
UNIVERSITY OF TECHNOLOGY, SYDNEY
FACULTY OF INFORMATION TECHNOLOGY

A UNIFIED APPROACH TO
ENTERPRISE ARCHITECTURE

MODELLING

By Gerald R. Khoury

A dissertation submitted in fulfilment of the requirements for the degree of
Doctor of Philosophy in Computing Science.

 2007

To my lovely wife Isabelle, who has provided me with unwavering support throughout
my research program.

And to my dear Mother and Father, for encouraging a love of learning.

Acknowledgments

I would like to extend my sincere thanks and appreciation to my thesis supervisor,

Associate Professor Simeon J. Simoff. I am very fortunate that he accepted me as a

student. Simeon’s keen sense of diplomacy, combined with a kind and good-humoured

nature, allowed me the room to grow and express myself through my work. All the

while, Simeon’s pragmatism, keen analytical mind and vision provided the framework

needed to ensure a sound research program.

I would also like to thank my co-supervisor, Dr Roger Jenkins, for his kind and

generous support. Roger provided me with valuable input when it was most needed,

while also providing me with an inspiring introduction to the ‘classics’.

A special thanks to the ITD Team at UTS who, despite their hectic schedules, were

kind enough to support this research program. In particular, I would like to thank the

Director Peter James for his generous reception to the project, Peter Demou and Ian

Waters for their close involvement in the development of the project artefacts, and all

of the ITD managers for their important contributions to the development of the EA

models. I would also like to thank the independent Enterprise Architects who

contributed to this research: Trevor Christie-Taylor, Luke Vassallo, Som Adel and

George Wanat.

Copyright © 2007 by Gerald R. Khoury. Permission to make digital or hard copies of

part or all of this work for personal or classroom use is granted without fee provided

that copies are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights for

components of this work owned by others than Gerald R. Khoury must be honoured.

Abstracting with credit is permitted. To copy otherwise, to republish, to post on

servers, or to redistribute to lists, requires prior specific permission and/or a fee.

Overview of Contents

List of Figures i

List of Tables iii

Abbreviations iv

Abstract v

1 Introduction 1

2 Enterprise Architecture and Systems Modelling 17

3 Metaphor 56

4 Theoretical Principles for The Development of Unified EA Modelling
Languages 76

5 The LEAN Ontology 89

6 Experimental Research Methodology 112

7 Experimental Studies 119

8 Conclusions and Future Research Directions 153

9 Bibliography 159

10 Appendix A – Project Summary for UTS EA Project 169

11 Appendix B – Final Project Report for UTS EA Project 174

12 Appendix C – Questionnaires 211

13 Appendix D – USDoS ITA 218

14 Appendix E – USDoS ITA LEAN Models 261

15 Appendix F – Designing and Re-Engineering Subsystems 278

Detailed Table of Contents

List of Figures i

List of Tables iii

Abbreviations iv

Abstract v

1 Introduction 1
1.1 Research Problem 4
1.2 Research Hypothesis 6
1.3 Justification and Significance of the Research 7
1.4 Research Methodology 9
1.5 Thesis Outline 10
1.6 Outcomes 12
1.7 Expected Benefits 12
1.8 Summary 15

2 Enterprise Architecture and Systems Modelling 17
2.1 The Need for Enterprise Architecture 17
2.2 Defining Enterprise Architecture 19
2.3 Defining a System 20
2.4 Defining a Model? 20

2.4.1 Requirements of Modelling Languages 21
2.4.2 Models as Abstractions 22
2.4.3 Views and Viewpoints 23
2.4.4 Visualising Models 26

2.5 A Review of EA Modelling Languages 28
2.5.1 Unified Modeling Language (UML) 30
2.5.2 ArchiMate Enterprise Architecture Language 31
2.5.3 Integrated Definition Languages (IDEF) 33
2.5.4 Unified Enterprise Modelling Language (UEML) 34
2.5.5 Conceptual Graphs 34
2.5.6 Ad-Hoc Modelling Languages 36

2.6 A Review of EA Approaches 36
2.6.1 Soft Systems Methodology (SSM) 39
2.6.2 The Zachman Framework 41
2.6.3 The Information Framework 45
2.6.4 The Open Group Architecture Framework (TOGAF) 45
2.6.5 ISO Reference Model of Open Distributed Processing (RM-ODP) 46
2.6.6 Purdue Enterprise Reference Architecture (PERA) 47
2.6.7 Computer Integrated Manufacturing - Open System Architecture
(CIMOSA) 47
2.6.8 Generalized Enterprise Reference Architecture and Methodology
(GERAM) 48
2.6.9 IEEE Standards 49

2.6.10 Model Driven Architecture (MDA) 49
2.7 The Problem with Enterprise Architecture 50
2.8 Summary 54

3 Metaphor 56
3.1 Introduction 56
3.2 Contemporary Views on Metaphor 56

3.2.1 What is Metaphor? 56
3.2.2 Concrete Metaphor 59
3.2.3 The Ghost in the Machine 64
3.2.4 Persuasive Metaphors 65
3.2.5 Enterprise Architecture Metaphors 66
3.2.6 Metaphor Hierarchies 68

3.3 The Dynamic Type Hierarchy Theory of Metaphor 70
3.3.1 Support for Way’s Theory 73

3.4 Summary 75

4 Theoretical Principles for The Development of Unified EA Modelling
Languages 76

4.1 Introduction 76
4.2 Models and Metaphors 77
4.3 Model Hierarchies 79
4.4 A Methodology for Developing Unified EA Modelling Languages 82
4.5 An Enterprise Metaphor 84
4.6 Summary 88

5 The LEAN Ontology 89
5.1 Introduction 89
5.2 The Ontology Development Methodology 91
5.3 The LEAN Ontology 93

5.3.1 Purpose and Scope of the Ontology 93
5.3.2 Ontology Construction 93

5.3.2.1 Formalising the Enterprise Metaphor Concepts 94
5.3.2.2 The LEAN Topology 97
5.3.2.3 The LEAN Syntax 98

5.3.3 Assumptions 106
5.3.4 Limitations 106

5.4 The LEAN Modelling Tool 107
5.5 Summary 109

6 Experimental Research Methodology 112
6.1 Introduction 112
6.2 Quantitative Research Methods 112
6.3 Qualitative Research Methods 113

6.3.1 Action Research 114
6.3.2 Case Study Research 114
6.3.3 Ethnographic Research 115
6.3.4 Grounded Theory Research 115

6.4 Chosen Methods 116

6.5 Summary 117

7 Experimental Studies 119
7.1 Study One: Modelling a Large Enterprise 119

7.1.1 Introduction 119
7.1.2 Research Approach 120
7.1.3 Project Outline 121
7.1.4 The Survey Questions 122
7.1.5 Results 124

7.1.5.1 Business Users Survey Results 125
7.1.5.2 Enterprise Architect Survey Results 129

7.1.6 Analysis of Results 133
7.1.6.1 Closed Questions 134
7.1.6.2 Open Questions 135
7.1.6.3 Analysis of Models 138

7.1.7 Summary 142
7.2 Study Two: Re-Modelling a Public Domain Architecture 143

7.2.1 Introduction 143
7.2.2 The USDoS Enterprise Architecture 144
7.2.3 Analysis 146
7.2.4 Summary 150

7.3 Evaluation 150

8 Conclusions and Future Research Directions 153
8.1 Conclusions 153
8.2 Future Research Directions 155
8.3 Closing Remarks 157

9 Bibliography 159

10 Appendix A – Project Summary for UTS EA Project 169

11 Appendix B – Final Project Report for UTS EA Project 174

12 Appendix C – Questionnaires 211

13 Appendix D – USDoS ITA 218

14 Appendix E – USDoS ITA LEAN Models 261

15 Appendix F – Designing and Re-Engineering Subsystems 278
15.1 Developing a Unified Modelling Language 279
15.2 Reengineering Existing Interfaces 281

15.2.1 Decomposition and Mapping 281
15.2.1.1 Hotmail Interface 281
15.2.1.2 Yahoo Interface 283
15.2.1.3 Lotus Notes Interface 285

15.2.2 Interface Recomposition 287
15.2.2.1 Hotmail Interface 287

15.2.2.2 Yahoo Interface 289
15.2.2.3 Lotus Notes Interface 290

15.2.3 The Result 291
15.3 Developing New Interfaces 292

15.3.1 Identifying the Required Functions 293
15.3.2 Mapping 293
15.3.3 Construction 294

15.4 Conclusion 294

 i

LIST OF FIGURES

Figure 1- Research Methodology 10
Figure 2 - Thesis Structure and Flow 11
Figure 3 - The relationship between Level of Description and Level of Machine

Orientation for a selection of Modelling Languages 15
Figure 4 - Levels of Abstraction, Structures and Models Based on a talk given by

Luciano Floridi, Informational Realism, Proceedings Computing and
Philosophy conf., Canberra, Nov.2003 23

Figure 5 – An Example of the Decomposition of an EA into Various Architectural
Views 25

Figure 6 - ArchiMate Concepts (Instituut, 2004) 32
Figure 7 - Situated Components of an Enterprise Architecture 37
Figure 8 - The Zachman Framework 42
Figure 9 - Possible modelling languages with which to populate the Zachman

framework. From (Noran, 2003) 44
Figure 10 - The Relationship between the Source and Target of a Metaphor 57
Figure 11 - Scope and Level of Metaphors (partially based on (Hammond and

Allison, 1987)) 69
Figure 12 - Metaphor Hierarchy from Elastic to Concrete 70
Figure 13 - The Relationship between Models, Metaphors and Concept Type

Hierarchies 77
Figure 14 - Enterprise System Hierarchy with Enterprise as Global Supertype 80
Figure 15 - Enterprise System Hierarchy with New Enterprise Supertype 81
Figure 16 - The Applicability of LEAN at Various Levels of Abstraction 84
Figure 17 - Methodology for Developing and Applying a Unified Language 85
Figure 18 - LEAN in relation to EA views and domain specific models 87
Figure 19 – Views, Viewpoints and Architectural Areas of Concern 96
Figure 20 - The Graphical Representations of LEAN Nodes 99
Figure 21 - A LEAN Relationship 100
Figure 22 - A LEAN Universal and Non-Universal Type 104
Figure 23 - Primary Research Approaches 112
Figure 24 - Responses for Two Groups (Business Users and EA's) Compared by

Question and Test Area. 134
Figure 25 - Top Level Generic Activity Model 148
Figure 26 - Hotmail Interface 281
Figure 27 - Hotmail Functions 282
Figure 28 - Decomposition and Mapping of Hotmail Functions 283
Figure 30 - Yahoo functions 284
Figure 29 - Yahoo Interface 284
Figure 31 – Decomposition and Mapping of Yahoo Functions 285
Figure 32 - Lotus Notes Interface 286
Figure 33 - Lotus Notes functions 286
Figure 34 - Lotus Notes "Tools" Drop Down Menu 286
Figure 35 - Decomposition and Mapping of Lotus Notes Functions 287
Figure 36 - Recomposed Hotmail Functions 288
Figure 37 - Recomposed Hotmail Functions - Expanded 288
Figure 38 - Recomposition of Hotmail Interface based on Unified Metaphor 288

 ii

Figure 39 - Recomposed Yahoo Functions 289
Figure 40 - Recomposed Yahoo Functions - Expanded 289
Figure 41 - Recomposition of Yahoo Interface based on Unified Metaphor 290
Figure 42 - Recomposed Lotus Notes Functions 290
Figure 43 - Recomposed Lotus Notes Functions - Expanded 291
Figure 44 - Recomposition of Lotus Notes Interface based on Unified Metaphor 292
Figure 45 - Mapping of New Email Interface Functions 293
Figure 46 - New Email Interface Functions 294

 iii

LIST OF TABLES

Table 1 - Research Questions and Qualities Corresponding to the Research
Hypothesis. 7

Table 2 – Some Integrated Modelling Languages 30
Table 3 - IDEF Methods from (IDEF, 1992) 33
Table 4 – Some Well Known EA Frameworks, Methods and Standards 38
Table 5 - City Landscape Metaphor Mapping 68
Table 6 - Definitions of Agent, Resource, Rule and Action Concepts 96
Table 7 - Mapping Between a Generic Relationship Set and the Range of Possible

Node Pairings 105
Table 8 - ITD Project Objectives 121
Table 9 - Study One Test Areas and Research Approaches 123
Table 10 - Results of LEAN Survey for Business Users - Closed Questions 126
Table 11 - Results of LEAN Survey for Business Users - Open Questions 128
Table 12 - Results of LEAN Survey for Enterprise Architects - Closed Questions

 130
Table 13 - Results of LEAN Survey for Enterprise Architects - Open Questions 133
Table 14 - Top Ten Words not in Wordlist 136
Table 15 - Concordance List for High Frequency Words 138
Table 16 - LEAN Node Frequency Distribution 139
Table 17 – Relationship Frequencies in ITD EA Models 141
Table 18 - Relationship Frequencies in USDoS ITA 149

 iv

ABBREVIATIONS

CG Conceptual Graph

CRM Customer Relationship Management

DTH Dynamic Type Hierarchy

EA Enterprise Architecture or Enterprise Architect

EA’s Enterprise Architectures or Enterprise Architects

EM Elastic Metaphor

ERM Enterprise Resource Management

HCI Human Computer Interaction

HTML Hypertext Mark-up Language

ICT Information and Communications Technology

IS Information System

IT Information Technology

ITA Information Technology Architecture

ITD Information Technology Department of UTS

LEAN Lightweight Enterprise Architecture Notation

MCS Minimal Common Supertype

ODBC Open Data-Base Connectivity

UML Unified Modeling Language

USDoS United States, Department of State

UTS University of Technology, Sydney

VE Virtual Environment

VR Virtual Reality

WIMP Windows, Icons, Mice, Pull-down menus

 v

ABSTRACT

As IT environments grow in complexity and diversity, their strategic management

becomes a critical business issue. Enterprise architectures (EA’s) provide support by

ensuring that there is alignment between an enterprise’s business objectives and the IT

systems that it deploys to achieve these objectives. While EA is a relatively new

discipline, it has already found widespread commercial application. It is likely that EA

will receive even more focus as IT environments continue to grow in complexity and

heterogeneity.

Despite this widespread acceptance of EA as a valuable IT discipline, there are several

serious challenges that contemporary EA approaches are yet to overcome. These arise

from the fact that currently, there is no unified EA modelling language that is also easy to

use. A unified EA modelling language is one that is able to describe a wide range of IT

domains using a single modelling notation. Without a unified, easy to use EA

modelling language, it is impossible to create integrated models of the enterprise.

Instead, a variety of modelling languages must be used to create an EA, leading to

enterprise models that are inconsistent, incomplete and difficult to understand. The

need to use multiple modelling languages also places a high cognitive load on

modellers and excludes non-IT specialists from developing or using these models, even

though such people may be the most important stakeholders in an EA program.

The research presented in this thesis tackles these problems by developing a metaphor-

based approach to the construction of unified EA modelling languages. Contemporary

approaches to the understanding of metaphor are surveyed, and it is noted that one

way to understand metaphor is to view it as part of a dynamic type hierarchy. This

understanding of metaphor is related to the development of enterprise models and it is

shown that highly abstract metaphors can be used to provide conceptually unified

models of a range of enterprises and their component structures.

This approach is operationalised as methodology that can be used to generate any

number of unified EA modelling languages. This methodology is then applied to

generate a new, unified EA modelling language called ‘LEAN’ (Lightweight Enterprise

Architecture Notation).

 vi

LEAN is evaluated using a mixed-methods research approach. This evaluation

demonstrates that LEAN can be used to model a wide range of domains and that it is

easy to learn and simple to understand.

The application of the theoretical principles and methodology presented in this thesis

can be expected to improve the understandability and consistency of EA’s significantly.

This, in turn, can be expected to deliver significant tangible business benefits through

improved strategic change management that more closely aligns the delivery of IT

services with business drivers.

The findings in this research also provide fertile ground for further research. This

includes the development and comparative evaluation of alternative unified languages,

further research into the use of the methodology presented to align architectures at

various levels of abstraction, and the investigation of the applicability of this theoretical

approach to other, non-IT disciplines.

- 1 -

1 INTRODUCTION

"To make knowledge work productive will be the great management task of this century,
just as to make manual work productive was the great management task of the last

century." (Drucker, 1969, Section 6.1)

This thesis deals with the challenge of modelling enterprise systems in order to

produce an enterprise architecture (EA). An enterprise is defined as a “… unit of

economic organization or activity; especially a business organization.” (Miller and

Berger, 2001, p.4)

Models are essential for the design and development of effective Information

Technology (IT) systems (Fox and Gruninger, 1997). In fact, Fox and Gruninger state

that “Over the last 30 years, the role of enterprise models in the design and operation

of enterprises has reached the point that few organizations of significant size can

operate without them.” (1998) The reason that they have reached this point is that the

scale and complexity of these IT environments has, and is continuing, to grow

substantially. However, in order for these enterprise models to be effective, the

techniques for creating these models must be efficient, and the models themselves

must be easy to understand (Theuerkorn, 2005 p. 14) (Chalmeta et al., 2001).

In this thesis, we examine the following three questions:

 How do we create consistent, high-level models that span multiple

heterogeneous systems?

 How do we design these models such that they optimally harness the cognitive

strengths of the human mind?

 How do we ensure that there is consistency between these high-level models

and models at lower levels of abstraction?

These questions echo the three major challenges of enterprise systems modelling.

The first challenge concerns modelling scope. While many systems modelling

languages exist, only a few have the semantic power to describe a wide range of system

domains. Furthermore, the complexity of these languages makes them unwieldy and

impractical for use in commercial applications. As a result, there is currently no widely

- 2 -

accepted method for describing multiple IT architecture domains (e.g. application,

information, business and infrastructure architectures) using a single language (Iacob et

al., 2002). Instead, multiple languages must be used to describe an EA. However, the

requirement to be proficient in multiple modelling languages is simply too onerous for

most enterprise architects: “there are too many enterprise modelling (EM) languages to

learn and to understand” (Vernadat, 2002). As a result, the techniques used for EA

modelling vary from company to company, and informal, undefined modelling

constructs are widely used. (Sowa, 2000, p. 191) In fact, enterprise architects often

create their own individual languages using informal pictures. (Instituut, 2005b)

(Clements, 1996) Whether enterprise architects use formal, but disparate modelling

languages, or single but informal languages, the outcome is the same: enterprise models

that are inconsistent and incomplete. Furthermore, it is difficult to provide tools for

the visualisation and analysis of such architectures. (Instituut, 2005b)

The second challenge in enterprise modelling concerns that of cognition. In order to

create effective models, the models must be understandable. Given that the information

domains being modelled may be highly complex, this is a difficult problem.

Understandability arises when the user is able to transform the given models into

effective mental models of the subject. Improved mental models lead to a better

understanding of the subject area. With this understanding comes the ability to change

and manipulate these structures to achieve better systems performance.

The third challenge in enterprise modelling concerns level of detail, or abstraction.

Effective EA models are, by necessity, created at a very high-level of abstraction. This

is in order to show the alignment between high-level business objectives and the

information systems that support these objectives. Unless there is a logical translation

(consistency) between these high-level abstractions and the consequent system and

subsystem level models it will be difficult to implement decisions made at the strategic

levels in a consistent and complete manner. Disjunctions between high and low level

designs result in a lack of integration between the architectures at various levels of

abstraction. For example, while the enterprise model may be designed along the lines

of, say, a ‘city landscape’ metaphor, a system within this enterprise may be built using a

‘customer relationship’ metaphor, while the interface to this system may be built using

a ‘car dashboard’ metaphor.

- 3 -

While not the primary focus of this research, this thesis does extend the typical area of

study of enterprise architecture (that of modelling multiple systems in multiple

domains) to address the problem of modelling at multiple levels of abstraction. Most

modelling techniques model the enterprise at a single level of abstraction (Mili et al.,

2002). The inability to use a single modelling language to model at various levels of

abstraction is a problem that is largely ignored in the research literature, although there

is one promising attempt in (Denford et al., 2004). This is probably because it appears

that developing a single enterprise language is, itself, a daunting enough challenge, and

making it work at various levels of abstraction just complicates the problem further.

However, it will be found that the same theoretical principles that solve the problem of

high-level modelling across an enterprise also show potential for structuring systems at

lower levels of abstraction. To show this, the methodology that is used to structure the

high-level, EA models, is applied to a very low-level sub-system modelling problem:

the development of email interfaces (refer Chapter 15). However, a full development

of this area of research is outside the scope of this thesis.

It has been suggested that the problem of developing a unified enterprise modelling

language is formidable, and perhaps, intractable. Efforts using some of the more

obvious, brute strength approaches add weight to this view. However, in this thesis a

novel cross-disciplinary approach is used to attack this problem. Philosophic, linguistic

and cognitive theory has been used to produce an approach that is novel and unique.

The result of this research is a methodology that can be used to generate a range of

unified EA modelling languages, and a specific language that supports the development

of unified EA models. In fact, it will be shown that the language ‘LEAN’ (Lightweight

Enterprise Architecture Notation) is an effective language for unified systems

modelling1. That is, LEAN is easy to learn and use, and it supports the creation of

unified models that are easy to understand.

The science of enterprise systems modelling is still in its infancy (Grefen, 1997) and

there is great potential for new knowledge and research in this area. It is the intention

of this thesis to add, in a significant way, to the body of knowledge already developed

1 In this thesis the terms ‘language’ and ‘notation’ are used interchangeably to mean “a system for communicating”.

- 4 -

by scholars and theoreticians of modelling, and hopefully, to generate to further

research along these lines.

1.1 Research Problem

Two main factors influence the way that EA’s are currently modelled. The first factor

is the requirement to use a heterogeneous set of modelling languages to model an EA.

"Today, no single existing modelling language by itself is capable of modelling all

necessary aspects of an enterprise." (Noran, 2003) Instead, enterprise modelling

requires a wide variety of modelling languages. This places high demands on EA

developers and users to understand a wide variety of modelling languages. It also leads

to inconsistent semantics and a weak ontological foundation, which can result in

modelling inconsistencies and omissions.

The second factor is that systems modelling is dominated by the idea of metaphor.

System modellers, consciously or unconsciously, use metaphor to design systems at all

levels of abstraction. Without metaphor, it may be impossible to understand the new

concepts that are required to analyse or use these systems (Lakoff and Johnson, 1980)

(Lakoff and Nunez, 2000). The problem is that the metaphors used are often

inappropriate and inconsistent. There appears to be little science directed to the

development and implementation of effective system metaphors. As metaphor is so

crucial to the development of effective models, and as they are so poorly applied to

system modelling, we see problems at all levels of systems modelling.

At the level of enterprise modelling, these factors have resulted in a situation where it is

currently not possible to create an effective, unified model that spans an organisation’s

systems. According to Noran (2003), the reason that we cannot currently create

integrated2 models of the enterprise, is because there is no commonly agreed

metamodel and ontology for producing these models. Instead, a variety of modelling

languages must be used: modelling languages that are actually designed for specific,

individual IT domains. “Every domain speaks its own language, draws its own models,

and uses its own techniques and tools. Communication and decision making across

domains is seriously impaired.” (Instituut, 2005b) This dependence on domain-specialised

2 In this thesis the terms ‘integrated’ and ‘unified’ are used interchangeably to describe languages that can be used to

model a wide range of IT domains.

- 5 -

modelling languages means that any large enterprise model is likely to be inconsistent,

incomplete and difficult to decipher. A cross-domain, unified EA modelling language is

needed to address these limitations.

These problems however, are not, confined to high-level systems modelling. Similar

problems are also encountered when modelling small-scale systems such as a user

interface for a single program. In fact, the accepted wisdom, and one that is typically

taught to IT students, is that metaphors should be identified and applied to the design

of computer systems. While metaphors are used abundantly, and usually with

conscious intent, as a basis for the design of these systems, there is usually little

consistency between the metaphors used for different system components. As users

switch from one system component to another, they are likely to encounter a range of

system metaphors. This can lead to confusion and disorientation.

Another major limitation with contemporary approaches to enterprise modelling is that

the models are created at one, highly abstract, level of detail. There is then a disjunction

between these enterprise models and lower level, more detailed domain models. The

metaphor used to create the enterprise models is not continued down into the system

and subsystem models, and this leads to inconsistencies between these structures.

While consistency is difficult to define and measure, "it is recognised to be a major

determinant of learnability." (Payne and Green, 1986) and inconsistency can lead to

significant difficulties in delivering business value from these systems (NHS Quality

Improvement Scotland, 2006).

Doumeingts and Ducq define enterprise modelling as “the representation of a part or of

a set of enterprise activities at a global and a detailed level …” (Doumeingts and Ducq,

2001). Certainly, there are benefits to EA frameworks and models that describe not just

the enterprise level, but span all levels from strategy to implementation. These benefits

include (Mili et al., 2002):

 Better support for re-use of detailed designs and implementations.

 Enforcement of adherence to the architecture style by actually implementing it.

- 6 -

In fact, Mili et al sees the goal of enterprise frameworks as follows: “Enterprise

frameworks offer a unified view to model and develop enterprise information systems

at every level of the vertical decomposition from the system infrastructure to the final

application through the enterprise’s business model.” It will be shown, however, that

this goal has not yet been achieved, and cannot be achieved effectively, without the

availability of an effective unified EA modelling language.

It has been observed that the majority of contemporary EA approaches have been

developed informally (Vernadat, 2002). This suggests that a scientifically grounded,

theoretically sound approach to EA modelling may offer improvements over these

methods. The current situation is summed up well by the following quote: “To date,

there is no standard language for describing architectures; they are often described in

informal pictures that lack a well-defined meaning. This leads to misunderstandings,

and makes it very difficult to provide tools for visualisation and analysis of these

architectures.” (Iacob et al., 2002)

1.2 Research Hypothesis

The hypothesis that is being tested by this research is as follows:

It is possible to develop a human-centred modelling language for creating unified models that
span heterogeneous domains of an enterprise architecture.

This hypothesis can be broken into two research questions:

1. Can we develop a modelling language for creating unified models that span

heterogeneous domains of an enterprise architecture?

2. Can such a language be designed to be human-centred?

The first research question concerns the development of unified models. That is, the use

of a single, coherent language, to produce models that span heterogeneous domains.

Detailed arguments justifying the need for such unified models are provided in Section

2.7. Criteria such as effectiveness and relevance can be used to determine how successful we

have been in creating unified EA models.

However, the answer to the first question is perhaps trivial without addressing the

second question. Theoretically, it is possible to aggregate the lexicons used to describe

- 7 -

every IT domain into one super-language with the semantic richness to describe the

entire EA space (putting aside the problem of resolving the various ontologies at this

stage). However, this language would be extremely unwieldy and difficult, if not

impossible, to use. The models produced with such a language would also be extremely

difficult to understand and hence, they would be poor communication vehicles and

they would be difficult to verify. Therefore, it is the second question that gives flavour

to this research. In order to have any value, the language must not only be unified, but

must also be easy for humans to use and understand.

Thus, to prove the hypothesis presented above, it must be possible to develop a

language that is human-centred. By human-centred, we mean that the language must

possess the observable qualities of learnability and useability (measured relative to other

modelling languages), and must be highly understandable. No matter how easy it is to

produce models, if they are not easily understandable to others, then their use as a

means of communicating between humans is extremely limited.

The relationship between the hypothesis, research questions and the desired

observable qualities is shown in Table 1.

1.3 Justification and Significance of the Research

An EA aims to show how different systems and parts of the organisation interact and

work towards fulfilling the organisation’s objectives. An effective EA promotes "broad

access to information, efficient re-use of IT components and solutions, and effective

Table 1 - Research Questions and Qualities Corresponding to the Research Hypothesis.

It is possible to develop a human-centred
modelling language for creating unified models
that span heterogeneous domains of an
enterprise architecture.

Hypothesis:

Is it unified?Research
Questions:

Is it human
centred?

Effectiveness
Relevance

Qualities:
Learnability
Useability

Understandability

- 8 -

global management of IT support." (United States Department of State, 1999)

Ultimately, the value of an EA lies in the support it provides for developing effective

IT systems. However, this can only be achieved if the EA models provide a coherent,

consistent and complete view of the enterprise. "Because a coherent and integrated

product is the ultimate goal, the models chosen must also be designed to integrate with

each other." (Maier and Rechtin, 2000) This is not possible with today’s modelling

technologies.

Specialised languages have been developed for modelling individual architectural

domains. However, none of these languages support the creation of high-level models

that extend across multiple IT domains (Lankhorst, 2005 p. 83). Without such a

language, there is no way to develop coherent and consistent EA models.

There have been a number of attempts to solve this problem and the solutions fall into

two groups. In the first group are the integrated methods such as the Hatley-Pirbhai

(H/P) and Quantitative QFD (Q2FD) methods (Maier and Rechtin, 2000, p.216)

(Gruninger and Fox, 1996). The difficulty with these methods is that they are industry

specific and only cover a small part of the EA domain. In the second group, we have

symbolic logic notations such as predicate calculus and conceptual graphs. These

notations are extremely rich in semantic power since they are closely related to natural

language. However, they are also very difficult to use and understand, and impractical

for the description of an entire EA.

The consequence of this is that EA models are developed using multiple languages, or

informal languages (refer Figure 9). The use of multiple languages puts a high cognitive

load on modellers and makes the communication of models very difficult, especially to

those who are not technical specialists. The use of informal languages makes these

models semantically poor and inconsistent. In either case, the EA models that are

produced today are less than optimal and can be vastly improved through the

availability of a human-centred, unified EA language.

“Enterprise Architecture is today widely spread among organizations all over the

world.” (Institute for Enterprise Architecture Developments, 2004) “Effective use of

enterprise architectures is a recognized hallmark of successful public and private

- 9 -

organizations.” (United States General Accounting Office, 2003) It is likely that EA’s

will continue to grow in importance as IT environments grow in complexity. This

makes the need for modelling languages that support the goals of EA even more

compelling. In addition, as the profile of EA increases, those in charge of the direct

lines of business will seek hands-on ownership of the Enterprise Architecture. EA’s are

too important to leave to the IT specialists!

Just as businesses sought to take greater control over application design and

development in the 1980’s, we are likely to see EA ownership devolve to those who

are making operational and strategic decisions upon which the business will succeed or

fail. This devolution of ownership will drive the way we design and develop EA’s: they

will need to be designed with a business perspective, rather than a blinkered focus on

technology. Since business planners and developers, as well as IT specialists, must

leverage these EA models in order to achieve their corporate goals, models that can

only be understood by IT specialists are of little use. "What is needed are simple

models that are easily communicated and models that can be tweaked and discussed

with the employees who participate in the processes beeing (sic) mapped." (Rostad,

2000)

1.4 Research Methodology

This research draws upon a number of interdisciplinary areas including cognition,

linguistics and philosophy, as well as computer science and information technology.

As Figure 1 shows, the research methodology is composed of a number of distinct

stages that are executed as part of an iterative process. For instance, a review of the

literature may result in a redefinition of the problem, results of hypothesis testing may

lead to the hypothesis being updated, and so on.

Validation of the theoretical principles developed in this thesis is done using a range of

experimental research methods. It is believed that the appropriate combination of

complementary research methodologies is more likely to lead to valid conclusions. The

case of the use of complementary research methodologies is further described in

Section 6.4.

- 10 -

Two formal studies are presented where the theory has been applied and evaluated. In

the first study, the unified language that has been developed (LEAN) is used to create

EA models as part of an EA project within a complex IT organisation. The value of

these models is then evaluated by the project participants using a survey approach. A

separate group of Enterprise Architects is also surveyed in order to provide an

independent perspective on the project results.

In the second study, EA models and business scenarios from an unrelated, previously

developed EA, are remodelled using LEAN and a comparative analysis is performed.

In addition, a third study is presented that extends the research provided presented in

this thesis into a new area to show how a unified language may be used to provide

structure alignment even at low levels of abstraction. This study is presented in

Appendix F – Designing and Re-Engineering Subsystems.

1.5 Thesis Outline

The sections that make up this thesis and the logical flow between them are shown in

Figure 2. Chapters 1 to 3 provide background material that will serve as a foundation

for this research. Chapters 4 and 5 use this foundation to develop original theoretical

principles for unified EA modelling. Chapters 6 to 9 present the research carried out to

evaluate this theory. Finally, chapters 10 and 11 evaluate this research. A more detailed

description of the individual chapters follows.

Figure 1- Research Methodology

Validation

Theoretical

Development

1. Define the Problem
& Requirements

2. Review the Literature

3. Develop a Hypothesis

7. Validate the Theory

4. Test the Hypothesis

6. Apply the Theory

5. Develop a Theory

Analysis

- 11 -

Chapter 1 provides a context for this research, describes its scope and explains why

this research is important.

Chapter 2 provides a situated, contemporary view of EA and systems modelling. This

provides an understanding of the role of EA modelling languages and the technologies

with which it is used, such as EA frameworks, methodologies and standards.

Chapter 3 provides a contemporary understanding of metaphor in order to provide a

theoretical foundation for the development of a new theory of enterprise modelling.

Figure 2 - Thesis Structure and Flow

Chapter 4 presents the original, theoretical basis for this research work.

An Introduction to the research.

Introduce the supporting disciplines:
Observations related to the understanding of metaphor

and the Dynamic Type Hierarchy Theory.

Apply the theory to produce a unified EA modelling language.

Design the experimental research approach.

Formulate a theory for developing unified modelling languages.

Carry out experiments and evaluate the experimental results
and theory.

Chapter
1

Chapter
3

Chapter
4

Chapter
5

Chapter
6

Chapter
7

A review of contemporary approaches to
Enterprise Architecture and systems modelling.

Chapter
2

Discuss opportunities for further research and provide conclusions. Chapter
8

- 12 -

Chapter 5 takes the theoretical principles used for developing unified EA modelling

languages and applies it to develop one example of such a language. A candidate

metaphor is developed as an ontology, which is then codified as a graphical modelling

language.

Chapter 6 presents the research approach by which the developed language will be

evaluated.

Chapters 7 presents two separate implementations of the language and provides an

analysis of the results, an evaluation of the language and theory

Chapter 8 provides implications and opportunities for further research, and

conclusions.

1.6 Outcomes

The outcomes of this research are:

 Theoretical principles and methodology for developing unified EA modelling

languages.

 A fully specified, unified language for EA modelling (LEAN).

A number of published research papers have ensued from this research:

 Elastic Metaphors: Expanding the Philosophy of Interface Design (Khoury

and Simoff, 2003)

 Enterprise Architecture Modelling Using Elastic Metaphors (Khoury and

Simoff, 2004)

 Philosophical Foundations for a Unified Enterprise Modelling Language

(Khoury and Simoff, 2005)

 Modelling Enterprise Architectures: An Approach Based on Linking

Metaphors and Ontologies (Khoury et al., 2005)

1.7 Expected Benefits

As the importance of EA grows, in order to manage change within a global business

environment that is increasingly dynamic and competitive, the need for more effective

- 13 -

approaches to EA modelling becomes paramount. Improved modelling of EA’s will

bring about considerable benefits arising from improved consistency and

understandability. This will allow EA’s to be used more effectively to manage change

and ensure that IT solutions meet the needs of the business.

An EA that is modelled using a single language will have the following attributes:

 Greater explanatory power (models can be created that show the linkages and

relationships between different domains and structures).

 Greater flexibility for the management of change and strategic planning

(current disjunctions between systems are not ‘hard-wired’ into the model)

(Veasey, 2001).

 Avoiding the loss of information that might occur in translating from one

architectural view to another and ensuring cross-view consistency (Armour et

al., 2003).

 Reducing cognitive load placed on a user that needs to understand a complex

set of architectural views (Armour et al., 2003).

The use of a unified language to improve the integrity of conceptual EA models has

consequences not only at an EA planning level, but also in terms of the systems that

are subsequently developed. According to Brooks, “Conceptual integrity is central to

product quality.” (Frederick P. Brooks, 1995) In fact, Brooks believes that conceptual

integrity is the most important consideration in systems design and the most important

factor in the ease-of-use of a computer system. The use of an integrated modelling

language that is based on a single metaphor has the potential to improve conceptual

integrity.

Additionally, there are benefits to conceptual frameworks that describe not just the

architectural level, but span multiple abstraction layers from strategy, down to

implementation. These benefits include:

 Better support for re-use of detailed designs and implementations (Mili et al.,

2002).

- 14 -

 Enforcement of adherence to the architecture style by actually implementing it

(Mili et al., 2002).

As Figure 3 illustrates, there is a relationship between the level of description for which

modelling languages are designed, and the level of machine orientation that they

support. For instance, very coarsely grained languages such as natural language are very

human centred. They are easily understood by humans because they make use of the

cognitive abilities of humans and allow us develop useful cognitive maps. On the other

hand, very finely grained languages are not natural for humans to use. However, these

finely grained languages are much easier to translate into machine logic because of their

formality and lack of ambiguity.

Much of the architectural work in recent years has been focused on highly formalised

knowledge description using technologies such as XML and its derivatives (Murthy et

al., 2005). This is because the benefits of autonomic computing can only be realised

with the development of machine centred technologies that can precisely and

unambiguously define the meaning of data. This approach ensures that EA components

are formally defined; however, it does little to ensure that an EA is complete and relevant.

To achieve this, we need technologies to describe high-level, coarse-grained features.

By using the term “coarse grained” we mean that the language can be used to describe

highly conceptual and abstract features. This is where languages such as LEAN are

valuable. LEAN is designed to be human-centred and to describe relatively large,

coarse-grained features. This ensures that the EA space has been adequately covered

and provides high-level meaning to the whole EA endeavour.

- 15 -

Figure 3 - The relationship between Level of Description and Level of Machine Orientation for a selection
of Modelling Languages

1.8 Summary

This thesis deals with the challenge of modelling enterprise systems in order to

produce an EA. In order to meet this challenge effectively, a unified EA modelling

language is needed that can model multiple, heterogeneous systems across various EA

domains. Furthermore, this unified language must be easy to understand by non-IT

specialists as well as enterprise architects.

From a business perspective, a unified EA modelling language provides significant

business benefits deriving from its ability to provide greater explanatory power and

better support for strategic planning.

Currently, multiple modelling languages, or informal and undefined modelling

constructs, are typically used to model EA’s. This leads to inconsistent, incomplete and

undecipherable enterprise models. These problems are compounded by the fact that

multiple, inappropriate, or inconsistent metaphors are often used to describe the

components of an EA.

Level of

Description

Fine
Grained

Coarse
Grained

Human Centred Machine Centred

Level of Machine Orientation

Natural
languages

Visual
Languages

LEAN

UML

Markup
Languages

XML

OWL

- 16 -

This thesis takes a cross disciplinary approach to solve these problems. The result is a

methodology for producing unified EA languages, and an example of one such

language (LEAN). A range of complementary experimental methods is used to show

that LEAN is not only unified, but also easy to learn, easy to use and easy to

understand.

- 17 -

2 ENTERPRISE ARCHITECTURE AND

SYSTEMS MODELLING

“All models are wrong. Some are useful.” George E.P. Box

This section provides a review of the literature on enterprise architecture and systems

modelling. Following introductory discussions of EA, modelling and abstraction, the

focus moves to systems modelling languages. This provides a basis for understanding

EA’s and how modelling is used to support the goals of EA. With this foundation in

place, EA is formally defined and contemporary approaches to EA development are

surveyed. Finally, the benefits of EA are purveyed, along with an analysis of the

difficulties with current approaches to EA.

2.1 The Need for Enterprise Architecture

By 2007, 50% of Global 2000 enterprises will move beyond a pure technology architecture
to include enterprise business architecture, enterprise information architecture, and enterprise
solution architecture. By 2008, unified management and governed evolution of the enterprise
architecture will become dominant best practices in 70% of Global 2000 enterprises. Meta

Trends 2004/05

While EA is still in its infancy as a research area (demonstrated, for example, by the lack

of doctoral research in this area) this has not prevented it from becoming an

important, firmly established discipline within the IT industry. The reason for this can

be understood by looking at today’s economic environment, which is characterised by

global competitive forces that are reshaping business dynamics. These forces include:

 Increased competition and rate of change arising from globalisation,

deregulation and technology (especially information technologies).

 Increased reliance on information technologies to maintain a competitive

advantage.

 Reduced product development times and accelerated life cycles.

 The decentralisation of computer resources.

 Exponential growth in the amount of information that needs to be managed.

These environmental pressures create new challenges that can only be solved by using

new, more sophisticated approaches to the management of enterprise systems.

- 18 -

EA’s are growing in importance as tools for managing change within this highly

dynamic, demand driven, competitive business environment. As the rate of

technological change increases, and as the information environment becomes more

complex, more sophisticated methods are needed to manage that change effectively.

EA’s help to manage this change and overcome the problems of building isolated IT

solutions that fail to support an enterprise’s vision, goals and objectives. The lack of an

architectural context can result in duplicated, poorly integrated, and costly systems.

(United States General Accounting Office, 2003) “Understanding and visualising

complex businesses enables you to identify and address areas that might be

constraining business performance. Enterprise modelling helps you focus on those

areas you can change, how these areas are currently functioning, how they might be

optimised, and how any changes might impact other areas.” (Fraser and Tate, 1995)

The potential benefits of EA’s (a number of which are outlined in (United States

Department of State, 1999)) include:

 Improved resource rationalisation.

 Cost reduction through improved efficiency and higher productivity.

 Improved data consistency and security.

 Improved planning capability and cost effectiveness.

 Higher flexibility and ability to respond to change.

 Improved synergies between systems, departments and companies.

 Better opportunity analysis, risk management and decision support.

 Faster development cycles.

 More effective integration and interoperability of systems.

 Improved encapsulation and preservation of knowledge.

 Improved access to corporate information.

“… to keep the business from disintegrating, the concept of information systems

architecture is becoming less an option and more a necessity for establishing some

order and control in the investment of information system resources.” (Zachman,

1987)

- 19 -

“The benefits of enterprise architecting have begun to prove themselves: faster, better,

and cheaper.” (Kaisler et al., 2005)

2.2 Defining Enterprise Architecture

There are myriad definitions of enterprise architecture (EA). Beznosov (1998) for

instance, lists five different definitions for EA. Two more useful definitions are given

in Kaisler et al (Kaisler et al., 2005). In general, the term ‘enterprise architecture’ is used

when referring to architectures and concepts that encompass the whole of the

organisation, including any or all of its processes, methods, assets and organisational

intelligence. The EA provides a comprehensive view of these elements and their

relationships. In particular, an EA is usually used to highlight the alignment between the

business’ mission, goals and outcomes, with the provisioned IT applications, data and

infrastructure that they rely upon.

As EA is a relatively new and evolving discipline, the term Enterprise Architecture is

easily usurped to reflect the viewpoints and interests of differing user groups. For

instance, an application programmer may see EA as referring to enterprise wide

applications, while a business analyst may see EA as focussing on the linkages between

an enterprise’s value chain and the supporting IT systems.

Within this research, the following EA definition is used:

 An enterprise architecture is a holistic set of models that represent an enterprise, and its
environment, in order to manage change.

In this context, the term ‘holistic’ refers to a set of complementary parts that are

interdependent and where the focus is on the whole, rather than the individual parts.

The observation that effective EA’s must provide a holistic set of models is

acknowledged by other researchers (e.g. (Kaisler et al., 2005)). Yet, a review of the

literature carried out for this research reveals no EA definitions that explicitly refer to

this attribute. It has been included in the EA definition used in this research as it is

considered to be the defining attribute that separates EA models from domain specific

models.

- 20 -

Explicit in this definition is the notion that there will be interaction between an

organisation and its environment. Organisations typically interact with the environment

(other companies, customers, regulatory authorities, etc). In particular, the IT systems

that support an organisation will have these linkages encoded, and the EA should be

capable of modelling these interactions.

An important aspect of EA models is that they should be used to represent both the

current and target architectures (Kaisler et al., 2005) (Gustas, 2005). An EA system

must support the development of a ‘roadmap’ that shows how to progress towards the

target architecture: an architecture that is aligned to the businesses strategy and goals.

Thus, the definition given above explicitly refers to the role of EA’s in managing

change. In an environment that is not exposed to change, there is no need for an EA.

Conversely, as the impact of change becomes greater, then so does the need for an EA

to manage that change. Furthermore, a sophisticated EA can be used to leverage this

change as a tool for gaining competitive advantage (Khoury, 2006a).

2.3 Defining a System

Since we will be making frequent references to enterprise information systems, it is

important to define the concept of a system. Winograd and Flores define computer

systems as "... collections of interacting components (both physical and computational)

based on a formalization of some aspect of the world." (1987, p.83) This is useful;

however, it neglects an important property of systems: that they are greater than the

sum of their parts. In this research, we use the following definition of a system:

A system is a set of interacting components that exhibits emergent properties that are not
exhibited by any of its individual parts.

It is possible then, to have a system of systems of systems. However, at each level,

some new properties must emerge that are not exhibited by the sum of the individual

parts, and that only emerge when all of those parts interact.

2.4 Defining a Model?

EA is concerned with the development of a holistic set of models. The word model is

derived from the Latin word ‘modulus’, which is the diminutive of ‘modus’ which

- 21 -

means “measure” or “way of being”. Thus, ‘modulus’ means “small measure”, and

model means “a smaller copy of the original”.

The concept of a model is concisely defined by Allen (1997): “Models are

approximations to objects or processes which maintain some essential aspects of the

original.” However, with particular respect to systems modelling, the following definition

may be more suitable, as it shows why systems modelling is valuable: "Modeling is the

creation of abstractions or representations of the system to predict and analyze

performance, costs, schedules, and risks, and to provide guidelines for systems

research, development, design, manufacture, and management." (Maier and Rechtin,

2000)

Models provide a tool for analysing complex systems environments and evaluating the

possible impact of any changes (i.e. representing the temporal aspects of a system).

They also facilitate communication by creating a “common frame of reference”.

(Biemans et al., 2001) The technology of systems modelling can therefore be used to

achieve common, and pragmatic, organisational objectives.

Models can take various forms. Black, for example, classifies models as scale, analogue,

mathematical, theoretical, or archetypal. (1962) Later in this thesis, it will be seen that

metaphor is also a type of model.

2.4.1 Requirements of Modelling Languages
One way of expressing models is through the use of a modelling language. Noran

(2003) identifies two primary requirements of enterprise modelling languages that are

required to produce meaningful models

 The language must be appropriate to the enterprise aspect being modelled.

 The language must be understandable by the target audience.

The target audience of enterprise modelling is diverse. While IT architecture specialists

often take the lead in producing EA’s, they typically work in collaboration with non-

architecture specialists and business people. The EA models are then used by a wide

variety of people including business people who may have had little, or no, exposure to

modelling or systems architecture. This makes the modelling of EA’s a challenging

- 22 -

problem and renders most current modelling technologies of limited use in

communicating EA information to the audiences who may be most instrumental in

influencing the enterprise’s direction.

Noran (2003) also points out that “… a balance must be struck between the expressive power

and the complexity of the language.” As the level of abstraction of a language decreases, the

model resembles reality more closely. Thus, the model’s expressive power increases.

However, its complexity also increases, thus negating some of the benefit that accrues

from a higher level of abstraction: the clarity that comes with the elimination of

information that is not directly relevant to the analytical task at hand.

2.4.2 Models as Abstractions
“An abstraction of some system is a model of that system in which certain details are

deliberately omitted.” (Smith and Smith, 1977) Abstraction allows us to simplify

models (Wortmann et al., 2001) and allows analysts to focus upon specific

characteristics of a system that are of particular concern to them. Those aspects are

brought out more clearly, as all other aspects of the systems are hidden.

According to Biemans et al, “a model is - by definition - an abstraction of reality and

therefore an incomplete representation of reality.” (2001, p.123) “The degree of

abstraction and simplification depends on the interest of the targeted audience.”

(Szegheo, 2000) That is, all models are abstractions: a system can be modelled only at a

level of abstraction, and there is a relationship between abstraction and the concerns of

the user; a topic that is discussed in more detail in the following section.

It is the quality of abstraction that makes architectural models so useful. Information

overload is a particular problem in the analysis of IT systems, especially as they are

becoming increasingly complex. It is only through the careful abstraction of the

information that describes these systems, that we are able to perform useful analyses of

this information.

Abstraction can also be useful in identifying fundamental components of systems that

can be reused. Well-defined primitives (single variable models) can act as building

blocks for developing composite models and systems. In this way, highly abstract

- 23 -

models are often used in systems architecture in order to determine a set of building

blocks that can be used to create various new systems. These concepts are summarised

in Figure 4.

2.4.3 Views and Viewpoints
EA’s are used by a variety of stakeholders with widely varying backgrounds, interests,

goals and responsibilities. An EA typically contains information that is of relevance to

each of these stakeholders, but the threat of information overload means that it is

ineffective to present all of this information to all users. Instead, the EA must present

abstractions of this information. These abstractions are referred to as architectural

‘views’.

A view is a collection of logically related models. (Maier and Rechtin, 2000, p.223)

More specifically, "A view is a representation of a system from the perspective of

related concerns or issues." (IEEE 1471-2000)

Figure 4 - Levels of Abstraction, Structures and Models

Based on a talk given by Luciano Floridi, Informational Realism, Proceedings Computing and Philosophy conf.,

Canberra, Nov.2003

SYSTEM LEVEL OF
ABSTRACTION

MODELSTRUCTURE

be
lo

ng
s

to

analysed at

generates

identifies

- 24 -

A view generalizes the notion of a model, diagram, or other form of focused representation.
Instead of attempting to say everything about an architecture in a single model, a view

addresses a subset of the concerns for the whole system (architecture). This subset of concerns
may be oriented toward a particular class of stakeholders (e.g., maintainers, thus a

maintenance view) or toward specific system characteristics which may be of interest to
several types of stakeholders (e.g., a reliability view for hardware suppliers, data designers,

and software developers) or perhaps from other considerations or organizing principles.
(Hilliard, 1999b)

Views are thus closely related to the ‘separation of concerns’ principle (Dijkstra, 1976,

Parnas, 1972). The separation of concerns principle says that complex systems should

be decomposed so that different concerns or aspects of the problem are solved by

different components of the overall system. This decomposition allows different parts

of the problem to be solved in isolation, and then recombined to deliver the overall

solution. This approach reduces the complexity of the problem down to a more

manageable level (Figure 5).

The separation of concerns principle was originally derived within, and focussed on, a

software engineering paradigm. However, it is just as relevant to the consideration of

EA’s, where very large amounts of information need to be managed effectively to

prevent cognitive overload by EA users. Views present an important mechanism by

which a separation of concerns can be accommodated when presenting EA’s. Thus,

“A view describes a system with respect to some set of attributes or concerns. The set

of views chosen to describe a system is variable. A good set of views should be

complete (cover all concerns of the architect's stakeholders) and mostly independent

(capture different pieces of information)." (Maier and Rechtin, 2000, p.146)

- 25 -

Figure 5 – An Example of the Decomposition of an EA into Various Architectural Views

Each type of EA stakeholder has different goals, interests and knowledge. The creation

of views that support these different concerns facilitates the understanding and

acceptance of the architecture by a variety of user and IT specialist groups and helps

them to identify with it (Bernus and Nemes, 1994). For instance, “Customers may be

satisfied with a ‘boxes-and-lines’ description; developers may want detailed component

and connector models; managers may require a view of the corresponding

development process.” (Medvidovic and Taylor, 1997)

The concept of views, is likely to grow in importance as enterprises “… improve their

understanding of the different information needs of their users and customers at

various touchpoints …” (Gartner, 2002) In fact, Gartner make the prediction.

“Through 2012, knowledge mapping3 (for example, through text categorization,

indexing, and taxonomies) will be prevalent in nearly all information-rich applications

(0.7 probability).” (2002)

While a view is a description of the system relative to a set of concerns, the actual set

of concerns, a ‘viewpoint’, comprises the resources needed to address those concerns

(Hilliard, 1999b). In the words of the IEEE, “A viewpoint captures the rules for

3 ‘Knowledge maps’ are a synonym for ‘views’.

