in the next chapter.

Chapter 5

Structured Graph Formalism

Formal representations for models are important. In Chapter two, browsing and editing

a structured analysis model was demonstrated. A user was able to see the node order,

the link order and select any arbitrary cross-section of a model as a graph, then directly

edit it. From a user perspective, the model comprises the node and link orders and all

possible cross-section networks of the model. Clearly trying to define editing

operations on this highly redundant structure would be complex. A representation of

this structure which contains no redundant information is needed to make the definition

of editing operations straightforward and allow a better understanding of how viewing

works; such a canonical representation assists visual formalisms to be simple and

understandable.

This chapter presents the definition of a structured graph and two important

representations. The representation which contains no redundant information is the

compact model, and the representation which contains all derivable information is the

abstract model. A tool user views cross-sections of abstract models, model views,

which represent summary networks. The relationship between these representations

and user browsing and editing is shown in figure 5.1.

Compact used tor
---=.=...:.=.:'-------+

Model

Abstract used for ---===-.:c:.; ___ ..

Model

User

Editing

User

Browsing

Figure 5.1 Compact and abstract models

Section 5.1 defines structured graphs (models). Section 5.2 presents the two canonical

representations of structured graphs: compact and abstract models.

Structured Graph Formalism 54

5.1 Structured Graphs

A structured graph (model) is a bi-partite graph whose vertices are nodes and links with

edges characterised by producer and consumer relations. The structure is provided by

relations on nodes and links.

Definition 5.1 Given two sets Node and Link, a structured graph is a tuple

(~It ~.prods, cons) where:

~~ : is a finite ordering relation on links : 6' Link

~ : is a finite ordering relation on nodes : 6' Node

prods, cons : Link ~6' Node

An alternative representation is (~It~. out, in) where:

out, in : Node ~6' Link

out n = { l I n e prods l }

in n = { l I n e cons l }

5.2 Compact and Abstract Models

0

We present a series of definitions which culminate in the definition of the compact and

abstract functions C and A, which map structured graphs to their compact and abstract

forms. Figure 5.2 depicts their relationship. We will prove that this diagram commutes

(in appendix B).

Models

7~ A
Compact • Abstract
Models 4 C Models

Figure 5.2 The mappings between models, compact models and abstract models

The first definition takes care of equivalent models which may have different levels of

link summarisation.

Definition 5.2

a) Conversion to an equivalent model with leaf links only.

Structured Graph Formalism 55

b) Conversion to a model with all possible links.

A1 (:5., :5rt, out, in) = (:51, :5rt, l o maxv o out, l o maxv o in) 0

The next definition provides the crux of our approach. The key is to be able to capture

the ideas of network abstraction presented in the previous section: the essential thing

here is to capture the way in which full flows can be derived from an underlying

network. We need to cater for cases when flows are not fully distributed, and when

they are not complete (i.e. missing producers or consumers). Our presentation is

simplified by restricting these preliminary definitions to models with leaf links only.

The mappings in Defmition 5.2 were provided to allow us to use such leaf link models

as an intermediate stage in the construction of C and A.

For an underlying network we think of a leaf link as participating in a (full) flow just

when it has non-comparable leaf producers and leaf consumers. We can generalise this

to allow for the case when flows are not fully distributed, by replacing "leaf producers"

by "minimal producers", and similarly for consumers. A first attempt at defining an

abstraction of a full flow might be to lift the producer and consumer relations through

the node order, while ensuring that the flows still correspond to the flows in the

underlying network. This would lead to the following definition for the set of full

producers of a given leaf link l : ~

prodstl = { n: nodes I 3p: prods l, c: g;nyj • p 11 c

n~p

nllc }

and similarly for cons!. The minimal consumer c in this defmition acts as the basis for

the abstraction of the full flow for l from p. Our actual definition is very close to this,

and is equivalent to it for complete models. However, for incomplete models, there is a

desirable convexity property of full flows, which this first attempt at a definition does

not yield. We relax the requirement that a full flow producer be connected to the same

minimal consumer as the minimal producer which it abstracts.

prodstl = { n: nodes I 3p: prods l, cl, c2: gm§j • p 11 cl

n~p

n 11 c2

The algebraic defmition below is equivalent.

Definition 5.3 Full Flows

Full flow producer for leaf links: prods1 : Link -76' Node

For given prods and cons, and l: links

Structured Graph Formalism 56

Full flow consumer for leaf links: cons!: Link ~p Node

is defined analogously. 0

The abstract form of a structured graph is constructed as a series of transformations:

restricting the model to leaf links only (using C1), filling in any missing flows for those

links, then for each node including all possible links (using A1). This is formalised

below.

Definition 5.4 Abstract models

The abstraction mapping A for structured graphs is defmed as

where

An (~t. ~.prods, cons) = (:St. ~. prodsa consa)

'V I: links •

prodsa l = t (prods I u prodstl)

consal = t (cons l u cons1l) 0

The set of producers in the abstract model is formed as the convex closure of the full

producers together with any other producers in the original model.

z
4/ ""'..!.,. b b - -£..... £..'

/;;\i: t;y~
/ ~ \ b / c~ ~

A_:. s!- T..!.. 7u 7v w
-=-- -..!!._ .!.._

Figure 5.3 The abstract form of the model shown in figure 3.7

The model shown in Figure 5.3 is the abstract form of that in Figure 3.7. Note that

each node interface is a downset of links, rather than just the most summarised links.

Also, node Z hides link a and its descendants, because their producers and consumers

are contained within Z. An abstract model producer which is not a full flow producer is

a half flow producer, and similarly for consumers.

The compact form of a structured graph is constructed by restricting the model to leaf

l

Structured Graph Formalism 57

links only (using C1), then extracting minimal producers and consumers, and maximal

half flow producers and consumers.

Definition 5.5 Compact models

The compact mapping C for structured graphs is defmed as

C = Cn oCl

where,

'V l: links •

prodsc l = prodsa l u (prodsa l - prods! l)

consc l = cons0 l u (consa l - cons! l) 0

The compact form is the smallest (leaf link) model which generates the same abstract

model. The defmition can be understood by relating it back to the abstract form: in the

abstraction mapping, full flows are derived just from the underlying network (the

minimals), but half flows are derived via a convex closure, which requires that maximal

half flows be recorded in the compact form, as well as the minimals.

Examples of compact models are given by Figures 3.11 (i), (iii) and (iv); figure (ii) can

be made compact by removing node U as a producer of link a.

5.3 Properties

Theorem 5.1 Figure 5.2 is a commuting diagram, that is:

A o C = A and C o A = C

Corollary 5.1 The equivalence of compact and abstract models

A m1 =A m2 <::::> C m1 = C m2

Corollary 5.2 Closure

A o A = A and C o C = C

0

0

0

Proofs are given in Appendix B. The equivalence property ensures that the two forms

of model representation actually identify the same collection of models. The closure

property ensures that furtht:r abstraction!compaction has no effect.

Lemma 5.1 Convexity. An abstract model (~J, ~n. prods, cons) satisfies:

'V I: links •

convex (prods I) and convex (cons I) 0

Structured Graph Formalism 58

For an example consider the model in figure 3.11 (ii) which is an abstract model with a

trivial link order. If node U was removed as a producer of link a as suggested before,

the model would not satisfy flow continuity. Nodes P and Z would produce link a,

while U which is between P and Z would not.

5.4 Model Editing

The compact model will be used to define editing operations because it is the smallest

canonical representation, whilst the abstract model will be used for browsing. The

editing operations given here are intended to be the basic building blocks for user

editing operations, while the browsing operation given here provides the context free

portion of a model view; the context dependent external and virtual flows would need to

be added to form a model view for a user. Definitions for these now follow.

Definition 5.6 Let ~x and ~ be order relations. Then ~x and ~ are composable if

and only if:

(~ u ~)* is an order relation 0

The above check is needed to avoid introducing cycles with the following edit

operations.

Definition 5. 7 Let X and Y be compact models where their node and link orders are

composable. Union, intersection and difference operations on them are given by:

X u Y = C ((~I u ~~)*.(~nu ~n)*, prodsx u prodsy. consx u consy)

X n Y = C ((~xi u ~~)*. (~ u ~n)*, prodsx n prodsy. consx n consy)

X- Y = C ((~ u ~~)*. (~ u ~n)*,prodsx- prodsy. consx- consy) 0

The edit operations include a compact closure, to remove any producers or consumers

that are now derivable. This ensures the result of these operations is always a compact

model. However, in some situations this can lead to a lack of associativity, which we

discuss in section 5.6.

5.5 Model Viewing

A user browses a model by selecting model views. Both nodes and links in a model

view can be restricted, with a final model view showing nodes and their net maximum

summarised interfaces.

Structured Graph Formalism 59

Definition 5.8 Let m be an abstract model. Let N ~nodes, and L ~links, where N is

flat and L is a downset. The model view of m restricted to L and N is depicted as:

modelV m L N = F (L <11111 m Do N)

where the abstract model node and link restriction operation on m is given by:

L <11111 m Do N =A (L <1 ~11> L, N <1 ~ 1> N, L <1 prods 1> N, L <1 cons 1> N)

and the flat maximum model view operator F is given by:

F m = (~" ~. maxv o out, maxv o in) 0

Symbols <1 and 1> are domain and range restriction operators.

Model views have context free interfaces under arbitrary node selection only with

respect to a common link selection. For example, if model views are always selected

with all links, the views will have context free interfaces.

5.6 Limitations

Some limitations in viewing and editing a model will now be described.

Definition 5.9 Let L be a link order. Let M be the set of abstract models with link

order L. Then L is viewable if and only if:

'r;f l : L • 3 m : M • 3 n : nodesm •

I e maxv (outm n) or I e maxv (inm n) 0

That is, a link order is viewable when each link can appear as a flow in the flat interface

of some node in some abstract model. If a link order is not viewable then there will be

some links which can never appear in any model view of any model.

Conjecture 5.1 Let L be a link order. Then Lis viewable if and only if Lis a semi-

inclusion order. 0

The major impact of this occurs when editing a model. Consider adding a flow I

between two nodes which have no flows between them. Only if the link order is

viewable will the user be guaranteed that this operation will result in the flow I

appearing between the two nodes. Further, to guarantee the result is exactly the flow l

with no extra flows, the link order must be an inclusion order.

Another limitation is that structured graph composition is not associative. This means

that: if a user performs a collection of edit operations in a different order, the result may

be different. This is undesirable. Figure 5.4 shows an example where associativity

fails.

Structured Graph Formalism 6 0

R s R s

I I I
T~ ~u T~ ~u

au/3 \ I
f3um

\ I
w w

(i) (ii)

X~ X

R s

T ~u

\I
(au/3}um w \I

au (/3u m) w

(iii) 1 (iv) I
X~ X~

Figure 5.4 A demonstration of non-associative structured graph composition

The results of the composition of the three models are shown in (iii) and (iv), which are

different. Note all models in the example are compact models, as the definition of

composition includes a compact completion. The reason for associativity failing, is that

composition does not preserve full flows; for example in (ii) there is a full flow between

nodes T and U but in (iv) there are only half flows. The addition of model a has collapsed

the full flow.

Restricted families of structured graphs though, will still have associative composition. The

situations where associativity fails, require an unlikely combination of half flows and node

order. If we restrict, to structured graphs with no half flows, or to tree structured node

hierarchies, for example, we recover associativity of composition.

Structured Graph Formalism 61

5. 7 Discussion

In summary, this chapter has presented two canonical representations of structured graphs:

the compact and abstract models. These models are the fixpoints of two complementary

closure operators, as shown in the commuting diagram of figure 5.2. This follows the

same pattern noted in Chapter four, where complementary ordered set closure operators

were identified.

The basis for browsing and editing operations has been given, and their properties and

limitations identified. Two limitations were: (i) depending on the link order, some links

may never appear in any flat model view, and (ii) model composition (union) is not

associative. The latter limitation could be avoided by removing the compact closure step

from the definition of model union (removing the C's in definition 5. 7), at the cost of

leaving some derived flows in the model. Model browsing would not be affected, as this is

done on the abstract completion of a model.

Proofs for the theorems are given in Appendix B. Implementations of structured graphs are

given in Appendices C and D. Both these implementations are text based. The gofer code in

Appendix C is a direct implementation of the compact and abstract closure operators, and

the three editing operations: model union, intersection and difference. The C++ application

introduced in Appendix D implements a collection of user level operations for editing and

browsing such as: adding and deleting nodes and links, and displaying a table

representation of selected model views.

A graphical implementation would be future work as it requires additional research to create

suitable graph layout algorithms. A large body of work on graph layout, and on DFD

layout already exists, but this is for single flat graphs. This is not suitable for structured

graph viewing as a vast number of model views are possible on a single structured graph,

and related model views (their nodes are related) should have a related layout to assist users

to keep their perspective.

Chapter 6

Building with Structured Analysis Components

Part two of this thesis presents components and component composition. Components

further improve the modularity of model construction. The editing operations discussed

in part one, such as adding a flow between two processes are appropriate for an

individual editing a model. Very large models are likely to be produced by teams. With

existing structured analysis tools, team members operate within a global name space for

processes and data flows, so team members must be carefully co-ordinated to ensure

they don't use the same data flow names for different data flow instances. Further,

team members' submodels are joined by merging together those processes and data

flows which have exactly the same name. A less rigid system would improve the

editing of such large models by a team, whilst still allowing submodels to be composed

with one user operation. This chapter will demonstrate such a system.

An example of three components and their composition will be presented in this

chapter. The example follows the theme used in part one; it is another portion of a

jumbo simulator. Note that this example is an incomplete model. First, the three

components are presented. Second, the composition of these three components is

shown. Third, the new mechanism, meshing, which makes composition flexible is

highlighted. Finally, a selected view of the composed model is shown.

6.1 Example Components

This section presents three components: game, own_jumbo and other_plane.

Each component is shown in the same way as the model shown in Chapter two, that is

as: the process order, a collection of DFDs, a data flow schema and the data flow order.

A component is a structured graph which has been extended in two ways. Firstly, by

allowing different links to have the same local name in different parts of a fmal model

through the introduction of model qualifiers. Secondly, through the use of a link

schema to define link types and subtypes, so actual links are then instances of these

types.

Model qualifiers are used in component game shown in figure 6.1. Note every data

flow ends with [game]. This is the model qualifier. For example time [game] can

be read as the data flow time which appears in the submodel with root process game.

Within the overall model there could be other data flows such as time [own_j umbo]

which are distinct. Each component presented here uses its root node as the model

qualifier for all its data flows. This means each component has its own data flow name

Building with Structured Analysis Components 6 3

space, which gives greater naming freedom when each component is being developed

by a different team member. In general, a data flow may have a set of model qualifiers.

When all flows in a component have the same model qualifier (a simple component),

the qualifiers can be abbreviated to[]. This is adopted in later examples.

Context

...... _~)

~
Game

ye~ ~~] =-
e-8

Vehicles

a(~ ~(~
r.meJ @-own_ -

jumbo e

-
poellol*lg. ~ OWI1jgame) olherlgllrne)

Figure 6.1 The DFDs of component game

The use of model qualifiers makes the time portion of time [game] a type scheme,

as there may be multiple distinct data flows called time [...] but with different

model qualifiers. However, within the one component we may also wish to have

multiple flows with the same type. This is achieved by using instance qualifiers. An

example is shown in the vehicles DFD in figure 6.1. There are two flows which

both have the type positioning, which are: positioning. own [game] and

positioning. other [game]. Both own and other are instance qualifiers. The

process order is shown in figure 6.2.

Building with Structured Analysis Components 64

·----------------------~

game

/~
environment vehicles timer

1\
own_
jumbo

other_
plane

Figure 6.2 The process order of component game

Figure 6.3 shows the data flow type dictionary which is common to all three

components presented in this chapter. It follows a similar format to the data dictionary

shown in Chapter two, except for the use of instance qualifiers. The other additional

feature is the notation (scope schema):

positioning/ = position

which states that the label p os i t ion is shared within the scope of the type

positioning.

env_fields = optical_ field + em_tield

vehicles _positioning = positioning. own + positioning.other

positioning em_positioning + optical _positioning

positioning/ position

em_positioning position + velocity + accele ration + em_ reflectivity

optical _positioning = position + roll + optical_reflectivity

detection = position + velocity + signal_strength

Figure 6.3 A data flow type dictionary

env_flelds
]game]

1\
am_llald opbl_llald poaltlor*lg.own
[game] [game] [game]

/\
poaltlor*lg.olher

[game]

1lme
[game]

/~
am_poaitioning optical_posltionlng em_poaitioning oplical_posltionlng

[game] (game] [game] [game)

/\~ /\~ //~ 1\\
am_
rellactivity
[game)

acceleration velocity position roll optical_ am_ acceleration velocity position
[game) [game) [game) [game) reftectivtty reftectivtty [game) [game) [gawne)

[game) [game)

Figure 6.4 The data flow order of component game

roll optical_
[gawne) reftectivtty

[game)

Building with Structured Analysis Components 65

The effect of scope is, within any data flow which has type positioning, there is

only one occurrence of a data flow with the label position. Looking at figure 6.4

should make this clearer. Note that the data flows em_positioning [game] and

optical.positioning[game] underpositioning.own[game] sharea

common child: position [game] . It is the use of scope schema, which allows data

flow hierarchies other than trees to be represented.

Context

Ownjumbo

r

~

Figure 6.5 The DFDs of component ownjumbo

own
jumbO

~ ~ ~~Jumoo_
engine sensor visual_ positioning_

sensor system

'------

Figure 6.6 The node order of component ownjumbo

Figures 6.5 to 6. 7 show the own_j umbo component, its collection of DFDs, process

order and data flow order. In figure 6.5 an abbreviation is used for the model qualifier.

Rather than placing [own_j umbo] at the end of every data flow in the own_j umbo

Building with Structured Analysis Components 66

component, [] is used. This is just an abbreviation for the component-root-process

model qualifier as stated earlier.

env_llelds
[own jumbo]

/\
em_tleld oplk:al_tleld
[ownj ... J [ownj ... J

thiUat
[ownjumbo]

poejlloRng.own
[own_Jwnbo]

/~
time
[ownjwnbo)

det8dlon
[own_Jwnbo]

//~
em..JIOIIIIor*lg oplk:ai_J)OIItlonlng poaillon velocity lignal_llr8nglh

[ownj ...) [ownj ...) [ownj ...) [ownj ...) [ownj ...)

/\~ /\~
em_
reftacllvtly
[ownj ... J

accelenllton velocity poeltlon roll apllcal_
[ownj ...) [ownj ...) [ownj ...) [ownj ..) rellectlvtly

[ownj ...]

Figure 6.7 The data flow order of component ownjumbo

A data flow type dictionary is not given here as all three components share the

dictionary shown in figure 6.3. Figures 6.8 to 6.10 show the other__plane

component.

Context

Other _plane

----~J
Figure 6.8 The DFDs of component other_plane

Building with Structured Analysis Components 6 7

other_

~ ~:t~ju __
engine visual_ positioning_

system

opllcaUield
[other __plane]

sensor

Figure 6.9 The node order of component other_plane

thrust
[oiler _plane]

poeillof*lg
[olher_Jlllnl]

/~
am__JIOIIHioning opllcai__JIOIIHioning

[olhar_ ...] [olhar_ ...]

/\~ /\~

lime
[olhar_Jlllnl]

am_ ~ wloclly poalllon rol oplciiL
Nlleclvlly [other_ .•.] [other_ ...) [oiler_ ..•] [oiler_ ..] rwlecMy
[olhar_ ...] [oiler_ ...]

Figure 6.10 The data flow order of component other _plane

6.2 The composed model

The composed model is shown in figures 6.11 to 6.13. The component process orders

were combined by merging processes with the same process name together. The

component data flow orders have been merged in a more flexible way. Data flows

whose paths (producer nodes or consumer nodes) which intersect and satisfy a

meshability relationship are mapped to the same data flow. This meshability

relationship is discussed in more detail in the next section.

I
I

Context

Game

Vehicles

Own _jumbo

Other _plane

Building with Structured Analysis Components 68

~-/~]

__---~--~~~~~~

Figure 6.11 The DFDs of the composed component

Building with Structured Analysis Components 6 9

game

/\~
environment vehicles timer

/~
own_ other_
jumbo jumbo

/!\~ /\~
jet_
engine

radar_
sensor

jumbo_
visual_
sensor

jumbo_
positioning_
system

jet_
engine

jumbo_
visual_
sensor

jumbo_
positioning_
system

Figure 6.12 composed component node order

__ llalda

(game]

1\
em_llekl optk:al_llekl poaftlonlng.own
(game] (game] [game]

/\
em_J)OIIitloning optk:al...Jl08illoi*!g

[game] (game]

/\~ /\~
aooalerllllon Y8lacily poelllon rol optical_ em_

poaftlonlng.olher
[game]

lme
[game]

/~
em_poaHionlng optk:al_J)OIIitloning

[game] (game]

//~ 1\\
em_
rallectMiy
[game]

[game] [game] [game] [game] r8lectMiy rwllectlvlly

1hruBI
(own_JI.rrbo]

delactlon
[ownjumbo]

//~

[game] [game]

thnllll
(oilier _plane]

poelllon Y8lacily slpl_strength
(ownj ...] (ownj ...] (ownj ...]

'-----------------··---------·-----------·-------'

Figure 6.13 The data flow order of the composed component

6.3 Data flow meshing

The composition of the data flow orders, meshing, is shown in more detail in figures

6.14 and 6.15. Figure 6.14 shows two flows, one from the game component and one

from the own_jumbo component which are meshed together. Flows env_fields

[own_jumbo] and env_fields [game] become env_fields [game] in the

Building with Structured Analysis Components 7 0

composed component. Note that this affects not just the individual flow

env_fields [own_jumbo] but its children em_field [own_jumbo] and

optical_field [own_jumbo] as well.

game
component

env_fields
[game)

;:\
em_field 1 optical_field
[game] (game]

ownjumbo ~
component

....

composed I"'"

component

env _fields 1
[ownjumbo] 1

I I\:
em_field optical_field
[ownjumbo) [ownjumbo)

env ...Jielda
[game)

/\
em_ field
[game]

optical_field
(game] -

I r::::'\ env fields

~~

Figure 6.14 An example of meshing (I)

Figure 6.15 shows another example of meshing. Flow positioning

[own_jumbo] is extended (i.e. its name) by positioning. own [game] and these

flows have a common consumer, the process own_j umbo. As a result,

positioning [own_jumbo] is replaced by positioning. own [game] within

the own_j umbo submodel. The rough rule for identifying flow meshability is: a flow

x meshes with another flow y when x's name is a prefix of y's name, and x's model

qualifier is less than y's model qualifier.

In the preceding discussion minimal data flow names have been used. For example the

full name of positioning.own[game] ispositioning.own.vehicles_

positioning [game]. The name positioning. own [game] was used, as it is

smaller but still unique. The meshability rule given earlier refers to full names. The

meshing shown in example 6.15 can be restated in terms of full names as: the flow

positioning [own_j umbo] meshes with positioning. own. vehicles_

positioning [game]; as positioning is a prefix of positioning. own.

vehicles_positioning and own_jumbo is less than game in the process order.

More details of meshing and component composition are given in later chapters.

game
component

own jumbo
component

composed
component

Building with Structured Analysis Components 71

em_J)081Uoning
[game]

"'

vehicles _positioning
[game]

/ ~

I optical_J)081Uoning
[game]

pclllilloOOg.olher
[game)

poeilloning
[own jumbo]

/ ~
em_J)081Uoning
[own jumbo]

optical_J)081Uoning
(ownjumbo]

vehicles _positioning
[game]

/ ~
poeitlonlng.own

[game]

/ "" em_J)08Itloning
[game]

opllcal_posltionlng
[game]

poeillonlng.olher
[game]

@ =] ---bo

@
poeltlonlng.own

~
bo

Figure 6.15 An example of meshing (ll)

6.4 Viewing a component

The composed component is a model and can be browsed in the same way, as done in

Chapter two. Figure 6.16 shows a process view being selected, the processes:

jet_engine,jurnbo_positioning_system,plane_engineandplane_

posi tioning_system. All flows have been selected for this example. The

corresponding model view is also shown. Note the presence of model qualifiers clearly

distinguishes the two local flows t h r u s t [own_ j umbo] and thrust

[other_plane]. Also, the flows positioning. own [game] and position

ing. other [game] are distinguished by their instance qualifiers.

