An examination into the effects of incorporating collaborative learning methods in a core first-year mathematics subject

A Thesis Submitted in Fulfilment of the Requirements for the degree of Doctor of Philosophy

Faculty of Science
University of Technology, Sydney
NSW, Australia

Sabita Maria D'Souza
BSc(Hons), MSc

December 2005
Certificate of authorship

I, Sabita Maria D'Souza, hereby certify that the work presented in this thesis has not been previously submitted for a degree, nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I certify that the thesis has been written by me. Any help that I have received in my research work, and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

I also certify that I have received ethics clearance from all appropriate authorities in accordance with the policies of the University of Technology, Sydney on human and animal research.

I certify that thesis meets the requirements for theses as set out in the University of Technology, Sydney Rule 3.4, and the University Graduate School Guidelines for 'Presentation and Submission of Theses for Higher Degrees'.

Signature of Candidate: _______________________________ Date Signed: __________________________
(Sabita D'Souza) 12/12/2005
Dedication

I dedicate this thesis to my loving family:

To my beloved parents-

Dr. Peter Joseph Francis D'Souza
&
Mrs. Maria dos Anjos D'Souza

and my sister -

Nisha Maria D'Souza

My source of strength, courage and love
Preface

The following are refereed research publications relating to this thesis:

Acknowledgements

The past three years have offered me challenges and opportunities that I have never encountered in my life before. I wish to express my sincere thanks to God for blessing me with the health, patience, motivation, and skills needed to successfully complete this project. I thank God for all the strength, willpower and perseverance He has blessed me with to help me accomplish so much in such a short period of time.

I have been the happy and grateful recipient of much friendship, advice, and support. This thesis could not have materialised without financial support in the form of a Commonwealth Government scholarship - the Australian Postgraduate Award, as well as personal and practical support of numerous people over the past three years. I would therefore like to acknowledge those who have been most directly involved with my efforts to complete this project and encouraged me along my journey in creating this thesis.

First and foremost I would like to thank Ms. Leigh N. Wood, my principal supervisor, whose creative vision and guidance in literary and technical matters significantly shaped this dissertation. Her words of encouragement, quiet urgings and careful reading of all of my work will never be forgotten. Her strong confidence in my ability, and her always prompt and insightful feedback sustained and guided a long and challenging process. Our research collaboration has come to fruition, for instance, in terms of refereed conference papers and published articles. I thank Ms. Wood for her contribution, and hope our work has been bilaterally beneficial. I will always be grateful for her constant support and advice, which nurtured my creativity. She is one of the rare advisors that students dream they will find.

In that same vein, I wish to thank my co-supervisor, Dr. Peter Petocz whom I am deeply grateful to for all his invaluable help and advise at the beginning of the research process, as well as during the analysis stage of my project, and who helped me gain a solid grounding in the methodology and design of my study. Ms. Wood and Dr. Petocz have
both been extremely supportive of my progress over this last year and have helped me extensively along the way.

I also wish to thank members of staff at the Department of Mathematical Sciences for their help and support - Dr. Boris Choy and Dr. Narelle Smith for their help with the statistical analysis of my data, and my other colleagues - Mr. Brian Stevenson, Dr. Ray Melham, Dr. Mary Coupland, Professor Lindsay C. Botten and Dr. Tim Langtry for the many hours of illuminating conversations I have had with them.

I am deeply grateful to all students enrolled in Autumn 2003, who consented to give up their time and energy to participate in the research study, without whom this project would not have been possible. Anonymous though they may be. I am deeply grateful for all their efforts and support. My sincere thanks go out to the dean of the University Graduate School, Professor Mark Tennant and the University Graduate School Manager, Ms Nutan Muckle for their guidance and assistance with many graduate matters throughout the course of this project. I would also like to offer my sincere thanks to Professor Tony Moon for all his genuine help and assistance during my candidature. I wish to express my sincere gratitude to Dr. Michael O. J. Thomas at the University of Auckland, New Zealand, who believed in my ability to conduct postgraduate research, and who inspired me immensely and stimulated my interest in the area of Technology and Mathematics Education.

