In Vitro Regulation of Growth, Differentiation and Survival of Leukemic CD5+ B Cells

Stuart G. Tangye

A thesis submitted for the Degree of DOCTOR OF PHILOSOPHY University of Technology, Sydney 1995.

Declaration

I certify that this thesis has not already been submitted for any degree and is not being submitted as part of candidature for any degree.

I also certify that this thesis has been written by me and that any help that I received in preparing this thesis, and all sources used, have been acknowledged.

Production Note: Signature removed prior to publication.

Stuart G. Tangye. B. App. Sc. (Hons.)

Acknowledgements

My first thank you goes to my supervisor, Professor Bob Raison. Bob not only allowed me to undertake my studies in his laboratory but also provided me with a great deal of his time, assistance and encouragement. Something that I am particularly grateful for was the amount of latitude Bob gave me with the direction that this project took. He always gave me enough rope, but never let me hang myself. So, many thanks Bob - it has been a pleasure and a privilege to work under your supervision.

I would also like to thank Dr. Kath Weston for being very helpful during various stages of this project, and for meticulously proof-reading this thesis. Thanks, Kath, also for the many stimulating discussions about B cells, cell culture and flow cytometry. Your support, enthusiasm and friendship have been invaluable and have contributed immensely to this work.

The Immunobiology Unit, UTS, has been a great place to work and many of its members, past and present, have been of assistance throughout the last 4 years. I would particularly like to acknowledge Grant Shoebridge who, despite being a molecular biologist, always took an interest in my project, was never afraid to ask me what was I doing and why, and was always willing to take a crash course in B cellology in order to understand my work. I would also like to thank Associate Professor Kevin Broady, Carolyn Woodlands, Nick dos Remedios and Jeanette Taverner for assistance at various times during the course of this project.

The N.S.W Cancer Council, Australasian Society for Immunology, UTS Vice-Chancellors Postgraduate travel fund and Bob all deserve thanks for

providing me with travel grants that enabled me to attend international conferences.

Outside of UTS, warm thanks go to my parents, family and friends for their continued support and interest over the years. Finally, none of this would have been possible without Karen who, for many years, has continued to be an eternal and invaluable source of patience, love, support and encouragement.

1

Abstract

B cell chronic lymphocytic leukemia (B-CLL) is a hematologic neoplasm characterised by the proliferation and accumulation of sIgM+/D+ B cells that fail to progress to the final stages of B cell development. The malignant cells in B-CLL also express the pan-T cell antigen CD5, suggesting that CLL is a malignancy of the CD5+ subset of B cells. Additional characteristics of the malignant clone include a low proliferative index, enhanced in vivo survival and constitutive expression of the anti-apoptosis oncoprotein bcl-2. The behaviour of leukemic CD5+ B cells in vitro contrasts their arrested in vivo state. That is, despite the majority of cells being arrested in the Go phase of the cell cycle, the leukemic B cells are not irreversibly frozen as they can be induced to differentiate to Ig-secreting cells under appropriate in vitro conditions. Furthermore, leukemic CD5+ B cells rapidly undergo death by apoptosis following in vitro culture. This thesis describes the requirements for in vitro activation of leukemic CD5+ B cells, the characterisation of the events involved in apoptosis of these cells as well as the identification of various growth factors capable of modulating these events.

Stimulation of unfractionated peripheral blood lymphocytes (PBLs) from three patients with B-CLL with the phorbol ester PMA and the mitogens PHA and PWM resulted in significant increases in cell proliferation, RNA synthesis and IgM secretion when compared to unstimulated cell populations. PMA was the most potent inducer of IgM secretion and this occurred irrespective of the presence of residual T cells. PMA-induced proliferation and RNA synthesis were also independent of T cells. However, in the presence of T cells, these parameters of cellular activation were enhanced during *in vitro* culture. Thus, the inductive ability of PMA on leukemic CD5+ B cells was independent of T cells. In contrast, activation and differentiation of the leukemic CD5+ B cells into IgM-secreting cells following culture with mitogens did not occur in the absence of T cells. Interestingly, co-stimulation of leukemic CD5+ B cells with PMA and anti-Ig induced cellular responses that exceeded those induced by either activator alone. Thus, leukemic CD5+ B cells from patients with B-CLL can be activated *in vitro* and differentiate in response to stimulation via both T cell-dependent and T cell-independent mechanisms.