Building with Structured Analysis Components 7 2

game

L_ _________________ v_e_h_ic_le_s ________________ ~l ~

L_ _______ o_wn_J_u_m_oo ________ ~l ~~ _____ o_~_er_~_m_n_e ____ ~l
rTeLl ~ ~ r;;;i;l r;;;;;;:l ~ r;;;;;::-1
~~~~~~~ 

Figure 6.16 A view of the composed component 

6.5 Discussion 

This chapter has shown the key features of components and their composition. 

Components are models with the addition of: (i) model qualifiers for data flows, which 

allow each component to have its own local name space for flows, and (ii) typed data 

flows, which allow a clear distinction between data flows and data flow types. 

Component composition is flexible: we do not need to explicitly indicate which flows 

are joined during composition, but rather a meshability relationship between 

intersecting data flows is used. These features further enhance the scalable construction 

of large structured graphs, as two models, each containing many DFDs, can be 

composed with one user operation. 



Chapter 7 

Typed Link Orders 

In this chapter an extension of link orders: typed link orders, is described. The main 

motivation of this extension, is to facilitate the definition of components given in the 

next chapter. However, the introduction of typed link orders into structured graphs are 

a useful extension in their own right. 

Typing in this section does not refer to a data type but refers to the structure of a link 

order; every instance of a link type will have the same underlying structure of sublinks, 

though with different instances. In some applications such as structured analysis, leaf 

links in a fmal model may also have a data type, such as real or integer, which indicates 

the nature of the information carried by a link. 

A typed structure is defined via schema definitions, on templates, which are then 

unfolded recursively and instantiated to give rise to instances or occurrences. This 

makes for economical definition of structures which have common substructure 

patterns. The resulting occurrences are structures which can be browsed in the usual 

manner. Consider the specific context of structured analysis. 

Structured analysis models tend to contain far more data flows than processes. As the 

number of processes increases, the number of data flows increases even more. All the 

data flows require a unique name and a definition in the data dictionary. One way to 

cope with this name explosion, is to introduce a typing system, so some flows have the 

same type and hence share the same dictionary schema definition, but still have unique 

names, so they can be uniquely identified in DFDs for balancing. 

The definition of a typed link order, where the order is restricted to a finite tree is 

straightforward. The same structure that is used for programming language data types 

can be used. The key properties this tree typed order have are: (i) each occurrence of the 

same type has the same structure, (ii) there is an intuitive naming scheme and (iii) each 

link always has a unique name. The second property can be expanded to: there is an 

association between the names of links which are subtypes and supertypes. Naming 

has become an explicit concern as names will highlight the structural relationships 

between link occurrences. 

A major challenge of this thesis was to define a typed order which, could be an 

arbitrary finite ordered set, but have the properties which were identified above for a 

typed tree order. Also, the typed tree order should be a special case of the more general 

typed order. 



Typed Link Orders 7 4 

For both the tree typed order and general typed order we are interested in how a user 

will define such orders through schema, and what the actual orders look like and their 

associated naming schema. The first section presents tree typed orders and tree order 

schema for flows, while the second presents general typed orders and order schema. 

7.1 Tree typed link orders 

The properties we wanted for tree typed orders of links were: each link occurrence with 

the same type should have the same structure, portions of a link with the same type 

should have the same structure, and the naming of links should indicate these 

relationships. Next, a link schema and some example models where this schema is 

unfolded into tree typed orders is demonstrated. 

Here is an example link schema definition. 

a = b.l + b.2 

b = c + d 

Each LHS gives a link type. Each RHS gives a set of link labels, where each label is a 

link type with an optional qualifier. Some example models using these definitions are 

shown in figure 7 .1. 

c 

b.1 

I \ 
d c 

UnkOrder 

b.2 

I \ 
d 

b.1 b.2 
x-v~z 

(i) 

c 

b.1 

I \ 
d c 

b.2 

I \ 
d 

UnkOrder 

b.1 
x--- v ...........___. 

b.2 

(ii) 

a 
/ " b.1 b.2 

I \ I \ 
c d c d 

UnkOrder 

a 
x ---v 

(iii) 

Figure 7.1: Three models with simple link types 

Case (i) shows two occurrences of the link type b: b. I and b.2. Note the link schema 

alone gives no indication of the existence of actual link occurrences; link occurrences 

can only be found by inspecting the model. Also, in the link schema, link type b is 

comprised of c and d, so there are two occurrences of link type c and d in (i), one for 

each occurrence of b. 

Cases (ii) and (iii) show links b. I and b.2 are both produced by node X and consumed 



Typed Link Orders 7 5 

by node Y. In (iii) the link order allows these two links to be further abstracted to a. 

The full names of the links are: 

(i),(ii) c. b. 1, d. b .1, b .1, c. b. 2, d. b. 2, b. 2 

(iii) c . b . 1. a, d. b . 1. a, b . 1. a , c . b . 2 . a , d . b . 2 . a, b . 2 . a, a 

These names are formed simply as the chain of a link's parent labels, with link types 

and qualifiers being distinct. Note the a from the schema, and the a from the model in 

(iii) are distinct, as the former is a link type, while the latter is a link occurrence. The 

above link names can be shortened, to produce minimal names. 

(i),(ii) c. 1, d. 1, b. 1, c. 2, d. 2, b. 2 

(iii) c. 1, d. 1, b .1, c. 2, d. 2, b. 2, a 

Minimal names are the collection of shortest link names which preserve: label 

sequencing and the initial type of each full name, whilst preserving the uniqueness of 

names. Clearly, the degree to which full names can be abbreviated is context 

dependent, that is, depends on what other link names exist. 

Full names use a bottom-up style of naming; the leftmost portion of the name refers to 

the most specialised label. If a top-down style of naming were used then c . b. 1 . a 

would become a . b . 1 . c; the highest type would appear on the left. The bottom-up 

style was chosen because it suits the structured analysis application better, and it will 

make meshing (part of component composition described later) appear better. 

In even larger models, ensuring that all links have a unique name would require many 

qualifiers to be generated, as there is a single name space. The alternative is to violate 

the unique link name constraint, as often happens in large structured analysis models. 

Another alternative is given in the next chapter on components, where the additional 

name qualification mechanism, model qualifiers is introduced. 

7.2 General typed link orders 

General typed orders should be an extension of tree typed orders. Recall tree typed 

orders satisfy three properties: (i) each occurrence of the same type has the same 

structure, (ii) there is an intuitive naming scheme and (iii) each link always has a unique 

global name. General typed orders will be required to satisfy the first two properties, 

but not the third. Clearly property (iii) is desirable (and typed orders with this property 

will be used in the definition of components in the next chapter), so we will identify the 

subset of typed orders which satisfy it later. 

The main difference between a tree and an ordered set is that an element of an ordered 

set may have more than one parent. The challenge is to extend typed order schema to 



Typed Link Orders 76 

allow multiple parents whilst preserving the existing tree typed order properties. In 

particular, preserving the constant structure constraint, each suborder whose root has 

the same type has the same structure and local naming. 

'fbe full name of an element in a tree typed order is the sequence of the element label 

and all its ancestors labels. That is, an element name is a chain of its ancestor labels. 

The full name of an element in a general typed order will also be a chain of its ancestor 

labels. 

These requirements can be met by the use of overlapping structures. An element n with 

two parents p and q is interpreted as two suborders with roots p and q which overlap 

on n. However, how are the overlapping portions of suborders identified, in a way 

which meets all the constraints which have been laid out? A first example is shown in 

figure 7.2. 

a = b + c a a 
b =d +e I \ b.a 

c = e + f b c c.a 
e = g 1\ 1\ d.b.a 

e.a 
Children Schema d e f.c.a 

g.e.a 
a/= e g 

Scope Schema Full Names 

(i) Typed Order 

a a 

a = b.1 + b.2 I \ b.1.a 

b =C+d b.1 b.2 b.2.a 

1\1\ 
c.b.1.a 

a/= d d.a 

c d c c.b.2.a 

(ii) Typed Order 

Figure 7.2: A typed link order 

The typed order schema has two parts: the children schema and scope schema. The children 

schema is the same schema used to generate tree typed orders. It is the scope schema which 

allows overlapping structures. In (i) the scope schema is read as, under any occurrence of 

an element with type a there is at most one occurrence of an element with label e. So the 

suborders of band c overlap at the occurrences of e, with the result that e has parents band 



Typed Link Orders 77 

c. The full names of those elements with recursively one parent, are the same as for tree 

typed orders. Applying the same rule to element e there are two possible full names: e.b.a 

and e.c.a. Element g has the single parent e, so its name should beg followed bye's name. 

Recall we would like links to have unique global names, so there is an arbitrary choice 

between the two names for e. Clearly, arbitrary choice is unacceptable. This is resolved by 

noting that, as a link with label e occurs at most once under link a, given the scope schema, 

the full name e.a is guaranteed to be unique and so can be used. In general, a full name can 

be constructed from the chain of scoping ancestors, however as we will see in the next 

section such full names are not always unique. This will be made more precise as more 

examples are considered. Figure 7 .2(ii) shows an example where the overlapping 

suborders of b. I and b.2 have the same type. Note, though they overlap, each occurrence 

of b has the same labelled structure below it. 

7.3 Link schema constraints 

In the previous section the focus was on the typed order, and their corresponding 

schemata. In this section the focus is on how to constrain schema so that they only give rise 

to typed orders. First constraints that ensure a tree order schema always produces a tree 

order are presented. Then constraints that ensure a general order schema always produces a 

typed order (sub-orders with the same type have the same local structure), and an order 

which has unique full names, are presented. The precise definitions of these constraints are 

given in Chapter nine on typed orders. 

a a = b + c a 
a = b b = c <I b =a b 

I a/= c 
a c 

(i) (ii) 

Figure 7.3: two "schema" which do not unfold into ordered sets 

Recall, the first constraint for a typed order is that it is an ordered set. Figure 7.3 shows 

two schemata which do not produce ordered sets. In case (i) a label with type a is below 

type a, so it is a graph containing a cycle. In case (ii) link c has two parents which are 

related, so this graph is not the covering relation of an ordered set. To exclude these cases 

two schema constraints are needed: no type cycles and no redundant transitive links. 

Consider the example shown in figure 7.4. Typed order (i) contains only one occurrence of 

e, because the scope schema has defined label e to have scope of type a. The typed order 

(ii) contains two occurrences of links with label e, as there is no scope schema for type b or 



Typed Link Orders 78 

any type below it. The occurrence of b in the larger context of type a has a different 

structure to the typed order with root b, so the structure of a suborder with root type b is 

dependent on its context. Clearly this is in violation of the requirement that occurrences of a 

type have the same local structure, that is, be context independent. 

This lack of constant structure for type occurrences can be resolved in figure 7.4 by the 

addition of the scope schema: 

b/ = e 

With this schema included, the typed order with root b, has a single occurrence of e, and 

hence the same downwards structure as the other occurrences of b under type a. 

a = b + f 
b = c + d 
c =8 

d = e 
f = e 

Children Schema 

Scope Schema 

a 

I\ 
b 

/\) 
~I 

e 

(i) Typed Order 

b 

I\ 
c d 

I I 
e e 

(ii) Typed Order 

a 
b.a 
c.b.a 
d.b.a 
e.a 

f.a 

Full Names 

b 

c.b 
d.b 
e.c.b 

e.d.b 

Full Names 

Figure 7.4: A ''typed order'' schema which lacks the constant structure property 

In general, if a type t scopes label x then all types which can occur between an instance 

oft andx must also scope the label x. In figure 7.4, links with types b,c,d andfappear 

between an instance of type a and a link with label e, so these types should all scope 

label e. This constraint on the scope schema is called scope continuity. 



a = b.1 + b.2 

b = c 
c = d.1 + d.2 

d =e 

a,b/ = c 

c,dl = e 

a = b + f 

b = c + d 

c = e 
d = e 
e = g 

f = g 

a,e,f/ = g 

b,c,dl = e, g 

a 

I \ 
b.1 b.2 

'\ I 
c 

I \ 
d.1 d.2 

\ I 
e 

(i) Typed Order with nested scope 

a 

I \ 
b 

I\ 
c d 

\ I 
e 

g 

(ii) Typed Order with overlapping scope 

Typed Link Orders 79 

a 
b.1.a 

b.2.a 

c.a 

d.1.c.a 

d.2.c.a 

e.c.a 

a 
b.a 

c.b.a 

d.b.a 

e.b.a 

f.a 

g.a 

Figure 7.5: Two typed orders with nested and overlapping scope 

When a scope schema satisfies scope continuity a smaller representation can be used; root 

scope schema, where only the highest types with a given scope are shown. The root scope 

schema for the example shown in figure 7.5(ii) is: 

a/ = g 

b/ = e 

The scoping types of g are a,b,c,d,e and f. The highest of these is a, so it is the root scope 

of g. The scoping types of e are b, c and d, so its root scope is b. In the rest of this chapter 

all scope schema satisfy scope continuity, allowing the root scope schema representation to 

be used. 

Next we consider the naming of elements in a typed order. In figure 7.4(i) link e's full 

name starts with label e. The next label should be the highest link above e with scope of e; 

that is the root scope link of e, link a. The resulting full name is then e.a. In general, the 

subset of ancestor labels used in a links full name, are those ancestors which are the 

successive root scope links, or where there is no root scope link, the parent link is used. So 

in the absence of any scope schema, this rule gives the successive chain of parents of a link 

as its full name, as for the tree typed order case. 



Typed Link Orders 80 

Figure 7.2 and 7.4 showed examples where only one link had multiple parents. Figure 

7.5(i) shows an example with nested scoping. Label e has root scope type c, and label c 

has root scope type a, so link e has a full name e.c.a. Figure 7.5(ii) shows an example with 

overlapping scope. Label e has root scope type b and label g has root scope type a. So the 

links with labels e and g have full names e.b.a and g. a. 

a = b.1 + b.2 + d a a 

b = c + d /\~ b.1.a 

b.1 b.2 d b.2.a 
?I = d 

1\/\ 
d.a 

e.b.1.a 

(I) c d c d.?.a 

c.b.2.a 

a = b.1 + b.2 + d.1 a a 

b =C+d.2 /\"' b.1.a 

b.1 b.2 d.1 b.2.a 
a/ = d.2 

1\1\ 
d.1.a 
c.b.1.a 

(11) c d.2 c d.2.a 
c.b.2.a 

Figure 7.6: A typed order lacking unique names 

Consider the example shown in figure 7.6(i). There are two links with label d, one is 

shared by b.l and b.2 while the other has the single parent a. This is a valid typed order as 

it is an ordered set and satisfies the constant structure constraint. However, using the rule 

already given for forming full names, the full names of the two occurrences of d are, d.a 

and d. a. They are not unique. So this typed order does not have the additional property of 

having a unique full name for each link. The remedy for 7 .6(i) is to distinguish the two 

occurrences of d with qualifiers so one occurrence can have a as its scope. This is done in 

figure 7.6(ii) where label d.2 has scope of a, so the two full names for links with typed are 

now: d.2.a and d.l.a. 

a (c) 

a = b.1 + b.2 + e /I~ 
a 

b = c b.1.a 
b.1 (d) b.2 (d) e b.2.a c = d 

~I e.a 

a/ = c c c.a 
b/ = d d.?.a 

d 

Figure 7. 7: A typed order lacking scope based chain names 



Typed Link Orders 81 

Figure 7. 7 shows a typed order; it is an ordered set, has constant structure for each type 

occurrence and additionally has unique chain names for each link. However, using the 

schema given and the rule given before for constructing link names with scope schema, 

link d does not have a chain name. Its root scope links are b. I and b.2 whose parent is a. 

Directly using the full name rule d's name is d.(b.l,b.2).a which is not a chain. The 

problem is that d has two root scope links, that is b. I and b.2. A more extreme example of 

this problem is shown in figure 7.8, where the full name of the link with label n is the tree 

whose paths are: n.k.c.a, n.k.d.a, n.l.g.a, and n.l.h.a. 

a =b+f+j al=m /a~ 
b = c + d bl = e b (e) f Q) 

c = e cl= k I \ I \ 
d =e dl = k c (k) d (k) g Q) h Q) 

f =g+h f/ = i \ I \ I 
g =i g/ =I e j 
h =i hi= I \ I \ I 
j =k+l kl=n k (n) I (n) 

k =m V = n \ I 

I =m m 

m= n 
n 

Figure 7.8: A typed order which contains an element with a tree name 

Root scopes are shown in figures 7. 7 and 7.8 as labels within brackets on the diagram of 

the order. In figure 7. 7 the root scope of the element with label c, is the element a. The root 

scopes of the element with label d, are the elements b.l.a and b.2.a. In figure 7.7 element c 

has a unique root scope, but element d does not. In figure 7.8 there are several elements 

without unique root scopes: elements n, k, and l. 

Typed orders without chain names can be avoided. The typed orders shown in figures 7. 7 

and 7.8 fail to have chain names because some links have multiple root scope elements, 

which can only occur when the typed order is not a tree. If all links in a typed order have 

unique root scope links, then all links in the typed order will have a chain name. 

7.4 Summary 

In summary, a typed order is: an ordered set, and satisfies constant local structure for 

occurrences of the same type. To ensure a typed order schema unfolds into a typed order 

which has unique chain names for each element, it must have no type cycles, no redundant 

transitive links, scope continuity and unique root scopes. 



Chapter 8 

Component Composition 

To cope with building very large models, a system where medium sized models 

(components) are created by individuals, which are composed to form a final large 

model is desired. However, to be scalable the dependencies between components must 

be minimised while the ability to flexibly couple components is maximised. Component 

composition itself should not introduce new constraints on editing that are not present 

in structured graph editing. In particular, arbitrary forms of composition should be 

supported, not just a top-down form. 

Components are models with additional structure, so all scalable browsing and editing 

operations which apply to models also apply to components. Components have 

additional structure to further improve scalable editing beyond that available for models: 

the use of link orders which are also typed orders. In a large model many links may 

have a common structure. Naming links manually is a problem, if their common 

structure is to be maintained. The use of link schema addresses this maintenance 

problem. From a user perspective, a link order schema is first defmed then instantiated 

as many times as required. 

Components are primarily a building block for making large models. This implies that 

components can be built separately then plugged together. With this in mind, this 

chapter is perhaps more about component composition than components themselves. 

Models can already be plugged together, as this was how some model editing 

operations were specified; that is as the union of two models. What distinguishes 

component composition from model composition is its flexibility. Flexibility of 

composition means the ability to use one component in a range of contexts with the 

component adapting to each context. The purpose of this chapter is to present 

component composition and demonstrate its flexibility. 

Minimizing the interdependencies between components makes their separate 

construction easier. So when a person is choosing the name for an internal link for 

his/her component, he/she should not need to check what link names are being used in 

other components. However, there can not be complete freedom in the design of a 

component, as components are intended to be coupled together, and so there must be 

some interface constraints. 

Flexible component coupling should minimize interface constraints between 

components. A component composition which requires links from different 



Component Composition 83 

components to have the same name to couple under component composition is too 

rigid. For example, when constructing, a lower component (lower in the final node 

order), may have a link, and this link has a name. In the higher component (the one 

which will be composed above), the same name cannot be used as we have several 

such links. So we wish to support the coupling or joining of links in different 

components which have different names. 

The next section looks at existing model composition, and its limitations, which 

motivated the need for component composition. Then the definition of components and 

their composition will be presented in stages. Firstly, components are presented. They 

are models containing typed link orders and links with local name scopes. Secondly, 

basic component composition is presented, where model composition has been 

extended to cope with the extra structure of components but with no extra flexibility. 

Then, component composition, where components are flexibly coupled via the 

mechanism of mesh is presented. Finally, a limitation of components is presented. The 

formal definitions of these structures and operations are given in Chapters nine and ten. 

8.1 Limitations of model composition 

In the formal description of model editing in Chapter five, the addition of nodes and 

links to a model was accomplished by model composition. When two models are 

composed: the node orders and link orders are merged by mapping nodes and links 

with the same name to the same node or link in the composed model, producer and 

consumer sets are made by the union of the source model producer and consumer sets. 

Clearly these models are sharing one name space for node and link names. This 

approach is fme when the fmal composed model is small and a large proportion of links 

are coupled links, that is, links from different models which are intended to map to the 

same link in the composed model. However, once the fmal composed model becomes 