Business, Data, Application & Infrastructure
Architectures

IT Infrastructure

Business Systems

Business Strategy

IT StrategyS
TR

A
TE

G
IC

FO
C

U
S

A
R

C
H

IT
EC

TU
R

E
FO

C
U

S
D

EL
IV

ER
Y

FO
C

U
S

EVENTS

LOCATIO
NS

ROLES

S
A

LE
S

M
A

N
U

FA
C

TU
R

IN
G D

EL
IV

ER
Y

- 26 -

constructing and analyzing a particular kind of view.” (2002) Each view corresponds to

exactly one viewpoint; however, one viewpoint can generate many views (i.e. there is a

one-to-many relationship between viewpoints and views).

One of the main difficulties with views arises from the fact that multiple languages are

used to describe the various domains covered by an EA. Cross-domain views are

fundamental for an effective EA. Yet, these languages typically require different

methods of representation, making the creation of integrated, cross-domain views,

highly problematic. The result is that the architect must be expert in each of the sub-

domain modelling languages, and even then, they can only develop a very limited

number of views. (Maier and Rechtin, 2000)

2.4.4 Visualising Models
If our extraordinary skill in perceiving the information inherent in the environment can be

applied to data visualization, we will have gained a truly powerful tool. (Ware, 2000)

A number of graphical modelling languages have been developed that are designed to

enhance the users’ ability to visualise the modelled systems. There is a strong

imperative for this: the use of effective visualisation techniques can significantly

improve the ability of users to assimilate and process complex information. “Visual

representations … play an important role in people’s ability to understand a problem

and/or see a solution.” (Pawson, 2000)

Some of the advantages of visualisation techniques are described as follows (Ware,

2000) (Knight, 2002, , 2000):

 Visualisation provides the ability to reduce perceived complexity and increase

the understanding of the user.

 Visualisation allows the perception of emergent properties that were not

anticipated.

 Visualisation often enables problems with the data itself to become

immediately apparent.

 Visualisation facilitates understanding of both large-scale and small-scale

features of the data.

- 27 -

 Visualisation facilitates hypothesis formation.

“The eye and the visual cortex of the brain form a massively parallel processor that

provides the highest-bandwidth channel into human cognitive centers.” (Ware, 2000)

Consequently, the graphical presentation of information allows users to perceive and

understand information rapidly.

It is clear that these qualities would be highly beneficial to the understanding and

analysis of enterprise architectures. In particular, the ability to comprehend huge

amounts of data is a problem that is particularly pertinent to the modelling of

enterprise architectures, as they cover a number of domains across, what may be a very

large enterprise. Arbitrary codes are hard to learn and easy to forget (Ware, 2000). For

these reasons, the use of an EA graphical modelling language that leverages the

capacity of humans to process information visually will be highly preferable to one that

is non-graphical.

While much of the research on visualisation relates to 3D systems, most of the benefits

associated with visualisation system can be obtained by using a 2D system. In fact, 3D

visualisation systems are more expensive and difficult to navigate (Tp, 2001), without

providing any significant advantages over 2D visualisation (Sutcliffe and Patel, 1996).

Since humans all develop essentially the same visual systems, regardless of cultural

influences, it is believed that the same visual designs will be effective for all system

users (Ware, 2000). This makes the development of effective visual modelling

languages a more tractable problem.

One visual modelling approach is the use of ‘concept maps’. Concept maps are

graphical representations that show the relationships between concepts. The

relationships are represented as arcs, while the concepts are represented as nodes.

“People find concept maps intuitive and easy to understand, and they are also

amenable to formalization to provide computational services.” (Kremer and Gaines,

1996) “The nodes are labeled with descriptive text, representing the "concept", and the

arcs are labeled (sometimes only implicitly) with a relationship type.” (Kremer and

Gaines, 1996)

- 28 -

Concept maps have been used to create models for a wide variety of domains

including education, management, science, social studies, politics and artificial

intelligence (Kremer and Gaines, 1996) (Gaines and Shaw, 1995). Concept maps

provide support for a wide variety of visual thought processes, and in particular, they

can be used to support collaborative work (Gaines and Shaw, 1995). This makes the

use of concept maps an interesting candidate for EA modelling, since the development

of EA models is usually a collaborative and highly creative process.

2.5 A Review of EA Modelling Languages

Biemans et al categorise modelling languages related to business process design into

several distinct “schools” (Biemans et al., 2001). These include:

 Object oriented languages based on Jacobson’s approach to software process

design, such as UML.

 Human communications based languages such as the speech-act theory

developed by Winograd and Flores. (Winograd and Flores, 1987)

 System dynamics methods that implement theories based on feedback loops.

Another way to categorise modelling languages is to segregate them into two groups:

domain specific modelling languages and integrated modelling languages.

Domain specific modelling languages describe just one IT domain, e.g. computer

applications, business processes or communications networks. Because of their

specialised focus, they provide the expressive power to describe their domains in detail.

The use of separate languages to describe these various domains mirrors the separation

of concerns held by different stakeholders.

On the other hand, integrated modelling languages are designed to span heterogeneous IT

domains. These languages are designed to model the entire, or a major part, of the EA

domain in order to provide a unified, integrated view of the enterprise4.

There are a large number of IT modelling languages in use. However, “most languages

are not really suitable to describe architectures …” (Jonkers et al., 2003). Since the focus

4 Within this research, the terms ‘unified’ and ‘integrated’ are used interchangeably to refer to architectures that span

multiple domains, or languages that can be used to model multiple domains.

- 29 -

of this research is integrated EA modelling, the literature review and analysis presented

in this section is restricted to those languages that are acknowledged as having potential

for modelling across multiple domains.

Individual languages can be seen as part of a continuum that extends from the

universal, to the most specialised. On one end of the scale, we have the natural

languages (e.g. English, in its various forms). These are the richest languages available,

in terms of both breadth and subtlety. However, natural languages suffer from

limitations in terms of formalism and ambiguity. At the other end of the continuum,

we have languages such as formal mathematical languages. These languages are highly

formalised, precise and unambiguous. However, they lack richness and subtlety. In

order to develop an integrated modelling language, we must wrestle with this

dichotomy. The question as to whether it is possible to develop a language that can

span all systems and multiple levels of abstraction, while retaining a level of formality

sufficient to allow precise systems specification, development and planning, is an open

one that is partially addressed by this thesis.

It will be recalled that the potential value of integrated enterprise-wide models has been

recognised for some time. Without integrated modelling, the benefits of an enterprise

level view of the organisation are eroded. Thus, "Of special importance to architects

are modeling methods that tie otherwise separate models into a consistent whole."

(Maier and Rechtin, 2000) Yet, while there have been many attempts to develop these

integrated models, there has been little success.

The remainder of this section investigates some of the attempts to achieve the goal of a

unified systems modelling language. The goal is not to provide a detailed synopsis, or

even introduction, to these languages. Most of these languages are well known and

extensive descriptions and analysis are easily found in the usual literature sources.

Rather, this review highlights and explains why the success of these languages as

integrated EA modelling languages has been limited.

Table 2 lists the languages that are reviewed in this chapter. These languages were

chosen on the basis that they are well known languages with some claim (not

necessarily true) to being a unified EA modelling language, or that they are not well

- 30 -

known outside of academia, yet they provide some special characteristic which makes

them important (e.g. Conceptual Graphs).

UML Archimate

IDEF UEML

Conceptual Graphs Ad-hoc modelling

Table 2 – Some Integrated Modelling Languages

2.5.1 Unified Modeling Language (UML)
The Unified Modeling Language (UML) is sometimes erroneously viewed as a unified

enterprise modelling language. In fact the term ‘Unified’ in UML, refers only to the fact

that UML unified three previously distinct application modelling languages (Booch,

OMT, and OOSE) (OMG, 2004, section 1.5). In fact, UML is not a single language,

but a family of languages (Cook, 2005).

This does not rule it out as a suitable unified modelling language, as it is managed by a

single body and the various elements are designed for compatibility. Also, UML is a

mature modelling notation with wide acceptance and uptake within the software

architecture community. UML is also widely supported by vendors and a wide variety

of tools exist to support UML. Additionally, UML has been used with some success

for modelling enterprises at high levels of abstraction. (Jackson and Webster, 2007)

Nevertheless, the semantic integrity of UML models is not guaranteed, and there are a

number of factors that make UML unsuitable for EA modelling.

According to OMG (the stewards of UML) “The Unified Modeling Language (UML)

is a language for specifying, constructing, visualizing, and documenting the artefacts of

a software-intensive system.” (OMG, 2004) While UML is designed for extensibility, it

is not widely used outside of the software-development domain (Iacob et al., 2002). In

fact, a number of researchers have found that it is not suitable for EA modelling (Boar,

1999, p.259) (Vernadat, 2002) (Gustas, 2005 p. 236) (Theuerkorn, 2005 pp. 14 & 16). It

is designed primarily to represent single systems, and according to Armour (Armour et

al., 2003) in its current form, without extension, UML cannot provide integrated

representations across multiple systems, even within the software domain.

- 31 -

Even if UML were extended appropriately to cover all EA domains, the resulting

complexity would likely make it extremely difficult to use, limiting its potential

audience. In fact, even when constrained to modelling within the application domain,

UML models have been shown to be difficult to comprehend by those who are not

expert in its use (Arlow and Neustadt, 2003) (Lankhorst, 2005 p. 83). In particular,

UML complexity makes it inaccessible to people such as managers and business

specialists, who are important stakeholders of any EA project (Iacob et al., 2002)

(Jonkers et al., 2003). In its current form, “UML is overly complex”: it is “part of the

picture but isn’t the entire picture.” (Ambler, 2004)

2.5.2 ArchiMate Enterprise Architecture Language
The ArchiMate EA Language has been designed specifically as an integrated EA

modelling language. The ArchiMate project is a product of a Dutch consortium

between the Telematica Instituut and industry and academic partners. The goal of the

ArchiMate project is to provide enterprise integration by developing an architecture

language and visualisation techniques. A set of ArchiMate deliverables covering various

aspects of ArchiMate and enterprise architecture is available from the ArchiMate

website (Instituut, 2005a).

The ArchiMate enterprise architecture language “covers the business layer, application

layer and technical infrastructure layer …” (Instituut, 2005b). It is focussed on

information intensive organisations and does not provide concepts to model physical

products (e.g. physical stocks and logistics).

The ArchiMate metamodel consists of a set of architecture concepts. A graphical

notation is proposed for representing these concepts, however ArchiMate state that

this graphical notation could, in principle, be replaced by another notation. (Instituut,

2005b) Over fifty separate icons are provided in the ArchiMate notation to represent

the concepts. These are shown in Figure 6.

As the ArchiMate concept icons present a comparatively large taxonomy, it is clear that

a significant effort must be undertaken before gaining the skills to develop and

understand a range of ArchiMate models. This precludes the use of Archimate by non-

architectural experts. In addition, as the concepts are numerous, they represent the

- 32 -

enterprise at a relatively granular level of detail. While this has advantages for low-level

systems planning and development it can act as an obstacle to high-level planning

where there is a need to work at a high level of abstraction before moving on to lower

level, detailed modelling.

It should also be noted that the ArchiMate concepts are divided into a number of

separate categories: Business Layer Concepts, Application Layer Concepts, Technical

Infrastructure Layer Concepts and Relationship Concepts. Thus, while ArchiMate is

designed to integrate across the domains of “organisational structure, business

processes, information systems, and infrastructure …” (Instituut, 2005b, p.v), in

creating models that span these systems, the domain boundaries are not entirely

dissolved. These arbitrary boundaries are still built into the models and form a basis

upon which the ArchiMate language is structured.

Figure 6 - ArchiMate Concepts (Instituut, 2004)

- 33 -

2.5.3 Integrated Definition Languages (IDEF)
“The IDEF family of languages … is the most widely used set of modelling techniques

in North America.” (Vernadat, 2002) IDEF originated in the US military beginning in

the 1970’s and was aimed at improving analysis and communications techniques

(IDEF, 1993). There are currently sixteen IDEF methods, as listed in Table 3.

IDEF consists of a set of languages that can be used to create a structured approach to

enterprise modelling and analysis (Knowledge Based Systems, 2004b). These include

IDEF0 (or SADT), IDEF1x (or EXPRESS-G), IDEF3 and IDEF4. However, only

three of these are widely used: IDEF0 (function modelling), IDEF1 (information

modelling) and IDEF3 (process description) (Iacob et al., 2002).

IDEF Methods
IDEF0 Function Modelling IDEF7 Information System Auditing
IDEF1 Information Modelling IDEF8 User Interface Modelling
IDEF1X Data Modelling IDEF9 Scenario Driven IS Design
IDEF2 Simulation Model Design IDEF10 Implementation Architecture Modelling
IDEF3 Process Description Capture IDEF11 Information Artefact modelling
IDEF4 Object Oriented Design IDEF12 Organisation Modelling
IDEF5 Ontology Description Capture IDEF13 Three Schema Mapping Design
IDEF6 Design Rationale Capture IDEF14 Network Design

Table 3 - IDEF Methods from (IDEF, 1992)

IDEF0, IDEF1 and IDEF3 are all relatively simple, graphical languages. The IDEF0

function modelling language is designed to be capable of expressing systems at any

level of detail (IDEF, 1993). The IDEF1 information modelling language is primarily

aimed at manufacturing enterprises that are focused on systems integration (IDEF,

1992). The IDEF3 process modelling language is designed to be used at various levels

of abstraction and across various business system domains (Mayer et al., 1995).

Thus, while the individual IDEF notations provide flexibility and ease of use, in order

to model a complete EA, a number of separate notations are required. This would

place a significant cognitive load upon modellers for the development of such

architectures, and upon other non-IT specialists who may have to interpret such

models. In addition, while the IDEF notations provide support for a variety of

separate views, these views are all isolated from one another. There are no

communication mechanisms between the various models because there is no over-

- 34 -

arching modelling language, and switching between views is not possible (Iacob et al.,

2002) (Lankhorst, 2005 p. 33).

2.5.4 Unified Enterprise Modelling Language (UEML)
The Unified Enterprise Modelling Language (UEML) is designed to be a standard

meta-model and underlying ontology that can be used as a unified language for

describing enterprise architectures. It is designed “to provide a language that is easy to

learn and easy to use and which can be provided as a standard user interface on top of

existing systems.” (Vernadat, 2002)

This project is still in early development and according to the project website

(http://www.rtd.computas.com/websolution/Default.asp?WebID=239), development

activities were conducted between March 1st 2002 and May 30th 2003. The project has

been conducted by a consortium of researchers funded by the European Union. It is

not clear if this project is still active.

At this stage, the lack of development of UEML makes it difficult to assess the

potential of this language for unified EA modelling.

2.5.5 Conceptual Graphs
The most generally applicable language is everyday language. However, written or oral

descriptions of complex systems do not serve well as analytical tools or cognitive aids.

Symbolic logic notations such as predicate calculus and derivatives such as existential

graphs and conceptual graphs have a direct mapping to language. As a result, they can

be applied to many domains. For instance, English or other natural language sentences

can be translated into an equivalent predicate calculus, or conceptual graph notation.5

These notations provide the full power of first order logic and more rigorous

definition than normal language. Therefore, these languages have the semantic power

to serve as unifying languages covering the entire EA domain.

5 That is not to say that all of the information in a sentence is fully conveyed, especially if the sentence is not

completely literal.

- 35 -

The advantage of the conceptual graph notation over predicate calculus is the ability to

represent models as structured diagrams. It is generally accepted that "… human

understanding is improved by visual representations." (Polovina, 1993, p.37), and so

conceptual graphs are assumed to leverage the human cognitive strengths associated

with visual processing. However, a search of the literature does not reveal any research

supporting this assumption.

Working on the assumption that conceptual graphs do leverage the visual cognitive

strengths of humans, this would appear to make conceptual graphs an ideal tool for the

representation of unified EA models. Indeed, Zachman and Sowa (1992) suggest using

conceptual graphs as a means of describing any of the models that make up the

Zachman Framework, as well as creating "… the metalanguage for talking about how

the different levels relate to one another."

However, while Zachman and Sowa first suggested the application of conceptual

graphs to enterprise modelling more than a decade ago, there is scant evidence of the

application of conceptual graphs to real world EA problems. The primary reason for

this is probably that conceptual graphs are too complex for general use as an effective

modelling tool. This is demonstrated by the work of Polovina (1993), who investigated

the suitability of conceptual graphs as a way of modelling strategic management

problems within an accounting domain. Polovina found that "despite their strong

prima facie attractiveness … the inherent complexity of conceptual graphs

fundamentally undermined them as a viable tool, other than for very trivial problems

well below the level needed to be viable for strategic management accountancy."

Although Polovina was working in a different domain, there are many similarities

between the modelling domain that he was testing and the modelling of EA’s. In

addition, the senior practicing accountants who were his experimental subjects appear

to have similar analytical competence to enterprise architects.

Ultimately, the experimental findings, coupled with the demonstrated lack of interest in

conceptual graphs by the enterprise architecture community, show that the conceptual

graph notation does not possess the attributes that are required for a language to be

successful as a unified EA modelling language.

- 36 -

2.5.6 Ad-Hoc Modelling Languages
In many corporate situations, enterprise architects develop their own individual "home

grown” modelling languages. These are often not formalised or standardised, even

within a given organisation. Sometimes they are created in response to a lack of

flexibility of existing modelling approaches. In other cases, it may be that the available

modelling terminologies and ontologies are unfamiliar to the enterprise. (Szegheo,

2000)

Without a modelling standard in place, these ad-hoc models can be very difficult and

laborious to read and understand. Even more importantly, the semantic integrity of the

enterprise models is jeopardised. It then becomes impossible to rely on these models as

a basis for organisational planning and design.

2.6 A Review of EA Approaches

Enterprise Architectures are typically developed using some, or all, of the following

components:

 Reference architectures (which may contain generic models/modules).

 A framework.

 A methodology6.

 Standards.

 Modelling tools and languages.

EA frameworks are given particular attention in the literature and it is important to

note the difference between an EA framework and a methodology. An EA methodology

provides a technique for capturing various aspects of a business and turning these into

models, while frameworks provide a structure within which these models can

systematically be placed (The Open Group, 2002). Put another way, "Architecture

frameworks are standards for the description of architectures." (Maier and Rechtin,

2000, p.221)

6 The terms method and methodology are often used interchangeably and, since that is the norm within the EA

community, it is also the approach taken in this thesis. In the research literature however, ‘methodology’ can more
formally mean ‘the study of methods’, or it may be used to refer to a set of methods.

- 37 -

EA Frameworks are useful constructs simply for the reason that, despite their apparent

differences, most enterprises actually have a lot in common. The identification and

codification of these common structural elements eliminates the necessity to develop

new EA's from scratch. Instead, a relevant framework can be adopted and adapted for

use. Reference architectures take this logic one-step further by tailoring an EA

framework to a specific industry, perhaps with some models already partially

developed.

Figure 7 - Situated Components of an Enterprise Architecture

In practice, EA's can usually be broken down into a number of component

architectures. The following set of domain architectures are usually considered to be

the fundamental components of any complete EA:

 A business architecture.

 A data or information architecture.

 An application architecture.

 An infrastructure or technology architecture.

Figure 7 shows how these components provide the ‘glue’ that connects an enterprise’s

business and IT strategies to the delivery of its business systems and infrastructure.

Data
Architecture

Business
Architecture

IT Infrastructure

Business Systems

Business Strategy

IT Strategy

Application
Architecture

Infrastructure
Architecture

S
TR

A
TE

G
IC

FO
C

U
S

A
R

C
H

IT
EC

TU
R

E
FO

C
U

S
D

EL
IV

ER
Y

FO
C

U
S

- 38 -

Some of the most popular EA methods, frameworks and standards are listed in Table

4. These are described in the following sections.

This review presents some of the most well known EA approaches. However, an

exhaustive review would be almost impossible. In fact, the following observations that

were made by the IFAC/IFIP Task Force on Architectures for Enterprise Integration

in 1991, is probably just as valid today:

1. There are a very large number of architectures or models already in the literature or
developed as proprietary projects by many industrial groups.

2. None of these were complete as yet.

3. Most present many of the same concepts but by means of different graphical and
mathematical methods.

4. The ancient parable of the group of blind Indian philosophers who attempted to describe
an elephant after each had felt only different separate parts, certainly applies here – Each of
the proposed architectures is describing the same subject but from widely varied, and very
incomplete viewpoints. Thus, the descriptions appear to be very different.

(Williams and Li, 1998)

Some EA methods, frameworks and standards (such as the Enterprise-Wide

Information Management (EwIM), the Method/1 Approach, and the ISMAP

EA Methods / Processes EA Frameworks EA Standards

Soft Systems Methodology

Section 2.6.1

Zachman Framework

Section 2.6.2

ISO RM-ODP

Section 2.6.5

Information Framework

Section 2.6.3

IEEE Standards

Section 2.6.9

TOGAF

Section 2.6.4

Model Driven Architecture (MDA)

Section 2.6.10

PERA

Section 2.6.6

CIMOSA

Section 2.6.7

GERAM

Section 2.6.8

Table 4 – Some Well Known EA Frameworks, Methods and Standards

- 39 -

approach) have been deliberately excluded from this review because they do not

appear to be very well developed or formalised. Other approaches have been excluded

because they appear to have been developed and presented in preliminary research

papers, never to appear again. Many of these approaches have originated from

academic research, or research and development laboratories (Mili et al., 2002).

Consequently, it is likely that a good number of these approaches have found little

acceptance or adoption outside of these environments.

There are also several examples of integrated approaches in the manufacturing domain,

including the H/P, Q2FD methods (Maier and Rechtin, 2000, p.216) (Gruninger and

Fox, 1996). However, it is apparent that these integrated methods are highly restricted

in terms of domain. As a result, they are unable to deliver effectively the benefits that

would be forthcoming from a method that integrated well over the entire EA domain.

Also, "even in these domains the models are not in very wide use …" (Maier and

Rechtin, 2000, p.219) Additionally, it must also be noted that many organisations have

their own proprietary or semi-proprietary approaches to EA.

The goal of this review, however, is to provide an understanding of the typical

approaches to EA, within which, any understanding of the efficacy of an integrated

modelling language must be situated. On this basis, the sample reviewed here has been

selected in a way that identifies trends, and similarities, between the various EA

approaches.

2.6.1 Soft Systems Methodology (SSM)
Soft Systems Methodology (SSM) (Checkland, 1981) was developed by Professor Peter

Checkland and has a relatively long history. In contrast with ‘hard’ methodologies that

are designed to deal with well-defined, technologically oriented problems, SSM is

designed to tackle problem situations that are socially oriented.

SSM is usually described as being comprised of the following seven distinct stages7:

1. Analyse the problem situation.

7 It should be noted, however, that Checkland opposed this categorisation of SSM and developed a more holistic

version of the methodology in CHECKLAND, P. & SCOLES, J. (1990) Soft Systems Methodology in Action, New
York, Wiley.

- 40 -

2. Diagram the systems situation using ‘rich pictures’.

3. Agree on ‘root definitions’.

4. Build conceptual models of the desired systems.

5. Compare the desired systems with the current situation.

6. Agree on changes for moving towards the desired systems.

7. Develop an action plan.

There are two modelling stages in the SSM methodology: the current ‘as-is’ systems

situation (step 2), and the desired ‘to-be’ systems situation (step 4). Rich pictures are

recommended for step 2, although other notations can be used. Rich pictures are

intended to be informal and imprecise: “Rich pictures are artistic and individualistic

expressions, and therefore not ‘right’ or ‘wrong’.” (Couprie et al., 2004)

While the conceptual models created in step 4 may be based on a formal modelling

language, no particular language for developing these models is mandated. A popular

convention for SSM conceptual models is to use a very simple notation consisting of

bubbles (activities) that are joined by lines. It is important to note that this is essentially

an activity diagram. Consequently, there are many domains and problem types that this

notation could not be used to model.

Checkland believes that "The complexity of the universe is beyond expression in any

possible notation" (Checkland, 1981) and this is reflected by the fact that no formal

notations are required to use SSM. However, this ignores the need for formal

languages and the problems that arise when only informal notations are used. Without

formal notations “Each analyst or team will develop their own style of Rich Picture.”

(Couprie et al., 2004) leading to the same problems that are encountered when

Enterprise Architects use individual notations to create high-level models.

Fortunately, enterprise modelling is a much tighter domain than universe modelling,

and the similarities between enterprises are strong. While no language may be perfect,

the need for formal languages that avoid ambiguity and misinterpretation is essential, in

order that the implemented systems satisfy the requirements of the enterprise.

Consequently, a unified enterprise modelling language that is easy to use by non-IT

- 41 -

specialists would likely strengthen the SSM methodology by ensuring that all problem

domains are modelled unambiguously.

SSM does not describe how to build a system, and is not intended to do so. It is “a way

of securing commitment and taking into account a variety of interests.” (Underwood,

1996) As a methodology for addressing soft problems, it has a strong following.

Eventually though, these problems need to be turned into hard solutions, and if these

solutions are to be implemented, the requirement for a unified enterprise modelling

language remains desirable.

2.6.2 The Zachman Framework
Zachman created seminal works in the area of enterprise architecture (Zachman, 1987)

and (Evernden, 1996). Today, the Zachman framework (originally termed ‘A

framework for information systems architecture’ or ISA) still provides one of the most

popular approaches for describing enterprise architectures. The Zachman Framework

is portrayed in Figure 8.

In essence, the Zachman framework provides a classification system for models that

describe some part of the enterprise at a given level of abstraction. The framework

comprises a matrix that describes the enterprise based on the different roles that an

agent can take. These generic roles are represented by the various rows of the

framework, consisting of planner (scope), owner (enterprise model), designer (system

model), builder (technology model) and subcontractor (detailed representations). These

descriptions are analogous to ‘architectural views’. “Therefore, the ISA framework

serves as a convenient classification scheme or “periodic table” for information

entities.” (Zachman and Sowa, 1992)

The Zachman framework does not provide a language for developing the models that

go to make up each cell of the framework: each cell is expected to be modelled using

“different techniques and different graphic representations …”. (Zachman and Sowa,

1992) Indeed, the Zachman Framework was deliberately defined to be independent of

any particular methodology or tool (Vail III, 2002). However, suggestions are given as to

the appropriate models to be used for various cells.

- 42 -

Figure 8 - The Zachman Framework

In Zachman and Sowa (Zachman and Sowa, 1992) an attempt is made to formalise the

framework and provide a natural language that can be used as a unifying ontology for

all the models required by the framework. This is in acknowledgement that "if the

nature of the dependency between cells could be understood and stored in the

repository along with the cell models, it would constitute a very powerful capability for

understanding the total impact of a change to any one of the models, if not a capability

for managing the actual assimilation of the changes." (Zachman and Sowa, 1992) Sowa

proposes the use of ‘Conceptual Graphs’, a form of symbolic logic, to achieve this

goal.

While some development guidelines are provided, the Zachman framework does not

describe a method for developing the overall framework. The Zachman framework is

simply a taxonomy that describes the enterprise using the metaphor of classical

architecture, i.e. the design and construction of buildings. However, despite not being a

method, the Zachman framework does embody an awareness of the system

development life-cycle, albeit, a non-customary one: "The Zachman framework takes a

Data
(what?)

Function
(how?)

Network
(where?)

People
(who?)

Time
(when?)

Motivation
(why?)

Detailed
Representations

Scope

Enterprise
Model

System
Model

Technology
Model

System

list of
things

list of
processes

list of
locations

list of
organizations

list of
events

list of
business

goals

semantic
model

business
process
model

logistics
network

workflow
model

master
schedule

business
plan

logical
data model

application
architecture

distribution
architecture

human
interface

architecture
processing
schedule

business
rule

model

data
design

system
design

system
architecture

presentation
architecture

control
structure

business
rule

design

data
definition program network

architecture
security
& access

architecture
timing

definition
rule

specification

data function network organization schedule strategy

Data
(what?)

Function
(how?)

Network
(where?)

People
(who?)

Time
(when?)

Motivation
(why?)

Data
(what?)

Function
(how?)

Network
(where?)

People
(who?)

Time
(when?)

Motivation
(why?)

Detailed
Representations

Scope

Enterprise
Model

System
Model

Technology
Model

System

Detailed
Representations

Scope

Enterprise
Model

System
Model

Technology
Model

System

list of
things

list of
processes

list of
locations

list of
organizations

list of
events

list of
business

goals

semantic
model

business
process
model

logistics
network

workflow
model

master
schedule

business
plan

logical
data model

application
architecture

distribution
architecture

human
interface

architecture
processing
schedule

business
rule

model

data
design

system
design

system
architecture

presentation
architecture

control
structure

business
rule

design

data
definition program network

architecture
security
& access

architecture
timing

definition
rule

specification

data function network organization schedule strategy

list of
things

list of
processes

list of
locations

list of
organizations

list of
events

list of
business

goals

semantic
model

business
process
model

logistics
network

workflow
model

master
schedule

business
plan

logical
data model

application
architecture

distribution
architecture

human
interface

architecture
processing
schedule

business
rule

model

data
design

system
design

system
architecture

presentation
architecture

control
structure

business
rule

design

data
definition program network

architecture
security
& access

architecture
timing

definition
rule

specification

data function network organization schedule strategy

- 43 -

somewhat original approach towards life cycle, presenting life cycle phases as

perspectives of the various stakeholders involved in the enterprise engineering effort."

(Noran, 2003)

The Zachman framework has several shortcomings, generally arising from the fact that

the Zachman framework is purely a taxonomy that classifies only the most transparent

characteristics of an enterprise. As Beznosov suggests, a deeper analysis of the laws

and principles that govern the rules for segmenting an enterprise would allow us to

understand and explain, rather than just observe, these rules, and to discover new rules.

(1998) However, as it stands, the Zachman framework does not provide this

understanding and this may also contribute to the following limitations of the

Zachman framework.

Implementation of the Zachman Framework is an extensive and arduous undertaking.

The large number of cells makes the practical applicability of the framework difficult

(Lankhorst, 2005 p. 25). While some of the cells can be modelled using well

understood and accepted modelling techniques this does not apply to every cell. In

fact, the modelling of some cells remains an open research problem. In particular, well

defined modelling languages for describing the technical infrastructure are almost non-

existent (Iacob et al., 2002) (Boar, 1999).

In addition, the problem of how the views inter-relate has been largely ignored.

Zachman and Sowa acknowledge that the relationships between the cells are more

important than the content of the individual cells (Zachman and Sowa, 1992). Yet,

because the population of all thirty-six of cells requires almost as many different

modelling languages, the cell relationships are extremely difficult to model (Figure 9).

The symbolic logic based Conceptual Graph notation offered by Sowa to solve this

problem (Zachman and Sowa, 1992) has not been adopted by the architecture

community (Beznosov, 1998). "Such logic expressions … are too elegant for systems

planners to understand and too difficult for systems developers to apply." (Wang,

1999) (also, refer to Section 2.5.5). As a result, the focus tends to be on ‘filling in the

boxes’, and the Zachman framework, when implemented, can easily become a ‘list’ of

applications and systems with little sophistication in terms of understanding how these

- 44 -

relate to each other. It is the information that sits at the edges of the boxes and the

connections between the boxes that really conveys the most important information

about the enterprise. This is the information that can only be gleaned once an EA has

been developed: indeed, EA’s are usually developed in order to reveal these

relationships. Yet the fundamental basis of the Zachman framework is to segregate the

enterprise into isolated units.

Figure 9 - Possible modelling languages with which to populate the Zachman framework. From (Noran, 2003)

Rather than allowing the development of multiple EA views based on stakeholder

concerns, the Zachman framework assumes that there are only six discrete viewpoints,

ranging from planner to user. This reflects the concerns of an enterprise from the

1970’s and 1980’s which were focussed on large-scale, mainframe-centric applications.

However, as enterprises evolve, so their concerns change. Contemporary concerns, for

instance, include areas such as security, governance, object orientation, change

management, service oriented architectures and privacy. However, the Zachman

framework does not support these concerns and they do not fit anywhere into the

prescriptive framework.

Despite its popularity, the Zachman framework is founded on anecdotal evidence,

untested observation and the conviction of a strong metaphor. Ultimately, the

Zachman framework “lacks scientific foundation” (Beznosov, 1998) and “The large

number of views is an obstacle for the practical applicability of the framework.” (Iacob

et al., 2002).

- 45 -

2.6.3 The Information Framework
The Information Framework (Evernden, 1996) is largely a development and extension

of the Zachman Framework. It reuses many of the components of the Zachman

Framework with some additional constructs. It was developed based on experience

working in the Financial Services industry. Instead of using a building plan metaphor,

the Information Framework uses a city plan metaphor.

One serious criticism of the Zachman Framework is the difficulty in completing all

thirty cells. Unfortunately, the Information Framework extends this to fifty cells!

It becomes apparent from the development of frameworks such as this, that the

structuring of the framework, or decomposition of the enterprise, is quite arbitrary.

While Evernden tries to convince that his structure was "the correct one" (Evernden,

1996), it is clear that one can never develop the ultimate framework because it depends

so much on environmental concerns such as individual industry characteristics, desired

granularity, company objectives etc. Indeed, it appears that the focus of these types of

studies has been on the 'softer' problem of framework structure, rather than the more

profound problem of model integration.

Evernden does highlight the need for an integrated enterprise modelling language and

methodology, suggesting that it might be possible to "chain together" techniques from

different methodologies in some manner.

2.6.4 The Open Group Architecture Framework (TOGAF)
TOGAF (The Open Group, 2002) consists of three main parts:

 An Architecture Development Method (ADM).

 A repository of architecture assets - models, patterns, architecture descriptions,

etc.

 A reference architecture.

TOGAF takes a platform centric view towards EA: a legacy of its beginnings as a

Technology (infrastructure) framework. TOGAF allows the use of alternative

architectural taxonomies and graphics.

- 46 -

TOGAF refers to “a continuum of architectures, architectural building blocks, and

architectural models, that are relevant to the task of constructing an enterprise-specific

architecture” (The Open Group, 2002). The level of detail increases as one moves

through this continuum. TOGAF defines a range of Views and Viewpoints and

recommends the ANSI/IEEE Standard 1471-2000 “Recommended Practice for

Architectural Description of Software-Intensive Systems” for creating these views.

2.6.5 ISO Reference Model of Open Distributed Processing (RM-ODP)
The main aim of RM-ODP (also known as ISO International Standard 10746) is to

provide portability of applications across heterogeneous systems (Raymond, 2006). It is

defined as a standard by the ISO/ITU and has been produced in four parts: (ITU,

1996) (ITU, 1995) (ITU, 1995) (ITU, 1997) The standard is designed to be highly

flexible and “considers distributed systems spanning many organizations and

technological boundaries.” (ISO, 1995, Section 6.1)

Although the focus of RM-ODP is ultimately on applications, it is considered here as

part of this EA review because it “manages complexity through a “separation of

concerns”, addressing specific problems from different points of view.” (Vallecillo,

2001) These include the enterprise, information, computational, engineering and

technology viewpoints. “The set of viewpoints are chosen to be both simple and

complete and covers all the domains of architectural design needed.” (ISO, 1995)

Thus, RM-ODP is far more than just an application framework. In fact, "The scope of

RM-ODP is larger than just architectural description. RM-ODP makes extensive

normative statements about how systems should be described, but also goes on to

specify functions they should provide and structuring rules to provide those

functions." (Maier and Rechtin, 2000, p.227)

The five RM-ODP views are intended to be represented using different notations. The

notations to be used are not specified, although responsibilities of the languages for

each of the views have been suggested (Beznosov, 1998). In practice, UML has been

used to represent the enterprise, information, computational and engineering

viewpoints, and Technology Mappings for the technology viewpoint (Iacob et al.,

2002).

- 47 -

“The complete specification of any non-trivial distributed system involves a very large

amount of information.” (ISO, 1995) RM-ODP relies on the use of sophisticated

viewpoints to reduce complexity and manage these vast amounts of information.

Unfortunately, however, RM-ODP remains complex and difficult to use. It is a

complex standard, compared to common practice in IT, and this acts as a barrier to its

adoption. (Maier and Rechtin, 2000, p232) “In fact, its complexity and high-level of

abstraction has discouraged many people from effectively using it for specifying and

building open distributed applications.” (Vallecillo)

2.6.6 Purdue Enterprise Reference Architecture (PERA)
PERA was developed at Purdue University between 1989 and 1994. It is defined by

the IFAC/IFIP Task Force on Enterprise Integration as a complete Enterprise

Reference Architecture.

PERA views the enterprise as consisting of three major components:

 production facilities (manufacturing equipment)

 people/organisation

 control and information systems (information architecture)

These components are depicted as columns that begin with Enterprise Definition at

the top and end with Enterprise Dissolution at the bottom.

The PERA approach is clearly focused on industrial/production types of enterprises. It

is unsuitable as a generic framework that can be applied to a variety of industries.

2.6.7 Computer Integrated Manufacturing - Open System Architecture (CIMOSA)
The Computer Integrated Manufacturing - Open System Architecture is a reference

architecture that has been created for use within the manufacturing industry (Neaga

and Harding, 2005). This is reflected by the fact that, while CIMOSA provides a

mature set of modelling constructs, they use an event-driven, process-based language

(Vernadat, 2002).

In this regard, CIMOSA is a typical reference architecture: it makes assumptions about

the nature and structure of the businesses that are to be modelled. This approach

- 48 -

makes reference architectures good starting points that can speed up the development

of an enterprise specific EA's. On the other hand, reference architectures lack the

flexibility to be easily extended to enterprises outside of the industry for which they are

designed.

Thus, CIMOSA, while useful as an enterprise wide integrating architecture for the

manufacturing industry, it is inherently complex (Szegheo and Gastinger, 2000) and has

little applicability to the modelling of EA across a range of industries.

2.6.8 Generalized Enterprise Reference Architecture and Methodology (GERAM)
“GERAM was developed by the IFAC/IFIP Task Force to illustrate that all

“complete” enterprise reference architectures should map together and have

comparable characteristics and capabilities.” (Williams and Li, 1998) The Generalized

Enterprise Reference Architecture and Methodology (GERAM) is comprised of three

components:

 Generic Enterprise Reference Architecture (GERA)

 Generic Enterprise Engineering Methodology (GEEM)

 Generic Enterprise Modelling Tools and Languages (GEMT&L)

GERAM combines and builds upon the PERA and CIMOSA frameworks and like

those frameworks, it is very process oriented. In addition, like PERA and CIMOSA,

GERAM is focused on enterprise integration. It must be remembered that these

frameworks were developed at a time when one of the main challenges that enterprises

were facing was the integration of enterprise applications such as Customer

Relationship Management (CRM) and Enterprise Resource Management (ERM)

systems. Today’s concerns are much wider in scope and include, for example,

transformation towards service oriented architectures (SOA), the management of

highly distributed applications, and the delivery of services over multiple channels.

"GERAM alone cannot be used to engineer an enterprise; however, it should be used

to assess what is needed for a given enterprise integration task (or task type)." (Noran,

2003)

- 49 -

2.6.9 IEEE Standards
IEEE Std 1471-2000 is IEEE's Recommended Practice for Architectural Description.

While this is often generally referred to as an ‘architecture’ standard, it is specifically

designed for software intensive systems.

"Originally, it was envisioned that the standard would codify the notion of view and

prescribe the use of particular views. In the end, consensus only developed around a

framework of views and viewpoints and an organizing structure for architecture

descriptions, but there was no prescription of any particular views. As a recommended

practice it is assumed that community experience will eventually lead to greater detail

within the standard." (Maier and Rechtin, 2000, p230)

This standard is notation independent and does not provide or recommend a

modelling language for describing architectures (Hilliard, 2000) (Lankhorst, 2005 p.

22).

2.6.10 Model Driven Architecture (MDA)
Model Driven Architecture (MDA) (Frankel, 2003) is focussed on software

development. However, as it is designed to address the demands of enterprise

computing, it is appropriate to address it here. While MDA is presented as a

methodology, it is arguable whether it really presents the characteristics of a

methodology as it does not provide a systematic guide to architecture development. It

is categorised here as a ‘standard’ but it presents more as an embodiment of a philosophy

about systems design. MDA is still immature and its development is incomplete.

The Object Management Group (OMG) is the custodian of MDA. MDA is built upon

other OMG standards including UML, MOF (Meta Object Facility), CWM (Common

Warehouse Metamodel), XML and CORBA. MDA is a new technology that is still

being standardised and is described as an evolutionary step, rather than a radical

departure from contemporary software development techniques (Frankel, 2003, p.1).

MDA is built on the assumption that enterprise architectures can only be built using a

variety of “distinct but coordinated” modelling languages that target various levels of

abstraction and domains (Frankel, 2003, p.58). Consequently, MDA can use a variety

- 50 -

of languages for modelling depending on which system aspect is to be modelled

(Frankel, 2003, p.155). However, this is theoretical, and in practice UML is typically

viewed as being the language with which all MDA models should be developed (Iacob

et al., 2002).

Furthermore, while the MDA approach appears to be highly flexible, it makes the

development of a complete enterprise model a very challenging problem. Even

Frankel, who dedicates his book on MDA as follows, “This book focuses on MDA in

the context of enterprise systems.” (Frankel, 2003, p.xvii) acknowledges the difficulty

in using MDA in practice to create a complete EA when he states, “This book does

not define a complete model driven enterprise architecture …” (Frankel, 2003, p.58)

Ultimately, this problem will not be solved until a unified EA modelling language can

be applied within the MDA framework.

2.7 The Problem with Enterprise Architecture

EA is still in its infancy (Baker and Janiszewski, 2006) (NIH, 2004). Consequently,

there are a lack of benchmarks or standards against which good EA can be measured

(Parizeau, 2002). However, it is clear that there are serious weaknesses and limitations

of current EA approaches, and that these prevent the full potential of EA from being

realised.

One area of weakness relates to the metaphors used to describe EA’s. For instance, the

'blueprinting' metaphorical approach to EA represents it as a static end-point of some

process. Yet, this mistakenly implies that an EA is a single-use model; a static depiction

of the organisation’s current architecture with little or no support for simulating future

target states (Presley et al., 2001, p.157). It should be noted that the source of this

metaphor, construction blueprints, describes just one fixed and permanent state: the

final design of the building or structure. However, enterprises change shape every day,

and so the target state is a moving one!

In fact, there are two main types of enterprise architectures identified in the literature,

"… architectures that represent the structure of a system at a given point in time

(snapshot) and life cycle architectures, which describe the possible phases and artefacts

involved in the life of a system (such as conception, development, build, operation,

- 51 -

dissolution etc.)." (Noran, 2003) An effective EA must be capable of describing both

of these by providing a dynamic model. This ensures not only that the model can be

shared, reused and kept up to date in a fast moving environment, but also that it can

support decision making on an ongoing basis through ‘what-if analysis’, ‘scenario

planning’ or ‘simulations’. The blueprint metaphor is congruent with the ‘snapshot’

type of architecture, but is incongruent with these other non-static types of

architecture.

EA method descriptions generally exhibit an appreciation of the need for architecture

views. Yet, they lack detail as to how these would be defined or developed (Armour et

al., 2003). The definition and creation of views can be very difficult when multiple

modelling languages are being used, hampering “… the “flow” and dependency from

elements in one view to the elements in another view …” (Armour et al., 2003) While

the use of views adds a great deal of complexity to the creation and maintenance of

EA’s, accurate and consistent representations of multiple views are critical for

organisations that are operating in a rapidly changing environment (Armour et al.,

2003). The development of an agreed metamodel and ontology for EA models would

make it possible to look at any EA model using any of the views defined in any existing

modelling framework, but this has not yet been achieved (Noran, 2003).

Traditional EA models are often unwieldy and difficult to navigate and explore. The

problem is exacerbated by the fact that the stakeholders to which architectures are

presented have “varied backgrounds, and technical and non-technical skill sets and

interests.” (Armour et al., 2003) Typically, these stakeholders include the CIO, a wide

range of business users, system users, IT developers, systems analysts and systems

architects. Business users, while responsible for determining the requirements for

systems, generally are not fluent in any formal modelling notations (Cyre, 1997) and

current standards for enterprise modelling are not oriented towards the business user

(Chen and Vernadat, 2004, p.252). In fact, Bemelman and Dennis’s investigation of

architecture from a users' point of view (cited in (Rostad, 2000, p.136)), concludes that

"the inherent levels of complexity and detail in most of the current architectures will

become a major impediment to acceptance of these architectures in the industry."

Solberg supports this finding: "Enterprise models are useful only if they are used. They

will be accepted by users as a tool if they are simple to understand, easy to use, computer-

- 52 -

supported, and if they provide a realistic image of the reality. This explains the failure of many

approaches proposed in the past …" (2000, p.184 (my italics)) In fact, arguments over

“which model is right”, “which notation is right”, and “which paradigm is right” are

relatively meaningless if the model cannot be understood by the stakeholders.” (Kaisler

et al., 2005)

One problem presented by EA modelling is the scope problem: "The range of

phenomena addressed by enterprise modelling stretches multiple disciplines, and

accordingly many modelling languages and practices are used. This places high

demands on IT architects to understand a wide variety of modelling languages, leading

to long, complex projects that are out of date by the time they are completed

(Beznosov, 1998). The use of multiple modelling languages leads to inconsistent

semantics and weak ontologies. The models thus produced, may be inconsistent and

contradictory (Bernus, 2001) (Roussev and Rousseva, 2004) (Jonkers et al., 2003). In

fact, most available EA frameworks do not specify any language for modelling: “In

effect, modellers are still left to create their own individual language.” (Dewhurst et al.,

2002)

Another limitation to the languages that are used to describe EA’s is their restriction to

a narrow range of abstraction levels. In fact, the syntax of EA modelling languages “…

often closely resembles a programming language, which does not match the

abstraction level of a system architecture.” (Armour et al., 2003) There are currently no

commonly accepted and used modelling languages that support the development of

EA models spanning wide-ranging levels of abstraction. Unfortunately, there is usually

a trade-off between the ability of a language to describe a wide scope covering multiple

systems and its ability to model various abstraction levels. If priority is given to

providing a wide scope, then some sort of mapping must be provided between the

different levels of abstraction (Biemans et al., 2001, p.125).

To add to the complexity, different architecture modelling methods are used

depending on the project life-cycle phase (eg. requirements gathering, conceptual,

logical or physical design) (Bernus, 2003). In addition, different modelling techniques

are used to represent different architectural views. For example, creating views to show

system behaviour, data, performance, form, management or purpose all require

- 53 -

different modelling techniques (Maier and Rechtin, 2000). The integration across these

views can be particularly problematic because “While the views are chosen to be

reasonably independent, there is extensive linkage among views.” (Maier and Rechtin,

2000, p.146) These fragmented representations also make EA’s difficult to maintain

(Gustas, 2005).

One particular area of difficulty is reconciling the disjunction between hardware

models that are typically performance centric and physics based, and the software

models that are typically object oriented and data based. (Maier and Rechtin, 2000,

p233) Maier and Rechtin believe that rather than trying to reconcile these, we may be

better to leave the disciplinary modelling methods as they are and look instead for ways

to "develop inter-view consistency checking techniques." Even if this is achievable, this

approach does not address the other disadvantages associated with using diverse

modelling techniques, such as the difficulty in mastering many techniques in order to

develop enterprise architectures, or the cognitive burden in trying to understand

enterprise architectures that are composed of many model types.

Maier and Rechtin suggest that this problem might be solved by working “up from the

engineering disciplines to create more general notations." (2000) However, this

approach has yet to yield demonstrated success. Taking a very different approach to

the problem, Bernus believes that the problem itself needs to be restated: “… new

criteria need to be developed for being able to develop shareable enterprise models.”

(Bernus, 2003)

Two general solutions to the problem of integrated EA modelling seem apparent.

These are similar to the approaches suggested for standardising object oriented

application development methodologies (Henderson-Sellers and Bulthuis, 1998). One

approach would be to identify all of the modelling elements currently used to describe

different aspects of the enterprise and merge them into a ‘superset’ enterprise

modelling language. The obvious drawback with this approach is that the ensuing

language would be so complex that it would be impractical to work with. Alternatively,

just the essential elements of various domain-modelling languages could be identified

and merged into a ‘core’ enterprise modelling language. The problem with this

approach is that the identification of essential elements would be problematic: it would

- 54 -

be very difficult to get agreement on what could be left out. In addition, the

subsequent language is likely to be useful only for ‘vanilla’ applications.

Irrespective of the arguments as to the possible solutions, the problem of integrated EA

modelling does exist, there is currently no solution, and its impact is highly deleterious

(Gustas, 2005). A solution to this problem would have immense value: it would

enhance the numerous benefits that are already acknowledged as deriving from the use

of EA’s, and it would add weight to the business justification for using EA to support

organisational change.

2.8 Summary

As this Chapter has shown, there are a number of problems that arise from the fact

that there is no effective unified modelling language that can be used to describe an EA

(Noran, 2003) (Iacob et al., 2002) (Jonkers et al., 2003).

While there have been several attempts to develop languages that can model the entire

(or a major) part of the enterprise domain, it is apparent that these languages have not

gained widespread popularity. Furthermore, while there exists a number of different

methodologies for developing EA models, the majority of these integrated methods

are highly restricted in terms of domain, and "even in these domains the models are

not in very wide use …" (Maier and Rechtin, 2000, p.219). As a result, they are unable

to deliver effectively the benefits that would be forthcoming from a methodology that

integrated well over the entire EA domain.

The existing EA modelling languages that are not restricted in terms of domain are too

complex for practical application to real world problems. The most promising EA

modelling language appears to be the ArchiMate modelling language, which presents a

wide variety of concepts that appear to cover the spectrum of EA quite well. However,

with more than fifty concepts in use, its audience of potential users is unlikely to spread

beyond that of specialised IT architects, and its use by business planners and strategists

would, inevitably, be highly limited.

Ultimately, the use of multiple EA languages that cannot be integrated prevents the

achievement of the prime goal of an EA: the development of an integrated view of the

- 55 -

enterprise (Maier and Rechtin, 2000) (Kaisler et al., 2005) (Beznosov, 1998) (Jonkers et

al., 2003). In particular, EA’s that are built using component-based frameworks (such

as the popular Zachman framework) are fundamentally flawed because they implicitly

model the enterprise as a set of independent structures with discrete boundaries. This

leads to an EA model that provides a fragmented view of the enterprise with poor

explanatory power and little flexibility for future planning.

It should also be noted that almost all contemporary EA approaches have been

developed informally (Lankhorst, 2005 p. 41): “no scientific research methodology has

been applied to this area.” (Beznosov, 1998) This suggests that a scientifically

grounded, theoretically sound approach to EA development may offer improvements

over contemporary EA methods and frameworks.

- 56 -

3 METAPHOR

Figurative application of words … are for nothing else but to insinuate wrong ideas, move
the passions, and thereby mislead the judgment, and so indeed are perfect cheats … They
are certainly, in all discourses that pretend to inform or instruct, wholly to be avoided.”

John Locke, An Essay Concerning Human Understanding, 1689, (Bk.III, ch.10, §34)

3.1 Introduction

This Chapter provides a review of some of the contemporary perspectives on

metaphor. This will provide a theoretical foundation for the development of a new

theory of enterprise modelling by picking out some of the salient points made by

contemporary researchers in order to lay the foundation for the ideas presented later in

this thesis.

Some wider surveys of this domain have already been made. In particular, Way (1991)

performs a careful and in-depth comparative analysis of many of the diverse theories

that purport to explain the operative mechanisms involved in metaphor. In addition,

Neale and Carroll review a number of metaphor taxonomies that have been developed

by various researchers (1997).

3.2 Contemporary Views on Metaphor

3.2.1 What is Metaphor?
According to Johnson, a metaphor is “any image that represents one thing as

something else in order to explain it better …”(1994). Lakoff and Johnson similarly

define metaphor as: “… understanding and experiencing one kind of thing in terms of

another.” (1980) This latter definition provides the basis for the analysis of metaphor

within this research. Furthermore, the ontology used in this thesis parallels the

description of metaphor in cognitive linguistics, where the terms source and target

refer to the conceptual spaces connected by the metaphor (Lakoff and Johnson, 1980).

Figure 10 shows how these terms apply to the computer ‘desktop’ metaphor. The

structure of the source domain is projected onto the target domain in a way that is

consistent with the inherent target domain structure (Lakoff, 1993). Elsewhere in the

research literature, the target is variously referred to as the primary system or the topic,

and the source is often called the secondary system or the vehicle.

