CHEMICAL RELATIONSHIPS IN WATERS AND SEDIMENTS OF SOME URBAN STREAMS, WITH PARTICULAR REFERENCE TO HEAVY METALS AND PHOSPHORUS

by

Warwick Jay Hayes

BSc (Hons.) of the University of Sydney

MAppSc (Env. Tox.) of the University of Technology, Sydney

MRACI CCHEM

MAIBiol

A thesis submitted in fulfilment of the requirements for the Degree of Doctor of Philosophy (PhD)

Department of Environmental Biology and Horticulture
University of Technology, Sydney

CERTIFICATE

I certify that this thesis has not already been submitted for any degree and is not being submitted as part of candidature for any other degree.

I also certify that the thesis has been written by me and that any help that I have received in preparing this thesis, and all sources used, have been acknowledged in this thesis.

Signature of Candidate

Production Note: Signature removed prior to publication.

1/

Acknowledgements

There were many individuals who contributed in some way towards improving this work. First and foremost, I would like to extend the greatest appreciation to Associate Professor Rod Buckney who has acted as my supervisor and for the subsequent guidance shown throughout my entire candidature. Other academics of the department who deserve gratitude for their roles during this time are Drs. Richard Lim and David Morrison and Associate Professors Ken Brown and Margaret Burchett.

Of the senior Environmental Biology technical staff, Narelle Richardson and Peter Ralph deserve special mention for their invaluable help during the many hours spent in the laboratory. Barbara Almond, Sue Fenech, Jim Carey, Nawal Gumusel, Peta Hunt and Denise Franovich, were also most co-operative and to them I am grateful.

It would be remiss of me not to mention the school's library staff, in particular Sally Scholfield and Greg Hampshire, for their efforts in organising interlibrary loans and other document deliveries. Without their assistance in this way the literature survey would have been sadly inadequate.

To my fellow postgrads, Andrew LeBrocque, Ben Pearson, Scott Wilson, Ian Anderson, David Everett, Craig Allen, Rebekah Gomez-Fort, Rob Paterson, Rob Fullerton, Bruce Mullins, Colette Thomas, David Ross, Stuart Pengelly, Geoff Cary, Brett Nudd, Ross McPherson, Edwina Laginestra, Ricky Krassoi, Chris Wai and Michael Thurn, thanks to you all for your suggestions, friendship and support.

Finally, I would like to thank my wife, Kirsty, who puts up with me.

Part 1

Table of Contents

Ce	rtificate		i
A	knowled	gements	ii
	ostract		xii
A			1
1		OUCTION The Chemical Composition of Lotic Waters	1
	1.1	Stream Water Quality and Urban Runoff	3
	1.2	Suspended Solids and Stream Sediment	7
	1.3 1.4	Heavy Metals	9
	1.4	1.4.1 General Chemistry, Sources and Ecology	9
		1.4.2 Aquatic Chemistry	10
		1 4 3 Metal Accumulation in Sediments	12
		1 4 4 Metal - Organic Matter Interactions	14
		1.4.5 The Role of Hydrous Metal Oxides	18 20
		1.4.6 Sediment Heavy Metal Bioavailability	20
	1.5	Phosphorus	22
		1.5.1 Sources, Ecology and Biological Importance	24
		1.5.2 Aquatic Chemistry and Accumulation in Sediments	27
		1.5.2 Role of Oxygen and (Hydrous) Metal Oxides in Sediments	29
		1.5.4 Release from the Sediment	31
		1.5.5 Biological Influences on Cycling and Chemistry	
	1.6	Assessment of Sediment Bioavailability Using Sequential Extraction Techniques	33
		Sampling and Analysis of Interstitial Water	34
	1.7	Chemical Studies of Sydney Freshwater Streams	35
	1.8	1.8.1 Australian Lotic Waters, with Reference to Sydney	35
		1.8.2 Target Areas for Research	38
		1.8.3 Aims of this Research	39
2	MATER	HALS AND METHODS	41
2	2.1	Determination of Sampling Sites for Basin Survey	41
	2.1		41
	2.3	Collection of Stream Samples	41
	2.3	2.3.1 Surface Water	41
		2.3.2 Interstitial Water	42
		2.3.3 Sediment	42
		2.3.4 Sampling Regime for Monitoring Study	42 4 3
	2.4	Sample Storage and Water Filtration	43
	2.5	Quality Assurance Protocols	44
	2.6	Water Analysis	44
		2.6.1 Chemical Analyses for Basin Survey	45
		2.6.2 In Situ Physico-chemical Measurements	46
		2.6.3 Alkalinity, Acidity and Hardness	46
		2.6.4 Suspended Solids	46
		2.6.5 Heavy Metals	46
		2.6.5.1 Graphite Furnace AAS	48
		2.6.5.2 Flame AAS	. 0