Apoptotic cell death was characterised in purified leukemic CD5+ B cells obtained from six B-CLL patients. All leukemic CD5+ B cell populations entered an apoptotic pathway in vitro as evidenced by a reduction in cell size, loss of cell viability and fragmentation of DNA into multimers of ~180 base pairs. Following 24 hours of in vitro culture $24.0\pm16\%$ of DNA was fragmented. After 8 days, the majority of DNA was fragmented, and fewer than 10% of cultured cells were viable. Examination of bcl-2 expression in the malignant B cells by flow cytometry revealed a unimodal pattern of expression in >85% of cells from each B-CLL patient prior to culture. During in vitro culture, bcl-2 expression became bimodal such that the B cells displayed a bcl-2high and bcl-2_{low} phenotype. The level of expression by the bcl-2_{high} cells was similar to that observed prior to in vitro culture, indicating that bcl-2 is down-regulated in apoptosing cells. Interestingly, despite this downregulation, the overall number of cells positive for bcl-2 remained constant. This suggests that the enhanced survival of leukemic CD5+ B cells in vivo is mediated by the sustained expression of bcl-2 and that additional mechanisms exist capable of overriding the protective effect of bcl-2 when bcl-2 is present at reduced levels.

Leukemic B cell apoptosis has previously been reported to be delayed or prevented by IL-4, IFN- γ and IFN- α . These results were confirmed in this study where it was found that culture of leukemic CD5+ B cells with IL-4 or IFN- γ enhanced cell viability and delayed apoptosis in 6/6 and 5/6 populations of leukemic B cells, respectively. This function was also found to be shared by IL-2, IL-6, IL-13 and TNF- α as these cytokines enhanced cell viability and delayed apoptosis in some of the cell populations examined at a level similar to that observed for IL-4 and IFN- γ . These cytokines may mediate their effect via the expression of bcl-2 as culture in the presence of IL-2, IL-4, IL-6, IL-13, IFN- γ or TNF- α resulted in a higher percentage of cells displaying the bcl-2_{high} phenotype, compared to unstimulated cells. Taken together, these results suggest that autocrine and/or paracrine growth loops may play a role in the pathogenesis of B-CLL and that cytokines that prevent apoptosis *in vitro* may be targets for treatment of this B cell malignancy.

Publications arising from work presented in this thesis

Tangye SG, Weston KM and Raison RL (1995). Phorbol ester activates CD5+ leukemic B cells via a T cell-independent mechanism. **Immunol.** Cell Biol. <u>73</u>: 44-51.

Tangye SG and Raison RL (1995). Leukemic CD5+ B cell apoptosis: coincidence of cell death and DNA fragmentation with reduced bcl-2 expression. **Br. J. Haem.** <u>92</u>: 950-953.

TABLE OF CONTENTS

	PAGE	Nº.
Chapter 1: Introduction		
B Cell Development, Function and Differentiation		2
B Cells as Immunoglobulin-Secreting Cells		2
B Cell Development		4
B Cell Activation, Proliferation and Differentiat	tion	
In vitro		7
Activation via sIg		7
T Cell-Dependent B cell Activation		9
Activation via CD40		12
The Role of CD5 and its Ligand, CD72,		
in Cellular Activation		18
<u>CD5+ B Cells</u>		19
Characteristics of CD5+ B Cells		19
Appearance during Ontogeny; Anatomical Loca	tion	19
Phenotype/Morphology		21
Origin of CD5+ B Cells		22
Secreted Immunoglobulin		23
In vitro Responses		26
Function of Normal CD5+ B Cells		27
Chronic Lymphocytic Leukemia		28
Characteristics of the Malignant Clone		28
In vitro Activation of Leukemic CD5+ B Cells		29
Phorbol Esters		30
Mitogens		32
Activation via Cell Surface Antigens		32
Cytokines		35
Isotype Switching by CLL B Cells		39

.

