Modelling and Control of Unmanned Ground Vehicles

Thanh Hung Tran

A thesis submitted in fulfilment of the requirements

for the degree of Doctor of Philosophy

ARC Centre of Excellence for Autonomous Systems

Faculty of Engineering University of Technology, Sydney, Australia

September 2007

CERTIFICATE OF AUTHORSHIP/ORIGINALITY

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of the requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and in the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Thanh Hung Tran

Abstract

The thesis focuses on issues of vehicle modelling incorporating wheel-terrain interaction and low-level control design taking into account uncertainties and input time delay. Addressing these issues is of significant importance in achieving persistent autonomy for outdoor UGVs, especially when navigating on unprepared terrains.

The test-bed vehicle used for this research is retrofitted from an all-terrain 20-hp, 0.5tonne vehicle. Its driveline system consists of an internal combustion engine, continuous variable transmission (CVT), gearbox, differential, chains, and eight wheels. The vehicle is driven in the skid-steering mode, which is popular for many off-road landvehicle platforms.

In this thesis, a comprehensive approach is proposed for modelling the driveline. The approach considers the difference in speed between two outputs of the differential and the turning mechanism of the vehicle. It describes dynamics of all components in the vehicle driveline in an integrated manner with the vehicle motion. Given a pattern of the throttle position, left and right braking efforts as the inputs, the dynamic behaviour of the wheels and other components of the UGV can be predicted.

For controlling the vehicle at the low level, PID controllers are firstly used for all actuators. As many components of the vehicle exhibit nonlinearities and time delay, the large overshoots encountered in the outputs can lead to undesirable vehicle behaviours. To alleviate the problem, a novel control approach is proposed for suppression of overshoots resulting from PID control. Sliding mode control (SMC) is employed, for this, with time delay compensated by using an output predictor. As a result, the proposed approach can improve significantly system robustness and reduce substantially step response overshoot. Notably, the design is generic in that it can be applied for many dynamic processes.

Knowledge of the interaction between the UGV and the terrain plays an important role in increasing its autonomy and securing the safety for off-road locomotion. In this regard, vehicle kinematic equations are combined with the theory of terramechanics for dynamic modelling of the interaction between the vehicle wheels and a variety of terrain types. Also, a fast algorithm is developed to enable online implementation. The novel interaction model takes into account the relationship between normal stresses, shear stresses, and shear displacement of the terrain that is in contact with the wheels in deriving the three-dimensional reaction forces.

Finally, all modelling and control algorithms are integrated into a unique simulator for emulating the vehicle mobility characteristics. In particular, the wheel's slip and rolling resistance can also be derived to provide useful information for closed-loop control when the UGV is navigating in an unknown environment. The simulator, as a tool for analysing the vehicle mobility, is helpful for further research on relevant topics such as traction control, safe and effective locomotion.

Acknowledgements

First of all, I would like to thank my principal supervisor, Quang Ha, for his advice and support during my stay here in the University of Technology Sydney (UTS). My special thanks go to my co-supervisor, Steve Scheding, leader of the ARGO project at the ARC Centre of Excellence for Autonomous Systems (CAS). Thanks also go to team member Richard Grover, Alex Green, and Sisir Karumanchi, for helping me in conducting field tests and other experiments. Without their help, I would not be able to finish my work.

I would like to thank Professor Ken Waldron. His document on the derivation of the UGV ground interaction model is very helpful for my work on the vehicle terrain interaction analysis. Thanks also go to Ngai Kwok for his advice and help during the period of my study.

I would like to take this opportunity to thank Hung Nguyen, Associate Dean of UTS Faculty of Engineering, and Gamini Dissanayake, Director of the UTS node of CAS, for their support during my study. My special thanks also go to Mr. Luong Van Son, former Dean of the College of Information & Communication Technology, Can Tho University, and to the Vietnamese Ministry of Education and Training (MOET), for supporting my candidature. Without their support, I would not be able to go to Sydney to study.

I want to thank all my friends here in Sydney and my colleagues in Can Tho University. Their encouragement and friendship make my PhD student life more enjoyable.

Finally, I owe my greatest debt to my parents for giving birth to me, to my grandparents who raised and taught me, and to my wife and my little daughter who have given me love and support throughout my time in Sydney.

