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Abstract

An ideal inductive machine learning algorithm produces a model best approx-

imating an underlying target function by using reasonable computational cost.

This requires the resultant model to be consistent with the training data, and

generalize well over the unseen data. Regular inductive machine learning algo-

rithms rely heavily on numerical data as well as general-purpose inductive bias.

However certain environments contain rich domain knowledge prior to the learn-

ing task, but it is not easy for regular inductive learning algorithms to utilize prior

domain knowledge. This thesis discusses and analyzes various methods of incor-

porating prior domain knowledge into inductive machine learning through three

key issues: consistency, generalization and convergence. Additionally three new

methods are proposed and tested over data sets collected from capital markets.

These methods utilize financial knowledge collected from various sources, such

as experts and research papers, to facilitate the learning process of kernel meth-

ods (emerging inductive learning algorithms). The test results are encouraging

and demonstrate that prior domain knowledge is valuable to inductive learning

machines.

xiv



CHAPTER 1

Introduction

As a major subfield of artificial intelligence, machine learning has gained a broader

attention in recent years. The Internet makes a variety of information more easily

accessible than ever before, creating strong demands for efficient and effective

methods to process large amounts of data in both industrial and scientific research

communities. The application of machine learning methods to large databases

is called Data Mining or Knowledge Discovery [Alp04]. Despite the existence of

hundreds of new machine learning algorithms, from a machine learning academic

researcher’s perspective, current research remains in preliminary status. If the

ultimate goal is to develop a machine that is capable of learning at the level of the

human mind, the journey has only just begun [Sil00]. This thesis is but one step

in that journey, and will focus on exploring the outstanding question: How can

a learning system represent and incorporate prior domain knowledge to facilitate

the process of learning?

This introductory chapter is divided into five sections: Section 1.1 provides

an overview of the research problem; Section 1.2 defines the concepts of inductive

machine learning and domain knowledge; Section 1.3 presents the motivation for

this dissertation; and Section 1.4 describes the approach that was undertaken,

providing an overview of the subsequent chapters and the structure of the docu-

ment.
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1.1 Overview of Incorporating Prior Domain Knowledge

into Inductive Machine Learning

The majority of machine learning systems learn from scratch, inducing models

from a set of training examples without considering existing prior domain knowl-

edge. Consequently, most machine learning systems do not take advantage of

previously acquired domain knowledge when learning a new and potentially re-

lated task. Unlike human learners, these systems are not capable of accumulating

domain knowledge and sequentially improving their ability to learn tasks [Sil00].

The majority of research incorporating prior domain knowledge into inductive

machine learning has been done in the fields of pattern recognition and bioinfor-

matics (see chapter 3 in detail). Still, there is no adequate theory of how prior

domain knowledge can be retained and then selectively incorporated when learn-

ing a new task. Apart from pattern recognition and bioinformatics, a few similar

research projects have been done in computational finance, another prevailing

application of machine learning. One of the research projects is led by Yaser

Abu-Mostafa’s Learning Systems Group in the California Institute of Technol-

ogy. Here, Yaser Abu-Mostafa applied learning from hints, a subset of domain

knowledge, to the very noisy foreign exchange market. As this study shows,

domain knowledge is domain dependent, and the methods feasible in the other

areas might not be helpful in the finance research. There is still the question of

applying successful methodologies across a variety of fields, and the existence of

a universal methodology [Abu95].

This thesis aims to summarize recent developments regarding incorporating

prior domain knowledge into inductive machine learning. Through it, this thesis

proposes three new methods of incorporating given domain knowledge into the
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learning process of the given inductive machine learning algorithm, that is kernel

methods, and applies the methods to the contemporary capital markets.

1.2 Machine Learning and Prior Domain Knowledge

1.2.1 What is Machine Learning?

This thesis adopts the following definition of machine learning given by Tom

Mitchell:

A computer program is said to learn from experience E with re-

spect to some class of tasks T and performance measure P , if its

performance at tasks in T , as measured by P , improves with experi-

ence E [Mit97a].

In particular, machine learning contains principles, methods, and algorithms for

learning and prediction on the basis of past experience. The goal of machine

learning is to automate the process of learning [BBL04]. Currently, archived

data is increasing exponentially, they are supported not only by low-cost digital

storage but also by the growing efficiency of automated instruments [Mug06].

Consequently, it is already beyond human capability to process such dense data,

resulting in strong demands for improved learning systems to assist people in

making the best use of archived data.

At present, there are three paradigms for machine learning: Inductive Learn-

ing, Deductive (Analytical) Learning and Transductive Learning. Inductive Learn-

ing seeks a general hypothesis that fits the observed training data, examples of

which are decision tree and artificial neural network (ANN). Alternatively, De-

ductive (Analytical) Learning uses prior knowledge to derive a general hypothesis

3



as new knowledge [Mit97b], e.g. Explanation-Based Learning (EBL). Recently,

Transductive Learning (TL) stands out as a new type of machine learning, which

is gaining broader attention. The Transductive Learning neither generalizes a

model from examples, nor derives new knowledge from existing knowledge. In-

stead, TL makes predictions based on existing examples without the process of

generalization. For the sake of simplicity, this thesis uses the term ”Machine

Learning” to indicate Inductive (Machine) Learning unless stated otherwise.

The process of inductive learning (see Figure 1.1) is summarized as the follow-

ing steps [BBL04]: firstly, users observe a phenomenon to collect sets of examples

(data); secondly, a learning system constructs a model of that phenomenon us-

ing the available data sets; and finally, the operators make predictions using this

model and future examples. Here, a model (or hypothesis) is an idealized repre-

sentation - an abstract and simplified description - of a real world situation that

is to be studied and/or analyzed [GH96]. The output of an inductive learning

system is a model in the form of a simple equation, a graph (network), or a

tree, and is generally denoted by an f(.). Given a set of examples (data), the

key question of inductive learning is to find a model f(.) that not only fits the

current data but is also a good predictor of y for a future input of x.

A simple example (Table 1.1) concerning an audit fee introduces the concept

of inductive machine learning now:

1. Observe a phenomenon:

Suppose the task is to predict audit fees for publicly listed companies. A

set of audit fees and the records of company characteristics are given (to-

tal assets, profit, and industry category), illustrating similarities between

different companies. These records and fees are represented in Table 1.1.

These records and audit fees construct a data set, often referred to as obser-

4



Figure 1.1: Inductive Machine Learning System by the General Learning Process

Company Total Assets Profit Industry Category Audit fee

A 20,000,000 1,000,000 Manufacture 20,000

B 35,000,000 5,000,000 Information Tech 100,000

C 1,000,000 400,000 Manufacture ?

Table 1.1: An example of a data set

vations, examples, or simply data sets. Then a model of that phenomenon

will be constructed, in this case, a mapping from company characteristics

to audit fees based on the records of other companies.

2. Construct a model of that phenomenon:

In many cases the model (mapping) is written mathematically: Audit fee =

f(Total Assets, Profit, Industry Category). Here f(.) stands for the model

(mapping). Further, if we assume this model is linear, it is thus written

as: Audit fee = β0 + β1· Total Assets+β2·Profit+β3·Industry Category.

However, the coefficients of the model β0, β1, β2, β3, are unknown so far, and

therefore some of the records and fees of other companies are introduced

to the learning system. In many cases of machine learning, the data set is

5



divided into two parts: 1) a training data set, (such as company A and B

in Table 1.1); and 2) a test data set (e.g. company C in Table 1.1). The

training data set constructed by the input-output pairs of these records and

fees are fed into a learning algorithm to estimate the unknown coefficients.

It is assumed that an identical underlying and unknown model, say c(x),

exists to produce the input-output pairs, and the purpose of this step is to

discover the model c(x). In most cases, this is very difficult to locate, with

the only possible result becoming an approximation f(x) to the unknown

model c(x). Therefore, the result of this step is a model f(x) which is the

best approximation to the target model c(x).

3. Make predictions using this model

When the coefficients are estimated, the model f(x) is finalized. The test

data set constructed by the records of new company (e.g. company C) is

fed into the model f(x) to predict the unknown audit fee of the company.

This process of inductive learning is summarized as two steps: the generalized

model derived from specific examples, and the prediction (or estimation) of new

specific examples through the applied model. Inductive machine learning can

thus be seen as the problem of function approximation from the given data.

1.2.2 What is prior domain knowledge?

In order to introduce a definition of domain knowledge, distinctions between three

concepts, data, information, and knowledge, need to be addressed.

• Data: the uninterpreted signals that reach our senses.

• Information: data equipped with meaning.
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• Knowledge: the entire body of data and information that people bring to

practical use in action. This assists them in carrying out tasks and creating

new information. Knowledge adds two distinct aspects: firstly, a sense of

purpose, whereby knowledge is the ”intellectual machinery” used to achieve

a goal; and secondly, a generative capability, which becomes clear that one of

the major functions of knowledge is to produce new information. [SAA99].

From these definitions of data, information and knowledge, one might ascer-

tain that the distinctions between them are not definite or static. The reasons

reside in the fact that knowledge very much depends on context. For exam-

ple, the knowledge of a computer scientist does not make much sense to a stock

trader because the trader knows little about computer science. In that situation,

the computer scientist’s knowledge is the trader’s data. The concepts are inter-

changeable, and data or information is escalated to be knowledge when attached

with meaning and purpose. The knowledge is then recorded or encoded as data

or information via some media, for example papers, television or a computer sys-

tem. Because every normal software system contains knowledge to some extent,

the line between a “normal” software system and a so-called ”knowledge system”

is not fixed [SAA99].

The representation of knowledge in computer systems is very much context-

dependent. Due to the nature of the knowledge, there is no universal system

containing all types of knowledge. In practice, a system with an explicit repre-

sentation of knowledge depends on the domain, containing some area of interest.

It is therefore necessary to focus the research on the domain knowledge rather

than the general knowledge.

Other researchers have given a variety of definitions to the term prior domain

knowledge. Prior domain knowledge is information about data that is already

7



available either through some other discovery process or from a domain expert

[ABH95]. Scholkopf and Smola refer to prior knowledge as all available informa-

tion about the learning task in addition to the training examples [SS02a]. Yaser

S. Abu-Mostafa represented domain knowledge in the form of hints, side infor-

mation, heuristics, and explicit rules. His definition of the domain knowledge is

the auxiliary information about the target function that can be used to guide

the learning process [Abu95]. In this thesis, prior domain knowledge refers to

all auxiliary information about the learning task. The information comes from

either related discovery processes or domain experts, and can be used to guide

the learning process (see figure 1.3).

In the case of learning systems, the domain is referred to as a learning task.

Within any domain, different specialists and experts may use and develop their

own domain knowledge. In contrast, knowledge that functions effectively across

every domain is called domain-independent knowledge. Domain knowledge in-

herits some properties from the concept of knowledge, and it is represented in

various forms due to their types and contexts. Unfortunately, domain knowl-

edge is always informal and ill structured. It is therefore difficult to incorporate

domain knowledge into standard learning systems. Often domain knowledge is

represented as a set of rules within a knowledge base, the so-called ”expert sys-

tem”. However, due to its context-dependence, the methods of transformation

vary, and are not restricted by the logic formats.
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1.3 Motivation: Why is Domain Knowledge needed to

enhance Inductive Machine Learning?

The majority of standard inductive learning machines are data driven. They

rely heavily on sample data and ignore most existing domain knowledge. The

reasons vary: In general, researchers in machine learning have sought general-

purpose learning algorithms rather than a single-purpose algorithm functioning

only within a certain domain. However, domain experts often do not understand

complex machine learning algorithms, and thus cannot incorporate their domain

knowledge into machine learning. Simultaneously, in certain domains, the ma-

chine learning researchers often have little idea of existing domain knowledge.

Even though they have intentions to incorporate a type of domain knowledge

into a learning system, it is still difficult to encode the domain knowledge be-

cause there is no universal format to represent domain knowledge in computer

systems.

My research work proposes new methods of incorporating prior domain knowl-

edge into inductive learning machines. These methods will be tested against both

benchmark and real-world problems. The motivation of this research comes from

several fronts: cognitive science, computational learning theory, and the desire

to solve real-world problems [Sil00].

The learning process of human beings is a process of knowledge accumulation.

From childhood a person acquires knowledge either through trial and error, or

through education. When facing new tasks, they are able to use their acquired

array of knowledge effectively to appropriate new skills. If a machine learning

system is to emulate the ability of human learning, it must have a method of

acquiring and incorporating knowledge into a future learning process [Sil00]. If
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related domain knowledge already exists, a learning machine should no longer

ignore it and start from scratch. Nor should that machine have to re-discover

existing domain knowledge repeatedly. The focus of this research comes from the

desire to create machine learning systems that construct models from multiple

sources and accumulated knowledge.

The advances of computational learning theory point to the need of inductive

bias during learning. The inductive bias of a learning system can be considered a

learning system’s preference for one hypothesis over another [Sil00] (the precise

definition will be given in Chapter 2). Without inductive bias , there is no ability

to say one machine learning algorithm is better than another one [BBL04]. The

selection of machine learning algorithms is the process of looking for learning

algorithms with more suitable inductive bias with respect to the training exam-

ples. Domain knowledge has been recognized as a major source of inductive bias

[Sil00]. The inductive bias of standard learning algorithms is rather generic, and

the search for the most appropriate inductive bias is a fundamental part of ma-

chine learning [Thr96]. This research is based on a desire to provide a method to

construct a more precise inductive bias.

In real-world problems, prior domain knowledge is valuable enough to be

incorporated into practical inductive learning systems. The example (see Figure

1.2) provides insight into the ways prior domain knowledge can enhance the

performance of a simple inductive learning system. In the Figure 1.2, three points

represent three training examples. In the case of standard machine learning, a

smooth curve is learned across three points (see Figure 1.2 a). If some domain

knowledge exists, e.g. gradients at each point, the resultant curve needs not

only go across the points, but also take into account these gradients. Thus the

resultant curve (Figure 1.2 b) differs very obviously from the previous one.
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Figure 1.2: An Example of Inductive Machine Learning without and with Domain

Knowledge

In the problem described in Figure 1.2, the gradient, a type of domain knowl-

edge, can be treated as an additional constraint apart from the location of the

data points. Within an optimization problem, these gradients can be represented

as additional constraints. In some machine learning algorithms, the least square

error, a type of the loss function, can be modified to contain those additional

components to penalize the violation of these constraints. Therefore, through

these additional constraints, the final result would be influenced by this particu-

lar domain knowledge.

To clarify, in many real world applications, a large proportion of domain

knowledge is not perfect. It might not be completely correct or cover the whole

domain. Thus, it is incorrect and incomplete that the resultant model relies

only on either the domain knowledge or training examples. The trade-off is a

crucial issue to reaching optimal results. Detailed discussion will be developed

in the following sections of this thesis. The key motivation for this research is a

desire to make the best use of information from various sources to overcome the

limitation of training examples. This is especially true in relation to real-world
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Figure 1.3: Domain Knowledge and Inductive Machine Learning in the Given

Domain

domains where extensive prior knowledge is available.

If one applies another perspective (see Figure 1.3), machine learning and do-

main knowledge can become an interactive process. Within a given domain,

machine learning aims to discover the unknown part of knowledge distinct from

prior domain knowledge. At the same time, this research aims to use the exist-

ing domain knowledge to improve the process of this knowledge discovery. The

results of the previous machine learning tasks can be treated as parts of its prior

domain knowledge by following other machine learning tasks. If the machine

learning algorithms have the capability to incorporate prior domain knowledge,

every machine learning task is actually enriching the repository of the domain

knowledge.

1.3.1 Open Areas

Much attention has been paid to creating a partnership between inductive ma-

chine learning and prior domain knowledge. However there is still no systematic

research or practical framework capable of containing domain knowledge in var-
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ious formats. This particular topic still possesses numerous open areas:

• How can we express domain knowledge in standard machine learning sys-

tems? Is there any generic and efficient method?

• Can a balance be reached between training samples and domain knowledge?

Will this diminish the negative impact from imperfect domain knowledge?

• Are there more transparent and controllable methods of incorporating do-

main knowledge into inductive machine learning?

• Is there a general framework that does not require users to master intricate

machine learning algorithms?

Regarding these open areas, the objectives of this research include: 1) by in-

corporating domain knowledge, implement machine learning algorithms into new

areas in which current standard inductive machine learning is incapable of; 2) im-

prove the performance of inductive machine learning algorithms by balancing the

impacts of domain knowledge and training examples; 3) reduce computational

requirements from the search process with the help of domain knowledge; and

4) build more disciplined modeling methods, which are low order, fewer param-

eters, more transparent and easy to be maintained in order to facilitate users’

understanding.

1.4 Proposal and Structure of the Thesis

My research will show how specific methods and frameworks of incorporating

domain knowledge into inductive machine learning will enhance the performance

of machine learning systems (see Figure 1.3). Firstly, via a brief discussion, I will

examine the basic concepts of machine learning techniques and theories, with

13



respect to the Statistical Learning Theory, the Kernel Methods, and Domain

Knowledge. Secondly, I will propose a framework of incorporating prior domain

knowledge into inductive machine learning. The proposal is employed to analyze

the existing methods of incorporating prior domain knowledge into inductive

machine learning. Thirdly, I will propose three new methods and test them over

the domains of capital markets as case studies.

Each chapter of this study will incorporate the above analogies. Chapter 2

introduces background knowledge regarding learning theory, machine learning,

and domain knowledge. Chapter 3 moves into proposing a framework for incor-

porating domain knowledge into inductive machine learning, and employs this

framework to analyze related works. This will be accomplished by applying basic

knowledge in the domain of capital markets. Chapter 4 will propose the methods

and frameworks to incorporate domain knowledge; and chapter 5 and 6 will use

two case studies to demonstrate the benefits of incorporating domain knowledge

into inductive machine learning. Finally chapter 7 will summarize the entire

thesis by way of a conclusion and suggestions for future works in this field of

study.
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CHAPTER 2

Inductive Machine Learning and Prior Domain

Knowledge

This chapter formally introduces some of the basic concepts of both inductive

machine learning and prior domain knowledge. The first section presents ba-

sic material on inductive machine learning, computation learning theory, kernel

methods and optimization in order. The second section summarizes literature

on domain knowledge, forms of knowledge transfer, and the relatedness between

tasks and domain knowledge.

This chapter provides a foundation to the next chapter, in which the state of

the art of research incorporating prior domain knowledge into inductive machine

learning will be summarized and compared for further discussion of authors’

methods represented in the following chapters.

2.1 Overview of Inductive Machine Learning

As was introduced previously, an inductive learning process can be seen as a

process of function approximation. In other words, a machine learning sys-

tem generally has the capability of constructing a rather complex model f(x)

to approximate any continuous or discontinuous unknown target function c(x),

f(x) → c(x), as long as sufficient training examples S are provided. Furthermore,
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in this thesis, the authors would like to divide the inductive learning process into

two major steps for the following discussion:

1. A learning system L constructs a hypothesis space H from a set of train-

ing examples (or observations) S, for example a set of training examples

consisting of input-output pairs S = {〈xi, c(xi)〉}, and the inductive bias B

predefined by the learning system and the task T .

2. The learning system then searches through the hypothesis space to con-

verge to an optimal hypothesis f consistent with training examples and

also performing well over other unseen observations.

There are three types of inductive machine learning: supervised learning,

unsupervised learning, and semi-supervised learning. One of differences among

them is the formats of their data sets. The data sets of supervised learning con-

tain output variables Y , and the major supervised learning algorithms include the

classification (or pattern recognition) and regression. The data sets of unsuper-

vised learning do not contain output variables, and the major algorithms of this

category are the clustering and density estimation. Some unsupervised learning,

for example Independent Component Analysis (ICA) and Principle Component

Analysis (PCA), is employed as algorithms of the dimensionality reduction as a

step of the data preprocessing. The part of data sets for semi-supervised learn-

ing contain output variables, where the remaining parts of data sets is unlabeled.

Because in real-world cases, the majority of training data sets is partially labeled,

this type of inductive machine learning has gained more attention recently.

In this thesis, the applications are mainly involved with the supervised learn-

ing. As case studies, this thesis focuses on methods of incorporating prior domain

knowledge into inductive supervised machine learning. It is uncertain that these
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methods are able to be extended to other types of inductive machine learning.

As only supervised learning is discussed, the mention or use of inductive machine

learning is meant to imply the supervised format.

2.1.1 Consistency and Inductive Bias

Given a training data set consisting of input-output pairs (xi, yi) drawn indepen-

dently according to an unknown distribution D from an unknown function c(x)

(the i.i.d. assumption), the task of inductive machine learning is to find a model

(or hypothesis) f(x) within the given hypothesis space H to best approximate the

c(x): f(x) → c(x) with respect to the given data set X×Y and ∃f(x) ∈ H. The

best approximation of the target unknown function c(x) is a function f : X → Y ,

such that the error, averaged over the distribution D, is minimized. However the

distribution D is unknown, so the average cannot be computed directly, and thus

alternative ways are needed to estimate the unknown error.

The process of choosing and fitting (or training) a model is usually done ac-

cording to formal or empirical versions of inductive principles. All approaches

share the same conceptual goal of finding the “best”, the “optimal”, or most par-

simonious model or description capturing the structural or functional relationship

in the data. The vast majority of inductive machine learning algorithms employ

directly or indirectly two inductive principles [GT00]:

1. Keep all models or theories consistent with data

Traditional model fitting and parameter estimation in statistics usually em-

ploys Fisher’s Maximum Likelihood principle to measure the fitting [LM68].

In Bayesian inference, the model is chosen by maximizing the posterior

probabilities [CL96] [BH02].
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2. Modern version of Occam’s razor (Choose the most parsimonious model

that fits the data)

Minimum Description Length (MDL) principle or Kolmogorov complexity

choose the model having the shortest or most succinct computational rep-

resentation or description as the most parsimonious one [LP97] [Ris89].

The first principle “Keep all models or theories consistent with data” requires

a measurement of the goodness of the estimated function (or model). In the

inductive machine learning community, the risk function R(f) (or loss L(f), error

e(f)) is one of the often used approaches to measure the distance or disagreement

between the true function c(x) and the estimated function f(x) [Pog03][Abu95]:

Let X and Y refer to two sets of all possible examples over which the target

function c(x) may be defined. Assume that a training set S is i.i.d. generated

at random from X × Y according to an unknown distribution D, a learner L

(or a machine learning algorithm) must output a hypothesis f(x) (or model) as

a function approximation to the underlying unknown function y = c(x) from

samples. The output looks like: y∗ = f(x), and the risk (or loss) function is

written as:

R(f) = V (f(x), y) (2.1)

here V is an arbitrary metric which measures the difference between the estimated

values and true values.

There exist two notions of risk functions: 1) the true risk function of a hy-

pothesis f(x) is the probability that f(x) will misclassify an instance drawn at

random according to D [Mit97a]

R(f) ≡ Prx∈D[f(x) 6= c(x)] (2.2)
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Task Pattern Recognition Regression

Training Examples (xi, yi) ∈ Rn × {±1} (xi, yi) ∈ Rn × R
Empirical Risk Remp[f ] = 1

m

∑m
i=1

1
2
|f(xi)− yi| Remp[f ] =

∑m
i=1(f(xi)− yi)

2

True Risk R[f ] =
∫

1
2
|f(x)− y|dD(x, y) R[f ] =

∫
1
2
(f(x)− y)2dD(x, y)

Learning Supervised Supervised

Task Density Estimation

Training Examples xi ∈ Rn

Empirical Risk Remp[f ] =
∑m

i=1 log f(xi) = log(
m∏

i=1

f(xi))

True Risk R[f ] =
∫

(− log f(x))dD(x)

Learning Unsupervised

Table 2.1: A list of empirical risk and true risk functions

and 2) the empirical (sample) risk of a hypothesis f(x) with the respect to target

function c(x) and the data sample S = {(x1, y1), . . . , (xn, yn)} is:

Remp(f) ≡ 1

n

∑
x∈S

δ(f(x), c(x)) (2.3)

where δ(.) is any metric of the distance between f(x) and c(x). A function

f is consistent with the training examples S, when Remp(f) = 0, and is the

equivalence of the target function c(x) when R(f) = 0.

In terms of the output variables in data sets, the empirical risk functions and

true risk functions differ. With this differences, machine learning addresses three

different types of tasks: pattern recognition, regression and density estimation(see

Table 2.1).

For example, pattern recognition is to learn a function f : X → {±1} from

training examples (x1, y1), . . . , (xm, ym) ∈ Rn × {±1}, generated i.i.d. according

to D(x, y), such that the true risk function R[f ] =
∫

1
2
|f(x) − y|dD(x, y) is
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minimal. But because D is unknown, an empirical risk function replaces the

average over the D(x, y) by an average over the training examples: Remp[f ] =

1
m

∑m
i=1

1
2
|f(xi)− yi|.

It is very rare that the training examples cover the whole population, and even

when this does occur, constructing a hypothesis memorizing all of the training

examples does not guarantee that the best model is selected within the hypothesis

space H. Very often, this would produce an effect known as over-fitting which

is analogues to over-fitting a complex curve to a set of data points [Sil00]. The

model becomes too specific to the training examples and does poorly on a set

of unseen test examples. Instead, the inductive machine learning system should

output a hypothesis performing equally well over both training examples and test

examples. In other words, the resultant hypothesis must generalize beyond the

training examples.

Here the second inductive principle, ”the modern version of Occam’s razor”,

is the most accepted and widely applied for the type of generalization. Actually,

Occam’s razor is only one example of a broader concept, called inductive bias.