Last but certainly not least I am honoured to have a loving family who have constantly supported and encouraged me to carry on when things got difficult. I acknowledge, appreciate, and return the love and support of my family, without whom I would be lost - my loving parents who have been my emotional anchors through not only the vagaries of my graduate studies, but my entire life; and my sister, for all her intellectual and emotional support in times of need. Finally, I wish to convey my deep gratitude to one very important person – a person who came into my life towards the end of this project - my best friend, my soul mate, my love and fiance, Justin Mullins. I thank you honey for all your support and words of encouragement. I am deeply and eternally grateful to you all for everything and may God bless you always.
Abstract

This project aims to examine the effects of incorporating collaborative learning methods extensively in a core first-year mathematics subject and to investigate students' individual learning style preferences, their attitudes towards group-work in mathematics and the objectives for setting group work, their attitudes towards using computers, in particular, Mathematica and their concerns regarding the assessment of group-based work.

Following the rapid increase in the use of technology in education over the last decade, one would perhaps expect to find an overabundance of literature regarding the effects of its use. However, the number of technology related research studies has been surprisingly low, especially those pertaining to the curriculum area of Mathematics at the tertiary level. The availability of quality software, the need for curriculum redesign, and limited research on the effectiveness of computers as a teaching tool, are factors to have hindered the rate of implementation and of subsequent research.

Also, despite the rapid growth in the use of collaborative methods of learning, and widespread belief in the importance of such methods, there have been calls for increased research especially at the tertiary level, and particularly in engineering education – looking at students who have to study mathematics because it is a requirement and not because they are majoring in mathematics, therefore needing to determine how best to make their learning a meaningful and enjoyable experience.

This project aims to investigative the effects of incorporating a rich collaborative learning based curriculum in either face-to-face or computer-supported environments in the subject Mathematical Modelling. The carrying out of this project is a response to the lack of research in a curriculum area of tertiary mathematics. Within the context of mathematics, issues of attitude, gender differences, motivation and achievement are considered. The chief purpose of this investigation is to explore the effectiveness of collaborative learning in mathematics at university, and to provide some insight as to what degree, if any, the use of such methods enhance mathematics learning.
The research uses an experimental methodology, an attitudinal questionnaire and in-depth interviews to elicit students' feelings and/or opinions toward the incorporation of collaborative learning. The questionnaire sought demographic information from the students, namely, name, age, gender, length of stay in Australia and language spoken at home, and investigates the role of these factors in the effectiveness of, and interest during the tutorial and laboratory sessions – a time when students were working on collaborative-based activities.

This project maintains interest in the use of collaborative problem solving, and the belief that the findings could be of international significance if the effectiveness of this style of learning can be firmly established. It is also hoped that grounding the collaborative activities in the literature, and providing statistical and theoretical support for their use might promote them more widely in mathematics in particular and more generally, across universities in Australia.

The broad issue of whether the use of collaborative learning enhances mathematics learning can be broken down into a number of specific inquiries. The key research questions may thus be expressed as follows:

1. What are tertiary students' preferred learning styles?
2. What are students' opinions about group work in mathematics?
3. Does collaborative group work foster a deep, meaningful understanding of mathematics?
4. What are students' attitudes about using CAS such as Mathematica?
5. What are students' attitudes about the assessment of group-based work?
6. Are there any differences in students' learning style preferences across the various demographics?
7. Are there any differences in students' attitudes towards collaborative learning methods across the various demographics?
8. Are there any differences in students' attitudes towards the use of Mathematica across the various demographics?
9. Are there any variations in students' attitudes towards the assessment of group work in mathematics across the various demographics?
This study does not claim to fill the void into the effectiveness of computers or collaborative learning methods, but should provide greater insight and support to future research.
Table of contents