Contents

Abstract		i
Acknowled	gements	ii
Contents		iii
List of Figu	ıres	vii
List of Tab	les	xi
List of Sym	bols	xii
Abbreviatio	ons	xxiii
1 Introduc	tion	1
1.1	Unmanned Ground Vehicles	1
1.2	Research areas in autonomous UGV development	3
1.3	Thesis objectives	5
1.4	Main contributions of the thesis	6
1.5	List of publications	7
1.5.1	Journal articles	7
1.5.2	Peer reviewed conference papers	8
1.6	Structure of the thesis	9
2 Literatur	re survey and proposed approaches	11
2.1	Driveline modelling	11
2.1.1	Engine	12
2.1.2	Clutch	14
2.1.3	Gearbox	14
2.1.4	Propeller shaft and drive shaft	14
2.1.5	Differential	14
2.1.6	Wheels and vehicle	15
2.1.7	Proposed approach for driveline modelling	15
2.2	Vehicle control	16
2.2.1	PID controller	17
2.2.2	Sliding Mode Controller	20
2.2.3	Methods for time-delay system treatment	22
2.2.4	Proposed controller	22
2.3	Vehicle-terrain interaction	23

	2.4	Fast algorithm for terrain interaction analysis	25
	2.5	Conclusion	26
3	Vehicle dr	viveline and modelling	27
	3.1	Introduction	27
	3.2	Modelling of the vehicle driveline	30
	3.2.1	Engine	30
	3.2.2	Continuous variable transmission	31
	3.2.3	Gearbox	33
	3.2.4	Chains	33
	3.2.5	Differential - wheels	34
	3.3	Validation and simulation	
	3.3.1	Validation	
	3.3.2	Simulation	44
	3.4	Simplified model	46
	3.4.1	Simplified model development	46
	3.4.2	Comparison with original model and experimental data	49
	3.5	Conclusion	55
4	Robust lov	w-level control design	56
	4.1	Introduction	56
	4.2	Control development	59
	4.2.1	PID controller and closed-loop model	59
	4.2.2	Sliding mode – PID controller	61
	4.2.3	Sliding mode – PID controller for input-delay case	65
	4.3	Simulation results	69
	4.3.1	Linear system: throttle control	69
	4.3.2	Nonlinear system: brake control with Taylor series approximatio time-delay	n for 76
	4.3.3	Nonlinear time-delay system: brake control with time-delay	85
	4.4	Conclusion	91
5	Vehicle-te	rrain interaction	92
	5.1	Introduction	92
	5.2	Fundamental of terramechanics	94
	5.3	Wheel-terrain interaction analysis	96
	5.3.1	Shear displacement	98

	5.3.2	Shear stress, normal stress and reaction force	103
	5.3.3	Vehicle kinetics	105
	5.3.4	Vertical load distribution	107
	5.3.5	Interaction modelling procedure	109
	5.4	Simulation results and experimental verification	111
	5.4.1	Simulation results	112
	5.4.2	Comparison with experimental data	116
	5.5	Conclusion	118
6	Fast algori	ithm for terrain interaction analysis	119
	6.1	Introduction	119
	6.2	Linearisation of normal stress	122
	6.2.1	Approximation criteria	122
	6.2.2	Method 1	123
	6.2.3	Method 2	124
	6.2.4	Results	126
	6.3	Linearisation of shear stress	130
	6.3.1	Approximation criteria	130
	6.3.2	Method 3	132
	6.3.3	Method 4	133
	6.3.4	Results	134
	6.4	Vehicle-terrain interaction analysis algorithm	139
	6.4.1	Reaction forces	139
	6.4.2	Vehicle kinetics	142
	6.4.3	Terrain interaction modelling procedure using fast algorithm	144
	6.5	Comparison of results	145
	6.6	Conclusion	148
7	Vehicle sin	nulator	150
	7.1	Introduction	150
	7.2	Vehicle modelling	152
	7.2.1	Traction torque	152
	7.2.2	Modified driveline model	155
	7.2.3	Results	157
	7.3	Motion control	164
	7.3.1	Velocity control	164