		2.6.6	Phosphorus	48
		2.6.7		48
			2.6.7.1 Turbidity and Colour	48
			2.6.7.2 Sodium, Potassium, Calcium and Magnesium	49
			2.6.7.3 Chloride and Sulfate	49 50
		o .:	2.6.7.4 Ammonia and Nitrate	5 0
	2.7		ent Analysis	50
		2.7.1	Pre-treatment	50
		2.1.2	Heavy Metals 2.7.2.1 Rapidly Exchangeable Metal	51
			2.7.2.1 Replief Exchangeage Metal 2.7.2.2 Metal Bound to Iron and Manganese Oxides	51
			2.7.2.3 Metal Bound to Organic Matter and Sulfides	52
			2.7.2.4 Residual and Total Metal (excluding Lattice Metal)	52
		2.7.3	,	52
			2.7.3.1 Total Phosphorus	52
			2.7.3.2 Organic Phosphorus	53
		2.7.4	Organic Carbon	53
			Particle Size Fractionation	53
		2.7.6		54
	2.8		tical Analyses and Data Manipulation	55
		2.8.1	General Procedures	55 56
		2.8.2	Multivariate Statistical Methods	30
3	THE IN	मा । मा	NCE OF URBANISATION ON	
3			STREAMS	60
	3.1	Sumn		60
	3.2		duction	60
	• • •	3.2.1	The Study Area	60
			3.2.1.1 Location and Climate	60
			3.2.1.2 Geology	61
			3.2.1.3 Land Use	63
		3.2.2	Objectives and Experimental Design	65
	3.3	Resul		66
		3.3.1		66
		3.3.2	Two-way Indicator Species Analysis (TWINSPAN)	68 71
			Analysis of Differences	73
		3.3.4 3.3.5		77
		3.3.5		77
	3.4		ission	78
	3.5		lusions	87
4	THE RO	OLE (OF SEDIMENTS IN SOME	
	SMA	LL ST	TREAMS	89
	4.1	Sumn	nary	89
	4.2		duction	90
		4.2.1	3	90
			Experimental Design	91
		4.2.3		93
			4.2.3.1 Characteristics of the Sutherland Shire	93
			4.2.3.2 Site Selection	96
			4.2.3.3 Gwawley Creek	96
	4 3	n .	4.2.3.4 Savilles and Temptation Creeks	97
	4.3	Resul	- · · -	98
		4.3.1		100 101
		4.3.2	Water Chemistry 4.3.2.1 General Considerations: Surface Water Salinity	101
			4.3.2.1 General Considerations: Surface water Salimly 4.3.2.2 General Considerations: Surface and Interstitial Waters	104
			4.3.2.3 Composition of Surface Waters at Flood Flow	109
			7.3.2.3 Composition of Surface waters at Flood Flow	107