Chapter 1 Background and introduction 1
1.1 Impetus for the investigation 1
1.1.1 The subject under investigation 2
1.2 A brief look into the current state of research 4
1.2.1 Computer technology 4
1.2.2 Collaborative learning 6
1.3 Definition of key terms 7
1.4 Aims and objectives 7
1.5 Research questions 7
1.6 Significance and rationale for this investigation 9
1.6.1 Transition from school to university 10
1.7 Confines of the investigation 13
1.8 Ethics approval and consent 14
1.9 Thesis precis 14

Chapter 2 Theoretical framework for learning 16
2.1 Learning philosophy 16
2.2 Constructivists versus instructivists 19
2.3 Constructivism versus behaviorism 20
2.4 Constructivism and collaboration 23
2.5 Social constructivism 24
2.6 Bringing constructivism into the classroom 25
2.7 Synopsis of chapter 28
<table>
<thead>
<tr>
<th>Chapter 3</th>
<th>Review of literature</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>3.2</td>
<td>Students' learning style preferences</td>
</tr>
<tr>
<td>3.3</td>
<td>Service teaching in Australia</td>
</tr>
<tr>
<td>3.4</td>
<td>Computer-based technology</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Learning from technology</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Technology as an object of instruction</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Role of computers in tertiary mathematics</td>
</tr>
<tr>
<td>3.4.4</td>
<td>Advantages of computer technology</td>
</tr>
<tr>
<td>3.4.5</td>
<td>Research findings on the use of technology</td>
</tr>
<tr>
<td>3.4.6</td>
<td>Technology as a way of supporting students' learning</td>
</tr>
<tr>
<td>3.4.7</td>
<td>Using computer algebra systems</td>
</tr>
<tr>
<td>3.4.8</td>
<td>Further research</td>
</tr>
<tr>
<td>3.5</td>
<td>Collaborative learning</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Overview of collaborative learning</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Comparing learning styles</td>
</tr>
<tr>
<td>3.5.3</td>
<td>Benefits of collaborative learning</td>
</tr>
<tr>
<td>3.5.4</td>
<td>Collaborative learning in face-to-face and computer-mediated environments</td>
</tr>
<tr>
<td>3.5.5</td>
<td>Efficiency of collaborative learning - variables of interest</td>
</tr>
<tr>
<td>3.5.6</td>
<td>Using computers in a collaborative learning environment</td>
</tr>
<tr>
<td>3.6</td>
<td>What is happening in undergraduate mathematics teaching and learning in Australasia?</td>
</tr>
<tr>
<td>3.6.1</td>
<td>Research relating to the first-year experience</td>
</tr>
<tr>
<td>3.6.2</td>
<td>Research relating to gender</td>
</tr>
<tr>
<td>3.6.3</td>
<td>Research relating to technology</td>
</tr>
</tbody>
</table>
3.6.4 *Research relating to assessment* 76

3.7 Synopsis of chapter 77

Chapter 4 Methodology and design 81

4.1 Introduction 81

4.2 Selecting appropriate methods - quantitative, qualitative or both?

4.2.1 *Qualitative and quantitative methods: a comparison* 82

4.2.2 *Selecting the methodology* 84

4.3 Methodology adopted for this project 86

4.3.1 *What is action research?* 86

4.3.2 *The action research process* 88

4.3.3 *Action research design* 90

4.3.4 *Principles of action research* 92

4.4 Procedure employed in the study 94

4.4.1 *Pilot questionnaire* 95

4.4.2 *Participants in the study* 95

4.4.3 *Demographics profile* 95

4.4.4 *The questionnaires* 97

4.4.5 *The interviews* 98

4.5 Quality criteria 100

4.5.1 *Bias* 100

4.5.2 *Reliability* 102

4.5.3 *Validity* 103

4.5.4 *Generalisability* 103

4.5.5 *Triangulation of data* 104

4.6 Synopsis of chapter 105
Chapter 5
Study one: Students' preferred learning styles - Results and discussion of findings