	7.3.2	Turning control	167
	7.4	Conclusion	169
8	Summary	and conclusion1	170
	8.1	Introduction	170
	8.2	Chapter summary	171
	8.3	Thesis contribution	173
	8.3.1	The vehicle driveline model	173
	8.3.2	Robust low-level control for the vehicle nonlinear dynamics	173
	8.3.3	Dynamic modelling of the vehicle-terrain interaction	174
	8.3.4	Fast algorithm for terrain interaction analysis	174
	8.3.5	UGV simulator	174
	8.4	Future work	175
B	ibliography	y1	176
A co	ppendix A. oordinates	Transformation between spherical coordinates and Cartesian	184
A	ppendix B.	Transformation from vehicle coordinates to earth coordinates1	185

List of Figures

1.1	Relationship between elements of an autonomous UGV (Durrant-Whyte, 2001)
2.1	Basis driveline configuration
2.2	Simple engine model. T_e : generated torque, $T_{fric,e}$: load torque, J_e : engine inertia moment, ω_e : engine rotational speed
2.3	Driveline modelling diagram17
2.4	UGV control requirements17
2.5	PID controller configuration
2.6	Step responses of second-order systems with different values of damping ratio (δ)
2.7	Cascade control system
2.8	Schematic diagram of sliding mode controller for an n th order system21
2.9	Configuration of SMC-PID controller
2.10	Shear stress-shear displacement relationship (Wong, 2001)25
2.11	Stress approximation used in the present work: a), c) Shibly's method; b), d) modified method
3.1	The vehicle platform
3.2	Driveline of the vehicle
3.3	Subsystems of the driveline
3.4	Kawasaki FD620D engine and performance curves
3.5	CVT and its components
3.6	Differential configuration
3.7	Longitudinal forces acting on the vehicle during straight-line running
3.8	Simulation block diagram- during straight-line running
3.9	Simulation block diagram- during turning
3.10	Experimental data collected from a field test40
3.11	Distribution of the CVT ratio with the engine speed
3.12	Distribution of the CVT ratio with the engine speed and total brake41

3.13	Distribution of the CVT ratio with the engine speed and estimate	d load 41
3 14	Linear approximation of the CTV ratio	42
3.15	Responses to throttle step input	45
3.16	Braking pattern and wheel speeds	45
3.17	Load distribution on components of the driveline	46
3.17	Simplified model vs. original model: engine and gearbox response	ses 51
3.10	Simplified model vs. original model: wheel responses	51
3.20	Simulation vs. experiment: engine and gearbox responses	52
3.20	Simulation vs. experiment: wheel responses	52
3.21	Simulation vs. experiment: wheel responses with 60% slip	
2.22	Simulation vs. experiment: ongine and goathey responses at 60%	
5.25	Simulation vs. experiment, engine and gearbox responses at 60%	54
4.1	Hydraulic brake systems	57
4.2	Configuration of linear actuator	57
4.3	Responses of PID brake pressure controllers	58
4.4	PID control loop	60
4.5	Cascade Sliding Mode – PID controller for non-delay systems	64
4.6	Cascade Sliding Mode - PID controller for time-delay systems	66
4.7	Command for throttle control	73
4.8	Responses of PID controller and SMC-PID for throttle control	73
4.9	Command for throttle control (chattering reduction)	74
4.10	Responses of PID controller and SMC-PID for throttle control	74
4.11	Responses with external disturbance (with chattering)	75
4.12	Responses with external disturbance (without chattering)	75
4.13	Block diagram of the brake system	77
4.14	Estimated I/O relationship of the hydraulic cylinder	78
4.15	Responses of PID closed-loop and approximate model	79
4.16	Command for brake control	81
4.17	Responses of PID controller and SMC-PID for brake control	81
4.18	Command for brake control (chattering reduction)	82
4.19	Responses of PID controller and SMC-PID for brake control	82
4.20	Responses with 50% of maximum brake force	83