·				
			V	
				112
			4.3.2.4 Phosphorus Chemistry	112
			4.3.2.5 Heavy Metal Chemistry	115
			4.3.2.6 Assessment of Water Quality 4.3.2.7 Surface Water Loadings	119
		4.3.3	Sediment Chemistry	121
		4.3.3	4.3.3.1 General Considerations	121
			4.3.3.2 Assessment of Sediment Quality	123
			4.3.3.3 Heavy Metal Speciation	127
		4.3.4	Associations Between Chemical Variables	130
		1.51	4.3.4.1 Surface Water Chemistry	130
			4.3.4.2 Interstitial Water Chemistry	131
			4.3.4.3 Sediment and Interstitial Water Chemistry	134
			4.3.4.4 Sediment Chemistry	136
		4.3.5	Chemical Variability	139
			4.3.5.1 Variability in Surface Water Chemistry	140
			4.3.5.2 Variability in Interstitial Water Chemistry	144
			4.3.5.3 Comparison of the Variabilities in Surface and	1.40
			Interstitial Water Chemistry	148 155
		D'	4.3.5.4 Variability in Sediment Chemistry	162
	4.4	Discu 4.4.1	Comparison of Urbanised and Undisturbed Streams	162
		4.4.1	4.4.1.1 Stream Flow Rates and Discharges	162
			4.4.1.2 Major Ion Composition of Surface Waters	164
			4.4.1.3 Minor Ion Composition of Waters	165
			4.4.1.4 Differences Between Interstitial and Surface Waters	166
			4.4.1.5 Sediment Composition	167
		4.4.2	Surface Water Chemistry Under Flood Flow Conditions	168
		4.4.3	Surficial Sediment Chemistry	170
		4.4.4	Measurement of Stream Quality	173
		4.4.5	Sediment - Water Interactions	176
			4.4.5.1 Sediment Release of Heavy Metals and Phosphorus	176
			4.4.5.2 Comparison of Surface Water Loads and Interstitial	177
			Water Diffusional Fluxes	177 179
			4.4.5.3 Sediment Adsorption Isotherms4.4.5.4 Sediment Uptake of Heavy Metals and Phosphorus	192
		116	Patterns of Natural Chemical Variability for Hawkesbury	172
		4.4.6	Sandstone Streams	193
			4.4.6.1 Site Variability	194
			4.4.6.2 Differences in Seasonal Variability	196
	4.5	Concl	usions	198
	4.6		e Directions	200
5	REFER	ENCES	}	203

List of Tables

Fable	1.	Reported data for urban stormwater runoff and toxicity of constituents	5
	_	to freshwater life.	47
Table		Furnace operating parameters for copper/lead analysis.	47
Table		Furnace operating parameters for cadmium analysis.	68
Table		Site order and groupings from the TWINSPAN analysis (Groups 1 to 3).	72
Table		Group means, ranges and standard errors for chemical parameters.	77
Table		Parameters that showed significant regressions with water velocity.	83
Table		Relevant water quality criteria for protection of freshwater ecosystems.	03
Table	8.	Sample percentage for each primary TWINSPAN group exceeding	84
		ANZECC (1992) quality criteria limits.	04
Table	9.	Sampling dates and rainfall data for the Sutherland Shire,	99
		as measured at Oatley.	102
Table		Spearman correlation matrices for surface water major ion chemistry.	102
Table	11.	Results of between-site ANOVA using station mean major ion relative	105
		percentages for surface waters.	103
Table	12.	Results of ANOVA using station mean major ion relative percentages,	105
		with and without sample collection 12 (storm) values.	103
Table	13.	Significant probabilities resulting from ANOVA between site water	106
		chemistry data.	100
Table	14.	Results of ANOVA between surface and interstitial waters	110
		for pooled data.	110
Table	15.	Results of ANOVA between surface and interstitial waters of each	111
20 II.	1.0	sample station. Percentage of measurements for each site which fail the ANZECC (1992)	
Table	16.	water quality criteria.	118
m.L.	17.	Constituent loading means, standard errors and ranges for surface waters	
Table	1 /.	of the nine sampling stations.	120
Table	1 Q	Significant probabilities resulting from ANOVA between site sediment	
Table	10.	chemistry data.	122
Table	10		125
Table		Proportion of measurements for each site which fail the Ontario MOE	
LADIC	20.	'lowest effect level' sediment quality criteria.	125
Table	21	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Table	-1.	speciated heavy metal concentrations (µg g ⁻¹).	127
Table	22		
Table		pH and redox with heavy metals and phosphorus.	132
Table	23	Spearman correlation coefficients for interstitial water dissolved	
I abic	2 .	oxygen, alkalinity, acidity, pH and redox with heavy metals	
		and phosphorus.	133
Table	24.	and the second s	
		sediment heavy metals and phosphorus.	135
Table	25		
AMDIC	~ J.	organic carbon.	136
Table	26	or the contract of the contrac	
_ ====	- 3.	heavy metals and phosphorus.	137
Table	27.	Spearman correlation matrices for selected sediment parameters.	138
	•	1 ·	