5.1 Introduction 106
5.2 Collection of data 107
5.3 Analysis of results 107
5.3.1 *Learning style preference questionnaire (LSPQ)* 107
5.4 Discussion of findings 121
5.5 Synopsis of chapter 123

Chapter 6
Study Two: Students' views about group based work and their perceptions about the objectives of setting group work - Results and discussion of findings

6.1 Introduction 126
6.2 Part I: Students' views about group work 127
6.2.1 Collaborative discussions improve students' recall of text content 127
6.2.2 Builds self-esteem in students 128
6.2.3 Develops higher level thinking skills 128
6.2.4 Collaborative learning creates an environment of active, exploratory learning 129
6.2.5 Collaborative learning fosters modelling of problem-solving techniques by students' peers 129
6.2.6 Weaker students improve their performance when grouped with higher achieving students 130
6.2.7 Collaborative learning provides stronger students with the deeper understanding that comes only from teaching material 131
6.2.8 Students explore alternative problem solutions in a safe environment 131
6.2.9 Difficulties with the philosophy of group work 132
6.2.10 Assessment issues

6.2.11 Fear of loss of content and ability to achieve high grades

6.3 Part II: Objectives of setting group work

6.4 Discussion of findings concerning students' prioritisation of objectives for setting group-work

6.5 Synopsis of chapter

Chapter 7 Study Three: Students' perceptions of using computer algebra systems in the learning of mathematics - Results and discussion of findings

7.1 Introduction

7.2 The study

7.3 Analysis and results

7.4 Discussion of findings

7.4.1 Findings from the quantitative analysis of data

7.4.2 How students perceive learning of mathematics using computer algebra systems

7.5 Implication of findings

7.6 Synopsis of chapter

Chapter 8 Study Four: Students' attitudes toward group based assessment and the design of mathematical tasks that encourage working together and collaboratively - Results and discussion of findings

8.1 Introduction

8.2 Rationale for the study

8.3 Significance of group work and its assessment

8.4 Collection of data for this study

8.5 Results
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.5.1</td>
<td>Part I of results: Interview responses</td>
<td>182</td>
</tr>
<tr>
<td>8.5.2</td>
<td>Part II of results: Attitudinal questionnaire</td>
<td>186</td>
</tr>
<tr>
<td>8.5.3</td>
<td>Students’ performance in the subject</td>
<td>197</td>
</tr>
<tr>
<td>8.6</td>
<td>Analysis of findings concerning students’ attitudes towards assessment of group-work</td>
<td>212</td>
</tr>
<tr>
<td>8.7</td>
<td>Synopsis of chapter</td>
<td>214</td>
</tr>
<tr>
<td>9.1</td>
<td>Introduction</td>
<td>219</td>
</tr>
<tr>
<td>9.2</td>
<td>Results from the four studies</td>
<td>220</td>
</tr>
<tr>
<td>9.2.1</td>
<td>Synopsis of results and findings from study I</td>
<td>220</td>
</tr>
<tr>
<td>9.2.2</td>
<td>Synopsis of results and findings from study II</td>
<td>221</td>
</tr>
<tr>
<td>9.2.3</td>
<td>Synopsis of results and findings from study III</td>
<td>223</td>
</tr>
<tr>
<td>9.2.4</td>
<td>Synopsis of results and findings from study IV</td>
<td>225</td>
</tr>
<tr>
<td>9.3</td>
<td>Implications for the use of collaborative learning</td>
<td>229</td>
</tr>
<tr>
<td>9.4</td>
<td>Implications for incorporating Mathematica and other technology tools</td>
<td>230</td>
</tr>
<tr>
<td>9.5</td>
<td>Challenges for students</td>
<td>232</td>
</tr>
<tr>
<td>9.5.1</td>
<td>Understanding their responsibilities as active learners</td>
<td>233</td>
</tr>
<tr>
<td>9.5.2</td>
<td>Getting help with individual learning needs</td>
<td>233</td>
</tr>
<tr>
<td>9.5.3</td>
<td>Integrating computer supported inquiry learning</td>
<td>234</td>
</tr>
<tr>
<td>9.6</td>
<td>Implications for mathematics education</td>
<td>234</td>
</tr>
<tr>
<td>9.6.1</td>
<td>Implications for teaching and learning</td>
<td>235</td>
</tr>
<tr>
<td>9.7</td>
<td>Implications for assessment</td>
<td>236</td>
</tr>
<tr>
<td>9.8</td>
<td>Review of the research process - a personal view</td>
<td>238</td>
</tr>
<tr>
<td>9.9</td>
<td>Reflections on the action research methodology adopted</td>
<td>239</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>9.9.1</td>
<td>Blended learning styles</td>
<td>240</td>
</tr>
<tr>
<td>9.9.2</td>
<td>Students</td>
<td>240</td>
</tr>
<tr>
<td>9.9.3</td>
<td>Materials</td>
<td>241</td>
</tr>
<tr>
<td>9.9.4</td>
<td>Assessment</td>
<td>241</td>
</tr>
<tr>
<td>9.9.5</td>
<td>Tutors</td>
<td>241</td>
</tr>
<tr>
<td>9.10</td>
<td>Directions for future research</td>
<td>242</td>
</tr>
<tr>
<td>9.11</td>
<td>Concluding remarks</td>
<td>243</td>
</tr>
</tbody>
</table>