Inductive bias denotes any constraint of a learning system’s hypothesis space,

beyond the criterion of consistency with the training examples [Sil00].

This thesis adopts Tom Mitchell’s definition of the inductive bias: Consider

a concept learning algorithm L for the set of examples X. Let c be an arbitrary

concept defined over X, and let S = {〈x, c(x)〉} be an arbitrary set of training

examples of c. Let L(xi, S) denote the classification assigned to the example

xi by L after training on the data S. The inductive bias of L is defined to

be any minimal set of assumptions B such that for any target concept c and

corresponding training examples S [Mit97a]:

(∀xi ∈ X)[(B ∧ S ∧ xi) ` L(xi, S)] (2.4)
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here a ` b indicates that b can be logically deduced from a.

Currently most of the inductive machine learning algorithms have their fixed

and general-purpose inductive bias. To illustrate, the support vector machine,

which is discussed later in this chapter, prefers a hypothesis with the maximum

margin. This inductive bias is fixed and applied to all tasks the learning system

deals with. Ideally, a learning system is able to customize its inductive bias for a

hypothesis space according to the task being learned.

The inductive bias has direct impacts on the efficiency and effectiveness of a

learning system, and a major problem in machine learning is that of inductive

bias: how does a learner construct its hypothesis space, so that the hypothesis

space is large enough to contain a solution to the task, and yet small enough to

ensure a tractable and efficient convergence [Bax00]. Ideally, the inductive bias

supplies a hypothesis space containing only a single optimal hypothesis. When

this occurs, the inductive bias already completes the task of the learning system.

Some learning algorithms have no inductive bias, called unbiased learners, but

often their outputs perform poorly over unseen data. The majority of learning al-

gorithms have more or less inductive bias, called biased learners. Within a biased

learning system, the initiation of the hypothesis space H and the convergence to

the optimal hypothesis f are induced from the training examples and deduced

from the inductive bias. With the sensible selections of bias, the biased learn-

ers often perform better than the unbiased ones, and the unbiased learners are

hardly used in real-world cases. Considering the applications require the learners

to perform consistently over noisy data sets, this thesis only addresses the biased

learners.
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2.2 Statistical Learning Theory Overview

Learning theory provides some general frameworks which govern machine learners

independent of particular learning algorithms. Consider a concept class C defined

over a set of examples X of length n and a learner L using hypothesis space H. C

is PAC (Probably Approximately Correct) -learnable by L using H if for all c ∈ C,

distributions D over X, ε such that 0 < ε < 1/2, and δ such that 0 < δ < 1/2,

learner L will with probability at least (1 − δ) output a hypothesis h ∈ H such

that RD(h) ≤ ε, in time that is polynomial in 1/ε, 1/δ, n, and size(c) [Mit97a].

This definition raises three crucial issues of a learner (a learning algorithm

L), which impact the efficiency and effectiveness of a learner. First, L must,

with arbitrarily high probability (1− δ), output a hypothesis h being consistent

(or an arbitrarily low risk (or error) ε) with the training examples generated

randomly from X according to a distribution D. Secondly, L must, with an

arbitrarily high probability (1 − δ), output a hypothesis h being generalized for

all examples (including unseen examples) with an arbitrarily low risk. Because

the training examples rarely cover the whole population and the there are always

unseen examples, the generalization aims to reduce the difference between the

approximation based on the observed examples and the approximation based on

the whole population. A bit further, the generalization is closely related to the

complexity of the hypothesis space H. Thirdly, the convergence to the optimal

hypothesis h must be efficient, that is in time that grows at most polynomially

with 1/ε, 1/δ, n, and size(c). Otherwise, the convergence will be a NP(Non

Polynomial)-complete problem, and the learner L is not of use in practice. The

convergence is closely related to the computation complexity. In summary, the

function approximation produced by a learning algorithm must be consistent,

must exist, must be unique and must depend continuously on the data, and the
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approximation is “stable” or “well-posedness” [Pog03].

As previously addressed, the available examples often are insufficient to cover

the whole population, and thus the consistency of the available examples does

not guarantee the consistency of all examples (including the available and unseen

examples) generated by the target concept c. Furthermore, given some training

data, it is always possible to build a function that fits exactly the data. This

is generally compromised in presence of noise, and the function often is not the

best approximation. Thus it results in a poor performance on unseen examples.

This phenomenon is usually referred to as overfitting [BBL04]. The crucial prob-

lem is to best estimate the consistency of all examples, but the insufficiency of

the training examples makes the learner very difficult to measure true risk R[f ]

directly. Thus one of the main purposes of learning theory is to build up a frame-

work which minimizes the true risk R[f ] simultaneously but does not increase

the possibility of overfitting while minimizing the empirical risk Remp[f ].

Additionally, in the figure 2.1, it is always possible to build multiple functions

to exactly fit the data. Without extra information about the underlying function,

there are no means to favor one function over another one. This discussion is often

called the ‘no free lunch’ theorem [BBL04]. From the beginning, any machine

learning algorithm already makes assumptions apart from the training data , for

example i.i.d. assumption. Hence, this leads to the statement that data cannot

replace knowledge, and can be expressed mathematically as:

Generalization = Data + Knowledge (2.5)

Standard learning systems employ their general-purpose inductive bias as a

type of domain knowledge. For example, the modern version of Occam’s ra-

zor (Choosing the most parsimonious model that fits the data) is employed to

converge to an optimal hypothesis by minimizing the complexity of the function
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Figure 2.1: More than one functions that fits exactly the data. The red points

stand for the observed data, and blue (darker) and green (lighter) curves pass

them exactly without any error. Without further restriction, the empirical risk

function cannot indicate which is better. The complexity of the blue curve is

higher than of the other ones [Pog03]
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Figure 2.2: Risk, Empirical Risk vs. Function Class

approximation. However, this only gives a qualitative method, and a quantitative

method is needed to measure the difference between true risk and empirical risk

functions.

In the following section, the discussion introduces a quantitative method.

For the sake of simplicity, the discussion is restricted within the case of binary

classification problem and noise-free training data.

According to the law of large numbers, in the limit of infinite sample size

the previous empirical risk minimization leads to the true risk minimization;

expressed mathematically Remp[f ] → R[f ] as l →∞ or liml→∞(Remp[f ]−R[f ]) =

0, where l is the size of the sample size. It is important to note that this statement

becomes compromised, when f is not just one function but a set of functions.

In Figure 2.2, a fixed point on the axis “Function Class” stands for a certain

function. At the fixed point, in the limit of infinite sample size, Remp[f ] → R[f ]

is held. But the convergence of the entire function class from the empirical risk

to the true risk is not uniform. In other words, some functions in the function

class converge faster than others.

Here an assumption is made: the given hypothesis space H contains at least
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one hypothesis fH which is identical to the unknown target model c(x). The

generalization risk (the difference between the risk of any function in the given

hypothesis space and the true risk) can be expressed as:

R(fn)−R = [R(fn)−R(fH)] + [R(fH)−R] (2.6)

by introducing R(fH) = inffn∈H(R(fn)) which stands for the risk of the best

function within the given hypothesis space (or function class) H [BBL04]. The

R(fn) stands for the risk of any hypothesis in the given hypothesis space H, and

R stands for the true risk. Thus, in the RHS (Right Hand Side) of the equation

2.6, the former component is called as the estimation error (variance), and the

later component is the approximation error (bias). If the true model c(x) ∈ H,

the approximation error will be prone to zero.

Within the given hypothesis space the approximation error cannot be reduced,

and the only improvement that can be made is in the estimation error. Thus a

restriction must be placed on the functions allowed. A proper choice of the

hypothesis space H ensures that the approximation error is minimized.

Another decomposition of the risk function is to estimate the difference be-

tween the empirical risk and true risk function: R[f ] = Remp[f ]+(R[f ]−Remp[f ]).

According to the Hoeffding’s Inequality, the difference between the true risk and

the empirical risk of a function in the given hypothesis space, f ∈ H, with respect

to the given training sample set S can be written as: let x1, . . . , xn be n i.i.d.

random observations such that f(xi) ∈ [a, b], then

P [|R(f)−Remp(f)| > ε] ≤ 2exp(− 2nε2

(b− a)2
) (2.7)

where ε > 0. Let δ denote the right hand side,and then δ = 2exp(− 2nε2

(b−a)2
) and
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ε = (b− a)

√
log 2

δ

2n
(an inverse function), and then:

P [|R(f)−Remp(f)| > (b− a)

√
log 2

δ

2n
] ≤ δ (2.8)

or (by inversion) with probability at least 1− δ

|R(f)−Remp(f)| ≤ (b− a)

√
log 2

δ

2n
(2.9)

Further, the inequality is only valuable when the function is fixed, and when

a hypothesis space (or a function class) is considered, this inequality requires

expansion in the worst case scenario:

R(f)−Remp(f) ≤ supf∈H(R(f)−Remp(f)) (2.10)

By the union P (A ∪ B) ≤ P (A) + P (B) and the Hoeffding inequality (see

Inequality 2.7):

P [supf∈H(R(f)−Remp(f)) > ε] = P [C1
ε ∪ . . .∪CN

ε ] ≤
N∑

i=1

P (Ci
ε) ≤ Nexp(−2nε2)

(2.11)

where Ci
ε := {(x1, y1), . . . , (xj, yj)|R(fi)−Remp(fi) > ε} and assume there are N

functions in the given hypothesis space. By inversion like the inequality 2.9: for

all δ > 0 with probability at least 1− δ

∀f ∈ H, R(f) ≤ Remp(f) +

√
logN + log 1

δ

2n
(2.12)

where H = {f1, ..., fN} and n is the sample size. This inequality gives an upper

bound to the true risk of any function in a given hypothesis space with respect

to its empirical risk. Clearly, this upper bound is positively associated with the

number N of hypotheses in the given hypothesis space H.
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This inequality assumes that the hypothesis space is countable and finite.

However in many case, this assumption is not established. The inequality needs to

be expanded to either a countable or an uncountable hypothesis space consisting

of infinite functions.

In the countable and infinite case, with a countable set H, the inequality

becomes: choosing the previous δ(f) = δp(f) with
∑

f∈H p(f) = 1, the union

bound yields:

P [supfn∈H(R(f)−Remp(f)) >

√
log 1

δp(f)

2n
] ≤

∑

f∈H

δp(f) = δ[BBL04] (2.13)

In the uncountable hypothesis space consisting of infinite functions, the mod-

ification introduces new concepts including the Vapnik Chervonenkis (VC) di-

mensions. When the hypothesis space is uncountable, it is considered over the

samples, meaning the size of the hypothesis space becomes the number of possi-

ble ways in which the data can be separated in case of the binary classification.

For instance, the growth function is the maximum number of ways into which

n points can be separated by the hypothesis space: SH(n) = supz1,...,zn |Hz1,...,zn|,
and the previous inequality of countable hypothesis space is modified as: for all

δ > 0 with probability at least 1− δ

∀f ∈ H,R(f) ≤ Remp(f) + 2

√
2
logSH(2n) + log 2

δ

2n
(2.14)

There are some other methods to measure the capacity or size of a function

class: Vapnik Chervonenkis (VC) Dimension [Vap95], the VC entropy [SS02a]

and Rademacher Average [AB99] [PRC06], which normally is tighter than the

previous upper bound. For example the VC dimension of a hypothesis space H

is the largest n such that

V C(H) = 2n (2.15)
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In other words, the VC dimension of a hypothesis space H is the size of the largest

set that it can shatter, that is the capacity of the hypothesis space H. When

the hypothesis space H has a finite VC dimension, for example V C(H) = h, the

growth function SH(n) can be bounded by SH(n) ≤ ∑h
i=0(

n
i ) and especially for

all n ≥ h,

SH(n) ≤ (
en

h
)h (2.16)

Thus, the upper bound becomes: For any f ∈ H, with a probability of at

least 1− δ,

R[f ] ≤ Remp[f ] + 2

√
2
h(log 2en

h
+ 1)− log(δ/2)

n
(2.17)

where n is the number of training data and h is the VC Dimension, which indi-

cates the capacity of a hypothesis space (or a function class) [Vap95]. All these

measurements is finite, no matter how big the hypothesis space is. In contrast,

the Bayesian methods place prior distribution P (f) over the function class. But

in statistical learning theory, the VC Dimension takes into account the capacity

of the class of functions that the learning machine can implement [SS02a].

The above discussion provides insight into an approach for generalization: to

measure an upper bound of the true risk of functions in a given hypothesis space.

This type of approach is called Structural Risk Minimization (SRM). Apart from

this method, regularization is another way to prevent the overfitting: the method

defines a regularizer on a model f , typical a norm ‖ f ‖, and then the regularized

empirical risk is fn = arg min
f∈H

Remp(f)+λ ‖ f ‖2. Compared to the SRM, there is

a free parameter λ, called the regularization parameter which allows to choose the

right trade-off between fit and complexity [BBL04]. This method is an often-used

way of incorporating extra constraints into the original empirical risk function,

and is easily employed to incorporate prior domain knowledge.

So far the learning machine has been simplified as a set of functions and
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induction bias. For instance, the SRM tells us that the true risk is upper bounded

by a combination of the empirical risk and the capacity of a function class. The

optimal model then reaches a trade-off between minimizing approximation errors

and estimated errors.

2.2.1 Maximal Margin Hyperplane

According to the previous discussion of VC dimension (see Equation 2.15), a class

of linearly separating hyper-planes in RN have a VC dimension of N + 1 in the

case of a binary classification. In a high dimensional space, a class of separating

hyper-planes often has an extremely large VC dimension. The large VC dimen-

sion causes the upper bound of the true risk function (see Inequality 2.17) to

be imprecise and lose its ability of approximating the true risk function. There-

fore, in practice, the VC dimension often only guides the design of the learning

algorithms. An alternative method, margin, is employed by some learning algo-

rithms to more practically measure the capacity of a hypothesis. The margin (or

geometric margin) indicates the distance of the closest point to the hyperplane:

1
‖w‖ : minxi∈X |〈 w

‖w‖ , xi〉+ b
‖w‖ | where a hyperplane is {x|〈w, x〉+ b = 0}.

Vapnik and his theorem link the VC dimension and the maximal margin,

which is broadly used by kernel methods for the generalization:

Consider hyperplanes 〈w, x〉 = 0 where w is normalized such that

they are in canonical form with respect to a set of points X∗ =

{x1, . . . , xr}, i.e. min
i=1,...,r

|〈w, xi〉| = 1. The set of decision functions

fw(x) = sgn(x,w) defined on X∗ and satisfying the constraint ||w|| ≤
Λ has a VC dimension satisfying h ≤ R2Λ2. Here R is the radius of

the smallest sphere around the origin containing X∗ [Vap95].
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In this statement, R is a constant determined by training examples, and Λ

becomes smaller, thus decreasing the capacity of the function class. While Λ be-

comes smaller, w is being minimized and then the margin 1
‖w‖ is being maximized,

that is the maximal margin.

For example, consider a positive example x+ and a negative example x− with

the given functional bias 1, i.e. 〈w, x+〉 + b = +1 and 〈w, x−〉 + b = −1. The

average geometric margin is y = 1
2
(y+ + y−) = 1

2‖w‖(〈w, x+〉+ b− 〈w, x−〉 − b) =

1
‖w‖ . Therefore in order to maximize the margin we need to minimize the length

(norm) ‖ w ‖ of the normal vector w [RV05]. The significance of maximal margin

hyperplane is that in a high dimensional space it still has a small VC dimension.

2.3 Linear Learning Machines and Kernel Methods

Considering a linearly separable pattern recognition problem, learning could be

seen as a measure of similarities. The centers of two classes of the training data set

are the center of the positive data c+ := 1
m+

∑
yi=1

xi and the center of the negative

data c− := 1
m−

∑
yi=−1

xi. The distance from the previously unseen observation to

the center of the positive data is measured as ‖ x − c+ ‖ and the distance from

the previously unseen observation to the center of the negative data is measured

as ‖ x− c− ‖. Thus the sign of the previously unseen observation is determined

by the difference between two distances sgn(‖ x− c− ‖2 − ‖ x− c+ ‖2) [Sch06].

From the above example, learning and similarity have a strong connection,

and every learning algorithm is involved with similarity measurement to some

degree. The final formula can be seen as that the sign of the unseen obser-

vation is determined by the distances between itself and the center of the two

classes, or the similarity of this new observation to the observations within the
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training set. In general, a simple pattern recognition problem is written as

f(x) = sgn( 1
m+

∑
yi=1

k(x, xi) + 1
m−

∑
yi=−1

k(x, xi) + b), where k(x, xi) stands for

a measure of similarity between the unseen observation and one of training data.

Often the k(x, xi) is represented by an inner product, or a kernel.

Kernel methods expand linear learning machines, which is restricted by lin-

early separable problems, in order to solve linearly nonseparable problems. In

practice, linearly separable problem are rare, and in the case of linearly nonsep-

arable problems linear learning machines lose their accuracy dramatically. It is

natural to consider methods that transform a linearly nonseparable problem into

a linearly separable one. A linearly nonseparable problem is thus approximated

by using a set of linearly separable subproblems. The learning process is meant to

improve the accuracy of approximation. This idea is closely related to the Fourier

analysis in the functional analysis [Rud91]. The Kernel methods give a mecha-

nism whereby the original training data is transformed into a higher dimensional

space (or feature space). The transformation or mapping linearizes the linearly

nonseparable problem, resulting in the feature space where the problem becomes

linearly separable. The mapping Φ is expressed as a function Φ : X → H ,

or x 7→ Φ(x), where H is the feature space (often a Hilbert Space, a complete

inner product vector space). The kernel is k(x, x′) := 〈Φ(x), Φ(x′)〉, that is an

inner product of images in the Hilbert Space of two original observations. There-

fore, the kernel measures the nonlinear similarity between two observations. By

the Riesz representation theorem, the kernel has a reproducing property, that

is f(y) = 〈f, k(., y)〉. In view of this property, k is called a reproducing kernel

[SMB99].

The Hilbert space spanned by a set of reproducing kernels is called a Repro-

ducing Kernel Hilbert Space (RKHS). Therefore, the mapping is a reproducing
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kernel from a real space RN to a Hilbert space H, Φ : RN → H, x → k(., x). The

basis of this Hilbert Space is a set of reproducing kernels. Any linear continu-

ous function can be approximated by its projections on the basis of the Hilbert

space, and this approximation is unique with respect to a given basis by the

Riesz-Frechet Theorem [Rud91].

The mapping is avoided by the kernel trick to reduce the computational com-

plexity. The kernel trick allows the value of dot product in H to be computed

without having to explicitly compute the mapping Φ [SS02a]. A well-known

example of this is the mapping of a 2D ellipse to a 3D plane, which is used by

Bernhard Scholkopf: Suppose an ellipse in a 2D space (x1+x2)
2 = a, the mapping

is Φ : R2 → R3, (x1, x2) 7→ (z1, z2, z3) := (x2
1,
√

2x1x2, x
2
2); and the dot product of

images is 〈Φ(x), Φ(x′)〉 = (x2
1,
√

2x1x2, x
2
2)(x

′2
1 ,
√

2x′1x
′
2, x

′2
2 ) = 〈x, x′〉2 := k(x, x′)

[SS02a]. Two often-used kernels are: Polynomial Kernels: k(xi, xj) = (1+xi ·xj)
d

and Radial Basis Function(RBF) kernels: k(xi, xj) = e−γ‖xi−xj‖2 .

2.3.1 Support Vector Machines

As a type of kernel method, the support vector machine (SVM) integrates the

previously disparate elements together. Initially, it only deals with the binary

classification (pattern recognition), but shortly the multiple classification vector

machine and support vector regression are developed. The basic learning process

of the support vector machine is (see figure 2.3):

1. It maps the training data from the original space (input space) into a higher

dimensional space (feature space) (a hypothesis space) by using kernels to

transform a linearly nonseparable problem into a linearly separable one;

and
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Figure 2.3: Architecture of SV Machines

2. Within the feature space (the hypothesis space), it finalizes a hyperplane

with a maximal margin which separates two classes in the case of binary

classification.

In the case of binary classification (or pattern recognition), the following ac-

tions occur within the feature space. The images of training data are linearly

separable and have higher dimensions, and the problem of converging to an op-

timal hypothesis, that is determining w and b, is expressed as minimizing the

maximal margin of the hyperplane: min[1
2
〈w,w〉], subject to [SS02a]:

yi(〈w, xi〉+ b) ≥ 1 (2.18)

This is formulated as an optimization problem by including an empirical risk

function, for example a hinge loss Remp[f ] =
∑m

i=1(yi ·f(xi)−1), and the objective

function of the new optimization problem becomes:

L(w, b, α) =
1

2
‖ w ‖2 −

m∑
i=1

αi(yi · f(xi)− 1) (2.19)

where the new coefficients αis are Lagrangian Multipliers. The new objective

function in the form of the Lagrangian Function contains a regularizer 1
2
‖ w ‖2,
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which minimizes the capacity of the hypothesis for the generalization, and the

empirical risk function for the consistency with the training examples. Thus as

the objective function is minimized, the convergence to an optimal hypothesis is

achieved. This is expressed as:

Θ(α) = minw,bL(w, b, α) (2.20)

According to the quadratic programming, at the minimal point, ∂L
∂w

= 0 =

w +
∑

αi(−yixi), i.e. w =
∑

αi(yixi), and ∂L
∂b

= 0 =
∑

αiyi, and thus the

equation (2.20) is expressed as:

Θ(α) = minw,bL(w, b, α) = −1

2

N∑
i,j=1

αiαjyiyj〈xi, xj〉+
N∑

i,j=1

αi (2.21)

This resultant dual problem is equivalent to: maxα(minw,bL(w, b, α)) subject

to αi ≥ 0 and
∑N

i,j=1 αiyi = 0.

So far our discussion has carried within a feature space. If the kernel mapping

is integrated into the equation 2.18 and k is the kernel, w =
∑l

i=1 αixi = X ′α, the

new loss function is expressed as: min[1
2
α′Gα], subject to: yi(

∑l
i=1 k(xi·xj)+b) ≥

1, where G is a the l × l Gram Matrix whose (i, j) element is k(xi · xj). Then,

the decision function of the support vector machine becomes:

f(x) = sgn{w · φ(x) + b} = sgn{
n∑

i=i

αiyik(x, xi) + b} (2.22)

A list of the different versions of support vector machine is summarized below

with their differences occurring between their loss functions.

• Hard Margin Optimization Problem

The hard margin optimization problem is an original version of support vec-

tor machine (the structure of which has been discussed previously). How-

ever, in real practice, due to noise, it is difficult to separate some data sets
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leading to feature spaces with extremely high dimensions. In those cases,

some misclassifications within the training process need to be tolerated,

resulting in the soft margin optimization problem.

• Soft Margin Optimization Problem

In the soft margin optimization problem, the empirical risk function, for

example the hinge loss function (2.18), is modified to contain additional

components: minw,b,ξ〈w ·w〉+C
∑N

i=1 ξi, subject to yi(〈w ·xi〉+ b) ≥ 1− ξi,

1 ≤ i ≤ N, ξi ≥ 0 here ξi is slack variable and C has to be tuned.

There are two versions of soft margin optimization problems with respect

to the norms of the slack variables.

– 2-norm soft margin optimization problem

minw,b,ξ〈w · w〉 + C
∑N

i=1 ξ2
i , subject to yi(〈w · xi〉 + b) ≥ 1 − ξi and

ξi ≥ 0

– 1-norm soft margin optimization problem

minw,b,ξ〈w · w〉 + C
∑N

i=1 ξi, subject to yi(〈w · xi〉 + b) ≥ 1 − ξi and

ξi ≥ 0

The difference between two soft margin optimization problems leads to

slightly different results in the dual forms. The 2-norm soft margin op-

timization problem changes the objective function, while the 1-norm one

adds one additional constraint. The choice between these two soft margin

optimization depends on the problem being solved.
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2.3.2 ε-insensitive Support Vector Regression

The ε-insensitive Support Vector Regression (SVR) expands the original binary

classification Support Vector Machine into the regression problems [SS02a]. The

difference between SVR and the binary classification SVM occurs within risk

functions. This occurs when SVR uses the ε-insensitive risk function:

Remp[f ] = C

m∑
i=1

|f(xi)− yi|ε (2.23)

where |f(xi) − yi|ε = max{0, |f(xi) − yi| − ε}. Thus within a feature space,

the SVR estimates a linear regression function f(x) = 〈w, x〉 + b by minimizing

1
2
‖ w ‖2 +C

∑m
i=1(ξi + ξ∗i ).

To formulate this as an optimization problem, an objective function of w

(slope coefficient) and b (offset) is L(w, b) = 1
2
‖ w ‖2 +C

∑m
i=1 |f(xi)− yi|ε, and

the constraints are constructed by introducing new slack variables for two cases:

f(xi)− yi > ε and yi − f(xi) < ε. Therefore, the optimization problem becomes:

minw,ξL(w, b) = minw,ξ
1

2
||w||2 + C

m∑
i=1

(ξi + ξ∗i ) (2.24)

subject to f(xi) − yi ≤ ε + ξi, yi − f(xi) ≤ ε + ξ∗i and ξ∗i , ξi ≥ 0. Similarly with

the binary classification, the dual problem is derived as below:

Θ(w, b, ξ, α) = min
w,ξ

L(w, b, ξ, α) = 1
2
||w||2 + C

m∑
i=1

(ξi + ξ∗i )−
m∑

i=1

(ηξi + η∗ξ∗i )

−
m∑

i=1

αi(ε + ξi + yi − 〈w, xi〉 − b)−
m∑

i=1

α∗i (ε + ξ∗i + yi − 〈w, xi〉 − b)

subject to α∗i , η
∗
i ≥ 0. The saddle points of the dual problem sit in: ∂bΘ =

∑m
i=1(αi − α∗i ) = 0, ∂wΘ = w −∑m

i=1(αi − α∗i )xi = 0 =⇒ w =
∑m

i=1(αi − α∗i )xi,

and ∂ξΘ = C − αi − ηi = 0. Substituting these three equations into Θ(w, b, ξ, α)

yields the dual problem:

maxα[−1

2

m∑
i,j=1

(α∗i − αi)(α
∗
j − αj)〈xi, xj〉 − ε

m∑
i=1

yi(α
∗
i − αi)] (2.25)
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subject to ∂bΘ =
∑m

i=1(αi − α∗i ) = 0 and αi, α
∗
i ∈ [0, C]. As with the binary

classification, the objective function of the SVR is easily expanded into a linearly

nonseparable problem in the input space.