large, there is a need for independent naming of links within each model to be 

composed. 

The major concern is with the link name space and not the node name space, because in 

a large structured analysis models there may typically be several hundred nodes but 

several thousand links. Also, as a model gets larger there is a tendency for the number 

of links to grow faster than the number of nodes, so the situation gets worse for very 

large models. Here, a global node name space is used to join component nodes 

together, while a global link schema will allow component links to be joined together. 



Component Composition 84 

T 

/,"' 
A- --s 

T 

u4~a 
A.N 

I\ 
U ~V 

(i) (ii) 

Figure 8.1 Groups of models to be composed 

Consider figure 8.1. Case (i) shows three models which are to be composed. Using the 

rule that nodes and links with the same name map to the same node and link, with 

names being preserved the result would be just two links. So if the intention was to 

merge the a links but leave the d links as distinct, this can not be achieved. Case (ii) 

shows a related problem, we wish to choose which a links will couple. Model 

composition would result in there being just one link a in the composed model. So if 

the intention is to merge the link a which occurs in models M and N, and separately 

merge the link a which occurs in the models P and Q, this can not be achieved. To 

facilitate a composition which allows these intended merges to occur, a model with 

additional structure is required: components. 

8.2 Components 

A component is a model which has been extended in two ways. Firstly, the link order 

is a typed order. Secondly, a link name comprises: a link order name and a model 

qualifier (a set of node names). The latter allows local name scopes for links. A 

component's links are shown as a[{j] where a is a typed link order name, and {3 the 

model qualifier is a set of node names. However, in typical components, the model 

qualifier is a single node name. Figure 8.2 shows some example components. 

A~ '\ P_a 
~R) 

(i) 

T ~ 
~ u4~a 

a(~ s M~ ~N p~ 

/~ I\ 1\ I\ 
u_v A~MJ s~ U ~V w~ x 

~S) 

(ii) 

Figure 8.2 Groups of components to be composed 

~a 

I\ 
v ~z 



Component Composition 8 5 

The example shown in figure 8.2 is similar to that of figure 8.1, but uses components. 

Figure 8.2 differs as it introduced a link schema used in the submodel with root node 

M. In (i) there are the links a[T], a[R], b[R], a[S] and b[S]. In (ii) there are the links 

a.l[T], a.2[T], a[M], a[N], a[P] and a[Q]. When these models are composed, we will 

want some of these links to merge. This will be the subject of the next section, 

component composition. 

We now indicate some constraints for components, the precise constraints are given in 

Chapter 10. A component in addition to being a full model typically satisfies: 

• all producer and consumer nodes of link a[/3] are below or equal any node in {3 

• a link's model qualifier is the intersection of its descendent link model qualifiers 

• links can be distinguished by their model names (link name and model qualifier) 

The first constraint ensures that a user can read a[ {3] as the link a in the submodel with 

root nodes {3. The second constraint gives the rule for deriving non-leaf link model 

qualifiers from descendent leaf link model qualifier. This builds on the same concept 

used in the first constraint; a link can only appear within its model qualifier submodel. 

A non-leaf link should only appear (as a producer or consumer) where, all of its leaf 

links can appear. This is given by the intersection of model qualifier descendants, 

where a flat representation of this is used, i.e. the highest such qualifier nodes. 

8.3 A component composition example 

In this section we introduce component composition with an example. The details of 

component composition will be presented in sections 8.4 and 8.5. Figure 8.3 shows 

the composition of the components shown in figure 8.2. 

I 
I 

! 
I 
\ 

T 

/a[T]""' 
R- ---s 

i\ /~ 
P~a u~v 

d(R] d(S] 

(i) (ii) 

~----

Figure 8.3 The composition of the component groups shown in figure 8.2 

l 
' 

Figure 8.3 (i) shows three models have been composed into the one model. The links 



Component Composition 86 

a[R], a[S] and a[T] have merged into a[T] in the composed model, while the links d[R] 

and d[S] have remained distinct. In (ii) the links a[M] and a.l[T] have meshed together, 

so that the children of a[M]; b.a[M] and c.a[M], have become the children of a.l[T]; 

b.a.l[T] and c.a.l[T]. 

8.4 Component merge 

This section describes a basic joining of components. The term component merge is 

used to distinguish it from component composition which is more general. 

Component merge maps a collection of components which have a common link schema 

and composable node orders, to a single merged model, by mapping links and nodes in 

each component to links and nodes in the merged model. 

8 
T T T T 

I I I merge /b~""-c 

R + R + s ~ R- -s 

(.\ i\ u/b~v p~\ /b~ 
(i) p...£1 a P~ a U V 

Lint Schema 
T T T 

a = b + c ~a(R] I merge I 
b = d + e R~ ~ R~ a,bl = d.e R-- + 

t~l I 
p' (ii) p-- p~ 

~ 

Figure 8.4 Examples of component merge 

Components are merged by mapping nodes with the same name to the same node in the 

merged model, and by mapping leaf links with the same name to the same leaf link in 

the merged model whilst preserving names. Also, because the result of component 

merge is a component and a component is a full model, some filling-in of link 

producers and consumers, and abstracting of interfaces may be done. Some examples 

of component merge are shown in figure 8.4. 

Figure 8.4 (i) shows three components being merged. Nodes with the same name, map 

together, but all parent-child relationships are maintained, so the nodes with name T 

merge, and nodes R and S map to children of the merged T node. Merging preserves 

producer and consumer relationships, so links b.a[T] and c.a[R] retain node Pas their 

producer. As the merged component is a full model, all link interfaces must be 

maximum, so node P's interface is abstracted to a[R]. Note the model qualifier is R, the 

intersection of model qualifiers T and R. In the first component link b.a[T] is produced 



Component Composition 87 

and in the third component b.a[T) is consumed. Recall all interfaces of a full model 

must be net interfaces, so in the merged component nodes R and S respectively produce 

and consume b.a[T]. 

Figure 8.4 (ii) shows further examples link abstraction occurring as a result of 

component merge. Links c.a[R] and d.a[T] produced by node R are merged and 

abstracted to b.a[R], while links e.a[R], c.a[P] and d.a[T] produced by node Pare 

merged and abstracted to a[P]. In summary, component merge is the minimum 

extension of model composition which supports components, that is, models which 

have the additional structure of a typed link order and model qualifiers. 

8.5 Component composition 

Component composition is an operation which takes a collection of components and 

combines them into a single component, so node orders, link orders and producer/ 

consumer relations are all combined. The major property we want for this operation is, 

that model views are preserved where possible. That is, whether a component is 

viewed in isolation, or as part of a larger component (after composition) the same 

structure is seen. 

(i) T (ii) T 

~.~ 
couple {a,b} ./ 

~.~ 
A.!!. S A S couple {a,b} X. 

1\ /\ 
P!. a P!. a 

(iii) T (iv) T 

~.~ 
couple {a,b,c} ./ 

~.~ 
A.!!. S A S couple {a,b,c} X. 
I b I 
p--- P.!!.. ~ 

I 
X~ X~ 

(v) T 
couple {a,b} ./ 

(vi) T 
couple {a,b} ./ 

/ 
""' 

/ 
""' A~ s!. A~ s 

/'\_ 1\ /'\_ 1\ 
p a~ u p a~ u 

..!!.. ..!!.. 

Figure 8.5 Examples of link coupling 

Components are composed by mapping nodes from different models with the same 

name to the same node in the composed model, but for links a more flexible scheme is 



Component Composition 88 

used. In addition to mapping links with the same name from different models together 

(merging), two links may also map to the same link when they couple and their context 

is comparable (meshing). Link coupling and link context order are defmed next. 

Links couple when they share a common producer or consumer node. Examples of link 

coupling are shown in figure 8.5. In (i) links a and b couple as they share a common 

producer, node R, but in (ii) they do not couple as they have no common producer and 

no common consumer nodes. Case (iii) shows link coupling is transitive. Cases (iv)

(vi) provide additional examples of coupling and non-coupling. 

Link schema 

a • b + c 
b • d +. 
c •• + f 

(i) 

(ii) 

(ii) 

d(PJ 

I •g.1 +g.2 

8/ •• 

b(R) 

I ' 

b(T1 

I ' 
d(R) 8(R) d(T] e(T) 

b[RJ II[T1 

I ' 
/ ' 

d(R) e(R) b(T1 c(l1 

I ' 
/ \ 

d(T] e(T) I(T) 

g[P) g.1(PJ I(T) 

/ ' g.1[T) g.2[T) 

T 

Node order / """ R S 

I "' / \ p a u 

1. b{R] s b[T] 

2. d[P] s d.b[T] 

3. b[R] s b.a[T] 

4. d.b[R] s d.b.a[T] 

5. e.b[R] s e.a[T] 

6. g[P] s g.1[R] 

7. g.1[R] s g.1.f[T] 

8. g[P] s g.1.f[T] 

9. g[P] s g.2.f[T) 

Figure 8.6 Examples of link context ordering 

Link xis less than (w.r.t. the context order) y when: (i) x and its ancestors can embed 

into y and its ancestors, and (ii) x's model qualifier is less than or equal toy's model 

qualifier. The first condition is typically true when, y's name (without the model 

qualifier) is an extension of x's name. In figure 8.6 case 2, the link d[P] is less than 

(context) d.b[T] because the suborder of d[P] and its ancestors (just the single element 

d[ P]) embeds into the suborder of d.b[T] and its ancestors (the suborder containing 

d.b[T] and b[T]). Also, the d.b in d.b[T], is a extension of din d[P]. Case 5 shows an 

example where this name extension rule does not satisfy condition (i). This situation 

arises when the typed link order is not a tree. The formal definitions of context ordering 

are given in Chapter nine. 



Component Composition 89 

When components are composed, all links which may merge (they have the same 

name) are combined, but some links which are meshable (they couple and are context 

ordered) may not be combined. There are three situations in which the latter occurs: 

mesh clash, arbitrary choice and unique leaf link name violation. 

Mesh clash occurs when two links (which are not meshable with each other) are 

meshable with a link in another component. An example is shown in figure 8.7. Node 

R in the bottom component produces link a[R], while node R in the top component 

produces links a.l[T] and a.2[T]. Link a[R] is meshable with both a.l[T] and a.2[T] 

but it cannot mesh with both of them, as this would result in a. I [T] and a.2[T] mapping 

to the same link. 

T T 

/..,rn I 
A~ •compose• A~rn 

A~ ::) I 
~\ 

P~rn 

P- a 

Figure 8.7 An example of mesh clash 

Mesh clash may sometimes be resolved. So while the merging of two links may appear 

to introduce a mesh clash locally, the presence of other components may globally 

resolve this local clash. An example is shown in figure 8.8. In (i) four components 

compose and there is a mesh clash between link a[P] and links a.l[R] and a.J[S]. 

Links a.l[R] and a.l[S] don't mesh as their model qualifiers are non-comparable. In 

(ii) the mesh clash is resolved by the addition of a new top component which adds the 

link a.l[T]. Both a.l[R] and a.J[S] mesh with a.l[T], and so a[P] meshes with a.l[T] 

without any clash. In general a mesh clash is resolvable when the two links which clash 

a[M] and b[N], only fail to be meshable because their model qualifiers are non

comparable. The later addition of a link b[R] from a common node ancestor could 

resolve the clash. 



Component Composition 90 

·-------~ 

(i) T T 

I \ compose I \ 
A s A L1[R) s~J --~ \ A1[R) 

A~l s~J p~ --p ~) 

I I II(P) 
I I(P) 

p~R) p~l x-- X~ 

(ii) T T 

I \ compose I \ 
A~ s~ A L1(T) s~ --~ \ {,(T) 

A~l s~J p~ P--

I I II(P) I 
p~l p~S) x-- x~(T) 

Figure 8.8 Examples of resolvable simple mesh clash 

Arbitrary choices about which link to mesh, can occur when there are unresolved mesh 

clashes which involve three or more links, so that arbitrary subsets of a clash collection 

can still mesh together. For example in figure 8.7link a[R} meshes with a.J[T] and not 

with a.2[T} is an acceptable mesh. However, the choice of which links to mesh in these 

cases was arbitrary. The example shown in figure 8. 9 shows these arbitrary choices 

explicitly. Link b.a[R} may mesh with b.a.l[T], b.a.2[T] or none. These choices result 

in the components shown in (i), (ii) and (iii). 

T T T T 

i.a1(T) ~.a.1(T) ~.a.1(T) 4a1(T) 

A ~.21Tl A ~.21Tl A-- A~ t..~.2(T) 

compose 

I I l~ A~l 
~ 

~~RI 
p~(T) p~2(T) 

I I I 
A~ x~,(T) x~2(T) x~RJ 

I b(P) 
P--

(i) (ii) (iii) 

Figure 8.9 An example of arbitrary mesh choices 

In figure 8.7 the best resolution of the mesh clash, is no meshing. In figure 8.9 the best 

mesh is b[P] meshing with b.a[R] but b.a[R] meshes with nothing, that is case (iii). In 

general, the best mesh is achieved when all links which are meshable are combined, 



Component Composition 91 

except where it would lead to unresolvable mesh clash. The formal definition of best 

mesh is given in Chapter ten. 

In summary, this section has introduced component composition. Flexible composition 

was facilitated via the use of meshing, while constraints on the composition ensured 

that meshing occurred in a maximum but predicable manner. Independent naming of 

internal links within a component was facilitated via the use of model qualifiers. 

Together, these extensions to basic structured graphs provide better support for 

construction of large models by a team. Next, in the final section, a limitation of 

components is discussed. 

8.6 A component limitation 

A limitation of components and their composition, is the lack of unique names for non

leaf links in components. This section will present the situations where composition 

fails to attain this property. 

Components may not have unique names for non-leaf links. This allows component 

merge and hence composition to be total functions defined on all components, rather 

than being undefined for those components whose merging introduces non-unique link 

names. Examples of components without unique link names are shown in figure 8.10. 

l~~= 
T T T 

I I compose ~~ 
c 

R~ R 
~ 

R-

I I I (i) p p~ p~ 

8(P] a[~ 8(P] 11(~ 
/ ' / ' / 

b[R) c(P) ~ c(~ b[R) c(~ ~ 

R s R s 

I I compose \I 
p~ p 

~ 
p~ 

I I I (ii) 
X X~ X~ 

a[P) a[P] a[~ a[~ 

b[R) c{P) b[S] c(P) b[R) c(P) b[S) 

Figure 8.10 Examples of components without unique non-leaf link names 

In figure 8.10 (i) two components are composed. Each component contains a non-leaf 



Component Composition 92 

link a[P1. The left component a[P1 contains b.a[R1 and c.a[P1, while the right 

component contains b.a[P1 and c.a[P1. The model qualifier of the b.a link differs. The 

leaf links c.a[ P 1 from each component maps to the same link as they have the same 

name. The links b.a[R1 and b.a[P1 map to distinct links. The result is the overlapping 

link order with two roots, a[ P 1 and a[ P 1 which are distinct as they represent different 

sets of leaf links but they have the same name. The example shown in (ii) is similar 

except the leaf link which have the same context b.a[R1 and b.a[S1 have model 

qualifiers which are non-comparable but still overlap. 

Typically the cases which give rise to non-unique names are rare, so an implementation 

of this system could warn the user, indicating the problem links and allow the user to 

undo the composition and adjust the names of these links. 



Chapter 9 

Typed Order Formalism 

This chapter presents the formal definitions of typed orders and the schemas for 

generating them. Typed link orders have been presented and motivated in chapter 

seven. The major concern was to support the construction of large orders, where many 

suborders have a common structure and common naming by allowing a user to specify 

the common parts: the schema. Major challenges were: to define a typed order which 

could be an arbitrary ordered set rather than just a tree; and to defme an associated typed 

order schema. 

In structured graphs the naming of nodes and links was not a concern as it was 

assumed each distinct node and link would have its own unique name. For typed orders 

naming is a major concern, because we would expect corresponding elements in 

suborders with the same type to have a related name. That is, we would expect the 

naming of elements to highlight their type relationship. Such a naming scheme for type 

ordered trees is straightforward. The other major challenge was: to define such a 

naming scheme for general typed orders which produces names which are also unique. 

Typed orders will be presented in four stages. First, labelled orders are presented. 

These are an extension of ordered sets in which each element has an associated label, 

and global names are defined in terms of these labels. Second, typed orders are 

presented. These are labelled orders extended with type information. Third and fourth, 

typed order schema and the unfolding functions are presented for both trees and the 

general case; these functions map order schema to typed orders. 

9.1 Labelled orders 

A labelled order is an ordered set where each element has a label. The key design choice 

here is: what will the scope of each label be ? There are two natural choices. Each label 

could have global scope: a label distinguishes an element from all other elements in the 

order. The other choice is that each label could have local scope: a label only 

distinguishes an element from all of its siblings. 

Whether global or local labels are chosen, we wish to be able to identify each element 

amongst all other elements. Names will be used for this purpose. However we don't 

insist on names being unique, though we do try to choose a naming scheme which will 

deliver unique names in most cases of interest. Clearly, if globally scoped labels are 

used, they can also be used as names. However, if locally scoped labels are used, 

names must contain more than the local label. 



Typed Order Formalism 94 

In this thesis labelled orders with locally scoped labels are chosen, as this is more 

general and supports the style of typed order presented later. It is more general as a 

globally scoped order can be described as a locally scoped order with the additional 

constraint that each label is also globally unique. Next, labelled orders are defined; this 

is followed by the introduction of a naming scheme. 

Definition 9.1 Let (P ,S) be a finite ordered set, L P --+ Label. The tuple 

(P,S,L,Slabei) is a labelled order when: 

'V x,y: p • 

L x = L y => not siblings {x, y} 0 

The constraint requires labels of sibling elements to be distinct. Note that L is a total 

function, so that all labels participate in the label order. The label order captures the 

style of labels used in this thesis; labels as a sequence of text strings separated by full 

stops, for example, a.l.l and engine.fore.left. The label order will play an important 

part in component meshing, described in the next chapter. 

For labelled orders which are trees there is a natural naming scheme: for each element 

its name is a sequence of labels formed by the element's label and its ancestor labels. 

The ordering of labels in the name sequence matches the order of the corresponding 

ancestor elements in the labelled order, that is the chain of ancestor elements. Such 

names can be easily incorporated into text passages as they are just a list. 

We wish to use a similar naming scheme for general labelled orders. But in general, 

ancestor sets are not always chains. For arbitrary ordering, we show how to extract 

chains which can be used as a basis for naming. 

Definition 9.2 Let {P,S) be an ordered set. Let S be a subset of P. The function 

chainpoints is given by: 

chainpoints S = { a : S I 't/ b : S • a S b or b S a } 0 

Chainpoints are those elements of a set S which have no non-comparable elements in S. 

The chainpoints of S form a chain within S. 

In figure 9.1 (i) all elements in the order d, band a are chainpoints, in (ii) elements d 

and a only are chainpoints, and in (iii) only element a is a chainpoint. 



l 

Typed Order Formalism 95 

a a a 

I \ I ~ b b c b c d 

"' / "' I 
d d d 

(i) (ii) (ill) 

Figure 9.1 Labelled orders which lack unique full chain names 

Definition 9.3 Let (P,S:,L) be a labelled order and a e P. A labelled sequence N is a 

chain name for a if there is a corresponding increasing sequence X of elements in the 

chainpoints of t a such that: 

X 1 = a and 'V i • L (X;) = N; D 

Chain names are an extension of the naming scheme suggested for trees because in a 

tree all elements in an ancestor set are chainpoints. Note that a chain name must only 

contains the labels of chainpoint elements, but it is not required to contain all 

chainpoints. If all chainpoints are included in the chain name, then we call this a full 

chain name, which we will often abbreviate to full name. 

In a tree labelled order full chain names are always unique. However, when the order in 

not a tree, even full chain names are not always unique. An example of this is shown in 

figure 9.l(iii). There are two elements with label d, and both have the same full chain 

name, the sequence <d,a). 

A labelled order in which each element has a chain name and these chain names are all 

unique, will be described as having the property of unique chain names. We are most 

interested in labelled orders with this property. In the fmal section of this chapter on 

typed order schema we will identify those typed order schema which unfold into 

labelled orders with unique chain names. 

Finally, to support the definition of typed orders in the next section, we need to define 

an equivalence of labelled orders. Two labelled orders will be equivalent when they 

have the same order structure and corresponding elements have the same labels. 

Definition 9.4 Equivalence ''"\of labelled orders. Let A and B be labelled orders. 

A'''\ B iff (i) ""L restricted to the underlying ordered sets yields an order isomorphism, 

and (ii) labels are preserved for corresponding elements. D 



Typed Order Formalism 96 

9.2 Typed orders 

A typed order is an extension of a labelled order, in which type information is added 

and portions of the order with the same type are constrained to be similar. For typed 

orders we wish the name to also give some indication of its type. We require labels to 

be associated with only one type, though several labels may be associated with the 

same type. This is the style of typed order used in previous chapters and is formally 

defined next. 

Definition 9.5 Let (P,S:,L,~abel) be a labelled order and T : P ~ Type a type 

function. A typed labelled order is the tuple (P,S:,L,S:label ,T) where: 

(i) 3 <p: Label-+ Type • 

<poL=T 

(ii) 'V x,y : P • 

Tx= Ty => (!x <l S: t> !x) ==L (!y <l S: t> !y) 0 

The typed labelled order constraint ensures that elements with the same type are the tops 

of equivalent labelled orders, that is, have the same order structure and labelling. A 

consequence is that a label can not appear in the same chain name twice, as this would 

imply an element has a descendant with the same type; as typed orders are labelled 