Heterogeneity of Leukemic B Cell	
Responses, In vitro	40
Cytokines Secreted by CLL B Cells	41
Apoptosis	42
Apoptosis in the Immune System	43
Genetic Regulation of Apoptosis	46
Bcl-2	46
Fas/APO-1/CD95	50
Apoptosis and Leukemic CD5+ B Cells	50
Expression of bcl-2 and Fas in CLL B Cells	53
Aims of this Study	55
Chapter 2: Materials and Methods	
Antibodies for Immunofluorescence	56
Reagents/Antibodies for Immunoassays	
Mitogens	
Cytokines and Related Antibodies	
B-CLL Cells	57
Depletion of T Cells from CLL PBLs	58
Preparation of AET-treated SRBCs	58
Rosetting	59
Purification of T Cells from Normal Peripheral Blood	59
Surface Immunofluorescence	60
B Cell Cultures	61
Cell Proliferation and RNA Synthesis	61
Optimisation of Mitogen Concentrations	62
Activation via sIgM	62
Investigation of Leukemic B Cell Survival, In vitro	63
Co-culture with Allogeneic T Cells	63

Cytokine Cultures	64
Neutralisation of and Delayed Addition of Cytokines	64
Detection of Secreted Immunoglobulin	65
Detection of Binding of Secreted IgM to Mouse IgG	66
Determination of Cellular Viability	67
Determination of Apoptosis	67
Agarose Gel Electrophoresis	67
Apoptotic Nuclei	68
Expression of Bcl-2 Protein	69
SDS-PAGE and Western Blot Analysis	69
Immunofluorescence and Flow Cytometry	70
Treatment with Bcl-2 Antisense Oligonucleotides	71
Chapter 3: In vitro Activation of Leukemic CD5+ B Cells. Introduction	72
Results	
3.1. B-CLL Cell Phenotype.	74
3.2. Optimisation of <i>In vitro</i> Stimulation Conditions	79
3.3. Kinetic of CLL PBL Responses Following	
In vitro Stimulation	81
3.4. Development of Ig Isotype-Specific Immunoassays	86
3.5. Stimulation of CLL PBLs with Cellular	
Activators Induces IgM Secretion	89
3.6. PMA Induces Cellular Activation in the	
Absence of T Cells	96
3.7. T Cell Depletion of CLL PBLs Abrogates	
Mitogen-induced Activation and Differentiation	97
3.8. Effect of Residual T Cells on Leukemic	

4

3.9. Exogenous Cytokines Augment PMA-Induced	
Leukemic CD5+ B Cell Activation	101
3.10. Induction of Leukemic CD5+ B Cell Activation	
via Ligation of sIgM	104
3.11. Kinetics of Responses of Leukemic CD5+ B Cells to	
Anti- μ + PMA are Similar to PMA _{opt} Alone	111
3.12. Anti- μ has no Effect on the Enhancement	
of Viability of Leukemic CD5+ B Cells Caused by PMA	116
3.13. Crosslinking sIgM Does not Enhance	
Differentiation to IgM Secretion	117
Discussion	119