Bibliography

Appendices

- Appendix A1 | Ethics clearance letter from UTS | 285 |
- Appendix A2a | Information letter and consent forms | 286 |
- Appendix A2b | Sample participant consent form (To complete questionnaires) | 287 |
- Appendix A2c | Sample participant consent form (To be interviewed) | 288 |
- Appendix A3 | Post study questionnaire demographic information | 289 |
- Appendix A4 | Questionnaire on learning styles | 290 |
- Appendix A5 | Questionnaire on attitudes towards group work and objectives for setting group work | 292 |
- Appendix A6 | Questionnaire on attitudes towards using computers | 294 |
- Appendix A7 | Questionnaire on attitudes towards group based assessment | 296 |
- Appendix A8 | Excel spreadsheet containing coded questionnaire data | 297 |
- Interview transcripts
- Appendix A9 | Sample tutorial | 298 |
List of tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 4.1</td>
<td>Decisions in the design of research</td>
<td>84</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>Factors considered when selecting the methods used in this study</td>
<td>86</td>
</tr>
<tr>
<td>Table 4.3a</td>
<td>Summary statistics of data collected and coded for age of students</td>
<td>96</td>
</tr>
<tr>
<td>Table 4.3b</td>
<td>Summary statistics of data collected and coded for gender of students</td>
<td>96</td>
</tr>
<tr>
<td>Table 4.3c</td>
<td>Summary statistics of data collected and coded for number of years spent in Australia</td>
<td>97</td>
</tr>
<tr>
<td>Table 4.3d</td>
<td>Summary statistics of data collected and coded for language spoken at home</td>
<td>97</td>
</tr>
<tr>
<td>Table 4.4</td>
<td>Interview questions</td>
<td>98</td>
</tr>
<tr>
<td>Table 4.5</td>
<td>Demographic features of students that were interviewed</td>
<td>99</td>
</tr>
<tr>
<td>Table 5.1</td>
<td>Principal component factor analysis for learning style preference</td>
<td>108</td>
</tr>
<tr>
<td>Table 5.2</td>
<td>Rotated component matrix of the two factors</td>
<td>109</td>
</tr>
<tr>
<td>Table 5.3</td>
<td>Multivariate test for the two dimensions using age, sex, number of years and language spoken as fixed factors</td>
<td>115</td>
</tr>
<tr>
<td>Table 5.4a-d</td>
<td>Estimated marginal means for regression factor score for the two dimensions by age, sex, number of years and language spoken respectively</td>
<td>116</td>
</tr>
<tr>
<td>Table 5.5a-d</td>
<td>Estimated marginal means for the two dimensions by age, sex, number of years and language spoken respectively</td>
<td>117</td>
</tr>
<tr>
<td>Table 5.6</td>
<td>Data summary statistics by age</td>
<td>122</td>
</tr>
<tr>
<td>Table 5.7</td>
<td>Data summary statistics by sex</td>
<td>122</td>
</tr>
</tbody>
</table>
Table 5.8 Data summary statistics by number of years in Australia
Table 5.9 Data summary statistics by language spoken at home
Table 6.1 Questionnaire items for objectives for setting group work
Table 6.2 Questionnaire items sorted according to the two dimensions
Table 6.3 Principal component factor analysis for objectives of group work.
Table 6.4 Rotated component matrix of the two factors
Table 6.5 Multivariate test for \textit{skills-based} and \textit{conceptual-based} objectives using age, sex, number of years and language spoken as fixed factors
Table 6.6a-b Estimated marginal means for \textit{skills-based} and \textit{conceptual-based} objectives by age, and sex respectively
Table 6.7a-b Estimated marginal means for \textit{skills-based} and \textit{conceptual-based} objectives by number of years and language spoken respectively
Table 6.8a-b Estimated marginal means for \textit{skills-based} and \textit{conceptual-based} objectives by age and sex respectively
Table 6.9a-b Estimated marginal means for \textit{skills-based} and \textit{conceptual-based} objectives by number of years and language spoken respectively
Table 6.10 Data summary statistics by age
Table 6.11 Data summary statistics by sex
Table 6.12 Data summary statistics by number of years in Australia
Table 6.13 Data summary statistics by language spoken at home
Table 7.1 Factor analysis output of the questionnaire items
Table 7.2 Rotated component matrix
Table 7.3 Multivariate test for regression factors scores of \textit{anxiety} and \textit{benefits} using age, sex, number of years and language spoken
as fixed factors