2.4 Optimization

The optimization models attempt to express, in mathematical terms, the goal of

solving a problem in the “best” way [NS99]. As outlined, in the training process,

kernel methods are always re-expressed in the format of the optimization as primal

or dual forms, converging to an optimal solution. In real practice, especially in the

case of large scale databases, optimization plays a crucial role in machine learning.

The three main categories of optimization problems and their associated methods

are listed below:

1. Unconstrained Optimization: Gradient Gradient, Conjugate Gradient, Quasi-

Newton and Levenberg Marquardt

2. Linear Programming : Simplex Methods, Interior-points Methods

3. Nonlinear Programming : Quadratic Programming

In linear programming, the local optimum is equivalent to the global optimum.

This varies in nonlinear programming, as only in the case of convexity, the local

optimum is equivalent to the global optimum. In many cases, it is even difficult to

find a local optimum, and only the solution satisfying the Karush-Kuhn-Tucker

Condition (KKT) is available. In comparison to a sufficient condition, the KKT

condition is only the necessary condition of local optimum. The Karush-Kuhn-

Tucker Condition is [NS99]: Let x∗ be a relative minimum point for the problem:

minimize[f(x)]
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subject to:

h1(x) = 0, . . . , hm(x) = 0

g1(x) ≤ 0, . . . , gp(x) ≤ 0

And suppose x∗ is a regular point for the constraints. Then there is a vector

λ = [λi, . . . , λm]T and a vector µ = [µi, . . . , µp]
T such that

1. ∇f(x∗) +
∑m

i=1 λi∇hi(x
∗) +

∑p
j=1 µj∇gj(x

∗) = 0̃;

2. µ ≥ 0̃;

3. µjgj(x
∗) = 0 for all j = 1, . . . , p.

The KKT condition demonstrates that only the points locating on the margin

have non-zero α, and these points construct a subset of training data (support

vectors), which construct the final model. The points excluded by the support

vectors are simply ignored by the final model. Even further, some commercial

versions of SVM broadly implement some optimization techniques. For example,

Sequential Minimal Optimization (SMO) employs a divide-and-conquer strategy,

and by ”KKT Violation” selects a subset of training data as a ”working set”

in each iteration, this reduces the computational cost[KSB01]. Decomposition

Methods including SMO are included by LibSVM and SV M light.

2.5 Prior Domain Knowledge

In the introduction of inductive machine learning, the numerical training data is

the only input of the machine learning algorithms. Domain knowledge related to

the learning task not in the form of numerical training data cannot usually be

exploited [JS99]. In the previous example introduced in the chapter 1 (see Figure
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1.2), the gradients at the points are available as additional domain knowledge to

be included by learning machine. In order to contain the extra information, the

conventional risk function is modified. One example of this approach is available

in Jin’s paper [JS99]. An extra term
∑n

j=1(
∂f(xj)

∂xj
− ∂yj

∂xj
) is added into the quadratic

risk function Remp[f ] =
∑n

j=1(yj − f(xj))
2, resulting in a new risk function:

R∗[f ] =
n∑

j=1

(yj − f(xj))
2 + λ

n∑
j=1

(
∂f(xj)

∂xj

− ∂yj

∂xj

) (2.26)

where j is the index of a training example, and λ is a Lagrangian Multiplier which

balances the impacts of the training examples and gradients. This extra term

penalizes the violation to the constraints of the gradients at certain points. This

approach is closely related to the regularization mentioned before, if the extra

term comes to represent the regularizer.

Apart from the gradients, domain knowledge exists in various formats. One

of the sources of domain knowledge is domain experts’ knowledge, which is often

encoded in the format of logic rules. This further constructs a rule-based system.

Moreover, the assumption made by a learning algorithm is another representation

of domain knowledge in the learning system. In the example in the Chapter

1 (see Table 1.1), some assumptions have been made to facilitate the learning

process: 1) i.i.d. assumption, and 2) the assumption about the linear model

structure. The i.i.d. assumption assumes the fact that all observations (known

or unseen) are generated independently by an unknown identical distribution.

This assumption guarantees the similarity between observations. If the known

and unseen observations are generated by two different distributions, there is no

place to use the known observations to predict the unseen ones. However, these

assumptions still require verification. For the case study within this thesis, the

reason why an i.i.d. assumption featuring a linear model is acceptable is that

the current research of audit quality has already proven the establishment of the
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assumption.

Furthermore, it is essential to discuss how to represent domain knowledge

in a learning system. Unfortunately, computers are incapable of understanding

human knowledge directly, necessitating alternative ways to translate domain

knowledge to computable input for learning systems. This is true with machine

learning systems, which contain the following categories of knowledge [Pyl03]:

• Tacit Knowledge: Comprise thoughts, feelings, emotions. The tacit knowl-

edge refers to a knowledge which is hard to share with other people, and it

is the opposite from the concept of explicit knowledge.

• Explicit Knowledge: Be encoded in documents, images. It is systematic

and easily communicated in the form of hard data or codified procedures

[PS99]. This concept is further divided into some sub-concepts:

– Recipe Knowledge: Involve knowing a procedure for accomplishing

something without knowing underlying structure, called “know-how”

knowledge such as the procedure of buying or selling stocks.

– Functional Knowledge: It is an extension of recipe knowledge in that it

includes knowledge of function of each recipe so that appropriate recipe

can be selected and used, such as the selection of different procedure

of trading stocks, either trading in the stock exchange or off-market

trading.

– Theoretical Knowledge: Provides a multi-layer deep knowledge of re-

lationships and object discrimination that get considerably away from

daily experience. For example, the gradient
∂yj

∂xj
of the target function

at a certain point is theoretical knowledge (see Figure 1.2). However no

such knowledge is ever complete. The majority of domain knowledge
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used in this thesis locates in this category.

These apparently different types of knowledge, in fact, share some similarities.

This is largely because they are different models of the concept of knowledge

[Pyl03]. It is worth emphasizing that domain knowledge is more than just a list

of facts, and can be organized and generalized to guide future actions [Ste95].

Domain knowledge needs to be codified, formalized and refined in order to be

represented more formally and precisely.

2.5.1 Functional or Representational Form

In what form should prior domain knowledge be incorporated into a new task?

In the case of sequential multi-task learning, the simplest method of retaining

task knowledge is to save all training examples of that task. This form of domain

knowledge is referred as a functional form of knowledge [Sil00]. Another form of

domain knowledge is the accurate representation of a learned knowledge devel-

oped from the training examples. That is the representational form of domain

knowledge [Sil00]. For example, representational domain knowledge includes the

parameters of resultant models, such as hypo-parameters in kernel methods, in-

stead of training examples. Clearly the advantages of the representational form of

domain knowledge are that the results are more compact and require less storage

space. Its disadvantage is the potential loss of accuracy from the original training

examples [Sil00].

2.5.2 Relatedness Between Tasks and Domain Knowledge

With respect to one task, it is unnecessary to incorporate all domain knowledge

in the process of learning. As was discussed in the chapter 1, prior domain
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knowledge is highly context dependent, for any consideration of the degree of

task relatedness in context of inductive machine learning. Even the same prior

domain knowledge could produce different impacts on difference tasks. When the

use of domain knowledge results in a more accurate hypothesis than what could

have been achieved with only the training examples, a positive domain knowledge

is said to have occurred. Conversely, a negative domain knowledge results in a

hypothesis of lesser accuracy.

There are no general definition of relatedness between tasks and domain

knowledge. According to the current understanding of these two concepts, some

indirect means of measuring relatedness are addressed by Daniel Silver [Sil00]. He

gives a general definition of task relatedness in the context of functional transfer:

Let Tk and T0 be two tasks of the same domain with training ex-

amples Sk and S0, respectively. The relatedness of Tk with respect to

T0 in the context of learning system L, that uses functional knowledge

transfer, is the utility of using Sk along with S0 towards the efficient

development of an effective hypothesis for T0 [Sil00].

This definition let him give the statement: Inductive Bias = Domain Knowledge

+ Task Relatedness:

K ∧R → BD (2.27)

where K is the domain knowledge retained by a knowledge based inductive learn-

ing system L, R is the meta-level bias that selects the most related knowledge

from domain knowledge for developing a new task T0; and BD denotes domain

knowledge based inductive bias [Sil00]. R serves the secondary function of origi-

nating from domain knowledge, and indicating the task relatedness. However, in

a learning process, the domain knowledge does not only function as an inductive
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bias, but also facilitates other aspects of the process, for example, the preprocess

of the training examples, the initiation of a hypothesis space, the initiation of the

start point of the convergence, and the direction of convergence etc..

This definition of relatedness between tasks is limited within multi-task learn-

ing and sequential learning, both of which transfer knowledge between multiple

tasks. However, the related task is one of sources of domain knowledge, resulting

in a more general definition of relatedness between domain knowledge and tasks.

The definition is: Let T0 be one task with training examples S0, and K be a set

of domain knowledge. The relatedness of K with respect to T0 in the context of

learning system L is the utility of using K along with S0 towards the efficient

development of an effective hypothesis for T0.

In other words, if the effectiveness and efficiency of a learning system L is

improved with the domain knowledge K, the domain knowledge K is related to

the task T0 with respect to the learning system L. The previous definition of the

relatedness between tasks is an example whereby the domain knowledge happens

to be discovered by other learning systems for tasks within the same domain.

If the relatedness between one set of domain knowledge and a task is signifi-

cant, the set of domain knowledge K is notated by the related domain knowledge

KD of the task T with respect to the learning system L: Related Domain Knowl-

edge = Domain Knowledge + Task Relatedness. This is represented as:

K ∧R → KD (2.28)

and BD ⊆ KD. It is undoubted that the inductive bias plays a major role in the

domain knowledge. The previous definition of inductive bias (See equation 2.4)

can therefore be rewritten as:

(∀xi ∈ X)[(KD ∧BO ∧ S ∧ xi) ` L(xi, S)] (2.29)

44



where BO is the other inductive bias independent from the task.

The definition of general relatedness between domain knowledge and tasks is

abstract and there is no general way to measure it. When domain knowledge is

learned by the related tasks, the relatedness between tasks reflects the related-

ness between domain knowledge and tasks. The relatedness R between tasks is

relatively easy to be measured, and it can be equated to the concept of similarity,

and be expressed as a metric: d(T0, Tk), and therefore a metric space ({Ti}, d),

where {Ti} is the set of tasks within one domain and d is the metric over the set.

In this case, the knowledge transfer between tasks is closely related to another

concept, collaborative filtering. The similarities include the surface similarity and

structural similarity in differing degrees [Sil00].

Current research further explores meta-level learning as a method able to

assimilate the inductive bias. Contrarily, standard machine learning is called as

base-level learning [Thr96]. Meta-level learning is already outside the Probably

Approximately Correct (PAC) framework, as the PAC framework simply takes

the hypothesis space H as given and proceeds from there. Meta-level learning is

supplied with a family of hypothesis spaces M = {H}, its goal being to find a

inductive bias that is appropriate for the given task [Bax00]. Here a set of related

tasks constructs an environment , E = {T0, T1, . . . , Ti}. Meta-level learning then

aims to explore its environment in order to discover the inductive bias of a new

task from other tasks in that same environment.

The measure of relatedness between tasks and domain knowledge implies an-

other important issue: the various importance of domain knowledge. Suppose

there is more than one piece of related domain knowledge, and the risk function

(see equation 2.1) defined previously is rewritten as:

R(f) = V (Remp, {Rk}) = V (Remp, R1, . . . , Rt) (2.30)

45



where Rk is an error on the training examples for domain knowledge k = 1, . . . , t,

and Remp is the error on the training examples, such as an empirical risk [Abu95].

An immediate example is the equation 2.26, where the V (.) is a Lagrangian

function, and a simple linear combination of two risk functions is weighted by the

λ, V (Remp, Rgradient) = Remp + λRgradient.

Considering now the previous example where three points are with their gra-

dients (see Figure 1.2), the standard learning system L0 employs the second

inductive principle (one selects the most parsimonious model that fits the data)

as its general purpose inductive bias BO and produces a smooth curve going

through three points. With an additional inductive bias, the learning system L1

is capable of taking into account the extra information that is gradients, and pro-

ducing a better model with respect to the task T0 to find a model fitting both the

training examples and the gradients. The resultant model appears better than

the previous one, and thus the domain knowledge that is gradients are related

with respect to the task T0 and the learning system L1.

2.6 Summary

The majority of inductive machine learning algorithms aim to address the three

major issues: consistency, generalization and convergence. In generalization, the

upper bound and the capacity of the function class such as VC dimension are

derived in the worst case scenario. As a result, the upper bound of the true risk

is often so loose that in many practical cases it is not helpful and only works

as a guideline. When some domain knowledge is included to narrow down the

hypothesis space, the upper bound becomes much tighter, creating a new upper

bound that may function better. A learning system is then able to customize

its inductive bias for a hypothesis space according to the task being learned.
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In other words, incorporating prior domain knowledge requires learning systems

with an ability to incorporate domain dependent inductive bias with general

purpose inductive bias. Therefore, a more appropriate inductive bias improves

the generalization ability of a learning system.

Machine learning algorithms regularly convert their learning problems into

optimization problems, each of which consists of an objective function and a

set of constraints. The objective function and constraints consist of various risk

functions, giving room to modify a standard learning algorithms to contain extra

information.

There exist some closely related studies on the relationship between prior do-

main knowledge and inductive machine learning in recent years: the lifelong learn-

ing problem and the meta-level learning discussed by Sebastian Thrun [Thr96];

the problem of selectively transferring knowledge across different learning tasks

and the sequential learning discussed by Daniel L. Silver [Sil00]. Silver’s research

focuses on the ways of utilizing domain knowledge in the process of learning

rather than the methods of retaining domain knowledge from previous learning

task, which has been discussed as sequential learning, and learning the inductive

bias, which is addressed by the meta-level learning. This thesis aims to expand

their studies into an emerging family of learning algorithms, kernel methods. The

kernel methods provide a modularized learning process, which facilitates incorpo-

rating domain knowledge into themselves. The whole learning process consists of

a series of subprocess, and the domain knowledge can be incorporated into some

of the subprocess separately.

In the following chapter, we will discuss how to employ these three issues

to various methods of incorporating prior domain knowledge thereby facilitating

inductive machine learning.
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CHAPTER 3

Incorporating Prior Domain Knowledge into

Inductive Machine Learning

Following the discussion of knowledge transfer within inductive machine learning,

this chapter proposes a framework of incorporating prior domain knowledge into

inductive machine learning. Based on this framework, this chapter summarizes

the current research on this topic. This chapter begins with a section discussing

principles of incorporating domain knowledge into inductive machine learning in

regards to three key issues of inductive machine learning: consistency, general-

ization and convergence. The second section discusses four categories of current

methods that incorporate prior domain knowledge into inductive machine learn-

ing: 1) Using prior domain knowledge to prepare training examples, 2) Using

prior domain knowledge to initiate the hypothesis or hypothesis space, 3) Us-

ing prior domain knowledge to alter the search objective, 4)Using prior domain

knowledge to augment search. Within each category, the framework is employed

to analyze their merits and shortcomings. The third section puts special emphasis

on the semi-parametric models and hierarchical models, which prepare discussion

of the following chapter. The fourth section introduces some basic concepts of

capital markets and their domain knowledge.
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Figure 3.1: A spectrum of learning tasks [Mit97b]

3.1 Overview of Incorporating Prior Domain Knowledge

into Inductive Machine Learning

Within the framework of knowledge systems, domain knowledge and machine

learning are closely related. Prior domain knowledge offers the advantage of

generalizing more accurately from limited sample data available. At the same

time, it is possible that the hypothesis or model, extracted by machine learning

from raw data, is included by the domain knowledge for future learning tasks.

In this sense, machine learning is a set of knowledge acquisition methods in the

knowledge system (see Figure 1.3).

The first systematic attempts at this research area are collected by Mitchell

[Mit97a]. He divided machine learning algorithms into two paradigms: Inductive

and Analytical Learning. In this thesis, analytical learning will be written as de-

ductive learning, deriving hypotheses deductively from prior domain knowledge.

Mitchell summarizes a spectrum of learning problems, varing by the availability

of prior knowledge and training data (See Table 3.1 and Figure 3.1). He viewed

learning as a task of searching through the hypothesis space, and characterized

three different types of methods combining symbolic and neural network methods:

1) using prior knowledge to initiate the hypothesis; 2) using prior knowledge to

alter the search objective; 3) using prior knowledge to augment search operation.
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Inductive learning Analytical learning

Goal Hypothesis fit data Hypothesis fit prior knowledge

Justification Statistical inference Deductive inference

Advantages Requires little prior knowledge Learns from scarce data

Pitfalls Scarce data, incorrect bias Imperfect domain theory

Table 3.1: Comparison of purely analytical and purely inductive learning [Mit97b]

Another attempt to integrate these two branches of learning emerges between

logic, such as Prolog, and probability calculus, such as Bayesian Network. The

integration results probabilistic logic. Although the pure forms of existing prob-

abilistic logic are computationally intractable, a number of research groups have

developed machine-learning techniques that can handle tractable subsets of prob-

abilistic logic [Mug06]. This work is beyond the scope of this thesis, as they use

learning methods to complement the elicitation of logic, and in this thesis, the re-

search emphasizes the problems of using domain knowledge, including the knowl-

edge in the format of logic, to enhance the performance of inductive machine

learning.

Mitchell’s study serves as a catalyst for future research, and recent studies

have produced some interesting results. This is especially true in that as new

machine learning algorithms (kernel methods) receive more and more attention.

Academic researchers started to investigate incorporating prior domain knowl-

edge into the kernel methods. In 1998, Partha Niyogi et al. incorporated prior

domain knowledge in machine learning by creating virtual examples [NGP98].

In 1999, Suk-Chung Yon utilized domain knowledge to optimize the knowledge

discovery query [YHP99]. In 2003, the Journal of Machine Learning Research

published a special issue on the fusion of domain knowledge with data for deci-
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sion support, which contained four selected papers focusing on bridging the large

gap between knowledge engineering and machine learning [DLM03]. Amongst

these papers, Helge Langseth and Thomas D. Nielsen used Object Oriented tech-

niques to facilitate learning the structure of a Bayesian Network from data [LN03].

Bernhard Scholkopf et al pointed out that invariance could be included in pattern

recognition in a principled way via the virtual SV mechanism and restriction of

the feature space [BS97] [SSS99]. Dennis Decoste et al inducted the invariant

SVM, which uses prior knowledge as an invariance to bias SVM [DS02]. In 2004,

Xiaoyun Wu and Rohini Srihari developed a new SVM, Weighted Margin Sup-

port Vector Machine (WMSVM), and used prior knowledge to generate ”Pseudo

Training Dataset” as a part of training sample being fed to WMSVM [WS04].

Relatively simple learning systems, such as logistic regression, classical Bayesian

learning, case-based learning and decision trees, rely heavily on prior domain

knowledge in their learning process. The logistic regression model, for example,

assumes the tasks to have certain properties, for example all the residuals fol-

low normal distributions with mean of zero [JW01]. This assumption has to be

verified by the domain knowledge, otherwise the logistic regression may produce

misleading outputs for the tasks.

In contrast, relatively complex learning systems, such as ANN and SVM, rely

less heavily on the domain knowledge as they contain fewer prior assumptions.

However, with this advantage, these more powerful learning systems do not make

the best use of all existing information including both training examples and prior

domain knowledge. The following sections analyze the methods of incorporating

prior domain knowledge into these complex and powerful learning machines to

enhance their performances.
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3.2 Consistency, Generalization and Convergence with Do-

main Knowledge

Prior domain knowledge enhances learning systems in multiple aspects. The

performance of a learning system is generally determined by three key issues:

consistency, generalization and convergence.

3.2.1 Consistency with Domain Knowledge

In this thesis, the author expands Mitchell’s concept of consistency in [Mit97a]

in order to contain domain knowledge:

Definition 1: Assume that training examples and domain knowledge are

correct without noise, and c(x) is the underlying target function:

A hypothesis f is consistent with a set of training examples S and a set of

related prior domain knowledge KD if and only if f(x) = c(x) for each example

〈x, c(x)〉 in S and f(x) is consistent with any knowledge k in KD:

Consistent(f, S,KD) ≡ ((∀〈x, c(x)〉 ∈ S)f(x) = c(x)) ∧ ((∀k ∈ KD)f(x) ° k)

(3.1)

Note that the definition of consistency contains a strong assumption. Either

observation S or domain knowledge KD is perfectly produced by the underlying

function c(x). In other words, neither observation nor domain knowledge contains

noise, and the coverage of observation and domain knowledge is sufficient enough

to represent the unknown function c(x). In practice however this assumption is

difficult to be verified, as the observation and domain knowledge may be exposed

to some noise or incorrect information. There may also exist some contradictions

between observations and domain knowledge: ((〈x, c(x)〉 ∈ S)f(x) = c(x)) ∧
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((∃k ∈ KD)f(x) 1 k or ((∀k ∈ KD)f(x) ° k) ∧ ((∃〈x, c(x)〉 ∈ S)f(x) 6= c(x)).

This weak (or soft) consistency provides a sort of tradeoff, when such conflicts

occur between them.

In the learning-from-examples paradigm, the estimation of the consistency

between the hypothesis and the unknown target function is measured by the risk

(loss) function, such as empirical risk Remp[f ]. In order to measure the disagree-

ment between the hypothesis and the domain knowledge, a more general and

abstract concept, the metric, is introduced to replace the risk functions. When

the domain knowledge is measurable, such as the known gradients in some given

examples (see Figure 1.2), the degree to which a hypothesis f(x) is consistent

with K = {k1, . . . , km} is defined by a metric d(., .):

Rknowledge(f) = d(f(x), ki),∀ki ∈ KD (3.2)

where the d satisfies three properties of metric: reflexive property, symmetric

property, and triangle inequality. One example of such metric is a distance mea-

surement Rknowledge(f) = E(f(x) − ki) in [Abu95]. Since the Rknowledge(f) is

supposed to measure the disagreement between f(x) and the domain knowledge

KD, the Rknowledge(f) should be zero when the f(x) is identical to c(x) and the

KD is perfectly produced by the c(x):

R(f) = 0 ⇒ Rknowledge(f) = 0 (3.3)

It is a necessary condition for Rknowledge(f) to be consistent with the assertion

that the domain knowledge is valid for the target function c(x). It is worth

noticing that the R(f) is the unknown risk function between f(x) and c(x), and

the Remp(f) = 0 ; Rknowledge(f) = 0. This condition is not necessary for soft

domain knowledge (see the definition in Section 3.2.4), as characteristically it is

only ”approximately” valid [Abu95].
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Definition 2: The risk function is wSRemp(f) + wKRknowledge(f) where the

coefficients wS and wK assign the different weights to the empirical risk function

and domain knowledge risk function, in order to balance the effects from each of

them.

When domain knowledge is not directly measurable, such as in the format

of logic rules, special metrics or transformations of the domain knowledge are

required. Some examples are available in the following sections, for example

consistency hints.

3.2.2 Generalization with Domain Knowledge

As mentioned in Chapter 2, the domain knowledge is essential to the generaliza-

tion (see Equation 2.5): Generalization = Data+Knowledge. In this statement,

the knowledge refers to the prior implemented by the given algorithm and the

assumptions followed by the given algorithm, according to the no free lunch the-

ory [BBL04]. In other words, an algorithm is better than another one when the

prior implemented by the algorithm is better suited to these databases.

Beyond this well-known role, the domain knowledge plays an important role

in initiating a proper hypothesis space H and deducing more appropriate induc-

tive bias BD to reduce the generalization error. In the previous decomposition

of risk (see Equation 2.6), the generalization risk consists of the approximation

error, R(fH) − R, and the estimation error R(fn) − R(fH). Within the given

hypothesis space, the approximation error cannot be reduced. In order to reduce

the approximation error, the hypothesis space often is relaxed to contain at least

one hypothesis fH identical to the unknown target model c(x). On the other

hand, three upper bounds of true risk function show that increasing the size of

hypothesis space also increases the estimation error. Therefore, a conflict occurs
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Figure 3.2: A set of hypothesis spaces

when two errors are reduced simultaneously. In order to makes the overall gen-

eralization error to reach a minimal point, the reductions of the two errors have

to be balanced, that is the variance/bias tradeoff . Often it is difficult to discover

this optimal solution by only using training examples. If auxiliary information of

the hypothesis space and the training examples are available, it is worth incor-

porating it into the selection process, in order to select or initiate a more proper

hypothesis space H. In Figure 3.2, suppose that c(x) is the unknown target func-

tion, and the optimal hypothesis space is H4 with a minimal generalization error.