4.21	Responses with 10% of maximum brake force	83
4.22	Responses with external disturbance (with chattering)	84
4.23	Responses with external disturbance (chattering reduction)	84
4.24	PID closed-loop and approximate model responses	86
4.25	Command for brake control with time-delay	88
4.26	Responses of PID controller and SMC-PID for brake control	88
4.27	Command for brake control with time-delay (chattering reductio	n) 89
4.28	Responses of PID controller and SMC-PID for brake control	89
4.29	Output predictor responses	90
4.30	Responses of PID and SMC-PID control at different operating p	oints90
5.1	Wheel-terrain interaction: free-body diagram	96
5.2	Vehicle free-body diagram on deformable terrain	97
5.3	Velocity components at a contact point on the i^{th} wheel	100
5.4	General flow chart for entry angle search	111
5.5	Wheel angular velocities used for the simulation	113
5.6	Vehicle trajectories predicted on different terrains	114
5.7	Wheel slip ratios on different terrains	114
5.8	Vehicle velocites on different terrains	115
5.9	Rolling resistances on different terrains	115
5.10	Turning moment resistances on different terrains	116
5.11	Vehicle trajectories: compared with experimental data	117
5.12	Wheel angular velocities: experimental data used for the compar	ison 117
6.1	Distribution of normal stress, shear stress, and shear displacement under the first wheel on different terrain types	nt 121
6.2	Linearisation of normal stress: (a) Shibly's method, (b) modified method.	121
6.3	Linearisation of normal stress	126
6.4	Distribution of the angle ratios for the normal stress approximati	on. 128
6.5	Normal stress and its components	129
6.6	New representation of shear stress	131
6.7	Linearisation of shear stress	135
6.8	Distribution of the angle ratios for shear stress approximation	136

6.9	Shear stress and its components in a moderate turn	138
6.10	Distribution of shear stress along y_i at a turning rate of -0.39	9 rad/s140
6.11	Vehicle trajectory compared between the original and fast a	lgorithms 146
6.12	Vehicle drawbar pull on clayed soil	146
6.13	Vehicle turning moment on clayed soil	147
6.14	Vehicle drawbar pull on dry clay	147
6.15	Vehicle turning moment on dry clay	148
7.1	Basic structure of the UGV simulator	151
7.2	Traction torque on clayed soil	154
7.3	Traction torque on dry clay	154
7.4	Engine and gearbox responses on clayed soil	158
7.5	Wheel responses on clayed soil	158
7.6	Wheel slip ratios on clayed soil	159
7.7	Vehicle velocity and turning rate on clayed soil	159
7.8	Vehicle inputs used for the simulation	161
7.9	Vehicle traction torque on different terrains	161
7.10	Wheel responses on different terrains	162
7.11	Slip ratios on different terrains	162
7.12	Vehicle velocity and turning rate on different terrains	
7.13	Vehicle trajectory on different terrains	
7.14	Velocity responses under PID controller	166
7.15	Velocity responses with SMC-PID controller	166
7.16	Turning responses under PID controller	168
7.17	Turning responses with SMC-PID controller	168
A.1	Spherical coordinates	184
B.1	Vehicle coordinates versus earth coordinates	

List of Tables

3.1	CVT'S MAIN COMPONENTS
3.2	PARAMETERS USED IN SIMULATION
4.1	THROTTLE SYSTEM PARAMETERS 72
4.2	BRAKING SYSTEM PARAMETERS
4.3	PID RESPONSES AND CLOSED-LOOP MODEL PARAMETERS
5.1	TERRAIN PARAMETERS112
5.2	VEHICLE PARAMETERS
7.1	PID RESPONSES AND CLOSED-LOOP MODEL PARAMETERS FOR VELOCITY
7.2	PID RESPONSES AND CLOSED-LOOP MODEL PARAMETERS FOR TURNING RATE 169

List of Symbols

Symbols	Nomenclature	Unit
$lpha_i, eta_i$	Angles of shear stress on the i^{th} wheel in	rad
	standard spherical coordinates	
χ	Ground slope angle	rad
δ	Damping ratio	-
δ_l	Lower limit of damping ratio	-
δ_2	Higher limit of damping ratio	-
$\hat{\delta}$	Approximation of damping ratio	-
${\cal E}$	Error threshold in search algorithm	%
ϕ	Terrain internal friction angle	rad
γ_i	Angle between slip velocity on the i^{th} wheel	rad
	and its tangential component	
η	SMC parameter	-
$arphi_i$	Elevation angle of shear stress in new	rad
	spherical coordinates	
λ	SMC parameter	-
heta	Angle of wheel contact with terrain	rad
$oldsymbol{ heta}_1$	Wheel entry angle at first contact point	rad
$oldsymbol{ heta}_{\mathrm{l}_i}$	The i^{th} wheel entry angle	rad
$ heta_2$	Wheel exit angle at last contact point	rad
$oldsymbol{ heta}_{2_i}$	The i^{th} wheel exit angle	rad
$ heta_b$	Brake actuator position	%
$\theta_{c1_i}, heta_{c2_i}$	Intersection points between shear stress	rad
	under the i^{th} wheel and its linearisation	
$ heta_{e}$	Engine throttle position	%
$oldsymbol{ heta}_i$	The i^{th} wheel contact angle	rad
θ_m	Maximum stress point	rad