- 57 -

Figure 10 - The Relationship between the Source and Target of a Metaphor

Contemporary research has shown us that metaphor, far from being just a figure of

speech, is actually central to everyday communication and learning (Lakoff and

Johnson, 1980) (Lakoff and Nunez, 2000). In fact, it has been argued that only by

relating a new concept (the ‘target’) to a well understood, everyday object (the ‘source’),

can one develop new knowledge and understanding, and that without this process, it is

impossible for humans to carry out abstract thinking (Indurkhya, 1994). At a cognitive

level, the source-target relationship is believed to produce a ‘conflation’ - a

simultaneous activation of two different parts of the brain. New neural pathways are

developed, and these synthesise the relationship as a single, entirely new experience

(Lakoff and Nunez, 2000, p.42).

It is widely believed that metaphor is similarly valuable, and perhaps essential, to the

design of effective information systems. In this case, metaphor is believed to provide value

by:

 Reducing the effort required to understand the conceptual system model by

providing an analogy between the new (target) system and a known (source)

system.

 Assisting in specific task problem solving by allowing the user to extend their

working knowledge of the target system, based on their understanding of the

source system.

However, while humans use metaphor quite naturally and instinctively to learn and

reason about new concepts, the explicit and overt application to IT domains cannot be

assumed to carry the same benefits. In fact, Blackwell’s empirical research shows that

metaphor has little effect on problem solving. “The generally assumed theoretical

Source

TargetDesktop metaphor

Target

- 58 -

benefits of user interface metaphor are supported by surprisingly little empirical

evidence.” (Blackwell, 1998)

Indeed, much of the evidence that does support the use of metaphor appears to

misattribute benefits from other sources onto the metaphor, or misattribute drawbacks

of the metaphor onto other aspects of the system. For instance, the trend to

incorporate metaphor into Graphical User Interfaces (GUI’s), can easily lead one to

misattribute the benefits of using a graphical interface to the metaphor that governs the

choice of symbols and function (Blackwell, 1998).

Furthermore, there are examples of experiments where the use of a metaphor has been

empirically proven to be misleading and confusing. Yet the metaphor is still declared

successful on the basis that (a) the system probably wasn’t being used correctly (b) the

users believed the metaphor was valuable (Hammond and Allison, 1987). Similarly,

Blackwell (1998) cites several other examples where claims are made purporting to

show the value of metaphor in user interface design, despite evaluation results that show

the contrary.

It may be that computing has presented society with such a ‘radical novelty’ and ‘sharp

discontinuity’, that any use of metaphor and analogy to try to link new concepts to

more familiar ones, is misguided: “…our past experience is no longer relevant; the

analogies become too shallow; and, the metaphors become more misleading than

illuminating.” (Dijkstra et al., 1989) Perhaps we should throw away the metaphor, and

“begin designing devices that have no metaphor, no real-world analogy.” (Tristram,

2001) Yet, if everyday language is impossible without recourse to metaphor, how can

we possibly hope to avoid using metaphor in a new field like IT? Is there a way to use

metaphor that avoids its pitfalls while optimising its advantages?

These problems arise because, “the referents of computer metaphors are often ghostly

abstractions, not things one can point to or see or touch.” (Johnson, 1994) IT supports

the creation of highly abstract environments, and yet, bound down in the garb of

concrete metaphor, the opportunity to rise above the world of gross physicality is lost.

Still, metaphor remains an essential part of communicating and understanding. In fact,

without metaphor, language and thought would be impossible. All knowledge is based

- 59 -

on metaphor (Indurkhya, 1994); “… it is the basic means by which abstract thought is

made possible.” (Lakoff and Nunez, 2000, p.39) In fact, declarations such as those by

Dijkstra that mathematics and formal logic are superior to metaphor are fundamentally

flawed. Even mathematics uses metaphor freely (Lakoff and Nunez, 2000). Take for

example, the concept of a function having a slope (Pimm, 1987) (Travers, 1996).

Johnson summarises the situation well, saying: “Having agreed with Kuhn, Black, and

other philosophers of science that the use of metaphor is inevitable in human

cognition, including scientific cognition, and having observed that it is used widely and

with relish in computer science, I hasten to note that it is often enough the source of

difficulty.” (Johnson, 1994) This sets the scene from where we hope to move forward.

We cannot escape the use of metaphor, and yet we still have much to learn in order to

harness the power of metaphor for systems modelling.

The remainder of this chapter focuses on a several different types of metaphor and

reviews the way in which they are applied. This investigation is situated within the

context of enterprise systems modelling and is thus restricted in scope to those topics

that lay a foundation for latter parts of this thesis.

3.2.2 Concrete Metaphor
Most contemporary computer system applications and interfaces are grounded in the

world of metaphor. Most commonly, these are concrete metaphors. Concrete metaphors

are based on objects that users are familiar with from their everyday experience

(L'Abbate and Hemmje, 1998). For instance, we have the desktop metaphor composed

of buttons, filing cabinets and trash bins, and windows through which we can view the

world of information. And thus, “… we typically conceptualize the nonphysical in

terms of the physical - that is, we conceptualize the less clearly delineated in terms of

the more clearly delineated.” (Lakoff and Johnson, 1980)

As we live in a physical world, it seems natural that computer interfaces should

resemble as closely as possible – physical objects, especially objects that we have

engineered and constructed to help us manage other aspects of the physical world. It

seems logical, at first examination, that a metaphor that is based on well understood

objects that we encounter and use every day should help us to understand the

- 60 -

unknown. After all, “The essence of metaphor is understanding and experiencing one

kind of thing in terms of another.” (Lakoff and Johnson, 1980) This has been the

prevailing school of thought when discussing the application of metaphor to computer

design, and particularly Human Computer Interface (HCI) design.

However, there is another school of thought that the use of metaphor is detrimental to

computer design. For example, Halasz and Moran state, “Analogy, used as literary

metaphor, is effective for communicating complex concepts to novices. But analogy is

dangerous when used for detailed reasoning about computer systems - this is much

better done with abstract conceptual models.” (1982, p.386) Halasz and Moran believe

that, inferences based upon an interface metaphor (metaphor based interface

affordances) are likely to lead to invalid conclusions. The “information superhighway”

metaphor provides a good example of this phenomenon. In reference to the

information superhighway, Stefik states that “The metaphor has become so popular

that it offers serious challenges to people talking about computer networks, because it

carries with it misleading meanings associated with roads.” (1996) It has even been

suggested that the tendency for metaphor to mislead is used as a systematic deception:

“The animistic metaphor of the bug that maliciously sneaked in while the programmer

was not looking is intellectually dishonest …” (Dijkstra et al., 1989)

Sometimes, these problems arise because there is a misalignment between the

metaphors used at different levels of system abstraction. For instance, a metaphor may

be selected that it is believed will assist the user to understand an interface. Often,

these metaphors are not related to structure of the actual program driving the interface

(Ludewig, 2003). Under these circumstances, there are bound to be inconsistencies

between the users’ expectations, and the functional behaviour of the system.

There may be a tendency to assume that the design of many engineered artefacts is

close to optimal, since they have been used and refined over relatively long periods.

For instance, we may assume that an office is the best way to organise a business work

environment, a filing cabinet is the best way to organise information, a ‘clock face’ dial

is the best way to display real variables, and so on. In a world defined by physical,

engineering and economic dimensions, these assumptions are reasonable. However, in

a computing environment these boundaries fade away. In this environment,

- 61 -

information storage, manipulation and representation are unencumbered by these

limitations and there is potential to carry out tasks in a ways that mechanical devices

just will not allow.

For example, the organisation of information may be modelled on traditional

information management techniques that are based on physical manifestations of this

information, such as books. However, as we digitise this information, new ways to

manage and manipulate this information can emerge, and these new methods may

break down many of our old assumptions. Concrete metaphors based on dual

information structures (the Dewey decimal system for example, where there is a

catalogue of sorted books) limit the potential usefulness of digital organising structures

to those available within archaic physical limitations. Instead, a “third order of

organisation” is needed to really leverage the power of information technologies, and

this is based, in the case of information organisation, on “messy webs of information”

that support serendipitous connections and innovative ideas (Weinberger, 2005).

Mechanical devices (a common source of concrete metaphor) are designed to control a

single or small set of functions and/or to display a single or small set of variables. On

the other hand, the information conveyed by a computer is often far more complex

and diverse than would be conveyed by a single physical device. For example, in an

aircraft, a single computer display could conceivably provide the control and display

functions traditionally managed by hundreds of separate mechanical instruments.

Therefore, there is a mismatch between concrete metaphor sources and targets. This

leads to problems in three areas.

Firstly, the breadth of functionality required to replace myriad physical devices cannot

be suitably conveyed using a single concrete metaphor. To overcome this limitation,

convoluted aggregations of (often-unrelated) metaphors are created. These composites

are intended to bridge the gap between what is available in the real world, and the

extended ‘magical’ features that a computer can provide (Neale and Carroll, 1997). The

composites form the modelling equivalent of ‘mixed metaphors’ and just as mixed

metaphors are customarily prohibited in every day language (because they can lead to

confusion and ambiguity), so there is a similar case for their exclusion from systems

modelling.

- 62 -

When multiple metaphors are required to cover the target domain, it becomes difficult

for the user to work out which metaphor applies to their particular problem, or to

anticipate new metaphors they have not yet encountered. The development of a highly

metaphorical computing language has led to the frequent juxtaposition of metaphor,

leading to user confusion (Johnson, 1994). “Where metaphors do overlap, and where

they could be interpreted as conveying contradictory information about the system,

problems might occur.” (Hammond and Allison, 1987, p.83) It is the consistency and

alignment with a thematic metaphor that promises to assist the user by enabling them

to draw inferences about the system’s behaviour, and so “… where substantially new

metaphors appear as the primary metaphor is unravelled, there is serious risk of

confusion of thought.” (Black, 1979) In fact, Brooks believes that maintaining

conceptual integrity is so crucial that it is better to omit system features and

improvements, than to introduce features that do not integrate with the system’s basic

design concepts (Frederick P. Brooks, 1995).

The second area of difficulty that arises from the use of concrete metaphor in systems

modelling is that, since the depth of required functionality provided by concrete

metaphors is rudimentary compared to the potential offered by computer systems, we

find the metaphors twisted and extended in an unnatural manner. “After all the special

addenda have been tacked onto the analogical model, the filing cabinet is no longer a

familiar filing cabinet. Further, the addenda are the most important parts of the

model.” (Halasz and Moran, 1982, p.384)

An example of this situation is the case of the city landscape metaphor, a concrete

metaphor that is often used to describe EA’s. Dieberger, for instance, extends this

metaphor and uses it not only to describe an EA, but as a basis for developing an EA

system (Dieberger and Frank, 1998). Dieberger creates a system based on an

“Information City” metaphor where “buildings act as containers for documents” and

the façade of each building shows what type of information is contained within it

(Dieberger, 1994) (Knight, 2002). This is justified on the premise that people “cope

well with the complex task of reaching their working places or homes every

day.”(Dieberger, 1994, p.10).

- 63 -

Of course, when we are travelling between work and home we are concerned with just

two points, and so this presents an extremely low bandwidth situation that would be

suitable only for modelling extremely small domains. On the other hand, our information

needs usually span dozens, hundreds, or (especially with the Internet) millions of data

sources and this data is constantly changing, reshaping and evolving. The use of a

sequential search method where the user has to pretend they are walking along in front

of buildings (Dieberger, 1994) is highly impractical. Given a choice of navigation

techniques, one modelled on road transport is particularly limited.

In order to make this metaphor useful, Dieberger introduces “Additional magic

features” (Dieberger, 1994) which bear no relation to the core metaphor. “Since cities

are more a plane than a cube distances between documents can become unbearably

long.” and so the cities become island cities that are “drifting ‘in the void’” and that can

“expand dynamically … similar to the stretching a (sic) rubber sheet.” These

incongruent metaphors (incongruent with our understanding of how cities really are

structured) are introduced in a desperate attempt to make the concrete metaphor

workable. Thus, “Metaphor is extended and begins to take on the characteristics of

imaginative narrative or myth.” (Johnson, 1994)

The third area of difficulty associated with concrete metaphors arises because features

of the source domain can be projected onto the target domain, even though they are

not an inherent part of the target. This is referred to as the metaphor over-attribution

problem. This phenomenon leads users to attribute qualities to the target domain that

may not exist, creating false expectations and reducing user performance.

At best, IT metaphors may be seen as perpetuating physical concepts that are no

longer necessary in the IT environment (Pawson, 2000, p.61). However, in practice, the

impact may be less benign. Gardiner and Christie sum up their view of the

phenomenon as follows: “… by tying an interface to concepts which prevail in non-

electronic environments, one is not taking full advantage of the benefits that can

accrue from using the electronic medium. … For example, a ‘filing cabinet’ metaphor

can be as restrictive as the real-life filing cabinet.” (Gardiner and Christie, 1987, p.230)

Similarly, Maher et al recognise that the use of spatial concrete metaphors such as

rooms, although inspiring, may limit what can be achieved in the virtual world (Maher

- 64 -

et al., 2000). When information systems replace physical systems, there is no need to

imitate the physical artefacts. In fact, building systems that imitate the existing world

“… severely limits our possibilities.” (Ludewig, 2003)

3.2.3 The Ghost in the Machine
It has been observed that the majority of metaphors are anthropomorphic (Johnson,

1994) (Travers, 1996). In seeking to explain a complex domain for which an

appropriate vocabulary has not yet been developed, we have drawn from another

complex domain, one that is even more complex, yet exceedingly familiar – ourselves.

Unfortunately, the consequences are not always favourable. In fact, it has been said

that “the anthropomorphic metaphor … is an enormous handicap for every

computing community that has adopted it.” (Johnson, 1994) Others concur: “I have

now encountered programs wanting things, knowing things, expecting things, believing

things, etc., and each time that gave rise to avoidable confusions.” (Dijkstra et al., 1989)

Anthropomorphic metaphors also carry a particular risk for over-attribution errors

(Travers, 1996, p. 67).

Indeed, it is now apparent that computers are rarely viewed dispassionately, but are

imbued with human characteristics including control, emotion and intelligence.

Conversely, “… even the most objective of computer feedback can elicit psychological

and emotional responses from users.” (Marakas et al., 2000) The ‘machine-being’

metaphor results in an over-attribution of characteristics from the source to target

metaphors, leading to unrealistic expectations of computing technology (Marakas et al.,

2000).

An interesting anthropomorphic metaphor is the ‘information agent’. Too often,

‘information agents’ conveniently take care of problems that we haven’t yet solved; a

modern version of the ‘black-box where magic happens’! An example of this

phenomenon is provided in the research reported by Thomas (1994). Because we

know that human beings (the source of the agent metaphor) are intelligent and creative,

devices such as these can easily deceive people into thinking that a problem has solved

when it has merely been hidden behind the cloak of an anthropomorphic metaphor.

Without recourse to such a metaphor, the lack of detail in this most critical part of the

solution would be obvious.

- 65 -

3.2.4 Persuasive Metaphors
It is interesting to ponder the choices that have been made with respect to computing

domains. While a superficial analysis gives us to believe that many of the metaphors in

use are obvious choices, in that the mapping from source to target domains is relatively

complete, further analysis shows that the selection of metaphor is not so arbitrary.

Take for instance the desktop metaphor. On one level, this appears to provide a fairly

obvious mapping. Upon our desktops are a set of tools for carrying out business. We

may want to use similar tools in the computing domain, and so there exists a fairly

pragmatic relationship between the source and target. However, there are also many

other source domains that provide similar mappings: a playground, a classroom, a

garage, a library etc. Why are these metaphors not used?

On a deeper level, a metaphor does more than provide a set of attributes that map to

the target. There is a larger meaning and connotation that we associated with each of

these source domains. That is, the totality of each of these domains is greater than the

sum of its components and upon deconstruction, the attributes that provide the literal

meaning of the source metaphor fail to convey the whole meaning provided by the

metaphor. As Black puts it, there is a “system of associated commonplaces” (Black,

1962) around each of these metaphors.

The desktop conveys more than just a work surface with commonplace tools. There

are associations that might include concepts such as work, industry, ownership,

enterprise, control, formality etc. Moreover, each of these may engender associated

emotional responses that may vary from person to person. These associated

commonplaces are likely to influence the user acceptance of a metaphor, as well as the

cognitive and emotional responses to using that metaphor. Therefore, the choice of

metaphor influences the direction, and degree, to which any computer system is

persuasive. Because metaphor is inexorably woven into our way of thinking, it is

routinely used, not just to communicate, but also to convince and persuade. Moreover,

as we have seen, the success of metaphor as a persuasive device can lead researchers to

confuse the persuasive strength of the metaphor with its success as a tool for learning

and performance. In fact, in some cases the use of metaphor (for instance, a striking

- 66 -

visual metaphor), can serve as a seductive sales feature, particularly to a non technical

audience (Pawson, 2000, p.61).

Once the effects of metaphor as a persuasive device as taken into consideration, the

empirical evidence that metaphor provides HCI learnability or performance benefits

diminishes. Still, the deliberate use of persuasive metaphor may be justified in order to

influence the take-up and acceptance of computer systems; even if the benefits the user

perceives are largely illusory. Some metaphors, are simply more pleasant to work with

than others (Pawson, 2000, p.18). This may, for example, explain the allure of the ‘City

Landscape’ EA metaphor.

A compelling and persuasive EA metaphor would need to have an emotional ‘hook’

that appeals to knowledge workers. The associations this metaphor would need to

engender might include:

 control

 ease of use

 professional image

 responsiveness

 efficiency

 utility

 leading edge technology

The relevance of this understanding of the persuasiveness of metaphors will become

apparent later in this thesis when a metaphor is selected as a basis for developing a

unified modelling language.

3.2.5 Enterprise Architecture Metaphors
The term ‘Enterprise Architecture’ is a metaphor based on classical architecture - the

design of physical structures such as buildings. This is heading towards becoming a

dead metaphor as the term architecture is increasingly used in IT. However, when John

Zachman (1987) first established the notion of information systems architecture, the

metaphor was used very consciously. Zachman saw an analogy between the process of

- 67 -

classical architecture and the design of computer systems, and he projected the levels

of representation produced by classical architecture onto the system development

lifecycle.

This metaphor has been extended to cover the artefacts produced in carrying out EA

activities. According to Presley et al, “An enterprise architecture can be thought of as a

‘blueprint’ or ‘picture’ that assists in the design of an enterprise.” (Presley et al., 2001)

In fact, many well known approaches to EA are based around the 'blueprint' metaphor

(for example, Boar’s book “Constructing Blueprints for Enterprise IT Architectures”

(1999)). The process of EA development is seen as analogous to industrial design, and

the established industrial design methods are seen as a rich source from which IT

professionals can garner useful methods, techniques, and even vocabulary.

However, despite the popularity of the architecture metaphor there are significant and

important differences between the process of systems design and the engineering

design. In fact, systems design and engineering design are very different activities and

require different process to achieve them successfully (Fowler, 2003).

A different, commonly used EA metaphor is the ‘city landscape’ or ‘city planning’

metaphor. For example, the United States Department of State – Information

Technology Architecture publication describes architecture as follows: "An

architecture is a guiding strategy or framework. … It is not a detailed blueprint or

wiring diagram, understandable only to technicians, but rather more like the city

planning codes, zoning laws, and high-level plans that constrain the design, and enable

the objective to be realized."8 (United States Department of State, 1999)

The city landscape metaphor is an example of a spatial metaphor (a special case of

concrete metaphor). ‘Spatial metaphor’ is actually a label for a class of metaphors that

include urban metaphors, landscape metaphors, geographic metaphors (that are

navigated using latitude and longitude) and so on. “The appeal of the spatial metaphor

is rooted in its simple and intuitive association with our experience in the physical

world.” (Chen, 1999 p.178) Spatial metaphor is a popular approach to information

8 Regardless of this example, the blueprint and city planning metaphors are not necessarily mutually exclusive. In fact,

they are often both used in describing EA’s where the city planning metaphor usually refers to the EA process, and
the blueprint metaphor usually refers to the EA products.

- 68 -

space design and is the predominant metaphor in the world of virtual environments.

“Spatial metaphor not only plays a predominant role in information visualisation, but

also become one of the most fundamental design models of virtual environments.”

(Chen, 1999 p.3)

The mapping between the source and target components of this metaphor is illustrated

in Table 5.

SOURCE (City Planning) COMPONENTS TARGET (EA) COMPONENTS

City vision and urban design. IT Strategy and Planning activities.

Zoning and building codes. IT Principles, standards and guidelines.

Maps and plans. Architectural models.

Processes for changing city plans and allowing

exceptions.

Architecture management process.

Table 5 - City Landscape Metaphor Mapping

3.2.6 Metaphor Hierarchies
While concrete metaphors are sourced on familiar objects, conceptual metaphors are

sourced on structures of thought. However, these are not exclusive categories. Our

understanding of concrete metaphors depends to some extent on our

conceptualisation of the source object. Conversely, our understanding of concepts may

be rooted in the physical (Lakoff, 1993). There is, in fact, a continuum that extends

from the most highly concrete to the most conceptual metaphor.

 There exists a relationship between concrete and conceptual metaphors with respect

to “scope” and “level of description”. “Scope refers to the number of concepts … that

the metaphor addresses.” (Hammond and Allison, 1987, p.77) Level of description

refers to the granularity of the knowledge being conveyed. Thus, conceptual metaphors are

used to describe less granular knowledge structures, while concrete metaphors are used to

describe highly granular knowledge structures. On the other hand, conceptual

metaphors can address a wider range of concepts than can concrete metaphors. This is

illustrated in Figure 11. Note that when these metaphors are used to describe systems,

- 69 -

they can overlap, and there can be gaps between them. When metaphors overlap, there

is a contradiction where disparate metaphors are used to describe the same

phenomenon. When there is a gap between the metaphors, there exists phenomenon

with no metaphoric reference in use.

Figure 11 - Scope and Level of Metaphors (partially based on (Hammond and Allison, 1987))

Applying these concepts to the modelling of enterprise structures, it can be observed

that larger scale structures are typically modelled using more 'conceptual' metaphors

while smaller scale structures are modelled using more 'concrete' metaphors (Figure

12). It can also be observed that a conceptual metaphor is the least leading, and the least

misleading, type of metaphor. Conversely, a concrete metaphor is the most leading, and

the most misleading type of metaphor. For example, the concept of a learning

organisation serves as a highly conceptual metaphor source. However, when applied to

a specific target domain, this metaphor may actually say very little about that domain's

function and structure. On the other hand, a filing cabinet is a highly concrete

metaphor. When applied to a target domain it may provide some very specific

information about that target's function and structure. It may also be very misleading

because not all attributes of the source will map to the target and it may not be clear

which attributes do map from the source to the target, and which do not.

CONCRETE
METAPHOR

SCOPE

Level of
Description

TASK

ACTIVITY

LESS CONCRETE
METAPHOR

CONCRETE
METAPHOR

CONCRETE
METAPHOR

CONCRETE
METAPHOR

CONCEPTUAL
METAPHOR

MORE CONCEPTUAL
METAPHOR

MORE CONCEPTUAL
METAPHOR

LESS CONCRETE
METAPHOR

- 70 -

Figure 12 - Metaphor Hierarchy from Elastic to Concrete

3.3 The Dynamic Type Hierarchy Theory of Metaphor

In the previous section, we alluded to the hierarchical nature of metaphor. We will now

build upon these concepts and adapt Eileen Way’s dynamic type hierarchy theory

(DTH) in order to formalise a theory for developing unified EA models.

The DTH theory “involves a theory of metaphor that incorporates Sowa’s conceptual

graphs, dynamic type hierarchies, and Max Black’s interaction approach.” (Way, 1991,

p.125)

Numerous theories have been developed explaining how metaphors are used and why

they work. These theories include emotive theories, the substitution approach, the

comparison theory, metaphor as analogy, the controversion theory and Chomsky’s

anomaly model. Way surveys and analyses these approaches and illustrates the

shortcomings and contradictions that beset them. Way finds that the interaction view,

while not perfect, is the most promising contemporary theory of metaphor and that

“much of the experimental data of metaphor is either compatible with or actually

supports aspects of the interaction view.” (Way, 1991, p.124)

Organisational
Metaphors

e.g. The learning
organisation

System Metaphors
e.g. Customer relationship

management

Function Metaphors
e.g. Customer profiling function

Component Metaphors
e.g. Scroll bar

Unit Metaphors
e.g. Windows interface

Large scale
structures

Small scale
structures

Conceptual
Metaphors

Concrete
Metaphors

- 71 -

Max Black originated the interaction view (Black, 1979) and Way summarises the main

points of the interaction view of metaphor as follows:

 metaphor involves entire systems of assumptions and ‘commonplaces’ which

are associated with the terms involved;

 that the metaphorical process works like a filter, with the associated ideas of

the secondary subject (vehicle) hiding, highlighting and organizing aspects of

the primary subject ;

 understanding metaphor often involves a shift in meaning ;

 metaphor cannot be reduced to any literal statements of comparison, and ;

 metaphor can actually create similarity between previously dissimilar ideas.

(Way, 1991, p.48)

Way acknowledges that there are criticisms of the interaction view, however, she

believes that despite these “the interaction view has been the most widely accepted and

influential view of metaphor.” (Way, 1991, p.50) Consequently, Way’s original theory,

the DTH theory, is developed as a variation and improvement on the interaction view

theory. The DTH theory is thus purported to explain the results of empirical tests

where all other theories fail.

Way's approach to metaphor and knowledge representation "is within the framework

of, and as an extension to, an existing theory for processing natural language, namely,

that of conceptual graphs." (Way, 1991, p.96) Way sees Sowa’s conceptual graph (CG)

theory of knowledge representation as an advanced system, which can be adopted to

represent metaphorical features of language. The primary difference between DTH

and CG hierarchies is that DTH’s are, as the name suggests, dynamic, while CG

hierarchies are represented as static structures. “… the boundary of what is literal and

figurative is constantly shifting: we all know that today’s metaphor may be literal

tomorrow and vice versa. … Thus, if we are going to use the notion of a type hierarchy

to explain literal and figurative uses of language, it will have to be a dynamic type

hierarchy.” (Way, 1991, p.23) This results in “a hierarchy which is generative and

constantly changing over time.” (Way, 1991, p.111)

- 72 -

The DTH theory uses standard concepts from graph theory: “A type hierarchy is a

network of concepts which are organized according to levels of generality. … So the

links connecting the supertypes and subtypes of the semantic network represent going

from an instance of a supertype to a more specific instance of that supertype. … an

instance of a subtype entails that it is also an instance of the corresponding supertype.”

(Way, 1991, p.21) The DTH is a generalisation hierarchy where the entities are

categorised based on the common attributes. In a generalisation hierarchy, the higher-

level class (supertype) shares the common attributes of the lower level class (subtype),

while subtypes inherit all the properties of its supertype.

 “The DTH theory holds that the similarity found between the tenor and vehicle of a

metaphor9 is not an intersection of their properties; rather, it is generated by finding a

common and more abstract supertype that the two share.” (Way, 1991, p.40) The

supertype is a generalisation of the attributes of the connected subtypes. “In metaphor,

what is common between the vehicle, and tenor is not an intersection of a list of

features at the level of the tenor and vehicle, but a supertype, which is higher up on the

semantic hierarchy and under which aspects of both the vehicle and tenor domains fall.

Furthermore, which supertypes are chosen, assuming that there are several in

common, is a function of the context and the direction of the attribution of the

metaphor, that is, the metaphor is attributing features from the vehicle domain by

abstracting them to a common supertype and then using that supertype to pick out the

corresponding features of the tenor.” (Way, 1991, p.129)

Under the DTH theory, metaphor operates through a higher-level supertype that

connects the tenor and vehicle types. If this supertype is not found to already exist in

the type hierarchy, it is dynamically created, just as in some cases "metaphor creates the

similarity" rather than describing some existing similarity (Black, 1979). Two separate

clusters of schemata thus become associated through a supertype and this allows a

migration of concepts from the vehicle to the tenor. This exemplifies what Black terms

“systems of associated commonplaces” (Black, 1979): the complex and far reaching

web of associations and meaning that imbue every metaphor.

9 Here, the terms ‘tenor’ and ‘vehicle’ can be reasonably substituted for ‘target’ and ‘source’ respectively.

- 73 -

Way provides as an example the metaphor ‘the car is thirsty’. This metaphor “involves

a violation of a constraint, in that thirsty is an attribute of an animal, not a vehicle. The

new supertype, Mobile-entities that require liquid, can have both tenor and vehicle fall

under it without violating any semantic constraints.” (1991, p.130)

"Note that the set of properties of the supertype will be smaller than those of its

subtypes; in this way the supertypes are able to act as filters on lower level concepts. …

The supertypes VEHICLE picks out one aspect of a car, while another supertype, say

STATUS-SYMBOL, would pick out or filter different aspects." (Way, 1991, p.161)

A drawback of the DTH theory is the reliance on Conceptual Graphs (CG's). CG's

allow a precise level of description and are well accepted in the academic community.

However, they are difficult for the layperson (even a well-educated one) to produce

and understand without a considerable amount of training (refer to section 2.5.5).

Furthermore, the inclusion of CG theory does not appear to be necessary to the

development or description of DTH theory and the intercoupling between these

theories appears somewhat contrived.10

Another potential weakness of the DTH theory is the fact that, while attempting to

objectify our understanding of metaphor, the development of DTH's is a rather

heuristic process, requiring “background knowledge” and “reasoning systems” in order

to create an appropriate hierarchy (Way, 1991, p.143). However, given the nature of

linguistics, it may be unrealistic to think that our understanding of metaphor could be

systematised much further. Consequently, the DTH theory offers a very useful,

systematic, formal and codifiable understanding of metaphor.

3.3.1 Support for Way’s Theory
Despite Way’s carefully thought out theory of metaphor, and its publication as a book

in 1991, there is scant reference to the DTH theory of metaphor in the literature. This

could give rise to the suggestion that the theory has, by default of not being accepted

and widely referred to by the cognitive science research community, been discounted by

10 As the focus of this thesis is on the intrinsic hierarchical nature of metaphor, the decision by Way to represent the

DTH theory using Conceptual Graphs has no bearing on the outcomes of this thesis.

- 74 -

this community. In this case, its use as the basis for the development of new academic

work may be, at best, ‘courageous’.

However, this theory appears to have new support through the recent publication of a

carefully thought out paper by Cornelissen (2005). Cornelissen appears to,

unknowingly, have reinvented Way’s theory (or one very close to it). Since

Cornelissen’s work so closely relates to Way’s work, the lack of any reference to Way in

such a well-referenced work can only mean that Cornelissen was not aware of Way’s

contribution.

Cornelissen states “… current perspectives are flawed and misguided in assuming that

metaphor can be explained with the so-called comparison model.” Like Way,

Cornelissen cites the overwhelming research evidence that refutes this model.

In response, Cornelissen outlines an alternative model for understanding how

metaphor works, which he calls the “domains interaction model”. This model “…

suggests that metaphor involves the conjunction of whole semantic domains in which

a correspondence between terms or concepts is constructed rather than deciphered and

where the resulting image and meaning is creative.” (Cornelissen’s italics). The important

features of the metaphor, Cornelissen claims, are emergent and are conceptually

connected to the source and target conceptual domains.

This is remarkably similar to Way’s suggestion that metaphor operates through a

dynamically created, higher-level supertype that connects the lower level, source and

target concepts. Yet, Way’s work appears to be the more formal of the two approaches

since it ties a theory of metaphor to an understanding of concept types and hierarchies,

providing a more objective analysis and explanation of the mechanisms that underlie

the operation of metaphor.

The fact that Cornelissen has independently arrived at, what can be argued to be

essentially the same conclusions as Way, provides support for Way’s theory and

legitimises its use as a basis for further research.

- 75 -

3.4 Summary

“When (men) use words metaphorically; that is, in other sense than that they are ordained
for, (they) thereby deceive others … Such (inconsistent) names can never be true grounds of

any ratiocination.”
Hobbes, from Leviathan

This chapter has presented a critical review of the research in the application of

metaphor to IT systems. Commonly used EA metaphors have been identified. It has

also been revealed that metaphors form a hierarchy extending from the most highly

concrete to the most conceptual metaphor. More formally, metaphor forms part of a

dynamic type hierarchy.

The deliberate application of metaphor to computer systems modelling is popular and

widely encouraged. Yet, the case for the value of metaphor in the realm of IT systems

modelling is far from proven. While there is surprisingly little empirical research in this

area, the available results showing the value of metaphor in information systems design

are far from convincing. On the other hand, the pitfalls of using metaphor are easily

demonstrable, and it has been observed that the use of metaphor for representing IT

entities is highly problematic. In fact, there are distinct disadvantages to the use of

metaphor, especially when the information scope is wide. “The view that a system

must stick to a metaphorical representation as closely as possible is one we believe to

be mistaken: the system should improve upon the metaphor, not be bounded by it.”

(Hammond and Allison, 1987, p.88)

The continued use of metaphor in computer discourse is inevitable and its elimination

is (literally) unthinkable. The question remains as to whether there is a better way of

developing and using metaphor for systems modelling that obviates the shortcomings

of contemporary methods. Before such a method can be developed, it is necessary to

examine the nature and requirements of system modelling. This is the topic of the

following section.

- 76 -

4 THEORETICAL PRINCIPLES FOR THE

DEVELOPMENT OF UNIFIED EA

MODELLING LANGUAGES

4.1 Introduction

The development of an effective unified EA modelling language would overcome

significant shortcomings of contemporary EA approaches and would thus improve the

business value of any EA. Yet, as we have seen, the development of such a language,

using traditional and direct approaches to the problem, has remained elusive.

There are two conditions for the development of an effective unified model. Firstly,

the unified model must be capable of representing the semantics of the various sub-

domains that are being modelled (albeit, at a higher level of abstraction). Secondly, the

unified model must present a strong ontology so that the model can be interpreted

unambiguously. Any well-defined and formalised modelling language can provide a

strong ontology. However, no current modelling languages can cover the semantic

breadth needed to describe the different types of enterprise systems, without

inordinate complexity.

In this chapter, the problem of developing an enterprise model that is semantically

unified is attacked. The structure of this approach is as follows. Firstly, a case will be

presented for the argument that metaphors are models. It is then shown that these

metaphors are part of a concept type hierarchy, in keeping with the dynamic type

hierarchy (DTH) theory. This is illustrated as a Venn diagram in Figure 13. We

previously saw that the DTH theory can be used as a way to explain the mechanisms by

which metaphor operate. In this research, the theory is extended in order to generate

metaphors that can be used as EA models.

In the next chapter (Chapter 5), this model is used to develop an ontology that can be

applied to formally describe any multiple EA domains. This ontology is then

formalised and codified to produce a unified EA modelling language.

- 77 -

Figure 13 - The Relationship between Models, Metaphors and Concept Type Hierarchies

4.2 Models and Metaphors

As our understanding of metaphor has developed over the years, the links between

models and metaphor have become more apparent. Certainly, this is quite clear in the

case of linguistic models. Black was one of the first to make the case for the

connection between models and metaphor in language and philosophy (1979), and in

later years, Black becomes further impressed "by the tight connections between the

notions of models and metaphors. … Every metaphor is the tip of a submerged

model." (1979, p.31) More recently, these early notions on the connection between

models and metaphors have been extended. Lakoff, for example, demonstrates that

mathematical models are also metaphors (Lakoff and Nunez, 2000). Moreover,

according to Roussev and Rousseva, the mechanics of modelling are the same as

metaphor and modelling evokes the same cognitive processes as metaphor. In fact,

“Models are always grounded in a kernel metaphor, or metaphors, and hence stimulate

many of the same cognitive processes.” (Roussev and Rousseva, 2004)

Interestingly, the definition of a model - “A model is a representation of something

else …” ISO/ANSI, as quoted in (Szegheo, 2000), is remarkably similar to the

definition of a metaphor as an “image that represents one thing as something else in

order to explain it better …” (Johnson, 1994).

In fact, an empirical argument can be made for the assertion that metaphors are

models. According to Herbert Stachowiak (as referenced in (Ludewig, 2003)) an

Models
Concept Type
Hierarchies

Metaphors

- 78 -

artefact must satisfy the following three criteria in order for it to be identified as a

model:

 Mapping criterion: there is an original object or phenomenon that is mapped to

the model.

 Reduction criterion: not all the properties of the original are mapped on to the

model, but the model is somehow reduced. On the other hand, the model

must mirror at least some properties of the original. 11

 Pragmatic criterion: the model can replace the original for some purpose, i.e.

the model is useful.

It will be recalled that a metaphor connects a source domain to a target domain. This

satisfies the first criterion. Also, when metaphor is used, only certain characteristics of

the source are mapped to the target, and this depends upon the context in which the

metaphor is being used (Way, 1991). Thus, the second criterion is satisfied. Finally, we

use metaphor in order to explain something better (Johnson, 1994), especially when

that something is new and novel (Ludewig, 2003). Therefore, metaphor satisfies all

three of Stachowiak’s criteria defining a model. We can conclude that metaphor is a

type of model. More specifically, metaphor is a type of conceptual model (Allen, 1997).

It can be observed that the labels commonly given to enterprise systems are actually

metaphors (and by induction, models). Take as an example, an enterprise system

labelled 'Customer Relationship Management System'. If this were simply a label, and

not a metaphor, then there would be no significant effect in changing this label to

'Customer Exploitation Management System', as long as there were no changes made

to the actual systems to which this model refers. However, in fact, this label change

fundamentally changes the perceptions that will be generated around this system. A

completely different set of “associated commonplaces” (Black, 1979) has been set up,

because these labels are not simply literal: they are metaphors which give rise to

supertypes which encapsulate much of the understanding of what the system is and

11 It must be noted, that this is contrary to some popular notions of models. For instance, Ghyczy suggests that

models “exhibit a one-to-one correspondance” with their source and that you can “transfer everything you know
about the source domain into the target domain” if you have a good model GHYCZY, T. V. (2003) The Fruitful
Flaws of Strategy Metaphors. Harvard Business Review, 86-94.

- 79 -

how it operates. Consequently, an “entire web of associations and implications” (Way,

1991, p.36) has been altered.

In fact, the metaphorical approach to organisational modelling is founded upon the

observation that the reality of organisational structures are not concrete, but abstract,

indefinite, and perhaps even undefinable, entities. There is no objective reality of an

organisation. The significant structures within an organisation are actually social

constructs, and as such, they are imbued with cultural and social meaning, presenting

differently to every person according to their immediate concerns. In modelling

organisations, we are not simply developing abstractions of an objective and concrete

structure. Rather, we are saying ‘this is how we wish the organisation to be

understood’. For instance, ‘we want our enterprise to be seen as developing

relationships with customers, not exploiting them’. As Black says, the metaphor

actually helps constitute aspects of reality (Black, 1979). We are creating meaning

through the development of metaphors for these structures that have a generative

quality.

4.3 Model Hierarchies

As shown in Section 3.3, metaphor can be considered part of a dynamic type hierarchy.

For the purposes of the argument presented here, the types in this hierarchy will be

restricted to the domain of enterprise models. Note that, since it has been shown that

metaphors are a special type of model (in Section 4.2), this restricted domain may still

include metaphor.

Within any enterprise, there is a set of models representing various levels of

abstraction. At the highest level, is the model of the enterprise itself: “EAs are systems

of systems, there is an emphasis on a higher level of conceptual modeling.” (Kaisler et

al., 2005). This enterprise model may, or may not be formalised. At lower levels of

abstraction are more detailed models such as system and function models. Recall from

section 3.2.6 that larger scale structures tend to be modelled using more general,

'conceptual' metaphors while smaller scale structures tend to be modelled using more

specific, 'concrete' metaphors. This is because enterprise system models can be formed

into a generalisation hierarchy, where the higher-level classes (supertypes) share the

- 80 -

common attributes of the lower level classes (subtypes), while subtypes inherit all the

properties of its supertypes.

Figure 14 shows an enterprise system hierarchy where Enterprise A is the universal

supertype. According to Way, "metaphor cannot take place by comparing the

properties of independent systems on the same level", i.e. at the same level of

abstraction. "In order to properly make the comparison, we must search for higher

order concepts. Comparison of properties on one level only make sense as a

comparison with respect to a common, more abstract, higher level property." (1991,

p.144)

Figure 14 - Enterprise System Hierarchy with Enterprise as Global Supertype

Therefore, it would be possible to create a metaphor at the same level of abstraction as

Enterprise A that could be used to describe features of each of its component

structures (the System A, System B, Function A, Function B etc). However, as every

enterprise is unique, this metaphor may not be relevant to other enterprises or their

component structures.

On the other hand, an enterprise metaphor at a higher level of abstraction than the type

‘enterprise’ would be relevant to all enterprises and their component structures. In fact,

it would serve as a unified concept that could be applied to any of its sub-models. This

Enterprise A

System A System B

Function A Function B Function C Function D

- 81 -

is illustrated in Figure 15. The task remains, to identify, or invent, a supertype of all

enterprise systems models.

Figure 15 - Enterprise System Hierarchy with New Enterprise Supertype

Identifying the level of abstraction of a concept is not an easy undertaking (Biemans et

al., 2001). However, if we think about concept hierarchies in terms of structures it

becomes easier. For instance, an interface can include a button, but a button cannot

include an interface. Therefore, the concept of an interface is at a higher level of

abstraction than the concept of a button. Similarly, a system can include a program, but

not vice versa. Therefore, the concept of a system is at a higher level of abstraction

than a program.

There are any number of abstract concepts that could be used as a metaphor for

enterprise systems. These include existing metaphors that have been used to describe

organisations including the description of organisations as machines, organisms (Fayad

et al., 2002), brains, nervous systems (Fayad et al., 2002), cultures and political systems

(Morgan, 1996), learning organisations (Senge, 1990), organisational identity

(Cornelissen, 2005), organisational mind (Sandelands and Stablein, 1987) and

organisational memory (Walsh, 1995).

Some of these metaphors use source objects that are at a lower level of abstraction

than the enterprise structure. Therefore, they are not suitable as a unifying metaphor

Enterprise A

System A1 System A2

Function A1 Function A2 Function A3

Enterprise B

System B1 System B2

Function B1 Function B2 Function B3

Enterprise
Supertype

- 82 -

for enterprise systems. For example, the description of an organisation as a machine

has almost disappeared from view, and yet has had a profound influence that has left

us with residual concepts such as the organisational “structure” concept (Morgan,

1996). While this metaphor may still describe certain aspects of the organisation, it is a

concrete metaphor and, as a result, is too confining to describe all aspects of all

systems. For instance, it cannot describe the ability of an organisation to learn,

regenerate or develop purpose. The metaphor of the ‘learning organisation’ is however

more conceptual and flexible, explaining perhaps it greater popularity as an enterprise

metaphor.

In Chapter 5, the metaphor ‘an enterprise is a society’ is identified as an appropriate

unifying metaphor and is adopted and developed as the basis for a unified systems

language.

4.4 A Methodology for Developing Unified EA Modelling

Languages

The approach presented in the previous chapters shows how an understanding of type

hierarchies can be used to develop a unified enterprise modelling language. In some

real-world enterprise situations, there will be no existing, formal models at the EA level

of abstraction. In this case, the new unified models will be developed from scratch

based on available information from a variety of possible sources. In other enterprise

situations, EA models will already exist, but they will not be unified models. Most

likely, they will have been developed using a variety of methodologies and languages,

some formal and some informal. In this case, the models can be redeveloped as unified

models through an interpretive approach where the syntax and semantics of the

current models are translated into the new constructs.

In the aforementioned situations, this methodology satisfies the need for unified

models that extend across all enterprise domains at the highest levels of abstraction.

However, it was previously noted (in Section 1) that one shortcoming of contemporary

system architecture approaches is that the languages that are used to describe EA’s are

restricted to a narrow range of abstraction, and that there are benefits to having a

language that can describe multiple levels of abstraction ranging from strategy to

implementation. It was also noted that there is a trade-off between the potential of a

- 83 -

language to be used to model a wide scope of functionality, versus its use to model a

wide range of abstraction levels. Furthermore, it was stated that, if priority is given to

providing a wide modelling scope, then some sort of mapping must be provided

between the different levels of abstraction.

This challenge is addressed in the following way. Firstly, the unified language is

designed for extremely wide scope so that it can be used to model all enterprise

systems at the highest levels of abstraction. This quality is assured by developing an

enterprise metaphor that is based on the enterprise system supertype. The description

of lower levels of abstraction is then described traditionally, using existing, domain

specialised, modelling languages. However, the unified language is used to structure the

models developed at each level of refinement (the opposite of abstraction), thus

ensuring consistency between the different abstraction levels. This can be achieved

because, in the same way that the enterprise model supertype is used as a metaphor at

the enterprise level of abstraction, it can also be used as a metaphor for any of its

component structures at lower levels of abstraction. For example, if the selected

enterprise model supertype is ‘game’, then all of the systems within that enterprise are

viewed as game structures: the enterprise is a game, the system is a game, the interface

is a game, and the interface elements (if we assume this is the lowest level of

abstraction) are all elements of the game.

Note that the language developed using this approach is not intended to replace other

domain specific languages and methods. At levels of description below the enterprise

level, where more detail is needed to describe the system’s characteristics, this unified

language would lack the semantic strength required to describe these systems fully.

Rather, the unified language is designed to augment the existing domain specific

languages and methods, in order to ensure that the enterprise systems’ structural

integrity is maintained throughout the development of more detailed levels of

abstraction by aligning these structures to one, over-arching metaphor. This concept is

illustrated in Figure 16 where the unified language is referred to as LEAN (Lightweight

Enterprise Architecture Notation), the unified language that is developed in later

sections of this thesis.

- 84 -

Figure 17 shows the stages within the methodology that is used to develop and apply a

unified modelling language. The first stage of this methodology, ‘Identify an enterprise

metaphor’, is covered in the following Section 4.5. In this section, a societal metaphor

is selected as an example of an enterprise supertype that appears well suited to the task

of EA modelling.

The second and third stages, ‘Specify and formalise the language’ and ‘Codify the

enterprise metaphor’ will be covered in Chapter 5. It this chapter, the societal

metaphor will be developed into an ontology, and that ontology will then be formalised

and codified to produce a high-level, unified, EA modelling language.

4.5 An Enterprise Metaphor

Based on an understanding of both the role, and nature of metaphor, the proposed

methodology provides a means for developing high-level metaphors that can be used

to describe multiple EA domains and subsystems.

The societal metaphor was previously provided as one example of a metaphor that can

be used to describe enterprises. This metaphor will now be further developed and

Figure 16 - The Applicability of LEAN at Various Levels of Abstraction

Le
ve

l o
f A

bs
tra

ct
io

n

Component

Level

Enterprise

Level

Defining Structuring
Level of Control

Build / Run

Specifications

Domain-
Specific
Modelling
Languages

Lightweight
Enterprise
Architecture
Notation
(LEAN)

System

Level

- 85 -

analysed, and then, in the following chapter, developed into a formal EA modelling

language.

Perhaps one of the conceptual structures most familiar to humans is that of human

society. Society is a larger scale structure than an enterprise, and accordingly, it can be

used as a supertype of all other types in the enterprise system type hierarchy. That is, a

society-sourced metaphor will be at a higher level of abstraction than any of the

models that describe an enterprise or its components. Therefore, the concept of

society has the semantic breadth to describe all enterprise systems.

Is a society-sourced metaphor a good choice for modelling enterprise systems? It is

clear that all enterprises are social phenomena and that computer systems are socially

embedded phenomena. In lieu of a social context, computers can have no meaning or

value, and outside of language, computers do not even exist (Winograd and Flores,

1987, p.78). It is also noted that many systems failures occur, not because of technical

issues, but because the relevant socio-political concerns were not evaluated and

addressed (Highsmith, 2002). A society-sourced metaphor is likely to be stronger than

many other metaphors for modelling these aspects of the enterprise.

Figure 17 - Methodology for Developing and Applying a Unified Language

Identify an enterprise
metaphor

Enterprise
metaphor

Codify the enterprise
metaphor

High-level
Language

Specify and formalise
the language

Language
ontology

Process Product

- 86 -

It should also be noted that the societal metaphor has already been widely adopted as a

metaphor to describe complex, autonomous and interacting computer systems, i.e.

intelligent multiagent systems (Kolp et al., 2005) (Wooldridge, 2002). In adopting this

metaphor, Wooldridge (2002) describes the trend “… away from machine-oriented

views of programming toward concepts and metaphors that more closely reflect the

way in which we ourselves understand the world.” Ho et al (1986) have used the

society metaphor to model office information systems. Bernard (2004 p. 48) refers to

enterprises as “social enterprises”, while De Geus (1997) believes that the prevailing

thinking and language of economics is contributing to the failure of corporations,

because they “forget that their organizations’ true nature is that of a community of

humans.” And Peter Drucker (1992), the highly respected ‘guru’ of modern

management, refers to “The society of organizations”.

The choice of a societal metaphor may also prove to be more persuasive than other

metaphors since, by presenting an overt societal metaphor, the computer is

“positioned more as a social actor than as a machine or ‘neutral tool’.” (Marakas et al.,

2000) This approach is perhaps justified by the observation that, “Information

technology is arguably, like society itself, an abstract concept.” (Marakas et al., 2000)

Finally, the societal metaphor provides a concept that meets the criteria set out by

Proper et al, for the identification of concepts that are effective in describing a given

modelling domain: it must be simultaneously simple and rich, it must be capable of

describing anything that needs to be modelled within that domain (in our case, EA),

and it must be understandable by any interested party (Proper et al., 2005).

Thus the ‘pragmatics’ of this metaphor (as defined by Biemans et al12) appear to be

strong, especially as any society based concepts and nomenclature are likely to be very

familiar to all users of the enterprise architecture. While there are other metaphors that

would satisfy the semantic requirements of a unifying supertype, the concept of society

is perhaps a more promising metaphor for this problem, since it has a particular

relevance and efficacy for enterprise architecture modelling.

12 Pragmatics: A measure for the degree to which models expressed using this metaphor will succeed in being

interpreted by the audience as intended by the creator. BIEMANS, F. P. M., LANKHORST, M. M., TEEUW, W.
B. & WETERING, R. G. V. D. (2001) Dealing with the Complexity of Business Systems Architecting. Systems
Engineering, 4, 118-133.

- 87 -

What does a model of society look like? One such model has been developed by

Giddens (1984). According to Giddens' Theory of Structuration, there is

interdependency between humans (Actors) and societal structures (Resources and

Rules) that is manifest through specific Actions. Thus, Giddens provides a lexicon of

Actors, Resources, Rules and Actions that can be used to describe societies.

The notion of an Actor is extended here to include, not only individuals, but also any

Agent that can exert power in order to produce an effect. To this end, the terms Actor

and Agent are used interchangeably. Resources are “structured properties of social

systems, drawn upon and reproduced by knowledgeable Agents in the course of

interaction.” Resources are of two types. Allocative resources are material resources

involved in the generation of power and derive from human dominion over nature.

Authoritative resources are non-material and derive from the capability of harnessing

the activities of human beings (Walsham and Han, 1991, p.84). Rules refer to the

sanctioned modes of conduct. Finally, an Action is an activity that is performed.

"Structures, as 'rules and resources', do not do anything, but they have their effect

through being known and used by actors." (Parker, 2000)

This provides us with four concepts (Agents, Resources, Rules and Actions) that can

serve as the foundation of a unified EA ontology. For convenience, we refer to this

modelling language as the Lightweight Enterprise Architecture Notation (LEAN).

Figure 18 - LEAN in relation to EA views and domain specific models

LEAN

Business
Architecture

Information
Architecture

Application
Architecture

Technology
Architecture

Process
Model

Org’n
Chart

User
Locations

Data
Model

Application
Architecture

Network
Model

Server
Topology

ENTERPRISE
MODELS

VIEWS

DOMAIN
MODELS

- 88 -

Figure 18 illustrates how this language would be situated in terms of its level of

abstraction and relation to the commonly accepted EA domains (or views) and domain

specific modelling notations.