The H3 contains the c(x), but its size is big, which leads to a larger estimation

error. In contrast, the H1 has a smaller size, but does not include the target

function c(x), which leads to a larger approximation error.

This issue is closely related to meta-level learning or lifelong learning. Suppose

that target functions are sampled from a hypothesis space, H, and a learner

can choose its hypothesis space from {H0, H1, . . . , H4} prior to the arrival of the

training examples from a target function c(x) (See Figure 3.2) [Thr96]. This type

of machine learning is sometimes called learning to learn. A computer system

has learned to learn if its performance at each task improves with the number

of training examples and with the number of tasks in the family [Sil00]. This

definition implies that within a family of tasks, the same form of knowledge is
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Figure 3.3: 8-2-1 Artificial Neural Network [Abu95]

acquired and transferred as an inductive bias from one or more source tasks to a

target task. The main purpose of this is to improve the performance of the target

task.

As was discussed in Chapter 2, learning theory has provided a set of inequal-

ities to estimate the upper bounds of the difference between empirical and true

risk. However, these upper bounds are derived from the worst case scenario, so

that the upper bounds between the true risk and empirical risk defined in the

learning theory are often too crude for real cases. In case of the upper bound for

a finite and countable hypothesis space, the upper bound grows linearly with the

number of functions N (see the inequality 2.12). In a large enough hypothesis

space, this bound can easily become so great that it loses its precision. While

domain knowledge is available to reduce the size of the hypothesis space, the

resultant upper bound will be tighter.

When utilizing the upper bound for an infinite but countable hypothesis space,

in the union bound, it is possible to choose p(f) to assign different weights to

functions (see the inequality 2.13). Therefore, if the p(f) is well-chosen with the

help of some prior domain knowledge, the bound will have small values [BBL04].
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If the upper bound is utilized for an infinite and uncountable hypothesis space

as discussed previously, domain knowledge provides auxiliary information to es-

timate more precise upper bound than one only based on the given data (see the

inequality 2.17). Yaser Abu-Mostafa [Abu95] gave two general approaches to re-

duce generalization error by estimating new VC dimensions based on the data and

extra information: V C(H|K) and V C(H; K). The first one, V C(H|K), is defined

as the VC dimension of a hypothesis space in which any hypothesis h ∈ H satis-

fies the given domain knowledge K. Set H ′ represents the new hypothesis space

H ′ = {h ∈ H ∧ h ° K} and, for instance, the domain knowledge K can be an

invariance hint1. Since H ′ ⊆ H, it is clear that V C(H|K) = V C(H ′) ≤ V C(H).

For example, in Figure 3.3, there is an 8 − 2 − 1 artificial neural network with

8 input nodes, 2 nodes in the hidden layer and one output node. The number

of weights is 8 × 2 + 2 plus 3 thresholds. The VC dimension is approximately

V C(H) ≈ 21. Suppose the domain knowledge shows the parameters of an ANN

have special properties k1 : {w11 = −w12, w21 = −w22, ..., w81 = −w82, t1 = t2,

w1 = w2}, where wi is the weight and ti is the threshold. These special properties

reduce the number of weights and thresholds. Then, the new VC dimension of

the ANN, V C(H|k1) ≈ 8 + 1 + 1 = 10, is then less than the standard VC di-

mension 21 [Abu95]. The later one V C(H; K) arises when the virtual examples

are introduced as a proxy of the domain knowledge. By including extra artificial

examples, the number of total training examples increases, and V C(H; K) has a

upper bound 5V C(H) in case of the invariant hints [Fyf92]. With the increase

of the number n of the training examples, a part
h(log 2en

h
+1)−log(δ/2)

n
of the up-

per bound decreases, and then the upper bound becomes more precise (see the

inequality 2.17).

1This hint asserts that c(x) = c(x′) for certain pairs x, x′. If this hint is violated, the
associated error is Rknowledge = (f(x) − f(x′))2. This hint will be discussed in detail in the
following section, ”Invariance”.
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These discussed improvements to the upper bound provide only a framework

to incorporating auxiliary information thus reducing generalization errors. In

real-world cases, the effects vary depending on the different practical situations

and learning algorithms.

3.2.3 Convergence with Domain Knowledge

It is possible that domain knowledge enhances convergence to an optimal hypoth-

esis h(x) ∈ H which is equivalent to or the best approximation of the unknown

target hypothesis c(x).

The roles of domain knowledge in convergence addresses various characteris-

tics such as feasibility, efficiency, and accuracy. The feasibility indicates whether

the hypothesis space of the given learning algorithm can output a hypothesis

identical to the target model, and if that replica (or approximation) of the target

model is acceptable. In other words, the capacity of the hypothesis space deter-

mines the feasibility and also is addressed in the variance/bias tradeoff by the

generalization. If the given domain knowledge already indicates that the capacity

of the given hypothesis space does not reach certain requirements, the learning

algorithm already fails at the first place. No matter how much effort the learning

system puts into the convergence, a satisfying output will not be reached.

The efficiency of convergence is closely related to the complexity of the hy-

pothesis space, and directly determines the efficiency of the given learning algo-

rithm. With the help of certain domain knowledge, some learning algorithms can

initiate smaller and more precise hypothesis spaces. Others can reduce the size

of the hypothesis space, or select shorter (or more direct) search paths, whereby

convergence takes less computation time, and cost. There is, however, the pos-

sibility that when the domain knowledge introduces the auxiliary information,
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it may increase the complexity of the learning process, thus causing the conver-

gence to be much slower, even becoming a NP-hard problem2. For example, if

a prediction process is represented as an optimization process and the domain

knowledge requires the result of the prediction process will be integers, the pre-

diction problem falls into an integer programming. The integer programming is

a typical NP-complete problem. Thus domain knowledge as an additional con-

straint increases the complexity of the prediction problem, but in terms of the

approximation to the unknown function c(x), this domain knowledge is of use.

In this case, the user has to make a trade-off between accuracy and cost.

Domain knowledge is a valuable tool in setting stop criterions of convergence

that also affects the accuracy of the convergence. This indicates how effective

the learned model (or selected function) is a replica of the target model. In

many practical learning problems, it is not economical to reach the best optimal

solution by using too much resource, such as computation time. There is a balance

between cost and accuracy, and domain knowledge can be valuable to set a set

of stop criterions to reach a cost-effective balance.

3.2.4 Summary

Along with the conceptual benefits of prior domain knowledge, there are two

key practical benefits namely: 1) eliminating noise from training example, and 2)

increasing the transparency of both the resultant models and the learning process.

The theoretic discussion relies on the assumption, that is there is no noise in the

training examples. In the majority of real-world cases, this assumption is not

2In complexity theory, NP (”Non-deterministic Polynomial time”) is the set of decision
problems solvable in polynomial time on a non-deterministic Turing machine. The NP-complete
problems are the most difficult problems in NP in the sense that they are the ones most likely
not to be in polynomial time [AHU74].
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valid, and many learning systems suffer from noisy training examples. In the

preprocessing of training examples, the domain knowledge plays a crucial role in

reducing the noise.

In many real-world cases, the opaque models, which the majority of complex

learning systems result in, are unacceptable. This is because it is very difficult for

naive users to accept an answer without a valid reason. This issue is often ignored

by academic researchers in the machine learning community, causing an obstacle

when complex learning system is implemented in industry. In industries, some

users prefer comprehensible simple models at the sacrifice of accuracy. This issue

is addressed in the following sections using semi-parametric modeling. It produces

a semi-transparent model, which reaches a balance between transparency and

accuracy. In the process of semi-parametric modelling, domain knowledge plays

a crucial role.

Along with the benefits, it is essential to discuss the risk of incorporating

domain knowledge. In the previous section on convergence with domain knowl-

edge, one risk has already been addressed: additional domain knowledge causes

intractable computation complexity. This issue assumes that domain knowl-

edge is perfect, in that it does not contain any noise and completely covers

the whole task. However, as for the imperfect training examples, imperfect do-

main knowledge is common in real-world practice. In order to minimize negative

impacts from imperfect domain knowledge, a trade-off is necessary. As previ-

ously discussed, one approach is the regularizer and employs a new risk function

wSRemp(f) + wKRknowledge(f), where the coefficients wS and wK assign the dif-

ferent weights to the empirical risk function Remp(f) and domain knowledge risk

function Rknowledge(f) (see Definition 2 in the section ”Consistency with Domain

Knowledge”).
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Concerns about the consistency, generalization and convergence provide a

framework for the following methods of incorporating various prior domain knowl-

edge into inductive machine learning algorithms. In the following parts of this

thesis, all of the reviewed or proposed methods consider both this framework and

other relevant practical issues.

There are always a number of desirable properties sought after when forming

a learning algorithm. They include:

• Given no prior domain knowledge, a machine learning algorithm should

learn at least as effectively as purely inductive methods.

• Given a perfect domain knowledge, a machine learning algorithm should

learn at least as effectively as purely analytical methods

• Given an imperfect domain knowledge and imperfect training data, a ma-

chine learning algorithm should combine the two to outperform either purely

inductive or purely analytical methods.

• A machine learning algorithm should be tolerant to some unknown level of

error in the training data.

• A machine learning algorithm should be tolerant to some unknown level of

error in the domain knowledge [Mit97b].

Based on the essentiality of the domain knowledge in machine learning al-

gorithms, some machine learning algorithms require the domain knowledge as a

condition of learning. Others treat the domain knowledge as a option. Therefore,

domain knowledge is classified as ”required” and ”optional” domain knowledge

with respect to learning systems.
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Based on the enforcement of the domain knowledge, some domain knowledge

is called ”hard domain knowledge” or ”strict enforcement”. Learning machines

must find ”best” feasible hypothesis being consistent with hard domain knowl-

edge. Other domain knowledge which learning machines find ”best” feasible

hypothesis maximally respecting is called ”soft domain knowledge” or ”partially

enforcement” [DR05].

The next section reviews and modifies Tom Mitchell’s categories of incor-

porating domain knowledge into machine learning, and includes recent research

results.

3.3 Using Prior Domain Knowledge to Preprocess Train-

ing Samples

The first step of the learning process of an inductive machine learning system

is to preprocess the training data. This step consists of selecting, cleaning and

transforming the original data.

The majority of learning algorithms assume that the collected training ex-

amples do not contain noises and the features have no redundance. In practice,

this assumption is not always established. In many cases, the noise introduced

by the examples or redundant features is the major cause of poor performance

in a learning system. Prior domain knowledge provides important information

to eliminate noise within the features and examples. Without sufficient domain

knowledge, one does not always know which indicators are relevant to the move-

ment of a particular response. Often one has to prepare different sets of indicators

and mine them [TYL04].

Before feeding data into any learning system, one often needs to experiment
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Figure 3.4: Use virtual samples to bias the model produced by Support Vector

Machine [BS97] [SSS99]. The additional virtual samples force the resulting hy-

per-plane more horizontal than one produced by the original training samples at

the third figure.

with different ways to transform original data into new features, for example a

ratio of two features. One needs to remove the redundant features in order to

reduce the complexity. The most obvious observations to remove is the noise

thereby reducing noise and complexity. Some training examples have their in-

ternal structures, such as a tree or a network, and these structures need to be

transformed by domain knowledge in order to be incorporated into the learning

system. This research will use prior domain knowledge to guide the process of

feature selections, in the form of must-link (two features must be in the same

cluster) or cannot-link (two features must not be in the same cluster) .

Being different from the regular data preprocess, this section summarizes

some researches of incorporating prior domain knowledge into inductive machine
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learning through data preparation. Among them, using virtual data samples

to influence the operation of search has gained much attention in recent years.

Partha Niyogi et al proposed an idea of virtual examples as a possible strategy

for incorporating prior information in the neural network in order to counter the

problem of insufficient training examples [NGP98]. This showed that the idea of

virtual examples was mathematically equivalent to incorporating prior domain

knowledge as a regularizer in the function learning in certain restricted domains.

Similar to Niyogi’s work, Bernhard Scholkopf et al pointed out that invari-

ance could be included in pattern recognition in a principled way via the vir-

tual support vector mechanism and restriction of the feature space (see Figure

3.4) [BS97] [SSS99]. Dennis Decoste et al inducted the invariant support vector

machine (SVM), which used prior knowledge as an invariance to bias SVM by

creating a series of virtual samples [DS02]. Their method is composed of the

following procedures:

1. train a Support Vector Machine to extract the support vector set;

2. generate artificial examples, termed virtual support vectors, by applying

the desired invariance transformations to the support vectors; and

3. train another support vector machine on the generated examples.

As the domain knowledge is encapsulated within a set of virtual examples, the

domain knowledge risk function is represented by an empirical risk of the vir-

tual examples Rknowledge(f(Xv)) = Remp(f(Xv)), where Xv is the set of virtual

examples.

The virtual training example method is an indirect way of incorporating prior

domain knowledge in a functional form. The strength of this method is that it

is a universal solution, so long as the given prior domain knowledge is able to
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be converted into a set of artificial training data. In other words, this method is

feasible to any inductive learning system, which relies on the training data. But

this method also shares some of the drawbacks of functional knowledge transfer,

which requires more storage space and less computational efficiency in case of a

large volume of data.

3.4 Using Prior Domain Knowledge to Initiate the Hy-

pothesis Space or the Hypothesis

There are two types of approaches for using domain knowledge to initiate hypoth-

esis space or the hypothesis. The first approach is to initiate a hypothesis space

by satisfying both training examples and domain knowledge simultaneously. In-

ductive learning methods search out a hypothesis through this more appropriate

hypothesis space that is initiated partially or completely by the domain knowl-

edge. The hypotheses space is guaranteed to be consistent with the domain

knowledge. The second approach is to initialize the hypothesis either partially

or completely to fit the existing domain theory. Inductive learning methods will

be used to refine or complete the hypothesis by fitting the training data. In a

hypothesis space, this approach provides a better starting point for convergence.

A better starting point for convergence results in a closer replica to the unknown

target model; therefore, the path of convergence is shorter and the convergence

is more efficient.

In kernel-based learning algorithms which are data-based learning, the selec-

tions of their kernel function relies heavily on the domain theory. Without any

prior domain knowledge, it is common to choose the radial basis functions (RBF)

or polynomial functions as kernel functions. However, in many cases, it is better
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to choose or create a special kernel function for particular requirements in certain

domains. Bernhard Scholkopf et al explored kernel designing, series of methods

for incorporating prior knowledge in constructing appropriate kernel functions

[SSS99]. Therefore, the kernels selected or constructed by the domain knowledge

initiate a proper hypothesis space in which learning algorithms converge to a

better approximation of the unknown target model.

Regular Bayesian Networks (BN) utilize existing domain knowledge to initiate

the structure of the network. The learning algorithms then parameterize the

network. In the structural learning of the Bayesian Network, Helge Langseth

and Thomas D. Nielsen used Object Oriented techniques to construct small and

”easy-to-read” pieces as building blocks for creating a more complex BN [LN03].

Beyond the simple sub-sections of BN, the OOBNs (Object Oriented Bayesian

Networks) introduce a class hierarchy in which the sub-superclass relationship

contains the domain knowledge about the structure of resultant BN. For example,

consider a farm with two dairy cows and two meat cows. Assume that the task

is to model the environment’s effect on the dairy and meat production of these

cows. The OOBNs construct a generic cow class (super class) that describes

the general properties common to all cows, and dairy cow and meat cow that

become two subclasses of that superclass. The subclasses inherit properties of

their superclass, and the OOBN framework facilitates the structural learning of a

Bayesian Network from training samples, simplifying the structure of the learned

network.

In the Knowledge-Based Artificial Neural Network (KBANN), a modified ar-

tificial neural network, an initial network is first constructed so that the classi-

fication assigned to every possible instance by the network is identical to that

assigned by the domain theory [TS89]. The Backpropagation algorithm is then
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Figure 3.5: Different Invariance transformation [DS02]

employed to adjust the weights of this initial network as needed to fit the train-

ing examples. An assumption behind the KBANN is that the domain theory is

correct or approximately correct. Given a better starting approximation than

pure artificial neural network, the KBANN should learn better generalization

accuracy for the final hypothesis. However, the KBANN can be misled given

incorrect or insufficient prior knowledge [Mit97b]. In order to solve this problem,

the Explanation-Based Neural Network (EBNN) algorithm did not completely

rely on the users to provide prior knowledge, but calculated the prior parameters

by explaining each training example in terms of a given domain theory [Mit93]

[Thr96]. Similarly, Tony Jan et al used prior domain knowledge to build the

structure of a hypothesis and the neural learning refined the model [JYD04].

Patrice Simard et al and Partha Niyogi et al addressed the invariance in

the distance-based classification algorithms, for example K nearest neighbors

[SCD93][NGP98]. Suppose we know a transformation s (such as rotation) such

that if P is a valid example then s(P ) is also a valid example. The transformation

s depends on one parameter α, and the set of all transformed patterns SP =

{x|∃α ⇒ x = s(α, P )} is an one-dimensional curve in the vector space of the
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inputs. When the set of transformations is parameterized by n parameters αi,

SP is a manifold of at most n of P . The part of SP that is close to P can be

approximated by a plane tangent to the manifold SP at the point P . The regular

Euclidean distance between two patterns x and z is replaced by a new definition of

distance, the distance between two manifolds s(x) and s(z), called transformation

distance [SCD93]. The known invariance transformation could depend upon the

prior knowledge of a particular problem. For instance, in character recognition, a

small rotation and various thickness of a letter are typical invariances (see Figure

3.5), and we need a classifier that is invariant to those changes. By using the

transformation distance instead of the regular Euclidean distance, the hypothesis

space is initiated to be invariant to those changes.

The search objectives themselves are optimized by domain knowledge. For

example, the semantic query optimization introduced by Suk-Chung Yon et al

can be regarded as the process of transforming a query into an equivalent form

[YHP99]. This form can be evaluated efficiently by narrowing the search space

and refining the query. Suppose we consider the following domain knowledge:

all ships whose deadweight is greater than 700 tons travel at a speed greater

than 60 mph” and ”the ships whose deadweight is greater than 700 tons are

supertankers”. According to the domain knowledge, only ships whose type is

supertankers in the index of the shiptype need to be considered instead of the

speed and the deadweight.
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3.5 Using Prior Domain Knowledge to Alter the Search

Objective

In this approach, the domain knowledge acts as an inductive bias in the process

of searching out an optimal hypothesis consistent with both the training data

and domain knowledge. Most learning algorithms convert their machine learning

problems into optimization problems by constructing objective functions with

sets of constraints. The problem of minimizing the empirical risk function is

an example of the objective function, min[Remp(f)] = min[
∑m

i=1(yi − f(xi))
2].

As the empirical risk function decreases, the learning algorithm converges to

a hypothesis which is the best approximation to the underlying desired model

within the given hypothesis space H. Here, the prior domain knowledge either

acts as an additional regularizer within the objective function or a set of additional

constraints. The majority of existing research on incorporating domain knowledge

into inductive machine learning occurs in this area, containing a diverse range of

results.

There are two major types of methods using prior domain knowledge to alter

the search objectives:

• The goal criterion is modified to require the output hypothesis to fit the do-

main knowledge as well as the training data; for example, learning with con-

straints [DR05][Abu95][SS02b], learning with weighted examples [WS04],

and cost-sensitive learning [Gio02].

• Domain knowledge is employed to verify the search result to guide the

search process in the right direction; for example, knowledge-guided learn-

ing proposed by Stuart Russell. Russell’s method generates all possible

hypotheses expressible in terms of primitive language and tests them for
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consistency with its prior knowledge [Rus91].

3.5.1 Learning with Constraints

In practical problems, the hypothesis space can be vast. Therefore, it is necessary

to search the space preferentially and prune subspaces based on certain domain

knowledge. This is referred to as learning with constraints or constrained learning,

as addressed by Ian Davidson [DR05]. In learning with constraints, domain

knowledge is expressed as a set of additional constraints within the objective

function or constraint.

In handwritten characters recognition, certain derivatives of the target func-

tion can be specified in prior since some patterns of letters are available. This

approach has been explored by Simard et al. in TangentProp [SVC92]. In this

approach, an additional term is added into the error function of normal neural

learning to augument the search objectives. Thus, the Tangent Prop extends the

backpropagation algorithm, allowing it to learn directional derivatives. The usual

weight-update rule of the backpropagation algorithm is modified: ∆w = −η ∂E
∂w

is replaced with ∆w = −η ∂
∂w

(E + µEr), and the Er measures the discrepancy

between the actual and desired directional derivatives.

In the previous introduction to the kernel methods (see Section 2.3), the pa-

rameters {w, d} in the primal or {α, d} in the dual formula are solved as an

optimization problem, such as linear or quadratic programming. The basic idea

of the Knowledge-based Support Vector Machine (KSVM) as proposed by Glenn

M. Fung and Olvi L. Mangasarian is to include domain knowledge as extra con-

straints in the given linear or quadratic programming [FMS01] [MSW04]. In

order to narrow the hypothesis space, KSVM utilizes a set of linear equalities or

inequalities to represent prior domain knowledge in the properties of the target
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functions.

3.5.1.1 Hints

Abu-Mostafa defined Hints as auxiliary information about the target function

that can be used to guide the learning process [Abu95], when the regular learning

process tries to recreate a target function using a set of input-output examples.

He listed some common types of hints:

• Invariance hint

This hint asserts that c(x) = c(x′) for certain pairs x, x′. If this hint is

violated, the associated error is Rknowledge = (f(x)− f(x′))2. This hint will

be discussed in detail in the following section, ”Invariance”.

• Monotonicity hint

This hint asserts for certain pairs x, x′ that f(x) ≤ f(x′). For instance, ”f

is monotonically nondecreasing in x” is formalized by all pairs x, x′ such

that f(x) ≤ f(x′). If this hint is violated, the associated error is

Rknowledge =





(f(x)− f(x′))2, if f(x) > f(x′)

0, if f(x) ≤ f(x′)
(3.4)

Joseph Sill el at incorporated the monotonicity hints into the backprop-

agation algorithm for credit card fraud detection [SA97]. The resultant

improvement from the introduction of monotonicity hints is statistically

significant, nearly 2%.

• Examples hint

Given (x1, c(x1)), . . . , (xN , c(xN)), the examples hint asserts that these are

the correct values of c at the particular points within x1, . . . , xN . Say that
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the correct subset consists of n examples: (x1, c(x1)), . . . , (xn, c(xn)), and

then if this hint is violated, the associated error is Rknowledge = (f(xn) −
c(xn))2.

It is worth highlighting the difference between examples hint and previous

virtual example method (see Section 3.3 “Using Prior Domain Knowledge

to Preprocess Training Samples”). The former randomly picks up a subset

of the examples, and the learning algorithm will put more heavy penalty

to the violation of this subset. In the contrary, the virtual example method

adds extra virtual examples apart from the original training examples.

• Approximation Hint

The hint asserts for certain points x ∈ X that c(x) ∈ [ax, bx]. In other

words, the value of c at x is only known approximately. If this hint is

violated, the associated error is:

Rknowledge =





(f(x)− ax)
2, if f(x) < ax

(f(x)− bx)
2, if f(x) > bx

0, if f(x) ∈ [ax, bb]

(3.5)

• Consistency Hint

The consistency hint differs from previous hints, in that it is more subtle.

Including a consistency hint forces the learning algorithms to be consistent

with their theoretic assumptions. The parametric models always make the

assumption that the model is based on. For example, the discrete time ver-

sion of stochastic Vasicek model ∆xn[l] = kn(θn−xn[l]∆t[l]+σnwn[l]
√

∆t[l])

has assumptions that wn[l] follows a gaussian distribution. However, within

the learning process, there is no discrepancy metric between the learned dis-

tribution and theoretic assumptions. Abu-Mostafa employed the Kullback-
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Leibler distance K(p‖q) to quantify the agreement/disagreement between

the two distribution:

K(p‖q) =

∫
p(u)log

p(u)

q(u)
du (3.6)

here p(u) is the pdf of the learned w[l], q(u) is the pdf of the theoretical

w[l] [Abu01]. Since the form of p(u) is unknown, the maximum-entropy

principle is used to estimate it. Therefore the risk function of this consis-

tency hint is expressed as Rknowledge = K(p‖q), and if and only if p = q the

Rknowledge = K(p‖q) = 0. It is simple to inject this risk function into the

original objective function.

• Catalytic Hint

The catalytic hint is also quite different from the previous hints. The major

difference comes from the way in which the catalytic hint is incorporated.

As introduced by Steven Suddarth and Alistair Holden [SH91], the catalytic

hint was first realized in the feed-forward neural network and later imple-

mented by Yaser Abu-Mostafa [Abu95] and Yaochu Jin [JS99] respectively.

They introduced additional output nodes, catalytic neurons (see Figure

3.6), which are only included by artificial neural networks during the train-

ing process. The additional catalytic nodes force the neural network to

learn extra functions simultaneously with the target function. In practice,

the extra functions are closely related to the target function. By using the

catalytic hints, users emphasize in some parts of the target function.

When hints are available in a learning situation, the objective function, as

optimized by the learning algorithms, is no longer confined only to the empirical

risk Remp [Abu95]. The associated domain knowledge risk function Rknowledge with

hints is then included as extra components in the objective function to contain
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Figure 3.6: Catalytic Hints [JS99]

the information with hints. Further, the ”hints” approach could be treated as a

special case in the regularization theory. Here an ill-posed problem is transformed

into a well-posed one by using prior domain knowledge. The most common form

of prior knowledge is smoothness, but others include monotonicity, convexity and

positivity [NGP98]. In terms of the optimization theory, these approaches either

modify the objective function, or introduce extra constraints into an optimization

problem.