Symbols	Nomenclature	Unit
$oldsymbol{ heta}_{m_i}$	Maximum stress point on the i^{th} wheel	rad
$\theta_{x1_i}, \theta_{x2_i}$	Intersection points between the normal	rad
	stress distribution under the i^{th} wheel and its	
	linearisation	
$ heta_{\!M}$	Motor position (throttle control)	%
ho	Azimuth angle between vehicle frame and	rad
	earth coordinates	
σ	Normal stress under a wheel	kPa
$\sigma_{\scriptscriptstyle 1}$	Normal stress in front region	kPa
$\sigma_{_{1}}$	Normal stress in front region under the <i>i</i> th	kPa
1	wheel	
$\hat{\sigma}_{_{1}}$	Linear approximation of normal stress in	kPa
1	front region under the i^{th} wheel	
$\sigma_{_{1X_i}}$	Longitudinal component of normal stress in	kPa
,	front region under the i^{th} wheel	
$\sigma_{_{1Z_i}}$	Vertical component of normal stress in	kPa
	front region under the i^{th} wheel	
$\hat{\pmb{\sigma}}_{_{1X_i}}$	Linear approximation of the longitudinal	kPa
	component of normal stress in front region	
	under the i^{th} wheel	
$\hat{\pmb{\sigma}}_{_{1Z_i}}$	Linear approximation of the vertical	kPa
	component of normal stress in front region	
	under the i^{th} wheel	
$\sigma_{_2}$	Normal stress in rear region	kPa
$\sigma_{_{2_i}}$	Normal stress in rear region under the i^{th}	kPa
I	wheel	
$\hat{\sigma}_{\scriptscriptstyle 2_i}$	Linear approximation of normal stress in	kPa
	rear region under the i^{th} wheel	
$\sigma_{_{2X_i}}$	Longitudinal component of normal stress in	kPa
·	rear region under the i^{th} wheel	

Symbols	Nomenclature	Unit
$\sigma_{_{2Z_i}}$	Vertical component of normal stress in rear region under the i^{th} wheel	kPa
$\hat{\sigma}_{_{2X_i}}$	Linear approximation of longitudinal component of normal stress in rear region under the i^{th} wheel	kPa
$\hat{\sigma}_{_{2Z_i}}$	Linear approximation of vertical component of normal stress in rear region under the i^{th} wheel	kPa
σ_{i}	Normal stress under the i^{th} wheel	kPa
$\sigma_{\scriptscriptstyle X_i}$	Longitudinal component of normal stress under the i^{th} wheel	kPa
$\sigma_{\scriptscriptstyle Y_i}$	Lateral component of normal stress under the i^{th} wheel	kPa
$\sigma_{_{Z_i}}$	Vertical component of normal stress under the i^{th} wheel	kPa
τ	Shear stress	kPa
$ au_1$	Shear stress in front region	kPa
$ au_{\mathrm{l}_i}$	Shear stress in front region on the i^{th} wheel	kPa
$\hat{ au}_{_{1_i}}$	Linear approximation of shear stress in front region on the i^{th} wheel	kPa
$ au_{1t_i}$	Tangential component of shear stress in front region on the i^{th} wheel	kPa
$\hat{ au}_{1t_i}$	Linear approximation of tangential shear stress in front region on the i^{th} wheel	kPa
$ au_{{}_{1X_i}}$	Longitudinal component of shear stress in front region on the i^{th} wheel	kPa
$ au_{_{1Y_i}}$	Lateral component of shear stress in front region on the i^{th} wheel	kPa
$ au_{_{1Z_i}}$	Vertical component of shear stress in front region on the i^{th} wheel	kPa