4.6 Summary

In the previous chapters, a review of linguistic, cognitive and information systems

theory was presented in order to provide a framework within which current theories

and approaches to EA modelling can be situated. Within this chapter, this

understanding was used as a foundation upon which to develop a novel method for

developing a unified EA modelling language. The theoretical principles for this

approach were expounded and a methodology for developing a unified EA language

was described.

In the following chapter, this methodology is applied and a high-level unified EA

modelling language is generated.

- 89 -

5 THE LEAN ONTOLOGY

Newly designed modelling languages should be based on reliable ontology’s (metamodels
with semantic rules), which will ensure the required consistency and determine the expressive

power of the modelling as required by the desired enterprise view. (Noran, 2003)

5.1 Introduction

The theoretical principles used for developing unified EA modelling languages that

have been developed in the previous chapter will now be applied to develop on

example of a unified EA modelling language. To do this, a candidate metaphor is

developed as an ontology, which is then codified as a graphical modelling language.

An ontology is a specification for the representation of some abstract, simplified view

of the world (Gruber, 1993). It is a shared conceptualisation that provides a common

understanding of some domain. Ontologies consist of a set of categories or ideas in the

world (concepts) along with certain relationships between them (Hirst, 2003).

In this case, we are viewing the world from the perspective of an enterprise architect

and the relationships that we are interested in are those that support our understanding

of enterprise systems.

Ontologies are important because “They provide a shared and common understanding

of a domain that can be communicated between people, and heterogeneous and widely

spread application systems.” (Pinto and Martins, 2004) “An ontology includes a

catalog of terms used in a domain, the rules governing how those terms can be

combined to make valid statements about situations in that domain, and the sanctioned

inferences that can be made when such statements are used in that domain.” (Knowledge

Based Systems, 2004a)

In this chapter we design and develop an ontology based on the metaphor, ‘an

enterprise is a society’. This ontology will be referred to as the LEAN (Lightweight

Enterprise Architecture Notation) ontology. The goal of this design work is to define

the vocabulary and semantics that will be used in describing enterprises using the

concept ‘enterprises that exemplify society’. This will then serve as the basis for

developing a graphical language for describing EA’s. The development of this ontology

- 90 -

will therefore allow the intended meaning of constructs that are developed using this

language to be clearly communicated between different agents.

Ontologies can be developed at a number of levels ranging from highly formal to

informal (Fox and Gruninger, 1998). The LEAN ontology is developed as an informal

ontology. That is, the definitions are expressed using natural language. It is not

designed to support automatic integration with other ontologies or to be

computationally executable. Further formalisation of the LEAN ontology could allow

this in the future.

A number of different versions and iterations of the LEAN ontology have been

developed as part of this research. These versions were initially tested by transforming

existing, public domain, EA models into LEAN models. The effectiveness of these

LEAN models was then informally evaluated. These evaluations provided important

feedback on the ease-of-use, semantic richness and clarity of each iteration of the

ontology. Based on this feedback, these early versions of the ontology were then

progressively developed and refined until the optimal LEAN ontology described in this

chapter was settled upon. They included the following variations:

 Ontologies where the relationships were non-directed

 Ontologies where various of the societal concepts were developed to be

represented as relationships rather than nodes (for example, a version was

developed where the Rule concept was used to describe the relationship

between the other concepts)

 Ontologies where the relationships were restricted to particular forms. For

example, any two societal concepts could only be related via the Action

concept.

 Ontologies where the meaning of the relationship depended upon the nodes

that were being connected by it.

While all of these approaches were successful to some extent, the LEAN ontology

described below was found to provide the most flexibility, semantic richness and

clarity, and the greatest ease-of-use of all of the variations tested.

- 91 -

5.2 The Ontology Development Methodology

The methodology used in developing this ontology is loosely based on the approach

developed by Uschold and King (1997), and also discussed by Pinto and Martins

(2004), who refer to it as the “Enterprise” methodology. The components of the

Enterprise methodology are as follows:

1. Identify the purpose and scope of the ontology:

a. Why is the ontology being built?

b. Who will use the ontology?

c. How will it be used?

2. Construct the ontology:

a. Ontology capture.

b. Ontology coding (formalisation and implementation).

c. Ontology integration (re-using appropriate knowledge from existing

ontologies).

3. Evaluate the ontology.

4. Document the ontology to support knowledge sharing.

While the Enterprise methodology provides a useful starting point, the ontology

development methodology used in this research departs from this methodology in a

number of key respects, which will now be described.

Firstly, identification of the purpose and scope of the ontology is not performed

explicitly as part of the LEAN ontology development. In the case of the Enterprise

methodology, this stage is used to expound upon the problem to be solved: i.e. why do

we need a new ontology, and what are the boundaries of the domain we wish to

describe? In case of this research however, the purpose and scope of the desired

ontology has already been clearly defined and elaborated upon in previous sections of

this thesis. Instead of repeating this work, a summary of these objectives within the

current context is provided in order to provide a clear focus for the development of

the remainder of this chapter.

- 92 -

Another area in which the ontology development methodology used in this research

departs from the Enterprise methodology is in relation to step 2: Construct the

ontology. While the steps of ontology capture, coding and integration may be viewed

as conceptually discrete, the artefacts that are generated by these steps are, in this case,

interwoven and interdependent. Thus, in describing, for example, a certain concept, its

definition, representation and references to integrated knowledge may be grouped

together for clarity, or presented in various sequences.

Formal integration with other ontologies is outside the scope of this research.

Compared to LEAN, other well known enterprise ontologies (such as TOVE (Fox et

al., 1993), the Enterprise Project (Uschold et al., 1997), and the IDEF Ontologies

(Knowledge Based Systems, 2004a)) contain a far larger number of, more granular,

concepts. The LEAN ontology, on the other hand, has been deliberately kept at a

conceptually high-level in order to aid understandability and efficacy to the enterprise-

modelling problem. However, developing the mechanisms and procedures for

integrating these ontologies with LEAN is suggested as an area for further research

(refer section 8.2).

Furthermore, it should also be noted that, in line with the methodology described in

Section 4.4 and illustrated in Figure 16, the process “Identify an enterprise metaphor”

precedes development of the language ontology. In the ontology capture stage of the

Enterprise methodology the key concepts and relationships in the domain are identified

and defined. In our case, the key concepts and relationships that will be used in the

domain are derived from an understanding of the selected metaphor source, which is,

in this case, ‘society’. The metaphor is considered appropriate if these concepts and

relationships map well to the metaphor target (Enterprise Architecture), and this is

supported by the application of the Dynamic Type Hierarchy Theory for the

identification, or invention, of potential metaphor candidates. Thus, the key concepts

and relationships in the domain will be constrained by the metaphor that has been

selected.

Evaluation of the LEAN ontology is carried out through the three research studies that

are documented in Chapters 7.1, 7.2 and 15. In these studies, important criteria for

assessing the value of the LEAN ontology are assessed.

- 93 -

Lastly, documentation of the LEAN ontology is the focus of this chapter. Appropriate

documentation of the ontology supports effective knowledge sharing (Uschold et al.,

1997) and so the documentation provided here is designed to provide the essential

information required to support knowledge sharing without becoming superfluous.

5.3 The LEAN Ontology

5.3.1 Purpose and Scope of the Ontology
Earlier in this thesis, it was demonstrated that a language is needed that allows the

generation of EA models spanning multiple IT domains. In fact, the weakness of

contemporary approaches to EA modelling is that numerous languages are required in

order to model EA’s formally and this puts a high cognitive load on both modellers

and users. Thus, the use of a human-centric, unified language will make the

development of EA’s more efficient, and will make those EA’s more effective since

both technical and non-technical stakeholders alike, will be better able to understand

such models. Indeed, the audience for such models extends well outside of the domain

of technical specialists who are directly involved in architectural activities, and often

includes:

 “C-level” executives (e.g. the CEO, CIO and CFO)

 Senior executives and managers who represent business interests

 IT personnel at all levels

 Shareholders and investors

Clearly, it cannot be assumed that these important EA stakeholders have well

developed architectural skills. Yet, they are often important contributors to the

development of an EA, and it is often vital that the outputs of an EA program can be

communicated to these parties.

Figure 16 shows the process by which this language will be developed: a crucial step in

this process is the development of a formal ontology.

5.3.2 Ontology Construction
It was noted, in Section 4.5, that the metaphor ‘an enterprise is a society’ is a promising

metaphor for describing enterprise systems. It was also noted that Giddens has

- 94 -

developed a model of society that can be used as a basis for formalising the source of

this metaphor (society). Giddens model is based on four primary concepts: Agents,

Resources, Rules and Actions. This process is analogous to the ‘ontology capture’

process described in the Enterprise methodology. These concepts thus become the key

concepts for our ontology.

5.3.2.1 Formalising the Enterprise Metaphor Concepts

The four key concepts of Agents, Resources, Rules and Actions were briefly defined in

Section 4.5. These concepts are defined more rigorously in Table 6.

Agent

Definition An Agent is an entity that can exert power in order to produce an

effect. In relation to IT systems, the immediate effect is the

exchange of information.

Description In the LEAN ontology, the effects produced by Agents are

referred to as ‘Actions’.

Examples Agents may be:

 People

 Roles

 Organisations

 Communities

 Nation-states

 Systems

Notes

In the case of temporal events, the Agent may be the system itself.

In all other cases, the Agent is the entity that triggers a system

event.

Any effectual Agent will have an ‘area of concern’ within the

system. This area of concern can be used as the basis for

developing an Agent related view of the system.

Resource

Definition A Resource is a structured property of the modelled system that

can be consumed or produced by one or more Agents.

- 95 -

Description A Resource represents a natural constraint within the system.

Examples Resources may be:

 Raw materials

 Systems

 Documents

 Images

 Services

 Agents

Notes

When Agents are used to signify constraints on the system, they

can be represented as Resources.

Rule

Definition A Rule defines a sanctioned mode of conduct.

Description A Rule regulates the type of Actions that may take place within a

system.

Examples Rules may be:

 Physical constraints

 Logical constraints

 Legal and regulatory compliance

 Standards and guidelines

 Business goals or objectives

Notes

Rules can also be used to represent standards and guidelines.

Action

Definition An Action is an activity that is performed in order to change a state

of affairs. Actions correspond to the capabilities possessed by

Agents.

Description Agents, Rules and Resources can only interact with each other

through Actions.

Examples Actions may be:

 Addition, modification or deletion of data, information or

systems

- 96 -

Agents Actions

Areas of
concern

Required
views

Identification or selection of data, information or systems

Notes

Many modelling languages identify the concept of an event that

triggers some action. In fact, an event can simply be viewed as an

action that is performed by another agent and modelled this way in

LEAN.

Table 6 - Definitions of Agent, Resource, Rule and Action Concepts

The pertinence of views to EA was discussed in Section 2.4.3. To recapitulate, a view is

a model of a system, and while it addresses the whole system, it does so with respect to

the concerns of a particular type of stakeholder (Hilliard, 1999a). The development of a

full analysis of view and viewpoints, and their relation to the LEAN ontology is

beyond the scope of this research. However, we can make some basic observations

relating to the manner in which this area may be developed.

In the vernacular of LEAN, stakeholders are referred to as agents. Thus, views need to

be based on an understanding of the Agent and their areas of concern. An Agent’s area

of concern can be evaluated based on the Actions that they can perform: a concern

that does not have a potential source of action would be completely ineffectual and

irrelevant. This provides a theoretical basis upon which viewpoints can be determined,

based on the LEAN ontology, and commensurate views developed. These notions are

illustrated in Figure 19.

Figure 19 – Views, Viewpoints and Architectural Areas of Concern

- 97 -

The benefits of being able to visualise an EA and the role that graphical languages have

in supporting visualisation were previously described (Section 2.4.4). It is desirable to

develop an ontology that will lead to a graphical modelling language, consisting of

nodes, connected by arcs (all graphs consist of nodes, connected by arcs). Since the

nodes that we will be using represent concepts, and the arcs, relationships, the graphs

are essentially ‘concept maps’ (refer to Section 2.4.4). The foundation of this graphical

modelling language is described as the LEAN Topology.

5.3.2.2 The LEAN Topology

There is a wide variety of ways in which we could represent the four societal concepts

using a graphical notation. The topological alternatives are then restricted to the

following:

1. One or more of the concepts are represented as nodes. The remaining
concepts are represented as relationships that connect these nodes.

2. The concepts are all represented as relationships that are used to
connect other, predefined or user defined nodes.

3. All of the concepts are represented as nodes. A separate, predefined set
of relationships is used to connect these nodes.

4. All of the concepts are represented as nodes. A separate set of
relationships is used to connect these nodes, but these relationships are
not predefined.

An example of the first case is to use the concept of Rule to define the relationships

between Agents, Actions and Resources. For example, an Agent performs an Action

according to some Rule, or an Action consumes a Resource according to some Rule.

The drawback with this approach is the limited number of relationship types that will

be possible (no more than three), limiting the semantic power of such a language.

In the second case, all of the concepts are represented as relationships and nodes are

developed independently of these. However, it is hard to envisage the validity of

representing an Agent or Resource as a relationship except in rare cases. These are

typically thought of as entities, not relationships.

- 98 -

In the third case is where we define a fixed number of relationships that can be used in

the model and four node types are used to represent each of the structural concepts.

For example, we can define certain hierarchical relationships such as component-

subcomponent and type-subtype relationships as being the only types of relationships

permitted. All models would have to be built connecting the Action, Agent, Resource

and Rule nodes using only the pre-defined relationship set.

The fourth case is similar to the third, except that the relationships are not predefined.

The user defines any relationships that they need to model a given environment at a

given time. This option clearly provides for the greatest expressive power. However, it

does this at the expense of standardisation and, perhaps, formality (if the relationships

are not well defined).

From a practical point of view, it could be argued that a combination of the third and

fourth cases provides the most useful topology. That is, all four of the societal

concepts are represented as nodes and a separate set of relationships is used to connect

these nodes. These relationships come from two sources: a predefined set (providing

an element of standardisation and formality), plus, optional user created relationships

that are specific to a given environment or purpose (providing flexibility and

relevance). This topology will now be developed further.

5.3.2.3 The LEAN Syntax

With the LEAN ontology captured, we can now more formally define the LEAN

syntax, which fulfils the coding (formalisation and implementation) stage of the

ontology construction.

We have stated that the four societal concepts (Agent, Action, Rule and Resource) will

be represented as LEAN nodes. We can now associate graphical icons with each of

these to provide visual support. Theses are shown in Figure 20.

A heuristic approach was used to develop these icons upon the following

requirements. Firstly, the development of EA’s takes place in a highly collaborative

environment where models are often drawn by hand on paper or on whiteboards.

Therefore, it is desirable to have icons that can be drawn by hand easily and quickly.

Secondly, in order to make the icons as easy as possible to identify (even when they

- 99 -

may appear as small objects on a computer screen) it is desirable to make them each as

distinct, and different as possible. The use of simple geometric shapes that are easily

identifiable and distinguishable satisfies these criteria.

The most simple, distinct shapes are a circle, square and triangle. The triangle shape

was chosen to represent the Rule concept, as we often associated this type of shape

with street warning signs (i.e. road rules). The square has been modified by curving the

horizontal lines. This was done to ensure that it would not be confused with a circle if

drawn quickly using a single line (that tends to curve the corners). This gave the shape

a ‘dynamic’ look, and so it was chosen to represent the Action concept. Since we

commonly draw icons to represent people, we can easily come up with simple

geometric figures, similar to ‘stick figures’. Since a person is one type of Agent, the

shape shown in Figure 20 provides an intuitive link to the Agent concept. This leaves

the circle to be used to represent Resource.

As mentioned previously, the LEAN syntax consists of two structures: nodes and arcs.

A LEAN graph contains one or more nodes, connected by zero or more arcs. An arc

is connected to exactly two nodes, with one node attached to each end of the arc. A

node is connected to zero or more arcs. However, each pair of nodes may only be

connected by a single arc. Thus, LEAN models may be connected (where there is a

path between every pair of nodes in the graph) or disconnected graphs.

A LEAN arc connects two nodes and is used to represent interdependency. Two

connected nodes are called a pair. LEAN arcs have an arrow on one end that shows

the direction of the relationship. Thus, LEAN graphs are directed, bipartite graphs.

The location of nodes within a graph is arbitrary. Similarly, the length, thickness or

pattern of arcs is irrelevant.

Figure 20 - The Graphical Representations of LEAN Nodes

Agent Resource Rule

Action

- 100 -

LEAN arcs are drawn as smooth, continuous curves, rather than lines that change

direction using sharp angles, such as right angles. Although links between graph nodes

are often drawn using straight lines and sharp angles, it is far easier to perceive

connections between nodes when the contours connect smoothly. (Ware, 2000, p.207)

The semantics of any individual pairing is indicated by a textual description associated

with the arc connecting the two nodes. Thus, LEAN graphs are directed graphs.

Reading in the direction of the arrow, these elements form a triple of the form subject-

predicate-object. For example, the graph in Figure 21 is read “LEAN is a type of

Modelling Language”.

Figure 21 - A LEAN Relationship

There are three general categories of relationships that can be formed using LEAN:

 one-to-one relationships, such as husband and wife;

 one-to-many relationships, such as manager and employees; and

 many-to-many relationships, such as a product and all its parts.

Where these relationships are between occurrences of the same entity, they are termed

"recursive relationships". (Haughey, 2005)

At this stage we have defined four types of LEAN nodes, described the types of

relationships that can be formed between LEAN nodes (to form graphs), and

described the way in which arcs are labelled. Note however, that we have not defined

the semantics that these relationships represent. We will now build upon this

foundation to produce a language that has the semantic breadth to be useful for real

EA modelling situations.

The use of just four, highly generic, node types would make LEAN graphs extremely

general. Even high-level EA modelling requires the identification of objects at lower

levels of abstraction than the concepts of Resource, Rule, Action and Agent. We now

LEAN Modelling
Language

is a type of

- 101 -

introduce a mechanism to introduce more granular nodes (nodes defined at a lower

level of abstraction). To do this, we start by defining a set of LEAN relationships.

We term a collection of relationships a ‘Relationship Set’. Therefore, a unique

relationship set could be created for every EA project. However, since it is likely that

certain ‘generic’ relationships are likely to be used frequently, even in different

environments, these are provided as part of the LEAN syntax. These generic

relationships are referred to as ‘Reference Relationships’. Table 7 shows these

Reference Relationships and indicates to which node pairings each type of relationship

applies. In effect, this generic LEAN relationship set serves as a starting point for

developing an enterprise-specific relationship set.

A starting point in defining useful LEAN relationships is the observation that we will

clearly need to represent hierarchical relationships if we are to model enterprise

systems. Hierarchies are a fundamental structure in these types of environments.

“A hierarchy is a set of variables which represent different levels of aggregation of the

same dimension and which are linked between them by a mapping. A typical example

of hierarchy is City → State → Region → Country.” (Pourabbas and Rafanelli, 1999)

There are many ways to represent hierarchical data, and the term ‘hierarchy’ can be

taken to mean several things. Three types of hierarchy that are particularly relevant to

organisational modelling are type-subtype hierarchies, reporting hierarchies, and

component-subcomponent hierarchies (also referred to as a ‘bill of materials’ or BOM,

or ‘adjacency model’, or ‘parts explosions’). A component-subcomponent hierarchy is a

many-to-many, recursive relationship. A component-subcomponent hierarchy can be

used to represent, for example, a true BOM, organisation and employee structures,

financial relationships and reporting rollup structures. (Haughey, 2005)

Thus, the Relationship Set has provision for the representation of three types of

hierarchical relationship. These are:

 ‘is a type of’, which provides the semantics to represent type-subtype

relationships.

- 102 -

 ‘is a part of’, which provides the semantics to represent component-

subcomponent hierarchies.

 ‘reports to’, which provides the semantics to represent reporting hierarchies.

LEAN hierarchies are acyclic graphs. That is, a LEAN node can have more than one

parent. With respect to type-subtype hierarchies, this infers that LEAN hierarchies can

support multiple inheritance.

It will be observed that Agent, Action, Resource and Rule types are each minimal

common supertypes of a type hierarchy13. Thus, there are four possible type hierarchies

within any LEAN modelled enterprise. A type with no subtypes is called a ‘base type’.

The subtypes within each of these hierarchies inherit the attributes of its parent.

Moving down through the hierarchy, the types become more specialised, detailed and

domain specific.

Another type of relationship that is fundamental to the representation of enterprise

systems is a temporal relationship, which can be used to represent process flows. This

is represented in the Relationship Set using the ‘precedes’ relationship which provides a

very commonly used temporal relationship. It may desirable in future versions of the

Relationship Set to include other types of temporal relationship such as ‘overlaps’,

‘intersects’, ‘triggers’, ‘includes’ etc. This depends on whether these relationships are

found to be relevant and useful to EA modelling.

The remaining relationships in the Relationship Set have been identified and included

through a heuristic process that included the following steps:

 Identify a relationship that cannot currently be described.

 Ensure that the relationship is unique and cannot be described using an

existing relationship within the Relationship Set.

 Define the relationship.

Furthermore, it is observed that, in addition to hierarchies and processes, ontologies

typically include information such as properties, value restrictions, disjointness

13 The minimal common supertype is also called the ‘universal type’ or ‘root’.

- 103 -

statements and logical relationships (Antoniou and Harmelen, 2004, p.10). The

remaining relationships that make up the Relationship Set fall within these categories.

The entire Relationship Set is summarised in Table 7.

It will be noted that relationships in the Relationship Set fall into two sets: those

between homogenous pairs of nodes and those between heterogeneous pairs of nodes.

All possible pairings have been shown, except for the Agent-Resource pairing. This is

because, at this stage, no useful direct relationships have been identified between an

Agent and Resource (an Agent would typically use or produce a Resource by

performing some Action upon it). However, if this relationship is needed in the future,

an extra column can simply be added to the relationship table.

Note also that the semantics of the heterogeneous relationships are such that the arrow

on the arc usually points away from the Action type. For instance, we say, “an Action

is performed by an Agent”, rather than “an Agent performs an Action” (the one

exception to this is the relationship “Rule applies to Action’). This custom makes it

easier to remember how these graphs are drawn and read.

The Action-Rule, Agent-Rule and Resource-Rule relationships of ‘complies with’ and

‘applies to’ are semantically equivalent. The two models at the top of each of these

columns indicate that the direction of the arrow can be changed so that a more natural

terminology can be used to describe these relationships. The ‘complies with’

relationship is used when the arrow points towards the Rule, and vice versa for ‘applies

to’.

As well as making it easier to start developing effective LEAN models, the generic

LEAN Relationship Set also serves another purpose. The translation of LEAN models

into domain specific architectural models requires that the semantics of each LEAN

relationship is understood, and equivalence is found between that LEAN relationship,

the objects it connects, and the domain specific notation to which we are translating. If

we only know the node type, then it is impossible to develop a set of heuristics for

translating a LEAN model into a meaningful domain specific model. However, if we

have a predefined relationship set, plus a set of node types, then we can develop

heuristics for translating a LEAN model into a meaningful domain specific model. Of

- 104 -

course, if an enterprise uses other relationships (either instead of, or in addition to the

generic set) then the translation of these graphs into domain specific models cannot be

predefined. However, the existing defined translations can serve as a guide, making the

translation of new relationships a relatively easy exercise. In fact, in many cases the new

relationship will be semantically close to an existing one, meaning that the existing

translation can be used as a guide. This may happen, for instance, because an enterprise

prefers to name relationships using the vernacular to which they are accustomed.

The four concepts of Resource, Rule, Action and Agent are termed ‘Universal’ types.

‘Non-Universal’ types can also be represented as nodes: homogenous LEAN pairings

provide a mechanism for developing non-Universal types. For example, non-Universal

types can be created for all four of the Universal types using the ‘is a type of’ and ‘is a

part of’ relationships. However, the ‘supports’ and ‘interfaces with’ relationships can

only be used to create non-Universal types of Resource, while the ‘reports to’

relationship can only be used to create non-Universal types of Agent (see Table 7).

When drawing non-Universal types, the label of Agent, Action, Rule or Resource is

replaced with the name of the non-Universal type. For example, the graph in Figure 22

shows that the resource ‘Network Infrastructure’ is a non-Universal type of the

Universal type ‘Resource’.

Figure 22 - A LEAN Universal and Non-Universal Type

Resource

Network
Infrastructure

Is a type of

- 105 -

Table 7 - Mapping Between a Generic Relationship Set and the Range of Possible Node Pairings

LEAN NODE PAIRINGS

HOMOGENOUS PAIRINGS HETEROGENOUS PAIRINGS

RELATIONSHIP

SET

is a type of

supports

interfaces with

is a part of

precedes

reports to

performed by

uses

produces

complies with

applies to

supports goal

Action Action
Agent Agent

Resource Resource Rule Rule Action
Agent

Action Resource

Action Rule Agent
Rule Resource Rule

Action Rule
Agent

Rule Resource Rule

- 106 -

5.3.3 Assumptions
In addition to the documentation already provided above, it is important to add

documentation of all important assumptions such as assumptions “about the main

concepts defined in the ontology, as well as the primitives used to express the

definitions in the ontology …” (Uschold et al., 1997)

One assumption that has been made is that Gidden's theory of structuration provides a

valid theory for understanding societal structures. Gidden’s work has received a great

deal of review in the literature (refer (Poole and DeSanctis, 2003) (Clarke et al., 1990)

(Bryant and Jary, 1991)). While not all reviews have been entirely favourable, on the

whole, Gidden’s work is well received.

Another assumption that underlies this work is that all organisations are composed of

similar fundamental structures. That is, if one organisation's enterprise architecture can

be modelled using a single ontology, then they all can. Clearly, we can continue to raise

the level of abstraction of an ontology until this assumption becomes true. For

example, if the ontology has a one to one correspondence with our working definition

of an enterprise, then the language will be valid for all enterprises. However, in this

case, use of the ontology adds little value: it can be used to describe a whole enterprise,

but not any of the structures within an enterprise. Conversely, as the level of

abstraction decreases, the ontology will become more specific, and may not be useful

in describing a range of enterprises. The key is to find a balance between the two. The

LEAN ontology is developed at a very high-level of abstraction as it is based on the

societal metaphor, yet it is composed of a set of structures that are likely to be useful in

describing a range of enterprises (because metaphors are hierarchical). Therefore, it is

likely to be relevant to most, if not all, enterprises.

5.3.4 Limitations
In its current form, the ‘interfaces with’ relationship can be used to show that two

resources interface with each other, but it does not show whether information flows in

both directions, or just one direction. This limitation could easily be overcome by

adding a new relationship. For example, a ‘sends information to’ relationship could be

used to represent a unidirectional flow of information where the relationship arrow

shows the direction of that information flow.

- 107 -

It is difficult to represent ‘negatives’ using LEAN. For example, it is difficult to show

that a relationship to a resource, rule, action or agent does not exist. In some cases, it

may be desirable to show, explicitly, that a structure does not exist.

5.4 The LEAN Modelling Tool

The LEAN modelling tool is designed to support the strategic planning of enterprise

IT systems. The tool has been developed as an ‘add-on’ to Microsoft Visio, a graphical

modelling tool, and has been created using a combination of stencil, template and

ShapeSheet customisations.

Microsoft Visio is designed for the Windows platform and the LEAN modelling tool

runs on Microsoft Visio 2002 and Microsoft Visio 2003.14 Visio is in use within most

large IT departments worldwide: “… most organizations still use Microsoft’s office

and Visio products for capturing their Enterprise Architecture results.” (Institute for

Enterprise Architecture Developments, 2004)

Visio has a number of features that make it likely that it will continue to be a dominant

EA modelling platform in the future. These include the ability to integrate with a wide

range of data sources, collaboration facilities, support for business process

management and programmability. Visio 2007 is currently in Beta testing so it is likely

that Visio will be available and supported for some time to come.

Typically, business practitioners are reluctant to adopt specialised enterprise modelling

tools and prefer to stick to the standard office tools and applications with which they

are familiar:

In spite of all the trouble it takes to modify the standard office tool, they are frequently used
for modeling. Because business practitioners are used to them, they know how to use them

and … these tools are already available and installed in most of the enterprises. There is no
extra tool acquisition costs related to modeling if the model is built by a standard office tool.

(Szegheo, 2000, p28)

It can be inferred that a modelling language that can be deployed using standard office

tools will have a higher likelihood of adoption. This makes Microsoft Visio a

favourable platform for deploying the LEAN modelling tool.

14 It is expected that it will also run on later versions as they become available.

- 108 -

Version 1 of this tool included programs written using Visual Basic. These programs

enforced the LEAN syntax and generated various derived views of the models that

were developed by the user. For instance, illegal connections between objects are

immediately identified: when an invalid connection is made, the connection is broken,

the arc is moved away from the object, or objects, to which it has been connected, and

the user is informed that an illegal connection has been made and is provided with

information on the connections that can be legally made using that connector type.

The views that can be created include process models, hierarchical models, and models

that resolve multiple instances of a node into a single graph.

A significant effort went into developing this version of the tool15 as it was assumed

that the syntax checking and automatic view generation features would be found useful

by modellers. However, the initial feedback from Study One (described in chapter 7.1)

showed that the users preferred a much simpler system with fewer constraints. Thus,

the automation features were discarded and a much simpler Version 2 was put into

production.

Features of the LEAN Version 2 modelling tool include:

 A customised stencil that provides LEAN icons and arcs for use in any

drawing. (Feature implemented by creating a Visio stencil (.vss file) and

including this in the Visio solutions directory.

 A customised Visio template that automatically presents a LEAN stencil and a

new drawing page on Visio startup. (Feature implemented by creating a Visio

template (.vst file) and including this in the Visio solutions directory.

 Document header and footer automatically produced when the document is

saved. This includes the document’s title, drawing path and filename and is

displayed when the document is printed or print previewed. (Feature

implemented using Visual Basic.)

 Icon text is automatically scaled as icon is resized. (Feature implemented by

modifying icon ShapeSheets.)

15 Approximately six thousand lines of VBA code have been custom written to produce Version 1.

- 109 -

5.5 Summary

The LEAN ontology is relatively simple making it resilient to change and widely

applicable. While most enterprises have fundamental structures that are similar, they

still vary greatly in their form and purpose. It is possible to develop a far more detailed

and prescriptive set of elements with which to describe an enterprise, however this

would be committing to far more “ontological commitment”, as Gruber (1993) puts it,

than is either, necessary, to describe an enterprise at a high-level, or valid, since there

would be a greater likelihood that enterprises exist where these additional constraints

do not hold. Also, the advantage of developing a simple ontology is that the provision

of a small number of highly versatile, generic concepts upon which to develop a

language can make it easier for users to remember the language, and can make problem

solving quicker and easier. (Pawson, 2000, p.85)

The mindful use of metaphor as an aid to learning and cognition has been previously

discussed as a powerful tool. New facts must fit into pre-existing concepts, “Otherwise

facts go in and then they go right back out.” (Lakoff, 2004) Metaphors such as the

societal metaphor of enterprise, allow us to place new information within an existing

conceptual framework. Lakoff refers to this existing conceptual framework as a

‘frame’.

By applying an understanding of dynamic type hierarchies to the selection of system

metaphors, it is possible to identify a metaphor that provides a scope that is wide

enough to cover all of the functional elements of the enterprise’s component

structures. After all, it is better to have a single metaphor that covers the entire domain,

for “when discourse becomes full of conflicting metaphors, it may be difficult for the

uninitiated to keep their bearings.” (Johnson, 1994)

This metaphor can then be used to develop a unified language that models all of the

enterprise’s systems. Furthermore, the enterprise supertype based metaphor can be

used to structure systems at various levels of abstraction and at different stages in the

life cycle. This ensures consistency between different levels of system design. Since a

single metaphor is used to replace a myriad of disparate, and possibly, contradictory

metaphors, the resulting models have the following qualities:

- 110 -

 Greater explanatory power (a consistent metaphor/language is used to model

the entire organisation, which allows the user to develop an effective mental

map of the organisation).

 Greater flexibility for the management of change and strategic planning

(current disjunctions between systems, business units etc. are not ‘hard wired’

into the model).

 Avoiding loss of information that might occur in translating from one

architectural view to another and ensure cross-view consistency (Armour et al.,

2003).

 Explicit capture and representation of business needs within the EA models

(Armour et al., 2003).

 Reducing cognitive load placed on a user that needs to understand a complex

set of architectural views (Armour et al., 2003).

The development of a language based on a highly conceptual metaphor naturally leads

to the development of highly abstract models. One of the advantages of this is that it

helps EA developers to remain at a highly abstract level when creating enterprise wide

models. “We believe that the selection of the level of abstraction is especially difficult

when no context is provided that helps one to remain at that level. Without a stable

context, many people seem prone to drift from one level of abstraction to another.”

(Biemans et al., 2001) The EA modelling approach described herein avoids this

problem by keeping the enterprise architect at an appropriate abstraction level through

the provision of highly primitive semantic structures.

The use of a single metaphor to describe all enterprise systems helps break down the

boundaries between applications, making them appear seamless and integrated. In

essence, the enterprise systems become a single, integrated, system. The advantages

that can accrue from having a single system, rather than multiple systems, are

numerous and include reduced training and support costs, increased flexibility and

positive organisational culture changes (Pawson, 2000, p.67).

The use of a very high-level EA language may actually supplant the need for an EA

framework. Because the LEAN language describes the enterprise using a highly

- 111 -

abstract metaphor, there is no need to develop a generic framework within which the

enterprise models must fit. In fact, the metaphor itself serves as the framework, but

because of its inherent flexibility, it can be far less constraining than a traditional

framework, allowing the structure of the organisation to be addressed on its own

terms.

- 112 -

6 EXPERIMENTAL RESEARCH

METHODOLOGY

6.1 Introduction

There are two, fundamentally different, research approaches in current widespread use:

the quantitative approach, and the qualitative approach (Figure 23). This section

provides a short review of these approaches, and introduces some of the relevant

methodologies that are commonly used to gather and analyse research data. These

approaches are then analysed with respect to the needs of the current research in order

to identify the most suitable approach for answering the research hypothesis.

6.2 Quantitative Research Methods

Of the two research approaches discussed here, the quantitative approach has the

longest and best-established pedigree. Quantitative enquiry is used to test specific

hypotheses that are usually part of a broader theoretical perspective. The approach fits

naturally with the positivist (or objectivist) paradigm, emphasising standards, precision

and reliability (Slembek, 2003). It takes a scientific, empirical, approach that focuses on

highly reproducible data collection and analysis.

However, despite its favoured position, the positivist paradigm is not without

detractors. One basis for criticism is that it has limited potential for dealing with

Positivist

Quantitative

Deductive:
from general

principles to specific
instances

Interpretivist

Qualitative

Inductive:
from particular

instances to general
statements

Figure 23 - Primary Research Approaches

- 113 -

complex data and interactive phenomena in dynamic, real-life environments.

According to Guba and Lincoln, “Phenomena can be understood only within the

context in which they are studied; findings from one context cannot be generalised to

another; neither problems nor their solutions can be generalised from one setting to

another.” (1989, p.45) Quantitative research methods attempt to create experimental

environments that negate any influence that arises from the contextual setting of the

study. However, it is clear that in many cases there can be, at best, only limited control

of the experimental setting.

Methodologies within quantitative research include experimentation, deduction and

formal survey methods. Evaluation of this research using quantitative methods entails

the development of both a hypothesis and null hypothesis. In this case, they are as

follows:

 Hypothesis: It is possible to develop a human-centred modelling language for

creating unified models that span heterogeneous domains of an enterprise

architecture.

 Null hypothesis: LEAN is not a human-centred modelling language for

creating unified models that span heterogeneous domains of an enterprise

architecture.

6.3 Qualitative Research Methods

Qualitative methods emphasise the richness of description in data collection, focussing

not just on outcomes, but also the social processes in an organisation (Slembek, 2003).

Qualitative methods are based on the interpretivist (or subjectivist) paradigm, which

relies on the experience and background of the evaluator. The tacit knowledge that the

evaluator brings to the research is likely to affect their perceptions of the observed

phenomena, and thus, their research conclusions. The main criticism of the

interpretivist approach concerns the potential variability of research outcomes and the

inherent inability to replicate results (Worthen et al., 2003).

There is a wide variety of qualitative research methods. However, some of the more

well established, and widely used approaches, include action research, case study

research, ethnography and grounded theory. These methods are discussed in more

detail below.

- 114 -

6.3.1 Action Research
Action research is an interpretive approach "concerned with the study of human

actions and social practice." (Williamson, 2002, p.159). In action research, the

researcher is an active participant rather than an independent observer (Williamson,

2002, p112).

Action research is aimed at informing theory and creating knowledge. However, it can

also be used to bring about an improved practice or propose new solutions to

immediate and practical problems (Williamson, 2002, p.161) (Baskerville, 1999). This

provides a significant benefit where the research needs to be undertaken within a

corporate setting, and where permission to conduct the study may only be forthcoming

if there are likely to be ensuing benefits for the participants. In a corporate setting, the

cost of resource allocation is keenly felt and any study that requires time and effort

from corporate staff will be highly scrutinised.

One weakness of action research is that, like case studies, action research is usually

concerned with single situations such as a particular enterprise. “Therefore, although

the approach can generate theoretical propositions that go beyond single situations,

action research is seldom seen as an appropriate approach to test the general

applicability of theories." (Williamson, 2002, p.161)

While we are seeking to test a well-developed and specific hypothesis for its

applicability to a wide domain, the use of action research, by itself, will not be complete

and sufficient. However, action research is likely to provide some invaluable, qualitative

data that could not be obtained using other methods.

6.3.2 Case Study Research
Case study research is the most common of the qualitative methods that are used in

information systems research (Myers, 1997). In fact, it is particularly well-suited to IS

research as it supports the shifting focus from technical issues that lack context,

towards an understanding of the organisational issues that concern information

systems (Myers, 1997) (Williamson, 2002, p112).

- 115 -

In case study research, the researchers do not control the program in any way. They

merely observe it in order to examine what may be a wide range of intended and

unexpected outcomes (Stufflebeam, 2001). In contrast to action research, “the

researcher usually has little or no capability of manipulating events …” (McCutcheon

and Meredith, 1993). In fact, the observed case may even have occurred in the past.

Case study data “may come from primary sources (such as direct observation or

interviews of people involved) or secondary sources (documents or records, for

example). It may examine a single situation or, with multiple-case studies, several

related situations.” (McCutcheon and Meredith, 1993)

However, case study research lacks relevance where a specific hypothesis has already

been developed, or where an understanding of the mechanisms that cause a

phenomenon to occur, are not of interest. As we already formulated the research

hypothesis under evaluation, case study appears to offer little benefit.

6.3.3 Ethnographic Research
"Ethnographic research comes from the discipline of social and cultural anthropology

where an ethnographer is required to spend a significant amount of time in the field.

Ethnographers immerse themselves in the lives of the people they study … and seek to

place the phenomena studied in their social and cultural context." (Myers, 1997)

According to Cavaye (1996) as referenced in Williamson (2002, p.112), "Ethnographic

research differs from case study research in that the findings are not usually related to

generalisable theory and are interpreted from the researcher's point of view."

6.3.4 Grounded Theory Research
"Grounded theory is a research method that seeks to develop theory that is grounded

in data systematically gathered and analyzed. … The major difference between

grounded theory and other methods is its specific approach to theory development -

grounded theory suggests that there should be a continuous interplay between data

collection and analysis." (Myers, 1997)

- 116 -

In the case of this research project, there is a specific theory that requires testing. This

makes grounded theory research a less suitable approach for achieving the research

goals.

6.4 Chosen Methods

The choice of a research method should be based on two criteria: the type of question

that is being asked, and the audience for the research (Williamson, 2002, p35)

(Stufflebeam, 2001).

As the evaluation of LEAN (as a user friendly, unified modelling language) is

essentially the testing of an invention, it is desirable to avoid an interventionist approach

where possible. An inventor/researcher can be expected to have strong a priori beliefs

regarding alternative EA approaches and a personal prejudice for the invention, so an

interventionist approach may lead to skewed results. Furthermore, it would be

attractive, in terms of accuracy and repeatability, to be able to evaluate this research

using purely quantitative methods.

Unfortunately, the use of purely objective research methods is unlikely to be practical

in this case. In order to assess the validity of the hypothesis it is desirable to conduct, at

least some of the research, within a realistic setting where the tool in question is applied

to a real problem by the practitioners for whom it is designed. Clearly, “…

investigating ongoing business operations does not allow conditions to be controlled

or variables to be manipulated …” (McCutcheon and Meredith, 1993). Thus, an

effective assessment of this research will require at least some use of qualitative

research methods.

Fortunately, quantitative and qualitative research approaches can complement each

other, resulting in a method that is standardised and reliable, yet also retains some

depth that makes the results interesting and relevant to the target audience. The

combination of methods can also cross-validate the findings (Stufflebeam, 2001). In

fact, in combination, these different approaches can provide a large scale picture while

simultaneously providing a more detailed understanding of a specific situation

(Williamson, 2002, p.35). Furthermore, there is a large, well-established practice of

- 117 -

mixed methods research. Stufflebeam (2001) even goes as far as to say, “It is almost

always appropriate to consider using a mixed-methods approach.”

In this case, it will be clear from the above discussions that the most favourable

approach to the qualitative analysis of this research is to use action research. Therefore,

the method chosen to evaluate the hypothesis presented in this thesis is to use a

combination of experimental research and action research.

Consequently, a combination of three significantly different approaches will be used to

evaluate the hypothesis. These approaches are:

1. An action research program that applies the use of LEAN to develop a set

of EA models for a real enterprise IT department. Relevant personnel from

that enterprise, as well as independent enterprise architects, will then

evaluate these models, and the overall effectiveness of LEAN.

2. The remodelling of a large scale, existing EA, using LEAN. A comparative

analysis is then performed between the original EA models and the new

LEAN models.

3. The application of a Game based Ontology as a mechanism for improving

the structure of lower level architectures. In this case, the concept of a

Game is used as a unifying, highly conceptual metaphor and a simple

Ontology is developed around this concept. Then, a set of commercially

available email interfaces is reconstructed using this Game Ontology. The

restructured interfaces are then compared against the original interfaces.

The first two approaches are described respectively in the following chapters: Study

One: Modelling a Large Enterprise and Study Two: Re-Modelling a Public Domain

Architecture. The third approach is described in Appendix F – Designing and Re-

Engineering Subsystems, as it falls outside the formal scope of this thesis and is

provided primarily as a basis for ongoing research.

6.5 Summary

There exists a wide variety of potential research methods: each with their own

strengths and also their applicability in terms of the question being asked and the

audience to which the research is to be supplied.

- 118 -

In this case, the use of complementary research methods - experimental research and

action research - has been identified as providing the greatest potential for evaluating

the research hypothesis.

- 119 -

7 EXPERIMENTAL STUDIES

In this chapter, two separate implementations of the LEAN language are presented.

The results of these studies are analysed and the results are presented, along with an

evaluation of the language and supporting theory.

7.1 Study One: Modelling a Large Enterprise

7.1.1 Introduction
Study one entails an action research program that applies the use of LEAN to develop

a set of EA models for a real enterprise IT department. Relevant personnel from that

enterprise, as well as independent enterprise architects, then evaluate these models, and

the overall effectiveness of LEAN.

The development of enterprise architectures provides enterprises with strategic

competitive value. Therefore, the information contained within the enterprise

architectures of commercially oriented companies is usually considered highly

confidential. This can make research in this area difficult. However, public enterprises

such as government and teaching institutions that operate in less competitive

environments may be less sensitive about their IT plans and structures and potentially

more amenable to the exposure of this information for research purposes. It was

largely for this reason that the Information Technology Department (ITD) of the

University of Technology, Sydney (UTS) was targeted for this research study.

ITD provides computing resources and consulting to a population consisting of 2,635

staff, and 28,256 students, both within the city campus and in distributed computing

laboratories located at various campuses around metropolitan Sydney. Approximately

two hundred and eleven major systems are managed, operated and supported, along

with ongoing IT development activities.

This research project was conducted between the 10th August 2005 and the 14th

October 2005. However, project scoping and definition took place over several weeks

preceding these dates, and the initial contact and meetings with the CIO, in order to

garner support for the project, took place in the first quarter of 2005.

- 120 -

7.1.2 Research Approach
The nature of this research demands that survey samples are very carefully selected.

Typically, an organisation has only a few (if any) staff working at the enterprise

planning level, while enterprise architecture in particular, is a highly specialised function

that is typically performed by very experienced personnel who already have many years

of IT experience. In addition, the nature of an EA project means that a relatively long

time frame is required to gain the client’s confidence that the project is worthwhile

(since they need to commit significant resources to the project) and then to scope,

execute and finalise the project. This further emphasises the need to carefully develop

the research approach and to identify appropriate research targets.

In the work presented here, nine ITD personnel were identified as having functional

responsibility relevant to this research. Two of these respondents are charged with EA

responsibilities. The survey could have been extended to additional staff members in

order to increase the sample size. However, this would have introduced a bias since the

additional personnel involved cannot be assumed to have the relevant skills,

background or responsibilities to assess the developed models.

In order to increase the sample size of enterprise architects, two approaches were

considered:

1. Extend the research to multiple organisations.

2. Introduce independent enterprise architects into the survey.

While both options would have provided additional enterprise architect respondents,

the first option would have required extremely long time scales to achieve a moderate

increase in EA subjects, since most organisations employ very few (if any) EA’s.

However, option two allowed the specific targeting of EA’s from any number of

different enterprises, allowing us to increase this sample size easily. In addition, option

two was found to be a preferable approach since it introduces independent analysts into

the research. This is especially valuable in an action research based project where the

business users may have a personal interest in the project outcome.

- 121 -

7.1.3 Project Outline
The scope and goals of this project are contained in the report “Project Summary for

UTS Enterprise Architecture Project” that was submitted to UTS senior management

for approval before work commenced on the actual EA modelling. A copy of this

report is provided in Appendix A – Project Summary for UTS EA Project. This report

provides an outline of the methodology, project plan and objectives for this project.

The objectives are particularly important in understanding the relevance of this project

to the research goals, and are reproduced in Table 8.

Project Objectives

1 To produce a high-level view of the university’s Enterprise Architecture.

2 To show the interrelationships between the different domain architectures.

3 To describe the primary relationships between the targeted systems.

4 To identify the major infrastructure components that support these systems and show the linkages.

5 To identify the major business processes that are supported by the identified application and
infrastructure components and show the linkages between them.

Customer Objectives

1 To produce concise, easily understood, graphical models of the high-level Enterprise Architecture.

2 To develop models that show the interrelationships between business goals and objectives, and IT
systems and services.

3 To use the Enterprise Architecture models to identify the impact of change.

Provider Objectives

1 To create unified Enterprise Architecture models that span heterogeneous ICT domains.

2 To develop an Enterprise Architecture that is concise, easy to expand and modify, and easy to
understand.

3 To develop an Enterprise Architecture that is effective as an enterprise planning and evaluation tool.

Table 8 - ITD Project Objectives

The modelling of a single system, UTSOnline, was undertaken as a pilot study and

proof-of-concept for ITD. Following the completion of this model, a report was

produced and approval was gained to continue and complete the project with the

modelling of an additional nine systems. These systems were selected (by ITD) on the

basis that they are core university business systems with which ITD are heavily

involved.

- 122 -

The LEAN models were produced using information obtained from documents that

ITD had previously produced and from face-to-face interviews with stakeholders.

These stakeholders possess specialist information about various ITD managed

systems, and also have different perspectives of these systems. For instance, the

stakeholders included (but were not limited to) the Network Manager, Applications

Manager and Implementation Manager16. Meetings with these stakeholders were

conducted in a collaborative manner. The goal was to get these stakeholders using

LEAN in order that they could start to develop an opinion on its learnability, ease of

use and efficacy. No formal training in LEAN was provided: stakeholders were merely

told what the node and relationship symbols represented and walked through some

draft models that related to their area of expertise. They were then encouraged to

modify and augment the draft models according to their knowledge of the systems

being modelled, which they did either on paper or using a whiteboard.

Once the project was complete, a final report was developed and presented to the

ITIO group, which consisted of most of the stakeholders that were involved in

development models, as well as other senior management. A copy of this report,

including the fifteen LEAN models that were produced, is provided in Appendix B –

Final Project Report for UTS EA Project.

7.1.4 The Survey Questions
The first step taken in developing the survey questions was to identify the specific

research questions that comprise the hypothesis, and the specific observable qualities

to be evaluated. These were shown previously in Table 1. These research questions and

observable qualities were then used to develop some high-level survey questions that

address these specific question and qualities, as shown in Table 9. This provided a

logical framework for the specific questions that would be used to evaluate the

research hypothesis: It is possible to develop a human-centred modelling language that can be used

to create unified models that span heterogeneous domains of an enterprise architecture.

16 Access to these resources was provided by Ian Waters (Senior IT Program Consultant) who, along with Peter

Demou (Manager, Plans and Programs), championed the project.

- 123 -

RESEARCH

QUESTIONS

OBSERVABLE

QUALITIES
HIGH-LEVEL SURVEY QUESTIONS

RESEARCH

QUESTION

REF.

Is LEAN
human-centred?

Learnability
Useability

Understandability

How easy is LEAN to learn and use?

Would subjects use LEAN again?

Would subjects recommend LEAN to others?

A

Is LEAN
unified?

Effectiveness
Relevance

Is LEAN effective for modelling high-level
information? What about low-level information?

Can LEAN be used to capture information
from different business and technical domains?

Are LEAN models meaningful and do they
augment human cognitive powers?

B

Table 9 - Study One Test Areas and Research Approaches

There are two separate sets of respondents for the evaluation, each with their own set

of questions. The first set of respondents were the business users that were involved in

the LEAN project, either by being involved in the modelling itself, or because they

were a stakeholder in the results of the project. These employees of ITD included both

senior technical architects as well as IT managers. This set of business users did include

two subjects (the IT Plans and Programs Manager and the Senior IT Programs

Consultant) who have direct responsibilities for enterprise architecture.

The second set of respondents consisted entirely of subjects who identified as having

past experience with enterprise architecture, or current responsibilities that include

enterprise architecture. These subjects were not directly involved in the business

project and they have no relationship to ITD. This set of subjects evaluated the results

of the business project and made an assessment of LEAN based on these results.

Thus, these respondents provide an entirely independent view of the project’s results,

while also increasing the sample size of respondents who have experience with EA and

understand the goals and challenges associated with EA17.

17 Even the largest of enterprises would typically employ less than a handful of EA’s, if any. Therefore, in order to

obtain a reasonable sample size of EA’s for any one study, it is necessary to extend the survey beyond the
enterprise.

- 124 -

With these two user groups in mind, the high-level survey questions were transformed

into a set of highly specific questions that would be used to create two surveys: one for

each user group. Most of the questions in the business user and EA surveys are

identical. Question 1 (refer Table 10 and Table 12) differs in order to account for the

fact that one group was developing with the LEAN language, while the other was just

analysing it. Question 18 - “What other languages have you used for enterprise

modelling?”, is unique to the EA survey.

The questionnaires applied in the study are shown in Appendix C – Questionnaires.

They are each broken into two sections: closed questions and open questions. (The

reference columns and question numbering system should be ignored as these have

changed since the questionnaire was initially deployed.)

All of the surveys were conducted after the project had been completed. The surveys

were emailed to the nine ITD business users on 10th October 2005. These business users

were selected on the basis that:

 They all perform roles that are critical to the success of the IT department and

that are tied closely to the business objectives of UTS.

 They all represent typical stakeholders in an EA program.

 They are all seasoned IT professionals with a wide variety of experience and

exposure to IT planning and strategy methodologies and approaches.

All of these survey recipients replied to the survey by 21st October 2005.

The enterprise architect surveys were completed over a span of several months following

project completion.

7.1.5 Results
The following sections present the survey results from the two different sets of

respondents: Business Users (Section 7.1.5.1) and Enterprise Architects (Section

7.1.5.2).

- 125 -

The ‘Weighted Average’ column shows the weighted average for all responses excluding

‘0-don’t know’ responses. An arrow () is used to show the closest explicit response

to that weighted average.