Table 7Aa-b Estimated marginal means for *anxiety* and *benefits* by age and sex respectively 165
Table 7Ac-d Estimated marginal means for *anxiety* and *benefits* by number of years and language spoken respectively 166
Table 7.5a-d Estimated marginal means for regression factor scores of *anxiety* and *benefits* by age, sex, number of years and language spoken respectively 167
Table 7.6 Data summary statistics by age 171
Table 7.7 Data summary statistics by sex 171
Table 7.8 Data summary statistics by number of years in Australia 172
Table 7.9 Data summary statistics by language spoken at home 172
Table 8.1 Assessment breakdown for sample collaborative-based task 182
Table 8.2 Principal component factor analysis for group-based assessment 187
Table 8.3 Rotated component matrix of the two factors 188
Table 8A Questionnaire items 188
Table 8.5 Multivariate test for *group* and *solo* using age, sex, number of years and language spoken as fixed factors 193
Table 8.6a-b Estimated marginal means for *negative* and *grprocess* by age, and sex respectively 193
Table 8.7a-b Estimated marginal means for *negative* and *grprocess* by number of years and language spoken respectively 194
Table 8.8 Exam and tutorial results for the students that were interviewed 197
Table 8.9 Multivariate test for *exam* and *tute_lab* using age, sex, number of years and language spoken as fixed factors 202
Table 8.1Oa-b Estimated marginal means for *exam* and *tute_lab* by age, and sex respectively 203
Table 8.1a-b Estimated marginal means for exam and tute_lab by number of years and language spoken respectively

Table 8.12 Multivariate test for exam and tute_lab using age, sex, number of years and language spoken as fixed factors for the population of students that completed the questionnaire

Table 8.13a-b Estimated marginal means for exam and tute_lab marks by age and sex respectively

Table 8.14a-b Estimated marginal means for exam and tute_lab by number of years and language spoken respectively