Symbols	Nomenclature	Unit
$\hat{ au}_{1X_i}$	Linear approximation of longitudinal component of shear stress in front region on the i^{th} wheel	kPa
$\hat{ au}_{_{1Y_i}}$	Linear approximation of lateral component shear stress in front region on the i^{th} wheel	kPa
$\hat{ au}_{1Z_i}$	Linear approximation of vertical component shear stress in front region on the i^{th} wheel	kPa
$ au_2$	Shear stress in rear region	kPa
$ au_{2_i}$	Shear stress in rear region on the i^{th} wheel	kPa
$\hat{ au}_{2_i}$	Linear approximation of shear stress in rear region on the i^{th} wheel	kPa
$ au_{2t_i}$	Tangential component of shear stress in rear region on the i^{th} wheel	kPa
$\hat{ au}_{2t_i}$	Linear approximation of tangential shear stress in rear region on the i^{th} wheel	kPa
$ au_{2X_i}$	Longitudinal component of shear stress in rear region on the i^{th} wheel	kPa
$ au_{2Y_i}$	Lateral component of shear stress in rear region on the i^{th} wheel	kPa
$ au_{_{2Z_i}}$	Vertical component of shear stress in rear region on the i^{th} wheel	kPa
$\hat{ au}_{2X_i}$	Linear approximation of longitudinal component of shear stress in rear region on the i^{th} wheel	kPa
$\hat{ au}_{2Y_i}$	Linear approximation of lateral component shear stress in rear region on the i^{th} wheel	kPa
$\hat{ au}_{_{2Z_i}}$	Linear approximation of vertical component of shear stress in rear region on the i^{th} wheel	kPa

Symbols	Nomenclature	Unit
$ au_e$	Engine time constant	S
$ au_i$	Shear stress on the i^{th} wheel	kPa
$ au_m$	Motor time constant	S
${\mathcal T}_{t_i}$	Tangential component of the shear stress on the i^{th} wheel	kPa
$ au_{X_i}$	Longitudinal component of shear stress on the i^{th} wheel	kPa
${oldsymbol au}_{Y_i}$	Lateral component of shear stress on the i^{th} wheel	kPa
${ au}_{Z_i}$	Vertical component of shear stress on the i^{th} wheel	kPa
ω_{e}	Engine rotational speed	RPM
ω_{c}	CVT output speed	RPM
ω_{d}	Rotational speed of differential's case	RPM
ω_{dL}	Differential's output speed on left side	RPM
ω_{dR}	Differential's output speed on right side	RPM
ω_{G}	Gearbox output speed	RPM
ω_n	Natural frequency	rad/s
ω_{n1}	Lower limit of natural frequency	rad/s
ω_{n2}	Higher limit of natural frequency	rad/s
$\hat{\omega}_{_n}$	Approximation of natural frequency	rad/s
ω_i	Speed of the i^{th} wheel	rad/s
ω_{w}	Wheel rotational speed	rad/s
ω_{wL}, ω_{L}	Left wheel rotational speed	rad/s
ω_{wR}, ω_{R}	Right wheel rotational speed	rad/s
Ω	Vehicle turning rate	rad/s
а	Longitudinal distance between successive wheel axles	m

Symbols	Nomenclature	Unit
a_X	Vehicle acceleration along longitudinal	m/s
	direction	
a_Y	Vehicle acceleration along lateral direction	m/s
b	Wheel width	m
b_e	Engine damping coefficient	Nms
b_d	Differential damping coefficient	Nms
b_w	Wheel damping coefficient	Nms
$b_{D,in}$	Damping coefficient inside differential	Nms
b_G	Gearbox damping coefficient	Nms
С	Terrain cohesion parameter	kPa
C_{r1}, C_{r2}	Wheel friction cofficients	m.s ⁻² , s ⁻¹
d	Distance between the vehicle centroid and	m
	the centre of mass	
dA_i	Area increment around a contact point	m^2
dF_{X_i}	Total force increment along longitudinal	Ν
	direction acting on a very small contact area	
	around a contact point	
dF_{Y_i}	Total force increment along lateral direction	Ν
	acting on a very small contact area around a	
	contact point	
dF_{Z_i}	Total force increment along vertical	Ν
	direction acting on a very small contact area	
	around a contact point	
е	Control error	
e_{emf}	Motor back electromotive force	V
e_o	PID error	
f	Nonlinear function	-
\hat{f}	Approximation of nonlinear function	-
g	Gravitational acceleration	m/s^2