List of Figures

Fig.	1.	Adsorption of organic acids on hydrous metal oxides.	17
Fig.	2.	Reactions of divalent metal ions with surface bound hydroxyl	
- 6		groups at the water-oxide interface.	17
Fig.	3.	Esterification of phosphate to organic matter-iron oxide complexes.	28
Fig.	4.	Examples of ortho-phosphate adsorption/desorption reactions	
		with hydrous metal oxide surfaces.	28
Fig.	5.	The Sydney Basin.	37
Fig.	6.	Geology of the Sydney Basin.	62
Fig.	7.	Land use of the Sydney Basin.	64
Fig.	8.	Locations of 90 sampling sites.	67
Fig.	9.	Basin geology with sampling sites.	69
Fig.	10.	Basin land use with sampling sites.	70
Fig.	11.	Multidimensional scaling ordination using all chemical parameters.	
		a. Group 1 sites. b. Group 2 sites. c. Group 3 sites.	74
Fig.	12.	Multidimensional scaling ordination using the major ions.	7.5
		a. Group 1 sites. b. Group 2 sites. c. Group 3 sites.	75
Fig.	13.	Multidimensional scaling ordination using the minor ions +	
		turbidity and colour.	20
		a. Group 1 sites. b. Group 2 sites. c. Group 3 sites.	76
Fig.	14.	Major ion mean relative percentages for the four sample groups.	79
Fig.	15.	Major ion mean relative percentages for the 75 sites, as grouped	70
		by the principal basin geologies.	79
Fig.	16.	Average monthly rainfall for Sydney (1860-1990), as measured from	9.6
		Observatory Hill.	86
Fig.	17.	Monthly rainfall for Sydney during 1990, as measured from	86
		Observatory Hill.	94
Fig.	18.	Gwawley Creek with sampling stations.	-
Fig.	19.	Savilles and Temptation Creeks with sampling stations.	95
Fig.	20.	Major ion mean relative percentages (as equivalent weights) for the	102
		three sites. a. GC b. SC c. TC	103
Fig.	21.	Mean surface water ortho-phosphate and total phosphorus levels	113
	••	(all data) for the nine sample stations.	113
Fig.	22.	Flood flow surface water ortho-phosphate and total phosphorus levels	113
	2.2	for the nine sample stations.	113
Fig.	23.	Mean surface and interstitial water ortho-phosphate levels, based on	
		those samplings for which both water types were collected,	114
171 -	24-	for the nine sample stations.	116
Fig.	24a.	Mean surface and interstitial water copper levels.	116
Fig.	24b.	Mean surface and interstitial water zinc levels. Mean surface and interstitial water cadmium levels.	117
Fig.	24c.		117
Fig.	24d.	Mean surface and interstitial water lead levels.	117
Fig.	25.	Sediment mean total and organic phosphorus concentrations for the	124
F7:	26	nine sampling stations.	124
Fig.	26.	Sediment mean total heavy metal concentrations for the nine	124
.	27	sampling stations.	144
Fig.	27.	Mean concentrations from heavy metal speciation studies of	129
г.	20	urban creek sediments.	149
Fig.	28.	MDS ordination using sample station mean values of surface water	140
		chemical parameters.	140

viii

Fig.	29.	MDS ordination using chemical parameters from the surface waters, grouped by station.	142
Fig.	30.	MDS ordination using chemical parameters from surface water samples, classified by season when collected.	143
Fig.	31.	MDS ordination using sample station mean values of interstitial water chemical parameters.	144
Fig.	32.	MDS ordination using chemical parameters from the interstitial waters, grouped by station.	146
Fig.	33.	MDS ordination using chemical parameters from interstitial water samples, classified by season when collected.	147
Fig.	34.	MDS ordination using sample station mean values of combined surface and interstitial water chemical parameters.	148
Fig.	35.	MDS ordinations using chemical parameters from station surface and interstitial waters of single sample collections.	150-151
Fig.	36.	MDS ordination using chemical parameters from combined surface and interstitial waters, grouped by station.	152
Fig.	37.	MDS ordination using chemical parameters from combined surface and interstitial water samples, classified by season when collected.	154
Fig. Fig.	38. 39.	MDS ordination using sample station mean values of sediment variables. MDS ordinations using chemical parameters from station sediments	155
Fig.	40.	of single sample collections. MDS ordination using chemical parameters from the sediments,	157-158
Fig.	41.	grouped by station. MDS ordination using chemical parameters from sediment samples,	160
Fig.	42.	classified by season when collected. Sum of secondary phase metal versus primary (residual) phase metal.	161 172
Fig.	43.	Langmuir adsorption isotherm plot for phosphorus and Hawkesbury Sandstone sediment. Sediment total P against IW dissolved ortho-phosphate.	181
Fig.	44.	Langmuir adsorption isotherm plots for heavy metals and Hawkesbury Sandstone sediment. Sediment sum of secondary phase metal	
Fig.	45.	against IW dissolved heavy metal. Langmuir adsorption isotherm plot for phosphorus and Hawkesbury Sandstone sediment. Sediment organic P against IW dissolved	182
Fig.	46.	ortho-phosphate. Langmuir adsorption isotherm plots for heavy metals and Hawkesbury	183
6-	40.	Sandstone sediment. Sediment (i) RE, (ii) HMO and (iii) OMS heavy metal against IW dissolved heavy metal.	184-186
Fig.	47.	Freundlich adsorption isotherm plot for phosphorus and Hawkesbury Sandstone sediment. Sediment organic P against IW dissolved	
Fig.	48.	ortho-phosphate. Freundlich adsorption isotherm plots for heavy metals and Hawkesbury	188
		Sandstone sediment. Sediment (i) RE, (ii) HMO and (iii) OMS heavy metal against IW dissolved heavy metal.	189-191