3.5.1.2 Invariance

In recent years, the machine learning community put a large amount of emphasis

on invariance. The invariance means the information of certain transformations of

the input which are known to leave the function values unchanged. For example,

in the figure 3.5, artificial data is generated by rotating a digital image of the digit

“5”. An invariant machine learning algorithm has the capability of recognizing

this artificial data as the digital image of the digit “5” instead of other digits. By
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revisiting the previous definition of ”Invariance Hints”, a certain pair x, x′ stands

for the digital image of the digit ”5” and the rotated image of 3 degrees. Because

the two images are the same c(x) = c(x′), the correct learned hypothesis then

produces: f(x) = f(x′) and the associated error is em = (f(x)− f(x′))2 = 0.

The virtual example method is one of approaches to incorporating invariance

into regular inductive machine learning. However it has two major drawbacks:

1) the users must choose the magnitude of distortion and how many virtual

examples should be generated; and 2) more importantly, the virtual example

is highly correlated with the original data. This makes some of the learning

algorithms, such as ANN, very inefficient [SVC92].

Bernhard Scholkopf et al summarizes three types of methods for incorporating

invariance into kernel methods [SS02b]. First there are the virtual support vector

method, as discussed in the previous section (see Section 3.3); then Jittered SV

method, as will be discussed in the following section (see Section 3.6). Finally

the invariance hyperplane method can be seen as a extension of previous hints

method. The basic idea is to introduce an additional regularizer into the regular

objective function. The linear decision function (see equation 2.22) is rewritten

as f = sgn ◦ g, where g(xj) :=
∑m

i=1 αiyi〈Bxj, Bxi〉 + b with a matrix B to be

determined.

The definition of invariance indicates that local invariance of g or each pattern

xj under transformations of a differentiable local 1-parameter Lie group3 of local

transformations Lt, will lead to g(xj) − g(Ltxj) = 0. The results of the deci-

sion function between the original pattern xj and the transformed pattern Ltxj

have no difference. Thereby, the local invariance of g or each pattern xj under

3The theory of Lie groups ensures that compositions of local (small) transformations si

correspond to linear combinations of the corresponding tangent vectors (local transformations
si have a structure of Lie algebra); for example, the transformations of a differentiable local
1-parameter Lie group of local transformations Lt [SS02b].
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transformations of a differentiable local 1-parameter Lie group of local transfor-

mations Lt is ∂
∂t
|t=0g(Ltxj) = 0. It can be approximately enforced by minimizing

a regularizer: 1
m

∑m
j=1(

∂
∂t
|t=0 g(Ltxj))

2 [SS02b][SSS99].

3.5.2 Learning with Weighted Examples:

As it is relatively straightforward to add extra constraints in an optimization

problem, learning with constraints has already produced some relatively mature

results. Learning with weighted examples is another often-used method of ma-

nipulating the objective function to contain extra information.

Xiaoyun Wu and Rohini Srihari developed a new derivative of the SVM, the

Weighted Margin Support Vector Machine (WMSVM) [WS04]. They used prior

domain knowledge to generate ”Pseudo Training Dataset” as a part of training

sample input into the WMSVM. The objective function of primal problem of the

WMSVM is given:

〈w · w〉+ C

m∑
i=1

ξi + ηC

n∑
i=m+1

g(vi)ξi (3.7)

where the parameter C controls the balance between the model complexity and

training error, g(vi) is the slack normalizaion function for the soft margin algo-

rithm, and the extra parameter η is used to control the relative importance of the

evidence from these two different datasets, that are the true training examples

and Pseudo Training Dataset. One wants to have a relatively bigger η when the

quality of true training examples is poor. Wu and Srihari carried two experi-

ments of text categorization, and compared to the results from a standard SVM,

LibSVM [CL01], WMSVM with prior knowledge achieved higher accuracy with

much less training samples [WS04]. Their experimental outcomes supports the

hypothesis of this thesis.
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Considering the importance of order in the time-series analysis, L. J. Cao et

al incorporated time orders as a parameter of regularized risk function of SVM

to put heavier weights to the recent training samples than those of the distant

training data points [CT03].

3.5.3 Cost-sensitive Learning

Cost-sensitive classification problems are characterized by different costs for dif-

ferent classification errors [Gio02]. Let c(i, j) be the cost of deciding for class i

when the true class is j. The empirical risk is rewritten as:

Remp =
m∑

j=0

c(i, j) (3.8)

Cost-sensitive learning is very close to the learning with weighted examples,

but differs in that it is restricted within the classification problems as cost-

sensitive regression has intractable computation cost. Giorgio Fumera et al im-

plemented cost-sensitive learning into a binary SVM, and the empirical function

becomes: suppose the decision function is defined:




f(x, α) = +1, if w · x + b ≥ ε

f(x, α) = 0, if −ε < w · x + b < ε

f(x, α) = −1, if w · x + b ≥ −ε

(3.9)

and the empirical risk function will be:

Remp =





0, if f(x, α) = y

cR, if f(x, α) = 0

1, if f(x, α) 6= y and f(x, α) 6= 0

(3.10)

where ε delimits a ”reject” area along the hyperplane. The examples located

within the reject area will be handled with different procedures [Gio02].
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3.6 Using Domain Knowledge to Augment Search

Using domain knowledge to augment search is similar to using prior domain

knowledge to alter the search objective. The difference is that the methods of

using domain knowledge to augment search produce new hypothesis candidates

in the process of searching (or convergence). In other words, the hypothesis

space H is adjusted by the domain knowledge with the on-going searching. But

the methods of using prior domain knowledge to alter the search objective work

within a fixed hypothesis space and the domain knowledge only eliminates parts

of the hypothesis space.

Pazzani et al [PBS91] developed the FOCL as an extension of the purely

inductive FOIL system. FOIL generates hypotheses purely from training data.

FOCL also use domain knowledge to generate additional specifications, but it

then selects one hypothesis among all of these candidate specifications based on

their performance over the data. Therefore, in the FOCL method, imperfect

domain knowledge only impacts the hypotheses if the evidence in the data sets

supports the knowledge.

In kernel methods, Dennis Decoste et al introduces the idea of ”kernel jitter-

ing” [DS02]. Prior domain knowledge is included by applying transformations to

patterns as a part of kernel definition. In SVM, this method replaces the regular

kernel function, K(xi, xj) ≡ Ki,j as a jittering kernel form KJ(xi, xj) ≡ KJ
i,j,

defined procedurally as follows:

1. Consider all jittered forms (see Figure 3.5) of example xi (including itself)

in turn, and select the one (xq) ”closest” to xj; specifically, select xq to

minimize the metric distance between xq and xj in the space induced by

the kernel. The distance is given by:
√

Kqq − 2Kqj + Kjj.
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2. let KJ
ij = Kqj

According to their experiment which compares the performance between the

virtual SV (VSV) and the kernel jitter, the training set of the kernel jitter can be

smaller than the corresponding VSV methods, but its accuracy was lower than

the VSV methods.

A limited amount of research has been done in this category, as it is difficult to

simultaneously adjust both the process of convergence and the hypothesis space.

The majority of inductive learning algorithms do both separately.

3.7 Semi-parametric Models and Hierarchical Models

Traditional statistics methods which make assumptions regarding underlying dis-

tributions are named parametric methods . The term ”parametric” indicates that

the structure of the resultant model is known, and the learning methods only esti-

mate the parameters of the resultant models. In contrast, most machine learning

methods exist as non-parametric methods , which simply use very complex struc-

tures and do not make any assumption of the underlying distribution, or the

structures of the resultant models. In theory, they provide universal approaches

independent from the domain, but in reality they introduce higher computation

and complexity without the transparent structures of resultant models. For ex-

ample, kernel methods use a set of basis functions, to approximate the underlying

distribution. The cardinal number of the set of basis functions may reach infinity.

If the structure of the resultant model is known beforehand, the parametric

method is preferred. This is because the structure of resultant model is more com-

prehensible and its computation is more efficient than non-parametric methods.

In real world examples, some domains have been explored and some parametric
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models exist but often they are incomplete. One solution is to apply parametric

knowledge to the problem as much as possible in order to represent the known

knowledge. The nonparametric techniques would then address the remainder of

the question. This kind of hybrid model is called as semi-parametric model (or

hierarchical models) and depends on the structure of its resultant models.

A semi-parametric model consists of the parametric components and nonpara-

metric components. A semi-parametric model contains the following structure:

f(x) = g(xm) +
∑n

i=1 βixi, where {xm, xn} ⊆ x, g(xm) is the nonparametric

component, and
∑n

i=1 βixi is a linear parametric component with xi ∈ xn. Semi-

parametric models are easy to understand (due to the parametric part), and

perform well (often thanks to the nonparametric term) [SS02a]. When the non-

parametric component is a support vector regression (SVR), a semi-parametric

SV regression introduces additional components within the constraints when the

setting is translated into optimization problems. In terms of the capacity of

the function class, kernel mapping in nonparametric components produces much

higher dimensions than that of parametric components. Thus even if the paramet-

ric components are not regularized at all, the overall capacity still works [SS02a].

In a similar research in the SVM, Davide Mattera and Francesco Palmieri intro-

duced the semi-parametric SVM as a general structure of nonlinear functions,

f(x) = wT φ(x) + wT
1 ψ(x), in which wT

1 ψ(x) embedded prior known parametric

function [MPH01]. These two research methods achieved the same result in two

different ways.

Hierarchical models address the fundamental assumptions in the majority of

machine learning algorithms, as with identical underlying distribution. In many

cases, it is certain that data is not produced by identical distribution, but by

related data sets. Rather than using a single model to cover all data sets, it
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is more sensible to build a set of different local models, and then use a global

model to unify them. The hierarchical models constructed by nonparametric and

parametric components belong to semi-parametric models.

In some literature, the hierarchical Bayesian modelling allows the informa-

tion between different models to be transferred via common hyperparameters.

For example, they assume that M data sets {Dj}M
j=1 are available for related but

not identical settings and they have trained M different models with parameters

{θj}M
j=1 on those data sets [TY04]. If a new model concerns a related prob-

lem, then it makes sense to select new hyperparameters hhb such that P (θ|hhb)

approximates the empirical distribution given by the maximum likelihood pa-

rameter estimate instead of using the original informed prior P (θ|hprior). In this

way the new model can inherit knowledge acquired not only from its own data

set, but also from the other models: θM+1: P (θM+1|{Dj}M
j=1) ≈ P (θM+1|hhb). In

order to realize this inheritance, the local models must share the same or similar

parametric structure. Otherwise the inheritant is difficult.

The hierarchical models allow the ”knowledge transfer” via common hyper-

parameters within their framework. This is a very attractive characteristic in

that each local model represents one subset of data produced by an identical

distribution. The global model then works like a collaborative filter to transfer

knowledge amongst the local models. Clearly, it is closely related to the previous

multi-task learning.

As with audit fee estimation, current researches construct a single model to

estimate the audit fee of all of the listed companies in the Australian Stock Ex-

change (ASX). However, it is well-known that different industries have different

auditing standards, and further that large companies have different auditing stan-

dards from small or medium size companies. Therefore it is wise to construct a
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local model for a subset of observation, an industry category, and then construct

a global model covering all local models. When a new subset of observations,

such as industry category, is collected, the global model initiates a local model

via transferring knowledge from other local models.

3.8 Incorporating Financial Domain Knowledge into In-

ductive Machine Learning in Capital Markets

In this thesis, most experiments are based on applications on capital market

domain. Capital markets are the part of financial markets that house a set of

institutional arrangements to facilitate the transfer of funds among the investors

[McI00]. Furthermore, the capital markets are the financial markets for their

instruments with an initial life of one year or more [CJ05]. In the capital mar-

kets, the financial instruments include equities (shares, or stocks), fixed-income

securities, derivatives and money. Because of the availability of the data, in this

thesis only the equity markets are concerned.

A company that has its shares quoted on a stock exchange is known as a

publicly listed corporation. A number of important roles are played by stock

markets. In order for a stock exchange to compete within the global market, it

must have systems in place that facilitate an efficient market. The Australian

Stock Exchange (ASX) operates on electronic trading systems, known as SEATS.

For a stock market to be efficient, it must be fully informed. The listing rules

of an exchange will require a corporation to advise the exchange, and therefore

the markets, of its half-yearly and annual financial statement. They are also

required to report any material change that might impact the share price of the

corporation immediately as it becomes evident. The ASX and Australian Se-
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curity and Investment Commission (ASIC) supervise the overall integrity of the

markets [CJ05]. In this thesis, two case-studies include first the impact measure-

ment of unexpected information releases, such as price sensitive announcements,

on the corresponding stock price movements, and second the detection of the il-

legal behaviors with earnings management in the half-yearly and annual financial

statements from listed companies in the ASX.

Some machine learning methods have already been used for decision support

tools in Capital Markets research and practices [GT00]:

• Traditional statistics : linear, quadratic and logistic discrimination, regres-

sion analysis, MANOVA, etc [JW01].

• Modern statistics : K-Nearest-Neighbours, projection pursuit, ACS, SMART,

MARS, etc [WK91] [McL92] [MST94].

• Decision tree and rule-based induction methods : CART, C5.0, decision

trees, expert systems [MST94] [Mit97b].

• Neural networks, Support Vector Machine and related methods : feedfor-

ward ANN, self-organized maps, radial base functions, etc. [Mit97a] [CT03]

[Zha00].

• Bayesian Inference and Networks [CL96] [FPS96] [BH02].

• Model combination methods : boosting and bagging [FS95] [Bre96a].

The first attempt of incorporating financial domain knowledge into inductive

machine learning appeared in Yaser Abu-Mostafa’s works over the artificial neu-

ral networks (ANN) [Abu95]. In this paper, he described a symmetry hint can

be applied to forecasting in the foreign exchange markets, as a type of domain
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knowledge. A symmetry hint asserts that if a pattern in the price history implies

a certain move in the market, then this implication holds whether you are looking

at the market from the U.S. Dollar viewpoint or the German Deutchmark view-

point. In terms of normalized prices, the hint formally translates to invariance

under inversion of these prices [Abu95]. Boris Kovalerchuk et al showed that

financial time series can benefit significantly from relational data mining based

on symbolic methods, as symbolic methods, such as first-order logic, prevail in

the areas with nonnumeric symbolic knowledge [KV00][KVY02].

The application of the domain knowledge to capital markets is valid in in-

ductive machine learning due to specific characteristics of capital markets. Often

the accuracy of the classification in the financial domain reaches only 50%. How-

ever, the accuracy is often close to 100% in optical character recognition. When

compared with the performance in the optical character recognition, the result

in capital markets is unacceptable. The major reasons include: limited, noisy

and non-stationary observations, as pure data-driven learning methods need suf-

ficient and clean data for training and verification [Abu95]. Additionally, any

capital market can be viewed as a system that absorbs types of information

(fundamentals, news events, rumors, traders’ behaviors etc.) and produces an

output (say up/down price movement for simplicity). The unobserved informa-

tion cannot be modeled and introduces noise. At the same time, there is a large

amount of research accumulated by financial researchers and participators. For

example, within past years, time-series models, such as ARMA-GARCH, have

demonstrated their power of exploring the underlying interrelationship between

different financial indicators [CLM97]. Abu-Mostafa’s experiments over foreign

exchange markets demonstrate that even a simple domain knowledge is able to

enhance the performance of regular learning algorithms dramatically.
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3.9 Summary

This chapter presents a framework for incorporating prior domain knowledge into

inductive machine learning algorithms in three key issues: consistency, general-

ization and convergence. Furthermore, the framework is employed to summarize

four major categories of combination methods. According to this summary, al-

most every machine learning algorithm has its way of incorporating prior domain

knowledge into itself, and there is not a universal approach which covers various

machine learning techniques. For example, the idea of Object Oriented Bayesian

Network (OOBN) is unsuitable to kernel methods, because they do not contain

such complex network structures as BNs do. Similar types of domain knowledge

may be incorporated in different ways into the same learning algorithm. For ex-

ample, there are three ways of incorporating the invariance into kernel methods:

virtual examples, the invariance hyperplane, and the Jittered SV methods. The

selection of the method depends on the requirements of a particular task.

In terms of two major learning algorithms, the difference between the kernel

methods and the Artificial Neural Network posits that the methods incorporating

the domain knowledge into the ANN might be unsuitable to kernel methods. For

example, the structure of hypothesis of the ANN and kernel methods are different,

as the ANN has a network structure with or without hidden layers but the kernel

methods implement the mapping from the input space to the feature space. Thus,

the idea of the KBANN, basically initiating a network structure with the domain

knowledge, is unable to be implemented to the kernel methods.

The modularity of kernel methods shows itself more flexible learning proce-

dures than the ANN (see Figure 2.3) [SC04]. The whole learning procedure can

be decomposed into a sequence of modules, such as kernels, hypothesis spaces

and optimizations. All modules are relatively independent from each other. The
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same algorithm can work with any kernel and hence for any data domain. The

kernel component is data specific, but can be combined with different algorithms

to solve the full range of tasks that we will consider [SC04]. This modularity

coincides very well with the previous four categories of incorporating domain

knowledge into inductive machine learning. It is straightforward to apply one

of the four categories in the corresponding module of the kernel methods. All

this leads to a very natural and elegant approach to learning system design for

incorporating prior domain knowledge.

The majority of machine learning methods have to be tailored in order to

contain the given domain-specific knowledge, with the modification depending

on the machine learning algorithm itself and the characterization of the given

domain knowledge. The framework introduced in this chapter forms the basis on

which any modification should be made. The same as other inductive machine

learning algorithms, kernel methods have to be tailored in many domains. Even

though the current research has produced a significant amount of methods, they

are still limited within certain domains, such as pattern recognition. As was

discussed in the previous section (see Section 3.8), the current implementation

of machine learning in the Capital Markets is not so successful as some of other

domains. One of potential ways of improvements is to incorporate prior domain

knowledge into itself. Regarding the characteristics of domain knowledge in the

Capital Markets, particular methods are necessary and need to be developed to

maximize the performance of the kernel methods. In the following chapters, new

methods are presented and tested on the data set from Capital Markets. The

new methods show how to incorporate domain knowledge into inductive machine

learning with efficiency and effectiveness.
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CHAPTER 4

Methodology

This chapter proposes three new methods of incorporating various prior domain

knowledge into the kernel methods. In the first method, prior domain knowledge

is expressed in the format of local parametric models and partition functions

in the semi-parametric hierarchical model. The domain knowledge is utilized

to initiate the hypothesis space, which is a class of semi-parametric hierarchical

models. In the second method, prior domain knowledge is encoded in the format

of the interrelationship amongst features (or variables). Instead of probabilities,

the interrelationship is represented as a set of must-link and must-precede clauses

in the learning process. For example, it is usual for a feature x1 to be related

to another feature x2. According to the previous categories of incorporating

domain knowledge into inductive machine learning, in this method, prior domain

knowledge is employed to guide the learning process and verify the hypothesis

produced by the learning algorithm. This is similar to the knowledge-guided

learning as addressed by Stuart Russell [Rus91]. In the third method, prior

domain knowledge is represented in the format of logic clauses and is used to

prepare the training examples by labeling the unlabeled training examples which

are then fed into a supervised learning algorithm. In this case, domain knowledge

is encapsulated in training examples as a complement with the resultant model

being consistent with both observations and domain knowledge.
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4.1 Semi-parametric Hierarchical Modelling

As was discussed in the previous chapter, hierarchical modelling provides a frame-

work to contain the domain knowledge represented within the local models. At

the same time, the global model works as a collaborative filter that transfers the

knowledge amongst the local models in formats of the hyperparameters. With

sufficient domain knowledge, many of the local models have rather transparent

structures. Even if the domain knowledge does not cover the domain completely,

it is still possible to find a sub-region covered adequately by domain knowledge.

Given sufficient domain knowledge, parametric models can be sensible choices,

however, many domains often lack existing domain knowledge to describe the

underlying patterns for parametric modeling. Even sometimes, the distributions

are not identical. Under this circumstance, the nonparametric model is a bet-

ter choice as it does not make any unreasonable assumption of the unknown

underlying distribution.

The basic assumption of parametric statistical models is that they are de-

fined by using a fixed number of parameters regardless of the number of training

examples. Thus the parameters provide a finite summary of the data. In the

nonparametric models, the number of parameters in the model is allowed to grow

with the size of the data set. With more data, the model becomes more complex,

with no a-priori limit set on the complexity of the model [Gha04].

The concept of non-parametric hierarchical modelling has been discussed by

Volker Tresp et al [TY04]. They used the Dirichlet distribution as a nonpara-

metric global model. In this section, the kernel methods are used to construct

the global model. In many studies, this kind of “mixed” model is named the

semi-parametric model.
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There are benefits to working with a semi-parametric hierarchical model . For

example, users control the complexity of the model by controlling the partition-

ing and the structures of local models. It is worth clarifying that local models

are not restricted by parametric models. If there are no sufficient domain knowl-

edge in a sub-region of data, then it is sensible to use non-parametric modelling

to avoid utilizing unreasonable assumptions. But parametric local models are

highly recommended where appropriate because of their simplicity and inherent

transparency.

Apart from the selection of local and global models, another important issue

to building a successful hierarchical model is by partitioning the original obser-

vations. Depending on the partitions, hierarchical modelling produces two types

of structures:

• Feature Partitioning

If the features are partitioned into several subsets and the ”local” mod-

els represent the parametric interrelationships amongst features within a

subset of features, the overall model is equivalent to the semi-parametric

model as defined by Smola [SFS98]. The semi-parametric model con-

tains the nonparametric components and parameter components: y =
∑m

i=1 βixi +g(xm+1, . . . , xn), where
∑m

i=1 βixi is the parametric component,

g(xm+1, . . . , xn) is the non-parametric component.

• Observation Partitioning

If the observations are partitioned into several subsets and the local mod-

els represent the different interrelationships amongst the features within

that subset of observations. The previous hierarchical Bayesian Network

is an example of this model. This type of model can be written as: y =
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f(h1(x), . . . , hi(x)), where {hi(x)} is the set of the local parametric models.

The way of partitioning is represented by a partition function (or switch func-

tion) which assigns observations to local models. The partition function may em-

ploy different subsets of training data from those used by local models. Either the

model selection or the partition of the original observation requires the presence

of domain knowledge in the format of parametric local models or the information

of partitions. The local models are then unified by the global model.

4.1.1 Vector Quantization

Vector quantization (VQ) is a lossy compression method based on the principle

of vector component analysis. According to Shannon’s theory of data compres-

sion, in the lossy data compression, better known as rate-distortion theory, the

decompressed data does not have to be exactly the same as the original data.

Instead, some amounts of distortion D are tolerated, and in contrast the lossless

compression has no distortion, D = 0.

Linde, Buzo, and Gray proposed a VQ design algorithm based on a training

sequence. The use of a training sequence bypasses the need for multi-dimensional

integration required by previous VQ methods [LBG80]. A VQ that is designed

using this algorithm is referred to in relevant literature as an LBG-VQ (see Figure

4.1). Given a vector source with its statistical properties known, a distortion

measure, and the number of codevectors, the LBG-VQ finds a codebook (the set

of all red stars) and a partition (the set of blue lines) which result in the smallest

average distortion [GG92].

Consider a training sequence consisting of M vectors: T = {x1, x2, ..., xM},
and N codevectors C = {c1, c2, ..., cN}. The whole region is partitioned by the
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Figure 4.1: A Simple Example of Two-dimensional LBG-VQ [GG92]

codevectors into a set of sub-regions, called Voronoi Regions P = {S1, S2, ..., SN}.
Vectors within a region Sn are represented by their codevector Q(xm) = cn as

xm ∈ Sn, and the average distortion can be given by: Dave = 1
Mk

∑M
m=1 ‖xm −

Q(xm)‖, which measures the information loss. Thus, the design problem can

be summarized as: argminC,P (D) that is to estimate C and P such that D is

minimized.

If C and P are a solution to the above minimization problem. First, it must

satisfy two criteria: the nearest neighbor condition, Sn = x : ‖x− cn‖2 ≤ ‖x− cn′‖2,

∀n′ ∈ {1, 2, ..., N}. Second, the centroid condition, cn =
P

xm∈Sn
xmP

xm∈Sn
1

, ∀n ∈
{1, 2, .., N}. According to the defined framework of the semi-parametric hier-

archical modelling, the LBG-VQ acts as a partition function, the local model

represents a subregion Sn by its codevector Q(xm) = cn, and the global model is

represented by a support vector machine.

The LBG-VQ design algorithm is iterative, which alternatively solves the
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above two optimization criteria. The algorithm requires an initial codebook that

is obtained by a splitting method. The initial codevector is set as the average of

the entire training sequence, and then split into two with the iterative algorithm

running with these two vectors as the initial codebook. The final two codevectors

are split into four, four into eight, eight into sixteen, and the process is repeated

until the desired number of codevectors is obtained [GG92].

4.1.2 VQSVM and Semi-parametric Hierarchical Modelling

In the case of binary classification SVM, the original decision function of support

vector machine (Equation 2.22) is rewritten as:

f(x) = sgn{w · φ(x) + b} = sgn{
M∑

j=1

αjyjk(x,Qj(x)) + b} (4.1)

where Qj(x) stands for the sub-models, and the various sub-models provide the

flexibility to contain the different local information. Here the local models are

restricted by parametric models, in order to improve the performance of model.

The original learning function (Equation 2.21) is rewritten as:

Θ(α) = minw,bL(w, b, α) = −1

2

M∑
i,j=1

αiαjyiyj〈Qi(x) ·Qj(x)〉+
M∑

i,j=1

αi (4.2)

where Qi(x) and Qj(x) represent two different local models.