orders which are finite, this is not possible. Our convention for an element's label is to 

include its type as a prefix. A consequence is that, comparable labels have the same 

type. Now an equivalence relation for typed orders can be given. 

Definition 9.6 Equivalence ==Toftyped labelled orders. Let A and B be typed labelled 

orders. A ==T B iff (i) A and B are labelled order equivalent, and (ii) types are preserved 

for corresponding elements. We denote corresponding elements a e A, b e B, in 

equivalent typed orders, as a ==T b. 0 

Typed labelled orders are equivalent when they are label order equivalent and 

corresponding elements have the same type. Finally, in this section typed order 

consistency is defined. This is required for the definition of component composition in 

section 10.4. Consistent typed orders share a common pool of type definitions; that is, 

they could have been generated from the same typed order schema. 

Definition 9.7 Let A and B be typed labelled orders. Then A and Bare typed order 

consistent iff they satisfy: 

'V x:A, y:B • 

TAx= T8 y => (lx <l S.A t> lx) -T (ly <l S.8 t> ly) D 



TypedOrder Formalism 97 

This constraint ensure that elements from A and B with the same type, are the root of 

equivalent typed sub-orders. In the remainder, typed labelled order will be abbreviated 

to typed order. 

9.3 Typed tree schema 

In this section the schema for generating a typed tree is given first, followed by the 

definition of the unfold function for converting a schema into a typed tree. The 

definitions given in this section are not directly used later, their purpose is to provide a 

restricted but simpler version of the definitions in the next section. 

Definition 9.8 A tuple (CS> Ts) is a tree schema iff: 

Cs: Type-+ P Label (the children mapping) 

Ts: Label-+ Type (the type mapping) 

(map Ts) o Cs is acyclic 0 

The ( Cs, Ts) pair is like a record data type; a type is made up of several components, 

each with their own type. In previous examples of order schema, those types which do 

not appear on the LHS of the schema, map to an empty set by default. The constraint 

states there are no type cycles, and so the schema will generate a finite order. Now we 

can present the partial function for converting a tree schema into a typed tree. 

Definition 9.9 A typed tree (P,-5:,L,~beltn is a valid tree_unfold of the tree schema 

(CS> Ts) with root label/ iff: 

(i) L (root P) = l 

(ii) 'V x,y : P • 

y-< x <=> LyE Cs (T x) 

(iii) T = T8 oL 0 

9.4 Typed order schema 

Two approaches to extending typed tree schema to typed order schema were discussed 

in Chapter seven. The approach chosen was, the introduction of a scope function. The 

scope function just indicates where the overlap of suborders occurs. Also, by using the 

scope function a natural extension to the naming scheme used for the typed tree was 

possible. Next define a schema for generating typed orders and its unfold function. 



Typed Order Formalism 98 

Definition 9.10 A tuple (Cs, Ss. Ts) is an order schema iff: 

Cs : Type -+ 6' Label 

Ss : Type -+ 6' Label 

Ts : Label -+ Type 

(i) (map Ts) o Cs is acyclic 

(the children mapping) 

(the scope mapping) 

(the type mapping) 

Now let <T be the strict partial order generated by this relation. 

(ii) 'V X : Label; a,b : Type • 

(iii)'V x : Label; a,b,c : Type • 

0 

Constraint (i) is as for tree schema. Constraint (ii) ensures the scope relation does not 

induce redundant transitive links in the resultant "order". An example of this is shown 

in figure 7.3(ii) which we repeat here as figure 9.2. 

a = b + c 
b = c 

a/= c 

a 

<I c 

Figure 9.2 An "order" with a redundant transitive covering link 

A typed order generated from the schema shown in figure 9.2 must satisfy: band care 

covered by a, c is covered by b, and there is only one element with label c below a. The 

graph which satisfies this constraint, is not the covering relation of an order. The edge 

between a and c should not appear, it should be added when taking the transitive 

closure of this covering relation to form an order. 

Constraint (iii); scope continuity, imposes a convexity condition on types scoping the 

same label. An example of this is shown in Chapter seven figure 7 .4. This ensures that 

orders and suborders with the same type are always equivalent. Now we can present 

the partial function for converting an order schema into a typed order. 



Typed Order Formalism 99 

Definition 9.11 A typed order (P.~.L.~labet.1) with a unique maximal, root of P, is a 

valid unfold of the order schema ( C so S so Ts) with root label/ iff it is the largest (has the 

most elements) order which satisfies: 

(i) L (root P) = l 

(ii) 'V x,y : P • 

y-< x <=> Lye Cs (T x) 

(iii) T = Ts a L 

(iv) 'V a,b,c : P • 

La=Lb and a<c and b<c andLae Ss(Tc) => a=b 0 

We think of unfold as constructing the order from the schema and label. Constraints (i) 

- (iii) are the same as for tree_unfold. Constraint (iv) gives the conditions where 

elements must be overlapped; which allows non-trees to be generated, while the 

requirement the typed order is the largest, ensures no further overlapping is done. 

Figure 9.3 provides an example of the need to choose the largest order. 

a = b + c a a 
b = d + e / 

"" 
I \ 

c = e b c b c 
d = f 

1\ I\/ e = f 
Children Schema d e e d e 

\I \I 
b/ = f f f 

Scope Schema 
(i) (ii) 

Figure 9.3 Order (i) is larger than order (ii) 

The typed order shown in figure 9.3(i) is the unfold of the example schema. The typed 

order shown in (ii) was a possible unfold of the example schema. It satisfies constraints 

(i)- (iv), but it is not the largest such order. Element e has been shared by parents band 

c resulting in a smaller order, even though there is no a/= e in the order schema. 

Unfold creates a single rooted order. When applied to a set, unfold generates a 

collection of disjoint orders. 



Typed Order Formalism 1 00 

Definition 9.12 A typed order (P,S.,L,S.Label .n generated from the order schema 

(Cs-Ss-Ts) satisfies the unique root scope constraint if and only if: 

't/a:P • 

{ x e la I Ss (T x) = La } is empty or a singleton 0 

Recall, in Chapter seven a desirable property for typed orders was identified: the 

possession of unique chain names for each element. Figures 7. 7 and 7.8 gave examples 

of typed orders which did not have this property. Using the unique root scope 

constraint we can now identify those typed orders which do have this property. 

Proposition 9.1 A typed order generated from an order schema has unique full chain 

names for all elements, if it has unique root scopes. 0 

In summary, labelled orders then typed orders have been presented. The major concern 

of this chapter has been the naming of elements. A naming scheme for labelled orders 

which was a natural extension of the naming scheme for typed trees was given. The 

key, was mapping orders to chains through chainpoints. The schema representation of 

the type order was presented in two stages: the typed tree schema, then the typed order 

schema. The extension of typed trees to typed orders was enabled by the introduction 

of scope schema. Finally, those typed orders which satisfy unique chain names, and 

can be generated from a order schema were identified. 



Chapter 10 

Structured Graph Component Formalism 

This chapter presents the formal definitions of components and component composition 

which were informally introduced and motivated in Chapter eight. The major concern is 

to support the construction of large models by a team. Each team member needs 

significant autonomy in constructing his or her part, yet all parts should contain 

sufficient information so they can be integrated easily. Components are intended to be 

such parts. Most of this chapter describes the composition of components. 

Components 

Component 

Component 

Proper 
Component 

composition 

Figure 10.1 An overview of component composition 

Figure 10.1 indicates how component composition is structured. The first step is to 

take the disjoint union of the underlying structured graphs. Second the resulting 

component is merged: links with the same name are combined. Third the resulting 

component is meshed: links which mesh are combined. Structures which can be self 

composed without change are of particular interest; we call them proper components. 

10.1 Pre-components 

Pre-components are structured graphs which have been extended in two ways: the 

addition of model scopes, and the use of a typed link order. Components, defined later, 

are a subset of pre-components. We present the definition of pre-components in two 

stages: structured graphs having a model qualifier function, then add a typed link order. 



Structured Graph Component Formalism 1 02 

Definition 10.1 The relation M is a model qualifier function for a structured graph 

($;~o ~.prods, cons) if and only if: 

M: links~ &'nodes 

(i) 'Va: links • 

Ma =! (Ma) 

(ii) 'V a : links • 

M a = n { M b I b e span a} 

(iii) 'V a : links • 

prodsa u consa ~ Ma D 

The model qualifier function attaches a model qualifier to each link. Model qualifiers 

limit where a link can appear. The model qualifier is a node downset, constraint (i). A 

link can only appear as a producer or consumer within the portion of the model given 

by its model qualifier. Non-leaf link model qualifiers are derivable from their 

descendent leaf link model qualifiers. Constraint (iii) requires that a link can only 

appear where all of its leaf links appear. 

Definition 10.2 A pre-component is a structured graph with a model scope function 

and typed link order. D 

10.2 The merge operator and components 

In this section component merge then components are defmed. First, some preliminary 

defmition are required: order parts and an ordering on pre-components. 

Definition 10.3 Order parts is the partition of an ordered set into its set of 

disconnected components (in graph theoretic terms). D 

In figure 10.2(i) the link order before merging contains six parts and the node order one 

part, while after the merge, there are four link order parts. Chapter eight described 

merging and meshing in terms of individual links. In this chapter they are defined in 

terms of link order parts, to allow a simpler definition. 



Structured Graph Component Formalism 1 03 

Definition 10.4 Let X and Y be pre-components. Let ~re denote an ordering on pre

components which have a common node order. Then Y ~re X iff: 

V n: nodes • 

V a : outy n, 3 b : outx n • ia ==T ib 

and similarly for inputs D 

A pre-component is smaller when its interface links sets are smaller, up to typed order 

equivalence (see definition 9.6). Since abstract model interfaces are downsets, it is 

sufficient to compare leaf links. Now the merge operator can be defmed. 

Definition 10.5 Merge is a function on pre-components. For such a pre-component 

X, Merge X= Y where Y is the smallest pre-component (w.r.t. ~re) satisfying: 

(i) X and Y have the same node order 

(ii) there is an onto mapping 'If from linksx to linksy, and each order part P in 

linkx embeds into linksy where P and its image are typed order equivalent 

(ill) V a : linksx • 

prodsx a r;;. prodsy (1JI a) and consx a r;;. consy (1JI a) and Mx a= My (1J1 a) 

(iv) V a,b : leaf linksx • 

la:::;_ tb and Ma=Mb <::::> 'lfa='lfb 

(v) V a,b : non-leaf linksx • 

t a :::;_ t b and 'If (span a)= 'If (span b) <::::> 'If a= 'If b D 

Constraint (ii) requires a link order is made smaller by merging or embedding order 

parts, for example in figure 10.2(ii) each order part embeds into the final order. 

Constraint (iii) and the requirement that Y is the smallest such pre-component, ensures 

all link producers and consumers are preserved, while not adding any extra ones 

beyond those added by an abstract completion. Constraints (iv) and (v) in most cases 

require, leaf links to be combined when they have the same link name and model scope, 

and non-leaf links to be combined when they have the same link name and their leaf 

links merge together. Full upsets are used in (iv) and (v) rather than names, because 

some leaf links may not have unique full chain names. 



Structured Graph Component Formalism 1 04 

T 

Node I 
Order p 

I 
X 

(i) 

T 

Node I 
Order P 

(ii) 

I 
X 

II(T) ..:PJ 1(P] ..:PJ 1(P] 

I \ I I 
b£Tl c:(T] e(P] e(P] 

Link Order 

~ Merge 

II(T) ..:PJ 1(P] 

I \ I 
b£Tl c:(T] e(P] 

New Link Order 

a[X] a[X] 

I \ I \ 
b[P] c(X] b(X] c(X] 

Link Order 

~ Merge 

a[X] a[X] 

I \ I \ 
b(P] c(X] b(X] 

New Link Order 

Figure 10.2 Examples of the effect of merge on link orders 

~ 

~ 

Figure 10.2 shows two examples of merge. In (i) the link orders with equivalent leaf 

links and the same model qualifier; d[P], e.d[P] andf[P], are combined. However, in 

(ii) the two occurrences of b.a[X] are not combined, resulting in a link order in which 

there are two a[X]'s. This situation was discussed in section 8.6, as a component 

limitation. 

The alternative merge for example 10.2(ii), is to combine no links. The result would be 

worse, as in addition having two link with name a[X], there would also be two leaf 

links with the name c.a[X]. This example highlights a limitation of the model qualifier 

rule used for non-leaf links: a link's model qualifier is the intersection of its descendant 

link qualifiers. Recall, a model qualifier is a downset of nodes, but in diagrams we only 

show the highest nodes, so in 10.2(ii) b[P] rather than b[P,X] is used. As indicated in 

section 8.6, a reasonable implementation would highlight this situation of having two 

links with the same name, allowing users to take some action. 

Components were described in Chapters six and eight as being structured graphs with a 

typed link order and model qualifier. Components also typically have the property of 

unique link naming. Merge is a function which typically combines links with the same 

name. Now we can define components. 

Definition 1 0.6 A component is an element of the range of merge. 0 



Structured Graph Component Formalism 1 05 

Examples of pre-components are shown in figure 10.2, where the link orders prior to 

merge contain links with the same name. 

10.3 The component mesh operator 

In this section component mesh is defined. The constraints a component meshing 

function must satisfy are given. Then in the final part of this section a particular 

meshing function is chosen to be the mesh function. 

Definition 10.7 For a given component, ~esh is an ordering between link downsets 

given by the reflexive transitive closure of ~sh where A ~sh B satisfies: 

(i) A is an order part 

(ii) A embeds into B; let <p be the mapping from A to B 

(iii)'v'a E A, be B • 

<p a = b and a e A ~ L a Stabel L b 

(iv)'v'a EA, bE /l • 

<p a= b ~ ((prods a n prods b :t:- 0) or (cons a n cons b :t:- 0) 

andMacMb 0 

A mesh ordering rather than mesh relation is required because: links are meshable only 

when they transitively couple as we discussed earlier in section 8.5. Constraints (i) and 

(ii) ensure that links in the same order part always mesh at the same time, that is, there 

is no partial meshing of an order part. Constraint (iii) allows links to be mesh ordered 

when a label prefix relationship holds between the links roots. Constraint (iv) requires 

that corresponding leaf links couple and are model qualifier ordered. 

Figure 10.3 demonstrates why both order parts and downsets are required for the mesh 

order. The order part with root a[ P] can mesh with either downset a. I [T] or downset 

a.2[T]. For this example, we choose a.l[T]. If only order parts were used, the 

presence of this choice would not be noticed. 



( 
T 

I em 
p~ 

I 
X 

T 

I 
p ..!1!1_ 

I 
X 

Structured Graph Component Formalism 1 06 

Link Order .lJ. A meshing 

New Link Order 

Figure 10.3 A possible result of meshing 

Definition 1 0.8 Component Y is a valid mesh of component X when Y is one of the 

smallest pre-components (w.r.t. ~)which satisfies: 

(i) X and Y have the same node order 

(ii) linksy !;;;;;; linksx, and there is an onto mapping 'I' from linksx to linksy, and 

each order part P in linksx embeds into linksy where P and its image are typed 

order equivalent 

(ill) 'V a : linksx • 

prodsx a c prodsy ('If a) and consx a !;;;;;; consy ('If a) 

(iv)'V A: order _parts L • 

A ~esh 'I' A 

(v) My = linksy <1 Mx 

we call the partition on domain links induced by 'If, the link mesh partition. 0 

For a given component there may be many such mesh functions. One such function is 

the trivial mesh where no consolidation of links is done, leaving the component 

unchanged. Constraint (ii) requires a link order is made smaller only by merging or 

embedding order parts. Constraint (iii) and the requirement that Y is the smallest such 

pre-component, ensures all link producers and consumers are preserved, while not 

adding extra ones beyond those added by an abstract completion. Constraint (iv) 

requires that links are partitioned into groups, which contain order parts that mesh with 

the maximum order part in the group. Constraint (v) requires that model scopes are 

preserved for those links left in Y. 



Structured Graph Component Formalism 1 07 

A collection of valid meshes is given in definition 10.8. We wish to choose one that 

does as much meshing as possible without arbitrary choice, as explained in Chapter 

eight. Meshing functions will be compared by how they partition links. Next we 

provide a method for choosing a best partition. 

Definition 10.9 Let W = {'Jidiel be a set of partitions on some initial set, and let '1'1 
be the trivial partition on this set, so each block in 'VI contains one element. The best 

partition in {'Vi he 1 is given by: 

best {'Vdiel = maximum (chainpoints {'Vdiei) 

where, 

0 

Note there is at least one chainpoint; the trivial partition, as this is always the minimum 

partition. To aid understanding of how link mesh partitions work, an example follows. 

Figure 10.3 shows four components. 

T T xi(XJ y~ 
L1[TJ 

I 

a.2[TJ 

I L~ 
II(X) 

II(XJ 

c:(Y) 

I \ I \ I \ 
lc:(Y) 

b(T] c:{T1 b(T] c:{T1 b(X] c(XJ 

X L1[TJ x- v- z-
c, c2 Cs c,. 

Figure 10.3 Four components 

A merge of the four components in figure 10.3 results in the components shown in 

figure 10.4. Consider all possible mesh coupling of links in the example. Flow c [Y] 

can mesh with a [X] as they are context ordered and they have a common producer x, 

link a [X] could mesh with a .1 [T] or with a. 2 [T]. 

T 

I~ 
L 1 [TJ a.2[T] a(X) c:(Y) 

I \ I \ I \ 
b[TJ c:{T1 b(T] c:{T1 b(X] c(XJ I: 

v-
~ 

lc:(Y) 
z-

Figure 10.4 The merged four components 



Structured Graph Component Formalism 1 08 

The choice of which links to combine is done by considering all possible link mesh 

partitions of the link order. Figure 10.5 shows the possible link mesh partitions. 

T 

1tl [ c(Y) I II(X] I L1[T] I~ I I~ 
X~ 

c(Y) 8{X) Lt[T] L2(T] I~ 
I \ I \ I \ v-

c(Y) .. 
b(X) c(X) b[T] c:[T] b[T] c:[T] 

lc(Y) 

z-

T 

1tz 

I 

II(X] 

I 
L1[T] 

I 
~ 

I 
I~ I 

c(Y) X~ 

I~ 
II(X] Lt[T] ~ 

yii(X] 

I \ I \ I \ 

'~ 
b(X) c(X) b[T] c:[T] b[T] c:[T] 

z-

T 

I Lt[T] 
L1[T] ~ 

I -L1[T] ~ x~ 
8{X) I \ I \ 

I I b(T1 c:[T] b[T] c:[T] 

c(Y) y L1[T] 

1t3 I CAt[T] z-
-------· 

I 
T 

I Lt[T] 
L2(T] L1[T] 

I -a.1[T] L2[T] XL2(T] 

I \ I \ -a(X] 

I I I I b[T] c:[T] b[T] c:[T] 
I I 

c(Y) I 

y~ 

I 
C.L2(T] z-

Figure 10.5 Four possible mesh partitions 



Structured Graph Component Formalism 1 09 

The link mesh partitions can themselves be ordered, and this is shown in figure 10.6. 

The highest chainpoint (the highest element with all other elements either above or 

below it) is 1t2, so this is chosen as the best partition. 

Figure 10.6 An ordering of the four mesh partitions 

Proposition 1 0.1 Let A be a component. Then there exists a unique meshing function 

on A which has the best link mesh partition. It is denoted by the function mesh. 0 

10.4 The component composition operator and proper components 

Definition 10.10 Let C 1 ••• Cn be components which have consistent typed link 

orders, and have composable node orders. Component composition is a function which 

maps a set of components to a component and is given by: 

C1 o C2 o ••• o Cn = mesh o merge o ( C1 u C2 ••• u Cn) 

where, u is disjoint model union. 0 

When the composition operator is applied to a single component, it removes merge and 

mesh redundant information. For example, if the component contains links with 

equivalent names and links which mesh without conflict, then self composition will 

reduce these sets of links to single links. If a library of components is used, a desirable 

property for composition is: for all views in each component there is an equivalent view 

(though with an extended context perhaps) in the composed component. Library 

components should then at a minimum, not contain redundant mesh information which 

would cause the loss of some views under composition. 

Definition 1 0.11 A proper component is an element of the range of component 

composition. 0 

We have presented definitions of components and their composition. Components were 

identified as the range of the merge operator, while proper components were idenlified 

as the range of the composition operator and as candidates for forming libraries. 



Chapter 11 

Conclusion 

Two traditional ways of visually organising infonnation are: hierarchies for abstraction, 

and graphs for arbitrary relations. The major contribution of this thesis is to present a 

visual formalism which is a generalisation of these two approaches, structured graphs. 

The treatment is general: arbitrary hierarchies are supported, and compositional 

techniques are supported with structured graph components. Because structured graphs 

are built upon such basic visual formalisms, hierarchies and graphs, they should be 

applicable in many areas. 

The rest of this chapter will summarise the thesis contributions, describe existing 

limitations of this work, and indicate some directions for future work. The thesis has 

been presented in two parts: structured graphs and structured graph components. Part 

one is work which is relatively complete and future work is likely to be on tool support, 

whereas part two is work which requires further extension. Because of this we choose 

to present the contributions separately for each part. 

11.1 The contribution of part one: structured graphs 

Part one has presented structured graphs, with examples and mathematical defmitions. 

Structured graphs support the abstraction of large and complex networks (of nodes and 

links), through the use of node and link hierarchies, and automatic derivation of high 

level views from an underlying network. This is a bottom-up perspective, which 

contrasts with the top-down perspective of structured analysis. 

In Chapter two we showed that with structured graphs, the operations of adding a flow 

and moving a process only require one user step. Furthermore, as the model increases 

in size, the benefit of our approach increases. This addresses one of the major 

deficiencies of current graph based CASE tools: a lack of scalability for user operations 

which induces inertia in large developments. 

The key thing which delivers scalability is the separation of a structured graph model 

into the three orthogonal parts: the node order, the link order and the network of leaf 

nodes and links (for a complete model). It is this separation which simplifies the editing 