Responses to the open questions are provided verbatim (including grammatical errors).

A single dash (“-“) means that no answer was provided to an open question.

7.1.5.1 Business Users Survey Results

The following tables (Table 10, Table 11) summarise the survey results from business

users.

RESULTS OF LEAN SURVEY (Business Users)

R
esearch Q

uestion R
ef.

Q
uestion N

um
ber QUESTION

0-don’t know

1-very strongly agree

 2-strongly agree

3-a gree

4-disagree

5-strongly disagree

6-very strongly disagree

WEIGHTED
AVERAGE TOTAL RESPONSES

A 1 I found LEAN easy to use. 3 2 4 2.67 Agree

B 2 LEAN is an effective language for modelling
high-level (conceptual) information.

1 1 7 2.88 Agree

B 3 LEAN is an effective language for modelling
low-level (detailed) information.

4 3 2 3.4 Agree

B 4 LEAN captures information across all
technical domains of interest.

2 2 6 2.71 Agree

B 5 LEAN captures information from all
business areas of interest.

2 1 5 2.83 Agree

B 6 LEAN leads users to think more deeply
about the structures and relationships that
exist.

1 4 4 2.5 – Agree /
Strongly Agree

B 7 LEAN models convey more meaning than
the models I previously used.

4 1 3 1 3.25 Agree

- 126 -

B 8 LEAN models convey meaning more
precisely than the models I previously used.

5 1 2 1 3.33 Agree

A 9 I would use LEAN again for enterprise
architecture modelling.

3 2 4 2.67 Agree

A 10 I would recommend LEAN for use by other
enterprise architects.

5 2 2 2.5 – Agree /
Strongly Agree

Table 10 - Results of LEAN Survey for Business Users - Closed Questions

RESULTS OF LEAN SURVEY (Business Users)

11 What is your job title?

11.1 IT Plans & Programs Manager

11.2 Senior IT Programs Consultant

11.3 Network Manager

11.4 Communications Systems Planner

11.5 Senior Business Analyst

11.6 Applications Project Manager

11.7 Director IT Infrastructure & Operations

11.8 Technical Implementation Manager

11.9 Information Systems Manager

12 What is your job function?

12.1 I supervise managers of 4 different functions: IT Purchasing Office, Network Operations Center, IT Security
Office, and Project Management Office

12.2 Manager, IT Security Office and IT Architecture

12.3 Network Operations

12.4 -

12.5 Business Analysis, Project Management

12.6 Managing Integration and Training. Basically software development

12.7 As above

12.8 Implementation of new systems infrastructure and management of central computer operations

12.9 Manage teams delivering database administration for corporate Databases, team delivery
administration/support of the e-learning environment team, delivering business intelligence admin/support,
manages project manager delivery, major software selection/implementations

13 Based on your experience with LEAN, what is your opinion on its value as an enterprise
architecture modelling tool?

13.1 I think it is an efficient and easy to understand way of capturing and conveying the relationships between

- 127 -

components of the architecture. When included as a means of elaborating on the higher level views of the
architecture it proves very effective for drilling down and I thought it was excellent for depicting the
relationships in the information architecture domains because it is quite efficient at showing the relationships
between info flows, agents, systems, and databases.

13.2 Very valuable – see Project Results in Project Report

13.3 Gives a clearer understanding of the interconnections of resources to provide services

13.4 -

13.5 I really have no experience with LEAN other than seeing the results presented. I also have no other
experience with enterprise architecture modelling tools making it not possible to compare LEAN for its ease
of use or effectiveness. The diagrams were easy to read, but I can’t comment on how easy it is to use

13.6 It shows the interaction well enough, but still leads top complex diagrams,

which negates its effectiveness. Possibly it is just the nature of the task not the tool.

13.7 Only indirect experience at present, but on the surface the value as a high-level modelling tools looks very
promising

13.8 It has the potential to be quite valuable as long as all staff have the required understanding of the notation
and how to read the diagrams.

13.9 I have had limited exposure to LEAN. As I was not the main agent developing the models, I cannot
comment on how easy it is to maintain the models. From a user perspective LEAN is easy to
use/understand, in particular at a high-level.

14 What do you see as the strengths of LEAN?

14.1 Simple to use

Simple to understand what is depicted

One picture is worth 1000 words

Easy to read/not overly complicated

14.2 See Project Results

14.3 Simplicity

14.4 -

14.5 -

14.6 Well thought out legends with the ability to easily jump between different areas Of the industry

14.7 Easy of use, simple high-level EA tool

14.8 It enables high-level architectures to be visualised using simple components and rules.

14.9 Its graphic presentation is easy to follow

15 Do you have any suggestions for improving LEAN?

15.1 Not just now but perhaps as we learn more during the documentation of our architecture we may want some
added features.

15.2 Not at the moment – other than continue to keep it simple and do not add complication

15.3 no

15.4 -

15.5 -

15.6 Not really

- 128 -

15.7 Not enough experience with the tool to have any suggestions to date

15.8 Clarity could be improved by colour coding the LEAN node types – red, blue, green, yellow.

15.9 I would suggest maintaining in parallel to the LEAN graphics or linked to it a database or alternative for
storing the relationships. This approach would facilitate searching for a particular component, agent, rule
etc… Also a legend of the meaning of notation would ensure that even others not familiar with LEAN could
interpret it.

16 What do you see as possible areas for the further development of LEAN?

16.1 Can’t comment now. Maybe something in the area of an added symbol that related more to the relationships
in the infrastructure layers

16.2 See Project Recommendations

16.3 ----------

16.4 -

16.5 -

16.6 -

16.7 N/A

16.8 An automated tool that enabled drill down or expansion of sections of a view or the entire view, much like a
CASE type tool, would be good but is not strictly part of the methodology.

16.9 See Q5. Also developing a referencing standard to link the various drawings could be recommended

17 Are there any other comments you would like to make?

17.1 I was very impressed with the number of systems that were able to be depicted in such a short amount of
time.

17.2 It was a pleasure working with you Gerald. You managed to achieve in a short period something that was
required within ITD, and in such a way that it can be relatively easily expanded and extended should
resourcing be approved. Thanks again for your assistance.

17.3 ----------

17.4 I didn’t have enough involvement in the use of LEAN and the development of the results to complete this
questionnaire with any conviction.

17.5 -

17.6 -

17.7 Hoping the this will help gain the buy in from the management team to enable the ongoing documentation &
maintenance of our IT architecture

17.8 I found the process very effective and time-efficient.

17.9 A very good start, I could see LEAN developing and improving given user feedback of those developing the
models as well as those utilising the architecture models

 Table 11 - Results of LEAN Survey for Business Users - Open Questions

- 129 -

7.1.5.2 Enterprise Architect Survey Results

The following tables (Table 12, Table 13) summarise the survey results from

Enterprise Architects.

RESULTS OF LEAN SURVEY (Enterprise Architects)

R
esearch Q

uestion R
ef.

Q
uestion N

um
ber QUESTION

0-don’t know

1-extrem
ely easy to learn

2-very easy to learn

3-easy to learn

4-difficult to learn

5-very difficult to learn

6-extrem
ely difficult to learn

WEIGHTED
AVERAGE TOTAL RESPONSES

A 1 Compared to other modelling languages I
have used for enterprise modelling, LEAN
is:

 1 2 1 2 Very easy
to learn

R
esearch Q

uestion R
ef.

Q
uestion N

um
ber QUESTION

0-don’t know

1-very strongly agree

 2-strongly agree

3-agree

4-disagree

 5-strongly disagree

6-very strongly disagree

WEIGHTED
AVERAGE TOTAL RESPONSES

A 2 LEAN is an effective language for
modelling high-level (conceptual)
information.

 1 3 2.5 – Agree /
Strongly Agree

B 3 LEAN is an effective language for
modelling low-level (detailed) information.

2 2 4 Disagree

B 4 LEAN captures information across all
technical domains of interest.

 1 3 2.75 Agree

- 130 -

B 5 LEAN captures information from all
business areas of interest.

 1 3 2.75 Agree

B 6 LEAN leads architects to think more
deeply about the structures and
relationships that exist.

 2 2 2.5 – Agree /
Strongly Agree

B 7 LEAN models convey more meaning than
the models I previously used to describe
enterprise architectures.

1 1 2 2.67 Agree

B 8 LEAN models convey meaning more
precisely than the enterprise architecture
models I previously used.

2 1 1 2.5 – Agree /
Strongly Agree

A 9 I would use LEAN again for enterprise
architecture modelling.

1 1 2 2.67 Agree

A 10 I would recommend LEAN for use by
enterprise architects.

 1 3 2.75 Agree

Table 12 - Results of LEAN Survey for Enterprise Architects - Closed Questions

RESULTS OF LEAN SURVEY (Enterprise Architects)
11

What is your job title?
11.1 Principal Consulting Architect
11.2 Software Consultant
11.3 NSW RTA eBus Team Technical Mgr.
11.4 Integration Architecture Manager
11.5
11.6
12

What is your job function?
12.1 Designing and Implementing Solution Architectures
12.2 Analyst, Technical Architect, Software Designer
12.3 eBusiness/Internet applications manager.

Review all applications technical architecture.
Lead the team for using new technologies or architecture.
Managing operations and infrastructure for all RTA’s eBus applications (25 applications)
Providing input to RTA’s strategic technical direction.

12.4 Managing Solution Architects Unit (6 people)
12.5
12.6
18

What other languages have you used for enterprise modelling?

- 131 -

18.1 UML, BPEL (Business Process Engineering Language), OWL (Ontology Web Language)
18.2 UML / Custom notation that I know would be easily understood by CTOs / CIOs
18.3 Visio diagram

MS Word based (home-grown) diagrams
UML models

18.4 BPEL, UML
18.5
18.6
13

Based on your experience with LEAN, what is your opinion on its value as an enterprise
architecture modelling tool?

13.1 Useful at the highest level to show how infrastructure and personnel support business
processes. This would help at the inception level to measure the scope of proposed
changes.

13.2 Excellent. LEAN provides a simple mechanism for describing enterprise architecture
without introducing the complexity inherent in languages which operate at a lower level of
abstraction. It effectively ties business functions, processes and systems together into a
neat, easily understandable language. It offers great potential to help CTOs plan enterprise
architecture, explain the business goals of technology initiatives to an executive audience,
track configuration of existing architecture components and track project progress.

13.3 RTA has an Enterprise Architecture Group. Which has been struggling to define RTA’s
current Enterprise Architecture. And looks low as opposed to high most of the time. Not
very effective in general.
Lean like any other (effective tool) will be effective in the hands of effective people. An
Enterprise Architecture team with no real power can’t make a dent in short term views and
plans.
There is definitely value in Lean, it has some shortcomings but they are not major and it
can be improved like any other tool.

13.4 In its early stages it potentially offers unification of the disparate notations used today for
Enterprise Architacture model drawings. Simplified nodes type set would-be much easier
to remember and implement in the existing toolsets.

13.5
13.6
14

What do you see as the strengths of LEAN?
14.1 Simple to learn

Enables a diagrammatic representation of almost any interaction
The links are explained in writing on the diagram rather than implicitly by the style of line
or arrowhead. This means that almost no learning is required.

14.2 Easily understandable by a management executive audience
Extremily easy to learn
Effectively articulates business functions, processes, technology and relationships in a
single, easily-readable language
Potential to integrate with RUP artefacts, allowing top-down management and tracking of
IT projects

14.3 -Its simplicity
-Tries to map the real world as opposed to subjective names or entities
-Tries to stay high
-Generic in nature

- 132 -

-defines relationships (which can be easily enforced if it is supported by a drawing tool)
-Is extendible as an item can have children, so further drilling down is possible

14.4 Simplified notation, limited attributes on each node, easier to understand relationships.
Potential to be easier to understand by not previously exposed groups (management,
business users, etc)

14.5
14.6
15

Do you have any suggestions for improving LEAN?
15.1 As a provider of technical solutions I would find it more helpful to have the resource

symbol a little less generic. The description helps but maybe there could be some kind of
differentiation between for example networks and applications.

15.2 1. Integration with RUP
2. Using LEAN to help tracking project status by management execs / steering

comittees etc.
15.3 Yes;

- I wish relationships were all objective, i.e. A causes B and not D was the caused by
C . e.g., A client performs an action, and not an action is performed by a client.
This may not be possible, but if it could, then learning of LEAN becomes easier.

- Would be good if what-if scenarios can be performed on LEAN diagrams, e.g..,
what if I remove this agent. (With an automated tool for LEAN this should be
easy) [I know relationship “dependency” is defined] – but what if you need to have
two relationship [a- is part of , b- is dependent on]

- LEAN is to help with CHANGE. If actions, rules, agents, etc. had properties
associated with them that would show say their suitability, age, lifecycle, etc. then
LEAN could tell you, okay after 5 years you need to change this and that. And if
you do this and that you also need to change those other two linked systems.

- LEAN should help architects identify areas that are weak and need changes based
on say security, usage, fault tolerance, response-time, etc.

Bottom line for change is $, could lean associate cost of operations with actions or
resources. Enterprise architects based on subjective and objective cost/benefit analysis
should bring about change. E.g., if Window is costing so much then lets use LINUX. And
if we do this, how we will save money, how many systems, subsystems, agents, actions will
be affected and in which way.

15.4 Question: Are the relationships/connections directed only on way?
Improve definitions (maybe more examples) for nodes i.e. in commmon language agent
and resource could be the same person, so we would need more precise definition.

15.5
15.6
16

What do you see as possible areas for the further development of LEAN?
16.1 Perhaps some implementation of Object Oriented principles (containments, aggregation,

inheritence etc)
Perhaps a grouping notation so that the enterprise can model for example what is in and
what is out (of a proposed change) in one diagram

16.2 3. Development and publication of an open LEAN modelling standard
4. Licensing of a LEAN modelling tool
5. Delivery of LEAN modelling education services to CTO / Enterprise Architects

& Management Executives.

- 133 -

16.3 Please see above.
16.4 Align or link it to other notations like BPEL etc.
16.5
16.6

17

Are there any other comments you would like to make?
17.1 Would be very helpful to facilitate change in an environment where complex business

processes are supported by a plethora of applications and rules.
17.2

-
17.3 There is definitely a need for such tools such as LEAN. If I were managing RTA’s whole

EA, I would definitely use something link LEAN. Hence, I don’t see this as a waste of
time.
LEAN should not become another modelling tool. It should assist change in EA in a real
sense. I.e., looking at costs, impacts, improvements, risks, and real things that help to run a
business.

17.4
My exposure to the concept was very brief, and only daily usage would test the concept
and usability and validity of the idea.

17.5

17.6

Table 13 - Results of LEAN Survey for Enterprise Architects - Open Questions

7.1.6 Analysis of Results
This section provides a preliminary analysis of the results of Study One, while Section

7.3 provides a comprehensive evaluation of the research.

- 134 -

7.1.6.1 Closed Questions

Figure 24 shows spider chart representations of the weighted average responses to the

closed questions for each of the target groups. Actually, the inverse of the weighted

averages are used so that values further away from the origin represent stronger

agreement with the statement or question.

The spider graph for business users does not reveal any striking trends with respect to the

two research questions. However, the enterprise architects graph highlights a very strong

response to question 1: “Compared to other modelling languages I have used for

enterprise modelling, LEAN is:” which received a weighted average of “2 Very easy

to learn”. Both graphs show a local minimum for question 3 indicating that, while

LEAN is seen as having general effectiveness and relevance for the modelling of EA’s,

its effectiveness and relevance in modelling low-level (detailed) information is weak.

In fact, it is perhaps surprising that business users provided the support that they did in

response to the question “LEAN is an effective language for modelling low-level

(detailed) information.” This question was rated “4 Disagree” by EA’s, but “3.4

Agree” by business users. As LEAN is designed for high-level, conceptual

modelling, it was expected that it would probably be seen as ineffective for low-level

modelling. EA’s did take this view, but business users seemed less sure (in fact, four

Figure 24 - Responses for Two Groups (Business Users and EA's) Compared by Question and Test Area.

Inverse Weighted Averages for Business Users

0

0.2

0.4

1 A

2 B

3 B

4 B

5 B

6 B

7 B

8 B

9 A

10 A

Inverse Weighted
Averages for Business
Users

Survey
Reference

Research
Question
Reference

Inverse Weighted Averages for Enterprise Architects

0

0.2

0.4

1 A

2 B

3 B

4 B

5 B

6 B

7 B

8 B

9 A

10 A

Inverse Weighted
Averages for Enterprise
Architects

Survey
Reference

Research
Question
Reference

- 135 -

respondents marked “Don’t know”). Nevertheless, the score of 3.4 was the highest

rating attributed by business users to any question (indicating the lowest concurrence).

Business users concurred most highly with the assertions “LEAN leads users to think

more deeply about the structures and relationships that exist” and “I would

recommend LEAN for use by other enterprise architects”, which both scored a

weighted average of 2.5 (exactly half way between Agree and Strongly Agree).

EA’s concurred most highly with the assertions “LEAN is an effective language for

modelling high-level (conceptual) information”, “LEAN leads architects to think more

deeply about the structures and relationships that exist” and “LEAN models convey

meaning more precisely than the enterprise architecture models I previously used”,

which all scored a weighted average of 2.5 (exactly half way between Agree and

Strongly Agree). As mentioned previously, the highest score was in response to the

question “Compared to other modelling languages I have used for enterprise

modelling, LEAN is:” where the weighted average response for EA’s was “2 Very

easy to learn”.

7.1.6.2 Open Questions

Question 18 was unique to the EA’s survey: “What other languages have you used for

enterprise modelling?” (Note, it is placed between questions 12 and 13 in the survey

for continuity.)

Every EA had previously used UML for EA modelling supporting the view that UML

is the most widely used, formal language, for EA modelling. No EA identified

Archimate as an EA modelling language.

Architecture 13
Tool 11
Enterprise 10
Relationships 9
Change 8
Business 8
Help 7
Easy 7
Easily 7

- 136 -

Level 7
Table 14 - Top Ten Words not in Wordlist

Text provided in answer to the open questions was analysed using Textalyser18 and

TAPoR19. Question 1 (“What is your job title?”) and Question 2 (“What is your job

function?”) was excluded from the analysis. Answers to all of the other open questions

were included unless they consisted solely of the single word “no” or “yes”. Misspelt

words have been corrected before analysis. Full stops were added to the end of each

sentence if they were not already present and bullet points were removed.

General statistics are as follows:

 Total words: 1485

 Unique words: 558

 Average word frequency: 2.66

Table 14 shows the top ten words that are present in this text, excluding the words in

the following wordlist: “a, an, of, the, in, on, at, and, or, for, to, it, not, I, is, with, be,

that, as, but, have, was, use, lean, would, if, this, by, you, very”

Table 15 presents a concordance list for these high frequency words with a context

length of five words.

Architecture
 no other experience with enterprise architecture modelling tools making it not
 relationships between components of the architecture.
 higher level views of the architecture it proves very effective for
 during the documentation of our architecture we may want some added
 documentation maintenance of our IT architecture.
 notations used today for Enterprise Architecture model drawings
 simple mechanism for describing enterprise architecture without introducing the complexity inherent
 to help CTOs plan enterprise architecture, explain the business goals of
 RTA has an Enterprise Architecture Group
 define RTA s current Enterprise Architecture.
 An Enterprise Architecture team with no real power
Tool
 of the task not the tool.

18 http://textalyser.net/?q=iago.nac.net/~terbo/index.old.html

19 http://taporware.mcmaster.ca/~taporware/textTools/summarizer.shtml

- 137 -

 use simple high-level EA tool.
 Not enough experience with the tool to have any suggestions to
 An automated tool that enabled drill down or
 Licensing of a LEAN modelling tool.
 Lean like any other effective tool) will be effective in the
 be improved like any other tool.
 is supported by a drawing tool)
 With an automated tool for LEAN this should be
 should not become another modelling tool.
Enterprise
 have no other experience with enterprise architecture modelling tools making it
 disparate notations used today for Enterprise Architecture model drawings
 a simple mechanism for describing enterprise architecture without introducing the complexity
 potential to help CTOs plan enterprise architecture explain the business goals
 modelling education services to CTO Enterprise Architects Management Executives
 RTA has an Enterprise Architecture Group
 to define RTA s current Enterprise Architecture
 An Enterprise Architecture team with no real
 analysis should bring about change Enterprise architects based on subjective and
 grouping notation so that the enterprise can model for example what
Relationships
 of capturing and conveying the relationships between components of the architecture
 was excellent for depicting the relationships in the information architecture domains
 that related more to the relationships in the infrastructure layers
 each node easier to understand relationships.
 Question Are the relationships connections directed only one way
 business functions processes technology and relationships in a single easily readable
 Defines relationships which can be easily enforced
 I wish relationships were all objective i
Change
 LEAN is to help with CHANGE.
 5 years you need to change this and that
 that you also need to change those other two linked systems
 Bottom line for change is could lean associate cost
 benefit analysis should bring about change.
 It should assist change in EA in a real
 is out of a proposed change) in one diagram
 be very helpful to facilitate change in an environment where complex
Business
 not previously exposed groups management business users etc
 It effectively ties business functions processes and systems together
 plan enterprise architecture explain the business goals of technology initiatives to
 Effectively articulates business functions processes technology and relationships
 that help to run a business.
 UML BPEL Business Process Engineering Language OWL Ontology
 how infrastructure and personnel support business processes
 in an environment where complex business processes are supported by a

- 138 -

Help
 Hoping the this will help gain the buy in from
 It offers great potential to help CTOs plan enterprise architecture explain
 Using LEAN to help tracking project status by management
 LEAN is to help with CHANGE
 LEAN should help architects identify areas that are
 risks and real things that help to run a business
 This would help at the inception level to
Easy
 The diagrams were easy to read but I can
 it is an efficient and easy to understand way of capturing
 to read not overly complicated Easy to read not overly complicated
 simple high-level EA tool Easy of use simple high-level
 Extremely easy to learn
 for LEAN this should be easy) I know relationship dependency is
Easily
 that it can be relatively easily expanded and extended should resourcing
 legends with the ability to easily jump between different areas of
 that I know would be easily understood by CTOs CIOs
 systems together into a neat easily understandable language
 and relationships in a single easily
 Defines relationships which can be easily enforced if it is supported
Level
 of elaborating on the higher level views of the architecture it
 the value as a high-level modelling tools looks very promising
 Easy of use simple high-level EA tool
 It enables high-level architectures to be visualised using
 which operate at a lower level of abstraction
 Useful at the highest level to show how infrastructure and
 would help at the inception level to measure the scope of

Table 15 - Concordance List for High Frequency Words

7.1.6.3 Analysis of Models

Table 16 shows the frequency with which each type of node occurs within the ITD

LEAN models.

- 139 -

 Node Type

 Action Agent Resource Rule

Number of

Occurrences
75 40 147 33

Relative

Frequency
25% 14% 50% 11%

Table 16 - LEAN Node Frequency Distribution

As Table 16 shows, the Rule node is used least frequently (11%). However, this node

was found to be very useful for describing links between the system models and high-

level organisational objectives. For instance, Rules were useful for describing

organisational standards, requirements and objectives.

The fact that even the least used concept (Rule) was used a significant portion of the

time suggests that all four LEAN concepts are valuable for this type of modelling. The

fact that the concept of Resource was used so frequently (twice as much as its nearest

rival, Action) suggests that the decomposition of this concept into more granular

concepts may be justified. On the other hand, the support that LEAN provides for the

development of hierarchies may negate the need to do this, highlighting the

importance, perhaps, to ensure that enough attention is giving to ensure that

appropriate Resource hierarchies are developed early in the modelling project.

Table 17 shows the frequency with which each type of relationship occurs within the

ITD models. The tick marks show the legal relationships, while the number next to the

tick shows the number of times that relationship was represented in the ITD LEAN

models.

As Table 17 shows, some permissible relationships were not used at all in the ITD

project. In particular, none of the “is a type of” relationships were used. These were

designed to allow type-subtype relationships hierarchical relationships to be formed

within each concept type.

- 140 -

Another type of hierarchical relationship, “reports to” was only used twice. Yet, the

third, of only three types of hierarchical relationship that were supported, the “is a part

of” relationship, was the most popular relationship of all. This relationship was used 78

times, primarily to create resource hierarchies (58 times).

This seems to indicate that EA modellers think strongly in terms component-

subcomponent hierarchies when developing high-level models. These results may

justify the exclusion of the “is a type of” and “reports to” relationships from the

relationship set. Similarly, the “precedes” relationship, which was under-represented at

only 3 occurrences, may warrant exclusion from the relationship set. This might help

to simplify the relationship set further, making it easier to use while having little impact

on the ability to create effective LEAN models. Instead, these relationships could be

represented in domain specific models that are well equipped to represent these types

of relationships. For example, application-modelling languages such as UML can well

represent type-subtype relationships, process-modelling languages can represent

temporal relationships and organisational charts can represent reporting relationships.

- 141 -

Table 17 – Relationship Frequencies in ITD EA Models

LEAN NODE PAIRINGS

HOMOGENOUS PAIRINGS HETEROGENOUS PAIRINGS

RELATIONSHIP

SET

is a type of 0 0 0 0

supports 29

interfaces with 18

is a part of 23 5 50 0

precedes 3

reports to 2

performed by 31

uses 62

produces 18

complies with 8 0 15

applies to 6 0 0

supports goal 6

Action Action
Agent Agent

Resource Resource Rule Rule Action
Agent

Action Resource

Action Rule Agent
Rule Resource Rule

Action Rule
Agent

Rule Resource Rule

- 142 -

7.1.7 Summary
The project that was carried out at ITD fits the criteria needed to assess the research

hypothesis very well. The project covered a wide range of domains including

application architecture, infrastructure architecture, business architecture and business

strategy modelling. In addition, the project required modelling at various levels of

abstraction, but with a focus on high-level modelling.

It should be remembered that, as reported in section 2.7, the prime indicator of the

success of an EA modelling language appears to rest on how easy it is to use and

understand. The premise of this research has been the observation that any successful

integrated EA language will have to be easy to use. Attempts to develop a perfect

unified language, at the expense of being human-centred have failed. It is better to

forgo some semantic strength and ontological rigour in order to make the language

more useable and intuitive. “A system architect can create a perfect EA model but it

doesn’t matter if project teams can’t or won’t take advantage of it. The EA must be

good enough, but does not need to be perfect.” (Kaisler et al., 2005)

The evidence gathered in this study supports the notion that LEAN is indeed easy to

use as a tool for developing EA models. Survey responses such as the following

support this finding:

 Extremely easy to learn

 Simple to use

 Simple to understand …

 … very effective and time-efficient

 I was very impressed with the number of systems that were able to be depicted

in such a short amount of time.

 LEAN provides a simple mechanism for describing enterprise architecture

without introducing the complexity inherent in languages which operate at a

lower level of abstraction.

As reported by ITD in the final project report, it was asserted that the project delivered

the following results:

- 143 -

The models have aided understanding of the current environment.

The models have generated discussion about various aspects of the current environment,
leading to new insights.

The models have engendered ideas for simplification or augmentation of the current
environment.

It is expected that these benefits will continue to expand as the models are distributed
throughout the ITD and user community.

Appendix B – Final Project Report for UTS EA Project

The survey results appear to support these assertions.

In explaining the reason for developing LEAN models to other managers at the kick-

off meeting for the project, Peter Demou (Manager Plans and Programs) summed up

his understanding of LEAN by saying “It’s a kind of ‘cheat-sheet’ for managers”. The

metaphor of a cheat-sheet conveys what the survey results have highlighted as the

most significant aspects of LEAN: it is simple and effective.

The results provide a convincing argument for the efficacy of LEAN and support the

research hypothesis.

7.2 Study Two: Re-Modelling a Public Domain Architecture

7.2.1 Introduction
In addition to the action research that was carried out and described in the previous

chapter, the remodelling, using LEAN, of a large scale, existing EA, was identified as a

potentially useful research method. This would allow a comparative analysis to be

performed between the original EA models and the new LEAN models.

The number of available, real-world EA models, is limited. As previously mentioned,

the development of enterprise architectures is generally viewed by organisations as

providing strategic competitive advantage. The EA embodies the organisation’s unique

strategies, goals and plans that it believes will give it an edge in the marketplace. As a

result, these EA’s are generally seen as highly confidential, proprietary information,

- 144 -

making it very difficult to obtain this type of information for academic case study

purposes. Another difficulty is that, as EA is still a relatively new technology, and

despite its widespread adoption, few organisations have actually developed a cohesive

and complete EA.

Fortunately, (for this research), the United States of America has enacted the Clinger-

Cohen Act, which requires the development of enterprise architecture (EA) in Federal

agencies. Section 5125 requires that agencies develop "a sound and integrated

information technology architecture." Many of these EA’s are public domain and are

published on the Internet making them ideal source material for this research.

Interestingly, despite the fact that these publications often make references to EA

‘models’, many of the US published EA’s contain few graphical models. Instead, these

architectures tend to focus on the non-model aspects of EA such as principles,

standards, policies and process. It can be argued that the presentation of these models

as purely textual constructs reduces the ability of these architectures to persuade and

convey information. Descriptions of the baseline and to-be architectures, although

acknowledged as required parts of the EA development process, are mostly absent.

Many of these EA’s are works in progress with the process and methods described, but

the architectural models missing. One could speculate that, without a human-centred,

unified language for the development of EA level models, the completion of these

enterprise architectures becomes a huge hurdle.

7.2.2 The USDoS Enterprise Architecture
The United States Department of State (USDoS) Information Technology

Architecture (ITA) documents the high-level architecture of the USDoS and provides a

good case for this research. It is a ‘real world’ EA, addressed to meet the demands of a

large and complex organisation. The document that describes this EA is medium sized

(approximately 40 pages) ensuring that the example is not trivial. In addition, the

description that the USDoS provides for this document is congruent with typical EA

definitions, making it suitable as an EA case study. This is illustrated by the following

quote:

- 145 -

“The Department's ITA provides guiding principles and standards to be applied when
designing and implementing information services and specific systems for Department users.
The ITA also specifies the major components of the technology infrastructure that need to be

built to support the business requirements.” (United States Department of State, 1999,
Section ES-1)

The case can be summarised as follows. The USDoS's current information systems are

seen as fragmented, inconsistent and duplicative “islands of automation”. In response

to this, it has developed an ITA that is expected to promote greater reusability,

integration, portability and interoperability.

“The Department of State is modernizing its Information Technology (IT) infrastructure to

support changing business needs and to take advantage of new technologies. In pursuit of
this goal, the IRM Bureau has developed a high-level Information Technology Architecture
(ITA) to guide the acquisition, development, and implementation of information technology

…” (United States Department of State, 1999)

The approach taken in this study was to analyse the USDoS ITA models and redevelop

the majority of them as LEAN models. Models were not translated in the cases where

their translation into LEAN would have been repetitive and add no research value.

It is recognised that in some cases it may not be beneficial, nor appropriate, to translate

these models into LEAN graphs. Some of these models may have more explanatory

and persuasive power in their original forms. However, their conversion to LEAN is

designed to show that LEAN can be used for a wide range of high-level enterprise

modelling tasks. There is, however, the potential advantage that, even if some

individual models do lose some of their semantic or persuasive power, once all of the

models are converted to LEAN, then it becomes possible to perform more detailed

analysis than is possible when all the models are in different forms.

As well as converting all of the graphical models in the case study to LEAN models,

many of the textual descriptions of the architecture and organisation have been

modelled using LEAN. This is done to demonstrate the flexibility of LEAN. This

approach also shows how a typical EA with a limited number of models could be

translated into a comprehensive set of LEAN models with enough coded information

to start to perform high-level design and re-engineering tasks for the organisation.

- 146 -

A copy of the USDoS ITA is provided in Appendix D – USDoS ITA. Parts of the

document have been deleted to remove duplication (e.g. the executive summary).

To indicate which models and sections of text have been translated into LEAN,

reference marks have been added - they look like this: and contain a

reference number that matches the corresponding LEAN model. The LEAN models

are shown in Appendix E – USDOS ITA LEAN Models. All of the LEAN models

created for this case were created using the Generic Relationship Set. No additional

relationship types were created (or found necessary).

7.2.3 Analysis
A considerable amount of the information portrayed in the LEAN models is, by

necessity, inferred from the narrative provided in the ITA document. Of course, in a real

modelling situation there would be opportunity for feedback and clarification.

However, for illustrative purposes this LEAN evaluation approach would appear to

serve its purpose well enough.

Some of the LEAN models that have been produced contain ambiguous or redundant

information. This is because the original USDoS ITA models are ambiguous or

redundant (as an examination of the original models will quickly demonstrate). One of

the reasons for this is that each of the models in the USDoS ITA appears to use a

different schema, and none of the schemas are defined! In fact, close analysis of these

models reveals that they contain many ambiguities and inconsistencies (in terms of the

information presented as well as the schema used).

These inconsistencies seem to be easier to overlook in the original models. Perhaps the

lack of formal definition reduces the ability of the reader to perform critical analysis,

leading the viewer to identify the general concept without being bothered by the detail.

On the one hand, this may be a highly beneficial aspect of this type of informal

modelling. On the other hand, it does make any formal analysis and computer aided

manipulation difficult until these vagaries are resolved. The lack of objective content in

some of the USDoS ITA models would make it difficult to determine whether the

models are correct or not as they are impossible to test in order to confirm or falsify

- 147 -

the content. An example of this is Model 2, which is supposed to convey the

metaphors of systems as “islands of automation” and “stovepiped”.

In other cases, the use of graphics within the USDoS ITA merely distracts the reader

from the fact that the model is actually semantically equivalent to little more than a

textual list. Graphics, colours and ‘pleasing’ composition can give the impression that

the model is rich in information, while in fact being quite devoid of any information

other than the textual labels provided on the diagram. In these cases, conversion to

LEAN appears to make this semantic paucity more apparent.

Table 18 shows the frequency with which each type of relationship occurs within the

USDoS ITA models. The tick marks show the legal relationships, while the number

next to the tick shows the number of times that relationship was represented in the

USDoS ITA models.

In total, 180 relationships were represented, versus the 276 relationships that were

represented in the ITD models. Yet, there are significantly more Resource-to-Resource

relationships in the USDoS ITA models. This indicates that the USDoS ITA models

are weighted heavily towards the representation of structural relationships, particularly

hierarchical relationships, between enterprise resources.

In comparison to the original USDoS ITA models, the LEAN models may seem to be

relatively complicated vehicles for describing architectural information. There are two

points to be made about this. Firstly, while it may seem more cumbersome to model

the information using LEAN versus text or other modelling approaches (even informal

ones), LEAN carries with it the benefits of being rigorously defined. This means that

once the LEAN model is created, it can then be processed in many ways to generate

additional information. In this respect, the LEAN models are richer than the original

information on which they are based.

Secondly, if we look at other approaches for formally modelling enterprise information

(as opposed to the informal, non-defined models used in the US DoS ITA), we can see

that LEAN is not so cumbersome at all. Take for example the following top-level

generic activity model, modelled using IDEF0 (Presley et al., 2001) shown in Figure 25.

- 148 -

Clearly, this model is far more detailed and intricate than most of the LEAN models

provided in this Study, and yet it is similarly intended for use by EA stakeholders.

Figure 25 - Top Level Generic Activity Model

- 149 -

Table 18 - Relationship Frequencies in USDoS ITA

LEAN NODE PAIRINGS

HOMOGENOUS PAIRINGS HETEROGENOUS PAIRINGS

RELATIONSHIP

SET

is a type of 0 2 7 0

supports 40

interfaces with 5

is a part of 12 1 65 0

precedes 8

reports to 0

performed by 8

uses 10

produces 17

complies with 3 0 9

applies to 2 0 0

supports goal 0

Action Action
Agent Agent

Resource Resource Rule Rule Action
Agent

Action Resource

Action Rule Agent
Rule Resource Rule

Action Rule
Agent

Rule Resource Rule

- 150 -

7.2.4 Summary
In many cases, it is quite surprising just how much information, represented as LEAN

models, can be gleaned from what seems to be a simple textual description. This

suggests that LEAN is able to capture, and formalise, quite subtle grammatical

semantics.

It should be noted that the goal of LEAN is not to make redundant more informal

methods of describing enterprise level architectural concepts, but to bridge the gap

between informal and formal representations. Informal models are often more naturally

generated from the information at hand, and in some cases may have better

communicative powers. Their weakness is their lack of semantic integrity and the

inability to transform these models logically into more detailed designs. The goal of

LEAN is to augment these informal approaches with a more rigorous standard that

supports clearer communication at the highest conceptual levels, while also leading

logically into more specialised domain architectures.

7.3 Evaluation

This research was designed to investigate the following hypothesis: It is possible to develop a

human-centred modelling language for creating unified models that span heterogeneous domains of an

enterprise architecture.

The development of a single modelling language that meets the criteria set out in the

hypothesis will prove the hypothesis true. LEAN was developed as a modelling language

that might meet these criteria. LEAN was developed by first creating theoretical

principles for developing unified enterprise metaphors, developing a methodology to use

these metaphors to construct unified modelling languages, and then applying the

methodology to produce one instance of a unified EA modelling language (LEAN).

The approach taken to test LEAN was to break the hypothesis down into two separate

research questions:

1. Can we develop a modelling language for creating unified models that span

heterogeneous domains of an EA?

- 151 -

2. Can such a language be designed to be human-centred?

If these two research questions are answered in the affirmative, then we have also

provided evidence that the theory and methodology developed in this thesis have

efficacy for developing a range of unified EA modelling languages.

With respect to the first research question, two disparate studies were conducted to

determine if the LEAN modelling language could be used to create unified models that

span heterogeneous domains of an EA. Study One involved the development of EA

models by managers and IT specialists within an operating enterprise that had a large

scale, complex IT environment. Study Two involved the reformulation of EA models

that were originally produced by the US Department of States and placed in the public

domain. The results from Study One show that the LEAN language can be used to

create unified models that span heterogeneous domains of an EA. One of the stated

objectives of the ITD EA project was to show the interrelationships between the

different domain architectures.

The domains that were subsequently modelled in this project included Infrastructure,

Applications and Business architecture domains. The survey that was issued to the

project stakeholders and independent analysts following project completion confirmed

that LEAN was used successfully to capture information across all of the technical and

business domains of interest. Furthermore, answers to the open survey questions

include numerous comments on the effectiveness of LEAN to show the relationships

between disparate components of the EA.

The results from Study Two provide a number of insights. Firstly, it was observed that

the original USDoS ITA models were lacking in semantic integrity (a wide variety of

schema was used, none of which were defined and there were many inconsistencies

within, and between the models) and expressiveness (the models conveyed relatively

little meaning and were used predominantly to illustrate structural relationships between

Resources, and there were many ambiguities in the models).

- 152 -

Conversion of the USDoS ITA models into LEAN models showed that the structures

available in LEAN were sufficient to represent the structures presented in the original

models, despite the wide variety of notations used in those models. LEAN could also be

used to represent information structures represented as text in the original USDoS ITA,

thus making this information visual.

With respect to the second research question, Study One showed that LEAN is human-

centred. The survey that was issued to the project stakeholders and independent analysts

following project completion confirmed that LEAN was easy to use and very easy for

enterprise architects to learn. The answers to the open survey questions include

numerous comments on the simplicity of LEAN. The open survey questions also

included a number of comments that indicated that the graphic nature of the LEAN

models supported effective and easy visualisation of the EA and this was supported by

the positive answer to the closed question “LEAN leads users to think more deeply

about the structures and relationships that exist”.

Together, Study One and Study Two provide solid evidence that the two research

questions can both be answered in the affirmative. Therefore, we can conclude that it is

possible to develop a human-centred modelling language for creating unified models that span

heterogeneous domains of an enterprise architecture. The research presented in this thesis

demonstrates that the stated hypothesis can be answered in the affirmative.

- 153 -

8 CONCLUSIONS AND FUTURE RESEARCH

DIRECTIONS

"The ideal architect should be a man [or woman] of letters, a mathematician, familiar with
historical studies, a diligent student of philosophy, acquainted with music, not ignorant of

medicine, learned in the responses of jurisconsults, familiar with astronomy and astronomical
calculations." Vitruvius, circa 25 BC

In this chapter, conclusions from this programme of work are provided, along with the

implications of this research. A number of opportunities for further research have been

identified and are described here.

8.1 Conclusions

As a scientific discipline, Enterprise Architecture (EA) is still in its infancy. However, the

development of an EA is widely recognised as an important endeavour that can provide

an enterprise with significant strategic competitive advantage. As IT environments

become more complex and heterogeneous, the importance of EA’s will increase.

There are several modelling techniques that are specially designed for describing EA’s,

and depending on the particular EA frameworks, standards and methodologies being

used, one or more of these modelling techniques may be recommended. However, all of

the formal contemporary approaches to EA modelling suffer from one or more of the

following drawbacks: either they are too complex for real-world application, or they can

only describe limited domains or specific industries. As a result, Enterprise Architects

have to learn, and use, a wide variety of modelling languages in order to cover the full

EA domain encompassing application, infrastructure, information and business

architectures. Alternatively, the Enterprise Architect invents an undefined notation that

subsequently lacks semantic integrity. Without a human-centred, unified EA language,

there is no way to develop coherent and consistent EA’s that support the development

of a shared understanding of the enterprise's goals and objectives (Bernus, 2001).

A novel approach has been used in this thesis to develop a unified EA modelling

language that does not suffer from the complexity that haunts other unified EA

languages. Through an understanding of metaphor type hierarchies, it was shown that

- 154 -

metaphors can be developed that describe a wide variety of enterprises at various levels

of abstraction. This was referred to as a ‘unified metaphor’. A methodology was then

presented for developing this metaphor into an ontology, and subsequently formalising

and codifying this ontology to produce a high-level, unified, EA modelling language.

In order to evaluate this theory, the methodology was applied to develop a unified

modelling language based on the metaphor ‘an enterprise is a society’. Giddens theory of

structuration was used as a basis for the development of a society ontology, and this was

further developed into graphical modelling language. Since visual systems offer distinct

advantages over non-visual systems for the development of effective cognitive maps, the

development of a graphical language was seen as being of key importance. The language

that was developed is referred to as the Lightweight Enterprise Architecture Notation

(LEAN).

Validation of LEAN as a unified and human-centred language then took place. In order

to provide strong results, a mixed-methods research approach was used that combined

experimental research with action research. Three separate studies were then performed:

two formal studies, and one informal study.

This research was designed to test the hypothesis that it was possible to develop a

human-centred EA modelling language that was unified. Other unified EA modelling

languages already exist, but they are not human-centred, and consequently, they have not

been used for EA modelling outside of academic circles. To test this hypothesis it was

necessary to first confirm that LEAN was indeed unified, and then to test whether it was

also human-centred. In combination, these attributes would demonstrate that the theory

and methodology developed in this thesis was successful in developing a useful unified

EA modelling language. It could then be inferred, although it remains unproven at this

stage, that this theory and methodology could also be used to develop a range of unified

EA modelling languages.

The formal studies produced results that support the research hypothesis. Study One

involved running an EA project in the IT department of a large, diverse enterprise. This

study provided strong evidence that LEAN is a unified EA modelling language that can

- 155 -

be used to model a wide variety of structures at various levels of abstraction, and that it

is human-centred. Business users and Enterprise Architects were surveyed on a wide

range of attributes in order to determine the efficacy of LEAN for EA modelling and

they responded in the positive for every tested attribute. In addition, comments provided in

response to open questions confirmed that users found LEAN easy to learn and simple

to use: essential attributes of effective unified EA modelling languages.

Study Two, based on a complex real-world public domain EA, added weight to the

premise that LEAN is unified and can be used to model a wide variety of constructs that

would typically be represented in an enterprise architecture.

The theory and methodology developed in this thesis is a highly original approach to the

development of a unified EA modelling language. Traditional approaches to this

problem take a ‘bottom up’ perspective that leads to highly complex solutions.

The approach taken here is quite novel in that it combines elements of cognition,

linguistics, social theory and technology to produce highly flexible EA languages that are

both integrated and human-centred. This new theory and methodology provides a

substantive contribution to the field of computer science. Additionally, the

acknowledgement by EA stakeholders and experts that LEAN is a human-centred,

unified EA modelling language provides industry with a valuable new modelling

language for developing EA’s and achieving competitive advantage.

8.2 Future Research Directions

Since EA is still an immature discipline, it is not surprising that the findings presented in

this thesis provide fertile ground for further research. In terms of the theoretical

foundations developed in this research, there are a number of areas that deserve further

investigation.

The use of the theoretical approach and methodology presented in this thesis to develop

languages based on other unifying metaphors would provide valuable insights. It would

strengthen the proposition that this methodology can be used to develop an unlimited

set of unified modelling languages. Perhaps more importantly however, the development

- 156 -

of additional languages would allow a comparative analysis of these languages to be

performed. This would provide data on the characteristics that make such unified

languages effective and would allow the development of optimised unified EA modelling

languages.

Study Three demonstrated how an effective unified EA modelling language based on an

enterprise metaphor may have properties that allow it to be used to structure systems at

various levels of abstraction. This would provide greater congruence between models at

various layers of abstraction. Further research investigating these properties of metaphor

based unified modelling languages is warranted. Greater alignment between high-level

business objectives and the information systems that support these objectives will lead

to better systems integration (leading to easier maintenance and better useability), and

the realisation of greater business value as decisions made at strategic levels will be

implemented more consistently and completely.

In relation to the LEAN modelling languages, there are several areas that can be

researched and developed further. Firstly, it would be valuable to extend the research

presented in this thesis by using LEAN in additional EA modelling projects across a

variety of industries. This would provide further information on the generality of LEAN.

The LEAN relationship set also warrants refinement. This is likely to be an ongoing

process as identification of the most useful generic relationships is identified through a

heuristic process.

The development of mechanisms and procedures for integrating LEAN with other

enterprise ontologies such as TOVE and the IDEF ontologies could be developed. This

would allow the reuse of knowledge from these ontologies and may improve the utility

of LEAN.

An investigation of other, non-EA, cross-disciplinary domains could be valuable in

order to determine the characteristics of these domains and the potential for using

similar approaches for modelling these domains. This may greatly extend the value of

the approach developed in this thesis to other problems.

- 157 -

The LEAN modelling tool could also be further developed in the following areas:

 Simulation features and metric analysis tools (e.g. time, support and cost

analysis) could be added to leverage the potential of the stored information for

the purposes of strategic planning.

 The tool could be expanded as an EA repository by supporting the storage,

organisation and retrieval of other types of documents and images.

Interfaces, such as an XML interface, could be built to allow information exchange with

other tools and systems.

8.3 Closing Remarks

“… in the 21st century it [Enterprise Architecture] will be the determining factor, the factor
that separates the winners from the losers, the successful and the failures, the acquiring from

the acquired, the survivors from the others.” (Zachman, 1997)

While specialised languages have been developed for modelling specific domains such as

application, infrastructure and network architectures, there are no human-centred

languages that support the creation of high-level, conceptual systems models that extend

across all IT domains. Without such a language, there is no way to develop coherent and

consistent EA models. While there have been several attempts to solve this problem,

none can be said to be highly successful. Indeed, some researchers have described the

problem as intractable, while others declare its solution, an open problem (Dewhurst et

al., 2002) (Zelm and Kosanke, 2001) (Lankhorst, 2005 p. 56).

In fact, the problem can be solved as long as one understands the criteria upon which the

success of such a language rests. The key to developing a useful EA modelling language

is summed up by Solberg as follows: "Enterprise models are useful only if they are used.

They will be accepted by users as a tool if they are simple to understand, easy to use,

computer-supported, and if they provide a realistic image of the reality. This explains the

failure of many approaches proposed in the past …" (2000, p.184)

As the profile of EA increases, those in charge of the direct lines of business will seek

hands-on ownership of the EA. EA’s are too important to leave to the IT specialists!

Just as businesses sought to take greater control over application design and

- 158 -

development in the 1980’s, we will see EA ownership devolve to those who are making

operational and strategic decisions upon which the business will succeed or fail.

This devolution of ownership will drive the way we design and develop EA’s. They will

need to be designed with a business perspective, rather than a blinkered focus on

technology. The focus of EA’s will expand from the management and analysis of

computer systems, to the management and analysis of information systems that support

the identification of tactical and strategic opportunities. The scope will extend from

networks, servers and data structures, to incorporate concepts such as time to market,

cost effectiveness, change management, and so on. In addition, the EA systems will

need to be designed appropriately so that business planners and developers can leverage

the models to achieve corporate goals.

Ultimately, the goal of an EA is to reduce complexity and increase agility (Fayad et al.,

2002). It is only by understanding this concept that the development of effective EA

modelling languages can be realised. “… simplicity enhances an organization’s ability to

use technology more effectively.” (Theuerkorn, 2005 p.138)

As new technologies continue to disrupt business models and challenge the ability of IT

departments to manage and exploit opportunities for change, the role of EA will

continue to become more important (Khoury, 2006b). This makes the development of

an effective integrated EA modelling language imperative. LEAN provides such a

language, while the theory and methodology presented in this thesis provides the

potential to develop a range of languages that meet these needs.

- 159 -

9 BIBLIOGRAPHY

ALLEN, R. B. (1997) Mental Models and User Models. IN HELANDER, M.,
LANDAUER, T. K. & PRABHU, P. (Eds.) Handbook of Human-Computer
Interaction. 2nd ed., Elsevier Science.

AMBLER, S. W. (2004) Architecture and Architecture Modeling Techniques: Bringing
data professionals and application developers together, www.agiledata.org,
http://www.agiledata.org/essays/enterpriseArchitectureTechniques.html.

ANTONIOU, G. & HARMELEN, F. V. (2004) A Semantic Web Primer, London,
England, The MIT Press.

ARLOW, J. & NEUSTADT, I. (2003) Enterprise Patterns and MDA: Building Better Software
with Archetype Patterns and UML, Boston, MA, Addison Wesley Professional.

ARMOUR, F. J., KAISLER, S. H., GETTER, J. & PIPPIN, D. (2003) A UML-driven
enterprise architecture case study. System Sciences, 2003. Proceedings of the 36th
Annual Hawaii International Conference on. Hawaii.

BAKER, D. C. & JANISZEWSKI, M. (2006) 7 Essential Elements of EA,
http://www.diamondconsultants.com/PublicSite/ideas/perspectives/download
s/INSIGHT%20-
%20Seven%20Essential%20Elements%20of%20Enterprise%20Architecture_si
ngle.pdf.

BASKERVILLE, R. L. (1999) Investigating Information Systems with Action Research.
Communications of the Association for Information Systems, 2/19.

BERNARD, S. A. (2004) An Introduction to Enterprise Architecture, Bloomington, Indiana,
AuthorHouse.

BERNUS, P. (2001) Some thoughts on enterprise modelling. Production Planning and
Control, 12, 110-118.

BERNUS, P. (2003) Enterprise models for enterprise architecture and ISO9000:2000.
Annual Reviews in Control, 27, 211-220.

BERNUS, P. & NEMES, L. (1994) A Framework to Define a Generic Enterprise
Reference Architecture and Methodology. Minutes, Eighth Workshop Meeting,
IFAC/IFIP Task Force on Architectures for Enterprise Integration. Vienna, Austria,.

BEZNOSOV, K. (1998) Architecture of Information Enterprises: Problems and
Perspectives. Architecture of Information Enterprises: Problems and Perspectives. Written
for the “Advanced Topics in Software Engineering” seminar given by Dr. Michael Evangelist
during spring of 1998 at School of Computer Science, Florida International University.

BIEMANS, F. P. M., LANKHORST, M. M., TEEUW, W. B. & WETERING, R. G. V.
D. (2001) Dealing with the Complexity of Business Systems Architecting. Systems
Engineering, 4, 118-133.

BLACK, M. (1962) Models and Metaphors: Studies in Language and Philosophy, London,
Cornell University Press.

BLACK, M. (1979) More about Metaphor. IN ORTONY, A. (Ed.) Metaphor and Thought.
London, Cornell University Press.

BLACKWELL, A. F. (1998) Metaphor in Diagrams. Darwin College. Cambridge,
University of Cambridge.

BOAR, B. H. (1999) Constructing Blueprints for Enterprise IT Architectures, New York, Wiley
Computer Publishing.