As the original training data set is partitioned by vector quantization, each

local model is a Voronoi Region Sj, which is represented by its codevector, Qj(x).

For example, a sum-average of the original observation within a cluster can be

expressed as:

Qj(x) = cj =

∑
xm∈Sj

xm

N
,m = 1, 2, .., N (4.3)

where N becomes the number of observations in the cluster Sj. If a training obser-

vation xm belongs to the cluster Sj, it is replaced by the codevector Qj(xm) = cj
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Figure 4.2: Hierarchical Modelling with SV Machines, which modifies the original

SVM (see figure 2.3)

in the following SVM model. Note the VQ functions are substituted into the

previous decision function:

f(x) = sgn{w · φ(x) + b} = sgn{
M∑

j=1

αjyjk(x, cj) + b} (4.4)

The VQSVM contains a semi-parametric hierarchical structure combining a

set of local models represented by codevectors, and a global model represented

by an SVM. In this thesis, this type of mixture model is classified as a semi-

parametric model, as the SVM is a well-known nonparametric model and the VQ

is a parametric model with a rather transparent structure.

This semi-parametric hierarchical model is a way of incorporating prior do-

main knowledge into inductive machine learning. The domain knowledge indi-

cates there is a set of related, but not identical distributions. Each distribution

is represented in formats of a local parametric model, which the global model

then explores the unknown information. As an example of the semi-parametric

hierarchical model, the VQSVM incorporates the prior domain knowledge, that
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is a set of related but not identical distributions, into an inductive machine learn-

ing algorithm that is an SVM. This is facilitated by the partition of observations

done by the VQ and local parametric models constructed by codevectors.

4.1.3 Remarks of the Proposal Model

The proposed semi-parametric hierarchical modelling has multiple advantages.

First, the hypothesis space of the VQSVM is initiated by both the training exam-

ples and the domain knowledge, as its kernel is constructed as k(Ql(xi), Ql(xj)).

Thus the resultant model is consistent with both observations and domain knowl-

edge. Second, the resultant model contains less SVs, reducing the VC dimension.

This results in the model having a better generalization. The kernel mapping is

expressed mathematically as: φ : x → (
√

λjψj(x))j, j = 1, . . . , N , but φ is un-

known and computationally expensive, especially when it maps into a space with

infinite dimensions. In practice, the mapping φ is approximated by the empirical

kernel mapping, that is:

For a given set {z1, . . . , zm}, we call φm : RN → Rm, x 7→
k(., x)|z1,...,zm = (k(z1, x), . . . , k(zm, x)) the empirical kernel mapping

w.r.t. {z1, . . . , zm} [SMB99].

The feature space (a Hilbert space) is spanned by the mapped training exam-

ples. In practice, {z1, . . . , zm} is constructed by a set of support vectors (SVs).

Thus reducing the number of SVs decreases the dimensions of the resultant fea-

ture space.

Third, in equation 2.22, the computation cost of
∑n

i=i αiyik(x, xi) is deter-

mined by the n, that is the number of the SVs. The reduction of the number n

of SVs decreases the complexity of the resultant model. Thus, the whole model
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is more efficient, simpler and more transparent.

However, this successful method has its limitations. For example, only the

training examples are partitioned by the VQ. In case of the binary classification,

the VQ is carried over into the positive and negative classes of training examples

respectively. After the VQ, the new training examples are fed into the SVM for

modelling. In the prediction, the new observation is fed into the SVM model

without going through the VQ. In this sense, the VQSVM is not typical example

of hierarchal modelling.

4.2 A Kernel Based Feature Selection via Analysis of Rel-

evance and Redundancy

Peter Cheeseman suggests that all effects that have not been modelled add to

the noise term [CS96]. Irrelevant features introduce noise into the learning pro-

cess, also degrading the performance. Simultaneously, the loss of strong relevant

features degrades the performance of the resultant model too.

In the machine learning community, there is a belief that an increasing amount

of features will enhance the performance of learning machineries, where the fea-

ture selection always reduces the information contained by the resultant models.

Some research shows that irrelevant features do not increase the information, but

introduce additional noise that eventually harms the performance of the resultant

models. Additionally, too many features cause the curse of dimensionality, which

is always a negative result in machine learning. Even within the relevant features,

some redundant features exist and introduce extra noise with little or no extra

information. For example, in the annual accounting reports from publicly listed

companies, Return On Investment (ROI) is calculated as ROI = EBIT
TA

, where
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Earning Before Interest (EBIT) and Taxation and Total Asset (TA) are two other

features. The EBIT can be redundant with respect to the ROI. Many existing

feature selection algorithms emphasize the discovery of the relevant features but

ignore the elimination of redundant features. They suffer from quadratic, or

even higher complexity about N , such that it is difficult to scale up to higher

dimensionality.

This section proposes an approach to construct an optimal subset of features

for a given machine learning algorithm. The optimal subset of features is to

contain the majority of relevant information with less redundancy.

Mark Hall defined feature selection as “successful if the dimensionality of the

data is reduced and the accuracy of a learning algorithm improves or remains

the same” [Hal99]. Daphne Koller et al formally defined the purpose of feature

selection: let µ and σ be two distributions over some probability space Ω. The

cross-entropy of µ to σ is defined as a distance measure between two distributions:

D(µ, σ) =
∑
x∈Ω

µ(x)log
µ(x)

σ(x)

and then δG(f) = D(Pr(C|f), P r(C|fG)) where Pr(C|f) = Pr(C|F = f) is the

conditional probability of the class C given F = f , and fG is the projection of f

on G. The optimal subset is a feature subset G for which ∆G =
∑

f Pr(f)δG(f)

is reasonably small [KS96]. It is quite difficult to measure the difference, ∆G,

especially in the case of continuous data. Thus in practice some alternative ways

to measure the difference ∆G are required to define the optimal subset.

4.2.1 Feature Relevance and Feature Redundancy

Before discussing the method, it is necessary to define the relevant concepts.

Considering supervised learning, the input of the learning algorithm is a set of n
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training instances. Each instance X is an element of the set F1 × F2 × . . .× Fm,

where Fi is the domain of the ith feature. Training instances are tuples 〈X,Y 〉
where Y is the output. Given an instance, we denote the value of feature Xi by

xi. The task of the induction algorithm is to induce a structure (a decision tree

or SVM) such that, given a new instance, it is possible to accurately predict the

Y .

George John et al defined two concepts about relevance:

Strong Relevance: A feature Xi is relevant iff there exists some xi, y and si for

which p(Y = y|Xi = xi, Si = si) 6= p(Y = y|Si = si).

Weak Relevance: A feature Xi is weakly relevant iff it is not strongly relevant,

and there exists a subset of features S ′i of Si for which there exists some xi, y, s′i

with p(Y = y|S ′i = s′i) > 0 such that p(Y = y|Xi = xi, S
′
i = s′i) 6= p(Y = y|S ′i =

s′i) [JKP94].

The weak relevance implies that the feature can sometimes contribute to pre-

diction accuracy, but the strong relevance indicates that the feature is crucial and

not replaceable with respect to the given task. It is obvious that an optimal sub-

set of features must include strong relevant features. But in term of weak relevant

features, so far there is no principle indicating which weak relevant features are

included. Thus in order to extract the optimal subset of features, it is necessary

to introduce two other concepts: Markov blanket and redundant features. These

concepts are defined below:

Markov Blanket : Given a feature Fi ∈ F , let M ⊂ F be a set of features that

does not contain Fi. We say that a set of features M is a Markov blanket for Fi

if and only if Fi is conditionally independent of a subset of features that does not

contain the M and feature Fi, F −M − Fi, given M , P (F −M − Fi|Fi,Mi) =

P (F −M − Fi|Mi) [KS96].
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Figure 4.3: {f1, f2} are relevant features, but the structures of influence are

different

If M is a Markov Blanket of Fi, denoted as MB(Fi) = M , then it is also

the case that class Y is conditionally independent of the feature Fi given M:

p(Y = y|M = m,Fi = fi) = p(Y = y|M = m), that is ∆M = ∆M+Fi
.

Redundant feature: Let G be the current set of features, a feature is redundant

and hence should be removed from G if and only if it is weakly relevant and has

a Markov Blanket Mi within G [JKP94].

It is worthwhile highlighting that the optimal set of features is approximately

equivalent to the Markov Blanket, which contains the majority of the direct or

most influential features with respect to the target y.

Consider two very simple examples, where the two structures seem very similar

only regarding the interrelationship between target and feature candidates (see

Figure 4.3). T stands for the target (or dependent variable) and {f1, f2} is a

set consisting of two features. In the figure 4.3a, two strong relevant features

directly impact the target with the probability P (T |f1) = 0.12 and P (T |f2) =

0.6 respectively. In the figure 4.3b, the two features are weak relevance and

can replace each other. It is clear that the feature f1 impacts the target T

through the feature f2. But if mutual information between the target T and
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{f1, f2} is measured, it is exactly the same as the previous example: P (T |f1) =

P (f2|f1)P (T |f2) = 0.2 · 0.6 = 0.12. Without considering the interrelationship

between two features, it is impossible to distinguish these two graphs, so that the

resultant subset of features will be the same, {f2}. It is not optimal in the first

case where the information loss occurs.

In the first case (Figure 4.3a), the Markov Blanket contains two features,

{f1, f2}. Both features are strong relevant features, containing no redundant

feature. In the second case (Figure 4.3b), both features are weak relevant features,

because they can replace each other to predict the value of the target T . In figure

4.3b, with the feature f1 redundant with respect to f2, the Markov Blanket

contains only one feature, f2. In figure 4.3b, the feature f1 is behind the f2 with

respect to the target T , and P (T |f1) < P (T |f2) if P (f2|f1) 6= 1. Because it is

very often that P (f2|f1) is less than 1, this property is very useful in the feature

selection algorithms.

Classical backwards feature selection, such as Recursive Feature Elimination

(RFE) proposed by Guyon et al, implicitly removes the redundant features, and

may not uncover the optimal set [GWB02]. For example, a backward feature

selection with a high threshold, say greater than 0.12, does not construct the

optimal subset of features by excluding the feature f1 in the first case (Figure

4.3a). But in the second case, it functions well. Contrary to the classical back-

wards feature selection, if the feature selection is based on these two graphs, the

resultant optimal subsets are explicitly correct.

Unfortunately, the backwards feature selection is very time-consuming. Some

researchers suggest that for computational reasons it is more efficient to remove

several features at a time at the expense of possible classification performance

degradation [GWB02]. Therefore another issue rises: how does one partition
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features and reduce the negative impacts on the classification performance.

4.2.2 Mutual Information Measurement

In order to reduce redundant features from the candidates, it is important to

measure the mutual information between a pair of features. In classical statis-

tics and information theory, the correlation coefficient and cross entropy are two

often-used measurements of the influence between features. However, in some

practical applications, especially the continuous data set, these two methods re-

quire discretisation as a pre-process. This is due to the fact that the cross entropy

only works in case of discrete data set. The quality of the discretisation relies

heavily on a users’ setting as during the process, important information might be

lost. At the same time, regular correlation analysis only measures linear corre-

lation coefficients. Therefore both of them are unable to measure the nonlinear

correlation coefficients within the continuous data sets. The core idea of the pro-

posed method is to convert a nonlinear problem into a linear problem via kernel

mapping. Within the resultant feature space, the regular canonical correlation is

employed to measure the impact between mapped features. As a result, canonical

correlation is kernelized and extended into a nonlinear problem.

The kernelization of canonical correlation is not a completely new idea, and

some unsupervised kernel methods already implement it. For example, Inde-

pendent Component Analysis (ICA) involves recovering latent random vector,

x = (x1, . . . , xm)T from observations of m unknown linear functions of that vec-

tor. The components of x are required to be mutually independent. Thus an

observation y = (y1, . . . , ym)T is modeled as y = Ax, where x is a latent ran-

dom vector with independent components, and where A is an m × m matrix

of parameters [BJ02]. Canonical correlation analysis is a multivariate extension
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of correlation analysis, and is employed by the ICA as a contrast function to

measure the independence between resultant latent variables. Beyond the linear

Canonical Correlation Analysis (CCA), the kernelized version of CCA works in a

feature space. It utilizes extra information from a higher order element of moment

function than the second order in the linear canonical correlation. The traditional

correlation coefficient between two zero-mean univariate random variables x1 and

x2 is defined as corr(x1, x2) = E(x1,x2)√
E(x1,x1)E(x2,x2)

. If the pair of random variables id

projected into two feature spaces: φa : x1 → Fa and φb : x2 → Fb. The images of

the projection of two random variables are x1a = w′
aφa(x1) and x2b = w′

bφb(x2),

where w′
a and w′

b are the projection directions in the feature spaces. Therefore,

the kernelized CCA is defined as [SC04]:

max(ρ) = max(corr(x1, x2)) =
E(x1a, x2b)√

E(x1a, x1a)E(x2b, x2b)

=
E(w′

aφa(x1), E(w′
bφb(x2))√

E(w′
aφa(x1), E(w′

aφa(x1))E(E(w′
bφb(x2), E(w′

bφb(x2))

The contrast function used in the kernel ICA developed by Bach and Jordan is

employed as an approximation of mutual information between two features (or

variables) [BJ02]. The mutual information between two features can be written

as: I(x1, x2) = −1
2

∑p
i=1 log(1− ρ2

i ), where ρi are the canonical correlations, and

this method is employed in the Kernel-based ICA algorithms.

It is important to highlight that the Kernel CCA (KCCA) is an approximation

to the real mutual information between features. The accuracy of the approxi-

mation relies on the users’ tuning, as with other kernel methods. To some degree,

domain knowledge such as known relevant features, usefully helps to tune and

reduce the approximation error. In the next section, known related features in

the formats of constraints are introduced into the training process of the Kernel

CCA, such as a grid search, to get optimal values of parameters.
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4.2.3 ML and MP Constraints

In some domains, a significant amount of relevant features are known. For ex-

ample, in the research of audit quality, a linear formula is available and provides

sets of features, clearly demonstrating their influence to the target.

Ian Davidson proposed must-link as a constraint for clustering. The Must-

Link (ML) requires two instances to be part of the same cluster [DR05]. In

this feature selection problem, the must-link constraints are slightly different

from the concept defined by Davidson. The new ML requires that the results

from the KCCA must show the higher correlation between known feature and

the target than a given number: ML : ∀Fi ∈ Sknown, |Corr(Fi, T )| > µ, where

Sknown is the set of known features. For example, the following equation has

been known and verified by the current research of audit quality: LnAF = β1 +

β2LnTA+β3LnSub+β4DE+β5Quick+β6Foreign+β7CATA+β8ROI+β9Loss+

β10Opinion+β11Y E +β12Intangible+β13InverseMillsRatios+ e [LSH05], and

then the ML can be defined as ∀Fi ∈ {LnTA, LnSub, . . . , InverseMillsRatios},
|(Corr(Fi, LnAF )| > µ).

Another constraint represents the order of influence with each known rele-

vant feature to the target. This is the Must-Precede (MP): {Fi, Fj} ⊆ Sknown,

(|Corr(Fi, T )| ≥ |Corr(Fj, T )|) ⇒ MP : {Fi, Fj}. The feature Fi must pre-

cede Fj, if the correlation between Fi and the target is larger than the cor-

relation between Fj and the target. Considering the previous example, if the

correlation between the feature LnTA and the target LnAF is bigger than the

correlation between the feature LnSub and the target LnAF : {LnTA, LnSub} ⊆
Sknown,(|Corr(LnTA, LnAF )| ≥ |Corr(LnSub, LnAF )|) ⇒ MP : {LnTA, LnSub}.
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Figure 4.4: The domain knowledge may be contained by the optimal set of fea-

tures (or approximated Markov Blanket) partially or entirely.

4.2.4 Remarks of the Proposal Method

In this proposed feature selection method, the domain knowledge in the format of

ML and MP constraints guides the tuning process of the KCCA to measure the

nonlinear correlation coefficient between features. By overcoming the difficulty

of measuring the nonlinear correlation coefficients, one gains more insight into

the interrelationship between features.

Known relevant features are worth being included, but it is still not clear that

known related features will become redundant when other features are included

(see Figure 4.4). The desired optimal set of features may contain all or a subset of

known features. It is still an open question. The problem this research addresses

is discovering the unknown part of the optimal subset of features.

4.3 Rule base and Inductive Machine Learning

One of prevailing knowledge representations is logic clause. As well as studying

the problem of deduction in logic (what follows from what), philosophers were
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interested in the problem of induction [Llo03]. It is not surprising that the es-

tablishment of Inductive Logic Programming (ILP) as an independent subfield of

machine learning was led by Muggleton and De Raedt, and much of the important

work on learning in first-order logic has since taken place in ILP.

Our research considers combinations from a different perspective in relation to

ILP. Rather than giving logic programming the ability of learning, this research

uses the logic, such as the First-Order Logic (FOL), to extend the capacity of

inductive machine learning algorithms.

In the discussion of chapter 2, supervised learning algorithms require training

and test examples (xm, ym) ∈ X × Y containing output variables Y . In many

practical assignments, it is often that only the input variables X are available.

Instead of supervised learning, some researchers are using unsupervised learning,

which produces results without output variables. Some researchers employ semi-

supervised learning in case of a few examples with output variables. Within the

training process, semi-supervised learning actually assigns output variables to the

examples without output variables based on the similarities between the input

variables of the examples with output variables and the examples without output

variables.

This research provides a straightforward approach to train supervised learn-

ing when all or a subset of training examples is without output variables. It will

first use domain knowledge to label the training examples. This domain knowl-

edge is in the form of logic clause, along with other analysis methods, such as

time-series analysis. Through this preprocessing of training data, the examples

with assigned output variables are fed into supervised learning algorithms for

the training purpose. Note that types of domain knowledge determine how to

preprocess training data, as there is no universal approach to this problem. How-
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ever, when a set of examples without output variables is the only available data

and the assignment requires supervised learning, it is necessary to check whether

any prior domain knowledge exists to label the examples before applying any

semi-supervised learning.

Fortunately, in many domains there are rich sources of domain knowledge

available, which can be represented in the format of logic clauses. In financial

research, especially in the microstructure of the capital markets, a large body of

literature is available for inclusion in the knowledge discovery process. In most

of stock exchanges, information dissemination is critical and heavily regulated.

It is forbidden that any information is released before the exchange is notified.

The exchange will then inform all participants in the most efficient ways so as to

guarantee that nobody takes the advantages of getting the information prior to

others.

Financial research has produced time-series analysis methods that are able

to distinguish between the impact of the events and the impacts of the other

sources. In chapter 5, a method which uses time-series analysis to study the

microstructure of stock markets as domain knowledge is presented as a labeling

option for training examples. In this case, hard domain knowledge is required,

as the learning machines have to rely on it for consistency without compromising

the given data.
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CHAPTER 5

Application I – Classifying Impacts from

Unexpected News Events to Stock Price

Movements

5.1 Introduction

Standard classification relies heavily on its given training data sets, often ignor-

ing the existing prior domain knowledge. This is due to imperfect quality and

uncertain characteristics of the prior domain knowledge, as well as the difficul-

ties of incorporating knowledge into (inductive) machine learning systematically.

These limitations introduce more uncertainty to the learning process rather than

improving it. Recently, machine learning techniques and data mining techniques

have found much promise in the financial industry with their capacity to learn

from available financial data. In financial industries, data has been accumulated

over the last few decades through government regulation for financial auditing

purposes. However, a large amount of domain knowledge has also been collected

through research over the last few decades; but, it remains dormant, because of

no systematic way to incorporate this information into data mining.

This chapter describes an approach for incorporating financial domain knowl-

edge, such as time series features and patterns, into a machine learning system

such as Support Vector Machine (SVM) to realize a solution for the well-known
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difficult problem: classifying the impact of broadcasted news on stock price move-

ments for selected companies.

In macroeconomic theories, the Rational Expectations Hypothesis (REH) as-

sumes that all traders are rational, taking the objective prediction by economic

theory as their subjective expectation of future variables. In contrast, Keynes

already questioned a completely rational valuation of assets, arguing those in-

vestors’ sentiment and mass psychology play a significant role in financial mar-

kets [Key36]. New classical economists have viewed these as being irrational, and

therefore inconsistent with REH. Hence, financial markets are viewed as evolu-

tionary systems between different, competing trading strategies [Hom01]. In this

uncertain market, nobody really knows what exactly the fundamental value of

each stock is, as good news about economic fundamental values reinforced by

evolutionary forces may lead to deviations and even overvaluation.

C.H. Hommes specifies that the Adaptive Belief System (ABS) assumes that

traders are limitedly rational, implying a decomposition of return into two terms:

one martingale difference sequence part according to conventional REH theory,

and an extra speculative term added by evolutionary theory [Hom01]. As a re-

sult, the phenomenon of volatility clustering occurs largely due to the interaction

of heterogeneous traders. High volatility may be triggered by news about fun-

damental values or amplified by technical trading. As a non-linear stochastic

system, the ABS is:

Xt+1 = F (Xt; n1t, ..., nHt; λ; δt; εt) (5.1)

where Xt represents the current return of the certain security, Xt+1 represents

the return in the next period, F represents nonlinear mapping, and εt represents

the noise term as the model approximation error with representing the fact that

a model can only be an approximation of the real world.
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Maheu and McCurdy specified a GARCH-Jump model for return series [MM04].

They estimate the impact of latent news innovations from returns, which is di-

rectly measurable from price data. This latent news process is postulated to have

two separate components, normal and unusual news innovations. Each news in-

novation is identified by its impact on return volatility. The unobservable normal

news innovations are assumed to be captured by the return innovation compo-

nent, ε1,t. This component of the news process causes smoothly evolving changes

in the conditional variance of returns. The second component of the latent news

process causes infrequent large moves in returns, ε2,t. The impacts of these un-

usual news events are labelled jumps. Given an information set at time t − 1,

which consists of the history of returns Φt−1 = {rt−1, ..., rt}, the two stochastic in-

novations, ε1,t, and drive returns: ε2,t, is a mean-zero innovation (E[ε1,t|Φt−1] = 0)

with a normal stochastic forcing process, ε1,t = σtzt, zt ∼ NID(0, 1) and ε2,t is a

jump innovation.

Both of the previous models, the ABS and GARCH-Jump, provide a general

framework for incorporating the impacts of news articles. With respect to thou-

sands of news articles from all kinds of sources, these methods do not provide an

approach to figure out the significant news for the given stocks. Therefore, these

methods cannot make significant improvement in practice.

Literature describing machine-learning research have attempted to predict

short-term movement of stock prices for years. However, very limited research

has been done to deal with unstructured data due to the difficulty of the com-

bination of numerical data and textual data in this specific field. Marc-Andre

Mittermayer developed a prototype NewsCATS, which provides a rather complete

framework [Mit04]. In contrast to Mittermayer’s research, the prototype devel-

oped in this research suggests an automatic pre-processing approach to building
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training datasets and keyword sets. Within NewsCATS, experts do these works

manually, which is very time consuming and lacks the necessary flexibility in

dynamic stock markets. The following sections emphasizes the pre-processing

approach and the combination of the rule-based clustering and nonparametric

classifications.

5.2 Methodologies and System Design

As contrasting examples to the interrelationships among multiple sequences of

numerical observations, heterogeneous data is considered in the form of price (or

return) series and news event sequences. Regularly, the price (or return) series

is numerical data, and the news events textual data. In the previous GARCH-

Jump model, the component ε2,t incorporates the impacts of events on price series.

However, the model does not provide a clear approach to measure or quantify

the impact. The most recent knowledge cites that the existing solutions include

employing financial experts who measure the value of impact, ε2,t. Moreover,

considering thousands of news events from all over the world, it is almost impos-

sible for one individual to pick the significant news event and make a rational

estimation immediately after it happens.

The prototype proposed by this research develops an alignment technique be-

tween time stamp data sequences throughout the combination of domain knowl-

edge and non-parametric data-driven classification. To initiate this prototype,

both news items from the archives of press releases and a price series from the

price data archives are fed into the news pre-processing engine. The engine tries

to align news items to the price (or return series). After the alignment, training

news items are labelled as three types of news using a rule-based clustering. Fur-

ther the labelled news items are fed into a keywords extraction engine within the
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Figure 5.1: Structure of the classifier

news pre-processing engine, in order to extract keywords to construct an archive

of keywords [ZSD05]. The keywords are used to convert the news items into

term-frequency data which is understandable to the classification engine.

After the training process is complete, the inflow of news will be converted

as a term-frequency format and fed into the classification engine to predict its

impact to the current stock price.

The impact from unexpected news to the stock price movement could be

viewed as a conditional probability with respect to the traders’ current belief

levels of company status and economical environments. This can be expressed

mathematically as: Pr(Impact|Current Belief), where Impact∈ {Positive, Neg-

ative, Neutral}. Due to lack of published data about the current belief, this

experiment assumes that the current belief levels are same.
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5.3 Domain Knowledge Represented By Rule Bases

Supervised learning requires labelled training data for model learning. However

it is a time-consuming task to label news items. Here relevant domain knowledge

can be utilized to facilitate this learning machine to prepare its training data.

In this research, the rule base represents domain knowledge. It integrates vari-

ous discoveries from time series analysis to align the news items with the time

series patterns (or features) of stock price movements. In the case of labelling

unexpected news announcement, the causal links between the news arrival, the

short-range trend and unusual volatility are represented by knowledge about the

subject area. The time series analysis techniques are employed to discover these

patterns (or features) from the stock price movements.