operations. The separation has another potential benefit. Altemati ve node and link 

hierarchies can be used simultaneously provided they have the same leaves. 

In Chapter three examples illustrated the complexity caused by allowing the node 

hierarchy to be an ordered set rather than just a tree. They also describe both bottom-up 



Conclusion 111 

and top-down construction of structured graphs. Also structured graphs may be 

incomplete models; lowest producers and consumers of a link may not be leaf nodes 

and there may be links which have only producers or consumers. Input and output 

interfaces are context free: regardless of what model view a node appears in, it has the 

same full interface. 

The mathematical treatment defined structured graphs, then identified two canonical 

representations: compact and abstract. The major properties, equivalence of compact 

and abstract models, closure, and abstract model convexity were presented. Model 

browsing was defined on the abstract representation, while model editing was defmed 

on the compact form. Proofs for the properties have been given in appendix B. 

This thesis includes two implementations of structured graphs. The first is in Gofer a 

functional language, and the code and sample runs are given in appendix C. The Gofer 

code implements the compact and abstract completions on arbitrary structured graphs. 

The second implementation is in C++ and a sample run of this is given in appendix D. 

The C++ program allows a structured graph to be incremently built and browsed. The 

Gofer code (with interpreter) and C++ application are on a floppy disc (Macintosh) that 

comes with this thesis. 

The generic nature of structured graphs (in terms of nodes and links only) makes it 

application independent and suitable for application to other areas. This is shown by 

two recent papers in which structured graphs are used in hypermedia work (Lowe and 

Sifer, 1996) and (Lowe et al., 1996). Also, in the future, structured graphs may be 

used in the design of file systems which integrate file directories (hierarchies of files) 

with world wide web page style hyperlinks (arbitrary relations between files). 

11.2 Limitations of structured graphs 

Structured graphs have a number of limitations. Two major ones are: (i) structured 

graph composition is not always associative, and (ii) some links may not be viewable. 

A lack of associativity means that if the collection of updates to a model is done in a 

different order, the result may be different. Clearly, for a user the order of updates to a 

model should not matter. However, the failure of associativity only occurs with an 

unusual arrangement of half flows and so is unlikely to occur often in practice. Also, if 

the structured graph is, either restricted to node and link trees, or restricted to full flows 

only, associativity is guaranteed. So associativity is likely to hold for restricted forms 

of structured graphs which will be sufficient for some application areas. 

The other major limitation is that some links may not be viewable if flat model views 

are used. This occurs when the link order is not a semi-inclusion order. The problem 

for a user is that a flow may be added between two nodes, but after the add, a different 



Conclusion 112 

flow (an ancestor) could appear. This can occur because each node's interface is the 

maximum of output or input links, and some links (say in a chain) may never be a 

maximum. Node interfaces could be set manually to overcome this problem, but this 

extra manual effort will tend to decrease scalability. 

11.3 Future work for part one 

• The formalism would benefit from a clear classification of structured graphs into 

groups which satisfy the associative and viewability properties. 

• The implementation produced for this thesis is text based. A graphical 

implementation which followed the visual notation used in Chapter two would 

allow actual user trials to be conducted to verify the claims of scalability. 

11.4 The contribution of part two: structured graph components 

In part two the visual notation for structured graph components was given, initially in 

the context of structured analysis. Components were then defined in two stages: typed 

order, then components and their composition. Finally formal definitions were given. 

Part two addresses the problem of the construction of large structured graphs by a 

group. It further enhances the scalability of editing. This has been achieved through the 

introduction of structured graph components and their composition. Each team member 

constructs only a portion of the overall model, a component. Each component can have 

its own link name space through the use of flow model scopes. Also, the components 

can be composed together in a flexible fashion, via meshing, with a single user 

operation. A flow in a lower component need only be a refinement of a flow in a higher 

component to mesh. This is far more flexible than the explicit identification by name of 

which flows from adjoining components should be merged. Also, component 

composition has been defined to support top-down, bottom-up and layered 

construction. 

The other main contribution has been the design of the typed order and typed order 

schema. The order schema is a tree schema which has been extended with scope 

schema. Typed order schema allow arbitrary orders to be generated, so components 

which include a typed order include an arbitrary ordered set. Typed orders make 

meshing possible, as meshing was defined in terms of a relationship between typed 

orders. 

The use of link schema becomes necessary for large structured graphs where portions 

of the link order have a common structure. Having the link schema enhances the 

scalability of editing by allowing a common structure to be defined only once. 



Conclusion 11 3 

11.5 Limitations of structured graph components 

One limitation of components is that component merge can introduce non-unique names 

for non-leaf links. A work around was proposed, an implementation could provide a 

\Varning when this situation is detected. 

Another limitation is the lack of support for the meshing of components where the link 

order does not follow the node order. That is, where a lower node may output a parent 

link and its children, but a higher node outputs only one of the child nodes. This 

limitation was not directly presented earlier, though it is implicit in the unique leaf name 

violation case discussed in Chapter six. This limitation is unlikely to be a problem for 

structured analysis applications, because top-down development makes this situation 

less likely. However, for applications where development is not top-down and 

especially where a link may have multiple producers, this could be a significant 

limitation. 

11.6 Future work for part two 

• Extend both the typed order and meshing to produce a definition of components 

without the limitations identified in the previous section. 

• The design of component libraries. Determine the extent to which component 

composition is associative, and propose component variations for which 

composition is associative. 

• An implementation is needed to give confidence to further validate the mathematical 

descriptions and to allow experimentation. An earlier version of components was 

implemented in Gofer, but this has not been included in this thesis as it was based 

on an earlier version of structured graphs. In fact, it was the limitations of this 

earlier component implementation which motivated the final improvement of 

structured graphs in part one to fully support half flows. Half flows were required 

in components to support an explicit interface (the link inputs and outputs of a 

components root node). 

• The introduction of component schema. This is likely to require further work on 

typed order schema. The existing scope based schema has a top down orientation 

which does not seem suitable for a typed node order. For example, a scope schema 

in a higher component could distort a lower component (by merging some of its 

internal nodes) resulting in unintended effects on the model. 

11.7 A component schema example 

Component schema allow the generation of typed models. That is, submodels with the 

same type should have the same internal structure. Most of the properties required for 



Conclusion 114 

typed models have already been met by components. The remaining property is the 

preservation of typed model substructure, that is, preservation of submodels. To 

motivate the need for submodels consider the example shown in figure 11.1. 

T 

M.1~P 
~1 \ ~ \ a2 

R----s R~s 

~\ ~\ 
v- z v- z 

a= b+ c 

Model Link Schema 

Figure 11.1: An untyped model 

Note in addition to flow typing the model in figure 11.1 also uses a typed node order. 

This model could be built as the composition of three components, with root nodes of 

M.l, M.2 and T. Components M.l and M.2 have a common internal structure; if flows 

a.l and a.2 were replaced by a. A typed model factors out this common structure 

through the use of schema. The schema used to construct a typed model will be 

component schema. An example is shown in figure 11.2. 

a.2 

(a) 

M 

1.\ 
R----s 

1\ 
y...!.. z 

(~) 

Figure 11.2: A typed model 

Two component schema are shown in figure 11.2, for node types T and M. These are 

instantiated in the final unfolded model as T, M. I and M.2. Full use has been made of 

component composition here: flow a.2[T] meshes with a[M.l], and a.2[T] mesh with 

a[M.2]. The additional restriction for a typed model schema is that component schema 

share the same flow and node schema, and rather than a library of components there is 

a library of component schema. 



Conclusion 11 5 

11.8 Final Discussion 

The approach of this thesis has been, to aim for a formalism which is as general as 

possible, though many applications may only require a restricted version of the 

formalism. This approach has been taken because we believe it yields a cleaner, more 

elegant mathematical treatment, rather than a formalism which is complicated by the 

internalisation of constraints for some arbitrary domain of application (say structured 

analysis). Also, abstracting away from any given application domain makes the 

formalism more widely applicable. Examples of this are, support for links with multiple 

producers, and the support for bottom-up construction which are not part of traditional 

structured analysis. 

This generality comes at some cost: the formalism becomes further removed from any 

given application and can initially be more difficult to comprehend. In this thesis, in 

addition to presenting the formalism we have been at pains to show the formalism in 

action in an application area (structured analysis). 

In summary, this thesis has presented the structured graph visual formalism, which 

allows the scalable browsing and editing of large graph based models. This has been 

demonstrated for structured analysis models, while the generic nature of the formalism 

makes it suitable for possible application to other areas. 



Bibliography 

Adler, M. (1988): An Algebra for Data Flow Diagram Process Decomposition, IEEE 

Transactions on Software Engineering, Vol. 14, No. 2, Feb. 1988, 169-183. 

Amdt, T. and GUERCIO A. (1992): Decomposition of Data Flow Diagrams, 

Proceedings of the Fourth International Conf. on Software Engineering and 

Knowledge Engineering, IEEE Computer Society Press, 1992, 560-566. 

Beeck M. von der (1993): Enhancing Structured Analysis by Timed Statecharts for 

Real-Time and Concurrency Specification, Elsevier Science B. V. (North-Holland) 

1993, 369-381. 

Berge C. (1962): The Theory of Graphs and its applications, translated by Alison 

Doig, London: Methuen & Co Ltd, New York: John Wiley & Sons lnc, 1962. 

Berge C. (1973): Graphs and Hypergrahs, North-Holland, Amsterdam, 1973. 

Boloix G., Sorenson P.G. and Tremblay (1992): Transformations using a meta-system 

approach to software development, lEE and BCS, Software Engineering Journal, 

Nov. 1992, 425-437. 

Butler G., Grogono P., Shinghal R., and Tjandra I. (1995): Retrieving information 

from data flow diagrams, Proceedings of the 2nd Working Conference on Reverse 

Engineering, Toronto, Canada, Pub. IEEE, 1995, 22-29. 

Cadre (1990): Teamwork® User Menus User's Guide, Release 4.0, Cadre 

Technologies Inc., 1990. 

Carre, B.(1979): Graphs and Networks, Oxford applied mathematics and computer 

science series, Oxford University Press, 1979. 

Canfora, G. et al (1992): Data Flow Diagrams: Reverse Engineering Production 

and Animation, Conference on Software Maintenance, IEEE Comp. Soc. Press, 

1992, 366-375. 

Champeaux D., Constantine L., Jacobson 1., Mellor S., Ward P. and Yourdon E. 

(1990): PANEL: Structured Analysis and Object Oriented Analysis, 

ECOOP/OOPSLA '90 Proceedings, Oct. 21-25, 1990, 135-139. 

Chen, M.J. and Chung, C.C. (1991): Restructuring operations for data-flow 

diagrams, Software Engineering Journal, lEE and BCS, Vol. 6, No. 4, July 1991, 



Bibliography 11 7 

181-195. 

Cimitile, A. and Visaggio, G. (1994): A formalism for structured planning of a 

software project, International Journal of Software Engineering and Knowledge 

Engineering, World Scientific, Vol. 4 No. 2, 1994, 277-300. 

Conklin J. (1987): Hypertext: A Survey and Introduction, IEEE Computer, Vol. 20, 

No. 9, Sept. 1987, 17-41. 

Consens M., Mendelzon A., and Ryman A. (1991): Visualizing and Querying 

Software Structures, Proceeding of the Fourteenth International Conference on 

Software Engineering, 1991, 138-156. 

Davey, B.A. and Priestley, H.A. (1990): Introduction to Lattices and Order, 

Cambridge University Press, 1990. 

Davis A.M. (1990): Software Requirements -Analysis and Specification, Prentice

Hall, 1990. 

Dean T.R., and Cordy J.R. (1995): A Syntactic Theory of Software Architecture, IEEE 

Transactions on Software Engineering, Vol. 21, No. 4, April1995, 302-313. 

Demarco T. (1979): Structured Analysis and System Specification, Prentice-Hall, 

1979. 

Di Battista G., Eades P., Tamassia R. and Tollis I.G. (1994): Algorithms 

for Drawing Graphs: an Annotated Bibliography, World Wide Web at 

http://www.uni-passau.de/agenda/gd95/biblio.html, June 1994. 

Edwards, H.E. and Munro, M. (1993): Abstracting the Logical Processing Life 

Cycle for Entities and the RECAST Method, Proceeding of the Conference on 

Software Maintenance, Pub. IEEE, 1993, 162-171. 

Feiner S. (1988): Seeing the Forest for the Trees: Hierarchical Display of Hypertext 

Structure, Proceedings of the Conference on Office Information Systems, IEEE 

Comp. Soc. Press, March 1988, 205-212. 

Feng Q-W., Cohen R. and Eades P. (1991): How to draw a planar clustered graph, 

Computing and Combinatorics, Lecture Notes in Computer Science, Springer, Vol. 

959, 1991, 21-30. 

Forte G. and McCulley K. (1991): CASE Outlook: Guide to Products and Services, 

CASE Consulting Group, Lake Oswego, Ore., 1991. 

France R.B. (1993): A predicative basis for structured analysis specification tools, 

Information and Software Technology, Butterworth-Heinemann, Vol. 35, No. 2, 



Bibliography 11 8 

Feb. 1993, 67-77. 

Fraser M.D., Kumar K. and Vaishnavi V.K. (1991): Informal and Formal 

Requirements Specification Languages: Bridging the Gap, IEEE transactions on 

Software Engineering, Vol. 17, No.5, May 1991,454-466. 

Fuggetta, A. (1993): A Classification of CASE Technology, IEEE Computer, Dec. 

1993, 25-38. 

Fuggetta, A., Ghezzi C., Mandrioli D. and Morzenti A. (1993): Executable 

Specifications with Data-Flow Diagrams, Software-Practice and Experience, Vol. 

23, No. 6, June 1993, 629-653. 

Gane C. and Sarson T. (1979): Structured Systems Analysis: Tools and 

Techniques, Eng1ewood Cliffs, NJ: Prentice-Hal1, 1979. 

Gomaa H. (1986): Software development for Real-Time Systems Specification, 

Communications of the ACM, Vol. 29, No. 7, 1986. 

Guindon, R., Krasner H. and Curtis B. (1987): Breakdowns and processes during 

the early activities of software design by professionals. In G. 01son, E. Soloway 

and S. Sheppard (Eds.), "Empirical Studies of Programmers", Second Workshop, 

Ablex Publishing. 

Guindon, R. (1990a): Designing the design process: Exploiting opportunistic 

thoughts, Human Computer Interaction, 5, 305-344. 

Guindon, R. (1990b): Knowledge exploited by experts during software design, 

International Journal of Man-Machine Studies, 33, 279-304. 

Guindon, R. (1992): Requirements and Design of Design Vision, An Object

Oriented Graphical Interface to an Intelligent Software Design Assistant, ACM 

Conference on Human Factors in Computing Systems - CHI '92, 499-506. 

Hare1, D. (1988): On Visual Formalisms, Communications of the ACM, Vol. 31, 

No. 5, May 1988, 171-187. 

Hashimoto K. (1987) System Analysis by Extended Data Flow Diagram with Events 

and Timing, Proceedings of the International Computer Software & Applications 

Conference (COMPSAC), October7-9, Tokyo, Pub. IEEE, 1987, 117-123. 

Hatley D.J. and Pirbhai LA. (1987): Strategies for Real-Time System 

Specification, Dorset House, 1987. 

Johnson, J.A. et al (1993): ACE: Building Interactive Graphical Applications, 

Communications of the ACM, April 1993, Vol. 36, No. 4, 41-55. 



Bibliography 11 9 

Kim J. and Lerch F.J. (1992): Towards a Model of Cognitive Process in Logical 

Design: Comparing Object-Oriented and Traditional Functional Decomposition 

Software Methodologies, Proceeding of CHI 1992, May 3-7, ACM, 489-498. 

Kimelman D., Le ban B., Roth T., and Zernik D. (1995): Dynamic Graph Abstraction 

for Effective Software Visualisation, Australian Computer Journal, Vol. 27, No. 4, 

November 1995, 129-137. 

Khan, J.l. and Miyamoto, I. (1993): Integrating Abstraction Flexibility with 

Diverse Program Perspectives, IEEE International Computer Software and 

Applications Conference 1993, 186-192. 

Khan, J.l. (1994): Design extraction by adiabatic multi-perspective abstraction, 

Proceeding of the Conference on Software Maintenance, Victoria, Canada, 1994, 

IEEE, 191-200. 

Kodosky J., MacCrisken J. and Rymar (1991): Visual Programming Using Structured 

Data Flow, Proceedings of the IEEE Workshop on Visual Languages,1991,34-39. 

Kuo F.Y. (1994): A Methodology for Deriving an Entity-Relationship Model Based on 

a Data Flow Diagram, Journal of Systems Software, 24, 1994, 139-154. 

Lee, S. and Carver D. (1990): The Construction of an Object Oriented Specification 

Model, IEEE, proceedings of 1990 Southeastcon, 384-389. 

Levene M. and Loizou G. (1995): A Graph-Based Model and its Ramifications, IEEE 

Transactions on Software Engineering, Vol. 7, No. 5, October 1995, 809-823. 

Levene, M. and Poulovovassilis A. (1990): The Hypemode Model and its associated 

Query Language, Proceeding of the 5th Jerusalem Conference on Information 

Technology, Jerusalem, October 1990, IEEE Press, 520-530. 

Liu S. (1993): A formal specification method based on datajlow analysis, Journal of 

Systems Software, Elsevier Science, Vol. 21, 1993, 141-149. 

Lowe D. and Sifer M. (1996): Refining the MATILDA Multimedia Authoring 

Framework with a Visual Formalism, Proceedings of the IEEE International 

Conference on Multimedia Computing and Systems, Hiroshima, June 1996, Pub. 

IEEE Computer Society, 291 - 294. 

Lowe D., Ginige A., Sifer M. and Potter J. (1996): The MATIWA Data Model and its 

Implications, Proceedings of the Third International Conference on Multimedia 

Modelling, Toulouse, France, Nov. 1996, Pub. Word Scientific Press. 

Nielsen J. (1990): Through Hypertext, Communications of the ACM, Vol. 33, No. 3, 

March 1990, 297-310. 



Bibliography 120 

Nosek J. and Baram G. and Steinberg G. (1992): Ease of learning and using a CASE 

software tool: an empirical evaluation, Proceeding of the ACM/SIGCPR 

Conference, 1992, 75-80. 

O'Hare, A.B. and Troan, E.W. (1994): RE-analyzer: from source code to 

structured analysis, IBM Systems Journal Vol. 33, No. 1, 1994, 110-130. 

Olive, A. (1983): Information derivability analysis and consistency checking, Journal 

of Systems and Software, Vol. 15, 1983, 185-191. 

Peters L. (1988): Advanced Structured Analysis and Design, Englewood Cliffs, NJ: 

Prentic-Hall, 1988. 

Potter J. and Sifer, M. (1988): Formal Specification of a Structured Planning 

System, (abstract only) Proceedings of the Australian Software Engineering 

Conference 88, Canberra, May 1988, 77. 

Poulovovassilis, A. and Levene M. (1994): A Nested-Graph Model for the 

Representation and Manipulation of Complex Objects, ACM Trans. Information 

Systems, Vol. 12, 1994, 35-68. 

Randell G.P. (1990): Translating Data Flow Diagrams into Z (and visa versa), 

Technical Report 90019, Royal Signals Radar Establishment, London, 1990. 

Read M.C. and Marlin C.D. (1996): Generating Direct Manipulation Program Editors 

within the MultiView Programming Environment, Viewpoints 96: International 

Workshop on Multiple Perspectives in Software Developments, San Francisco, 

California, October, 1996, 232-236. 

Richter G. and Maffeo B. (1993): Towards a Rigorous Interpretation of ESML

Extended Systems Modeling Language, IEEE trans. on Soft. Eng., Vol. 19, No. 2, 

Feb. 1993, 165-180. 

Ross D.T. and Brackett J.W. (1976): An approach to structured analysis, 

Computing Decisions, Vol. 8, No. 9, Sept. 1976, 40-44. 

Ross D.T. (1977): Structured Analsysis (SA): A Language for Communicating ideas, 

IEEE Transaction on Software Engineering, Vol. SE-3, No. 1, 1977, 16-24. 

Ross D.T., and K.E. Schoman Jr (1977): Structured Analysis for Requirements 

Definition, IEEE Transaction on Software Engineering, Vol. SE-3, No. 1, 1977, 

6-15. 

Rumbaugh J., Blaha M., Premerlani W., Eddy F. and Lorensen W. (1991): Object

Oriented Modeling and Design, Prentice Hall, 1991. 



Bibliography 1 21 

Sarkar M. and Brown M.H. (1994): Graphical Fisheye Views, Communications aof 

the ACM, December 1994, Vol. 37, No. 12, 73-84. 

Sifer, M.J (1988): Structured Planning, Masters thesis, School of Computing 

Sciences, University of Technology Sydney. 

Sifer, M. and Potter, J. (1995): Scalability for Graph Based CASE Tools, 

International Journal of Software Engineering and Knowledge Engineering,World 

Scientific, Vol. 5, No. 3, Sept. 1995, 347-365. 

Sifer, M. and Potter, J. (1996): Structured Graphs: a visual formalism for 

scalable CASE tools, Australian Computer Journal, Pub. Australian Computer 

Society, Feb. 1996, Vol. 28, No. 1, 13-26. Errata, May 1996, Vol. 28, No. 2, 71. 

Shaw M., Deline R., and Zelesnik G. (1996): Abstractions and Implementations for 

Architectural Connections, Proceedings of the third International Workshop on 

Configurable Distributed Systems, Annapolis, USA, Pub. IEEE, 1996, 2-10. 

Shaw M., Deline R., Klien D., Ross T., Young D., and Zelesnik G. (1995): 

Abstractions for Software Architecture and Tools to Support Them, IEEE 

Transactions on Software Engineering, Vol. 21, No. 4, April1995, 302-313 

Shoval P. (1988): ADISSA: architectural desogn of information systems based on 

structured analysis, Information Systems, Vol. 13, No. 2, 1988. 

Storey, M. D. and Muller H. A. (1995): Manipulating and Documenting Software 

Structures Using SHriMP Views, Proceeding of the lnternation Conference on 

Software Maintenance, Nice, France, IEEE Comp. Soc. Press, Oct. 1995, 275-

284. 

Sugiyama K. and Misue K. (1991): Visualization of structural information: Automatic 

drawing of compound digraphs, IEEE Transactions on Systems, Man and 

Cybernetics, Vol. 21, No. 4, 1991, 876-892. 