Chapter 4: Characterisation of In Vitro Apoptosis of Leukemic CD5+ B Cells

Introduction	134
Results	
4.1. Phenotype of CLL B Cells.	136
4.2. Kinetics of Leukemic CD5+ B Cell Death, In vitro	
4.3. Leukemic B Cells Undergo	
Spontaneous Apoptosis, In vitro	139
4.4. Characterisation of Apoptotic Cell Populations	142
4.5. Expression of Bcl-2 by Leukemic B Cells	149
i. SDS-PAGE/Western Blotting	149
ii. Immuno-flow Cytometry	152
4.6. Detection of bcl-2 Expression	154
4.7. Effect of Antisense Oligonucleotides on Viability and Bcl-	-2
Expression by In vitro Cultured Leukemic CD5+ B Cells	159
Discussion	164

Chapter 5: Regulation of Leukemic CD5+ B Cell Apoptosi	s In
Vitro By Cytokines	
Introduction	171
Results	
5.1. Soluble Factors Secreted by Activated T Cells	
Enhance Leukemic CD5+ B Cell Survival	174
5.2. Effect of Cytokines on Viability of Leukemic CD5+	
B Cells In vitro	176
5.3. Responsiveness to IL-2 Correlated with	
Expression of CD25	184
5.4. KAR B Cells Express CD80 and Respond to IL-13	184
5.5. IL-2, IL-4, IL-6, IL-13, IFN- γ and TNF- α Reduce	
Apoptosis in Stimulated Leukemic CD5+ B Cells	187
5.6. Effect of Combinations of Cytokines on Viability	
of Leukemic CD5+ B Cells	196
5.7. Long Term Effects of Cytokines on Leukemic CD5+	
B Cell Viability and Apoptosis	199
5.8. Requirements of Leukemic CD5+ B Cells for the Presence	
of Cytokines During In vitro Culture	206
5.9. The Signal Delivered by Cytoknes is Insufficient to	
Induce Cell Proliferation	215
5.10. Expression of Bcl-2 by Cytokine-treated	
Leukemic CD5+ B Cells	217
Discussion	224
Summary and Conclusions	241
Bibliography	245

dan b

-

LIST OF FIGURES

Figure 1.1: Characteristics of Developing B Cells	5
Figure 3.1: Phenotype of Unfractionated PBLs from CLL Patients.	75
Figure 3.2: Phenotype of T-Depleted CLL B Cell Preparations	76
Figure 3.3: Expression of sIg by CLL B Cells	77
Figure 3.4: Expression of Activation Antigens by CLL B Cells	78
Figure 3.5: Optimisation of PMA, PHA and PWM	80
Figure 3.6: PMA-induced Activation of Unfractionated PBLs and Purified B cells from B-CLL Patients.	82
Figure 3.7: Mitogen-Stimulated Leukemic B Cells and Residual T Cells Proliferate at a Similar Rate.	85
Figure 3.8: Development of Isotype-Specific Immunoassays.	87
Figure 3.9: Cross-Reactivity of IgM and IgG in the Isotype-Specific Immunoassays.	88
Figure 3.10: In vitro Activation of Leukemic CD5+ B Cells Induces IgM Secretion.	90
Figure 3.11: Light-chain isotype of IgM secreted by PMA-stimulated CLL PBLs	91
Figure 3.12: Binding of IgM Secreted by CLL B Cells to Mouse Ig.	93
Figure 3.13: Mitogenic-stimulation of MIL CLL PBLs Results in Secretion of IgG.	95

Figure 3.14: PMA Activation Induces Lymphoblastoid	
Transformation.	98
Figure 3.15: Mitogen Stimulation Enhances the Viability of CLL PBLs, but not T-depleted B Cells.	100
Figure 3.16: Exogenous Cytokines Enhance PMA-Induced Activation. of Leukemic B Cells	103
Figure 3.17: Anti-µ Synergises with PMA to Induce Proliferation of CLL PBLs.	105
Figure 3.18: Responses of Purified CD5+ Leukemic B Cells to Anti-µ and PMA.	106
Figure 3.19: Activation via sIgM is Enhanced with Increasing Concentrations of PMA	109
Figure 3.20: Kinetics of Proliferation and RNA Synthesis Induced by PMA and Anti-µ in Leukemic CD5+ B Cells	113
Figure 4.1: Kinetics of Leukemic CD5+ B Cell Death and Apoptosis.	138
Figure 4.2: Leukemic CD5+ B cells Undergo DNA Fragmentation <i>in vitro</i> .	141
Figure 4.3: Apoptosis is Accompanied By Reduced Forward Light Scatter	143
Figure 4.4: Characterisation of Apoptotic Cell Populations	144
Figure 4.5: Reduction in Cell Size Precedes Cell Death.	147