5.3.1 Domain Knowledge

Since the start of financial research, the correlation between information release

and security price movement has been a prevailing topic. Charles Lee et al

indicated that important information releases are already surrounded both sides

by dramatic price adjustment processes, such as the extreme increase of trading

volume and volatility. The process normally lasts up to one or two days [LRS94].

These dramatic price discovery processes are often caused by an unexpected news

arrival or shock or jump in the GARCH-Jump model.

On the other hand, the previous Adaptive Belief System (ABS) suggested that

while high volatility may be triggered by news about fundamental values, volatil-

ity may also be amplified by technical trading. The ABS implies a decomposition

of return into two terms: 1) one martingale difference sequence part according

to the conventional EMH theory, and 2) an extra speculative term added by the

111



evolutionary theory. Borrowing some concepts from electronic signal processing,

volatility could be decomposed into two sets of disturbance: 1) inherent struc-

tures of the process even without events, which are caused by traders’ behaviors

inside the market, and 2) transient behavior reflecting the changes of flux after

new event happens in the market. One should be aware that the transient prob-

lem may cause a shock at the sequences of prices (or returns), or permanently

change inherent structures of the stock, as with the interrelationship between

financial factors.

5.3.2 Using Domain Knowledge to help the data-preparation of Ma-

chine Learning

Two time series analysis techniques, extreme volatilities detection and change

point detection, are employed to find the desirable patterns. The rule-bases uti-

lize these patterns to integrate two time series sequences together and align news

items sequence with stock price movements. Here the rules are quite straightfor-

ward and consist of IF-THEN (or logical) clauses. For example:

• IF a trading day is within a downward trend and with a large volatility,

THEN this trading day has unanticipated news with negative impacts.

In the format of logicial clauses:

(Di ∈ Trenddown) ∧ (Di ∈ V olatilityhigh) =⇒ Di ∈ Dnews− (5.2)

where Di is a given training date, Trenddown is a sequence of training days

within downwards trends, V olatilityhigh is a sequence of training days with

high volatilities (i.e. shock), and Dnews− is a sequence of trading days with

unanticipated news and negative impacts.

• IF a trading day is within an upward trend and with a large volatility,
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THEN this trading day has unanticipated news with positive impacts.

In the format of logical clauses:

(Di ∈ Trendupward) ∧ (Di ∈ V olatilityhigh) =⇒ Di ∈ Dnews+ (5.3)

where Di is a given training date, Trendup is a sequence of training days

within upwards trends, V olatilityhigh is a sequence of training days with

high volatilities (i.e. shock), and Dnews+ is a sequence of trading days with

unanticipated news and positive impacts.

Collopy and Armstrong have developed rule bases for time series forecasting.

The objective of their rule bases are: to provide more accurate forecasts with a

systematic summary of knowledge [CA92]. The performance of their rule-based

forecasting depends on the rule base, but also on the conditions of the series. Here,

conditions mean a set of features that describes a series. The author is inspired

by their works, and further bridges the gap between rule-based forecasting and

numerical non-parametric machine learning.

The pseudo-code for the algorithm can be expressed as follows:
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Algorithm 5.3.1: Alignment(c)

comment: Discovery Time Series Patterns

Trend = {Trenddown, T rendnetrual, T rendup}
V olatility = {V olatilitylow, V olatilityhigh}
Trend = TrendDetection(ClosingPriceSquence)

V olatility = V olatilityMeasure(ClosingPriceSquence)

comment: Alignment between two time-series sequences

while NotF inishtheT imeSeries

do





Label = RuleBase(Trend, V olatility,NewItemsDate)

EpisodeArray(Label)+ = NewsItem

return (EpisodeArray)

procedure RuleBase(Trend, V olatility,NewItemsDate)

comment: Rule-base

Condition1 : Date ∈ {Trenddown, T rendnetrual, T rendup}
Condition2 : (Date ∈ V olatilityhigh) == true

Switch{Condition1, Condition2} :

case1 : (Di ∈ Trendup) ∧ (Di ∈ V olatilityhigh) ⇒ label = upwardImpact;

case2 : (Di ∈ Trenddown) ∧ (Di ∈ V olatilityhigh) ⇒ label = downwardImpact;

case3 : (Di ∈ Trendneutral) ∧ (Di ∈ V olatilitylow) ⇒ label = neutralImpact;

return (label)

In this research, two time series analysis, net-of-market return and piecewise

fitting, are employed to discover patterns and features, such as unusual high

volatility and a change in the basic trend of a series. A piecewise regression

line is fitted on the series to detect the level discontinuity and changes in the
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basic trend. After detecting the change points, the next stage is to select an

appropriate set of news items. Victor Lavrenko et al titled this step as aligning

the trends with news stories [LSL00].

5.3.3 Using Time Series Analysis to Discover Knowledge

John Roddick et al describe that time-stamped data can be scalar values, such

as stock prices or events [RS02]. Time-stamped scalar values of an ordinal do-

main form curves, or time series, and reveal trends. They listed several types

of temporal knowledge discovery, such as the priori-like discovery of association

rules, template-based mining for sequences, and classification of temporal data.

In the case of trend discovery, the following rationale is related to prediction: if

one time series shows the same trend as another but with a known time delay,

observing the trend of the latter allows assessments about the future behavior of

the former. In financial research, the stock price and return are normally treated

as a time series in order to explore the autocorrelation between the current and

previous observations. Alternatively, events, like news arrivals, may be treated

as a sequence of observations. It is pertinent to explore the correlations between

these two sequences of observations.

Unusual High Volatility of Stock Price Movement: The observation be-

yond three standard derivations is treated as an abnormal volatility. The news

released within this day with abnormal volatilities will be labelled as shocking

news.

Being different from the often-used return, like Rt = Pt−Pt−1

Pt−1
, the net-of-

market return is the difference between absolute return and index return: NRt =

Rt−IndexRt. This indicates the magnitude of information released and excludes
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the impact from the whole stock market.

Piecewise Linear Fitting to Detect the Trend of Price Movements:

Piecewise linear fitting removes the inertial part of the series of return. A good

example of this is the disturbance caused by traders’ behaviours, which is reg-

ularly total around 70% of all disturbances. Within the price sequences, a set

of the piecewise linear models is fitted to the real price series and employed to

detect the change of trend.

Eamonn Keogh et al provides three major approaches to segment time se-

quence: sliding windows, top-down, and bottom-up [KCH01][KCH03]. Here the

bottom-up segmentation algorithm is employed to fit piecewise linear functions

to the price sequences. The piecewise segmented model M is given as:

Y = f1(t, w1) + e1(t), (1 < t ≤ θ1)

= f2(t, w2) + e2(t), (θ1 < t ≤ θ2)

....................................

= fk(t, wk) + ek(t), (θk−1 < t ≤ θk)

where an fi(t, wi) is the function that is fit in the ith segment [GS99]. In the case

of the trend estimation, this fi(t, wi) is a linear function between the price and

input date sequences. The θs are change points between successive segments, and

ei(t)s are error terms.

In the piecewise fitting of a sequence of stock prices, the connecting points

of piecewise models represent the significant changes points in trends. In the

statistics literature this is called the change point detection problem [GS99]. The

unlabelled companies announcements are labeled by a rule base consisting of

logical clauses with piecewise linear fitting and unusual high volatility. The next

step is to build a classification model based on the labeled training examples.
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5.4 Document Classification Using Support Vector Ma-

chine

The goal of text classification is the automatic assignment of documents, like

company announcements, to simply three categories. In this experiment, the

commonly used Term Frequency-Inverse Document Frequency (TF-IDF) is uti-

lized to calculate the frequency of predefined keywords. The frequency constructs

a set of term-vectors to represent documents. The set of keywords is constructed

by comparing general business articles collected from the Australian Financial

Reviews complemented by company announcements collected and pre-processed

by Dale [DCT04]. Keywords can be represented as both single words and phrases.

Therefore, the first step is to identify phrases in the target corpus. The phrases

are extracted based on the assumption that two constituent words form a collo-

cation if they co-occur implicitly in the term [ZSD05].

Documents are represented as a set of fields where each field is a term-vector.

Fields could include the title, the date and the frequency of pre-defined key-

words in the document. In the corpus of documents, certain terms will occur

in most documents, while others will occur in only a few documents. The In-

verse Document Frequency (IDF) is a factor that enhances terms that appear

in fewer documents, while simultaneously downgrading the terms occurring in

many documents. The resultant effect is that the document-specific features get

highlighted, while the collection-wide features are diminished in importance. In

document k, TF-IDF assigns the term i a weight computed as:

TFik ∗ IDF (ti) =
fk(ti)√∑
ti∈Dk

f 2
k (ti)

∗ log(
n

DF (ti)
) (5.4)

where the document frequency (DF) of the term (ti) is the number of documents

in the corpus that the term appears; n is the number of documents in the corpus;
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Figure 5.2: The half hourly Volume Weighted Average Prices and net-of-market

return sequences of AMP

and TFik is the occurrence of term i at the document k [LB03]. As a result, each

document is represented as a set of vectors F dk =< term,weight >.

5.5 Experiments

As a case study, the stock price and return series of the Australian insurance

company AMP were studied. Figure 5.2 shows the half hourly Volume Weighted

Average Prices (VWAP) and the net-of-market return sequence of AMP from

15th Jun 1998 to 16th Mar 2005. At the same time, more than 2000 company

announcements from AMP were collected as a series of news items, which covers

the same period as the VWAP sequence.

Figure 5.3 indicates the shocks (large volatilities) and the trend changing

points detected by the piecewise linear model fitting. After pre-processing, the

data set consists of 464 upwards news items, 833 downward news items and

997 neutral news items. The Porter Stemming Algorithm [Por80] stems the
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Figure 5.3: Shocks (large volatilities), Trend and Changing Points

keywords by comparing the sets of downward and upward news items. The

keyword extraction algorithm constructs a set of keywords consisting of 36 single

or double terms, such as vote share, demerg, court, qanta, annexure, pacif, execut

share, memorandum, and cole.

In this system, the LibSVM provided by Chang [CL04] functions as the “Clas-

sification Engine” (see Figure 5.1). More specifically, the RBF (Radial Basis

Function) SVM (with the hyper-parameter σ = 1) is employed to construct the

classification engine. After the TF-IDF is calculated with respect to the key-

words, the vectors of documents are fed into the classification engine to construct

the classification model. In order to test the model, the result of classification,

as either negative or positive, is compared with the real trends of the stock price

movements. For example, if the real trading price after the announcement rises,

and the result of classification is positive, this is counted as one successful case.

Otherwise, if the real trading price after the announcement rises, and the result

of classification is negative, this is counted as one fail case. A subset of the AMP

announcements is used for testing, and the accuracy of classification is 65.73%.

This result is higher than 46%, which is the average accuracy of Wuthrich’s ex-
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periments as the traditional industry standard approach [WCL98].

5.6 Summary

This chapter provides a method for classifying upcoming financial news into three

categories: upward, neutral or downward. One of the main purposes of this re-

search is to explore an approach of incorporating domain knowledge into induc-

tive machine learning, which traditionally is purely data-driven. Another main

purpose is to provide financial participants and researchers an automatic and

powerful tool to screen out influential news from thousands of announcements on

a daily and global scale. The chapter contributes the following:

• This chapter presents an algorithm to align two sequences of heterogeneous

data: stock price movements and company announcements. The stock

prices are numeric and the company announcements are textual. This al-

gorithm utilizes domain knowledge of capital markets macrostructure to

discover the correlation between these two time-series data sets.

• The chapter also presents a system to classify the impact of company an-

nouncements on the stock price movements. This system combines various

machine learning techniques, including time series analysis, text mining and

kernel methods, to provide an automatic way to screen influential news, and

the current experiment shows the improvements compared with the existing

system.
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CHAPTER 6

Application II – Measuring Audit Quality

The Australia Stock Exchange (ASX) requires all of the publicly listed companies

to submit their accounting and auditing reports annually or biannually in order

to facilitate investors to estimate the performance of these companies. In this

chapter, two experiments are carried on data sets collected from these accounting

and auditing reports in order to estimate the quality of these auditing reports.

The first application in this chapter aims to discover publicly listed companies

with earning management behaviors. This is a challenge as earning management

behaviors typically do not follow a pattern and lead to the reports with poor

audit quality. This application is a binary classification task, and the companies

with illegal behaviors are classified as positive cases. These companies vary by

their industry categories (such as finance, transportation, retailer etc), sizes (such

as small, large, medium), and accounting conventions. These, and other, cate-

gories originate with related but not identical distributions rather than a single

identical one. It is inappropriate to directly group different types of companies

within a single category for the purpose of classification. Furthermore, the known

companies with earning management behaviors are rare among the public com-

panies of the ASX. For example, in 2003, only fourteen companies are reported

to have earning management behaviors among more than one thousand public

listed companies [BT05]. Thus the data set is extremely imbalanced. In the first

section of this chapter, the previously proposed VQSVM is employed to alleviate
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the problems posed by this imbalanced audit and other data sets.

The second application utilizes characteristics of listed companies from the

ASX to estimate their audit fees. The audit fee is an important indicator of audit

quality. An abnormal audit fee (either higher or lower charge) regularly indicates

an audit report with a potential low quality. Audit researchers, Li and Stokes

have built a linear regression model with thirteen features to estimate audit fees

[LSH05]. This research examines a bigger data set and aims to discover more

features. Thus this application is a feature selection problem, and aims to extend

the original features of a linear model to other sets of features in a nonlinear

model.

6.1 VQSVM for Imbalanced Data

The class imbalance problem typically occurs when, in classification problems,

there are much more instances of some classes than others. In cases of extremely

imbalanced (or skewed) data sets with high dimensions, standard classifiers tend

to be overwhelmed by the large classes and ignore the small ones. Therefore,

machine learning becomes an extremely difficult task, and performances of regular

machine learning techniques decline dramatically. In practical applications, the

ratio of the small to the large classes can be drastic such as 1 to 100, or 1 to 1000

[CJK04].

Recent articles summarize some well-known methods for dealing with prob-

lems of imbalanced data, for example undersampling and oversampling at the

data level, one-class (cost-sensitive) learning and boosting at the algorithmic

level. Random undersampling potentially removes certain important examples,

and random oversampling leads to overfitting. In addition, oversampling intro-
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duces additional computational costs if the data set is already fairly large but

imbalanced.

At the algorithmic level, cost-sensitive learning (chapter 3) aims to incorpo-

rate the risk factors of false positives and false negatives into the SVMs [VCC99]

[KS98] [LLW02]. Rehan Akbani et al implements the Synthetic Minority Over-

sampling TEchnique (SMOTE) to imbalanced data sets and discusses the draw-

backs of random undersampling. The SMOTE is a derivative of Support Vector

Machine that gives the different error costs for different classes to push the bound-

ary away from the minor class, [AKJ04]. Gang Wu et al implements KBA, Kernel

Boundary Alignment to imbalanced data sets [WC05].

There has been research in combining data compression and machine learning

techniques. Jiaqi Wang et al combines k-means clustering and SVM to speed up

real-time learning [WWZ05]. Scholkopf and Smola discusses the combination

between VQ and SVM in their book [SS02a]. They kernelized VQ as a new data

compression method, Kernel VQ. The modeling method proposed by this thesis

is different from their work as the VQSVM employs VQ to build a set of local

models whose outputs will be input to a global model (a SVM). One of major

applications of machine learning is data compression, so it is not surprising that

many works have been carried out in these two research fields.

Hierarchical learning machinery, VQSVM, is adapted to reduce the number of

instances within the major class by using less local models to represent instances

rather than simply eliminating instances randomly within random undersam-

pling. Because the local models inherit major information from the instances,

the information loss is much lower than the random undersampling. The local

models can retrieve the information from the global model. However, the local

models change the distribution of instances within the major class to some de-
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gree, but according to the experiments the information loss caused by this change

is acceptable with respect to the improvement of overall performance.

6.1.1 Algorithms

The VQSVM is a hierarchical structure combining a set of local models that are

represented by codevectors and a global SVM. In some literature this type of

mixed model is named as semi-parametric model, because SVM is a well-known

nonparametric model and VQ is a parametric model with a rather transparent

structure. Semi-parametric hierarchical modelling thus becomes a way to incor-

porate domain knowledge into machine learning.

In the case of extreme imbalance datasets, the majority class is represented by

a set of local models that are codevectors, and the minority class keeps as original

observations. The local models can decode and retrieve original instances from

the codevectors. The number of local models in the majority is normally equal

to the number of observations in the minority. However, a tuning of the number

of the local models is required in order to reach the best performance.

Suppose the risk function of SVM is a hinge loss: R[f ] = 1
m

∑m
i=1 |f(xi) −

yi|. The risk function will receive a penalty if one observation is misclassified,

during the training process. In the imbalance data set, because the number

of observations in the major class is much more than the numbers in a minor

class, in the regular SVM, the penalties from the major class are often more

than those from the minor class. The larger portion of the penalties comes from

the major class. Thus the resultant hyperplane is pushed towards the minor

class, and causes misclassifications of some observations in the minor class. A

black point, representing an observation of minor class, is misclassified by the

regular SVM (see Figure 6.1). Rehan Akbani et al and Gang Wu et al also
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Figure 6.1: After training, in an imbalanced and linearly nonseparable data set

the VQ replaces the original observations (light grey points) of the majority group

by codevectors (empty points). The number of the codevectors is almost equal to

the number of observations (dark grey points) of the minority group. The original

maximum margin hyperplane (middle grey areas with dashed lines) learned by

a soft margin SVM without the VQ is pushed towards a new position (middle

grey areas with solid lines), which is much closer to the majority group. The

previously misclassified observation (one dark grey point) is classified correctly

by the new hyperplane (middle grey areas with solid lines).
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found that in the case of imbalanced dataset, SVM always pushes the hyperplane

towards a minority group. This hyperplane causes the learning machine to be

overwhelmed by the majority group, and the minority group loses its information

completely [AKJ04][WC05]. Cost-sensitive learning techniques, such as SMOTE,

function well as the higher weights of penalties are assigned to the minor class

by modifying the risk function [AKJ04].

On the small imbalanced data sets, an excessively reduced number of obser-

vations in the minority class contain very limited information and might not be

sufficient for learning. This is especially so when a large degree of class overlap-

ping exists and the classes are further divided into subclusters [TL05]. Japkowicz

performed several experiments on artificial data sets and concluded that class

imbalances do not seem to systematically cause performance degradation. She

concludes that the imbalance problem is a relative problem depending on both

the complexity of the concept and the overall size of the training set in addition to

the degree of class imbalance present in the data. The complexity of the concept

corresponds to the number of subclusters into which the classes are subdivided.

These results indicate that the class imbalance problems are very domain specific

instead of being caused only by the size of training data [Jap03]. Her work is

carried using the C4.5 decision tree, and as a quite different classifier, the SVM

is also sensitive to the class imbalance problem and it is worth testing whether a

similar idea is valuable.

The Support Vector Machine selects a set of vectors along the hyper-plane,

called support vectors. The random undersampling inevitably reduces the num-

ber of support vectors, and thus potentially loses information due to the removed

support vectors. According to the theory of data compression, vector quantiza-

tion is superior to random undersampling in terms of the information loss, but
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both of them suffer from another risk of information loss within the majority

group. The SVM selects a subset of training instances, xi, and uses them as the

set of support vectors within the decision function shown in Equation 4.4. These

support vectors lie on the margin, and their coefficients αi are non-zero. In other

words, the hyperplane is completely determined by these support vectors, and

does not depend on other examples [SS02a]. Vector Quantization replaces the

original SVs by their corresponding codevectors. The codevectors become new

SVs and push the hyperplane away from the original place trained by imbalanced

data (see Figure 6.1). The Pseudo-code of the algorithm VQSVM is:

Algorithm 1 VQSVM algorithm

1: procedure VQSVM(dataset)

2: Float: g . the kernel parameter g

3: while Until The Optimal Point Of Tradeoff Between Information Loss

and Accuracy do

4: Int: numberOfLocalModels . the number of code-vectors

5: LocalModel = LBGvq(Majority, numberOfLocalModels)

6: NewTrainingData = combine(BalancedMajority, Minority)

7: Model = SVM(NewTrainingData, g)

8: end while

9: end procedure

VQSVM sacrifices the information held by the majority group to retrieve the

information contained by the minority group. This is very important in many real

life scenarios, which emphasize the minority groups. In this thesis, researchers in

the audit quality want to detect the rare annual reports with earning manage-

ments, but the majority of reports are without earning managements and are not

of interest. The number of local models is tuned by the VQSVM to minimize the
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Data set Positive Negative Imbalance No. of number of

Insts Insts Ratio local models subclusters

Abalone (19) 32 4145 1:129.54 32 28

Audit 13 1271 1:98 16 ≥ 24

Yeast (5) 47 1437 1:30.5 64 8

Letter (26) 734 19266 1:26.28 299 (1024) 25

550 (2048) 25

Glass (7) 29 185 1:6.3 32 6

Table 6.1: Four UCI data sets and Audit data set with the numbers of local

models.

information loss of majority group. Therefore the optimal model is a trade-off

between the number of local models and the improved balance ratio in order to

improve the classification accuracy.

6.1.2 Experiments

Four University of California, Irvine (UCI) data sets and a data set collected by

Li and Stokes in the audit research are used for this evaluation [LSH05]. The

UCI data sets experimented with are abalone (abalone19), yeast (yeast5), glass

(glass7), and letter (letter26). The number in the parentheses indicates the target

class chosen. For example, the original glass data set contains 7 classes. In this

research, the seventh class is used as the minority side, and the other six classes

compound the majority side, so as to construct an imbalanced data set. Table

6.1 shows the characteristics of these six datasets organized according to their

negative-positive training-instance ratios. The top dataset (abalone19) is the

most imbalanced with a ratio of about 1 : 130. The abalone data set consists of
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Figure 6.2: In the audit data set, the observations (the bigger points) of the

minority class is scattered with those (the smaller darker points) of the majority

class

continuous data instead of categorical data. It is expected that undersampling

at high rates generate a trade-off between improved data balance and loss of

important information. We examined whether different number of local models

could lead to a further enhancement of results. For example, in the letter(26)

data set, the experiments are carried out over two data sets with two various

number of local models (see Table 6.1).

Through the initial exploration of the five data sets, the minority class is not

linearly separated from the majority class. The minority class is scattered within

the majority class (see Figure 6.2).

The machine learning community uses two metrics, the sensitivity and the

specificity, for evaluating the performance of various tests. Sensitivity is defined

as the accuracy on positive instances,

Sensitivity =
True Positives

True Positives + False Negatives
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Specificity, however, is defined as the accuracy on negative instances [AKJ04]:

Specificity =
True Negatives

True Negatives + False Positives

Kubat et al suggest the g-means, which combines specificity and sensitivity

[KM97]:

g =
√

Specificity × Sensitivity

In our experiments, the g-means replace the standard accuracy rates, which do

not make any sense in imbalanced data sets.

In our experiments, we compare the performance of the modelling, VQSVM,

with the regular SVM, random undersampling and random oversampling [AKJ04].

The SVM uses the LibSVM code and the Vector Quantization uses the DCPR

Matlab toolbox [CL04][Jan05]. All tests involving the SVM use the RBF c-SVM

with an identical gamma value γ = 0.5 and an identical c value c = 10. Each

dataset is randomly split into training and test sets in the ratio 8 to 2, and only

the Abalone(19) is randomly split into train and test sets in the ratio 7 to 3,

because under the ratio 8 to 2, the experiments show that the Abalone (19) loses

the accuracy up to the g-mean value 0.1 with the random undersampling. For the

random undersampling algorithm, we undersample the training data until both

the classes were equal in number, as Japkowicz did in her experiments [Jap03].

The results of these experiments (see table 6.2) show that the g-means of the

VQSVM are better or equal to those of the standard SVM. This result prove

that the SVM is sensitive to the imbalanced data. In detail, the specificities of

the SVM are better than the VQSVM, but the SVM predicts all of instances

as negative. Thus the specificities of standard SVM do not make any sense. In

the data set, Letter (26), while the VQSVM sets the number of local models

extremely low, a new imbalanced data set is produced. As a consequence, the
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SVM VQSVM

Data set Se Sp G Se Sp G

Abalone (19) 0 1 0 0.8 0.87623 0.83099

Audit 0 0.9948 0 0.2500 0.8583 0.4632

Yeast (5) 0 1 0 1 0.8606 0.9277

Letter (26) 0.3537 1 0.5948 1 0.1871 0.4326

0.7143 0.9992 0.8448

Glass (7) 0.6667 1 0.8165 0.6667 1 0.8165

Random Undersampling Random Oversampling

Data set Se Sp G Se Sp G

Abalone (19) 0.3000 0.8198 0.4959 0.6000 0.8101 0.6972

Audit 0.2750 0.6900 0.3653 0 1 0

Yeast (5) 0.8600 0.9519 0.9017 1 0.8084 0.8991

Letter (26) 1 0.0401 0.1998 0.4218 1 0.6494

0.7150 0.9993 0.8453 0.4218 1 0.6494

Glass (7) 0.8333 0.9757 0.8966 0.6667 1 0.8165

Table 6.2: Test Results: In the random undersampling, experiments are

carried out ten times for each data set. This reduces the error caused

by the random selection of observations. For example, in the data set

Yeast(5), we randomly withdrew 64 observations from original train data

10 times. The values in the table are the mean of the resultant g-mean

values. Under the VQSVM, the standard deviations of g-mean values are

{0.1264(Abalone), 0.2600(Audit), 0.0612(yeast), 0.0013(Letter), 0.0758(glass)}
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predictive results of this data set show that the positive group overwhelms the

learning machine.