Tao, Y. and Kung, C. (1991): Formal definition and verification of data flow 

diagrams, Journal of Systems and Software, 1991, Vol. 16, No. 1, 29-36. 

Teorey T., Wei G., Bolton D. and Koenig J.A. (1989): ER Model Clustering as an Aid 

for User Communication and Documnetation in Database Design, Commincations 

of the ACM, Vol. 32, No. 8, August 1989, 975-987. 

Teorey T., Yang D. and Fry J. (1986): A Logical Design Methodology for Relational 

Databases using the Extended Entity-Relationship Model, ACM Comp. Surv., Vol. 

18, 1986, 197-222. 

Tse T.H. (1994): The Application of Prolog to Structured Design, Software-Practice 

\ 



Bibliography 122 

and Experience, Pub. John Wiley & Sons, Vol. 24, No. 7, July 1994, 659-676. 

Tse, T.H. (1991): A Unifying Framework for Structured Analysis and Design Models, 

Cambridge Tracts in Theoretical Computer Science 11, Cambridge University 

Press, 1991. 

Tse, T.H. and Pong L. (1989): Towards a Formal Foundation for DeMarco Data Flow 

Diagrams, Computer Journal, Vol. 32, 1989, 1-11. 

Ward P.T. (1986): TheTransformational Schema: An Extension of the Data Flow 

Diagram to Represent Control and Timing, IEEE trans. on Soft. Eng., Vol SE-12, 

No. 2, Feb. 1986, 198-210. 

Ward P.T. (1989): How to Intergrate Object_oriented Orientation with Structured 

Analysis and Design, IEEE Software, March 1989,74-82. 

Wilson, D. and Sifer, M. (1990): Structured planning: deriving project views, 

Software Engineering Journal, lEE and BCS, Vol. 5, No. 2, March 1990, 138-

148. 

Wilson, D. and Sifer, M. (1988): Structured planning: project views, Software 

Engineering Journal, lEE and BCS, Vol. 3, No. 4, July 1988, 134- 140. 

Yeh, R., and P. Zave (1980): Specifying Software Requirements, Proceeding of the 

IEEE, Vol. 68, No. 9, Sept. 1980, 1077-1085. 

Youdon, E., and L.L. Constantine (1979): Structured Design, Prentice-Hall, 

Englewood Cliffs NJ, 1979. 



Appendix A 

Glossary 

This thesis introduced a number of new terms, to aid the reader we collated definitions 

for the most important ones here. 

A.l Structured Graph Terms 

Structured graph I model: a hierarchical network structure comprising: a node 

hierarchy, a link hierarchy, and producer/consumer relations between nodes and links. 

Underlying network: a normalised representation of a structured graph from which 

producer/consumer relations can be derived. 

Noncomparable nodes I Outside: nodes not ordered by the node hierarchy are 

noncomparable. A node is outside of any other node if they are noncomparable. 

Full flows: represent a producer/consumer relation formed by a given link between two 

nodes. 

Half flows: the subset of producer and consumer relations not participating in full 

flows. 

Node interface: the set of input and output links for a node. In a model these sets 

include all participating leaf links and also their higher level summaries. 

Node view: a cross-section of the node hierarchy. 

View I Model view: a restriction of a structured graph to a node view with summarised 

node interfaces. 

Net interface: a node interface which satisfies the following two rules. Firstly, the node 

produces a given link when one of its descendant nodes produces the link and an 

outside leaf node consumes the link. Secondly, the node consumes a given link when 

one of its descendant nodes consumes the link and an outside leaf node produces the 

link. 

Context free: a property of node interfaces in a model view. Regardless of which 

model view a node appears in, its interface remains the same when context free. 

Abstract model: a model with all possible derived flows and with maximum net 

interfaces. 

Compact model: a model with no derivable flows and with minimum net interfaces. 



Appendix A: Glossary 124 

A.2 Structured Graph Component Terms 

Component: an abstract model with an extended link order. The link order is a typed 
order. Each link has an associated model qualifier. Further, each link has a unique 
chain name. 

Model qualifier: a set of nodes which indicates the portion of the model in which a link 
can appear. Component link names usually contain only the highest model qualify 
nodes. 

Chain points: if we take a subset of a typed order, then the chain points are those 
elements in the subset which are comparable with all other elements in the subset. 

Chain nmne: a typed order element name constructed as a sequence of those ancestor 
elements which are chainpoints. 

Context: the context of a link in a component is given by: the suborder formed by the 
link and its ancestors, and the link's model qualifier. 

Context order: link a is less than or equal to link b (context order) when their is an 
embedding from a and it's ancestor into band its ancestors, and a's model qualifier is 
less than or equal to b's model qualifier (node view order). 

Couple: two links in a component couple when they have a common producer or 
consumer node. 

Meshable: two links in a component are meshable when they couple and are context 
comparable. 

Component link name: the name a link has in a component model view. It includes the 
links chain name from its link order and its model qualifier. 



Appendix B 

Structured Graph Proofs 

The theorems and corollaries given in Chapters four and five are proved in the first two 

sections. Section three also includes some additional lemmas to assist with the proofs. 

B.l Chapter four proof 

Theorem 4.1 Let P be a finite ordered set. Let V be the set of all views on P. The 

function span is a lattice homomorphism from V to V. It partitions the set of all views 

into equivalence classes (views having the same span), where each equivalence class 

has a maximum element (view). 0 

There is an isomorphism between views (anti-chains) and downsets, as a downset can 

be represented by its maximal elements (which form a view). So the above theorem will 

be proved using the downset representation of views. Thus rather than working with 

the set of all views on P, we will work with the set of all downsets of P. 

Proof. First recall the definition of span, for a subset S of P: 

spanS = !S (1) 

however, ifS is already a downset: 

spanS = .§_ (2) 

To show span is a lattice homomorphism, we must show it preserves join and meet. 

For all X, Ye downsets ofP we require: 

XVY=XVY (3) 

Xf\Y=Xf\Y (4) 

For the downsets of P, join and meet are give by set intersection and union, so we must 

show: 

XuY=XuY (5) 

XnY=XnY (6) 



Appendix 8: Structured Graph Proofs 126 

Taking (5) first: 

X u Y = (X u Y) r. P (by lemma B.l, which appears in Section B.3) 

=(X r.P )u(Y r.P) 

= XuY 

Equation (6) is proved in the same way: 

X r. Y = (X r. Y) r. P 

=(X r.P )r.(Y r.P) 

= X r. y 

B.2 Chapter five proofs 

(by lemma B.l) (7) 

(by lemma B.l) 

( by lemma B.l ) (8) 0 

The abstract and compact operators given in Chapter five use symmetrical definitions 

for producer and consumer parts. So in these proofs it will be sufficient to show the 
properties hold for the producer part. First, some properties for structured graphs 

disregarding the link order are established. Then the Chapter five proofs are given. 

In the following, the properties of leaf link structured graphs are all for arbitrary 

l : Link e.g. (property 2): prodsc l = prods l. For convenience we omit the l. 

1. prodsA = prods 

2. prodsc = prods 

3(a) prodsFoA = prodsF 

(b) prodsFoe = prodsF 

4. prodsAoA = prodsA 

5. prodscoA = prodsc 

6. prodsAoC = prodsA 

An additional property of structured graphs used is: 

{ Cn°An = Cn) 

(An°Cn =An) 

The dependencies between the proofs of these properties are shown next. 



Appendix B: Structured Graph Proofs 127 

Lemma 8.2 

t 
Prop. 1 Prop. 3a 

1 
Prop. 2 Prop. 3b 

Property 1. 

prodsp = i(prods - consul) -~ul 

~ iprods which equals iprods 

So prods u prodsp = prods 

So prodsA = l(prods u prodsr) 

= prods u prodsp 

= prods 

Property 2. 

prodsA - prodsp ~ prodsA ~ iprodsA 

So prods A u (prods A - prodsp) = prodsA 

= prodsA 

That is, prodsc = prods A 

=prods 

Property 3a. 

prodspoA = i(prodsA - consAul)- consAul 

= i(prods- consul)- consul 

Property 3b. 

prodspoc = i(prodsc- cons ell) - cons ell 

= i(prods - consul) - consul 

= prodsF 

Prop. 4 

~P!s 
Prop. 6 

(by lemma B.2) 

(by B.1 1) 0 

(by lemma B.2) 

(by property 1) 0 

(defmition of prodsp) 

(by property 1) 

(defmition of prodsp) 0 

(definition of prodsp) 

(by property 2) 

(defmition of prodsF) 0 



Appendix 8: Structured Graph Proofs 128 

Property 4. 

Property 5. 

(definition of prods A) 

= !(prodsA u prodsF) (property 3a) 

= !(!(prods uprodsF}uprodsF) (defmitionofprodsA) 

= ! (prods u prods F) 

= prodsA 

since prodsF ~ !(prods u prodsF) 

(definition of prods A) 

prodscoA = prodsAoA u (prodsAoA- prodsFoA) (defmition of prodsc) 

= prodsA u (prodsA- prods F) (properties 3a and 4) 

= prodsc 

Property 6. 

prodsAoC = !(prodsc u prodsFoe) 

= !(prodsc u prodsF) 

( defmition of prods c) 

(definition of prods A) 

(property 3b) 

= t (prodsA u (prodsA- prodsF) u prodsF) (defm. of prodsc) 

(as prodsA is convex) 

0 

0 

= ! (prods A u prods F) 

= prodsA (since prodsF ~prods A) 0 

Property 7. 

Theorem 4.1 established a unique maximum element for downsets having the same 

span. Clearly the leaf view for each span, will be the unique lowest element. There is 

therefore an equivalence between leaf views and full views (full view: the downset of 

the maximum view) given by the span function. Functions Ct and Cn take the leaf and 

full views of all interfaces in a model. From this we see that Ct o At = Ct. 0 

The proofs for the Chapter five theorem and corollaries follow. 

Theorem 5.1 Figure 5.2 is a commuting diagram, that is: 

(i) A o C = A and (ii) C o A = C 

Proof of (i). Recall that, 

A = Az o An o Cz and C = Cn o C1 

then, 



Appendix 8: Structured Graph Proofs 12 9 

The leftmost C 1 can be dropped because it has no effect as we now argue. The 

rightmost C 1 is applied first: it produces a model which only contains leaf link 

producers and consumers. The following application of Cn only removes some 

producer and consumer nodes for those links with producers and consumers. So no 

non-leaf link producers or consumers can be introduced by Cn. Therefore the leftmost 

Ct is only applied to a leaf interface model, on which Ct has no effect. 

( by property 6 ) 

=A 

Proof of (ii). 

( by property 7 ) 

The leftmost Ct was dropped because it will have no effect. The rightmost Ct produces 

a model which only contains leaf link producers and consumers. The application of An 

only adds additional producer and consumer nodes for those links with producers and 

consumers. So no non-leaf link producers or consumers are introduced by An. The 

input to the leftmost Ct is then a leaf interface model, on which Ct has no effect. 

( by property 5 ) 

=C D 

Corollary 5.1 The equivalence of compact and abstract models 

Ax=A y <=> Cx=C y 

Proof. 

A x =A y => C (A x) = C (A y) 

=>Cx=Cy (by theorem 5.l(ii)) 

Cx=Cy =>A(Cx)=A(Cy) 

=>Ax=Ay (by theorem 5.1(i)) D 

Corollary 5.2 Closure 

(i) A o A = A and (ii) C o C = C 



Appendix B: Structured Graph Proofs 1 30 

Proof of (i). 

A oA = A o C oA 

=A oC 

=A 

Proof of (ii). 

CoC =CoAoC 

= C oA 

=C 

( by theorem 5.1 (i) ) 

( by theorem 5.1 (ii) ) 

(by theorem 5.1(i)) 

( by theorem 5.1 (ii) ) 

(by theorem 5.1(i)) 

(by theorem 5.1(ii)) 

Lemma 5.1 Convexity. An abstract model (~t. ~0, prods, cons) satisfies: 

'V I: links • 

convex (prods I) and convex (cons I) 

D 

Proof. Follows directly from the defmitions of abstract producers and consumers for 

leaf links. Convexity also holds for non-leaf links as we now argue. Let a be a non-leaf 

link with producers X and P, where X< P. Then set of links span a, are outputs of X 

and P as the interfaces of an abstract model are down complete. Consider node Y which 

satisfies X < Y < P. Then Y also outputs the set of links span a, by the convexity of 

leaf links. Further, Y's outputs include a11links whose span is a subset of span a, as an 

abstract models interfaces are maximum downsets. Therefore, a is produced by Y. D 

B.3 Supporting Lemmas 

Lemma 8.1 Let P be a finite ordered set, and Sa downset of P, then the following 

holds: 

S = S nP 

Proof Straightforward. D 

Lemma 8.2 Let P be a finite ordered set, with X and Y subsets of P, then the 

following holds: 

Y ~::: rx ~ c x u r = x ) 
Proof, 

x = rx 
= rx u rr 
= l(X u Y) 

=X uf 

( since lf c rx ) 

D 



Appendix C 

Gofer Implementation of Structured Graphs 

STRUCTURED GRAPH's Gofer Implementation, Version 1.0 (Macintosh) 

Copyright Mark J. Sifer 1996. 

Go fer is an experimental functional language developed by Mark Jones, which is a variation of Haskell. If you are not familiar with Gofer, please read the 
documentation that comes with the Gofer package included on the floppy disc. 

This collection of files in the folder sgraphs, provides a Gofer implementation of the structured graph visual fonnalism developed by Mark Sifer and John Potter. The 
following files should be included: 

generaL sets, poset, posetV, poseti, posetD, model, modelV, mode! and modelD 

General and sets provide generic functions used by the other files. PosetV and ModelV contain the viewing (and editing for modelV) functions. Poseti and Model! contain the invariant functions; which test what kind of poset or model we have. PosetD and modelD contain test data. 

Both poset and model are Go fer project files. If you just wish to run poset functions then change to the sgraphs directory, then load the poset project file ("?" is my Gofer pronpt): 

? :cd sgraphsl.O 
? :p poset 

Exa!rple test executions of the poset functions are given in posetD. Similarly, if you wish to run model functions then load the model project file: 

? :p model 

then you can run the test executions given in modelD. The major functions demonstrated are conpact and abstract model coopletions, and model conposition. When creating new test data note that all lists (of node or link names) should be sorted, as the set and relation functions expect sorted lists (sets) . 

The viewing and conposition functions included in this version support the most 
general structured graphs, and this accounts for their complexity. In a future version I hope to include functions for restricted structured graphs as well. 

NOTES 1.0 

This version was implemented using Go fer 2. 21 ported to the Mac by John Reekie. Alpha 4.03, a program text editor is used. This is shareware, if you continue to use this program, please pay the shareware fee. 



Appendix C: Gofer Implementation 1 32 

General 

A collection of general functions to supplement the prelude. 
Same functions will also facilitate faster execution. 

Ordering definitions and functions. Additional class instances to 
allow comparision of (a,b,c) triples. 

instance (Eq a, Eq b, Eq c) => Eq (a,b,c) where 
(x,y,z) == (u,v,w) x==u && y==v && z==w 

instance (Ord a, Ord b, Ord c) => Ord (a,b,c) where 
(x,y,z) <= (u,v,w) x<u 11 (x==u && y<V) 11 (x==u && y==v && z<=w) 

-- A function for ordering •names•, and a faster maximum function. 

matchL 
matchL [] 

. • Eq a => [a] -> (a] -> Bool 
=True 

matchL [] 
matchL (x:xs) (y:ys) 

I X == y 
I otherwise 

False 

= matchL xs ys 
= False 

maximuM •. Ord a => [a] -> a 
maximuM (a:as) fst (max_ (a,as)) 

where max_ (m, []) 
max_ (m, (x:xs}) 

(m,[]) 

(max m x, xs) 

List functions. Position return the position of an item in a list. 
Front returns a list minus its last item. End returns the last item. 

position 
position [] _ 
position (m:ms) x 

I m== x 
I otherwise 

front 
front [] 
front [x] 
front (x:xs) 

end 
end [] 
end (_:xs) 

exists 
exists x 
headEq 
headEq _ [) 
headEq v (x:xs) 

.. 

.. 

.. 

.. 

.. 

(Eq a) => [a] -> a -> Int 
0 

1 
(position ms x) + 1 

[a) -> [a] 
[] 

[] 

x:front xs 

[a) -> [a) 
[) 

xs 

[a) -> Bool 
not (null x) 
Eq a=> a -> [a) -> Bool 
False 
V== X 



Appendix C: Gofer Implementation 1 33 

unique .. [a] -> Bool 
unique [] =True 
unique [_] =True 
unique = False 

Functions to build and lockup a table. Lookupi, LookupC and LookupS 

are optimised for tables with a sorted index of their respective 
integer, character and string types. 

mktable 
mktable dcm f 

. . [a] -> (a -> b) -> [(a, b)] 
zip dom (map f dcm) 

mktableR 
mktableR dom f 

domainT 
dcmainT t 

.. [a] -> (a -> b) 
zip (map f dom) 

.. Eq a=> [(a,b)] 
= map fst t 

-> [ (b, a)] 
dom 

-> [a] 

lockup : : Eq a => [(a, b)] -> a -> b 
lockup (t@(a,b):tx) i 

I a == i = b 
I otherwise = lockup tx i 

lockupZ .. [ (Int, a)] -> Int -> a 
lockupZ array i snd (array ! ! (i)) 

lockup I .. [ (Int, a)] -> Int -> a 
lookupi array i snd (array ! ! (i-ll) 

looku~ .. [ (Int, a)] -> Int -> a 
loo~ tab@((fi,q):tx) i = snd (tab!! (i- fi)) 

lockupC : : [(Char, a) J -> Char -> a 
lookupC tab@((fc,q) :tx) i = snd (tab!! (ord i- ord fc)) 

lockupS .. [(String, a)] -> String -> a 
lockupS (t@(s,a):tx) i 

I i 'matchL' s a 
I otherwise lockup tx i 

lockup2 .. Eq a => [ (a,b,c)] -> a -> b 
lockup2 (t@(a,b,c):tx) i 

I a == i = b 
I otherwise lookup2 tx i 

lookup3 .. Eq a=> [(a,b,c)] ->a-> c 
lockup3 (t@(a,b,c):tx) i 

I a == i c 
I otherwise = lookup3 tx i 

-- Functions for manipulating tuples and functions 

swap 
swap [] 
swap ((a, b) :r) 

.. [(a,b)] -> [(b,a)] 
[] 

(b, a) : swap r 



stripFst 
stripFst ls 

stripSnd 
stripSnd ls 

inv 
inv d f 

Sets 

Appendix C: Gofer Implementation 1 34 

.. [(a,b)) -> [a) 
[a I (a, b) <- ls 1 

.. [(a,b)) -> [b) 
r b I (a, b) <- ls 1 

. • (Eq a, Eq b) => [a) -> (a ->[b)) -> (b -> [a)) 
nub.inv_ d f 
where inv_ [) f x [) 

inv_ (a:as) f x 
I x 'elem' f a 
I otherwise 

a : inv_ as f x 
inv_ as f x 

-- Functions for standard set operations. Sets are implemented as 
sorted lists without duplicates. Bags are implemented as sorted lists 

-- with possible duplicates. Rdup converts a bag into a set. 

Int type Member 
type Set = [Member) 

mkset 
mkset 

set 
set [ 1 
set [a) 
set (a:r@(b:s)) 

I a< b 

I otherwise 

mkbag 
mkbag 

bag 
bag [ 1 
bag [a) 
bag (a:r@(b:s)) 

I a <= b 

I otherwise 

rdup 
rdup [) 
rdup [a) 
rdup (a : r@(b : _)) 

I a< b 
I otherwise 

union 
union [) ys 
union xs [) 
union (x:xs) (y:ys) 

I X== y 
I X< y 

I X> y 

isect 
isect [) 

isect xs 
isect (x:xs) 

ys 
[) 

(y:ys) 

.. Ord a => [a) -> [a) 
rdup.mkbag 

.. Ord a => [a) -> Bool 
True 
True 

set r 
False 

.. Ord a => [a) -> [a) 
sort 

.. Ord a => [a) -> Bool 
True 
True 

=bag r 
False 

.. Ord a=> [a) -> [a) 
[ 1 
[a) 

a : rdup r 
rdup r 

.. Ord a=> [a) -> [a) -> [a) 
= ys 

xs 

x union xs ys 
x union xs (y:ys) 

= y union (x:xs) ys 

.. Ord a => [a) -> [a) 
[) 

[) 

-> [a) 



X == y 
X< y 
X> y 

cliff 
cliff [] 

cliff xs 
ys 
[] 

= x : isect xs ys 
isect xs (y:ys) 
isect (x:xs) ys 

Appendix C: Gofer Implementation 1 35 

.. Ord a=> [a] -> [a] -> [a] 
[ l 

= xs 
cliff (x:xs) (y:ys) 

I X== y 

I X< y 

I X> y 

disjoint 
disjoint x y 

unions 
unions xs 

I null xs 
I otherwise 

isects 
isects xs 

I null xs 
I otherwise 

subset 
subset x y 

subsets 
subsetS x y 

= cliff xs ys 
= x : diff xs (y:ys) 
= cliff (x:xs) ys 

. . (Ord a, Eq [a]) => [a] -> [a] -> Bool 

isect x y == [] 

.. Ord a=> [[a]] -> [a] 

[] 

= foldrl union xs 

. . Ord a => [ [a]] -> [a] 

[] 

= foldrl isect xs 

.. (Ord a, Eq [a]) => [a] -> [a] -> Bool 

= x 'isect' y == x 

.. (Ord a, Eq [a])=> [a] ->[a] -> Bool 
(x 'isect' y == x) && (x /= y) 

Relation Table Functions 

-- mkRT converts a list of pairs into a relation table. padRT pads the 

-- relation table with empty list values so it is defined for a domain. 

-- TotalR converts a partial function to a total function. ZipR combines 

-- two relations together using the supplied function to combine values. 

mkRT 
mkRT [] 
mkRT pT 

mkRT2 
mkRT2 [] 
mkRT2 pT 

partition 
partition 

:: Ord (a, b) => [(a, b)] -> [(a, [b])] 

= [] 
= mkRT_ (fst (head pT')) [] pT' 

where pT' = mkset pT 

mkRT_ i r [] = [ (i,r)] 
mkRT_ i r ((a, b) :ps) 

I i ==a = mkRT_ i (r++[b]) ps 
I otherwise = (i,r) : mkRT_ a [b] ps 

: : Ord (a, [b]) => [(a, [b] ) ] -> [(a, [b])] 

= [] 
= mkRT2_ ( fst (head pT' ) ) [] pT' 

where pT' = mkset pT 

mkRT2_ i r [] [ (i,r) J 
mkRT2_ i r ( (a,bs) :ps) 

I i == a = mkRT2_ i (r++bs) ps 
I otherwise = (i,r) : mkRT2_ a bs ps 

:: Ord (a, b) => [(a, b) J -> [(a, [b])] 
= mkRT 

padRT : : Ord (a, b) => [a] -> [(a, [b])] -> [(a, [b]) J 

padRT [] [] = [] 
padRT (d:ds) [] = (d, []) : padRT ds [] 
padRT (d:ds) tT@(t@(i,v):ts) 

I d == i = t : padRT ds ts 



I othez:wise 

domainRT 
domainRT r'l' 

rangeRT 
rangeRT r'l' 

lookupRT 
lookupRT r'l' X 

Appendix C: Gofer Implementation 136 

(d, []) : padRT ds tT 

. . (Ord a, Ord b) => [(a, [b] ) J -> [a] 
= map fst r'l' 

. . (Ord a, Ord b) => [(a, [b]) J -> (b] 
unions [ bs I (a, bs) <- r'l' ] 

.. Ord (a,b) => [(a, [b])] ->a-> [b] 

I x 'elem' (map fst r'l') 

I othez:wise 
lookup rr x 
[ 1 

totalR :: Ord (a,b) => [a] -> (a-> [b]) ->a-> [b] 
totalR dom f x 

I x 'elem' dom = f x 
I othez:wise (] 

zipR 
-> [b]) ->a-> 

.. Ord (a,b) => [a] -> (a-> [b]) -> [a] -> (a-> [b]) -> ([b] -> [b] 
[b] 

zipR dA rA dB rB f = lookupRT newRT 
where newRT = [ (a, val) a <- dA 'union' dB, 

val = totalR dA rA a 'f' totalR dB rB a] 

List Comprehension Optimisation 

Two functions to [ 
(y,x) are equivalent. 

x <-set, y <-set, ... ] where (x,y) and 

after .. Ord a => [a] -> a -> [a] 
after set X [ a I a <- set, a> x J 

afterEq .. Ord a => [a] -> a -> [a] 
afterEq set x [ a I a <- set, a >= X ] 

Inverse Function 

Unlike the • inv• function, • inv• ass'LUTies the first t"WO arglUTients: the domain 
and range of the function, are sets. Also this function requires a finite range. 
• inVI • is used when the domain and range are optimised integer sets . 

in V 
inV d r f 

in VI 
inVI d r f 

.. (Ord a, Ord b) => [a] -> (b] -> (a ->[b]) -> (b -> [a]) 
let 

invT zip r (map inv' r) 
invR x lookup invT x 
inv' x [ a I a <- d, x 'elem' f a ] 

in 
invR 

.. Set -> Set -> (Member -> Set) -> (Member -> Set) 
let 

invT zip r (map inv' r) 
invR x lookupi invT x 
inv' X [ a I a<- d, X ' elem f a 1 

in 
invR 



Appendix C: Gofer Implementation 137 

PosetV 

Labeled Relations 

ConvertR, separates a labeled relation into an un-named relation 

implemented with integers, and functions which convert between 

named items and un-named items. 

type Danain 
type DanainN 

type Name 
type NameF 
type IndxF 

type Relation 
type RelationN 
type RelationT 

convertR 
convertR d r 

printR 
printR d r 

Set 
[Name] 

String 
= Member -> Name 
= Name -> Member 

Member -> Set 
Name -> (Name] 

(NameF, IndxF, Domain, Relation) 

. . DomainN -> RelationN -> RelationT 
let 

in 

relatnT 
relatn' i 
name i 
indx n 
danain 
relatn i 

zip danain (map relatn' danain) 
map indx (r (name i)) 

= d ! I (i-1) 
position d n 
[ 1. . length d) 

lookupi relatnT i 

(name, indx, domain, relatn) 

.. DomainN -> RelationN -> ( [(Name, Member) J, [ (Member,Set) J) 
let 

nameT = mktable d indx 
relatnT = mktable domain relatn' 

relatn' i = map indx (r (name i)) 
name i = d ! ! (i-1) 
indx n = position d n 
domain = [ 1 .. length d] 

in 
(nameT, relatnT) 

POSET Table 

A table to capture the major poset functions for a given poset. 

For each member of the poset; children, parents, down set, up set, 

leaf set, and roots set are captured (for efficency). For the whole 

poset; the domain, maximals, minimals, and labeled item conversion 

functions are captured. 

"lookupP" pre: m is in domain of p, and hence table is not empty. 

type Children Member -> Set 
type Parents Member -> Set 