- 160 -

BRYANT, C. G. A. & JARY, D. (Eds.) (1991) Giddens' theory of structuration : a critical
appreciation, London; New York, Routledge.

CHALMETA, R., CAMPOS, C. & GRANGEL, R. (2001) References architectures for
enterprise integration. Journal of Systems and Software, 57, 175-191.

CHECKLAND, P. (1981) Systems Thinking, Systems Practice, London, John Wiley & Sons.
CHECKLAND, P. & SCOLES, J. (1990) Soft Systems Methodology in Action, New York,

Wiley.
CHEN, C. (1999) Information Visualisation and Virtual Environments, London, Springer-

Verlag.
CHEN, D. & VERNADAT, F. (2004) Standards on enterprise integration and

engineering - state of the art. International Journal of Computer Integrated
Manufacturing, 17, 235-253.

CLARKE, J., MODGIL, C. & MODGIL, J. (Eds.) (1990) Anthony Giddens: Consensus and
Controversy, Brighton, UK, Falmer Press.

CLEMENTS, P. C. (1996) A Survey of Architecture Description Languages. Eighth
International Workshop on Software Specification and Design. Germany.

COOK, S. (2005) The Architecture of UML, Object Management Group (OMG),,
http://www.omg.org/news/meetings/workshops/presentations/uml_presentat
ions/5-1%20Cook%20-%20SJC.pdf.

CORNELISSEN, J. P. (2005) Beyond Compare: Metaphor in Organization Theory.
Academy of Management Review, 30, 751-764.

COSTIKYAN, G. (1994) I Have No Words & I Must Design. Interactive Fantasy #2.
COUPRIE, D., GOODBRAND, A., LI, B. & ZHU, D. (2004) Soft Systems

Methodology,
http://sern.ucalgary.ca/courses/seng/613/F97/grp4/ssmfinal.html.

CYRE, W. R. (1997) Capture, Integration, and Analysis of Digital System Requirements
with Conceptual Graphs. IEEE Transactions on Knowledge and Data Engineering, 9.

DENFORD, M., SOLOMON, A., LEANEY, J. & O'NEILL, T. (2004) Architectural
Abstraction as Transformation of Poset Labelled Graphs. Journal of Universal
Computer Science, 10, 1408-1428.

DEWHURST, F. W., BARBER, K. D. & PRITCHARD, M. C. (2002) In search of a
general enterprise model. Management Decision, 5, 418-427.

DIEBERGER, A. (1994) Navigation in Textual Virtual Environments using a City
Metaphor. Faculty of Technology and Sciences. Vienna, Vienna University of
Technology.

DIEBERGER, A. & FRANK, A. U. (1998) A City Metaphor to Support Navigation in
Complex Information Spaces. Journal of Visual Languages and Computing, 9, 597-
622.

DIJKSTRA, E. W. (1976) A Discipline of Programming, Englewood Cliffs, New Jersey,
Prentice Hall.

DIJKSTRA, E. W., DENNING, P. J., PARNAS, D. L., SCHERLIS, W. L., EMDEN,
M. H. V., COHEN, J., HAMMING, R. W., KARP, R. M. & WINOGRAD, T.
(1989) A debate on teaching computing science. Communications of the ACM, 32,
1397 (18).

DOUMEINGTS, G. & DUCQ, Y. (2001) Enterprise modelling techniques to improve
efficiency of enterprises. Production Planning and Control, 12, 146-163.

- 161 -

DRUCKER, P. F. (1969) The Age of Discontinuity: Guidelines to Our Changing Society, New
York, Harper & Row.

DRUCKER, P. F. (1992) The New Society of Organizations. Harvard Business Review,
September-October 1992, 95-104.

EVERNDEN, R. (1996) The Information Framework. IBM Systems Journal, 35, 37-68.
FAYAD, M., HAMU, D. & BRUGALI, D. (2002) Enterprise frameworks. Software -

Practice and Experience, 32, 735-736.
FOWLER, M. (2003) The New Methodology,

http://martinfowler.com/articles/newMethodology.html.
FOX, M. S., CHIONGLO, J. F. & FADEL, F. G. (1993) A Common-Sense Model of

the Enterprise. Second Industrial Engineering Research Conference. Norcross, GA,
USA, Institute for Industrial Engineers.

FOX, M. S. & GRUNINGER, M. (1997) On Ontologies And Enterprise Modelling.
Proceedings of the International Conference on Enterprise Integration Modelling Technology.
Springer Verlag.

FOX, M. S. & GRUNINGER, M. (1998) Enterprise Modeling. AI Magazine, 19, 3, 109 -
121.

FRANKEL, D. S. (2003) Model Driven Architecture: Applying MDA to Enterprise Computing,
Indianapolis, Wiley Publishing.

FRASER, J. & TATE, A. (1995) The Enterprise Tools Set - An Open Enterprise
Architecture. Proceedings of Workshop on Intelligent Manufacturing Systems (IMS),
International Joint Conference on Artificial Intelligence (IJCAI-95).

FREDERICK P. BROOKS, J. (1995) The Mythical Man-Month: Essays on Software
Engineering, Reading, Massachusetts, Addison-Wesley.

GAINES, B. R. & SHAW, M. L. G. (1995) Collaboration through concept maps.
Proceedings of CSCL95: Computer Supported Cooperative Learning. Bloomington.

GARDINER, M. M. & CHRISTIE, B. (Eds.) (1987) Applying Cognitive Psychology to User-
Interface Design, Chichester, John Wiley & Sons.

GARTNER, A. L.-. (2002) The future of computer interfaces: Human-Computer
Interfaces From 2003 to 2012, ZDNet,
http://techupdate.zdnet.com/techupdate/stories/main/0%2C14179%2C29010
50%2C00.html.

GEUS, A. D. (1997) The Living Company, Boston, Harvard Business School Press.
GHYCZY, T. V. (2003) The Fruitful Flaws of Strategy Metaphors. Harvard Business

Review, 86-94.
GIDDENS, A. (1984) The Constitution of Society: Outline of the Theory of Structuration,

Cambridge, Polity Press.
GOMEZ-PEREZ, A. (1995) Some Ideas and Examples to Evaluate Ontologies.

Proceedings of the Eleventh Conference on Artificial Intelligence Applications. Los Alamitos,
CA, IEEE Computer Society Press.

GREFEN, P. W. P. J. (1997) Modeling architectures of complex information systems,
School voor Informatie- en KennisSystemen,
http://www.siks.nl/ond/mod/grefen.html.

GRUBER, T. R. (1993) Toward Principles for the Design of Ontologies Used for
Knowledge Sharing. International Journal Human-Computer Studies, 907-928.

GRUNINGER, M. & FOX, M. S. (1996) The Logic of Enterprise Modelling. IN
BERNUS, P. & NEMES, L. (Eds.) Modelling and Methodologies for Enterprise

- 162 -

Integration: Proceedings of the IFIP TC5 Working Conference on Models and Methodologies
for Enterprise Integration. London, Chapman & Hall.

GUBA, E. G. & LINCOLN, Y. (1989) Fourth Generation Evaluation, Newbury Park, Sage
Publications.

GUSTAS, R. (2005) Inference Rules of Semantic Dependencies in the Enterprise
Modelling. IN FUJITA, H. & MEJRI, M. (Eds.) Proceedings of the fourth
SoMeT_W05. Tokyo, Japan, IOS Press.

HALASZ, F. & MORAN, T. P. (1982) Analogy considered harmful. Human Factors in
Computer Systems Conference. Gaithersburg, Maryland, ACM.

HAMMOND, N. V. & ALLISON, L. J. (1987) The Travel Metaphor as Design
Principle and Training Aid for Navigating Around Complex Systems. IN
DIAPER, D. (Ed.) Proceedings of the Third Conference of the British Computer Society.
University of Exeter, Cambridge University Press.

HAUGHEY, T. (2005) Modeling Hierarchies, http://www.tdan.com/special031.htm.
HENDERSON-SELLERS, B. & BULTHUIS, A. (1998) Object-Oriented Metamethods,

New York, Springer-Verlag.
HIGHSMITH, J. (2002) Agile Software Development Ecosystems, Boston, MA, Pearson

Education, Inc.
HILLIARD, R. (1999a) Aspects, Concerns, Subjects, Views, ... Submission to the

OOPSLA'99 Workshop on Multi-Dimensional Separation of Concerns in Object-Oriented
Systems.

HILLIARD, R. (1999b) Views and Viewpoints in Software Systems Architecture.
Position paper for the First Working IFIP Conference on Software Architecture (WICSA 1).
San Antonio, TX.

HILLIARD, R. (2000) IEEE-Std-1471-2000 Recommended Practice for Architectural
Description of Software-Intensive Systems, http://www.enterprise-
architecture.info/Images/Documents/IEEE%201471-2000.pdf.

HIRST, G. (2003) Ontology and the Lexicon. IN STAAB, S. & STUDER, R. (Eds.)
Handbook on Ontologies in Information Systems. Berlin, Springer.

HO, C.-S., HONG, Y.-C. & KUO, T.-S. (1986) A Society Model for Office Information
Systems. ACM Transactions on Office Information Systems, 4, 104-131.

IACOB, M.-E., JONKERS, H., LANKHORST, M., BUUREN, R. V.,
GROENEWEGEN, L., CHEUNG, K. H., BONSANGUE, M. &
KAMPENHOUT, N. V. (2002) State of the Art in Architecture Concepts and
Description Vn 1.0, Telematica Instituut (TI).

IDEF (1992) IDEF1 Information Modeling, College Station, Texas, Knowledge Based
Systems, Inc.

IDEF (1993) Integration Definition for Function Modeling (IDEF0) Draft, Federal
Information Processing Standards Publication 183.

IEEE (2002) IEEE Recommended Practice for Architectural Description of Software-
Intensive Systems (IEEE Std 1471),
http://www.pithecanthropus.com/~awg/public_html/.

INDURKHYA, B. (1994) The Thesis That All Knowledge Is Metaphorical and
Meanings of Metaphor. Metaphor and Symbolic Activity, 9, 61-63.

INSTITUTE FOR ENTERPRISE ARCHITECTURE DEVELOPMENTS (2004)
Trends in Enterprise Architecture 2004: How are Organizations Progressing?,
http://www.enterprise-

- 163 -

architecture.info/Images/EA%20Survey/EA%20Survey%202004%20IFEAD.
PDF.

INSTITUUT, T. (2004) Archimate Language Primer. Enschede, Telematica Instituut.
INSTITUUT, T. (2005a) Archimate, Telematica Instituut,

http://www.telin.nl/projecthome.cfm?id=48&language=en.
INSTITUUT, T. (2005b) Architecture Language Reference Manual, Telematica

Instituut, https://doc.telin.nl/dscgi/ds.py/Get/File-
31626/D2.2.2b_Architecture_Language_Reference_Manual_v4.0.pdf.

ISO (1995) ITU-T Rec. X.901 | ISO/IEC 10746-1 ODP Reference Model Part 1.
Overview.

ITU (1995) ITU Recommendation X.903 | ISO/IEC 10746-3, Open Distributed
Processing - Reference Model - Part 3: Architecture.

ITU (1996) ITU Recommendation X.901 | ISO/IEC 10746-1: Open Distributed
Processing - Reference Model - Part 1: Overview.

ITU (1997) ITU Recommendation X.904 | ISO/IEC 10746-4, Open Distributed
Processing - Reference Model - Part 4: Architectural Semantics.

JACKSON, P. & WEBSTER, W. R. (2007) The Social Reality of Business Activity: A
Contingent Methodology for Knowledge Elicitation and Mapping. International
Journal of Knowledge Management, 3, 49-65.

JOHNSON, G. J. (1994) Of metaphor and the difficulty of computer discourse.
Communications of the ACM, 37, 97-102.

JONKERS, H., BUUREN, R. V., ARBAB, F., BOER, F. D., BONSANGUE, M.,
BOSMA, H., DOEST, H. T., GROENEWEGEN, L., SCHOLTEN, J. G.,
HOPPENBROUWERS, S., IACOB, M.-E., JANSSEN, W., LANKHORST,
M., LEEUWEN, D. V., PROPER, E., STAM, A., TORRE, L. V. D. &
ZANTEN, G. V. V. (2003) Towards a Language for Coherent Enterprise
Architecture Descriptions. Seventh IEEE International Enterprise Distributed Object
Computing Conference (EDOC'03). Brisbane, Queensland, Australia.

KAISLER, S. H., ARMOUR, F. & VALIVULLAH, M. (2005) Enterprise Architecting:
Critical Problems. 38th Hawaii International Conference on System Sciences. Hawaii,
IEEE.

KHOURY, G. (2006a) The Art of Guerrilla IT. Australian Technology and Business, 52-56.
KHOURY, G. (2006b) Uncovering the Matrix. Australian Technology and Business,

February 2006.
KHOURY, G. R., SIMOFF, S. & DEBENHAM, J. (2005) Modelling Enterprise

Architectures: An Approach Based on Linking Metaphors and Ontologies. IN
MEYER, T. & ORGUN, M. A. (Eds.) Australasian Ontology Workshop (AOW
2005). Sydney, Australia, ACS.

KHOURY, G. R. & SIMOFF, S. J. (2003) Elastic Metaphors: Expanding the
Philosophy of Interface Design. Conferences in Research and Practice in Information
Technology: Computers and Philosophy 2003, 37.

KHOURY, G. R. & SIMOFF, S. J. (2004) Enterprise Architecture Modelling Using
Elastic Metaphors. Conferences in Research and Practice in Information Technology:
Computers and Philosophy 2003, 31.

KHOURY, G. R. & SIMOFF, S. J. (2005) Philosophical Foundations for a Unified
Enterprise Modelling Language. Computers and Philosophy CAP2005. Bangkok,
Thailand.

- 164 -

KNIGHT, C. (2002) System and Software Visualisation. IN CHANGE, S. K. (Ed.)
Handbook of Software Engineering and Knowledge Engineering. World Scientific.

KNOWLEDGE BASED SYSTEMS (2004a) IDEF5 Ontology Description Capture
Method, Knowledge Based Systems, Inc, http://www.idef.com/IDEF5.html.

KNOWLEDGE BASED SYSTEMS, I. (2004b) IDEF Integrated Definition Methods,
http://www.idef.com/.

KOLP, M., DO, T. T., FAULKENER, S. & HOANG, T. T. H. (2005) Architectural
Styles and Patterns for Multi-Agent Systems. IN KHOSLA, R.,
ICHALKARANJE, N. & JAIN, L. C. (Eds.) Design of Intelligent Multi-Agent
Systems: Human-Centredness, Architectures, Learning and Adaption. Berlin Heidelberg,
Springer-Verlag.

KREMER, R. & GAINES, B. R. (1996) Embedded Interactive Concept Maps in Web
Documents. IN MAURER, H., ED. (Ed.) Proceedings of WebNet96.
Charlottesville, VA, Association for the Advancement of Computing in
Education.

L'ABBATE, M. & HEMMJE, M. (1998) Virgillio - The metaphor definition tool. GMD
Report, 15, pp.47.

LAKOFF, G. (1993) The Contemporary Theory of Metaphor. IN ORTONY, A. (Ed.)
Metaphor and Thought. 2nd ed. Cambridge, Cambridge University Press.

LAKOFF, G. (2004) Don’t Think of an Elephant – Know Your Values and Frame the Debate,
Melbourne, Scribe Publications.

LAKOFF, G. & JOHNSON, M. (1980) Metaphors we live by, Chicago, University of
Chicago Press.

LAKOFF, G. & NUNEZ, R. E. (2000) Where Mathematics Comes From, New York, Basic
Books.

LANKHORST, M. (2005) Enterprise Architecture at Work: Modelling, Communication, and
Analysis, Berlin Heidelberg, Germany, Springer-Verlag.

LUDEWIG, J. (2003) Models in software engineering - an introduction. Software and
Systems Modelling, 2, 5-14.

MAHER, M. L., SIMOFF, S., GU, N. & LAU, K. H. (2000) Desiging Virtual
Architecture. Proceedings of CAADRIA 2000. Singapore.

MAIER, M. W. & RECHTIN, E. (2000) The Art of Systems Architecting, Boca Raton, CRC
Press.

MARAKAS, G. M., JOHNSON, R. D. & PALMER, J. W. (2000) A theoretical model
of differential social attributions toward computing technology: when the
metaphor becomes the model. International Journal Human-Computer Studies, 52,
719-750.

MAYER, R. J., MENZEL, C. P., PAINTER, M. K., DEWITTE, P. S., BLINN, T. &
PERAKATH, B. (1995) Information Integration for Concurrent Engineering
(IICE) IDEF3 Process Description Capture Method Report.

MCCUTCHEON, D. M. & MEREDITH, J. R. (1993) Conducting case study research
in operations management. Journal of Operations Management, 11, 239-256.

MEDVIDOVIC, N. & TAYLOR, R. N. (1997) A framework for classifying and
comparing architecture description languages. Proceedings of the Sixth European
Software Engineering Conference, number 1301 in Lecture Notes in Computer Science. New
York, SpringerVerlag.

- 165 -

MILI, H., FAYAD, M., BRUGALI, D., HAMU, D. & DORI, D. (2002) Enterprise
frameworks: issues and research directions. Software - Practice and Experience, 32,
801-831.

MILLER, T. E. & BERGER, D. W. (2001) Totally Integrated Enterprises, Boca Raton, St.
Lucie Press.

MORGAN, G. (1996) Images of Organization, SAGE Publications.
MURTHY, R., LIU, Z. H., KRISHNAPRASAD, M. & ET AL (2005) Towards an

Enterprise XML Architecture. SIGMOD 2005. Baltimore, Maryland, USA,
ACM.

MYERS, M. D. (1997) Qualitative Research in Information Systems,
http://www.misq.org/discovery/MISQD_isworld/.

NEAGA, E. I. & HARDING, J. A. (2005) An enterprise modeling and integration
framework based on knowledge discovery and data mining. International Journal of
Production Research, 43, 1089-1108.

NEALE, D. C. & CARROLL, J. M. (1997) The Role of Metaphors in User Interface
Design. IN HELANDER, M., LANDAUER, T. K. & PRABHU, P. (Eds.)
Handbook of Human-Computer Interaction. 2nd ed., Elsevier Science B.V.

NHS QUALITY IMPROVEMENT SCOTLAND (2006) Safe Today - Safer
Tomorrow: Patient Safety: Review of Incident and Near-Miss Reporting. p.102.

NIH (2004) Enterprise Architecture at NIH, Center for Information Technology,
National Institutes of Health,
http://datacenter.cit.nih.gov/interface/interface230/ea.html.

NORAN, O. (2003) An analysis of the Zachman framework for enterprise architecture
from the GERAM perspective. Annual Reviews in Control, 27, 163-183.

OMG (2004) UML 1.5 Specification: UML Summary.
PARIZEAU, Y. (2002) Enterprise Architecture for Complex Government and the

Challenge of Government On-Line in Canada. Faculty of Computer Science. Halifax,
Dalhousie University.

PARKER, J. (2000) Structuration, Buckingham, Open University Press.
PARNAS, D. L. (1972) On the Criteria to be Used in Decomposing Systems into

Modules. Communications of the ACM, 15, 1053-1058.
PAWSON, R. (2000) Expressive Systems: A manifesto for radical business software, UK, CSC

Research Services.
PAYNE, S. J. & GREEN, T. T. G. (1986) Task-Action Grammars: A Model of the

Mental Representation of Task Languages. Human-Computer Interaction, 2, 93-133.
PIMM, D. (1987) Speaking mathematically : communication in mathematics classrooms, London ;

New York, Routledge & K. Paul.
PINTO, H. S. & MARTINS, J. P. (2004) Ontologies: How can They be Built. Knowledge

and Information Systems, 6, 441-464.
POLOVINA, S. (1993) The Suitability of Conceptual Graphs in Strategic Management

Accountancy. Loughborough University of Technology.
POOLE, M. S. & DESANCTIS, G. (2003) Structuration Theory in Information

Systems Research: Methods and Controversies. IN WHITMAN, M. E. &
WOSZCZYNSKI, A. B. (Eds.) The Handbook for Information Systems Research. Idea
Group Publishing.

- 166 -

POURABBAS, E. & RAFANELLI, M. (1999) Characterization of Hierarchies and
Some Operators in OLAP environment. DOLAP '99, ACM Second International
Workshop on Data Warehousing and OLAP. Kansas City, Missouri, USA, ACM.

PRESLEY, A., SARKIS, J., BARNETT, W. & LILES, D. (2001) Engineering the virtual
enterprise: An architecture-driven modeling approach. International Journal of
Flexible Manufacturing Systems, 13, 145-162.

PROPER, H. A., VERRIJN-STUART, A. A. & HOPPENBROUWERS, S. J. B. A.
(2005) On Utility-based Selection of Architecture-Modelling Concepts. The
Second Asia-Pacific Conference on Conceptual Modelling (APCCM2005). Newcastle,
Australia.

RAYMOND, K. (2006) Reference Model of Open Distributed Processing (RM-ODP):
Introduction, http://www.lcc.uma.es/~av/RM-
ODP/Tutorials/ODP_Tutorial-icodp95.pdf.

ROSTAD, C. C. (2000) Enterprise Modeling for Enterprise Integration: A case of
manufacturing. IN ROSTADAS, A. & ANDERSEN, B. (Eds.) Enterprise
Modeling: Improving Global Industrial Competitiveness. Boston, Kluwer Academic
Publishers.

ROUSSEV, B. & ROUSSEVA, Y. (2004) Software Development: Informing Sciences
Perspective. Issues in Informing Science and Information Technology, 1, 237-245.

SANDELANDS, L. E. & STABLEIN, R. E. (1987) The concept of organization mind.
Research in the sociology of organizations, 135-161.

SENGE, P. (1990) The fifth discipline: The art and practice of the learning organization, London,
Century Business.

SLEMBEK, I. M. (2003) Evaluating and Improving Knowledge-Intensive Work
Processes through the Application of Information and Communications
Technologies. Computer Science. Sydney, University of Technology.

SMITH, J. M. & SMITH, D. C. P. (1977) Database Abstractions: Aggregation.
Communications of the ACM, 20, 405-413.

SOLBERG, C. (2000) Enterprise Modeling and Education. IN ROSTADAS, A. &
ANDERSEN, B. (Eds.) Enterprise Modeling: Improving Global Industrial
Competitiveness. Boston, Kluwer Academic Publishers.

SOWA, J. F. (2000) Knowledge Representation: Logical, Philosophical, and Computational
Foundations, Pacific Grove, CA, Brooks/Cole.

STEFIK, M. (1996) Internet Dreams: Archetypes, Myths, and Metaphors, London, The MIT
Press.

STUFFLEBEAM, D. L. (2001) Evaluation Models. New Directions for Evaluation, Spring
2001, 7-98.

SUTCLIFFE, A. & PATEL, U. (1996) 3D or not 3D: Is it Nobler in the Mind? IN
SASSE, M. A., CUNNINGHAM, R. J. & WINDER, R. L. (Eds.) People and
computers XI: proceedings of HCI '96. London, Springer.

SZEGHEO, O. (2000) Introduction to Enterprise Modeling. IN ROSTADAS, A. &
ANDERSEN, B. (Eds.) Enterprise Modeling: Improving Global Industrial
Competitiveness. Boston, Kluwer Academic Publishers.

SZEGHEO, O. & GASTINGER, A. (2000) Enterprise Modeling Architectures. IN
ROLSTADAS, A. & ANDERSEN, B. (Eds.) Enterprise Modeling: Improving Global
Industrial Competitiveness. Kluwer Academic Publishers.

- 167 -

TAKEUCHI, H. & NONAKA, I. (1986) The New New Product Development Game.
Harvard Business Review, 137-146.

THE OPEN GROUP (2002) The Open Group Architectural Framework (TOGAF),
Version 8, http://www.opengroup.org.

THEUERKORN, F. (2005) Lightweight Enterprise Architectures, Boca Raton, Florida,
Auerbach.

THOMAS, J. J., BOHN, S., BROWN, J. C., PENNOCK, K., SCHUR, A. & WISE, J.
A. (1994) Information Visualization: Data Infrastructure Architectures.
Proceedings., Seventh International Working Conference on Scientific and Statistical Database
Management. Charlottesville, VA, USA.

TP, T. R. (2001) Designing Virtual Worlds as Architecture,
citeseer.ist.psu.edu/495173.html.

TRAVERS, M. D. (1996) Programming with Agents: New metaphors for thinking
about computation. School of Architecture and Planning. Massachusetts,
Massachusetts Institute of Technology.

TRISTRAM, C. (2001) The next computer interface. Technology Review, 104, 52-59.
UNDERWOOD, J. (1996) Models for Change: Soft Systems Methodology, University

of Technology, Sydney, http://www-staff.mcs.uts.edu.au/~jim/bpt/ssm.html.
UNITED STATES DEPARTMENT OF STATE (1999) Information Technology

Architecture,
http://www.state.gov/www/dept/irm/it_architecture/it_vol1.html.

UNITED STATES GENERAL ACCOUNTING OFFICE (2003) Information
Technology: A Framework for Assessing and Improving Enterprise
Architecture Management (Version 1.1),
https://secure.cio.noaa.gov/hpcc/docita/files/gao_03_584g_framework_for_
%20assessing_and_improving_ea_mgt_ver_1_1_042003.pdf.

USCHOLD, M., KING, M., MORALEE, S. & ZORGIOS, Y. (1997) The Enterprise
Ontology. Knowledge Engineering Review, 71-88.

VAIL III, E. F. (2002) Causal Architecture: Bringing the Zachman Framework to Life.
Information Systems Management, Summer 2002, 8-19.

VALLECILLO, A. (2001) RM-ODP: The ISO Reference Model for Open Distributed
Processing. Software Engineering, 69-99.

VEASEY, P. W. (2001) Use of enterprise architectures in managing strategic change.
Business Process Management Journal, 7, 420-436.

VERNADAT, F. (2002) UEML: towards a unified enterprise modelling language.
International Journal of Production Research, 40, 4309-4321.

WALSH, J. P. (1995) Managerial and organizational cognition: Notes from a trip down
memory lane. Organization Science, 6, 280-321.

WALSHAM, G. & HAN, C.-K. (1991) Structuration Theory and Information Systems
Research. Journal of Applied Systems Analysis, 17, 77-85.

WANG, S. (1999) Analyzing Business Information Systems: An Object-Oriented Approach, Boca
Raton, Auerbach.

WARE, C. (2000) Information Visualization: Perception for Design, San Francisco, Morgan
Kaufman Publishers.

WAY, E. C. (1991) Knowledge Representation and Metaphor, Dordrecht, Kluwer Academic
Publishers.

WEINBERGER, D. (2005) Sorting Data to Suit Yourself. Harvard Business Review, 16-18.

- 168 -

WILLIAMS, T. J. & LI, H. (1998) PERA and GERAM - Enterprise Reference
Architectures in Enterprise Integration. IN MILLS, J. & KIMURA, F. (Eds.)
Information Infrastructure Systems for Manufacturing II. Fort Worth, Texas, Kluwer
Academic Publishers.

WILLIAMSON, K. (2002) Research methods for students, academics and professionals: Information
management and systems, Wagga Wagga, Centre for Information Studies.

WINOGRAD, T. & FLORES, F. (1987) Understanding Computers and Cognition: A New
Foundation for Design, Reading, Massachusetts, Addison-Wesley.

WOOLDRIDGE, M. (2002) An Introduction to Multiagent Systems, West Sussex, John
Wiley & Sons, Ltd.

WORTHEN, B. R., SANDERS, J. R. & FITZPATRICK, J. L. (2003) Program Evaluation:
Alternative Approaches and Practical Guidelines, Boston, Allyn & Bacon.

WORTMANN, J. C., HEGGE, H. M. H. & GOOSSENAERTS, J. B. M. (2001)
Understanding enterprise modelling from product modelling. Production Planning
and Control, 12, 234-244.

ZACHMAN, J. A. (1987) A framework for information systems architecture. IBM
Systems Journal, 26, 276-292.

ZACHMAN, J. A. (1997) Enterprise Architecture: The Issue of the Century. Database
Programming and Design.

ZACHMAN, J. A. & SOWA, J. (1992) Extending and formalizing the framework for
information systems architecture. IBM Systems Journal, 31, 590-616.

ZELM, M. & KOSANKE, K. (2001) A Modelling Language for User Oriented
Enterprise Modelling. 3rd Conference Francaphone de Modelisation et SIMulation
"Conception, Analyse et Gestion des Systemes Industriels" MOSIM'01. Troyes, France.

- 169 -

10 APPENDIX A – PROJECT SUMMARY FOR

UTS EA PROJECT

- 170 -

Project Summary for

UTS Enterprise Architecture Project

Project Demographics Values

Name of Project UTS Enterprise Architecture Project

Customer Name/Organization ITD

Primary Customer Interface Person Ian Waters

Project Start Date 10/08/05

Project Finish Date 14/10/05

Key Roles in Project Names of People In the Roles

Enterprise Architect Ian Waters – Senior IT Programs Consultant

Sponsor Peter James – Acting Director IT Infrastructure & Operations

Key Stakeholder Peter Demou – Manager, Plans & Programs

Technology Provider Gerald Khoury – Enterprise Architecture Consultant

- 171 -

Project Objectives

1 To produce a high-level view of the university’s Enterprise Architecture.

2 To show the interrelationships between the different domain architectures.

3 To describe the primary relationships between the targeted systems.

4 To identify the major infrastructure components that support these systems and show the linkages.

5 To identify the major business processes that are supported by the identified application and infrastructure components and show the

linkages between them.

Customer Objectives

1 To produce concise, easily understood, graphical models of the high-level Enterprise Architecture.

2 To develop models that show the interrelationships between business goals and objectives, and IT systems and services.

3 To use the Enterprise Architecture models to identify the impact of change.

Provider Objectives

1 To create unified Enterprise Architecture models that span heterogeneous ICT domains.

2 To develop an Enterprise Architecture that is concise, easy to expand and modify, and easy to understand.

3 To develop an Enterprise Architecture that is effective as an enterprise planning and evaluation tool.

- 172 -

Milestones Start Date End Date Responsibilities Notes

 Stage 1: Model one system. 10/08/05 19/08/05 IW & GK

Produce review materials. 15/08/05 19/08/05 IW & GK Overview of LEAN, UTSOnline model, Project Summary.

Review and obtain feedback. 22/08/05 22/08/05 ITIO ITIO Mgt meeting on 22/08/05

Refine process. 23/08/05 26/08/05 IW & GK

Refine scope and schedule. 29/08/05 31/08/05 IW & GK

Stage 2: Model further systems. 01/09/05 30/09/05 IW & GK Ian Waters back on 27/09/05

Produce review materials. 03/10/05 07/10/05 IW & GK

Produce recommendations for future
action.

 03/10/05 07/10/05 IW & GK

Review and obtain feedback. 10/10/05 10/10/05 ITIO ITIO Mgt meeting on 10/10/05

Deliverables to be Provided Review Process Completion Date

Project plan (this document). Ian Waters 12/08/05

A set of Enterprise Architecture models that meet the
project objectives. These models will be developed using
the Lightweight Enterprise Architecture Notation
(LEAN).

To be reviewed internally by Peter Demou, Peter James
and the ITIO (IT Infrastructure and Operations
management group).

03/10/05

Research questionnaires/surveys to determine the
efficacy of LEAN to Enterprise Architecture modelling.

Survey to be performed by Gerald Khoury. Results to be
published as part of a Doctoral Thesis.

 07/10/05

A report on recommendations for future action. To be reviewed by the ITIO management group. 14/10/05

- 173 -

Additional Notes

Stakeholders

The customers of this project are initially ITD and other UTS business system owners, and potentially non-IT business planners.

Project Scope

There are two hundred and eleven UTS identified major systems in total. This project will focus on the modelling of eleven of these
systems. These were selected because they are core university business systems with which ITD are heavily involved.

Stages

Stage 1 will focus on modelling the UTSOnline system.
Stage 2 will focus on modelling the remaining ten targeted systems.

Special Processes or Practices Used in This Project Value (if already used)

The Lightweight Enterprise Architecture Notation (LEAN)

The ITD IT Architecture Framework. Approved framework that is being trialled within ITD.

 Zachman Framework Used to situate the architectural work products that are produced.

- 174 -

11 APPENDIX B – FINAL PROJECT REPORT

FOR UTS EA PROJECT

- 175 -

ITD

UTS Enterprise Architecture Project

Phase One

PROJECT REPORT

- 176 -

Key Stakeholders

Title Name

Senior IT Programs Consultant Ian Waters

Acting Director IT Infrastructure & Operations Peter James

Manager, Plans & Programs Peter Demou

Voice and Data Network Manager Craig Laughton

Technical Implementation Manager Sean Donovan

Information Systems Manager Emily Latif

Applications Project Manager Pat Player

Enterprise Architecture Consultant Gerald Khoury

Project Demographics

Name of Project UTS Enterprise Architecture Project

Customer Name/Organization ITD

Primary Customer Interface Person Ian Waters

Project Start Date 10/08/05

Project Finish Date 10/10/05

- 177 -

Introduction

ITD has commenced the task of developing a UTS Enterprise Architecture (EA). An EA is a holistic set of models that represent an enterprise’s

information systems in order to manage change. This document presents the results of the latest stage of this project, which is aimed at developing a set

of high-level, holistic, graphical models that tie together disparate, but strategically important components of the UTS IT environment.

In reality, the development of an EA is never complete: business needs, and technological solutions, are always changing. The development of an EA is a

means by which that change can be managed, and by which the power of change can be harnessed.

EA’s are growing in importance as tools for managing change within today’s highly dynamic, demand driven and highly competitive business

environments. As the rate of technological change increases and information environments become more complex, more sophisticated methods are

needed to manage these environments effectively. EA’s help manage this change and overcome the problems of building isolated IT solutions that fail to

support an enterprise’s vision, goals and objectives. It is for these reasons that the development of EA’s is now high on the agenda of most leading

organisations.

Figure 1: EA's help to deal with the increasing complexity, information overload and demands for higher quality, timeliness and effectiveness.

- 178 -

Project Goals

The objectives of this project were defined as follows:

1. To produce a high-level view of the University’s Enterprise Architecture (EA).

2. To show the interrelationships between the different domain architectures.

3. To describe the primary relationships between the targeted systems.

4. To identify the major infrastructure components that support these systems and show the linkages.

5. To identify the major business processes that are supported by the identified application and infrastructure components and show the linkages

between them.

The customer objectives were defined as:

1. To produce concise, easily understood, graphical models of the high-level EA.

2. To develop models that show the interrelationships between business goals and objectives, and IT systems and services.

3. To use the EA models to identify the impact of change.

- 179 -

Provider objectives were defined as:

1. To create unified EA models that span heterogeneous ICT domains.

2. To develop an EA that is concise, easy to expand and modify, and easy to understand.

3. To develop an EA that is effective as an enterprise planning and evaluation tool.

- 180 -

Project Methods

This project was executed using input from a number of key stakeholders who provided expert knowledge on different aspects of the University’s IT

environment.

The EA is being modelled using a new modelling language developed by researchers at UTS: The Lightweight Enterprise Architecture Notation (LEAN).

The primary advantage of this modelling language over other approaches is that it is a unified language that can describe multiple IT domains using a

simple, graphical notation. LEAN is designed to be:

 Agile

 Easy to use

 Collaborative

 Thought provoking

Project Scope

More than two hundred and eleven major systems have been identified across the University. In order to achieve a high quality outcome in a relatively

short period, a small subset of these systems was selected for inclusion as part of this project. These were selected because they are core university

business systems with which ITD are heavily involved. Table 1 lists the applications and systems that were modelled as part of this project.

- 181 -

 Application System Name

1 Online Learning UTSOnline

2 Finance neo

3 Human Resources neo

4 Student CASS

5 Timetabling SYLLABUS+

6 Room Allocation ALLOCATE+

7 Email Email System

8 Web Server Web Server

9 Network Network

10 Identity Management LDAP

Table 1: In-Scope Applications

- 182 -

Project Results

The development of this project has provided a set of high-level, holistic models of key UTS systems. Even during the development of this project, it has

been found that these models have provided the following benefits:

 The models have aided understanding of the current environment.

 The models have generated discussion about various aspects of the current environment, leading to new insights.

 The models have engendered ideas for simplification or augmentation of the current environment.

It is expected that these benefits will continue to expand as the models are distributed throughout the ITD and user community.

ITD now has the technology and skills to develop further models of the UTS IT environment using LEAN. The use of LEAN provides ITD with a

unique advantage in developing easy to use, holistic EA models that support its strategic IT planning and development activities.

Recommendations

The following recommendations are presented for the consideration of ITD management.

Technical Recommendations

- 183 -

As part of the overall program to develop and maintain an ITD EA, the following project activities are recommended. These are summarised as follows
and detailed further below:

1. Extend the LEAN models to cover additional systems.

2. Augment the LEAN models to provide more detail.

3. Develop a web-based, EA knowledge management system, within which the LEAN models form one component.

Recommendation 1

In this project, a small but key subset of ITD managed systems was selected for modelling. This achieved two goals. Firstly, it acted as a proof-of-concept

of the LEAN modelling approach. Secondly, it meant that the project could be delivered quickly and efficiently. With these goals accomplished, it makes

sense to extend the coverage of LEAN models to include additional ITD managed systems and applications. As the purpose of these EA models is to

provide support for technology planning and change management, more extensive coverage will lead to a more than proportionate increase in utilisation

benefits.

Recommendation 2

The ‘first pass’ in modelling the chosen systems was deliberately kept at a very high-level. By adding more depth to these models, they can be used to

understand UTS systems in greater detail. For example, we could drill down into an identified system resource to learn more about its database schemas,

server topology and network interfaces. Once an additional level of detail has been added, the LEAN models can be connected to domain-specific

models (eg. a UML application model or an Entity-Relationship data model) providing a seamless flow between high-level plans and more detailed

architecture models.

- 184 -

Recommendation 3

Finally, providing a simple, but effective, EA knowledge management system can significantly enrich the value of ITD’s EA activities. The models developed
as part of this project would form an integral part of this system, and would be linked into other existing, and to-be-developed architectural assets. The
system would ideally be developed as a web-based system (with appropriate access control) as part of the current intranet environment. This would
provide several benefits.
Firstly, as a ‘central point of access’ it would allow all EA stakeholders and users to easily access needed EA information from any location. This would
increase the utilisation of intellectual capital assets that are produced as part of the EA program and ensure that maximum value is achieved from any
such product by ensuring it is always available when needed to support ITD program activities.
Secondly, by acting as a single repository for EA deliverables, the EA knowledge management system would ensure that valuable intellectual capital assets
are neither lost, duplicated, nor end up as ‘shelf ware’ due to a lack of awareness and exposure.
And lastly, the web-based interface would provide very user-friendly methods for navigating the EA environment by visually displaying the
interconnections between various components and providing graphical features that allow users to drill-down into any component to reveal further
detail. This is a proven approach to EA management and a demonstration of a previously built commercial system is available upon request.
Organisational Recommendations

The development and management of an EA is now a well accepted and key strategy that is used by the vast majority of leading enterprises to leverage
maximum potential from their IT investments. In order to achieve this, most large companies have dedicated resources that fulfil the functions of EA
development and governance.
Without a formal EA function, decisions about technology planning and deployment tend to be devolved to individual business groups, with the result
that objectives tend to be shorter term, and advantages more localised. The centralisation of this strategic architecture function ensures that greater
economies of scale can be achieved with less redundancy and greater overall flexibility. This puts UTS in a better position to manage change and exploit
new technological opportunities.
In order to achieve these outcomes, it is recommended that ITD set up an EA office that is staffed by dedicated EA resources. These enterprise
architects will develop a formal program for EA activities, develop and maintain the ITD EA, and manage the day-to-day governance of EA related
activities. This ensures that the Corporate IT Strategy supports the UTS Corporate Strategy and will provide the Branches with the necessary support to
ensure that maximum gain is made from UTS IT investments.

- 185 -

Appendix A – ITD System Models

The ITD system models were developed using the LEAN notation. This section shows the nodes and relationships that can be used to develop LEAN

models, followed by the actual models that were produced.

Key to LEAN Nodes

Figure 2 shows the all of the node types that can be used in LEAN models.

Node Types
Agent

Action Rule
Resource

Figure 2 - LEAN Node Types

The LEAN nodes are formally defined in Appendix B – LEAN Node Definitions.

Key to LEAN Relationships

Table 2 shows the generic LEAN relationship set. This shows all of the possible relationships that can be used to connect any pair of nodes.

- 186 -

Architectural Models

Pages 13 to 27 present the models that have been produced as part of this project.

- 187 -

 LEAN NODE PAIRINGS
 HOMOGENOUS PAIRINGS HETEROGENOUS PAIRINGS

RELATIONSHIP
SET

is a type of

supports

interfaces with

is a part of

precedes

reports to

performed by

uses

produces

complies with
has applicable
supports goal

Action Action
Agent Agent

Resource Resource Rule Rule Action
Agent

Action Resource Action Rule Resource Rule
Agent

Rule

 = relationship allowed. = relationship not allowed.

Table 2 - Generic LEAN Relationship Set

- 188 -

System

Technical Infrastructure
Application

All Applications
View

Universal Filename
ITD EA VN0.7.VSD

Owner

Client

performed by

Request
Access to

Information
and Services

User PC’s
Windows /
Macintosh

uses

Deliver
Information

and Services

precedes

Citrix
Server
Farm

Windows
Web

Cluster

Unix
Web

Cluster

Unix
Applications

uses uses uses uses

Oracle
Database and

Back-end
Services

interfaces
with

interfaces
with

interfaces
with interfaces

with

Corporate
Business

Applications

Public
Systems

Backend
Systems

is a
part of

is a
part of

is a
part of

is a
part of

Academic
Systems

is a
part of

Printing

File
Storage

Backup
& Restore

LDAP
Authentication

Central
Oracle

Database

is a
part of

is a
part of

is a
part of

is a
part of

Student
Records
Services

FInance
Services

HR
Services

Timetabling
Services

Research
Master

Services

is a
part of
is a

part of

is a
part of

is a
part of

is a
part of

Web
Services

Email
Services

Online
Learning
Services

is a
part of

is a
part of

is a
part of

Course
Login

Services

Student
Applications

Services

Faculty
Applications

Services

is a
part of

is a
part of

is a
part of

Security
Level

“Highly
Secure”

Security
Level

“Secure”

Security
Level

“Insecure”

Security
Level

“Very Secure”

Network

uses

City,
Kuring-gai,
St Leonards

Network

Internet /
Global

Network

is a
part of

is a
part of

Equipment
Standard

Preference
(Alcatel)

TCP/IP
Protocol

applies to

applies to

applies to

applies to

applies to

applies to

Develop
Enterprise

Architecture

is a part of

Consolidate
Platforms

Reduce
Training
Needs

Develop
Scalable
Systems

Develop
Reliable
Systems

Allow for
New

Applications

Allow for
New Locations

Improve
Availability

Improve
Flexibility

supports goal

supports goal

supports goal

supports goal

supports goal

supports goal

supports goal

supports goal

- 189 -

UTSOnline
System

produces

Manage
Online

Learning

Online
Learning

Application
(Blackboard)

Administration
Application
(FLAdmin)

Server (SUN) File System
(SAN)

Network Database
(Oracle)

is part of
is part of

supports supports supports
supports

Student
System

Application

Human
Resources
Application

Room
Allocation

Application

Identity
Management

System
(LDAP)

interfaces with

interfaces with
interfaces with

interfaces with

interfaces with

interfaces with interfaces with

Student
System

Application

Room
Allocation

Application

Create Online
Learning
Content
Creation

Manage
Online

Learning
Student

Assessment

Manage
Online

Learning
Discussion

Boards

is part of

is part of is part of

System

UTSOnline
Application
Blackboard & FLAdmin

View

Universal

UTS Students

UTS
Academics

performed by

performed by

Use
Online

Learning

uses

Vendor
Supported

Version

complies with

Certified
Oracle
Version

complies with

Administer
Online

Learning

produces

ITD
Flexible
Learning

Team

performed by

Filename
ITD EA VN0.7.VSD

Owner

- 190 -

Finance
System
(neo)

Finance
Application

(Oracle
Financials)

is a part of

supports

supports supports

supports

Application
Server

File System
(SAN)

Network
Database

Server

Oracle
Database
Platform
Standard

complies with

Finance
Staff

uses

complies with

250
Concurrent

Connections
Requirement

24x6.5
Availability

Requirement

8am-6pm
Mon-Fri

Availability
Requirement

400
Concurrent

Web
Connections
Requirement

complies with

UTS Staff

uses

Finance Self-
Service

performed by

complies with

complies with

Manage
Expenses &
Credit Cards

Manage
Procurement

View Payslip View &
Update Bank

Details

uses uses
usesuses

System

neo
Application

Finance
View

Universal

RedHat
Linux
O/S

Dell
Server

is a part of is a part of

Finance
Management

performed by

Sun Solaris
Operating
System

Standard

complies with

Filename
ITD EA VN0.7.VSD

Owner

Database
Architecture

supports

DB Schema

is a part of

- 191 -

HR System
(neo)

Human
Resources
Application

(Oracle
Financials)

is a part of

Application
Server

File System
(SAN)

Network Database
Server

supports

supports
supports supports

Sun Solaris
Operating
System

Standard

Oracle
Database
Platform
Standard

complies with
complies with

uses
uses

View & Update
Employment

Details

View &
Update

Personal
Details

Create
Manager
Views of

Team

View/Modify
non-UTS

Learning &
Development uses uses

uses
uses

System

neo
Application
HumanResources

View

Universal

HR
Staff

uses

Apply for
UTS Jobs

performed by

HR
Staff

complies with

250
Concurrent

Connections
Requirement

8am-6pm
Mon-Fri

Availability
Requirement

complies with

HR
Management

performed by

24x6.5
Availability

Requirement

400
Concurrent

Web
Connections
Requirement

UTS Staff

HR
Self-Service

performed by

complies with

complies with

RedHat
Linux
O/S

Dell
Server

is a part of is a part of

Filename
ITD EA VN0.7.VSD

Owner

Database
Architecture

supports

DB Schema

is a part of

- 192 -

Room
Allocation
Application

supports

uses

Timetabling
System

(Syllabus+)

Student
System
(CASS)

Room
Allocation
System

(Allocate+)

uses
uses

Timetabling
Application

supports

Student
System

Application

supports

Student
Administration

Manage
General
Student

Administration

Manage
Timetabling

Manage
Class

Allocations

is a
part
of

is a
part
of

is a
part
of

System

Student Admin.
Systems

Application

Student Admin.
Applications

View

Universal Filename
ITD EA VN0.7.VSD

Owner

- 193 -

StudentOne
Application

Faculty Staff

supportsuses

Manage
Subject

Availability

performed by

Curriculum Staff

produces

is part of

Student
System
(CASS)

Identify
Subject

Availability

Availability
Request

uses

CASS Team

performed by

System

CASS
Application

StudentOne
View

Subject Mgt Filename
ITD EA VN0.7.VSD

Owner

- 194 -

Student
Application

(StudentOne)

supports

produces

Student
System
(CASS)

System

CASS
Application

StudentOne
View

Enrolments

performed by

UAC

Filter Entrance
Criteria

precedes

Load New
Students

Student List

is a part of

UTS Staff

performed by

CASS
Team

Curriculum
Staff

uses

uses

Enrolment
Offer

is a part of

UTS
Students

uses

CIS

uses

interfaces with

Curriculum
Staff

uses

University
Enrolment

performed by

Subject
Enrolment

Class
Enrolment

is a part of
is a part of

uses

Room
Allocation
System

(Allocate+)

interfaces with

uses
uses

produces

interfaces with

Finance
Application

(Oracle
Financials)

Create LDAP
Entries Identity

Management
System
(LDAP)

Syllabus+
System

interfaces
with

Filename
ITD EA VN0.7.VSD

Owner

- 195 -

Timetabling
Application
(Syllabus+)

Faculty Staff

supportsuses

Manage
Availabilities

performed by

Timetablers

is part of

Timetabling
System

(Syllabus+)

System

SYLLABUS+
Application

Timetabling
View

Universal Filename
ITD EA VN0.7.VSD

Owner

Room
Allocation
System

(Allocate+)

interfaces
with

- 196 -

Room
Allocation
Application
(Allocate+)

Linux ServerOracle
Database

Data
Interfaces
(Constellar

Hub)

supports
supports supports

UTS

supports

Timetabling
System

(Syllabus+)

Student
System
(CASS)interfaces with

interfaces with

uses

Manage Class
Allocations

performed by
Student

Administration
Staff

Faculty Staff

UTS
Students

performed by

performed by

is part of

is part of

is part of

Room
Allocation
System

(Allocate+)

System

ALLOCATE+
Application

Room Allocation
View

Universal Filename
ITD EA VN0.7.VSD

Owner

- 197 -

System

Email System
Application

Email
View

Universal

Email System

is a part of

is a part of

is a part of

UTS
Staff

performed
by

Client
Software

Hardware
(Sun/Solaris)

supports

supports

Manage
Email

Maintain
Antivirus
Function

Filter
Spam

UTS
Students

Server
Software

supports

Access
Email

Accounts

performed
by

uses

Filename
ITD EA VN0.7.VSD

Owner

UTS
Alumni

performed
by

Administer
Email

Accounts

produces

Server
Software
(iPlanet)

is a part of

- 198 -

System

Web Server
Application

Web Server
View

Universal

Search WebLogin to Web

uses
uses

UTS
Population

performed byperformed by

UTS Staff IML

Generate
Web Content

performed byperformed by

Site
Manager

uses

Publish
Web Content

uses

Web
Servers

uses

Unix
Web

Servers

Windows
Web

Servers

is a part of

is a part of

Solaris
O/Sis a part of

Apache

MySQL

is a part of

is a part of

Windows
O/S

is a part of

IIS

Microsoft
SQL

is a part of

supports

Oracle

supports

Web
Application

Development
Tool

(Cold Fusion)

is a part of

Database
Management

Tool
(Filemaker)

is a part of

Web
Development

Tool
(Lasso)

is a part of

Platform
Standards

complies with

complies with

complies with

complies with

complies with

complies with

complies with
Generate

Web Content

Software
Developer

performed by

precedes

Filename
ITD EA VN0.7.VSD

Owner

Perform
Authentication

uses

- 199 -

System

Network
Application

N/A
View

Universal

Manage
Network
Services

UTS
Network

produces

Is a part of

performed by

Network
Operations
Manager

Network
Administrators

reports to

Use
Network

uses

UTS
Population

Network
Infrastructure

performed by

Voice
Network

Network
Services

Is a part of

Voicemailing

uses

Data
Network

Is a part of
Is a part of

Networking
Between

City
Buildings

uses

Microwave
Links

Is a part of

Teleconf-
erencing

uses

VOIP
(under dev’t)

uses

Use
Data

Services

uses

UTS
Population

(except IT &
Engineering
Faculties)

performed by

Voice
Services

Data
Services

Is a part of Is a part of

Use
Voice

Services

uses

UTS
Population

performed by

Monitor &
Troubleshoot

Network

Install
Network

Infrastructure

Manage
Network
Changes

Provide
Network
Security

Design
Network

Is a part of
Is a part of

Is a part of
Is a part of

Is a part of

Filename
ITD EA VN0.7.VSD

Owner

- 200 -

System

LDAP
Application

Multiple
View

Universal

Identity
Management

System
(LDAP)

Network
Equipment

Allocate+
System

Web
Services

Wireless
Network

VPN

uses
uses

usesuses
uses

CADS
(Phone Billing)

Directory

Email System

UTS
Population

performed by

Set Password

uses

Novell NDS

Active
Directory

UTSOnline

ITD Staff

Admin
Tool

performed by

Update LDAP

uses

produces

Human
Resources
Application

(Oracle
Financials)

StudentOne
Application

Perform
Authentication

uses

uses

Update
Authentication

Directories

uses

produces

Create LDAP
Entries

produces

performed by

performed by

performed by

uses

Update CADS
Records

produces uses
produces

produces

produces

uses

Filename
ITD EA VN0.7.VSD

Owner

Online
Learning

Application
(Blackboard)

uses

neo

uses

- 201 -

System

Integration
Application

Multiple
View

Universal

Develop
Data Use
Heuristics

is a part of

Integration
Management

Integration
Manager

performed by

Promote
Data

Re-use

is a part of

Minimise
System

Load

Maintain
Data

Integrity

supports goalsupports goal

Student
Data

Student
System
(CASS)

is a part of

produces

Provide
Operational

Support

is a part of

Perform
Maintenance

Monitor
Interfaces

is a part ofis a part of

Analyst
Programmers

reports to

Data
Connector

Constellar
Hub

is a part of

uses

Oracle
Format

(PLSQL)

complies with

UTS
Integration
Standards

complies with

Develop
Enhancements

Create
New

Interfaces

Create
New

Business
Rules

is a part ofis a part of

is a part of

Improve
Efficiency

supports
goal

Filename
ITD EA VN0.7.VSD

Owner

- 202 -

UTS Population

UTS StaffUTS Students

Administrative
Staff

Is a part of

Is a part of

Is a part of

Curriculum
Staff

Faculty
Staff

is part of

CASS Team

is part of

Is a part of

UAC

Clients Is a part ofIs a part of

Timetabling
Staff

is part of

IML Staff

is part of

Software
Developers

is part of

Network
Operations
Manager

is part of

Network
Administrators

reports to

is part of

Faculty
Admin
Staff

is part of

ITD
Flexible
Learning

Team

Is a part of

ITD HR
Staff

Finance
Staff

is part of
is part of

Student
Administration

Staff

is part of
is part of

REV. DESCRIPTION DATE BY
FILENAME

ITD EA VN0.7.VSD

System

N/A
Application

N/A
View

Agent Taxonomy

Academic
Staff

is part of

Public

Is a part of

- 203 -

Appendix B – LEAN Node Definitions

There are four node types used in LEAN:

 Agent

 Action

 Rule

 Resource

These are termed ‘universal’ types, since ‘non-universal’ types can also be represented as nodes. Non-universal types are subtypes of the universal types.