Figure 4.6: Detection of bcl-2 in Leukemic B Cells by	
SDS-PAGE and Western Blotting.	150
Figure 4.7: Optimisation of Detection of Bcl-2 by Immuno-flow Cytometry	153
Figure 4.8: Leukemic CD5+ B Cells Express High Levels of 1	ocl-2
Figure 4.9: Kinetics of Reduction of Bcl-2 Expression by <i>In vitro</i> Cultured Leukemic CD5+ B cells.	156
Figure 4.10: Reduced bcl-2 Expression Correlates with Cell Death	157
Figure 4.11: Effect of Phosphothioate-treated Oligonucleotides on	the
Light Scattering Charactertistics of Leukemic B Cells.	161
Figure 5.1: Soluble Factors Secreted by <i>In vitro</i> Activated T Cells Enhance Viability of Leukemic CD5+ B Cell	175
Figure 5.2: Optimisation of Cytokine Concentrations for Enhancement of Viability of Leukemic CD5+ B Cells	178
Figure 5.3: Effect of Cytokines on Leukemic B Cell Survival, In vitro.	182
Figure 5.4: Expression of CD25 by Leukemic CD5+ B Cells.	185
Figure 5.5: Expression of CD80 by Leukemic CD5+ B Cells	186
Figure 5.6: Effect of Cytokines on Death and Apoptosis in Different Leukemic CD5+ B Cells.	188
Figure 5.7: Cytokines do not Prevent Apoptosis in Leukemic CD5+ B Cells	191

i.

xv

Figure 5.8: Cytokines Prevent the Reduction in Cell Size that	
occurs in Apoptotic Leukemic CD5+ B Cells	194
Figure 5.9: Combinations of Cytokines do not Synergise to	
Further Enhance Viability of Leukemic CD5+ B Cell	197
Figure 5.10: Long Term Effects of Cytokines on Leukemic	
CD5+ B Cell Viabilty	201
Figure 5.11: Long Term Effects of Cytokines on Apoptosis of	
Leukemic CD5+ B Cell Apoptosis	204
Figure 5.12: Delaying the Addition of Viability-Enhancing	
Cytokines by 24-72 hours Abrogates their Effect	207
Figure 5.13: Optimisation of Anti-IL-2 and Anti-IL-4	
Antiserum Concentrations	210
Figure 5.14: Leukemic CD5+ B Cells Must be Exposed to IL-2 or	
IL-4 for at Least 24 hours for these Cytokines	
to Have a Viability-Enhancing Effect.	213
Figure 5.15: Expression of bcl-2 by Cytokine-stimulated	
Leukemic CD5+ B Cells	220