Symbols	Nomenclature	Unit
h	Height of the centre of mass above the	m
	ground	
i	Vehicle wheel slip	%
i_{CVT}	CVT belt slip	%
j	Shear displacement	m
j_i	Shear displacement at a contact point on the	m
	<i>i</i> th wheel	
j_{X_i}	Shear displacement at a contact point on the	m
	<i>i</i> th wheel along longitudinal direction	
j_{Y_i}	Shear displacement at a contact point on the	m
	<i>i</i> th wheel along lateral direction	
${j}_{Z_i}$	Shear displacement at a contact point on the	m
	<i>i</i> th wheel along vertical direction	
k	SMC parameter / time step	-
$k_{1_i}, k_{2_i}, c_{1_i}, c_{2_i}$	Linearisation parameters for normal stress	kPa/rad, kPa/rad,
	on the <i>i</i> th wheel	kPa, kPa
$k_{1X_i}, k_{2X_i}, c_{1X_i}, c_{2X_i}$	Linearisation parameters for longitudinal	kPa/rad, kPa/rad,
	component of normal stress on the i^{th} wheel	kPa, kPa
$k_{1Z_i}, k_{2Z_i}, c_{1Z_i}, c_{2Z_i}$	Linearisation parameters for lateral	kPa/rad, kPa/rad,
	component of normal stress on the i^{th} wheel	kPa, kPa
$k_{3_i}, k_{4_i}, c_{3_i}, c_{4_i}$	Linearisation parameters for shear stress on	kPa/rad, kPa/rad,
	the i^{th} wheel	kPa, kPa
$k_{3t_i}, k_{4t_i}, c_{3t_i}, c_{4t_i}$	Linearisation parameters for tangential	kPa/rad, kPa/rad,
	component of shear stress on the i^{th} wheel	kPa, kPa
$k_{3X_i}, k_{4X_i}, c_{3X_i}, c_{4X_i}$	Linearisation parameters for longitudinal	kPa/rad, kPa/rad,
	component of shear stress on the i^{th} wheel	kPa, kPa
$k_{3Y_i}, k_{4Y_i}, c_{3Y_i}, c_{4Y_i}$	Linearisation parameters for lateral	kPa/rad, kPa/rad,
	component of shear stress on the i^{th} wheel a	kPa, kPa
$k_{3Z_i}, k_{4Z_i}, c_{3Z_i}, c_{4Z_i}$	Linearisation parameters for vertical	kPa/rad, kPa/rad,
	component of shear stress on the i^{th} wheel	kPa, kPa

Symbols	Nomenclature	Unit
k_c , k_{ϕ}	Pressure-sinkage moduli parameters of a terrain	kN/m^{n+1} , kN/m^{n+2}
т	Vehicle's mass	kg
m	Wheel's mass	kg
n	Sinkage exponent parameter of terrain	
r	Wheel radius	m
t _d	Time delay	S
t _P	Peak time	S
u	SMC output, PID input	%
\mathcal{U}_{ea}	Equivalent control output	%
u_R	Robust control output	%
x	Speed difference between the differential's	RPM
	case and its outputs	
(x_i, y_i)	Cartesian coordinates of a contact point on	m
	the i^{th} wheel frame	
$\mathbf{x}(t)$	State variable vector	
v	Process output	%
y Vd	Desired output (Reference or set-point)	%
Z	Wheel sinkage	m
Z_i	Sinkage of the i^{th} wheel	m
A, B	System matrices in state space form	
В	Half of the vehicle track	m
B_m	Motor damping ratio	Nms
D	Boundary of disturbance	
F	Boundary of nonlinear function's	-
	approximation error	
F_R	Wheel rolling resistance	Ν
$F_{t,w}$	Traction force at wheels	Ν
F_{χ}	Total reaction force acting on the i^{th} wheel	Ν
24 J	along longitudinal direction	