Non-universal types are explained in more detail in section 6.5 LEAN Type Hierarchies.

The sections below describe each of the four node types. The labels shown on the graphical representations of each type are the defaults. That is, if no

label is provided, the node is assumed to be of the universal type.

Agents

- 204 -

Definition

An Agent is an entity that can exert power in order to produce an effect. In relation to IT systems, the immediate effect is the exchange of information.

Description

In LEAN, the effects produced by Agents are referred to as ‘Actions’.

Graphical Representation

The Agent node is represented using the following icon:

Examples

Agents may be:

 People

 Roles

 Organisations

 Communities

 Nation-states

 Systems

Agent

- 205 -

Notes

In the case of temporal events, the Agent may be the system itself. In all other cases, the Agent is the entity that triggers a system event.

Resources

Definition

A Resource is a structured property of the modelled system that can be consumed or produced by one or more Agents.

Description

A Resource represents a natural constraint within the system.

Graphical Representation

The Resource node is represented using the following icon:

Examples

Resources may be:

 Raw materials

 Systems

Resource

- 206 -

 Documents

 Images

 Services

 Agents

Notes

When Agents are used to signify constraints on the system, they can be represented as Resources.

Rules

Definition

A Rule defines a sanctioned mode of conduct.

Description

A Rule regulates the type of Actions that may take place within a system.

Graphical Representation

The Rule node is represented using the following icon:

Rule

- 207 -

Examples

 Physical constraints

 Logical constraints

 Legal and regulatory compliance

 Standards and guidelines

 Business goals or objectives

Notes

Actions

Definition

An Action is an activity that is performed. Actions equate to the capabilities that Agents possess.

Description

Agents, Rules and Resources can only interact with each other through Actions.

- 208 -

Graphical Representation

The Action node is represented using the following icon:

Examples

 Addition, modification or deletion of data, information or systems

 Identification or selection of data, information or systems

Notes

Many modelling languages identify the concept of an event that triggers some action. In fact, an event can simply be viewed as an action that is

performed by another agent and modelled this way in LEAN.

Action

- 209 -

Appendix C – References

In addition to expert input by ITD staff, the following documents were used as reference materials for this project:

 Project Summary for UTS Enterprise Architecture Project Vn.0.2

 ITD UTS Enterprise Architecture Project Stage II Vn.0.1

 ITD UTS Enterprise Architecture Project Modelling Standards Vn.0.1

 ITD Systems Architecture – July 2002

 Information Technology Division IT Architecture – Suggested Standards

 Information Technology Division IT Architecture – Suggested Domain Structure

 Information Technology Division IT Architecture – Documentation of Standards

 Information Technology Division IT Architecture Framework Vn.0.53

 UTS Corporate IT Architecture (Layers Model)

 Student One Conceptual Architecture Diagram – February 2002

 UTS Online Components for Risk Assessment

- 210 -

 UTS Technical Hardware and Software Architecture for the Implementation of the Oracle Financial and Human Resources System Vn. 5 –
October 2003

 UTS Technical Hardware and Software Architecture for the Implementation of the Student One Student Records System Vn. 3

 Allocate+ Components for Risk Assessment – 20 May 04

 CASS and Syllabus+ Availabilities

 Finace and Human Resources System Infrastructure Schematic - March 2003

 University of Technology Network Domain Architecture – Draft

 Request for Proposal on Storage and Backup Systems for UTS Email Project

 Email Project Implementation Overview Plan – October 26, 1998

 Implementation Plan Email Project – 17 February 1999

- 211 -

12 APPENDIX C – QUESTIONNAIRES

RESULTS QUESTIONNAIRRE - CLOSED QUESTIONS

BUSINESS USERS

QUESTION RESPONSE

1 I found LEAN easy to use. o 0-don’t know

o 1-very strongly agree

o 2-strongly agree

o 3-agree

o 4-disagree

o 5-strongly disagree

o 6-very strongly disagree

2 LEAN is an effective language for modelling high-

level (conceptual) information.

o 0-don’t know

o 1-very strongly agree

o 2-strongly agree

o 3-agree

o 4-disagree

o 5-strongly disagree

o 6-very strongly disagree

3 LEAN is an effective language for modelling low-

level (detailed) information.

o 0-don’t know

o 1-very strongly agree

o 2-strongly agree

o 3-agree

o 4-disagree

o 5-strongly disagree

o 6-very strongly disagree

- 212 -

4 LEAN captures information across all technical

domains of interest.

o 0-don’t know

o 1-very strongly agree

o 2-strongly agree

o 3-agree

o 4-disagree

o 5-strongly disagree

o 6-very strongly disagree

5 LEAN captures information from all business areas

of interest.

o 0-don’t know

o 1-very strongly agree

o 2-strongly agree

o 3-agree

o 4-disagree

o 5-strongly disagree

o 6-very strongly disagree

6 LEAN leads users to think more deeply about the

structures and relationships that exist.

o 0-don’t know

o 1-very strongly agree

o 2-strongly agree

o 3-agree

o 4-disagree

o 5-strongly disagree

o 6-very strongly disagree

7 LEAN models convey more meaning than the

models I previously used.

o 0-don’t know

o 1-very strongly agree

o 2-strongly agree

o 3-agree

o 4-disagree

o 5-strongly disagree

o 6-very strongly disagree

- 213 -

8 LEAN models convey meaning more precisely than

the models I previously used.

o 0-don’t know

o 1-very strongly agree

o 2-strongly agree

o 3-agree

o 4-disagree

o 5-strongly disagree

o 6-very strongly disagree

9 I would use LEAN again for enterprise architecture

modelling.

o 0-don’t know

o 1-very strongly agree

o 2-strongly agree

o 3-agree

o 4-disagree

o 5-strongly disagree

o 6-very strongly disagree

10 I would recommend LEAN for use by other

enterprise architects.

o 0-don’t know

o 1-very strongly agree

o 2-strongly agree

o 3-agree

o 4-disagree

o 5-strongly disagree

o 6-very strongly disagree

RESULTS QUESTIONNAIRRE - OPEN QUESTIONS

BUSINESS USERS

Q11 What is your job title?

Q12 What is your job function?

Q13 Based on your experience with LEAN, what is your opinion on its value as an

enterprise architecture modelling tool?

- 214 -

Q14 What do you see as the strengths of LEAN?

Q15 Do you have any suggestions for improving LEAN?

Q16 What do you see as possible areas for the further development of LEAN?

Q17 Are there any other comments you would like to make?

RESULTS QUESTIONNAIRRE - CLOSED QUESTIONS

ENTERPRISE ARCHITECTS

QUESTION RESPONSE

1

Compared to other modelling languages I have

used for enterprise modelling, LEAN is:

o 0-don’t know

o 1-extremely easy to learn

o 2-very easy to learn

o 3-easy to learn

o 4-difficult to learn

o 5-very difficult to learn

o 6-extremely difficult to learn

2

LEAN is an effective language for modelling

high-level (conceptual) information.

o 0-don’t know

o 1-very strongly agree

o 2-strongly agree

o 3-agree

o 4-disagree

o 5-strongly disagree

o 6-very strongly disagree

- 215 -

3

LEAN is an effective language for modelling

low-level (detailed) information.

o 0-don’t know

o 1-very strongly agree

o 2-strongly agree

o 3-agree

o 4-disagree

o 5-strongly disagree

o 6-very strongly disagree

4

LEAN captures information across all

technical domains of interest.

o 0-don’t know

o 1-very strongly agree

o 2-strongly agree

o 3-agree

o 4-disagree

o 5-strongly disagree

o 6-very strongly disagree

5

LEAN captures information from all business

areas of interest.

o 0-don’t know

o 1-very strongly agree

o 2-strongly agree

o 3-agree

o 4-disagree

o 5-strongly disagree

o 6-very strongly disagree

6

LEAN leads architects to think more deeply

about the structures and relationships that

exist.

o 0-don’t know

o 1-very strongly agree

o 2-strongly agree

o 3-agree

o 4-disagree

o 5-strongly disagree

o 6-very strongly disagree

- 216 -

7

LEAN models convey more meaning than the

models I previously used to describe enterprise

architectures.

o 0-don’t know

o 1-very strongly agree

o 2-strongly agree

o 3-agree

o 4-disagree

o 5-strongly disagree

o 6-very strongly disagree

8

LEAN models convey meaning more precisely

than the enterprise architecture models I

previously used.

o 0-don’t know

o 1-very strongly agree

o 2-strongly agree

o 3-agree

o 4-disagree

o 5-strongly disagree

o 6-very strongly disagree

9

I would use LEAN again for enterprise

architecture modelling.

o 0-don’t know

o 1-very strongly agree

o 2-strongly agree

o 3-agree

o 4-disagree

o 5-strongly disagree

o 6-very strongly disagree

10

I would recommend LEAN for use by

enterprise architects.

o 0-don’t know

o 1-very strongly agree

o 2-strongly agree

o 3-agree

o 4-disagree

o 5-strongly disagree

o 6-very strongly disagree

- 217 -

RESULTS QUESTIONNAIRRE - OPEN QUESTIONS

ENTERPRISE ARCHITECTS

Q11 What is your job title?

Q12 What is your job function?

Q18 What other languages have you used for enterprise modelling?

Q13 Based on your understanding of LEAN, what is your opinion on its value as an

enterprise modelling tool?

Q14 What do you see as the strengths of LEAN?

Q15 Do you have any suggestions for improving LEAN?

Q16 What do you see as possible areas for the further development of LEAN?

Q17 Are there any other comments you would like to make?

- 218 -

13 APPENDIX D – USDOS ITA

The State Department web site below is a
permanent electronic archive of
information released prior to January
20, 2001. Please see www.state.gov for
material released since President George
W. Bush took office on that date. This site
is not updated so external links may no
longer function. Contact us with any
questions about finding information.

NOTE: External links to other Internet
sites should not be construed as an
endorsement of the views contained
therein.

United States Department of State
Information Technology Architecture

Volume One

ITA

April 16, 1999
Version 2.2

- 219 -

Table of Contents

1 INTRODUCTION
1.1 What is an Architecture?
1.2 Why Have an Architecture?
1.3 Benefits of the ITA
1.4 Architecture Management and Development Process
2 BASELINE ISSUES AND LIMITATIONS
3 ITA STRUCTURE
3.1 Architecture Layers
3.2 Technical Reference Model and Standards Profile
3.3 ITA Integration
4 TARGET ARCHITECTURE OVERVIEW -- STRATEGIC VALUE TO
THE DEPARTMENT
4.1 ITA Support for Strategic Department IT Goals
4.2 Guiding Principles
4.3 Functional Model of Target ITA
5 ARCHITECTURAL LAYERS
5.1 Business Architecture Layer
5.2 Department Mission and Priorities
5.3 Business Drivers
5.4 Common Business and Information Flows
5.5 Technical Architectural Layers
5.5.1 Overview of Target Technical Architecture
5.5.2 Technical Reference Model
5.5.3 Information Architecture Layer
5.5.4 Description
5.5.5 Applications Architecture Layer
5.5.6 Description
5.5.7 Infrastructure Architecture Layer
5.5.8 Description
5.5.9 Hardware Platforms
5.5.10 Infrastructure Services
6 IMPLICATIONS OF AN IMPROVED ARCHITECTURE FOR USERS,
EXECUTIVES, AND SYSTEM MANAGERS
6.1 Users' View
6.2 Executives' View
6.3 System Managers' View
7 NEXT STEPS
7.1 Review Process
7.2 Detailing of the Architectural Layers
7.3 Development of Key Segment Architectures
8 ACKNOWLEDGEMENTS
Annex A, Glossary A-
Annex B, Current Issue Paper Candidates B-
Annex C, Architecture Segments C-

- 220 -

Table of Figures

Figure 1, Relationships between the ITA and Other Department Processes
Figure 2, The Baseline -- Islands of Automation
Figure 3, Modest Improvement in IT Integration
Figure 4, ITA Structure
Figure 5, Example of Relationships among ITA Segments and Layers
Table 1, IT Goals Linked to Representative Architectural Features
Table 2, Guiding Principles
Figure 6, Functional View of Target Architecture
Figure 7, Department of State Business Processes
Figure 8, Business and Information Flows -- Transactional
Figure 9, Business and Information Flows -- Collaborative
Figure 10, Target Environment -- Emphasizing Commonality
Figure 11, Overview of Target Technical Architecture
Figure 12, Technical Reference Model
Figure 13, Overview of the Information Architecture Layer
Figure 14, Structure of the Information Architecture Layer
Figure 15, Structure of the Applications Architecture Layer
Figure 16, Conceptual View of the Infrastructure Architecture Layer
Figure 17, Infrastructure Components

- 221 -

1. INTRODUCTION

The Department of State is pursuing the modernization of its Information
Technology (IT) infrastructure to improve the technical support it provides to
overseas posts and domestic mission and administrative operations while
taking advantage of new information technologies.

Two key trends affect the future strategy of IT use at the Department: (1) the
globalization of accurate, timely, and usable information, enabled by worldwide
availability of modern commercial networks; and (2) the decentralization of
computer resources, as reflected in the pervasiveness of the personal computer
and networks that interconnect them. These two trends create a challenge for
the Department in managing decentralized resources in a way that supports the
global access needed to support the mission and business needs of end users.
This challenge gives rise to an urgent need for an enterprise-wide Information
Technology Architecture (ITA).

1. What is an Architecture?

An architecture is a guiding strategy or framework. As in a building
project, the architecture represents the bridge between the customer's
requirements and the technical design that will effectively satisfy those
requirements. It is not a detailed blueprint or wiring diagram,
understandable only to technicians, but rather more like the city
planning codes, zoning laws, and high-level plans that constrain the
design, and enable the objective to be realized. The Department's ITA
provides guiding principles and standards to be applied when designing
and implementing information services for Department users. The
ITA also specifies the major components of the technology
infrastructure to be built to support business requirements.

2. Why Have an Architecture?

An architecture is a prudent management tool that will help ensure that
IT is responsive to Department business requirements. It will help the
Department achieve technology goals and objectives cost-effectively by
providing the basis for Department-wide coordination of IT activities,
and a set of standards and common technical services that will foster
interoperability and information sharing, while lowering total cost of
ownership. In particular, the architecture will promote such benefits as
broad access to information, efficient re-use of IT components and
solutions, and effective global management of IT support. In addition,
Federal law mandates an ITA for the above reasons in the Information
Technology Management Reform Act of 1996 also known as the
Clinger-Cohen Act.

The Department of State's ITA adapts the architectural model
endorsed by the CIO Council as described in the document, "Federal

- 222 -

Enterprise Architecture Conceptual Framework," dated August 1998.

The ITA has also been influenced by examples cited by OMB and the
Gartner Group. Gartner defines an Architecture as a ". . .framework
and a set of principles, guidelines or rules to direct the process of
acquiring, building, modifying, and interfacing IT resources throughout
the Enterprise. These resources can include equipment, software,
communications protocols, application development methodologies,
database systems, modeling tools, IT governmental organizational
structures and more." This definition is in keeping with the guidance
presented in the 25 Oct 1996 OMB Raines memorandum "Funding
Information Systems Investments."

3. Benefits of the ITA

A system and information management environment based on this ITA will have
considerable benefits for the Department. It will promote the following:

• Universal access to corporate and global information sources to all authorized
users

• Efficient and effective management and decision support
• A flexible platform to meet changing requirements
• Investment planning and cost-effectiveness in IT spending
• Security through proven commercial security solutions
• Consistency in how data is stored, shared, and appears in user applications
• Effective integration of new IT

1. Architecture Management and Development Process

Over the past few years, the Department has put a series of planning and management
processes in place to govern IT investments. These efforts have been successful in
putting the current modernization program on track, and have produced significant
results, such as the worldwide deployment of the ALMA-based infrastructure.

The IRM Office of Architecture and Planning (IRM/APR/IAP/AE), working with
senior management and Bureau representatives, will establish and document a set of
interrelated processes for planning and managing development projects to ensure
conformance with the ITA. The overall systems life-cycle portion of this process is
illustrated by Figure 1, Relationships between the ITA and Other Department
Processes, which includes the following key elements:

• Close integration with IT strategic and tactical planning
• Configuration Management (CM) of the ITA itself, so that changes are made

in an orderly, well-reasoned manner
• Extensive ongoing Bureau involvement in planning and CM processes,

through representation on Configuration Control Boards and Technical
Review Advisory Boards convened to address specific architectural issues

• Cross-project coordination to minimize duplication of effort and promote
reuse

- 223 -

• Project and system assessment to ensure conformance to the ITA

Figure 1, Relationships between the ITA and Other Department Processes

As shown in the figure, the ITA is tightly integrated with the Department's planning,
engineering, design, and development processes. Strategic goals and plans specify what
the Department intends to accomplish in IT and how those accomplishments will
support business and mission operations. These plans also identify IT-related issues
that must be analyzed and resolved in the course of developing and maintaining the
ITA. Since the ITA is an "evolving description of an approach to achieving a desired
mission," as defined by the GAO, it is necessary to guide the evolution of that
description in a structured, predictable way. The exploration of topics that will result in
updates to the architecture is maintained in a separate series of documents -- issue
papers or "white papers" -- only a few of which may be active at any time. The topics
that influence the architecture derive from the major system drivers -- mission or
requirements changes that must be addressed and technology opportunities that may
be exploited.

The following issues illustrate the types of architectural issues to be addressed:

• The nature and scope of the tools available to support applications
development and the commonality of their usage

• The use of standard solutions for workflow, image management, and similar
cross-cutting applications requirements

Model 1

- 224 -

• The reengineering of messaging to meet all future requirements and exploit
modern IT effectively

• The application and management of data warehouse technology
• The evolution of the standards for the products that are chosen to be the

hardware, software, and networking components of the system
• The scope and operational approach to be applied to enterprise network

management
• The technical and physical solutions for addressing security requirements
• The need for evolving customer service and user training with each IT

enhancement

The issues to be addressed will result in decision support papers to be presented to
appropriate levels of management for action. When a decision has been made, the ITA
will be adjusted appropriately.

The ITA is the foundation on which IT solutions of the future will be designed,
developed, and deployed within the Department. A key element in the Department's
modernization program is establishing a modern, flexible, "open" platform or
infrastructure to support all requirements. This will be done through platform
engineering, which refers to the development of a common infrastructure for all
applications in the Department. The platform is the stable, cross-project base of both
infrastructure hardware and software provided to (and evolved for) all projects in the
Department. Note that this contrasts with some commonly held definitions that
consider "platform" to include only the hardware base.

Engineering leads into design, implementation, deployment, and operations. These
activities are the responsibility of operational units in IRM (for infrastructure
components) and the bureaus (for business applications). Guided by the Department's
strategic plan, IRM plans, and ITA, these activities will promote a rational and
integrated IT environment that responds to Department goals and priorities.

The processes for maintaining the ITA and for ensuring conformance will be
documented in a separate IAP document that describes the roles of the Architecture
and Planning Divisions, the capital planning boards, and other organizations. The
general approach is for all projects to be reviewed for compliance with the ITA prior
to submission to the IRM Program Board for approval and funding. Deviations from
the ITA must be addressed by the project manager to the CIO. This review process
will explore necessary changes to project plans as well as needed revisions to the ITA.
The ITA will also be reviewed on a regular basis to ensure that it remains current with
Department direction and priorities and with technology trends of industry and other
agencies.

1. BASELINE ISSUES AND LIMITATIONS

Analysis of the Department's information technology baseline has identified several
key issues that can be addressed by this ITA. These issues are discussed in this chapter.

- 225 -

IRM activities in the Department have historically been carried out on a decentralized
basis and without the benefit of continuing centralized management attention. As a
result, many development efforts have not been fully synchronized and the systems
produced have not been fully interoperable. Figure 2, The Baseline -- Islands of
Automation, presents a conceptual view of the past environment.

The current infrastructure, databases, and application systems have not been driven by
an enterprise-wide architecture, and exhibit lack of commonality, interoperability, or
portability, as one would expect. Such systems are described as "islands of automation"
and "stovepiped" -- two metaphors that refer to their fragmentation and independence
both in lack of commonality and in interoperability. The structure of the software that
runs on the hardware platform is not guided by any perceivable enterprise-wide
guidance.

Figure 2, The Baseline -- Islands of Automation

Although the Department has made significant progress through the ALMA
modernization efforts, the older environment remains plagued by components that are
non-standard and not fully interoperable. As a result, end-users find it difficult to
identify and locate information of interest, and collaborative processing is severely
limited. Transaction processing systems use non-standard approaches and user
interfaces, increasing the training and maintenance burdens for the Department. The
following limitations characterize the current baseline environment:

• Lack of formal comprehensive IT standards
• Dependence on obsolete and non-standard equipment
• Obsolete software and cumbersome business processes
• Inadequate domestic and overseas communications circuits
• Non-standardized data
• Slow, unreliable, inefficient worldwide messaging, made up of multiple, non-

standard E-mail and formal messaging systems held together by gateways and
manual effort

• A workforce of system users and IRM professionals that is insufficiently
trained in modern technology and operations

Model 2

- 226 -

As noted above, the Department has begun to move purposefully into a "common
component" architecture, with the adoption of ALMA. Figure 3, Modest
Improvement in IT Integration, shows this modest level of commonality being
achieved by the Department's current initiatives, which reduces the isolation of the
former "islands of automation" by providing the benefits of common components,
and the adoption of the software layering described later in the reference model. The
earliest effects of platform engineering are starting to emerge for the Department as
the layers above hardware are intentionally managed across all systems, and standard
software building blocks, based on the standards profile, are adopted for common use.

Figure 3, Modest Improvement in IT Integration

In the overall migration of ITA-based systems, additional commonality can be
attained, at least to the level of common infrastructure services. This may be the
highest level at which enterprise-wide commonality can or should be achieved,
although common support applications will find use in several-to-many projects, but
probably not all.

A major goal of the ITA and follow-on platform engineering is to increase the
commonality across information systems. The target architecture presented in the next
section provides a conceptual view of an environment with high-levels of commonality
that can support broad information access and greatly reduce the fragmentation caused
by islands of automation.

1. ITA STRUCTURE

The ITA is structured to provide a clear specification of a target environment
that will meet Department of State goals and requirements. The architecture

Model 3

- 227 -

describes, at a high-level, the IT environment that underlies the future vision of
the Department's information systems.

Figure 4 shows the structure of the ITA.

Figure 4, ITA Structure

1. Architecture Layers

The core of the ITA is the four architecture layers shown in Figure 4. These layers
provide a framework for linking technical solutions to Department of State business
requirements. The ITA supports both top-down and bottom-up planning and
development of IT solutions. The top-down process links the business model directly
to technical needs and solutions. Through bottom-up planning, the technical layers
support identification of emerging technology trends and application of new
technologies to mission needs.

As shown, the ITA contains the following architecture layers:

• Business -- covering all aspects of the Department's business functions,
including the overall flow of work and information, mission and management
processes, and support functions used to meet user requirements at all levels.

• Technical -- consisting of the following three architectural layers

o Information -- providing guidelines on the standardization, modeling,
ownership, location, distribution, and access to corporate information.

o Applications -- describing the environment in which applications will
operate, the requirements and conventions to which applications must
conform, and the services which application developers can expect
from the infrastructure.

o Infrastructure -- describing the network and its hardware and
software platforms on which the IT infrastructure will be based.

The following provides an example of how the ITA conceptual model can be applied
to a familiar, mission critical business function carried out by the Department every
business day.

Model 4

 see Models 4
& 9 below

- 228 -

A core Business of the State Department is the Non-Immigrant Visa Function, i.e.
screening and providing proper documentation to aliens desiring temporary visitation
to the United States. An objective of the Bureau of Consular Affairs is the speedy
processing of legitimate travelers to facilitate travel to the U.S., but, as part of our
Border Security function, to identify undesirables (including terrorists, drug traffickers,
etc.) and refuse travel documentation to these undesirables.
Visa processing is an Information driven process. The key data required is the
applicant record that is collected from the applicant at the time of Visa application.
Also, the Department maintains a database of people who are considered undesirables
and who, barring special circumstances, should be denied entry into the United States.
The database is populated from not only the Department's records, but also from
information gathered from intelligence sources, law enforcement agencies, and other
external sources. All Visa applicants must be checked against this database prior to
being issued a Visa.
CA has developed the Non-Immigrant Visa (NIV) software Application installed at
all Visa issuing overseas posts. This software is a case tracking application that
facilitates Visa processing by interfacing with the CLASS (Consular Lookout and
Support System) database and other databases to help identify undesirables and, in so
doing, enable Consular Officers to make informed decisions concerning Visa
applications. Associated software applications provide long-term storage and retrieval
of Visa records, and these applications also provide backup capabilities in the event
that CLASS, which is accessed by long-distance telecommunication links, is
unavailable.
The NIV application installed at posts is an open system, standards-based application
that complies with ALMA data processing, desktop, and communication standards. In
fact, installation of the ALMA Infrastructure at an overseas post is a prerequisite to
using the NIV application. NIV connects to the Washington-based CLASS application
through OpenNet. Thus, OpenNet infrastructure is a requirement for effective Visa
processing.

The Visa issuance process, and many others like it, will continue to reap benefits
through increased efficiency and sensible technology investments as specific ITA
standards are articulated and implemented.

Architecture Segments -- The Department's ITA incorporates the concept of
architecture segments, through which "hot topics" are addressed within the disciplined
context and structure of the ITA. Not all architecture segments must be done at the
same time or at the same level of detail. This allows "quicker returns" and early
introduction of promising technologies. Figure 4 shows three initial segment
architectures on the left side of the graphic. Additional segments will be identified as
requirements become further refined.

• Security Segment -- Specifies security facilities and services to be provided by
IRM and made available to all system planners and developers. The segment
will describe the security infrastructure to be established (e.g., PKI, certificate
management, firewalls, security service maintenance), as well as the specific
security solutions to be deployed. It will address all security requirements to
protect information, network, and system assets and provide information on

Model 5

Model 6

Model 7

Model 8

Model 9

- 229 -

the integration of appropriate technologies to collapse the three separate
enclaves. The security infrastructure will include a combination of solutions,
each applicable to the specific security requirements of the data and
circumstances. Thus, it will be more cost-effective and flexible than today's
environment that relies on link/bulk encryption for most all situations.

• Enterprise Network Management Segment -- Specifies a Department of State
Enterprise Network Management System (ENMS), a Department-wide
resource implemented and maintained by the IRM Bureau to support both
domestic and overseas operations. The system will provide various services to
the bureaus including management reports, real-time device status information,
help desk support through integrated databases and problem tracking
resolution (PTR) systems, software distribution, and configuration and asset
management tools and tracking. The Department expects the ENMS to
improve network reliability, customer response times, and troubleshooting.
Based on industry experience, the ENMS should also help contain total costs
of ownership, (cost-avoidance), as the information technology (IT)
environment in the field becomes increasingly robust and complex. The
ENMS is being designed and implemented to support flexible arrangements
with the customers -- the bureaus -- to enable bureaus to manage their own
devices and applications if desired, while using the common infrastructure put
in place by IRM. Conversely, IRM and the bureaus could establish Service
Level Agreements (SLA) through which IRM would provide turnkey seat
management services.

• Information Exchange Segment -- Describes a modern solution to replace the
existing cable and email systems with an integrated document and information
management and exchange solution that will support the Department in the
21st century. The solution will encompass the features of modern, business
quality electronic mail, and will also support the diverse functions currently
supported by the cable process (e.g., formal message and record traffic, policy
dissemination, transaction processing). Although this segment will address the
Department's current messaging systems, its scope is much broader. It includes
future-oriented functions such as collaborative processing (groupware),
document management, correspondence control, image management,
archiving, and workflow-based transport of data and transactions (e.g.,
procurement or personnel transactions). Accordingly, the term "messaging"
does not adequately describe the new, comprehensive environment envisioned.

1. Technical Reference Model and Standards Profile

The ITA also includes a Technical Reference Model (TRM) and
Standards Profile. The TRM provides a linkage between the three
technical layers and the set of standards contained in the Standards
Profile. The TRM and active set of standards provide specific guidance
to Bureau system managers and developers in the planning, acquisition,
and implementation of IT solutions. In essence, they provide the most
detailed and specific manifestation of the relationship between
business requirements and technical standards.

- 230 -

The TRM provides the organization for the Standards Profile. Within
each TRM category, the Department indicates the standards it has
adopted. These may be true industry-wide standards, which transcend
proprietary product boundaries, or they may be "product standards" --
solutions that the Department has chosen where no industry-wide
standard exists. The latter are less desirable because they limit long-
term flexibility and potential interoperability.

2. ITA Integration

The multiple components of the ITA are tightly interconnected, as illustrated in Figure
5, Example of Relationships among ITA Segments and Layers, which elaborates on
the notion of segment architectures and illustrates areas in which segments overlap
with the ITA layers. For example, the Security Segment focuses on delivering services
such as encryption and user authentication, which can be used by systems across all
architectural layers. While these services would be specified and developed within the
Security Segment, their implementation is manifested in conjunction with specific
infrastructure, applications, and information components.

Figure 5, Example of Relationships among ITA Segments and Layers

1. TARGET ARCHITECTURE OVERVIEW -- STRATEGIC VALUE
TO THE DEPARTMENT

1. ITA Support for Strategic Department IT Goals

- 231 -

The target Information Technology Architecture supports the Department's vision for
IT in the new millennium. This vision calls for a robust, global, and secure information
technology infrastructure that will support the growing and evolving demands of
diplomacy in the 21st century. The core of the vision is a set of five goals:

• A secure, robust global network that links the entire international affairs
community in the United States and around the world

• An expanded and readily accessible suite of systems and modern IT capabilities
that support the substantive work of international affairs

• Modern integrated information exchange and document management
("messaging plus"), combining the best features of electronic mail, transaction
processing, and collaborative document management and access

• Streamlined administrative applications that increase productivity and support
our staff at all locations

• A trained and productive workforce, including IRM professionals to support
the IT infrastructure, and well-trained end-users who can fully exploit the
technology

The key elements of the ITA are derived directly from these goals. The business and
technical architecture layers and architecture segments enable deployment of IT
solutions that support these goals. Table 1 links the five goals and a representative set
of architectural elements, showing how technical components contained in the ITA
support achievement of the goals. The features shown are illustrative, rather than
comprehensive. As the architecture evolves based on bureau feedback, the set of key
features will expand and evolve as well. This table demonstrates how the ITA helps
infrastructure engineers and designers identify technical solutions that address
Department goals and priorities.

Table 1, IT Goals Linked to Representative Architectural Features

IT Goal Applicable Architectural Features

Secure Global Network • Robust, secure worldwide communications
infrastructure

• Commercial technology and protocols so network
can evolve with requirements

• VPN, PKI, satellite, Internet, and other technologies
• Integration of all types of communications
• Robust network security infrastructure

Suite of Foreign Policy
Applications

• Consolidated information centers - "super servers"
for access to corporate information

• Knowledge management tools for highly intelligent
user profiling

• Web-enabled applications for ease of use

- 232 -

• Searchable, accessible, secure data warehouse

Information Exchange --
"Messaging Plus"

• Business quality electronic exchange of messages
and other information

• Document and correspondence management
products

• Standards-based directory services
• Security solutions for classified and unclassified

information
• "Thin client" enhances information security

Streamlined Operations • Consolidation and standardization will yield
efficiencies

• Intelligent applications will simplify and streamline
much administrative processing

• Web-based processing will reduce complexity,
especially at post

• Infrastructure management will be automated and
simplified

• The IT infrastructure will be simplified through thin
clients, centralized services, and standardization

Trained, Productive
Workforce

• Centralization/regionalization will permit rational
deployment of scarce personnel resources

• Training will be enhanced through web-based
technologies, distance learning, etc.

• Simplified IT infrastructure management will reduce
personnel burden

• Global network may reduce need for on-site experts

1. Guiding Principles

The ITA will guide and support technology related decision-making throughout the
Department. Bureaus will be guided by the standards, and guiding principles, and
general approach in planning and deploying their IT infrastructures and specific
applications and databases. Plus, corporate planners and senior management decision-
makers, such as the IRM Program Board, will use components of the ITA to guide
their deliberations.

Table 2, Guiding Principles, presents a set of guiding principles that underlie the ITA
and subsequent systems acquisition and development.

Table 2, Guiding Principles

- 233 -

Architecture Layer Guiding Principles

All Layers -- Overarching
Principles

• Deploy and reuse modular components
• Integrate security into all architectural elements, balancing

accessibility and ease of use with protection of data
• Strive for universal access to information
• Limit complexity, especially at overseas posts.
• Use off-the-shelf solutions where feasible
• Focus on total cost of ownership and life cycle costs and

benefits in planning and assessing IT solutions

Business Layer • Allow mission needs and priorities to drive IT investments
• Standardize business processes to gain efficiencies and ease

the training burden

Information Layer • Establish a corporate data model to enhance the value of the
Department's information assets

• Validate information once as close to its source as possible
• Establish and use data warehouse(s) and corporate

repositories
• Minimize paper

Applications Layer • Seek to reuse components from the Department's standard
application libraries before developing or acquiring new
systems

• Employ Independent Verification and Validation (IV&V)
for all applications before production deployment

• Use web and similar technology to promote information
access and standard user interface

• Use the Department's standard suite of desktop and office
automation products

Infrastructure Layer • Establish a secure, integrated, reliable, high performance,
global network

• Provide all users with a common, standardized desktop
• Migrate major assets such as servers into centralized facilities

where they can be managed and secured cost-effectively
• Provide a centrally managed Enterprise wide network

infrastructure comprising LANs, MANs, and the WAN
• Provide central facilities for help desk, network operations,

security infrastructure, messaging, and other "core" services

- 234 -

1. Functional Model of Target ITA

Figure 6, Functional View of Target Architecture, is a high-level model of the target
integrated architecture that provides a view of the functional capabilities the target
architecture will support. As shown, the target will provide universal access to
corporate information assets, and will also provide the security and technical
infrastructure needed for internal and external connectivity. In short, the target
positions the Department to meet its IT goals for the 21st century.

Figure 6, Functional View of Target Architecture

1. ARCHITECTURAL LAYERS

This section presents the two basic architectural divisions shown in the
pyramid diagram presented as Figure 4, ITA Structure, above. The Business
Architecture layer specifies the Department's major mission areas and business
processes the Department performs. The business model leads directly to the
establishment of a set of technical architecture layers, which consist of an
Information layer, an Applications layer, and an Infrastructure layer.

Together these three layers specify a technical environment driven by and
supportive of the Business Architecture Layer. The Business Architecture
Layer drives the establishment of a corporate data model that is at the heart of
the Information layer; a set of robust tools and application interfaces specified

- 235 -

in the Applications layer; and an Infrastructure layer that enables the global
connectivity and security so vital to State's effectiveness.

1. Business Architecture Layer

The Business Architecture Layer is a description of the mission-related
activities and management functions performed by the Department of
State, as depicted in Figure 7, below. It is based on the International
Affairs Strategic Plan, the Department of State Strategic Plan, and
Bureau and Mission Performance Plans, which identify United States
national interests, strategic goals, and priorities for Department
activities and investments. The Department's Strategic Plan provides
the context for the future use of IT, which must be focused on
furthering diplomatic readiness and the Department's mission and
strategic goals.

2. Department Mission and Priorities

The Department of State's mission, derived from the President's
constitutional authority, is to formulate and conduct the foreign
relations of the United States. Within this broad context, the
Department's focus has broadened considerably in the post-cold war
era. While much activity continues to stress traditional nation-to-nation
diplomacy, increasing attention is devoted to multi-lateral relations and
global issues, such as international law enforcement, the environment,
population, and terrorism.

Figure 7, Department of State Business Processes

3. Business Drivers

The Department's mission and business environment is changing

Model 10

- 236 -

dramatically as we approach the new millennium. As documented in
several recent studies, the key challenge is to provide an environment
that supports the new multi-faceted diplomacy in an electronic age --
e-diplomacy. To be effective in the next century, our diplomats will
require access at their fingertips to a wealth of information and
effective tools to manipulate that information and share it with others.
To keep up with the issues of the day, they will require Internet-like
networks and intelligent automated agents that can help them find and
organize critical information. They will need the ability to collaborate
with counterparts in other agencies, foreign governments, non-
governmental organizations, and the public. Their work will become
increasingly more dependent on information and IT networks.

4. Common Business and Information Flows

All of the Department's business processes can be represented by one
of two information flow models: transactional, as illustrated in Figure
8, Business and Information Flows -- Transactional, and collaborative,
as depicted in Figure 9, Business and Information Flows --
Collaborative, below. Transactional flows tend to be structured and
Collaborative flows tend to be relatively unstructured and unscheduled,
often resulting in free-form reports, presentations, issue papers, policy
statements, and similar products.

The ITA's goal is to standardize common business processes and
supporting technologies to the maximum extent possible. The ITA
approach enables the Department to acquire and deploy common,
general purpose "utilities" that can be used by any bureau or system
manager to accomplish an identified business requirement.

This approach is analogous to industry-wide efforts to use and re-use
web-enabled applications, or applets. General-purpose components
can be plugged in or linked together to form complete system
solutions with minimal programming and maintenance. The
Department will accomplish this through applets and larger utilities --
for example, workflow, image and document management, search and
retrieval -- which support business information flows and
requirements.

- 237 -

Figure 8, Business and Information Flows -- Transactional

Figure 9, Business and Information Flows -- Collaborative

5. Technical Architectural Layers
1. Overview of Target Technical Architecture

Model 12

Model 11

- 238 -

The Technical Architecture describes the Department's information systems from a
technical perspective. The systems correspond to and are driven by the requirements
articulated in the Business Layer Architecture.

In contrast to the baseline and current transitional environment described in Section 2,
Figure 2, The Baseline -- Islands of Automation (page *), and Figure 3, Modest
Improvement in IT Integration (page *), the target technical architecture emphasizes
commonality, a consistent use of standards, interoperability, and significant reduction
in the prevalence of stovepipe solutions. Figure 10, Target Environment --
Emphasizing Commonality, illustrates the desired end state.

Figure 10, Target Environment -- Emphasizing Commonality

Figure 11, Overview of Target Technical Architecture, provides a high-level
representation of information, applications, and infrastructure components supporting
the target business architecture. This architecture is described in Section 5.1, Business
Architecture Layer. The Department plans to establish a robust, reliable, and
maintainable IT environment that provides the following key features:

Model 13

 Model 3
(Duplicate)

- 239 -

Figure 11, Overview of Target Technical Architecture

"Secure Access to Information Assets from Around the World"

• Integration and interoperability -- while the current environment is plagued
by duplicative systems and databases that do not work well together, the future
environment will be characterized by consistent and highly integrated
components such as Enterprise Resource Planning Systems. This includes
integrated and shareable corporate databases, as well as the integration of
voice, data, video, and other multi-media representations of information.

• End-to-end connectivity -- enabling staff to be able to communicate with
each other and to access all enterprise information technology tools, data, and
systems from their desktop. This entails a truly global network and global
workgroup-processing environment.

• Security -- the Department's information resources will have strong built-in
protections from internal and external threats while providing ease of access.
Accordingly, the new environment will provide multiple levels of security to
ensure the integrity of all IT components.

• Manageability -- the new modernized environment is being implemented in
an era of shrinking budgets. Accordingly, the ITA specifies an environment
that can be managed effectively with fewer resources. This will be
accomplished through remote resource management using modern automated
tools.

1. Technical Reference Model

The Technical Reference Model (TRM) serves as a bridge
between the Technical Architectural Layers and the Standards

Model 14

Model 15

- 240 -

Profile. Figure 12, Technical Reference Model, is a depiction of
the Department's TRM.

Figure 12, Technical Reference Model

The purpose of the TRM is to show the categories of entities
in each technical architectural layer. That is, it shows the basic
structure of the Information Layer and how it interfaces with
the Business Architecture Layer, represented by the arrows on
top of the figure, which identifies the major categories of
information requirements. The Applications Layer portion of
the TRM shows the top-level categories of applications to be
used, both mission/administrative applications and support
applications. Either mission or administrative applications may
use the support applications area. The support applications
may also supply common services to application software built
on top of them.

The Infrastructure level of the Department's TRM shows both
hardware and software components of the standardized system
platforms. This includes all identified system services, broken
out into ten categories that cover the full spectrum of platform
services, including those not yet in the scope of the ITA, such
as integrated voice and video. The hardware platforms
themselves are shown as the lowest level, supporting the
software levels above, typically through the operating system.
These services are shown spanning the width of the diagram to

Model 16

- 241 -

suggest that they are typically the direct interface to hardware
functionality.

An additional feature of the TRM diagram is the "striping"
between layers to indicate the standardization of interfaces
across the enterprise. Thus, it is envisioned that a service level
API will be established to invoke all system services in a
consistent way. Managing this standardization and accepting or
modifying existing software service interfaces are two of the
ongoing architecture jobs over the system's life cycle.

The manner in which the TRM is used as a bridge to the
Standards Profile is that each box in the TRM diagram
represents a category subject to standardization. These are the
niches into which related standards are grouped. While not all
areas will have the same number of standards -- some, in fact,
may not exist -- they identify areas of potential standardization.

Each level of the TRM can be accessed from whatever level
above it that requires the services provided by that level. That
is, this is not an "ISO-style" protocol diagram, where each layer
may call only the layer immediately below it.

2. Information Architecture Layer

The Information Architecture Layer is constructed to satisfy the requirements outlined
in the Business Architecture Layer. That is, the organization and hierarchy of data in
the information architecture standards and descriptions are determined by the mission
structure. The business requirements' data flows drive the allocation, replication, and
other characteristics of the databases defined for the enterprise. The Information Layer
is a framework that contains the individual data models developed for each mission
area, and also defines the interrelationships between those models. Thus, it can be used
to standardize data for sharing across the entire Department. This layer also contains
Department business rules based on process analysis and on the interaction of
processes and data. Focusing on both data and process enables Department
organizations to reengineer and streamline their operations and better align them with
mission objectives and priorities. Finally, the Information Layer is a key driver in
defining system and infrastructure requirements in the application and infrastructure
layers.

Figure 13, below, is an overview of the Information Architecture Layer, which focuses
on supporting the following business requirements:

• Data organization and management to facilitate broad access
• Intelligent tools and systems for user and information profiling
• Data standardization, through the use of Standard Data Elements (SDE), and

the Enterprise Data Model (EDM) to allow information exchange and
interpretation

- 242 -

• Data warehouse for storage and retrieval of selected corporate information
• Sophisticated tools for knowledge management -- information search and

retrieval
• Information security and integrity

One key element of this layer is the specification of a corporate or enterprise data
model. The Department's decentralized environment increases the need for a
corporate data model to promote information sharing and full exploitation of data as a
critical resource. At the same time, the decentralization of State programs and systems
imposes challenges for obtaining commitment to the development of an enterprise-
wide data model. The IRM Data Administration Office has developed an initial EDM
that is the foundation of the Data Administration program. This model is a continuous
work in progress, evolving as Department programs and requirements change. An
issue paper is contemplated to determine the best approach to the ongoing evolution
and most effective application of the data model.

Each of the individual databases utilizes the Department's SDEs to ensure the ability
to effectively share data across the enterprise. Each data steward is responsible for
complying with the data standardization effort, to promote interoperability with other
corporate databases and with the enterprise-wide data warehouse, which is created
from the EDM.

Figure 13, Overview of the Information Architecture Layer

The Data Warehouse must reflect the multiple views of data stewards who contribute
to these stores, and deal with the potential that there are multiple sets of SDEs. The

- 243 -

location of the data warehouse may be central, or geographically distributed, for
reasons of operational efficiency, redundancy, security, and safety. A key feature is that
the warehouse(s) do not represent the superset of all corporate data, but rather a subset
of critical data which may include data currently external to the Department that is of
interest across the user community of individual databases.

1. Description

The top-level view of the Information Layer is a decomposition of the various subsets
of data holdings in the Department as they relate to the separate mission areas defined
in the Business model. Thus, Figure 14, Structure of the Information Architecture
Layer, shown below, inherits its structure from the existing organizational and
functional hierarchy. The Information Layer also contains additional components of
the target architecture, notably cross-function data integration, multimedia (ensuring
that the ITA addresses different formats for representing data, such as graphics,
images, and video), and metadata (which contains information about the data and
about the structure of specific data environments).

Figure 14, Structure of the Information Architecture Layer

The target information environment will provide enhanced support for Department
requirements in user profiling and information access. Intelligent solutions will assist
users in searching corporate data repositories and identifying information of interest.
The system will be far more dynamic, flexible, and powerful than today's user profiling,

- 244 -

and will ensure that end-users have timely access to the information they need and are
authorized to receive. The profiling capability will incorporate appropriate security
safeguards to limit access to authorized users on a need to know basis.

The target environment will also support multiple techniques for viewing and
presenting information. Thus, existing initiatives in geographic information and
mapping would be extended to embrace new approaches and expanded data sets, as
needed for Department programs and requirements.

When the Information Layer and its constituent data and process models are in place,
individual database developers will apply these models to ensure interoperability with
other databases and to guarantee the proper relationships with the data warehouse
when it is instituted. All database designers and developers are to comply with the
following guidance:

• Institute and enforce uniform data design management practices across
organizational and project boundaries

• Use standard data structures, naming conventions, and SDEs
• Participate in development and maintenance of the Department of State EDM

and use it in all application projects
• Establish retention periods for all data/information and purge or archive as

soon as the period expires
• Designate a steward for all data to be responsible and accountable for: 1) data

validity, 2) data source, 3) data definition, 4) data update frequency, 5) security
and access rules, and 6) data protection levels

• Submit requests for new data elements to IRM/OPS/SIO/API (Data
Administration) for validation of standardization, and subsequent submittal to
the Data Administration Working Group (DAWG)

• Use shared source code libraries to promote good data management, there will
be one and only one source code module for each individual data element

The Information Layer also contains process models that capture a clear understanding
of the flow of work and information between and within organizations that combine
with data models to accomplish the following:

• Track movement of data between mission/program areas
• Facilitate communication among data analyst, business user, and system

developer
• Provide information on scope and boundaries, and identify integration points
• Clarify and consolidate user requirements
• Locate and record the data serving each business function

As noted above, this Layer also contains business rules, which are relatively permanent
policies or constraints that govern and/or support business processes. Business rules
are defined and recorded apart from the procedures and applications that use them.

1. Applications Architecture Layer

- 245 -

The Applications Architecture Layer describes the approach to be taken and services
to be supported in acquiring, developing, and implementing application systems. The
principles and strategies that underlie this layer reflect the business requirements and
are intended to exploit the information architecture layer and modern IT technology
effectively and efficiently. Features of this layer include standard utilities for the two
modes of business process flows presented in the Business Architecture Layer --
transactional and collaborative. Some of the components of this layer are:

• Office automation
• Email
• Workflow management
• Document management
• Collaborative work
• Case management

1. Description

Figure 15, Structure of the Applications Architecture Layer,
depicts the structure of the Applications Layer and suggests
how it can be further refined as specific business and support
applications are defined and developed. The overall structure
involves two layers, or stripes. The "top" stripe is organized by
business area, and the applications in each of those areas are
constructed to satisfy specific functional requirements. These
areas are not described in detail in this section -- they are
included to reflect the link between the Applications Layer and
the Information and Business Layers.

- 246 -

Figure 15, Structure of the Applications Architecture
Layer

The lower stripe of the Applications Architecture Layer
comprises the support application areas. These are sets of
software products and services that are not structured along
mission or functional lines. They may be commonly used in
several, many, or all mission and administrative application
areas. For instance, all users use email, and there is to be only
one common email system in use across the Department.
Others, such as case management might support only a few
case-oriented user applications, such as in Consular Affairs,
Legal, and Personnel. The same support application packages
are available for use both in mission and administrative areas,
and their use is strongly encouraged.

The Application Layer contains the standard utilities and tools
needed to support the two basic types of business flows
presented in the Business Architecture Layer. Bureau system
developers will be able to use these utilities as building blocks
to construct applications that meet specific functional
requirements, resulting in a high-level of standardization. This
should reduce development cost and training burdens, and
facilitate interoperability and information exchange.

Support applications may be used directly by users, as with
email and office automation. Or they may be building blocks
for developing user applications. Workflow management and
case management would fit in this category. Some support
applications like document management might fall in either
category, depending on how they are adopted. The applications
layer makes these sets of support applications available to
application development efforts, and designers must determine
how best to use these assets. For example, message handling
might be based on email and document management support
applications, or it might find a more suitable mix of tools by
using workflow management and collaborative work support
applications.

A key feature of the set of support applications is that it is
continually evolving. It is dependent on advances in technology
and availability of workable tools that support Department
business requirements. Indeed, Figure 15, above, shows a
notional set of support applications. There may not be any

- 247 -

immediate need for certain of the technologies shown in the
figure until future projects require them. But, they should be
evaluated and selected in an architectural and enterprise-wide
context.

The Applications Layer also includes two types of Application
Program Interfaces (APIs), shown as the "stripes" in Figure 15.
These APIs define standard interfaces between sets of software
functions. The architectural concept behind an API is that
standardizing the set of calls provides better enterprise-wide
interoperability, supports portability across platforms, and
protects the information systems from being captured by
proprietary product suites. To the extent that industry
standards are available they will be used. In other cases, the
Department would define its own standards for the API.

The following paragraphs describe the currently defined
Support Application areas.

Office Automation -- an integrated suite of desktop software
available to end users (client software), providing basic non-
mission-specific capabilities. Typically this includes network
and file browsers, word processing, presentation-level graphics,
spreadsheets, image viewers, personal (local) database
management systems, media players, and utilities like calendars,
schedulers, meeting planners, directories, calculators, file
conversion and compression. The suite should be integrated
and support linking between file types, such as seamless
embedding of figures and spreadsheets in text, and creation of
multimedia and hypermedia files.

Email -- the standardization of formats, protocols, and
applications for sending, receiving, and manipulating electronic
mail among individuals, organizations, and processes
(programs). Email may be embedded in higher-level business-
oriented applications, such as formal record message handling
or administrative applications. It is also used directly as a utility
user function, universally both within the Department and with
external parties. And it may be used by other support
applications as its communications mechanism of choice, for
example, to move documents under a document management
paradigm.