Compared with the results of random undersampling and oversampling, the

result of VQSVM is lower only when the number of local models in the majority

group is 299 in the data set “Letter (26)”. This is due to the over-reduction of

examples in the majority group. The tuning is essential to reach a trade-off be-

tween information loss and accuracy. According to the values of g-means in Table

6.2, in the data sets with low imbalance ratio (e.g. glass (7)), the performances of

three methods (random undersampling, oversampling and VQSVM) are almost

equally good, but in the data sets with high imbalance ratio (e.g. abalone (19)),

the performance of VQSVM is better than these of random undersampling and

oversampling.

6.1.3 Summary

The results of these experiments prove our theoretic hypothesis: the SVM is

highly sensitive to the imbalanced data, and majority groups often overwhelm

the learning machine. Similar to Gustavo Batista’s report, random oversampling

is more consistent than random undersampling in the case of the Support Vector

Machine. In the case of large amounts of training data containing imbalanced

classes, oversampling increases the number of training examples in the minority

classes, and therefore introduces more computation costs. Compared to three

other methods, the VQSVM is the most stable: from the abalone(19) with the

highest imbalance ratio 130 : 1 to the glass(7) with the lowest imbalance ratio

6 : 1, the g-mean values of the VQSVM hold at 0.8.

The results of these experiments coincide with the arguments Japkowicz pro-

posed [Jap03]. In the highly imbalanced data sets containing more subclusters,
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the performance of the VQSVM is superior to the random undersampling. More

importantly, the VQSVM proposes a hierarchical structure, in which local models

can not be codevectors. The hierarchical structures give researchers more flexi-

bility to incorporate varying models representing domain knowledge into a mixed

model in dealing with imbalanced data sets.

Apart from the VQSVM, incorporating domain knowledge is always helpful

when addressing the problem of imbalance. With the Synthetic Minority Over-

sampling TEchnique (SMOTE), domain knowledge can be used to determine the

initial value of different error costs assigned to classes. This domain knowledge

helps overcome the sensitivity of inductive machine learning algorithms and then

produces more stable models. Instability means that arbitrarily small perturba-

tions in data sets can produce arbitrarily large perturbations in the solution. This

is especially true for infinite-dimensional problems, because for finite-dimensional

problems that perturbation is always finite. But the key of this problem is that

the solution to the new problem is less sensitive to the perturbations [Han05].

Most non-parametric methods, such as SVM, provide ways to stabilize and

regularize the problem. However, their regularization (See Section 2.1.3) is often

a global solution, which assumes that the underlying distribution is identical.

If the underlying distribution is not identical, it becomes highly risky to make

these assumptions, and causes instabilities of the resultant model. In contrast,

hierarchical modelling practises alternative approaches, that separates the related

distributions first, building a local model over each sub-region, and then unifying

local models via a nonparametric model. From the experiments, the VQSVM

overcomes the sensitivity created due to the imbalance suffered by the SVM. With

balanced data, the performance of the VQSVM is equivalent to the performances

of SVM. In the case of extremely imbalanced data, VQSVM reaches an acceptable
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level of accuracy while SVM is already overwhelmed by the majority groups.

6.2 Feature Selections

Chapter 4 discusses the basic concepts of relevant and redundant features, and the

measurement of mutual information between features. Based on these discussions,

this section proposes a feature selection algorithm for the SVM and tests it over

the same audit data set as the one used in the previous experiment of the VQSVM.

6.2.1 Algorithms

The proposed algorithm assembles the previous discussion in chapter 4, and con-

sists of three major steps. The first step is a grid search which repeats the KCCA

between feature candidates until the results are consistent with the ML and MP

constraints. The second step consists of a feature ranking by using a Recur-

sive Feature Elimination (RFE) SVM proposed by Guyon el at [GWB02]. The

RFE is a kernel-based backwards feature selection method. With every iteration,

it eliminates one or multiple features, testing the impact of elimination on the

model coefficients learned by the SVM. If the impact of one removal feature is

minimal among the candidates, it has the least influence in the resultant model.

The output of the RFE is a list of ordered features. The order is determined

by the influence of the features. For example, on the descending list, the most

influential feature is the first one on the list.

The third step follows Lei Yu and Huan Liu’s Fast Correlation-Based Filter

(FCBF) to remove the redundant features based on the results from the previous

two steps [YL04]. In the case of a descending list, a search starts from the

beginning of the list. Suppose a feature Fj precedes another feature Fi; if the
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Figure 6.3: The measurements in the FCBF algorithm proposed by Lei Yu and

Huan Liu [YL04]

correlation coefficient SUi,j between Fj and Fi is greater than the correlation

coefficient Ri,c between Fi and the target T , the feature Fi is removed from the

list (see Figure 6.3). The search carries on until the end of the list, the result

being an optimal subset of features.

In this algorithm proposed by the author, prior knowledge in the format

of known relevant features is represented as two types of constraints: 1) a set

of must-link constraints ML(Fi, T ) between the target T and each of known

relevant features Fi ∈ Sknown, and 2) a set of must-precede constraints MP (Fi, Fj)

between known relevant features, where Corr(Fi, T ) ≥ Corr(Fj, T ) and Fi, Fj ∈
Sknown. These constraints play a crucial role in directly determining the accuracy

of the measurement of KCCA. For example, if the RBF is employed as the kernel

functions, the grid search aims to detect the optimal value of the coefficient γ in

the RBF k(xi, xj) = e−γ‖xi−xj‖2 . The coefficient γ determines mapping between

the input space and the feature space. The pseudo code of the algorithm is

outlined below:
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Algorithm 2 Feature Selection Algorithm

1: procedure FeatureSelection(S(F1, F2, ..., FN , T ),ML,MP, δ)

. S is a training data set; δ is a predefined threshold; ML: the set of

must-link constraints; MP : the set of must-precede constraint.

2: S ′list=FeatureRanking(S)

3: while (∀SUi ∈ SU)SUi ° {ML, MP} do

4: SU= GridSearch(KCCA(S, Sknown))

5: end while

6: Fj = getFirstElement(S ′list)

7: while Fj 6= NULL do

8: Fi = getNextElement(S ′list, Fj)

9: while Fi 6= NULL do

10: if SUi,j > Ri,c then

11: remove Fi from S ′list

12: end if

13: Fi=getNextElement(S ′list, Fi)

14: end while

15: Fj=getNextElement(S ′list ,Fj)

16: end while

17: Sbest=S ′list

18: return Sbest

19: end procedure

In the following sections, this algorithm is tested over an artificial data set

and a real-world data set which is collected from the audit quality research.
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Figure 6.4: The test accuracy of models constructed by a SVR while eliminating

one feature every iteration. The x-axis is the index of feature in the ascending

list, and the y-axis is the R-square.

6.2.2 Experiments

First, the author modifies a data generation provided by Leo Breiman [Bre96b]

to produce an artificial data set. The artificial data set consists of 30 features and

60 pairs of observations. The modification is: within ten features, assign the 0.2

time of the value of fifth feature to the fourth feature, F4 = 0.2F5, F14 = 0.2F15

and F24 = 0.2F25. Thus, among the thirty features of this artificial data set,

there are six weak relevant features, three strong relevant features and twenty-

one irrelevant features. The index of weak relevant features is 4, 14, 24, 5, 15,

25 and the index of strong relevant features is 6, 16, 26. The Recursive Feature

Elimination (RFE) SVM produces a list of ranked features and the values of

R-square while eliminating one feature every iteration (See Figure 6.4). The

resultant list of ranked features is {2, 1, 18, 30, 29, 13, 20, 19, 11, 12, 8, 23, 21, 7,

10, 3, 9, 22, 17, 6, 14, 4, 24, 28, 27, 26, 5, 16, 25, 15}. In the Figure 6.4, at the flat

top part of the curve, the weak relevant features and strong relevant features mix
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Sigma σ Ranked features

10 {2, 1, 18, 30, 29, 13, 20, 19, 11, 12, 8, 23, 21, 7, 10, 3,

9, 22, 17, 6, 14, 4, 24, 28, 27, 26, 5, 16, 25, 15}
1 {2, 7, 25, 9, 15, 13, 1, 23, 6, 5, 21, 30, 16, 17, 8, 29, 19,

11, 22, 12, 20, 18, 3, 28, 10, 27, 26, 24, 14}

Table 6.3: The RBF SVM with the different values of sigma produces different

lists of ranked features. The lists are ordered from the least important to the

most important.

with a few irrelevant features. It is difficult for the backward sequential feature

selection to discover the redundant features from the weak redundant features

and then uncover the optimal subset of features.

However, by taking account of the mutual information between feature can-

didates, the proposed feature selection discovers the strong correlation between

feature candidates. At the same time, the correlation between the 5th feature

and the target is larger than the correlation between the 4th feature and the

target. Therefore the optimal subset of feature produced by the proposed feature

selection algorithm includes the features {6, 28, 27, 26, 5, 16, 25, 15}. The mean

R-square of 10 times cross-validation of a SVR with the same hyper-parameter

as the previous SVRs is 0.689527. That is close to the best R-square value of the

previous backwards sequential feature selection.

At the same time, different values of the hyper-parameter, such as the sigma

in the RBF kernel, may produce different lists of ranked feature. The previous list

is produced while the sigma is 10. When the sigma is set to be 1, the resultant

list becomes {2, 7, 25, 9, 15, 13, 1, 23, 6, 5, 21, 30, 16, 17, 8, 29, 19, 11, 22,

12, 20, 18, 3, 28, 10, 27, 26, 24, 14} (See comparison in Table 6.3). The same
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as other kernel based algorithms, the RBF SVM and Kernel CCA are sensitive

to the value of hyper-parameters. The selection of hyper-parameters can benefit

from the known domain knowledge. If the 6th features are known to be strong

relevance, the second list can be discarded as compared with the first list. Their

sensitivity is caused by the fact that kernel based algorithms are approximate to

the underlying relations. The accuracy of the approximation is heavily influenced

by the value of hyper-parameters and noise within the features and observations.

Secondly, a real-world data set is employed to test the proposed feature selec-

tion algorithm. The data set is the auditing and accounting reports from listed

companies in the Australian Stock Exchange (ASX) in 2003. To ensure an ap-

propriate data set for the experiments, we first need to exam whether the data

set contains both relevant and redundant features. The RFE SVM produces an

ascending list of 39 ranked features (more important features are close to the

end): {35, 30, 29, 34, 33, 32, 17, 1, 18, 4, 8, 31, 14, 36, 37, 10, 13, 15, 3, 25, 12,

28, 24, 26, 22, 27, 16, 20, 21,11, 2, 23, 38, 7, 9, 6, 19, 5, 39}. The same as previ-

ous experiment, Figure 6.5 demonstrates the test result of nonlinear Radial Basis

Function Support Vector Regression (RBF SVR), with each iteration removing

one feature. The order of feature removal follows the order of feature-ranking

list. The flat middle part of the curve indicates that the eliminated features do

not have strong impacts on the test accuracy of the resultant model, and this

result indicates the existence of redundant features.

According to the proposed algorithm, the Kernel CCA is employed to mea-

sure the correlation coefficients between features. If the correlation coefficient

between features is greater than 0.05 (KCCA > 0.05), the coefficient is retained

in the final KCCA table. Otherwise, this experiment sets two of the correspond-

ing features as irrelevant. In the final KCCA table, the index of the features
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Figure 6.5: The test accuracy of SVR models while eliminating one feature every

iteration. The x-axis is the index of feature in the ascending list, and the y-axis

is the value of R-square.

without strong correlations to the known relevant features is (10, 14, 25, 29-32,

36-37). Based on these results, the proposed algorithm generates an optimal

subset of features consisting of 16 features: {Loss Indicator (1), YE (8), OFOA

(31), Current Liabilities (14), 12 Months (36), Currency (37), Current Assets

(10), DE (3), QUICK (2), AF/EBIT (38), CATA (7), FOREIGN (9), LnSUB(6),

Partner Code (19), LnTA (5), AF/TA (39)}. Using the SVR with 100 random

sampling 80% of the original data set as the training data, the average test result

(R-square) is 0.8033 with the standard deviation 0.0398. This result is slightly

higher than 0.774, the best test result (R-square) using the SVR with the same

hyper-parameters but the subset of features produced by the backwards feature

sequential selection.
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6.2.3 Summary

This research expands Lei Yu and Huan Liu’s Fast Correlation-Based Filter

(FCBF) [YL04]. It does so primarily in that it implements the redundancy mea-

surement in feature selection for the non-linear regression. As domain knowledge,

known relevant features are included in the process to guide the process of the

KCCA, under the condition that a sufficient amount of known relevant features is

available. Considering the human involvement, it is worth ensuring whether the

KCCA produces an appropriate approximation to the real mutual information.

In this research, however, domain knowledge from experts is utilized to guide

tuning of the parameters of selected kernels.

In the feature selection experiment of this thesis, domain knowledge collected

from domain experts’ past experiments is included to set the width of the kernel.

According to the results of the experiments, the different values of the hyper-

parameters produce very different outcomes. This is due to the fact that the

kernel based algorithms are approximate to the unknown relations. The domain

knowledge plays an important role to guide the search process to discover the

relatively correct setting. Other researchers often employ the grid search to dis-

cover the optimal value [SBK04]. In the case of this thesis, the domain knowledge

facilitates this process.

The results of these experiments show that the optimal set of features increases

the accuracy to a relatively high level with relatively small optimal subset of fea-

tures. A similar idea can be found in Carlos Soares et al’s meta-learning methods

to select kernel width in SVR [SBK04]. Their meta-learning methodology exploits

information about past experiments to set the width of the Gaussian kernel. At

this stage, the result still relies heavily on the given domain knowledge with the

assumption that the given domain knowledge is perfect. The most pertinent area
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for further investigation is the negative impacts of given domain knowledge on

the resultant subset of features.
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CHAPTER 7

Conclusion and Future Works

7.1 Brief Review and Contributions of this Thesis

In this thesis, a framework and methods are proposed that incorporate prior do-

main knowledge into inductive machine learning. Chapter 2 briefly introduces

the basic concepts of both inductive machine learning and domain knowledge.

Chapter 3 follows by showing that domain knowledge can be incorporated into

inductive machine learning through three key issues: consistency, generalization

and convergence. These three issues are not separate from each other, but are

addressed simultaneously by the majority of methods. In addition, existing re-

search on this topic has been categorized and analyzed according to the previously

proposed three key issues.

In chapter 4, three new methods incorporating domain knowledge into ker-

nel methods are proposed. The first method employs logical clauses to label the

unlabeled training data for supervised learning algorithms. The second method,

VQSVM, consists of vector quantization and a Support Vector Machine (SVM)

to construct a semi-parametric hierarchical model. In the VQSVM, the VQ con-

structs and represents the local models and the SVM acts as a global model.

The third method employs domain knowledge as sets of constraints to guide the

parameter selection of the KCCA.

In chapter 5, the proposed first method, domain knowledge in the format
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of logical clause, is applied to the measurement of unexpected news on stock

price movements. A set of logical clauses combines discoveries made by piecewise

linear fitting and volatility analysis over a data set consisting of the half-hourly

Volume Weighted Average Prices (VWAP) to label the company announcements.

The resultant labeled training examples are then fed into an SVM for supervised

learning.

In chapter 6, the proposed second method, VQSVM, is tested over several

imbalanced data sets, including an auditing data set. The results show that the

VQSVM is superior in terms of classification performance and stability to the

current methods dealing with imbalanced data. The proposed third method is a

kernel-based feature selection algorithm expanding the existing algorithm to the

problem of nonlinear regression. The experiment over the audit data set shows

that the proposed algorithm elicits an optimal subset of features and improves

the estimation performance.

Overall, this thesis makes three major contributions. First, it raises a problem

often ignored by machine learning communities, especially academic researchers:

how domain knowledge can be incorporated into inductive machine learning in

order to enhance the performance of existing complex systems. Secondly, it pro-

poses a framework of incorporating domain knowledge into inductive machine

learning regarding three key issues of inductive machine learning: consistency,

generalization and convergence. Within this framework, it is rather straightfor-

ward for inductive machine learning algorithms to include domain knowledge.

Thirdly, this thesis presents three new methods of incorporating domain knowl-

edge into inductive machine learning. These methods give users the flexibility to

allow their expertise to be included in some formats. It is essential to consider the

negative impacts of domain knowledge, while using imperfect domain knowledge
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to diminish the negative impacts from imperfect training data; even the training

data conflicting with imperfect domain knowledge. From the experiments and

ensuing discussion, the benefits of incorporating prior domain knowledge can be

summarized in three major aspects: 1) reducing the requirements to the quality

and quantity of training examples without sacrificing of the performance of the

learning system; 2) quick deployment and efficient adaption to dynamic environ-

ments; and 3) more transparent outputs of the learning system helping users gain

a deeper understanding of the resultant model.

7.2 Future Research

This research provides some approaches to utilizing prior domain knowledge as

an auxiliary information source in addition to the observations to enhance the

abilities of learning algorithms in certain domains. Although this sounds straight-

forward, it is difficult to realize the correct utilization in many inductive learning

algorithms due to their complexity and the variety of domain knowledge. Avail-

able research as yet has not produced a universal solution to this topic. The

main difficulties of incorporating prior domain knowledge into inductive machine

learning come from several points:

1. The difficulty of collecting domain knowledge:

The main plausible source of collecting domain knowledge until recently

has been human domain experts. When building knowledge representa-

tions from human experts, machine learning practitioners must elicit the

knowledge from human experts via interviewing or testing so as to discover

compact representations of their understanding. This encounters a num-

ber of difficulties, which collectively make up the ”knowledge bottleneck”
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[KN04]. With many large-scale databases a limited amount of prior domain

knowledge exists; in many cases there simply is no expert to interview, such

as with business confidential knowledge in many financial industries. In

other cases it is difficult to articulate the humans’ expertise, as much of it

relies on personal experience.

2. Imperfection (or uncertainty) of domain knowledge:

It is extremely rare that domain knowledge is perfect, accurate and com-

prehensive. The imperfection comes from the collection process of domain

knowledge, such as interviews with human experts and the formalization of

that knowledge. Misunderstandings, or obstacles of understanding, often

occur between machine learning researchers and domain experts.

3. The difficulty of representing domain knowledge in learning algorithms :

The majority of inductive learning algorithms only deal with numerical

data. It is relatively easy if domain knowledge can be represented in formats

of numerical data, such as virtual samples. However, there is a significant

portion of domain knowledge that is difficult to be transformed into numer-

ical data, as further research is then necessary for the domain knowledge to

be valuable for learning. The difficulties of representation also come from

that domain knowledge not being well structured or defined.

4. The difficulty of balancing the effects from domain knowledge and observa-

tions :

The difficulty of balancing the effects from domain knowledge and obser-

vations happens when there are conflicts between domain knowledge and

observations. Some algorithms balance their effects by a Lagrange Multi-

plier. In that case, domain knowledge is treated as a set of constraints, and
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the violations to the constraints are punished to some degree. However in

many cases, domain knowledge cannot be included in a Lagrange function.

This research mainly addresses the last difficulties 2,3, and 4. The results have

demonstrated that it is of great benefit to inductive machine learning to incor-

porate domain knowledge in its learning process. In regards to these difficulties,

the explorations in this research can be improved in some possible aspects.

Firstly, a deeper investigation into the relationship between true risk R and

the combination of empirical risk and domain knowledge risk Remp + Rknowledge

is needed. In theory, the combination of empirical risk and domain knowledge

Remp + Rknowledge can provide a more tight bound for the true risk: |[Remp(f) +

Rknowledge(f)] − R(f)| < δ, similar to the structure risk. Generally, overfitting

causes a bigger domain knowledge risk Rknowledge and a smaller empirical risk

Remp. However, there is not as yet a general method to qualify this tighter

bound.

Secondly, in hierarchical modelling, a further study could aim to address the

trade-off between local and global models regarding conflicts. For example, a

global model initiates new local models based on current local models. However

the typical resultant local model is not coherent to the given training examples.

A related problem exists in how to uncover the optimal point for partitioning

observations and features in order to improve the generalization of the global

model without losing the accuracy of the local models.

The current results of the experiments show a significant improvement in

binary classification. In further works, it is necessary to investigate more precise

controls. Especially the local models representing only support vectors instead

of all vectors may enhance the controllability of the VQSVM and manage the

information loss that occurs with VQSVM.
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There is one issue the VQSVM is unable to address: the size of the training

data. This phonomania has been observed in the experiment over the data set

“Audit”. If the size of the training data, or more precisely, the size of minor class

is extremely small, the information contained will be too limited to be learned

by the VQSVM, thus degrading its performance.

Thirdly, in the feature selection problem, it is still arguable as to what degree

the algorithm needs to successfully rely on domain knowledge. In the experi-

ments of this thesis, the algorithm relies fully on the sufficient domain knowledge

available. It is worthwhile expanding the algorithm into the domain without

enough knowledge and analyze the results. Some sensitivity analysis is necessary

to explore how sensitive the parameter setting is to domain knowledge and how

the parameters setting affects the performance of the feature selection algorithm,

although there is an initial exploration to this issue in Chapter 6.

Fourthly, in the logical representation of domain knowledge in inductive ma-

chine learning, there is still a huge gap between domain experts and machine

learning practitioners. This thesis provides an example demonstrating the use-

fulness of domain knowledge in the forms of logical clauses within learning sys-

tems. However the solution is still domain-dependent, and requires the users’

involvement with the domain to design similar approaches.

The current prototype has demonstrated promising results of this approach.

Further work is needed to provide prototypes that can analyze the impact of

news on stock prices in a more complex and real environment. Due to the lack

of data, the experience in this thesis only is carried over a data set, and may be

affected by the characteristics of the data set. In the further work, the similar

experiments need to be carried over various data sets to test the robustness of

the proposed method. In addition, in further work, three major issues remain,
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as suggested by Nikolaus Hautsch:

1. Impact of the disclosure of inside information: If inside information has

been disclosed at the market even before the announcement, the price dis-

covery process will be different.

2. Anticipated vs. unanticipated information: If traders’ belief has absorbed

the anticipated information, the impact must be expressed as a conditional

probability with the belief as a prior condition. A potential source of

traders’ belief is the database called the Institutional Brokers Estimate

System (I/B/E/S).

3. Interactive effects between information: The current experiment posits that

all news at one point is labelled as a set of upward impacts, but a real

situation is much more complex. Even at one upward point, it is common

that there exists news with downward impacts. It will be very challenging

to distinguish the subset of minor news and measure the interrelationship

between all available news [HH05].

To fulfill the suggested further works, more data including the information of

traders’ current brief is crucial. Incorporating deeper domain knowledge regard-

ing the interrelationship between stock price movements and news arrivals will

be beneficial. Moreover, other domain knowledge is required to tailor the rule

base and the corresponding time-series techniques, if the method of alignment is

implemented in other environments.

Finally, there is still no general solution to incorporating prior domain knowl-

edge into inductive machine learning due to the four main difficulties. At this

stage, even though many researches already make the required assistances to be
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less, if one incorporates their own expertise into an inductive machine learning

algorithm, assistance from the machine learning practitioner remains essential.

In order to solve this topic eventually, the most essential problem is to discover

a method that can represent various domain knowledge easily and clearly into

inductive learning machines. Sometimes it is more critical to give a fine definition

of a problem before solving it. This thesis has identified and tested a framework

and three new methods of incorporating prior domain knowledge into inductive

machine learning. The future research paths proposed in this final chapter show

a way towards finding a solution.
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APPENDIX A

Abbreviation

ABS – Adaptive Belief System

ANN – Artificial Neural Network

ASX – Australian Stock Exchange

CCA – Canonical Correlation Analysis

EBL – Explanation-Based Learning

EBNN – Explanation-Based Neural Network

FCBF – Fast Correlation-Based Filter

FOL – First-Order Logic

ICA – Independent Component Analysis

KBANN – Knowledge-Based Artificial Neural Network

KCCA – Kernel CCA

KKT Condition – Karush-Kuhn-Tucker Condition

KSVM – Knowledge-based Support Vector Machine

LBG-VQ – Linde, Buzo, Gray - Vector Quantization

MDL – Minimum Description Length

ML – Must-Link

MP – Must-Precede
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OOBNs – Object Oriented Bayesian Networks

PAC-learnable – Probably Approximately Correct-learnable

PCA – Principle Component Analysis

RBF – Radial Basis Function

REH – Rational Expectations Hypothesis

RFE – Recursive Feature Elimination

RKHS – Reproducing Kernel Hilbert Space

SMO – Sequential Minimal Optimization

SMOTE – Synthetic Minority Over-sampling TEchnique

SRM – Structural Risk Minimization

SV – Support Vector

SVM – Support Vector Machine

SVR – Support Vector Regression

TF-IDF – Term Frequency - Inverse Document Frequency

VC dimensions – Vapnik Chervonenkis dimensions

VQ – Vector Quantization

VQSVM – Vector Quantization Support Vector Machine

VWAP – Volume Weighted Average Prices

WMSVM – Weighted Margin Support Vector Machine
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APPENDIX B

Table of Symbols

〈., .〉 – Inner Product

‖ . ‖ – Norm

(xi, yi) – A training data pair as i is the index

c(x) – Unknown Target Function

Corr(., .) – Correlation Coefficient

inf(.) – Inferior, that is the best lower bound

k(., .) – kernel function

RN – N-dimensional Euclidean space

R(f) – Risk Function (or loss function, error function)

Remp(f) – Empirical Risk Function

R(fn) – Risk function of any function fn within the given hypothesis space

R(fH) – Risk function of the best function within the given hypothesis space H.

sgn(.) – Sign

sup(.) – Superior, that is the best upper bound
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