List of Abbreviations

AAS	=	atomic absorption spectrophotometry
ANOVA	=	analysis of variance
ANZECC	=	Australian and New Zealand Environment and Conservation Council
AT	=	Appendix Table
bdl	=	below detectable limit
BOD	=	biochemical oxygen demand
CEC	=	cation exchange capacity
Ck.	=	creek
diss.	=	dissolved
DO	=	dissolved oxygen
EDTA	=	ethylenediamine tetraacetic acid
F	=	flow group
Fig.	=	Figure
G	=	geology category
GC	=	Gwawley Creek
НМО	=	hydrous metal oxides *
ſW	=	interstitial water
Kjeld-N	=	kjeldahl nitrogen
L	=	land use category
LC50	=	the lethal concentration for 50% of the test organisms
log	=	natural logarithmic transformed data
MDS	=	multidimensional scaling
mmolNa	=	millimoles of sodium
NSW	=	New South Wales
OMS	==	organic matter and sulfides *
0-	=	ortho-
ppm	=	parts per million
QC	=	quality control
R	=	residual *
RE	=	rapidly exchangeable *
redox	=	reduction / oxidation potential
SC	=	Savilles Creek
sedOP	=	sediment organic phosphorus
sedS2P	=	sediment sum secondary phase
sedTP	=	sediment total phosphorus
SFA	=	segmented flow analyser
SPCC	=	State Pollution Control Commission #
sqr	=	square root transformed data
SRP	=	soluble reactive phosphorus
SS	=	sample station
SW	=	surface water
TC	=	Temptation Creek
TOC	=	total organic carbon
trib.	=	tributary
TWINSPAN	<u>-</u> =	two-way indicator species analysis
UDP	=	Urban Development Program
	=	volume per volume
v/v	= .	weight per volume
w/v		werkur her vormure

^{*} categories of sediment heavy metal speciation analysis # now the NSW Environment Protection Authority (EPA)

Part 2

Table of Contents

APPENDICES		a-1
Appendix 1	The Interstitial Water Sampler	a-1
	The Sampler	a-1
A 1.2	Assessment of Suitability	a-1
Appendix 2	Internal Quality Control	a-6
A 2.1	OC Measures for the Sydney Streams Survey (Study 1)	a-6
A 2.2	QC Measures for the Monitoring Study (Study 2)	a-6
Appendix 3	Determination of Detection Limits	a-16
Appendix 4	Raw Data	a-19
Appendix 5	Sample Station Photographs for the Three	
	Sutherland Shire Creeks	a-59
Appendix 6	Calculated Values (Set 1) for Differences in Surface	
	Water Loading and Diffusional Fluxes	
	for the Three Shire Creeks	a-64
Appendix 7	Calculated Values (Set 2) for Differences in Surface	
	Water Loading and Diffusional Fluxes	
	for the Three Shire Creeks	a-67