Workflow Management -- standards-based utilities that provide
for creation, management, manipulation, and communication
of work objects. Workflow management provides a high-level
set of tools for dealing with sets of data and activities as they
are described in systematic, transaction-oriented workflow

- 248 -

models. Workflow management may be useful for supply chain
and other external party interactions, as well as structured
internal functions like personnel and logistics.

Document Management -- the integrated collection of all
functionality relating to creation, coordination, distribution,
dissemination, storage, retrieval, version control, and
disposition of documents; supporting a wide variety of
transaction and document types. Rather than address different
document types with separate systems, document management
seeks to integrate data holdings, and provide consistent tools to
monitor and manage the enterprise document structure. The
full range of modern content and formatting options is
available without regard to the historical accident of particular
message or document formats or mechanisms.

Collaborative Work -- tools for interactivity among parties who
need to share data or functions are contained in this category.
They work on the holdings of the document or case
management software, and they provide the underlying tools to
manage the diversity of media that are managed by the
document and workflow managers. This support application
area addresses sharing, coordination, and presentation aspects
of the shared work environment. The tools may be used as
embedded features of other support applications, or they may
be used as stand-alone programs, such as video
teleconferencing support.

Case Management -- high-level management functionality
focused on handling sets of related transactions against case
folders. These would be applicable to personnel, legal, or
consular affairs applications that must coordinate and
consolidate sets of transactions and processing made in various
places by multiple agents regarding an individual or situation.
Case processing would also be useful for crisis, event, or topic-
oriented situations where multiple parties take independent
actions against a single set of related files.

Additional areas will be defined as required, and others may be
eliminated when we reach a consensus that their functionality
has been subsumed by other areas or is no longer of interest to
the Department.

2. Infrastructure Architecture Layer

The Infrastructure Architecture Layer organizes and provides guidelines for the
technical underpinnings of the enterprise set of information systems. It describes the
services upon which the applications are built and the platforms that provide those

- 249 -

services. As with the other "layers" of the overall architecture, it interfaces with
whatever layer or level that requires its services, not just with the layer immediately
above it. For example, operators may directly interface with operating system services,
and any user may directly invoke security services, as well as support applications and
user applications using system services via the service application program interface
(API).

Figure 16, Conceptual View of the Infrastructure Architecture Layer shows the
conceptual topology of the Infrastructure Layer.

Figure 16, Conceptual View of the Infrastructure Architecture Layer

The Infrastructure provides the hardware and software platforms, network facilities,
and associated services. The infrastructure reflects the target architecture and business
requirements presented in preceding sections, including the following features:

• Centralized information centers to store and provide access to corporate
information

• A secure, robust global network to support end-to-end connectivity
• An integrated solution for enterprise network management to ensure cost-

effective support and maintenance
• Standards-based infrastructure services to promote interoperability and ease of

maintenance
• Modern hardware platforms, including standard user desktops, thin client

workstations, and computers for mobile computing

- 250 -

The infrastructure will have inherent attributes of reliability, scalability, flexibility,
availability, manageability and maintainability. All these attributes presuppose
commonality across the entire architecture from the user platforms to the
Infrastructure required to support the Department mission.

1. Description

Figure 17, Infrastructure Architecture Components, depicts the
components of the Infrastructure and their interrelationships.
The basic organization involves two levels, a set of Platform
Services (software functions) which are supported by the
underlying Hardware Platforms. Platform components include
all the hardware components of the system, from mainframes
to PCs and everything in between, plus networking
components.

Figure 17, Infrastructure Architecture Components

The key interfaces are between the services and the
applications that invoke them, and between the hardware
platforms and the external world. The first is the Department-
standard API that was discussed above in the context of the
Applications Architecture Layer. As noted, it consists of
standardized interfaces to the greatest extent possible,
proprietary interfaces to the most limited extent possible, and
additional interface modifications made by the Department to
standardize the API where applicable. Part of the job of those
who implement the Department's Infrastructure Architecture

- 251 -

is deciding on the level of API standardization appropriate for
the required interoperability and portability needed.

As Figure 17 shows, the Infrastructure Layer contains two
broad categories of components: hardware platforms, and
platform services. The basic types of hardware platforms are
derived from the Department's current environment. The
number and organization of categories and components may
change over time as Department requirements change and
technologies emerge and change. The currently defined
components are described below:

2. Hardware Platforms

Hardware platforms provide the physical component of the Infrastructure Layer. This
includes all system components necessary to support the infrastructure services, and
encompasses all physical interfaces between system components and external systems.
These components include:

• Workstations and Personal Computers -- user workstations of any type,
supporting client services; includes varying degrees of thin clients

• Terminals -- generally should be considered part of the user workstation
component family, but may be called out separately to cover thin clients, Web
TV, and network computers (NCs)

• Servers -- application, database, and other processing platforms, providing all
the services and applications not allocated to the workstation components

• Mainframes -- although indistinguishable from servers in the strict architectural
sense, the term is used to suggest the recentralization of server platforms onto
large, centralized machines which only an enterprise data center can support

• Network components -- all network processors, interfaces, gateways, firewalls,
hubs, routers, switches, and other protocol-bearing platforms used to support
network services

1. Infrastructure Services

The Infrastructure Layer provides services either directly to end-users or to other IT
components, such as applications and data repositories. The currently defined
infrastructure services are:

Operating System -- Operating systems services provide the software environment
and basic interfaces within all computing hardware platforms. They are the core
services needed to operate and administer the platform and provide an interface
between application software and the platform.

Communications -- This service group is a collection of platform services that are
not supported by the Network Services group. For baseline and transition systems
(prior to achieving a fully standards-based network system as defined in the target
architecture), a number of other communications services must be provided, especially

- 252 -

to interface with external, non-networked systems. Besides legacy and non-standard
communications interfaces, this group supports other non-digital data
communications, such as voice and video, which are not fully integrated into the target
network architecture

Data Management -- Central to information systems is data management, which is
independent of the processes that create or use that data, maintained independently,
and shared by an evolving set of processes. This service group encompasses the
procedures, practices, methods, and software used to manage data, including data
dictionary/directory, database management systems, and distributed data. The service
group also encompasses any explicit data-oriented modeling tools not already provided
by the Development Services group.

Client Services -- These services include user and applications interfaces that are often
the most complex part of a system to develop and maintain. Within the past few years,
significant advances have been made in user/application interface technology to
enhance ease-of-use and to reduce the development effort required.

Security -- Security services support two common goals: Confidentiality and Integrity.
Confidentiality provides the assurance that information will be held in confidence with
access limited to appropriate persons. Integrity provides the confidence that
information will not be accidentally or maliciously altered or destroyed. Security
services provide functions to support both embedded functions (used by and within
applications while they are running) and off-line, security analysis functions.

Directory Services -- This service group provides a common access point to user and
other information for email, security, and other systems such as an electronic phone
book. While formerly considered only a segment of network services, directory
services are now recognized to have broader applicability across the application layer,
and should be identified clearly for their role in security and enterprise management.

Network -- Network services provide connectivity and basic services to foster
communications across workgroups and sites, supporting distributed data access and
interoperability in a heterogeneous environment. Components of this category include
data communications, electronic mail, transparent file access/transfer, remote network
access, remote procedure call, and any other forms of inter-process communications.

Network Services is sub-divided as follows:

• Transport layer protocol specifications
• Network and link layer specifications
• Routing and control specifications
• General -- Related protocols and guidelines for IP networking
• Network Applications such as FTP and Telnet

Data Interchange -- Data interchange services provide specialized support for
information exchange among applications on the same or different platforms.
Components of this category include text data, spreadsheet data interchange, desktop

- 253 -

publishing interchange, graphic interchange, image compression/decompression, and
calendar data. Extensions to full multimedia, and the metadata required to manage it
and create hypermedia, are growing service areas within this group.

Transaction Processing -- Depending on the approach adopted by the Department,
the transaction processing service group may or may not be an explicit component of
the Infrastructure Layer. If an explicit transaction-oriented approach is adopted for
those applications in the Department that are based on that sort of data interchange
and processing model, then this service group would be used. A number of mature
robust packages are available that could be adopted for Department-wide use, and
significant savings could be achieved.

Enterprise Management -- Management services are integral to the operation of the
Department's open systems environment. System management across the enterprise
includes mechanisms to monitor and control the operation of individual applications,
databases, systems, platforms, networks, and user interactions with these components.
Management services enable users and systems to become more efficient in
performing required work.

In addition to the embedded system management services, this category of platform
services also encompasses Fault Management (including Help Desk), Configuration
Management, Storage Management, and Capacity Management

Development -- Development services provide the structure to develop and maintain
software that exhibits desired characteristics. This includes languages, tools, and
methodologies, use of portable, scaleable, interoperable software. Development
Services provide the infrastructure to develop and maintain software that exhibits the
required characteristics.

In addition to software development and the support environment for code
development, programming services provides the following support tools:

• Test environment; Test tools; Test case generation, execution, monitoring, and
reporting

• Model development, simulation tools; Scenario generation/test case analysis;
Integration tools

1. IMPLICATIONS OF AN IMPROVED ARCHITECTURE FOR
USERS, EXECUTIVES, AND SYSTEM MANAGERS

While the ITA is primarily a technical document that guides IRM activities, it
will have a profound effect on everyone in the Department of State. The
following paragraphs discuss the ITA from the perspective or "view" of three
different Department roles: end-users, executives, and system managers.

1. Users' View

By standardizing the Business Architecture Layer, users will find the
Department of State's future IT environment more integrated and

- 254 -

flexible than what is in place today. Through standardization, business
processes at State will mirror many of the functions employees can
now do at home via the Internet. A more open environment will
encourage greater information exchange, thus improving the quality
and timeliness of information that is available to State users. In general,
the user will see an IT environment that is less fragmented, more
robust, more standardized, and more effective than what their
workplace provide them currently.

The Information Architecture Layer will ensure that users have broad
access to corporate information repositories, and that needed
information will be represented in standard, easy-to-understand ways.
Information needed to perform your job will be consistent, reliable,
and organized as a mirror of the structure of your business processes
and associated data flows. Web-based search engines will provide
transparent access to the vast storehouse of information available
within the Department and elsewhere on the World Wide Web.

Users will see the structure of the Applications Architecture Layer
reflected in their own bureau applications (either mission or
administrative functions for each user's needs). This would include
direct access to support applications like office automation and email,
and indirect use of other support applications, such as workflow
management and collaborative work tools. Applications will be highly
standardized throughout the Department -- when moving from Bureau
to Bureau, the learning curve will be much less steep than it is today.

The Infrastructure Architecture Layer ensures proper security to
authenticate users, some data management functions, and network
directory services. The routine interactions that users have with the
services provided on their workstations (PCs) will shape their view of
the Department's IT Infrastructure. All other services will be (and
should be) transparent to users.

2. Executives' View

Due to standardization within the Business Architecture Layer,
Department managers will experience an environment that is more
efficient, performance-driven, and competitive. While resource
limitations will continue to put pressure on managers to deliver more
with less, streamlined processes and reduced bureaucracy will increase
each manager's control and potential effectiveness. To accomplish
these ideals, managers will have access to powerful tools for resource
planning and management.

Managers will expect the Information Architecture Layer to enable
cost-effective use and access to corporate information. They will be
able to obtain timely and accurate management information, as well as
substantive data related to foreign policy research and analysis.

- 255 -

Through improvements in the Applications Architecture Layer,
managers are concerned primarily with consistency, functional
coverage, and training issues. Managers will be stakeholders in defining
future functionality (more with upper levels than with support
applications), but also will be able to influence decisions about
application efficiency, interoperability, and change management. This
architecture layer offers the potential to enhance the value of
information systems, while reducing total costs.

Managers will use the Infrastructure Architecture Layer as the
"whatever it takes to get the job done" aspect of the system. That is,
managers will not care about how the needed functionality is
accomplished, but only that, in the aggregate, the services are provided
that support their users. This layer will ensure efficiency of operations,
usability, and have an impact the selection of software and training
requirements.

3. System Managers' View

Adoption of a standard Business Architecture Layer will allow system
managers and developers to become solution integrators and consultants. As
the Department embraces commercial technology and off-the-shelf solutions,
we will do little custom software development. We will also integrate the
Department's information assets by designing, developing, and maintaining
one or more corporate data warehouses. IT professionals and users will need
to develop the skills to support and utilize new approaches to accessing and
leveraging information.

The Information Architecture Layer will provide system developers and IT
project managers a basis for database design as well as applications and
infrastructure development. The information layer establishes most of the
service needs that must be provided. System managers will be required to
coordinate database planning and design activities with the IRM/OPS/SIO
Data Administration, to ensure standards compliance and conformance with
the EDM, data interoperability, and warehouse standards.

The Applications Architecture Layer affects system managers most directly,
since they are responsible for implementation and system operations. System
managers will use standard utilities and other components and services
available in this layer. As the Department moves toward standardization in
application development and components re-use, system managers are
expected to support these goals.

The Infrastructure Architecture Layer provides the basis for all platform
engineering and development efforts of system managers and technicians for

- 256 -

the required operational characteristics of the system, including its
functionality, performance, availability, usability, manageability, security,
interoperability, and flexibility. System managers are expected to ensure that
their specific solutions conform to the standards and approaches specified in
the Infrastructure Architecture.

2. NEXT STEPS

This document is the first version of the Department's ITA. During the next six
months IRM/APR/IAP/AE plans to transform this document via several iterations
into the Department's official ITA. It plans to effect this transformation through three
concurrent processes:

1. Extensive review of each version of the ITA document by IRM, Technical
Review Advisory Board, bureaus, and IV&V reviewers, followed by
modifications to the document based on comments and suggestions received.

2. Further detailing of the four architectural layers (Business, Information,
Applications, Infrastructure), beginning with input from USIA and ACDA, but
extending to whatever architectural details bureaus wish to have addressed.

3. Development of key segment architectures, such as Security, Enterprise
Network Management, and Information Exchange that cut across the
architectural layers and are considered important enough to the Department's
IT activities to warrant special treatment.

The following paragraphs describe generally how these three processes will proceed and set forth target
months for completing major elements of the ITA.

1. Review Process

As a general rule, reviews of the ITA document will proceed sequentially. This will
begin with an internal review with the IRM bureau, and continuing through the
Technical Review Advisory Board, bureaus, and IV&V. Depending on reviewer needs,
IAP/AE will provide versions of the ITA in hard copy and electronic forms, make
presentations, and arrange for group and individual discussions. Additionally,
IRM/APR/IAP/AE will collect information and suggestions via questionnaires,
interviews, and the Intranet.

Each new set of reviewers will see whatever improvements have been made to
the document by the previous set of reviewers. In addition, whatever version of
the ITA document being reviewed will include:

• Any detail that has been added to the four architectural layers (through
concurrent Process #2)

• Any segment architectures that have been drafted (through concurrent Process
#3) up to that point

- 257 -

In other words, over the next six months the ITA will be an extremely dynamic
document, but reviewers will always have the most up-to-date and complete
version of that document for their review.

We anticipate that bureaus will have several opportunities to review the ITA document
and offer suggestions for its improvement:

1. Detailing of the Architectural Layers

IRM/APR/IAP/AE will add substantial detail to the descriptions of
the four architectural layers that are set forth in this version of the
document. The ITA will also be available on the IRM/APR/IAP Web
site. This version of the ITA does not yet fully address the
reorganization issues of ACDA and USIA, which will be addressed in
the Business Architecture, nor does it necessarily include all issues of
interest and importance to DoS bureaus. IAP/AE is holding
discussions with bureau representatives to inform them of future
enhancements of the ITA and to complete these four architectural
layers

Target months for completing draft versions of the architectural layers
are as follows:

Business Layer May

Information Layer July

Applications Layer August

Infrastructure Layer October

2. Development of Key Segment Architectures

IAP/AE plans to develop two segment architectures -- Security and Enterprise
Network Management -in time for inclusion in the official ITA document to be
published in October. Other segment architectures -- e.g. Information Exchange -- will
be developed and added to the ITA document at a later time.

Target months for completing draft versions of the segment architectures are as
follows:

Security May

Enterprise Network Management August

After the ITA is published its maintenance will be an ongoing process. As technology
develops and provides improved methods for conducting business, the Department's
ITA and associated standards will inevitably change. It is important that all elements of

- 258 -

the Department contribute to the development and on-going maintenance of the ITA,
thereby assuring that the ITA and standards remain relevant to their needs in managing
and using technology. Since this document represents the first step in shaping the ITA,
it is particularly important that all bureaus participate fully in reviewing this document
and suggesting improvements to it. For further information please contact the
Architecture & Engineering Division Chief Greg Linden, IRM/APR/IAP/AE, at
(202)776-8987 or email LindenGS2@state.gov.

Annex A, Glossary

ALMA A Logical Modernization Approach -- Department model for automated information
systems and telecommunications modernization based on use of Information
Technology (IT) standards and commercial products.

API Application Program Interface

Bandwidth Term used to identify, or "measure" the capacity of a telecommunications circuit or
local area network (LAN).

BRN Black Router Network. A DTS-PO IP-based network in pilot phase -- The "Intranet"
of the Foreign Affairs Community.

CM Configuration Management

COE Common Operating Environment. A term used to refer to a specific configuration
for platforms such that all users utilize the same configuration thereby lowering
management and troubleshooting effort and costs.

COI Communities of Interest. In the context of this document, this term refers to a set of
information, and the users, to which a group of users needs access. This concept is an
extension of "need to know."

e-Diplomacy The new multi-faceted diplomacy in an electronic age. To be effective in the next
century, our diplomats will require access at their fingertips to a wealth of information
and effective tools to manipulate that information and share it with others. To keep
up with the issues of the day, they will require Internet-like networks and intelligent
automated agents that can help them find and organize critical information. They will
need the ability to collaborate with counterparts in other agencies, foreign
governments, non-governmental organizations, and the public. Their work will
become increasingly dependent on information and IT networks.

Encryption The use of electronic coding techniques to protect information from disclosure to
unauthorized readers, to prevent undetected modification of the information, and to
support reader to writer identification and authentication.

Firewall Any telecommunications or network device used to regulate/control the flow of
information packets between networks. The firewall, or firewalls, implement an IT
security policy by screening packets to verify they comply with policy, do not contain
malicious code, and are not otherwise attempting to intrude on the protected network

- 259 -

side or disrupt its operations.

FTP File Transfer Protocol

Intranet An internal IP network. Open Net and Class Net are the "Intranets" of the
Department.

IP Internet Protocol - the basic standard established for data exchange over the
worldwide Internet and widely adopted by organizations operating private networks,
such as the Department's Open Net and ALMA-based LANs.

LAN Local Area Network. A small network that serves a group of users. Typically confined
to a single facility. Most LANs in the Department are built using Ethernet (10BaseT)
hubs.

MAN Metropolitan Area Network. A regional network that connects building LANs and
backbones together and typically serves as a collection point to interconnect with a
WAN.

OS Operating System

OSI Open Systems Interconnect

PKI Public Key Infrastructure. The term used to refer the system required to supply and
manage certificates for public key encryption and digital signature used by clients and
servers

Platform In the context of this document, the platform is the stable, cross-project base of both
hardware and infrastructure software provided to (and evolved for) all projects in the
Department. Note that this contrasts with some commonly held definitions that
consider "platform" to include only the hardware base.

Protocol A defined structure, content, and flow for communications between computers and
other networked devices.

PTR Problem Tracking Resolution. The business of tracking the process and information
by which a help desk or other operational entity troubleshoots and resolves a user or
infrastructure problem.

S/MIME Secure/Multipurpose Internet Mail Extension. Provides a consistent way to exchange
secure MIME data. Based on the popular Internet MIME standard, S/MIME
provides cryptographic security services for electronic messaging applications:
authentication, message integrity and non-repudiation of origin (using digital
signatures) and privacy and data security (using encryption). S/MIME is used by
traditional mail user agents to secure the text and attachments. However, S/MIME is
not restricted to mail; it can be used with any transport protocol that transports
MIME data, such as HTTP. As such, S/MIME takes advantage of the object-based
features of MIME and allows secure messages to be exchanged in mixed-transport

- 260 -

systems. Further, S/MIME can be used in automated message transfer agents that use
cryptographic security services that do not require any human intervention, such as
the signing of software-generated documents and the encryption of FAX messages
sent over the Internet.

SDE Standard Data Element

SHTTP Secure Hypertext Transfer Protocol. A means of securely transmitting HTTP
formatted information.

SLA Service Level Agreement - a definition of the type, quality, and quantity of network
services agreed to by the provider and the customer.

SSL Secure Socket Layer. A means of securely transmitting Web pages.

Standard Agreement on the rules, procedures, and content of AIS and telecommunications
exchanges to include open standards, industry standards, and de facto standards

TCP/IP Transmission Control Protocol/Internet Protocol

Thin Client In the context of this document, "thin client" refers to minimizing the amount of
processing logic and data manipulation on a client to the maximum extent possible.
The "thinnest" client is nothing more than a terminal.

VPN Virtual Private Network - a capability to 'split' a physical network or circuit path into
two or more sub-paths that use various protocols to define the circuit path and
protect the data being transported.

WAN Wide Area Network. This refers to a collection of circuits that interconnect a widely
dispersed set of facilities, and other networks such as a MAN.

X.500 A CCITT protocol, X.500 is a family of standards and uses a distributed approach to
realize a global directory service. Information of an organization is maintained in one
or more so-called directory system agendas (DSAs). The X.500 directory supports a
variety of services including security (certificates), e-mail (addressing), and "white
pages" (name and phone number).

X.509 One of the X.500 standards that defines a security certificate to provide a vehicle for
associating users with their encryption keys. All of the user's "public" information is
stored in a X.509 certificate for use when exchanging information securely with that
user. Other information such as to whom does the user belong, what authority issued
the keys, when do the keys expire, what levels of information classification is this user
allowed to access, and how can the certificate be validated is also included.

 [End of Document]

- 261 -

14 APPENDIX E – USDoS ITA LEAN MODELS

The following models have been translated into LEAN from models or textual

descriptions in the USDoS ITA.

Following each model are some observations that arose from development of the

model.

- 262 -

Observations:

 While this model shows that “Engineering produces Wiring Diagrams”, in

actual fact, the Engineering department is likely to both use, and produce these

diagrams. The original model provides no information on the relationship

between Engineering and Wiring Diagrams other to suggest that there is some

sort of relationship. In fact, the original model does not provide any

information about the nature of any of the implied relationships.

Relationships between the ITA and Other Department Processes

Strategic
Planning

is part of

Issue
Analysis

Architecture

is part of

Design

Configuration

is part of

is part of

Wiring
Diagrams

produces

Vision

Strategy

Goals

produces

produces

produces

precedes

Engineering

Implementation

O&M

preceedes

preceedes

preceedes

Concepts

Standards

Modular Description
of Environment

produces

produces

produces

Component
Selection

Deployment

is part of

is part of

Operations

Configuration
Management

is part of

is part of

Model 1

- 263 -

Observations:

 This model is dseigned to convey the metaphors of systems as “islands of

automation” and “stovepiped”.

 While LEAN was not designed to convey these types of ‘soft’ concepts, it

appears to convey these metaphors just as effectively as the original model.

The Baseline -- Islands of Automation

Hardware
Platform

A

supports

Application
A

Hardware
Platform

B

supports

Application
B

Hardware
Platform

C

supports

Application
C

Model 2

- 264 -

 Observations:

 Some liberties have been taken with the production of this model: it is actually

semantically different from the original. In fact, the two uppermost layers of

the original model do not, I believe, accurately convey what the authors

intended. The original model shows that multiple “Infrastructure Services” can

run on one set of “Interoperable Hardware Components”. It seems that this

same concept is meant to be applied to the two highest layers, but instead of

showing multiple components being supported by each lower component, the

higher components are shown as being ‘smaller’. The new LEAN model

appears to convey the tree-like hierarchy of these layers more effectively.

 The danger with this LEAN model is that it could be taken more literally than

is intended. That is, the number of systems represented is not meant to be

literal, but merely to represent a general concept of decomposition.

Modest Improvement in IT Integration
Model 3

Interoperable
Hardware

Components

Infrastructure
Services

Infrastructure
Services

supports supports

General
Purpose

Commercial
Applications

General
Purpose

Commercial
Applications

General
Purpose

Commercial
Applications

General
Purpose

Commercial
Applications

Organization
Specific
Custom

Applications

Organization
Specific
Custom

Applications

Organization
Specific
Custom

Applications

Organization
Specific
Custom

Applications

Organization
Specific
Custom

Applications

Organization
Specific
Custom

Applications

Organization
Specific
Custom

Applications

supports
supports supports

supports

supports
supportssupportssupportssupportssupports

supports

- 265 -

 Observations:

 It is very easy to create a LEAN hierarchy that graphically illustrates the

concept conveyed only textually in the USDoS ITA.

 The creation of these types of hierarchies is a common task in EA modelling.

They are often represented using ‘block’ diagrams.

Architecture Layers
Model 4

ITA

Techical
Architecture

Layer

Information
Architecture

Layer

Applications
Architecture

Layer

is a part of

Business
Architecture

Layer

Infrastructure
Architecture

Layer

is a part of

is a part of

is a part of is a part of

- 266 -

Observations:

 This model shows how LEAN can be used to represent typical business

scenarios. Such a scenario is typical of the type of information that would

typically need to be modelled during EA planning and design phases.

 There is no one correct way to model this business scenario. The scenario can be

interpreted in various ways, various inferences made, and emphasis given to

different phrasing. For example, in the model above, no direct link has been

made between the Agents “Bureau of Consular Affairs” and “Aliens”. Instead,

the interaction is via the Resources that are used or produced, i.e. the data that

identifies undesirable aliens and the production of travel documentation for

desirable aliens. However, it could have been drawn differently with more

direct links between these Agents. In a real-world EA endeavour, the modeller

would draw the models, and decide which information to abstract away, in

order to highlight the semantics that are most important to the business

owners, while also providing a level of detail that supports the alignment of

future, lower level models.

Model 5

US State
Department

Bureau of
Consular

Affairs

is a part of

performed by

Provide
Travel

Documentation

produces

Travel
Documentation

Identified
Undesirables

produces uses

Identify
Undesirables

performed by

Border
Security
Rules

complies with

Obtain
Travel

Documentation

uses

Desirable
Alien

Non-
Desirable

Alien

Alien
is a type ofis a type of

performed by

- 267 -

Observations:

 There is a temptation here to create direct links between the “Visa Applicant”

and “Applicant Record” and “Visa”. That is, to indicate that the applicant

creates an application and then receives a Visa (or is rejected). The Generic

Relationship Set does not provide a direct link between an Agent and a

Resource. Instead, an Action has to be created as an intermediary. This is in

keeping with the societal metaphor that LEAN is based upon. It is only

through some Action, that Agents make use of Resources. The identification

of these Actions makes explicit a feature of the system that may have been lost

otherwise.

Model 6

Gather
Information

Intelligence
Sources

Law
Enforcement

Agencies

Other
External
Sources

uses

uses

uses US State
Department

performed by

produces

Undesirables
Database

Visa
Processing

performed by

Applicant
Record

Visa
Applicant

producesuses

uses

Special
Circumstances

applies to

Visa
Issue

precedes

Visa

produces

Apply for
Visa

performed by

Receive
Visa

uses

performed by

- 268 -

Observations:

 This business scenario states that the NIV application is installed at all Visa

issuing overseas posts. This was signified in the LEAN model by creating an

Action “NIV Installation” with an associated Rule “Visa Issuing Overseas

Posts”. This seemed to be the most effective way to illustrate the scenario

using the Generic Relationship Set and, although slightly contrived, does seem

to convey the semantics of the scenario without undue complexity.

Model 7

NIV
Application CLASS

Application

interfaces with

Other
Databases

interfaces with
Long Distance

Communications
Links

supports

Long Term Visa
Storage and Retrieval

Applications

interfaces with

Visa
Processing

performed by uses

Consular
Officers

Visa Issuing
Overseas Posts

applies to

NIV
Installation

produces

- 269 -

Observations:

 The condition that “installation of the ALMA Infrastructure at an overseas

post is a prerequisite to using the NIV application” has been shown through

the temporal connection between two Actions, “Install ALMA Infrastructure”

and “Use NIV Application”. This condition could alternatively have been

represented using rules connected to the NIV Application Resource instead of

using processes. Yet another alternative is to use a “Supports” relationship

such as shown connecting the “OpenNet Infrastructure” Resource to the two

resources it supports.

Model 8

NIV
Application

complies with

Open
System

Standards
Based

ALMA
Data

Processing
Standards

ALMA
Desktop

Standards

ALMA
Communication

Standards

complies with

complies with
complies with

complies with

Use NIV
Application

Install
ALMA

Infrastructure

precedes uses

CLASS
Application

interfaces with

OpenNet
Infrastructure

supportssupports

- 270 -

Observations:

 The architecture segments that are referred to in this business scenario are

shown in Figure 4 of the ITA specification, but since the modelling constructs

used within the ITA document are not defined, it is difficult to ascertain how

these segments relate to the architecture layers. This is typical of the problems

that arise when using informal 'block' diagrams for EA modelling.

 Based on the textual descriptions of the architecture segments, combined with

the preceeding descriptions of the architecture layers, we can reasonably

assume that the segments as represented in Figure 4 are meant to be

interpreted as foundation technologies upon which all of the other architecture

layers are built. LEAN can model these relationships by representing the

architecture segments as resources.

Architecture Segments
Model 9

ITA

Techical
Architecture

Layer

Information
Architecture

Layer

Applications
Architecture

Layer

is a part of
Business

Architecture
Layer

Infrastructure
Architecture

Layer

is a part of

is a part of

is a part of is a part of

Information
Exchange
Segment

Enterprise
Network

Management
Segment

Security
Segment

is a type of

is a type of

is a type ofArchitecture
Segment

supports supports
supports

supports

- 271 -

Observations:

 Although this paragraph in the USDoS ITA refers to Figure 7 in that

document, there appears to be little connection between the description

provided in text and the model. This LEAN models represents the Business

Architecture Layer as described in the text.

 This model has become a little complicated due to the many arcs needed to

represent many-to-many relationships. These could have been avoided by a

new, artificial construct such as “part of plan”, but this approach would make

it unclear which parts applied to which plans.

Business Architecture Layer
Model 10

Business
Architecture

Layer

International Affairs
Strategic Plan

Department of State
Strategic Plan

supports

Bureau and Mission
Performance Plans

supports

supports

Future use
of IT

produces
furthering diplomatic

readiness

Department of State
Mission and strategic goals

complies with

complies with

National
interests

Strategic
goals

Priorities

is a part of is a part of is a part ofis a part ofis a part ofis a part of

is a part of
is a part of

is a part of

- 272 -

Observations:

 It is quite simple to represent a process flow in LEAN.

Observations:

 It was a bit more challenging to work out how best to produce this model. As

it stands, it conveys the message that the process of collaboration is a part of

these other processes. However, Figure 9 also contains the label

“Collaborational Groupware”. Is Figure 9 trying to represent the use of

Groupware, or the process of collaboration?

Business and Information Flows - TransactionalModel 11

Data
Collection

Validation Posting Assessment Management
Decision

precedes precedes precedes precedes

Business and Information Flows - Collaborative

Information
Collection

Research
and Analysis

Decision

Reporting

Archiving /
Feedback

Model 12

Collaboration

is a part of

is a part of

is a part of is a part of

is a part of

- 273 -

Observations:

 Standards, guidelines and principles are important components of EA’s. These

can be represented as Rules in LEAN making it easy to show how these apply

to Resources, Rules or Actions.

Overview of Target Technical Architecture
Model 13

Target
Technical

Architecture

Commonality Consistent use
of Standards

Interoperability Reduction in
Stovepiped
Solutions

complies withcomplies with
complies with

complies with

- 274 -

Observations:

 Figure 11 is a relatively complex model. In fact, it combines a picture with a

model. The picture is presumably designed to convey the sense that the

USDoS operates globally.

 There are a large number of different types of components in Figure 11,

including labels, nested graphical structures and isolated graphical components

(e.g. “USG Networks”, “Internet”). It is left to the reader to determine how

many of these structures relate to each other using prior knowledge. In many

cases, the relationships between the various components still remains unclear.

In general, Figure 11 represents a set of concepts that are loosely related in

some undefined way.

 Since many of the relationships between the components in Figure 11 are

undefined, it was very difficult to translate it into a LEAN model. The LEAN

model above shows just some components of the original figure. With

clarification, a more complete LEAN model could be created.

Overview of Target Technical Architecture
Model 14

USDoS Workforceis a part of

Overseas
Posts

Main
State

Mobile
Workforce

Annexes &
Field Offices

Emergency
Response

Teams

is a part of

is a part of

is a part of is a part of

Information Application
Environment

is a part of

Corporate
Data

Warehouse

Application
Library

Infrastructure
Management

Disaster
Recovery

Workload
Sharing

is a part of

is a part of is a part of

is a part of

Contingency
Backup

is a part of

- 275 -

 Observations:

 It is assumed that the future integrated environment will only result from some

type of ‘integration activity’, so this was created and represented as a LEAN

Action.

 An information hierarchy was then created to show that the various forms of

data will all be integrated.

Integration and interoperability
Model 15

Voice
Representations

Data Other
Multimedia

Representations

Video

ERP Systems

Integration
Activities

produces

Integrated
Corporate
Databases

Integrated
Information

produces

produces

is part of
is part of

is part of is part of

- 276 -

Observations:

Technical Reference Model
Model 16

Information
Architecture

Standard
Data

Elements

Enterprise
Data

Model

Common
Data

Description/Use

is a part of

is a part of

is a part of

Applications
Architecture

Office
Automation

Email Workflow
Management

is a part of

is a part of
is a part of

Document
Management

Collaborative
Work

Case
Management

is a part of

is a part ofis a part of

is a part of

is a part of is a part of is a part of

is a part ofis a part of

Standard Support APIs

Standard Platform/Services API’s

interfaces with

Infrastructure
Architecture

Client
Services

Security Directory
Services

is a part of

is a part of
is a part of

Network Data
Interchange

Transaction
Processing

is a part of

is a part ofis a part of

is a part of

is a type of

is a part of is a part of

is a part ofis a part of

Communications Data
Management

is a part of

is a part of

is a part of

is a part of

Enterprise
Management

Development

is a part of

is a part of

is a part of

is a part of

Operating System

supports
supports supports

supports
supports

supports

supports

supports

supports supports

Workstation
PC’s

Servers Mainframes Network

supportssupports supports supports

Hardware Platform

is a type of
is a type of

is a type of

is a part of

External Interface Environment

is a part of
is a part of

is a part of

is a part of

- 277 -

 Figure 12 from the USDoS ITA is a typical ‘block model’ as found frequently

in EA’s. The block model has some additional labels added in, with their

relationships to the blocks undefined. The arrows along the top appear to have

no formal meaning.

 As the LEAN translation shows, this block model can be represented largely as

a set of Resource hierarchies.

 The concepts of “Support Application Areas” and “Platform Service” were

not represented because they would have just cluttered the diagram further.

Their representation is a trivial task, resembling the structures already shown.

 Although this block model can be effectively represented in LEAN, the LEAN

model appears significantly more complex than the original model. If the

semantics governing the block model could be formalised, it may be a

preferable way of conveying this type of model.

- 278 -

15 APPENDIX F – DESIGNING AND RE-

ENGINEERING SUBSYSTEMS

In this study, we determine whether a highly conceptual metaphor, that is suitable for

developing a unified EA modelling language, can also be used to effectively structure

an enterprise subsystem. If so, then this adds weight to the assertion that an enterprise

metaphor can be used to structure systems, not only at a highly conceptual EA level,

but also at lower levels of abstraction. This work was used as the basis for a shorter,

published research paper: Elastic Metaphors: Expanding the Philosophy of Interface

Design (Khoury and Simoff, 2003).

It will be recalled that one of the challenges of enterprise modelling is that there is

often inconsistency between high-level EA models and models at lower levels of

abstraction. Part of the reason for this is that these models are usually based on

different metaphors. For example, the enterprise model may be based on a ‘city

landscape’ metaphor, while the interface to a subsystem within this enterprise is built

using a ‘car dashboard’ metaphor.

Subsystems are components of larger systems, which may be part of a set of systems

that are managed and delivered by an enterprise. In this study, we use a user interface as

an example of a subsystem. A user interface provides the interface between the user

and the ‘backend’ functionality provided by some system. Because user interfaces are

graphical subsystems where the attributes of the systems are easily visualised, they

serve as an ideal evaluation tool.

Furthermore, the user interfaces selected for this examination are all email user

interfaces. These were selected for the following reasons:

 A variety of email systems can be publicly accessed.

 The function and operation of email systems is likely to be well understood by

the reader.

- 279 -

 All email systems have a set of core functions that are essentially uniform. This

is evidenced by the fact that we can use different email systems interchangeably

to communicate with one another. This means that we can repeat the test (the

redesign of the interface) several times, knowing that in each case, we are

dealing with a similar set of functions.

 Most modern email systems provide graphical user interfaces that we can

redesign easily and for which the changes in functionality are easily observable.

An email system is defined as a system that allows asynchronous communications

between two or more hosts using text and files. It should be noted that the term ‘email’

is a concrete metaphor where the source is a traditional mail system and the target is a

system that allows communications over an electronic network.

In this study, one email system was designed ‘ground-up’, and three email systems were

re-engineered from existing systems. The new email interfaces were then visually

inspected and compared to the original interfaces. This comparison shows whether the

application of the theory presented in this thesis has potential efficacy for the

structuring of systems through various levels of abstraction.

It should be noted that the design and redesign of these email interfaces were carried

out as logical exercises. The interfaces were redesigned visually to create prototypes of

the new subsystems, but functioning models were not produced. To create four

functioning email systems would be well beyond the scope of this research, requiring

perhaps months, or years, of effort by a team of programmers.

15.1 Developing a Unified Modelling Language

It will be recalled that there are three stages in the methodology presented in this thesis

for developing unified modelling languages. These stages are: ‘Identify an enterprise

metaphor’, ‘Specify and formalise the language’ and ‘Codify the enterprise metaphor’,

as shown previously in Figure 16 - The Applicability of LEAN at Various Levels of Abstraction. We

apply this same methodology to the development of a unified modelling language in

this section, albeit, less formally since this work falls outside the defined scope of this

thesis.

- 280 -

For this exercise, we will use the general concept of a Game as the basis for a unifying

metaphor. The metaphor, ‘an enterprise is a game’ fits the criteria we set for unifying

EA metaphors described in 4.3 Model Hierarchies. We can assume that most people

have a general, intuitive sense of what constitutes a game, even though games can vary

enormously in their nature and the potential for new games is infinite. This suggests

that the game paradigm is highly conceptual and potentially well suited to our needs. It

should also be noted that game metaphors are often used to describe IT systems, and

are even been used to describe IT development methodologies (Takeuchi and Nonaka,

1986). Here we use the same concept as the basis for a lower level working metaphor:

‘email is a game’. While this is different in form to the enterprise metaphor ‘an

enterprise is a game’, it is essentially the same metaphor: the targets have changed but

the metaphor source is the same. Since the same ontology would be used to model at

both levels of abstraction, there will be a one-to-one correspondence between these

structures that should allow alignment between these different levels of abstraction.

Games are characterised by:

 decision making

 goals

 opposition (or struggle)

 managing resources

 game tokens (through which to effect action)

 information

 (Costikyan, 1994)

Users approach an interface with a goal in mind. Goal achievement then involves a

struggle to manipulate their tokens appropriately by making the right decisions about

how to apply the available resources20. While Struggle and Information are important

conceptual aspects of the game metaphor, they are not required as functional

components in the following exercise.

20 It is during this struggle that users are likely to become aware of any shortcomings in the interface design.

- 281 -

15.2 Reengineering Existing Interfaces

The Game metaphor is applied in the following stages:

 The existing interface is decomposed.

 The required functions are mapped onto the Game metaphor.

 The interface is reconstructed.

In the following examples, three well-known interfaces are converted to unified

metaphor based interfaces. The interfaces used are the Hotmail, Yahoo and Lotus

Notes email systems. It should be noted that the choice of these email systems is

purely arbitrary and was made based on their availability and popularity. It is expected

that the same principles would apply to any email interface.

15.2.1 Decomposition and Mapping
15.2.1.1 Hotmail Interface

Figure 26 shows a partial screen image (some advertisements, browser controls etc

have been removed) of the Hotmail interface. This screen is presented once a user

selects an item from their “in-box”.

Figure 26 - Hotmail Interface

- 282 -

Figure 27 shows the subset of functions from Figure 26 that will be investigated.

Many metaphors are in use here: a filing system (folder), container (close), time

(previous, next), direction (forward), writing (delete), personal dialogue (reply, version)

and human relationships (friendly). Most of these functions are presented using

another metaphor: the button metaphor. At a higher level, the entire interface is

suggestive of a traditional paper-based mail system (as the name Hotmail implies), and

this corresponds to the archetype of the communicator (Stefik, 1996). Therefore, not only

are many metaphors are operating simultaneously; they are also operating at different

levels of abstraction. What appear to be simple functions are actually quite complex

threads running through a multi-layered web of metaphor (to use another meta-

metaphor)!

Unfortunately, the result is an interface that is confusing and inefficient. Yet, this is a

simple application with a relatively small set of functions.

Figure 28 summarises the functional decomposition of this interface. The groupings

(columns) chosen for this decomposition are based on the game metaphor and thus

provide a mapping between the existing interface and the unified metaphor. The

decomposition reveals that there are several dimensions to each of the functions under

consideration and that each command implies a set of attributes (subject, action, variables,

values etc). For instance, “Reply” means ‘enable me to compose an email to the person

who sent the email I am currently reading’. In terms of metaphor, “Reply” is based on

the metaphor of a dialogue: someone has sent me a message and I will now send a

message back. The message I send back is logically linked to their original message.

Figure 27 - Hotmail Functions

- 283 -

15.2.1.2 Yahoo Interface

Figure 30 shows a partial screen image from the Yahoo mail interface. This screen is

presented once a user selects an item from their “in-box”.

Yahoo takes an interesting approach to useability by duplicating most functions on the

screen. In fact, as “Check Mail” and “Back to Messages” perform the same operation,

there are four buttons provided to perform this function (actually the “Mail” drop

down list provides this function as well).

Figure 29 shows the subset of functions from

Figure 28 - Decomposition and Mapping of Hotmail Functions

Figure 29 - Yahoo functions

GOALS DECISIONS RESOURCES TOKENS COMMANDS

REPLY

REPLY ALL

FORWARD

PRINTER FRIENDLY
VERSION

PUT IN FOLDER

DELETE

PREVIOUS

NEXT

CLOSE

Sender

Sender +
Nominated
Recipients

Nominated
Recipients

Addresses

Selected
Folder

Folder
List

Direction

Subject line +
Senders mailbox ID +

Date +
File size

Mail

Print

File

Delete

Select Token

Manage
Information

Communicate

Selected
email

Selected
email

- 284 -

Figure 30 that we will be investigating.

Using the same approach taken for the Hotmail interface, the Yahoo interface is
decomposed as shown in

Figure 31.

Figure 30 - Yahoo Interface

Figure 29 - Yahoo functions

Figure 29 - Yahoo functions

- 285 -

REPLY

REPLY ALL

FORWARD as attachment

DELETE

MOVE TO FOLDER

PRINTABLE VIEW

CHECK MAIL /
BACK TO MESSAGES

NEXT

Sender

Sender +
Nominated
Recipients

Nominated
Recipients

Addresses

Selected
Folder

Server Folder
List

Direction

Subject line +
Senders mailbox ID +

Date +
File size

Mail

Print

File

Delete

Select Token

PREVIOUS

COMPOSE

SEARCH MAIL

FULL HEADERS

FORWARD inline text

SAVE MESSAGE TEXTClient Folder
List

Selected
Folder

Selected
Folder

Search Header +
Text

Display Info. All Metadata

GOALS DECISIONS RESOURCES TOKENS COMMANDS

Manage
Information

Communicate

Figure 31 – Decomposition and Mapping of Yahoo Functions

15.2.1.3 Lotus Notes Interface

Figure 32 shows a screen image from the Lotus Notes interface. This screen is

presented once a user selects an item from their “in-box”.

- 286 -

Figure 32 - Lotus Notes Interface

Figure 33 shows the subset of functions that we will be investigating. An interesting

aspect of this interface is the use of metaphoric icons to enhance the text buttons.

Figure 33 - Lotus Notes functions

For the sake of brevity, we are only performing a simplified decomposition on a subset

of the entire Lotus Notes interface. Many of the functions shown in Figure 33 provide

drop down menus with further command options, each of which could be included in

this decomposition (and subsequent recomposition using an unified metaphor). Of

course, the principles remain the same, but with the analysis extended to the entire

interface, the impact of the transformation would be likely to be even more dramatic.

The Tools function seems a particularly anachronistic function. The drop down menu

provided by this button is shown in Figure 34.

Figure 34 - Lotus Notes "Tools" Drop Down Menu

Two of these sub functions refer to the current email, the rest appear to be an assorted

collection of “left over” functions! This set of functions would itself be benefited by an

exercise of decomposition and unified metaphor recomposition to determine how they

could more logically be organised. We will leave this as a separate exercise for brevity’s

sake. The Lotus Notes interface decomposition is shown in Figure 35.

- 287 -

Figure 35 - Decomposition and Mapping of Lotus Notes Functions

15.2.2 Interface Recomposition
In recomposing the interface, we need not prohibit ourselves from using concrete

metaphors. However, we will impose the restriction that each concrete metaphor will

be used to explain a single concept only. This will ensure that there is a clearly defined

boundary for every non-unified metaphor.

15.2.2.1 Hotmail Interface

Figure 36 shows the set of functions that is required to represent each of the Decisions

shown in Figure 28. These replace the functions used in the original Hotmail interface:

REPLY

FORWARD

FOLDER

DELETE

COPY INTO

CHANGE FOLLOW
UP DATE

Sender +
Nominated
Recipients

Nominated
Recipients

Addresses

Selected
Folder

Folder
ListFile

Delete

Create
Reminder

NEW MEMONominated
Recipients

Address,
Date or Task

GOALS DECISIONS RESOURCES TOKENS COMMANDS

Manage
Information

Communicate Mail

Copy Contents

- 288 -

Figure 36 - Recomposed Hotmail Functions

Three of the functions shown (Mail, File and Select) are presented as drop down

menus, because the decomposition and mapping show that a choice of resources must

be made to enact these decisions. Decisions to Print or Delete have no associated

resources. If decisions are made to Mail, File, or Select a new token, then the resources

shown in Figure 37 are offered:

Figure 37 - Recomposed Hotmail Functions - Expanded

Thus, the reconstructed interface would look similar to Figure 38:

Comparing this to the original interface shown in Figure 26, we see that nine initial

interface functions have been replaced with five new functions. The mapping is as

follows:

 Mail = Reply, Reply All, Forward

 Delete = Delete

Figure 38 - Recomposition of Hotmail Interface based on Unified Metaphor

- 289 -

 File = Put in Folder

 Print = Format for Printer

 Change = Previous, Next and Close

No functionality has been lost.

15.2.2.2 Yahoo Interface

Figure 39 shows the set of functions that is required to represent each of the Decisions
shown in

Figure 31. These replace the functions used in the original Yahoo interface:

Figure 39 - Recomposed Yahoo Functions

Although Search does have associated Resources to choose from, it is not presented as

a drop down list because Yahoo provides a separate screen where the search terms can

be entered. If decisions are made to Mail, File, or Select a new token, then the

resources shown in Figure 40 are offered:

Figure 40 - Recomposed Yahoo Functions - Expanded

If Mail – New is selected, another set of choices would be provided to allow the user

to choose to Compose a new message, forward the current message as an attachment,

or forward the current message as inline text. Thus, the reconstructed interface would

look similar to Figure 41:

DeletePrintMail File Select Headers Search

- 290 -

Figure 41 - Recomposition of Yahoo Interface based on Unified Metaphor

In this case, thirty-one screen elements have been replaced with seven! Despite the

radical simplification of the interface, no functionality has been lost.

15.2.2.3 Lotus Notes Interface

Figure 42 shows the set of functions that is required to represent each of the Decisions

shown in Figure 35. These replace the functions used in the original Lotus Notes

interface:

Figure 42 - Recomposed Lotus Notes Functions

If decisions are made to Mail, File, or Copy a token, then the resources shown in are

offered Figure 43:

DeleteMail File ExpirationCopy

- 291 -

Figure 43 - Recomposed Lotus Notes Functions - Expanded

Thus, the reconstructed interface would look similar to Figure 44.

15.2.3 The Result
The methodology applied here has allowed us to replace a haphazard collection of

functions with a concise set of functions that is aligned with the way users use

interfaces. That is, users make decisions on how best to use the available resources in

order to achieve goals.

This has been achieved by decomposing the original interface, a translation to the

chosen unified metaphor (in this case, a Game metaphor) and then recomposing the

interface.

Mail
Sender
All
New

File
Inbox
Sent
Drafts

Copy
New Memo
New Calendar Entry
New To Do

- 292 -

The result is an interface that is much more attuned to the way humans experience the

world, based upon a consistent and coherent metaphor that can be applied to any

interface.

15.3 Developing New Interfaces

This approach can also be used to develop new interfaces. In this situation, the unified

metaphor is applied in the following stages:

 Identify the required functions.

 Map the required functions onto the unified metaphor.

 Construct the interface.

In the following example, a new, email system is constructed.

Figure 44 - Recomposition of Lotus Notes Interface based on Unified Metaphor

- 293 -

15.3.1 Identifying the Required Functions
As our previous analysis of email systems shows, the commonly provided functions of

an email system include:

 Mailing messages

 Filing messages

 Deleting messages

 Printing messages

 Selecting a message from a list

15.3.2 Mapping
The required functions can be mapped onto the game metaphor as shown in Figure

45.

Figure 45 - Mapping of New Email Interface Functions

MAIL ALL

MAIL NEW

FILE

DELETE

PRINT

SELECT

Sender +
Nominated
Recipients

Nominated
Recipients

Addresses

Selected
Folder

Folder
ListFile

Delete

Select

MAIL SENDERSender

GOALS DECISIONS RESOURCES TOKENS COMMANDS

Manage
Information

Communicate Mail

Print

- 294 -

15.3.3 Construction
Figure 46 shows the set of functions required to represent each of the Decisions

shown in Figure 45. These functions would be provided as part of a new email

interface.

Figure 46 - New Email Interface Functions

15.4 Conclusion

It has been shown that a metaphor that is unified at an enterprise level can also be used

to structure systems at a much lower level of abstraction. If it can be demonstrated that

such a metaphor can be applied at all levels of abstraction, then we will have shown

that a unified metaphor can be used to structurally align the implementation of systems

with the high-level strategic design of an enterprise. This provides a foundation for

future research.

It has also been shown that the use of a unified metaphor may offer advantages over

contemporary metaphorical approaches to systems development. A significant

advantage purported through the use of a unified metaphor is the flexibility and

expandability offered. When the first email systems were developed, synchronous

communications (e.g. instant messaging) were not part of the solution being offered.

Thus, the term “email” appeared rather appropriate, as there is a strong analogy

between asynchronous messaging and traditional mail.

Instant messaging has now become popular, but the email metaphor does not readily

accommodate it. This is perhaps the reason why suppliers offering both email and

instant messaging services usually provide them as separate products. By building the

email interface using a unified metaphor, we have developed a system that can easily be

Mail File

Mail
Sender
All
New

File
Inbox
Sent
Drafts

Delete Print
Select

Select
Previous
Next
Show All

- 295 -

expanded to incorporate other forms of human communications such as instant

messaging, groupware, game playing etc.

	Title Page
	Acknowledgements
	Overview of Contents
	Detailed Table of Contents
	List of Figures
	List of Tables
	Abbreviations
	Abstract
	1 Introduction
	2 Enterprise Architecture and Systems Modelling
	3 Metaphor
	4 Theoretical Principles for The Develeopment of Unified EA Modelling Languages
	5 The LEAN Ontology
	6 Experimental Research Metholodology
	Experimental Studies
	Conclusions and Future Research Directions
	Bibliography
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E
	Appendix F