Table 8.15 Data summary statistics by age

Table 8.16 Data summary statistics by sex

Table 8.17 Data summary statistics by number of years in Australia

Table 8.18 Data summary statistics by language spoken at home
List of figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Kolb's learning styles</td>
<td>32</td>
</tr>
<tr>
<td>4.1</td>
<td>Action research cycle</td>
<td>89</td>
</tr>
<tr>
<td>4.2</td>
<td>An elaborate listing of the action research process</td>
<td>89</td>
</tr>
<tr>
<td>4.3</td>
<td>Action research process</td>
<td>91</td>
</tr>
<tr>
<td>5.1</td>
<td>Scree plot</td>
<td>109</td>
</tr>
<tr>
<td>5.2a-e</td>
<td>Histogram of responses to questionnaire items relating to the collaborative learning style</td>
<td>110</td>
</tr>
<tr>
<td>5.3a-e</td>
<td>Histogram of responses to questionnaire items relating to the individual learning style</td>
<td>111</td>
</tr>
<tr>
<td>5.4</td>
<td>Histogram of Dimension 1 (Collab) Scores</td>
<td>112</td>
</tr>
<tr>
<td>5.5</td>
<td>Histogram of Dimension 1 (Solo) Scores</td>
<td>112</td>
</tr>
<tr>
<td>5.6</td>
<td>Scatter plot of the two dimensions plotted against each other with markers set by age</td>
<td>113</td>
</tr>
<tr>
<td>5.7</td>
<td>Scatter plot of the two dimensions plotted against each other with markers set by sex</td>
<td>113</td>
</tr>
<tr>
<td>5.8</td>
<td>Scatter plot of the two dimensions plotted against each other with markers set by number of years in Australia</td>
<td>114</td>
</tr>
<tr>
<td>5.9</td>
<td>Scatter plot of the two dimensions plotted against each other with markers set by language spoken at home</td>
<td>114</td>
</tr>
<tr>
<td>5.10</td>
<td>Histogram of the regression factor scores for the Collab dimension</td>
<td>118</td>
</tr>
<tr>
<td>5.11</td>
<td>Histogram of the regression factor scores for the Solo dimension</td>
<td>119</td>
</tr>
<tr>
<td>5.12</td>
<td>Scatter plot of the regression scores of the two dimensions plotted against each other with markers set by age</td>
<td>119</td>
</tr>
</tbody>
</table>
Figure 5.13 Scatter plot of the regression scores of the two dimensions plotted against each other with markers set by sex
Figure 5.14 Scatter plot of the regression scores of the two dimensions plotted against each other with markers set by number of years in Australia
Figure 5.15 Scatter plot of the regression scores of the two dimensions plotted against each other with markers set by language spoken at home
Figure 6.1 Scree plot
Figure 6.2a-f Histogram plots of scores for questionnaire items regarding skills-based objectives
Figure 6.3a-d Histogram plots of scores for questionnaire items regarding conceptual-based objectives
Figure 6.4 Histogram of average scores for skills-based objectives
Figure 6.5 Histogram of average scores for conceptual-based objectives
Figure 6.6 Scatter plot of skills-based versus conceptual-based objectives by age
Figure 6.7 Scatter plot of skills-based versus conceptual-based objectives by sex
Figure 6.8 Scatter plot of skills-based versus conceptual-based objectives by number of years in Australia
Figure 6.9 Scatter plot of skills-based versus conceptual-based objectives by language spoken at home
Figure 6.10 Histogram of the regression factor scores for the skills-based dimension
Figure 6.11 Histogram of the regression factor scores for the conceptual-based dimension
Figure 6.12 Scatter plot of regression factor scores of skills-based versus conceptual-based objectives with markers set by age
Figure 6.13 Scatter plot of regression factor scores of *skills-based* versus *conceptual-based* objectives with markers set by sex

Figure 6.14 Scatter plot of regression factor scores of *skills-based* versus *conceptual-based* objectives with markers set by number of years in Australia