type Pord (Member,Set,Set,Set,Set,Set,Set) 

member_ (m, 
children_ (_, c, 

_) 
_) 

m 
c 



Appendix C: Gofer Implementation 1 38 

parents_ (_, p, _) = p 
down_ (_, d, _) d 
up_ (_, u, _) u 
leaf_ (_, 1, _) 1 
root_ (_, _, _, r) r 

data Poset = Poset NameF IndxF Set Set Set [Pord] 

name (Poset X----_) = X 

indx (Poset -X---_) = X 

dcmain (Poset --X--_) = X 

maximals ( Poset ___ x __ ) = X 

minimals (Poset ----X_) = X 

pordT (Poset ----- x) = X 

mkposet :: RelationT -> Poset 
mkposet (n,i,dom,ch) = Poset n i dom mx mn t 

where mx = mkmaximals dom eh 
mn = mkminimals dom eh 
t = mkpordT dom eh 

mkmaximals 
mkmaximals d eh 

. . Domain -> Children -> FView 
[m I m<- d, pm== []] 

where pm= sort (nub [ c I c <- d, m 'elem' eh c]) 

mkminimals 
mkminimals d eh 

mkporclT 
mkpordT dom eh 

. . Domain -> Children -> FView 
[ m I m <- d, eh m == []] 

.. Domain -> Children -> [Pord] 
zip7 (dom) 

(map eh dom) 
(map parents ' dom) 
(map down' dom) 
(map up' dom) 
(map leaf' dom) 
(map root' dom) 

where 
parents' m 
down' m 
up' m 
leaf' m 
root' m 
mx 
mn 

sort (nub [ c I c <-dam, m 'elem' eh c]) 
unions ( [m] : map down' (eh m) ) 
unions ( [m] : map up' (parents ' m) ) 
(down' m) 'isect' mn 
(up' m) 'isect' mx 

= mkmaximals dom eh 
= mkminimals dom eh 

lookupP 
lookupP pm 

.. Poset ->Member-> Pord 
(pordT p) ! ! (m - 1) 

prposet 
prposet p 

.. Poset -> (String, [(Member, Name)], String, [(Member, [Member]) 1) 
let 

in 

= domain p dom 
domT 
chT 

= mktable dom (name p) 
= [ (i, chi) I i <- dom, chi 

(" ##Domain ## n 

" ## Children ## " 
domT, 
chT ) 

children p i 



Appendix C: Gofer Implementation 1 39 

POSET Standard Functions 

Standard functions on a poset. Most are just a lookup of the POSET 
table, or a small variation on one of these. DownS is read 'strict 
down set', and DownE is read 'exclusive down set'. 

type View = Set Arbi tary View 
type LView = View Leaf View 
type RView = View Root View 
type FView = View Flat View 

children .. Poset -> Member -> FView 
children p m = children_ ( lookupP p m) 

parents 
parents pm 

down 
down pm 

up 
up Pm 

leaf 
leaf pm 

root 
root pm 
downS 
downS pm 

downE 
downE pm 

downs 
downs p ms 

downsS 
downsS p ms 

upS 
upS p m 

ups 
ups p ms 

uppers 
uppers pms 

lowers 
lowers pms 

up lows 
up lows pms 

convex 
convex p ms 

. . Poset -> Member -> FView 
parents_ ( lookupP p m) 

.. Poset -> Member -> View 
down_ ( lookupP p m) 

.. Poset -> Member -> View 
up_ ( lookupP p m) 

. . Poset -> Member -> LView 
leaf_ ( lookupP p m) 

. . Poset -> Member -> RView 
root_ ( lookupP p m) 

. . Poset -> Member -> View 
(down p m) 'diff' [m) 

.. Poset -> Member -> View 
[ x I x <- down p m, up p x 'subset' mUpDown) 

where mUpDown = up p m 'union' down p m 

.. Poset ->View-> View 
unions (map (down p) ms) 

.. Poset ->View-> View 
unions (map (downS p) ms) 

.. Poset -> Member -> View 
= (up p m) 'diff' (m] 

.. Poset ->View-> View 
unions (map (up p) ms) 

.. Poset -> View -> View 
[ m I m <- domain p, ms 

.. Poset -> View -> View 
[ m I m <- domain p, ms 

.. Poset -> View -> View 

' 

' 

subset' 

subset' 

uppers p ms ' union ' lowers pms 

.. Poset -> View -> View 
downs pms 'isect' ups pms 

down pm 1 

up pm 1 



Appendix C: Gofer Implementation 140 

Poset VIEWING functions 

Functions for comparing and transforming 'views'. Less is the ordering 
relation between items in the poset. Vless is the ordering relation 
between views (subsets) in the poset. Flat checks a view is flat. 
FlatenU returns the local maximals of a view which is a flat view. 
DomainsD returns the lowest covering flat view of a view. 

Leaf, Roots, MaxV, Level, and Context are the standard viewing 
functions. Note that if the poset is not a tree, Context returns multiple 
flat conxtext views, one for each 'path'. Mdepth returns the maximun 
depth of a poset. 

dlevel 
dcontext 

precondition: i >= 0 

dpaths, dcontexts 
m element downset d 
b <= t 

type Path 

less 
less p x y 

lessS 
lessS p x y 

[Member] 

.. Poset ->Member-> Member-> Bool 
x 'elem' down p y 

.. Poset -> Member -> Member -> Bool 
(x 'elem' down p y) && (x /= y) 

vless . . Poset -> View -> View -> Bool 
vless p x y = (downs p x) 'subset' (downs p y) 
vlessS . . Poset -> View -> View -> Bool 
vlessS p x y = ((downs p x) 'subset' (downs p y)) && (x /= y) 

leafV 
leafV p v 

flat 
flat p [] 
flat p v 

flatenU 
flatenU p [] 
flatenU p v 

flateni 
flateni p [] 
flateni p v 

flatenD 
flatenD p [] 
flatenD p v 

.. Poset ->View-> Bool 
and [ children p x == [] I x <- v l 

.. Poset ->View-> Bool 
True 

not (foldr ( 11) False [x 'elem' (down p y) I x <- v, y <- v, x /= y]) 

.. Poset ->View-> FView 
[] 

v 'diff' rdup [x I x <- v, y <- v, lessS p x y] 

.. Poset ->View-> FView 
[] 

v 'diff' rdup [x I x <- v, y <- v, (leaf p x) 'subsetS' (leaf p y)] 

.. Poset ->View-> FView 
[] 

v 'diff' rdup [x I x <- v, y <- v, lessS p y x] 

domainsD .. Poset -> View -> FView 
domainsD p ms = flatenD p (isects (map (up p) ms)) 

leaves .. Poset ->View-> LView 
leaves p ms unions (map (leaf p) ms) 

roots .. Poset ->View-> RView 
roots p ms unions (map (root p) ms) 

maxVl . . Poset -> LView -> FView 
maxVl p ms flatenU p (unions (map maxVl' (roots p ms))) 

where top = ups p ms 
maxVl' m 

I m 'notElem' top [] 
I (leaf pm) 'subset' ms [m] 



Appendix C: Gofer Implementation 141 

I otherwise = unions (map maxV1 ' (children p m) ) 
rnaxV2 :: Poset -> LView -> FView 
rnaxV2 p rns = flatenU p [ m I m<- top, leaf pm 'subset' rns] 

where top = ups p rns 

rnaxD . . Poset -> LView -> FView 
rnaxD p rns [ m I m<- top, leaf p m 'subset' rns] 

where top = ups p rns 

rnaximurni .. Poset -> LView -> FView 
rnaximumi p rns = flateni p [ m I m <- top, leaf p m 'subset' rns J 

where top = ups p rns 

rnaxi.rm.mtv . . Poset -> LView -> FView 
rnaxi.rm.mtv p rns = maxV1 p rns 

rninVl : : Poset -> RView -> FView 
rninVl p rns = flatenD p (unions (map rninVl' (leaves p rns))) 

where bot = downs p rns 
rninVl' m 

m 'notElem' bot = [ J 
(root pm) 'subset' rns = [m] 
otherwise = unions (map rninVl ' (parents p m) ) 

: : Poset -> RView -> FView rninV2 
rninV2prns = flatenD p [ m I m <- bot, root p m 'subset' rns] 

where bot = downs p rns 

rnini.rm.mtV . . Poset -> RView -> FView 
rnini.rm.mtV p rns = rninVl p rns 

dlevel : : Poset -> Int -> Member -> FView 
dlevel p i d 

I children p d == [ J 
I i == o 

= [d] 
= [d] 

I otherwise =unions [dlevel p (i-1) c I c <- children p d] 

dlevels . . Poset -> Int -> View -> View 
dlevels p i rns = unions (map ( dlevel p i) rns) 

m:iepth 
m:iepth p 

.. Poset -> Int 
= m:iepth' (rninirnals p) (rnaxirnals p) 

where m:iepth' ns rns 
I ns ' subset' rns 0 
I otherwise (m:iepth' ns (dlevels p 1 rns)) + 1 

dpaths 
dpaths p t b 

1 t == b 

.. Poset ->Member-> Member-> [Path] 

= [ [t]J 
I otherwise = map (b:) (concat (map (dpaths p t) (parents p b))) 

dcontext :: Poset ->Path-> FView 
dcontext p (b:np) = [b] 'union' ((unions (map (children p) np)) 'diff' np) 

dcontexts .. Poset ->Member-> Member-> [FView] dcontexts p t b map (dcontext p) (dpaths p t b) 

chains .. Poset ->Set-> [Path] 
chains p xs concat [ trim (dpaths p t b) I t <- tops, 

b <- down p t 'isect' bots ] 



where tops 
hots 
trim 

flatenu p xs 
flatenD p XS 

Appendix C: Gofer Implementation 142 

nub. (map (filter (\n -> n 'elem' xs))) 

Graphic Interface POSET Viewing functions 

WidthD returns the width if boxes used to represent each i tern of the 
poset in the graphical poset viewing display. WidthD returns the width 
of an i tern' s box w. r. t. the i terns descendents . WidthU returns the 
width of an item's box w.r.t. the items ancestors. Leaf and root box's 
are length 10 respectively. 

Spacing is the space between sibling boxes. WidthsD and WidthsU return 
box widths for a whole interface when the selected Ireillber is the 
viewing 'domain'. The 'domain' member box will have the 'max' width. 
In practice 'max' is the number of pixels the widest box can be. 

spacing 0.2 

conviF primintToFloat 

widthD :: Poset -> Member -> Float 
widthD p m 

I children pm == (] = 1.0 
I otherwise = (1.0 + (chC - 1.0) * spacing) * chW 

widthU 
widthU p m 

where eh = children p m 
chW = foldr1 ( +) (map (widthD p) eh) 
chC = conviF (length eh) 

: : Poset -> Member -> Float 

I parents p m 
I otherwise 

[] = 1.0 
= (1.0 + (paC - 1.0) * spacing) * paW 

where pa = parents p m 
paW foldr1 (+) (map (widthU p) pa) 
paC = conviF (length pa) 

widthsD .. Poset -> Member -> [(Member, Float) J 
widthsD p m let 

max 100.0 
top (widthD p m) 
dom down pm 
f X = ( (widthD p x) * max) I top 

in 
mk:table dom f 

widthsU .. Poset -> Member -> [(Member, Float) J 
widthsU p m let 

max 100.0 
bot (widthU pm) 
dom uppm 
f x ( (widthU p x) * max) I bot 

in 
mk:table dom f 

POSET Name Filter Functions 

Name filter functions allow names to be used rather than poset member 
indexes which are integers, in both function inputs and outputs. Two 
varieties of filter functions are provided. An example shows the 
difference. 



Appendix C: Gofer Implementation 143 

Specific filter function use: ? nN down posetC •a• 

General filter function use: ? nx down posetC •a• :: [Name] 

Note the general name filter function use requires the •nx• call to be 
explicitly qualified with the return type. If this is not done 
unresolved function overloading will occur. 

type ChildrenN 

rnkposetN 
rnkposetN dN eN 

RelationN 

. . DomainN -> ChildrenN -> Poset 
= rnkposet ( convertR dN eN) 

-- Specific name filter functions for each return type ---------------

class NameFilterBool a b where 
nB :: (Poset ->a) -> Poset -> b -> Bool 

instance NameFilterBool (View -> Boo!) [Name] where 
nB f p ns = f p (map (indx p) ns) 

class NameFilterBool2 a b c where 
nB2 :: (Poset ->a) -> Poset -> b -> c -> Bool 

instance NameFilterBool2 (Member -> Member -> Bool) Name Name where 
nB2 f p ab = f p ((indx p) a) ((indx p) b) 

instance NameFilterBool2 (View -> View -> Bool) [Name] [Name] where 
nB2 f p x y = f p (map (indx p) x) (map (indx p) y) 

class NameFilterFloat a b where 
nF :: (Poset ->a) -> Poset -> b ->Float 

instance NameFilterFloat (Member -> Float) Name where 
nF f p m = f p ( (indx p) m) 

class NameFilterFloatTable a b where 
nFT :: (Poset ->a) -> Poset -> b -> [(Name, Float)] 

instance NameFilterFloatTable (Member -> [(Member, Float) J) Name where 
nFT f p m = let 

nameT [] = [] 
nameT ( (m,s) :ms) ((name p) m, s) :nameT ms 

in 
nameT (f p ( (indx p) m)) 

class NameFilterView a b where 
nv :: (Poset ->a) -> Poset -> b ->View 

instance NameFilterView (Member -> View) Name where 
nV f p m = f p ( (indx p) m) 

class NameFilterNames a b where 
nN :: (Poset ->a) -> Poset -> b -> [Name] 

instance NameFilterNames (Member -> View) Name where 
nN f p m = map (name p) (f p ( (indx p) m)) 



Appendix C: Gofer Implementation 144 

instance NameFilterNames (View -> View) [Name] where 
nN f p ns = map (name p) (f p (map (indx p) ns)) 

class NameFilterNamesl a where 
nN1 :: (Poset ->a) -> Poset -> [Name] 

instance NameFilterNamesl View where 
nNl f p = map (name p) (f p) 

class NameFilterNames2 a b c where 
nN2 :: (Poset ->a) -> Poset -> b -> c -> [Name] 

instance NameFilterNames2 (Int -> Member -> View) Int Name where 
nN2 f p i m = map (name p) (f p i ( (indx p) m)) 

instance NameFilterNames2 (Int -> View -> View) Int [Name] where 
nN2 f p i ns = map (name p) (f p i (map (indx p) ns)) 

instance NameFilterNames2 (Member -> Member -> View) Name Name where 
nN2 f p a b = map (name p) (f p ( (indx p) a) ( (indx p) b)) 

class NameFilterPaths2 a b c where 
nP2 :: (Poset ->a) -> Poset -> b -> c -> [[Name]] 

instance NameFilterPaths2 (Member -> Member -> [Path]) Name Name where 
nP2 f p a b = map (map (name p)) (f p ( (indx p) a) ( (indx p) b)) 

-- General filter function "nX" for all return types -----------------

class NameFilter a b where 
nX :: (Poset ->a) -> Poset -> b 

instance NameFilter (View -> Bool) ([Name] -> Bool) where 
nX f p ns = f p (map (indx p) ns) 

instance NameFilter (Member -> Member -> Bool) (Name -> Name -> Bool) where 
nX f p a b = f p ( (indx p) a) ( (indx p) b) 

instance NameFilter (View -> View -> Bool) ([Name] -> [Name] -> Bool) where 
nX f p X y = f p (map (indx p) X) (map (indx p) y) 

instance NameFilter (Member -> Float) (Name -> Float) where 
nX f p m = f p ( (indx p) m) 

instance NameFilter (Member -> [(Member, Float)]) (Name -> [(Name, Float) 1) where 
nX f p m = let 

nameT [] [] 

nameT ( (m,s) :ms) ((name p) m, s) :nameT ms 

in 
nameT (f p ( (indx p) m)) 

instance NameFilter (Member -> View) (Name -> View) where 
nX f pm = f p ( (indx p) m) 

instance NameFilter (Member-> View) (Name-> [Name)) where 
nX f pm =map (name p) (f p {{indx p) m)) 



Appendix C: Gofer Implementation 145 

instance NameFilter (View -> View) ([Name] -> [Name]) where 
nx f p ns = map (name p) (f p (map (indx p) ns)) 

instance NameFilter (Int -> Member -> View) (Int -> Name -> [Name]) where 
nx f p i m = map (name p) (f p i ( (indx p) m)) 

instance NameFilter (Int -> View -> View) (Int -> (Name] -> (Name]) where 
nX f p i ns = map (name p) (f p i (map (indx p) ns)) 

instance NameFilter (Member -> Member -> View) (Name -> Name -> [Name]) where 
nx f p a b = map (name p) (f p ( (indx p) a) ( (indx p) b)) 

instance NameFilter (Member -> Member -> [Path]) (Name -> Name -> [[Name]]) where 
nx f p a b = map (map (name p)) (f p ( (indx p) a) ( (indx p) b)) 

Poseti 

Order Constraints and Classification 

Above and Below return the sets of ancestors and descendents in a 
directed graph. Other functions test constraints an order llU.lst satisfy 
to be respectively; a DAG, poset, semi-inclusion order, inclusion 
order, forest* and tree*. The forest* and tree* are non standard as 
they don't allow chains. 

WARNING : Relations with CYCLES will crash non 'noCycle' tests 

-- Constraints for a direct acyclic graph (DAG) ----------------------

below . . Children -> Member -> Set 
below eh n let 

visitD (met, wave) = (met', wave') where 
met' = met union' wave 
wave' = [ c I c <- unions (map eh wave), c 'notElem' met' J 

in 
fst (last (takeUntil (\x->null (snd x)) (iterate visitD ([], [n])))) 

above . . Parents -> Member -> Set 
above pa n let 

noCycle 
noCycle po 

dag 
dag po 

visitD (met, wave) = (met', wave') where 
met' = met union' wave 
wave' = [ c I c <- unions (map pa wave) , c 'notElem' met' J 

in 
fst (last (takeUntil (\x->null (snd x)) (iterate visitD ([], (n])))) 

. . Poset -> Bool 
and [ (above (parents po) x 'isect' below (children po) x) 

(x] I x <- domain po] 

.. Poset -> Bool 
noCycle po 

-- Constraints for the covering relation of a poset ------------------

minTran .. Poset -> Bool 
minTran po and [null (unions (map (downS po) (children pox)) 'isect' 

children po x) / x <- domain po] 



poset 
poset po 

Appendix C: Gofer Implementation 146 

. . Poset -> Bool 
and [noCycle po, minTran po] 

-- Constraints for the covering relation of an Inclusion Order -------

uniqueSp 
uniqueSppo 

. . Poset -> Bool 
and [ leaf po x /= leaf po y I x <- domain po, y <- domain po, x /= y 1 

subsetOrd .. Poset -> Bool 
subsetOrd po = and [ lessS po x y I x <- domain po, 

incOrd 
incOrd po 

y <- domain po, leaf po x 'subsetS' leaf po y 1 

. . Poset -> Bool 
and [noCycle po, minTran po, uniqueSp po, subsetOrd po] 

-- Constraints for the covering relation of a Forest* ----------------

onePa 
onePa po 

oneCh 
oneCh po 

forest 
forest po 

. . Poset -> Bool 
and [ length ((parents po) x) <= 1 I x <- domain po 1 

. . Poset -> Bool 
and [ length ((children po) x) <= 1 I x <- domain po 1 

. . Poset -> Bool 
and [noCycle po, minTran po, onePa po, not (oneCh po) 1 

-- Constraints for the covering relation of a Tree* ------------------

oneMax 
oneMax po 

. . Poset -> Bool 
length (maximals po) 

. . Poset -> Bool 

1 

tree 
tree po and [noCycle po, minTran po, onePa po, not (oneCh po), oneMax po1 

-- Order Classifier --------------------------------------------------

orderF :: Poset -> [Bool1 
orderF po 

I not (noCycle po) 
I otherwise 

oneMax po] 

order .. Poset -> 
order po 

I not (noCycle po) 

I not (minTran po) 

I not (uniqueSppo) 

I not ( subsetOrd po) 

I not (onePa po) 

I not (oneMax po) 

I otherwise 

[False] 
[True, minTran po, uniqueSp po, subsetOrd po, onePa po, 

String 

"Directed Graph" 
"Directed Acyclic Graph" 
"Poset" 
"Semi-Inclusion Order" 
"Inclusion Order" 
"Forest*" 
"Tree*" 



Appendix C: Gofer Implementation 14 7 

PosetD 

POSET DATA 

-- 1 : A directed graph with a cycle ---------------------------------

domainl .. DomainN 
domainl ["a", "b", "c", "d"] 

children! .. ChildrenN 
children! •a• [ "b") 
childrenl "b" ["c","d") 
children! "c" ["a") 
childrenl [ 1 

relatnl .. Poset 
relatnl mkposetN domainl children! 

-- 2 : A nAG with a redundant transitive link ------------------------

domain2 .. DomainN 
domain2 [•a•, "b", "c", "d", "e", "f"] 

children2 .. ChildrenN 
children2 •a• ["b","f") 
children2 "b" ["c","d"l 
children2 "d" ["e", "f" J 
children2 [) 

relatn2 .. Poset 
relatn2 mkposetN domain2 children2 

-- 3 : A poset with non unique span ----------------------------------

domain3 .. DomainN 
domain3 ["a","b","c","d"] 

children3 .. ChildrenN 
children3 "a" ["c", "d") 
children3 "b" ["c", "d" J 
children3 [) 

relatn3 .. Poset 
relatn3 mkposetN domain3 children3 

-- 4 : A semi-inclusion order with non subset ordering ---------------

domain4 
domain4 

children4 
children4 "a" 
children4 "b'' 
children4 "c" 
children4 "dll 
children4 

.. DomainN 
["a" 1 lfbll ,"c" 1 "d" 1 "e" I "f" I "g"] 

.. ChildrenN 
["b"' "d") 
["e", "f"] 
[ "e", "g"] 
["f", "g"] 
[) 



relatn4 
relatn4 

Appendix C: Gofer Implementation 148 

.. Poset 
mJcposetN domain4 children4 

-- 5 : An inclusion order with multple parents -----------------------

danainS .. DomainN 
domainS 

childrenS .. ChildrenN 
childrenS •a• ["b","c"] 
childrenS "b" ["d", •e•] 
childrenS •c• = [•e•,•f•J 
childrenS [] 

relatnS .. Poset 
relatnS = mJcposetN domainS childrenS 

-- 6 : An forest with multple maximals -------------------------------

danain6 
domain6 

children6 
children6 •a• 
children6 "b" 
children6 •f• 
children6 

relatn6 
relatn6 

-- 7 :A Tree 

danain7 
danain7 

children? 
children? •a• 
children? "b" 
children? 

relatn7 
relatn7 

•. DomainN 

.. ChildrenN 
["b","c"] 
["d","e"] 

= ["g","h"] 
[] 

.. Poset 
mJcposetN domain6 children6 

•• DomainN 
[ •a•, "b", "c", "d", "e", "f" 1 

.. ChildrenN 
["b","c"] 

= ["d","e","f"] 
[] 

.. Poset 
mJcposetN danain7 children? 

-- S : Another poset, an almost tree with with a chain ---------------

domainS .. DomainN 
domainS ["a","b","c","d","e","f"] 

childrenS .. ChildrenN 
childrenS •a• ["b","c"] 
childrenS "b" [ "d"] 
childrenS "d" ["e","f") 
childrenS [) 

relatnS .. Poset 
relatnS mJcposetN domainS children8 



Appendix C: Gofer Implementation 149 

-- 9 : Another poset, two chains ------------------------------------

dornain9 
domain9 

children9 
children9 •a• 
children9 "b" 
children9 "d" 
children9 •e• 
children9 

relatn9 
relatn9 

.. DomainN 
[•a•, "b", "c", "d", "e", "f"] 

.. ChildrenN 
[ "b"] 
[ •c•J 
[ •e•] 

["f"] 

[ 1 

.. Poset 
= mkposetN domain9 children9 

-- 10 : Another poset, a three way multi-chain -----------------------

domain10 .. DomainN 
domain10 ["a" t "b", "c" 1 "d" 1 •e• t "£" 1 •g•, "hll t "i"] 

children10 .. ChildrenN 
children10 •a• ["d", •e•J 
children10 "b" ["d". •f•J 
children10 •c• [•e•, •f•J 
children10 "d" [ •g•. "h"] 
children10 •e• [•g•. "i"] 
children10 •f• = [ "h" •• i "] 
children10 [] 

relatn10 .. Poset 
relatn10 mkposetN dornain10 children10 

-- 11 : Another semi-inclusion order, overlapping trees --------------

dornainll 
domainll 

childrenll 
childrenll 
childrenll 
childrenll 
childrenll 
childrenll 

relatn11 
relatn11 

Model V 

•a• 
•c• 
"d" 
"b" 

.. DomainN 

.. ChildrenN 
["c", "d"] 
["e", "f"] 
[ •g•. "h"] 
[•f•. •g•] 
[] 

.. Poset 
mkposetN domainll children11 

MODEL Classifier Functions 

Boolean functions which indicate if an input is a: model, compact model, 
abstract model and a complete model . All these functions require an input 
output representation of models. 

model :: IOmodel -> Bool 
model (nO,lO,o,i) =and [poset nO, poset 10] 



Appendix C: Gofer Implementation 1 50 

compactModel . . IOoodel -> Bool 
compactModel m (compactiO m) 'equaliO' m 

abstractModel . . IQoodel -> Bool 
abstractModel m (abstractiO m) 'equaliO' m 

equaliO 
equaliO X y 

.. IQnodel -> IOoodel 
let 

(nO,lO,ol,il) 
( -· _,o2,i2) 
equal_outs 
equal_ ins 

in 

-> Bool 

= X 

= y 
and ol n 

= and i1 n 

and [equal_outs, equal_ins] 

completeModel . . IQoodel -> Bool 

o2 n n <- domain nO 
i2 n n <- domain nO 

campleteModel m and [ complete 1 I 1 <- domain 10 J 

' isect' lcllloiC) J 

ModelD 

where (nO,lO,p,c) makePC (lC m) 
complete 1 = and [ leafV nO lowP, leafV nO lcllloiC, null ( lowP 

where lowP 
lcllloiC 

M)DEL DATA 

flatenD nO (p 1) 
flatenD nO (c 1) 

-- Thesis figure 3.8 (i) ---------------------------------------------

ndomainl 
ndomainl 

nchildrenl 
nchildrenl 
nchildrenl 
nchildrenl 

ldomainl 
ldomainl 

lchildrenl 
lchildrenl 
lchildrenl 

sOutl 
sOutl "V" 

sOutl 

sinl 
sinl "X" 

sinl 

•p• 

"Q" 

"a" 

:: DomainN 
= ["P", "Q", ·u·, •v•, ·x·, "Y"l 

:: ChildrenN 
[ ·u·, •v•J 
["X","Y"] 

= [ l 

.. DomainN 
[ •a•] 

.. ChildrenN 
[] 

[] 

.. Nod eN -> [LinkN] 
[ •a n l 
[] 

.. NodeN -> [LinkN] 
["a" J 
[] 

modell = mkiOmodel (ndomainl,nchildrenl,ldomainl,lchildrenl,sOutl,sinl) 

? printiOmodel modell 
("Out-In", [ ( "P", [], []), ( "Q", [ ], []), ( "U", [], []), ("V", ["a"], []), ("X", [ ], ["a"]), 



Appendix C: Gofer Implementation 1 51 

("Y", []. [])]) :: (String, [(NodeN, [Linl<:N]. [Linl<:N])]) 

? corcpactModel modell 

-- True : : Bool 

-- ? printiOmodel (abstractiO modell) 

-- ("Out-In",[("P",["a"],[]), ("Q",[],["a"]), ("U",[],[]), ("V",["a"],[]), 

("X",[]. [•a•]), 

-- ("Y",[].[])]) :: (String,[(NodeN,[LinkN].[LinkN])]) 

--Thesis figure 3.8 (ii) --------------------------------------------

ndomain2 

ndomain2 

nchildren2 

nchildren2 

nchildren2 

nchildren2 

ldomain2 

ldomain2 

lchildren2 

lchildren2 

lchildren2 

s0ut2 

s0Ut2 ·v· 
sOut2 

sin2 
sin2 •y• 

sin2 

•p• 

·o· 

•a• 

:: DomainN 

.. ChildrenN 

l ·v·. •x•J 
[ ·x·. "Y"l 
[] 

.. DomainN 

= [ •a•] 

.. ChildrenN 

[ 1 
= [ 1 

:: NodeN -> [Linl<:N] 

[ •a•] 

= [ 1 

:: NodeN -> [Linl<:N] 

[ •a•] 

[] 

mode12 = mkiOmodel (ndomain2, nchildren2 ,ldamain2, lchildren2, s0ut2, sin2) 

? printiOmodel mode12 

("Out-In", [ ("P", []. []), ("Q", []. []), ("V", ["a"].[]), ("X",[],[]), ("Y", [].["a"])]) 

:: (String, [ (NodeN, [Linl<:N], [Linl<:N])]) 

? coopactModel mode12 

-- True : : Bool 

-- ? printiOmodel (abstractiO mode12) 

-- ("Out-In",[("P",["a"J.[]), ("Q",[],["a"]), ("V",["a"],[]), ("X",[],[]), 

( •y• • [J. ["a"])]) 

:: (String, [ (NodeN, [Linl<:N], [Linl<:N])]) 

--Thesis figure 3.8 (iii) --------------------------------------------

ndamain3 

ndomain3 

nchildren3 

nchildren3 

nchildren3 

nchildren3 

ldomain3 

ldomain3 

"P'' 
"Q" 

:: DomainN 

.. ChildrenN 
["V", "X"] 

["X", "Y"] 
[] 

.. DomainN 

= ["a"] 



Appendix C: Gofer Implementation 1 52 

lchildren3 .. ChildrenN 

lchildren3 •a• [] 

lchildren3 = [] 

s0ut3 .. NodeN -> [LinkN] 

s0ut3 ·x· [ •a•] 

s0ut3 = [] 

sin3 .. NodeN -> [LinkN] 

sin3 •y• [ •a•] 

sin3 [] 

model3 = mkiOmodel (ndomain3,nchildren3,ldomain3,lchildren3,sOut3,sin3) 

? printiOmodel model3 
("Out-In",[("P",[],[]), ("Q",[],[]), ("V",[],[]), ("X",["a"],[]), ("Y",[],["a"])]) 

:: (String, [ (NodeN, [LinkN], [LinkN])]) 

? compactModel model3 

-- True : : Bool 