•

LIST OF TABLES

E) 2012 (11

Table 1.1:	Expression of antigens by Developing B Cells	6
Table 3.1:	Optimal Concentrations of Activators for <i>In vitro</i> Stimulation of CLL B Cells	81
Table 3.2:	IgM Secreted by Mitogen-Stimulated CLL PBLs is Monoclonal	92
Table 3.3:	Anti-µ Does Not Synergise with PMA to Enhance Cell Viability Induced by PMA	116
Table 3.4:	Secretion of IgM By MIL Leukemic CD5+ B cells Following Preactivation with PMA and/or anti-µ	118
Table 4.1:	Phenotype of Purified Leukemic CD5+ B Cells	137
Table 4.2:	In vitro Half-lives of Leukemic CD5+ B Cells	139
Table 4.3:	Effect of Oligonucleotides on Viability and Expression of Bcl-2 by Leukemic CD5+ B Cells	162
Table 5.1:	Optimal Viability-Enhancing Concentrations of Cytokines for <i>In vitro</i> Cultured Leukemic CD5+ B Cells	183
Table 5.2:	TNF- α and IL-6 Combine to Further Enhance the Viability of MUR B Cells.	199
Table 5.3:	Effect of Anti-IL-10 on Leukemic CD5+ B Cell Viability	216
Table 5.4:	Cytokines Do Not Induce Proliferation of Leukemic CD5+ B Cells	216
Table 5.5:	Cytokines Do Not Enhance RNA Synthesis of Leukemic CD5+ B Cells	216

Abbreviations

Second as

AET	2-aminoethyisothiouronium bromide
Ag	antigen
AML	acute myeloid leukemia
BCIP	bromochloroindolphenyl
B-CLL	B cell chronic lymphocytic leukemia
bp	base pairs
BSA	bovine serum albumin
BSF-MP6	B cell stimulatory factor derived from a T cell
	hybridoma
С	constant
cIg	cytoplasmic Ig
°C	degrees Cecius
CD	cluster of differentiation
CD40L	ligand for CD40
CLL	chronic lymphocytic leukemia
CD	cluster of differentiation
CIAA	chloroform isoamylalcohol
СРМ	counts per minute
ELISA	enzyme-linked immunosorbant assay
EBV	Epstein Barr virus
FACS	fluorescence activated cell sorter
$F(ab')_2 anti-\mu$	F(ab') ₂ fragments of rabbit polyclonal Ig specific for
	human μ chains of IgM
FBS	fetal bovine serum
FcR	Fc receptor
FITC	fluorescein isothyocyanate
FSC	forward angle light scatter
Н	Ig heavy chain

.

HCL	hairy cell leukemia
HIGM-1	hyper IgM immunodeficiency syndrome
IFN	interferon
Ig	immunoglobulin
IgA	immunoglobulin A
IgD	immunoglobulin D
IgE	immunoglobulin E
IgG	immunoglobulin G
IgM	immunoglobulin M
IL	interleukin
kDa	kilodalton
L	Ig light chain
LMW-BCGF	low molecular weight B cell growth factor
LPS	lipopolysaccharide
mAb	monoclonal antibody
MFI	mean fluorescence intensity
mins	minutes
μL	microlitre
mL	millilitre
NBT	nitroblue tetrazolium
NK	natural killer
nm	nanometre
pNPP	p-nitrophenyl phosphate
PBL	peripheral blood lymphocytes
PBS	phosphate buffered saline
PBS-BSA	0.1% BSA prepared in PBS, containing 0.1% sodium
	azide
PE	phycoerythrin
PHA	phytohemagglutinin

•

РКС	protein kinase C
PLL	prolymphocytic leukemia
PMA	phorbol myristic acetate
PMA _{low}	a suboptimal, submitogenic concentration of PMA
PMA _{opt}	optimal concentration of PMA
PWM	pokeweed mitogen
rpm	revolutions per minute
SAC	Staphylococcus aureus Cowan I
SCID	severe combined immunodeficiency
s.d.	standard deviation
SDS	sodium dodecyl sulfate electrophoresis
SDS-PAGE	sodium dodecyl sulfate polyacrylamide gel
	electrophoresis
s.e.m.	standard error of the mean
sIg	surface immunoglobulin
SRBC	sheep red blood cells
SSC	side (90°) light scatter
ssDNA	single stranded DNA
TBS	tris buffered saline
TBS-T	tris buffered saline containing 0.05% Tween
TGF	transforming growth factor
TNF	tumor necrosis factor
TNF-R	tumor necrosis factor receptor
TPA	tetradodecanoyl phorbol acetate
U	units
V	variable
XID	x-linked immunodeficiency