List of Appendix Tables

Table	A 1	Paired t-test comparisons of single field measurements	
Labie	AII	for surface water.	a-3
Table	A 2	Paired t-test comparisons of triplicate field and laboratory	_
Labic	A4.	measurements for surface water.	a-4 - a-5
Table	Δ3	OC mean percentage recoveries from analysis of internal	
1 abic	113.	reference standards during Basin survey.	a-6
Table	Δ4.	OC recovery data for heavy metal analyses.	a-7 - a-10
Table			a-10
Table		OC recovery data for phosphorus analysis.	a-11 - a-13
Table		Survey study sites and individual descriptions.	a-20 - a-23
Table			a-24 - a-27
Table			a-28 - a-29
Table	A10.	Monitoring study sampling dates and flow data.	
IMDIC		A10(i). Gwawley Creek.	a-30
		A10(ii). Savilles Creek.	a-30
		A10(iii). Temptation Creek.	a-31
Table	A11.	Monitoring study surface and interstitial water chemistry.	
1 40.0		All(i). Gwawley Creek.	a-32 - a-35
		All(ii). Savilles Creek.	a-36 - a-39
		All(iii). Temptation Creek.	a-40 - a-43
Table	A12.	Monitoring study additional surface water chemistry.	
1		A12(i). Gwawley Creek.	a-44 - a-4
		A12((ii). Savilles Creek.	a-44 - a-4
		A12((iii). Temptation Creek.	a-44 - a-4
Table	A13.	. Monitoring study sediment chemistry.	
		A13(i). Gwawley Creek.	a-48 - a-5
		A13(ii). Savilles Creek.	a-48 - a-5
		A13(iii). Temptation Creek.	a-48 - a-5
Table	A14.	Monitoring study sediment particle size and cation exchange capacity.	50
		A14(i). Gwawley Creek.	a-58
		A14(ii). Savilles Creek.	a-58
		A14(iii). Temptation Creek.	a-58
Table	A15.	Comparison of surface water loads and interstitial water diffusional flux	es
		of heavy metals and phosphorus. 75mm sample separation.	•
		A15(i). Gwawley Creek.	a-64
		A15(ii). Savilles Creek.	a-65
		A15(iii). Temptation Creek.	a-66
Table	A16.	Comparison of surface water loads and interstitial water diffusional flux	es
		of heavy metals and phosphorus. 0.5mm sample separation	1.
		A16(i). Gwawley Creek.	a-67
		A16(ii). Savilles Creek.	a-68
		A16(iii). Temptation Creek.	a-69

Abstract

This thesis describes two studies of the chemistry of freshwater streams in the Sydney basin.

The first was a survey of 86 waterways, sampled under low flow conditions. Samples were generally low in salinity, soft, of poor buffering capacity and dominated by sodium and chloride. Co-dominance by calcium, magnesium and (bi-)carbonate occurred in a number of particular cases. Multivariate analyses indicated three groups, separated primarily by levels of dissolved nutrients, trace metals, turbidity and colour. Groupings were associated strongly with the type of catchment development. Streams in areas relatively unaffected by human influence had notable uniformity in chemistry, while those from developed catchments were varied. Heavy metal contamination was relatively low, although a few of the samples displayed inordinately large levels of one or more metals. In such cases the more extreme measurements of phosphorus and nitrogen were also seen. These findings were consistent with occasional or localised elevation of contaminant levels.

The second study involved monitoring of three Hawkesbury Sandstone streams. Sampling of surface waters, interstitial waters and sediments was performed at irregular intervals over a two year period at three stations within each site. The streams predominantly existed under low flow conditions and showed similar major ion chemistries to the majority of the survey samples. Levels of calcium and total carbonate, plus heavy metals and nutrients were generally higher in the urbanised creeks, compared to the reference stream. During a heavy storm, high levels of nutrients, suspended solids and colour were detected in all surface waters at peak-flow, as well as alkaline pH, oxidising redox, and reduced conductivity, alkalinity and hardness.

The sandy sediments were characterised by very low levels of organic matter and cation exchange capacity. Sequential extractions identified that the sums of secondary phase lead, zinc and copper were over nine, four and two times that of the corresponding residual, respectively. Greatest proportions of zinc and lead were associated with coatings of iron and manganese oxides, or coarse waste particles. Copper was preferentially associated with organic matter. Concentration gradients between interstitial and surface waters were rare and release of sedimentary constituents should occur rapidly from the upper-most particulates.

Poor water and sediment qualities were often observed in the urban sites. Poor water quality was also seen on occasion in the reference stream. However, since poor sediment quality was not detected at those times and interstitial waters for all sites displayed high within-site variability, surface waters were considered the most reliable short-term indicator of condition for Hawkesbury Sandstone streams. Multidimensional scaling showed that all streams had distinct water and sediment chemistries. High levels of temporal and spatial variability were apparent within the urbanised sites - particularly in interstitial waters - mostly due to concentrations of heavy metals, phosphorus and suspended solids. Seasonal differences were detected, but only in terms of the level of variability between summer and winter samples.