-- ? printiOmodel (abstractiO model3) 
-- ("Out-In", [ ("P", ["a"],[]), ("Q", [], []), ("V",[],[]), ("X", ["a"],[]), 

("Y", [],["a"])]) 

:: (String, [ (NodeN, [Link:N], [Link:N])]) 

-- Thesis figure 3.8 (iv) ---------------------------------------------

ndomain4 
ndomain4 

nchildren4 

:: DomainN 

.. ChildrenN 

nchildren4 •p• [ ·u·, ·v·, ·x·J 
nchildren4 "Q" [ ·v·, ·x·, "Y"l 

nchildren4 [] 

ldomain4 .. DomainN 

ldomain4 = [ •a•] 

lchildren4 .. ChildrenN 

lchildren4 •a• [] 
lchildren4 = [] 

s0ut4 .. NodeN -> [LinkN] 

s0ut4 ·v· [ •a•] 

s0ut4 = [] 

sin4 .. NodeN -> [Link:N] 

sin4 ·x· ["a"] 

sin4 [] 

model4 = mkiOmodel (ndomain4,nchildren4,ldomain4,lchildren4,sOut4,sin4) 

? printiOmodel model4 
("Out-In",[("P",[],[]), ("Q",[],[]), ("U",[],[]), ("V",["a"],[]), ("X",[],["a"]), 

( "Y", [], [])]) :: (String, [ (NodeN, [Link:N], [Link:N])]) 

? compactModel model4 

True :: Bool 

? printiOmodel (abstractiO model4) 

("Out-In", [ ("P", [], []), ("Q", [], []), ("U", [], []), ("V", ["a"],[]), ("X",[], ["a"]), 

("Y", [], [])]) :: (String, [ (NodeN, [Link:N], [LinkN])]) 



Appendix C: Gofer Implementation 153 

-- Test figures for half flow variations ------------------------------

:: DomainN ndomainS 
ndomainS = ["R", "S", "T" I "U", "V", "W"] 

nchildrenS .. ChildrenN 
nchildrenS ·s· [ "R", "T"] 
nchildrenS "T" [ "U"] 
nchildrenS ·u· ["V"] 

nchildrenS ·w· ["V"] 

nchildrenS [ 1 

!domainS .. DomainN 
!domainS = [ •a•] 

lchildrenS .. ChildrenN 
lchildrenS •a• [] 

lchildrenS = [] 

sOutS :: NodeN -> [LinkN] 
sOutS "R" [ •a•] 

sOutS "T" = ["a"] 
sOutS [ 1 

sinS .. NodeN -> [LinkN] 
sinS ·w· ["a"] 
sinS [ 1 

IOOdelS = mkl()nodel (ndanain5, nchildrenS, !domainS, lchildrenS, sOutS, sinS) 

? printiOmodel IOOdelS 
("Out-In", [ ("R", ["a"],[]), ("S", [], []), ("T", ["a"],[]), ("U", [], []), ("V",[],[]), 
( "W", []. ["a"])]) :: (String, [ (NodeN, [LinkN]. [LinkN])]) 

? coopa.ctModel modelS 
True :: Bool 

? printiOmodel (abstractiO modelS) 
("Out-In",[("R",["a"J.[]), ("S",["a"J.[]), ("T",["a"J.[]), ("U",[J.[]), 

< ·v· , [ L [ ll , 
-- ( "W", [], ["a"])]) : : (String, [ (NodeN, [LinkN], [LinkN])]) 

-- Test figures for diamond node order variations I -------------------

ndomain6a 
ndomain6a 

nchildren6a 
nchildren6a 
nchildren6a 
nchildren6a 
nchildren6a 
nchildren6a 
nchildren6a 
nchildren6a 
nchildren6a 

ldomain6a 
ldomain6a 

•p• 

"Q" 

"R" 
·s· 
"T" 
·u· 
·w· 

lchildren6a 
lchildren6a "a" 
lchildren6a 

:: DomainN 

.. ChildrenN 
[ "Q"] 

["R","S"] 
[ "T"] 
[ "U"] 
[ ·v·, ·w· 1 
[ ·w· 1 
["X"] 

= [] 

:: DomainN 
["a" 1 

.. ChildrenN 
[] 

[] 



Appendix C: Gofer Implementation 1 54 

s0ut6a .. NodeN -> [LinkN] 
sOut6a "T" ["a" l 
s0ut6a "V" ["a"] 
sOut6a "X" [ •a•] 

sOut6a [] 

sinG a .. NodeN -> [LinkN] 
sin6a ·u· ["a"] 
sin6a [] 

model6a = mkiOmodel (ndamain6a,nchildren6a,ldomain6a,lchildren6a,sOut6a,sin6a) 

-- ? printiOmodel model6a 
-- ("Out-In", [ ("P", [], []), ("Q", [], []), ("R", [], []), ("S", [], []), ("T", ["a"],[]), 
("U", [],["a"]), 

( •v•, ["a"], [ 1), ( •w•, [ 1, [ 1), ( •x•, [ •a "l, [ 1) 1) :: (String, [ (NodeN, [LinkNl, [LinkN]) l) 

? campactModel model6a 
False : : Bool 

? printiOmodel (abstractiO model6a) 
("Out-In",[("P",[],[]), ("Q",[],[]), ("R",["a"],[]), ("S",[],["a"]), 

( "T", [ • a •] , [] ) , 
("U",[L["a"]), ("V",["a"],[]), ("W",["a"],[]), ("X",["a"],[])]) ::(String, 
[ (NodeN, [LinkN], [LinkN])]) 

Test figures for diamond node order variations II ------------------

ndomain6b 
ndomain6b 

nchildren6b 
nchildren6b 
nchildren6b 
nchildren6b 
nchildren6b 
nchildren6b 
nchildren6b 
nchildren6b 
nchildren6b 

ldamain6b 
ldamain6b 

lchildren6b 
lchildren6b 
lchildren6b 

sOut6b 
sOut6b "T" 
sOut6b 

sin6b 
sin6b ·u· 
sin6b 

•p• 

"Q" 

"R" 
·s· 
"T" 
·u· 
·w· 

•a• 

:: DomainN 

.. ChildrenN 
[ "Q"] 

["R","S"] 
[ "T"] 
[ "U"] 
[ ·v·, "W"l 
["W"] 
["X"] 

= [] 

.. DomainN 
["a"] 

:: ChildrenN 
[] 

= [] 

.. NodeN -> 
[ •a •] 
[] 

.. NodeN -> 
[ •a•] 

= [] 

[LinkN] 

[LinkN] 

model6b = mkiOrnodel (ndomain6b,nchildren6b,ldornain6b,lchildren6b,sOut6b,sin6b) 

-- ? printiOmodel model6b 
-- ("Out-In",[("P",[],[]), ("Q",[],[]), ("R",[],[]), ("S",[],[]), ("T",["a"],[]), 
( "U", [],["a"]), 

("V", [], []), ( "W", [], []), ("X", [], [])]) 

? compactModel model6b 
True :: Bool 



Appendix C: Gofer Implementation 1 55 

-- ? printiOmodel (abstractiO model6b) 
-- ("Out-In",[("P",[],[]), ("Q",[),[]), ("R",["a"],(]), ("S",(],("a"]), 
( "T", [ • a"] , [ J ) , 
-- ("U", (),["a"]), ("V",(),[]), ("W", (), []), ("X",[),[])]) 

-- Checking closure property for compact mapping ----------------------

-- ? compactModel (campactiO model6a) 
-- True : : Bool 
-- (41409 reductions, 63648 cells) 

Checking closure property for abstract mapping ---------------------

? abstractModel (abstractiO model1) 
True :: Bool 
(7510 reductions, 11934 cells) 
? abstractModel (abstractiO rnodel2) 

-- True : : Bool 
-- (6678 reductions, 10823 cells) 
-- ? abstractModel (abstractiO model3) 
-- True : : Bool 
-- (6502 reductions, 10572 cells) 
-- ? abstractMode1 (abstractiO model4) 
-- True : : Bool 

{7665 reductions, 12185 cells) 
? abstractModel {abstractiO modelS) 
True :: Bool 
{9058 reductions, 14302 cells) 
? abstractModel (abstractiO rnodel6a) 
True :: Bool 
(24536 reductions, 36466 cells, 1 garbage collection) 

-- Model composition I ------------------------------------------------

ndomain7 
ndomain7 

nchildren7 
nchildren7 
nchildren7 
nchildren7 
nchildren7 
nchildren7 

ldomain7 
ldomain7 

!children? 
!children? 
!children? 

s0ut7 
s0ut7 "Q" 
s0ut7 "S" 
s0ut7 

sin? 
sin? "X" 
sin? 

•p• 

"Q" 
"R" 
"T" 

"a'' 

:: DomainN 
= ["P","Q","R","S","T","U"] 

.. ChildrenN 
[ "Q"' "T"] 
[ "R"] 
[ ·s· J 
[ ·u· J 
[] 

.. DomainN 
= ["a", "b"] 

.. ChildrenN 
["b"] 
(] 

.. Nod eN -> [LinkN] 
["b" l 
[ "b" l 
(] 

.. Nod eN -> [LinkN] 
[] 

[] 



Appendix C: Gofer Implementation 1 56 

model?= makePC (mkiOrnodel (ndornain7,nchildren7,ldomain7,lchildren7,sOut7,sin7)) 

ldornainS 
ldornainS 

lchildrenS 
lchildrenS 
lchildrenS 

sOutS 
sOutS "R" 
sOutS 

sinS 
sinS ·u· 
sinS 

•a• 

.. DomainN 
[•a•,•c•] 

.. ChildrenN 

= [ •c•J 

= [] 

.. NodeN -> 
[ •c•] 

= [] 

.. NodeN -> 
[ •a "] 

= [] 

[LinkN] 

[LinkN] 

modelS = makePC (mkiOrnodel (ndornain7, nchildren7, ldornainS, lchildrenS, sOutS, sinS) ) 

rnodel9 = unionMOdelC model? modelS 

? printPCrnodel model? 
("Prod-Con",[("a",[],[]), ("b",["Q", "S"],[])J) 

? printPCrnodel modelS 
("Prod-Con •, [ ( •a •, [ J , [ "U"]) , ( •c•, [ "R "] , [ J)]) 

? printOrders rnodel9 
("NODEOrder",[("P",["Q", "T"]), ("Q",["R"]), ("R",["S"]), ("S",[J), ("T",["U"]), 

("U",[])],"LINK Order",[("a",["b", "c"]), ("b",[]), ("c",[J)J) 

? printPCmodel model9 
("Prod-Con•, [("a",[],[]), ("b", ["S"], ["U"]), ("c", ["R"], ["U"])]) 

? printPCrnodel (abstractPC model9) 

("Prod-Con",[("a",["Q", "R"],["T", "U"]), ("b",["Q", "R", "S"],["T", "U"]), 

(•c•, ["Q", "R"], ["T", "U"])]) 
(31547 reductions, 50111 cells, 1 garbage collection) 

-- Model composition II -----------------------------------------------

ndornain10 : : DomainN 

ndornain10 = ["R", "S", "T", "V", "W"] 

nchildren10 .. ChildrenN 
nchildren10 ·s· ["R","T"] 

nchildren10 "T" = ["V"] 

nchildren10 ·w· = ["V"] 

nchildren10 = [] 

ldomain10 .. DomainN 

ldomain10 = ["a"] 

lchildren10 .. ChildrenN 

lchildren10 = [] 

s0ut10 .. NodeN -> [LinkN] 

s0ut10 "R" ["a" 1 
s0Ut10 [] 

sin10 .. NodeN -> [LinkN] 

sin10 = [] 

modellO = makePC (mkiOmodel 
(ndomain10,nchildrenlO,ldomainlO,lchildrenl0,sOUtlO,sin10)) 



Appendix C: Gofer Implementation 1 57 

model10a abstractPC model10 

sOutH :: NodeN -> [LinkN) 

sOutH = [) 

sinH .. NodeN -> [LinkN) 

sinll ·v· = [ •a•] 
sinll = [) 

modelll = mak.ePC (mkiQnodel 
(ndomain10,nchildren10,ldomain10,lchildren10,s0ut11,sin11)) 
model11a = abstractPC model11 

s0ut12 .. NodeN -> [LinkN) 

s0ut12 = (] 

sin12 :: NodeN -> [LinkN) 

sin12 ·w· [ •a•] 
sin12 = [) 

model12 = mak.ePC (mkiQnodel 
(ndomain10,nchildren10,ldomain10,lchildren10,s0ut12,sin12)) 
model12a = abstractPC model12 

model13 = (model11 'unionModelC' modellO) 'unionModelC' model12 
model14 = modelH 'unionModelC' (modellO 'unionModelC' model12) 
model13a = (model11a 'unionModelA' model10a) 'unionModelA' model12a 
model14a = modelHa 'unionModelA' (modellOa 'unionModelA' model12a) 
model13_ (model11a 'unionModel_' model10a) 'unionModel_' model12a 
model14_ = model11a 'unionModel_' (model10a 'unionModel_' model12a) 

? printPCmodel model10 
("Prod-Con•, [("a", ["R"), [)) J) 

? printPCmodel model11 
("Prod-Con•, [("a",[), ["V")) J) 
? printPCmodel model12 
("Prod-Con•, [ (•a•, [), ["W")))) 

? printOrders model10 
("NODE Order", [ ("R", [)), ("S", ["R", "T")), ("T", ["V")), ("V",[)), ("W", ["V"))), 

"LINK Order", [("a",[)))) 

? printPCmodel model13 
("Prod-Con•, [(•a•, ["R"), ["V"]))) 
(15971 reductions, 25952 cells) 
? printPCmodel model14 
( "Prod-Con•, [ ("a", ["R"), ["V")) J) 
(15776 reductions, 25278 cells, 1 garbage collection) 

? printPCmodel model13a 
("Prod-Con", [("a", ["R"], ["T", "V", "W")))) 
(11658 reductions, 18548 cells) 
? printPCmodel model14a 
("Prod-Con", [("a", ["R", "S"], ["T", "V", "W")))) 
(11560 reductions, 18350 cells) 

This example demonstrates that abstract composition is not associative. 

? printPCmodel (rnodel11a 'unionModelA' modellOa) 
("Prod-Con", [("a", ["R"), ["T", "V", "W"))]) 
? printPCrnodel (rnodel10a 'unionModelA' rnodel12a) 
("Prod-Con", [("a", ["R", "S"], ["W"])]) 



? printPCmodel model13_ 
("Prod-Con•, [("a", ["R"L ["V", "W"])]) 
? printPCmodel modell4_ 
( • Prod-Con • , [ ( • a • , [ • R "l , [ •v• , "W"l ) J ) 

? printPCmodel (abstractPC model13_) 
("Prod-Con",[("a",["R"],["T", •v•, "W"])J) 

Appendix C: Gofer Implementation 1 58 

-- Model composition III ----------------------------------------------

ndomainlS 
ndomainlS 

nchildrenlS 
nchildrenlS 
nchildrenlS 
nchildrenlS 
nchildrenlS 
nchildrenlS 
nchildrenlS 

ldomainlS 
ldomainlS 

"R" 
·s· 
"T" 
·u· 
·w· 

lchildrenlS 
lchildrenlS •a• 
lchildrenlS 

sOutlS 
sOutlS ·x· 
sOutlS 

sinlS 
sinlS 

:: DomainN 

.. ChildrenN 
[ "T"] 
[ "U"] 

[ ·v·, •w•J 
[ "W"] 

["X"] 

[] 

:: DomainN 
= [ •a "l 

:: ChildrenN 
[] 

= [] 

.. NodeN -> 

= ["a"] 
= [ l 

.. NodeN -> 

= [] 

[LinkN] 

[LinkN] 

modellS = makePC (mkiQoodel 
(ndomainlS,nchildrenlS,ldamainlS,lchildrenlS,sOutlS,sinlS)) 
modellSa = abstractPC modellS 

sOut16 :: NodeN -> [LinkN] 
s0utl6 "T" = ["a"] 
s0ut16 = [] 

sin16 .. NodeN -> [LinkN] 
sin16 ·u· [ •a•] 
sin16 = [] 

model16 = makePC (mkiOmodel 
(ndomainl5,nchildrenl5,ldomainl5,lchildrenl5,sOutl6,sin16)) 
model16a = abstractPC model16 

s0utl7 .. NodeN -> [LinkN] 
s0utl7 "R" ["a" J 
sOutl7 [] 

sin17 .. NodeN -> [LinkN] 
sin17 "S" ["a") 
sin17 = [] 

model17 = makePC (mkiOmodel 
(ndomainlS,nchildrenl5,ldomainl5,lchildrenl5,sOutl7,sin17)) 



Appendix C: Gofer Implementation 159 

model17a abstractPC model17 

model18 (rnodel15 'unionModelC' model16) ' unionModelC' model17 

model19 model15 'unionModelC' (model16 'unionModelC' model17) 

rnodel18a (modell5a 'unionModelA' 
model19a = rnodel15a ' unionModelA' 
model.t.8_ (model15a ' unionModel_' 
model19 model15a ' unionModel_' -

? printPCmodel model15 
("Prod-Con", [("a", ["X"],[]) l) 
? printPCmodel model16 
("Prod-Con", [("a", ["T"l. ["U"]) l) 
? printPCmodel rnodel17 
("Prod-Con", [("a", ["R"], ["S"])]) 

? printOrders rnodel15 

model16a) ' unionModelA' modell7a 
(rnodel16a 'unionModelA' model17a) 
model16a) 'unionModel_' model17a 
(model16a 'unionModel_' model17a) 

("NODEOrder",[("R",["T"]), ("S",["U"]), ("T",["V", "W"]), ("U",["W"]), ("V",[]), 
("W", ["X"]), ("X",[])], "LINK Order", [("a",[])]) 

? printPCmodel (rnodel15 'unionModelC' model16) 
("Prod-Con", [("a", ["T", "X"]. ["U"])]) 
? printPCmodel (rnodel16 'unionModelC' rnodel17) 
("Prod-Con", [ ( •a•, [ "T"]. [ •u•]) l l 

? printPCmodel rnodel18 
("Prod-Con", [(•a•, ["R", •x•J. ["S", •u•])]) 
? printPCmodel rnodel19 
("Prod-Con", [(•a•, ["T", "X"], ["U"])]) 

This example demonstrates that compact composition is not associative. 

? printPCmodel model18a 
("Prod-Con", [("a", ["R", "T", "W", "X"]. ["S", "U"])]) 
(35020 reductions, 53326 cells, 1 garbage collection) 
? printPCmodel rnodel19a 
("Prod-Con", [("a", ["R", "T", •w•, •x•J. [•s•, "U"llll 
(18575 reductions, 28042 cells) 

? printPCrnodel model18_ 
("Prod-Con", [("a", ["R", "T", •x•J, [•s•, •u•J l l l 
? printPCmodel model19_ 
("Prod-Con•, [("a", ["R", "T", "X"]. ["S", "U"])]) 

? printPCmodel (abstractPC modell8_) 
("Prod-Con", [ ("a", [ "R", "T", •w•, "X"l, [ •s•, •u•] l l) 

This example demonstrates that raw composition is associative here. 



Appendix D 

A Console Based Structured Graph Tool 

This appendix demonstrates a structured graph tool, implemented in C++ which is 

included on the floppy disc as SG_demo. This program runs on a Macintosh computer 

with at least a 68020 processor. 

A summary of the program commands is followed by a screen shot of a small example. 

A larger example is then given. We take a model containing eight DFDs and we move a 

process to a new location. Diagrammatic representations of the before and after models 

are given, followed by a log of the move-operation performed with the C++ tool. 

D.l Summary of commands 

STRUC'IURED GRAPH DEM:l CC1>2MANDS 

Adding and removing nodes/links from the model: 

nn {text label} 
nl {text label} 
fn {node label} 
fl {link label} 

- add a new node 
- add a new link 
- free a node 
- free a link 

updating the node/link orders: 

an nodeA nodeB - make each nodeB a child of nodeA 

al linkA linkB - make each linkB a child of linkA 

dn nod eA nodeB - delete each nodeB from nodeA's children 

dl linkA linkB - delete each linkB from linkA's children 

en { nodeA } - cut each nodeA from its parents 

cl { linkA } - cut each linkA from its parents 

rrN nodeA nodeB - move nodeA under nodeB" 

eN linkA nodeB - collapse nodeA into one of its parents nodeB" 

];%1 - print the node order 

pl - print the link order 

updating the Input/Output relations: 

ao nod eA linkA - make each linkA an output of nodeA 

ai nod eA linkA - make each linkA an input of nodeA 

do nod eA linkA - remove each linkA from nodeA's outputs 

di nod eA linkA - remove each linkA from nodeA's inputs 

dO nod eA linkA - remove each linkA from nodeA's descendants' 

di nod eA linkA - remove each linkA from nodeA's descendants' 

po - print the output relation 

pi - print the input relation 

Selecting node/links for later viewing of the full model, 

the (default is all nodes and links) : 

sn { nodeA } - select each nodeA for viewing 

outputs 
inputs 



sl linkA 
sN nod eA 
sL linkA 

V 

vF 
vf 

Appendix 0: A Console Based Tool 161 

- select each linkA for viewing 
select all the nodes below each nodeA for viewing 

- select all the links below each linkA for viewing 

- view the original input and output relations" 
- view the FULL input and output relations" 
- view the FULL input and output relations (with Flat I/0)" 

Preserving a model in a file: 

s filenarne 
1 filenarne 

General information: 

- save the current model into the nominated file 
- load the current model from the nominated file (unreliable) 

h - displays a sumnary of all commands 

D.2 A mini browsing example 

The following screen shot shows the construction of a model. The nodes Jumbo_l, 

Radar_l, Engin_l, State_l and Trace_l are added. Node Jumbo_l is then 

made the parent of Radar_l, Engin_l and State_l. Links x, a, band c are 

added. Link xis made the parent of a, band c. Radar_l is made a producer of a, 

Engin_l is made a producer ofb, and State_l is made a producer of c. Trace_l 

is made a consumer of x. The final command, vf, shows the net interfaces of the built 

model. This model is in fact, the Jumbl submodel shown in figure D.l. 

"' :; File Edit 

STRUCTURED GRAPH DEMO version 1. 1, April 1997 (nodes/1 ink li~it = ~5) 
b'ol Mark Sifer 

T'ojpe "h" for help. 

> nn Ju~bo-1 Radar_! En~ln_l State-1 Trace_! 
> an Ju~bo_l Radar_1 Engln_1 State_1 
> pn 
Jumbo_1 Radar_1 Engln_l State_1 
Radar_! 
Engin_1 
State_ I 
Trace-1 : 
> nl x a b c 
> Cli X Cl b C 

> oo Radar_! a 
> oo En<O in_ 1 b 
> oo State_1 c 
> oi Troce-1 x 
> vf 

Output Re I ati on 

Jumbo_ I X 

Radar_1 Cl 

Engin_1 b 
State_ I c 
Troce_1 

I npu t Re I at ion 

Jumbo_ I 
Rador_1 
Engin_1 
State_ I 
Trace_! x 



Appendix D: A Console Based Tool 162 

D.3 An editing example 

Figure D.l shows a model before and after a move node. Figures D.2 and D.3 show 
the same before-and-after models respectively, but as a collection of DFDs and data 
dictionary. Finally a log of the move-operation performed with the C++ tool is 
presented. 

Link Order Si m 

X=S+b+C 
y=d+e 

/y~ 
Game------ Debrief 

/\ 1\ 
Veh4 Env ..!..VehR EnvR 

1\ /~ 
Jumb14 Jumb2 ..!..Jumb1R Jumb2R 

//~ 1\ 
.!!.Stat1 R .!.Cont1 R Rad1 En&_1 Sta~1 c _!race1l.. 

~ 

Move Tracel {J, 

Sim 

/x~ 
Game------ Debrief 

/\ 1\ 
V eh.!.. Env ...!.. VehR EnvR 

1\ /~ 
Jumb14 Jumb2 ..!..Jumb1R Jumb2R 

//\ /\~ 
Rad1 ~ Eng1ll.. State 1 S.. ~Trace 1 Stat1 R Cont1 R 
~ 

Figure D.l A model before and after moving a node 

In figure D.l the node Tracel which appears under Jumbol, is moved under a new 

parent, node JumblR. The nodes Game, V eh and Jumbol which produced link y, 

produce link x after the move. The nodes Debrief, VehR and JumblR which 

consumed link y, consume link x after the move. However, from the user's 

perspective, as we shall see in the log presented later, this move requires only one 
operation whilst keeping the model balanced. 



Appendix 0: A Console Based Tool 163 

Sim DFD 

e~e 
Game DFD 

f) 8 
Veh DFD 

1 ~ 8 
Jumbl DFD ,.:t.--

G. Eng1 Statal .8 b c 

Debrief DFD 

~ 8 VehR 

VehR DFD 

~a 8 Jumb1R 

Jumb1R DFD 

~8 ~e Stat1 R Cont1R 

Data Flow Dictionary 

x =a+ b+ c 
y=d+e 

Figure 0.2 Model DFDs before moving a node 

Figure 0.2 shows the same model presented in the upper part of figure 0.1. Figure 0.2 

uses the same style as Chapter Two, a collection of OFDs and a data dictionary, whilst 

figure 0.1 uses the style of Chapter Three. 



Appendix D: A Console Based Tool 164 

Sim DFD 

e~e 
Game DFD 

f) h 8 
Veh DFD 

~ 1 8 
Jumb1 DFD 

1 Er 1 Er EY 
Debrief DFD 

~8 8 VehR 

VehR DFD 

~s 8 Jumb1R 

Jumb1A DFD 
~ .8 8 Trace1 

y 

d --

Data Flow Dictionary 

x =a+ b+ c 
y=d+e 

Figure D.3 Model DFDs after moving a node 

Figure 0.3 shows the new DFDs after the move of process Tracel to JumblR was 

performed. Though only on~ operation was performed (the move operation), all seven 

DFDs changed. If the user wished to perform this move using a structured analysis tool 

such as Teamwork, seven DFDs would need to be updated, to keep the model 

balanced. This further demonstrates the scalability of a tool based on structured graphs. 



Appendix D: A Console Based Tool 165 

Using the C++ tool, the before-model shown in figure D. I was built incrementally, 
followed by the move of Tracel. The log for this follows, with the move command 
highlighted: 

STRUCTURED GRAPH DEMO version 1.1, April 1997 (nodes/link limit 96) by Mark Sifer 

"IYPe "h" for help. 

> nn Simultr Game_pl Debrief Vehicle Environ VehiclR EnviroR Jumbo_1 Jurnbo_2 > nn Jumbo1R Jumbo2R Radar_1 Engin_1 State_1 Trace_1 State1R Contr1R > an Simultr Garne_pl Debrief 
> an Game_pl Vehicle Environ 
> an Vehicle Jumbo_1 Jumbo_2 
> an Jumbo_1 Radar_1 Engin_1 State_1 Trace_1 
> an Debrief VehiclR EnviroR 
> an VehiclR Jumbo1R Jumbo2R 
> an Jumbo1R State1R Contr1R 
> pn 
Simultr Game_pl 
Game_pl Vehicle 
Debrief VehiclR 
Vehicle Jumbo_l 
Environ 
VehiclR JumbolR 
EnviroR 
Jumbo_1 Radar_l 
Jumbo_2 
JumbolR StatelR 
Jumbo2R 
Radar_1 
Engin_1 
State_1 
Trace_1 
StatelR 
Contr1R 
> nl x a b c y d e 
> al x a b c 
> al y d e 
> pl 
X 

a 
b 
c 
y 
d 
e 

a b c 

d e 

> ao Radar_1 a 
> ao Engin_1 b 
> ao State_1 c 
> ao Trace_1 y 
> ai Trace_1 x 
> ai State1R d 
> ai Contr1R e 
>V 

Output Relation 

Simultr 
Garne_pl 
Debrief 

Debrief 
Environ 
EnviroR 
Jumbo_2 

Jumbo2R 

Engin_1 

Contr1R 

State_l Trace_1 



Vehicle 
Environ 
VehiclR 
EnviroR 
Jurnbo_l 
Jurnbo_2 
JurnbolR 
Jurnbo2R 
Radar_l a 
Engin_l b 
State_l c 
Trace_l d e 
StatelR 
ContrlR 

Input Relation 

Simultr 
Game_pl 
Debrief 
Vehicle 
Environ 
VehiclR 
EnviroR 
Jurnbo_l 
Jurnbo_2 
JurnbolR 
Jurnbo2R 
Radar_l 
Engin_l 
State_l 
Trace_l a b 
StatelR d 
ContrlR e 

> vf 

Output Relation 

Simultr 
Game_pl y 
Debrief 
Vehicle y 
Environ 
VehiclR 
EnviroR 
Jurnbo_l y 
Jurnbo_2 
JurnbolR 
Jurnbo2R 
Radar_l a 
Engin_l b 
State_l c 
Trace_l y 
StatelR 
ContrlR 

Input Relation 

Simultr 
Game_pl 
Debrief y 
Vehicle 
Environ 
VehiclR y 

Appendix D: A Console Based Tool 166 

c 



ElwiroR 
Jumbo_l 
Jumbo_2 
JumbolR y 
Jumbo2R 
Radar_l 
Engi"l_l 
State_l 
Trace_l x 
StatelR d 
ContrlR e 

> s exanplel 
> DIN 'l'race_l JumbolR 
> pn 
Simultr Game_pl 
Game_pl Vehicle 
Debrief VehiclR 
Vehicle Jumbo_l 
En vir on 
VehiclR JumbolR 
EnviroR 
Jumbo_l Radar_l 
Jumbo_2 
JumbolR Trace_l 
Jumbo2R 
Radar_l 
Engin_l 
State_l 
Trace_l 
StatelR 
ContrlR 
>V 

Output Relation 

Simultr 
Game_pl 
Debrief 
Vehicle 
En vir on 
VehiclR 
EnviroR 
Jumbo_l 
Jumbo_2 
JumbolR 
Jumbo2R 
Radar_l a 
Engin_l b 
State_l c 
Trace_l d e 
StatelR 
ContrlR 

Input Relation 

Simultr 
Game_pl 
Debrief 
Vehicle 
Environ 
VehiclR 
EnviroR 
Jumbo_l 
Jumbo_2 

Debrief 
Environ 
EnviroR 
Jumbo_2 

Jumbo2R 

Engin_l 

StatelR 

Appendix D: A Console Based Tool 167 

State_l 

ContrlR 



JumbolR 
Jumbo2R 
Radar_l 
Engin_l 
State_l 
Trace_l a b 
StatelR d 
ContrlR e 

> vf 

Output Relation 

Simultr 
Game_pl x 
Debrief 
Vehicle x 
Environ 
VehiclR 
EnviroR 
Jumbo_l X 
Jumbo_2 
JumbolR 
Jumbo2R 
Radar_l a 
Engin_l b 
State_l c 
Trace_l y 
StatelR 
ContrlR 

Input Relation 

Simultr 
Game_pl 
Debrief x 
Vehicle 
Environ 
VehiclR X 

EnviroR 
Jumbo_l 
Jumbo_2 
JumbolR X 

Jumbo2R 
Radar_l 
Engin_l 
State_l 
Trace_l x 
StatelR d 
ContrlR e 

> s example2 
> ? 

c 

nn {text} new node an parent {child} 
nl {text} new link al parent {child} 
fn {node} free 
fl {link) free 

ao node {link) 
ai node {link) 
do/dO node {link) 
di/di node {link) 

node en/cl {node/link} 
link mN/cN node node 

add node outputs 
add node inputs 
delete node/s outputs 
delete node/s inputs 

Appendix D: A Console Based Tool 168 

pn 
pl 
po 
pi 

add node children 
add link children 
cut nodes/links 
move/collapse node 

print node heirarchy 
print link heirarchy 
print output relation 
print input relation 

sn/sN {node} 
sl/sL (link} 

select nodes 
select links 

v view rrodel ? ,h help 
vF view FULL model cE compact edit 



Appendix D: A Console Based Tool 169 

sR : selection reset vf : view FLAT model rE q : quit s/1 file : save/load file ?E > sn Vehicle Trace_l StatelR ControllR 
Argument [ControllRJ is not a known node label 
> sn Vehicle Trace_l StatelR ContrlR 
> vf 

OUtput Relation 

Vehicle x 
Trace_l y 
StatelR 
ContrlR 

Input Relation 

Vehicle 
Trace_l x 
StatelR d 
ContrlR e 

> s exanplel 
> q 

Program has completed 

raw edit 
edit mode 


	Title Page
	Acknowledgement
	Abstract
	Contents
	Chapter 1 Introduction and Review
	Chapter 2 Viewing a Structured Analysis Model
	Chapter 3 Browsing and Editing Structured Graphs
	Chapter 4 Ordered Sets : Background
	Chapter 5 Structured Graph Formalism
	Chapter 6 Building with Structured Analysis Components
	Chapter 7 Typed Link Orders
	Chapter 8 Component Composition
	Chapter 9 Typed Order Formalism
	Chapter 10 Structured Graph Component Formalism
	Chapter 11 Conclusion
	Bibliography
	Appendix A Glossary
	Appendix B Structured Graph Proofs
	Appendix C Gofer Implementation of Structured Graphs
	Appendix D A Console Based Structured Graph Tool