Symbols	Nomenclature	Unit
\hat{F}_{u}	Estimate of total reaction force acting on	Ν
- X _i	the i^{th} wheel along longitudinal direction	
F_{v}	Total reaction force acting on the i^{th} wheel	Ν
1	along lateral direction	
\hat{F}_{v}	Estimate of total reaction force acting on	Ν
I_i	the i^{th} wheel along lateral direction	
F_{Z}	Total reaction force acting on the i^{th} wheel	Ν
-1	along vertical direction	
\hat{F}_{z}	Estimate of total reaction force acting on	Ν
Σ_i	the i^{th} wheel along vertical direction	
Ι	Motor armature current	А
I_Z	Vehicle moment of inertia around Z axis	kg.m ²
J_e	Engine moment of inertia	kg.m ²
J_m	Motor rotor's moment of inertia	kg.m ² s ⁻²
$J_{\scriptscriptstyle W}$	Wheel moment of inertia	kg.m ²
Κ	Shear deformation modulus	m
K_{l}	CVT gear ratio	-
K_2	Gearbox gear ratio	-
K_3	Chain system gear ratio	-
K_a	Amplifier' voltage to current gain	AV^{-1}
K_e	Engine gain	N.m
$K_{em} = K_t$	Motor electromotive force constant	N.m.A ⁻¹
K_i	Actuator's current to force gain	NA ⁻¹
K_m	Motor gain	-
K_D	Derivative gain (D)	-
K_I	Integral gain (I)	-
K_G	Motor gear ratio	-
K_P	Proportional gain (P)	-
L_m	Motor electric inductance	Н
M_P	Percentage of overshoot	%

Symbols	Nomenclature	Unit
M_R	Moment of turning resistance	N.m
M_X	Rolling moment around X axis	N.m
M_Y	Rolling moment around Y axis	N.m
M_Z	Turning moment around Z axis	N.m
\hat{M}_{Z}	Estimate of turning moment	N.m
(N, E)	Position of the vehicle in earth coordinates	m, m
R_m	Motor electric resistance	Ω
Т	Traction torque	N.m
T_{bL}	Left brake torque	N.m
T_{bR}	Right brake torque	N.m
T_c	Load on CVT	N.m
T_d	Load on differential's case	N.m
T_{dL}	Load on differntial's left output	N.m
T_{dR}	Load on differential's right output	N.m
T_e	Engine generated torque	N.m
T_{ec}	Load on engine	N.m
$T_{fric,e}$	Engine friction torque	N.m
$T_{fric,D}$	Differential friction torque	N.m
$T_{fric,G}$	Gearbox friction torque	N.m
T_i	Traction torque developed on the i^{th} wheel	N.m
$\hat{T_i}$	Estimate of traction torque developed on	N.m
	the i^{th} wheel	
T_m	Motor torque	N.m
T_{sL}	Total load torque on the left sun gear	N.m
	(differential)	
T_{sR}	Total load torque on the right sun gear	N.m
	(differential)	
T_w	Total load torque on all wheels	N.m
T_{wL}	Load torque from left wheels	N.m
T_{wR}	Load torque from right wheels	N.m

Symbols	Nomenclature	Unit
T_G	Load torque on gearbox	N.m
V	PID output (Process input, or Voltage)	V
V	Vehicle velocity vector	m/s
V_{iX_i}	Longitudinal component of slip velocity of	m/s
	a contact point on the i^{th} wheel	
V_{iY_i}	Lateral component of slip velocity of a	m/s
5 1	contact point on the i^{th} wheel	
V_{iZ_i}	Vertical component of slip velocity of a	m/s
	contact point on the i^{th} wheel	
V_{t_i}	Tangential component of slip velocity of a	m/s
·	contact point on the i^{th} wheel	
V_L	Lyapunov function	-
V_E	Vehicle velocity along east direction	m/s
V_N	Vehicle velocity along north direction	m/s
V_X	Vehicle longitudinal velocity	m/s
V_Y	Vehicle lateral velocity	m/s
S	Sliding surface	-
S_{X_i}	Wheel slip ratio along longitudinal	%
	direction	
${m S}_{Y_i}$	Wheel slip ratio along lateral direction	%
(X_i, Y_i, Z_i)	Cartesian coordinates of a contact point on	m
	the vehicle frame	
W	Vehicle weight	Ν
W_i	Vertical load on the i^{th} wheel	Ν

Abbreviations

ALV	Autonomous Land Vehicle
CCD	Charge-Coupled Device
CVT	Continuous Variable Transmission
DARPA	Defense Advanced Research Projects Agency
FLIR	Forward Looking InfraRed
HMMWV	High-Mobility, Multipurpose, Wheeled Vehicle
LADAR	Light Detection And Ranging
MIMO	Multiple-Input Multiple-Output
MVEM	Mean Value Engine Model
SSV	Semiautonomous Surrogate Vehicle
SI	Spark Ignition
SMC	Sliding Mode Controller
PID	Proportional – Integral – Derivative
UGV	Unmanned Ground Vehicle