Figure 6.15 Scatter plot of regression factor scores of *skills-based* versus *conceptual-based* objectives with markers set by language spoken at home

Figure 7.1 Scree plot of the two dimensions

Figure 7.2 Histogram of dimension 1 (*anxiety*) scores

Figure 7.3 Histogram of dimension 1 (*benefits*) scores

Figure 7.4 Scatter plot of *anxiety* versus *benefits* with markers set by age

Figure 7.5 Scatter plot of *anxiety* versus *benefits* with markers set by sex

Figure 7.6 Scatter plot of *anxiety* versus *benefits* with markers set by number of years in Australia

Figure 7.7 Scatter plot of *anxiety* versus *benefits* with markers set by language spoken at home

Figure 7.8 Histogram of the regression factor scores for the *anxiety* dimension

Figure 7.9 Histogram of the regression factor scores for the *benefits* dimension

Figure 7.10 Scatter plot of regression factor scores of *anxiety* versus *benefits* with markers set by age

Figure 7.11 Scatter plot of regression factor scores of *anxiety* versus *benefits* with markers set by sex

Figure 7.12 Scatter plot of regression factor scores of *anxiety* versus *benefits* with markers set by number of years in Australia

Figure 7.13 Scatter plot of regression factor scores of *anxiety* versus *benefits* with markers set by language spoken at home
benefits with markers set by language spoken at home

Figure 8.1 Scree plot 187
Figure 8.2 Histogram of average scores for negative aspects 189
Figure 8.3 Histogram of average scores for group processes 189
Figure 8.4 Scatter plot of negative aspects versus group processes by age 190
Figure 8.5 Scatter plot of negative aspects versus group processes by sex 190
Figure 8.6 Scatter plot of negative aspects versus group processes by number of years in Australia 191
Figure 8.7 Scatter plot of negative aspects versus group processes by language spoken at home 191
Figure 8.8 Scatter plot of regression factor scores of negative versus grprocess with markers set by age 195
Figure 8.9 Scatter plot of regression factor scores of negative versus grprocess with markers set by sex 195
Figure 8.10 Scatter plot of regression factor scores of negative versus grprocess with markers set by number of years in Australia 196
Figure 8.11 Scatter plot of regression factor scores of negative versus grprocess with markers set by language spoken at home 196
Figure 8.12 Histogram of mean scores of tutorial sessions 198
Figure 8.14 Histogram of mean scores of laboratory sessions 198
Figure 8.15 Histogram of final examinations results 199
Figure 8.16 Scatter plot of examination mark versus tutorial & laboratory marks with markers set by age of students 200
Figure 8.17 Scatter plot of examination mark versus tutorial & laboratory marks with markers set by sex of students 200
Figure 8.18 Scatter plot of examination mark versus tutorial & laboratory marks with markers set by number of years in Australia 201
Figure 8.19 Scatter plot of examination mark versus tutorial & laboratory marks with markers set by language spoken at home

Figure 8.20 Histogram of final examination marks of all students enrolled

Figure 8.21 Histogram of tutorial and laboratory marks of all students enrolled

Figure 8.22 Histogram of final examination marks of all students that completed the questionnaire

Figure 8.23 Histogram of tutorial and laboratory marks of all students that completed the questionnaire

Figure 8.24 Scatter plot of final examination versus tutorial and laboratory marks for the population of students enrolled in course

Figure 8.25 Scatter plot of final examination versus tutorial and laboratory marks for the population of students that completed the questionnaire with markers set by age

Figure 8.26 Scatter plot of final examination versus tutorial and laboratory marks for the population of students that completed the questionnaire with markers set by sex

Figure 8.27 Scatter plot of final examination versus tutorial and laboratory marks for the population of students that completed the questionnaire with markers set by number of years in Australia

Figure 8.28 Scatter plot of final examination versus tutorial and laboratory marks for the population of students that completed the questionnaire with markers set by language spoken at home

Figure 9.1 Action research cycle