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There is the inherent simplicity and beauty of physics. It’s the kind of thing
where you can take nature and describe it in terms of mathematical models and
the mathematical models allow you to reach far-reaching conclusions and you
can test those conclusions by going back in the lab. The whole structure of
making progress in this way seems so appealing ... once you’ve established this
connection between experiment and the model of how nature works, you begin

to believe it.

Stephen Chu, 1997.
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Abstract

The analysis of broadened x-ray diffraction profiles provides a useful insight into the struc-
tural properties of materials, including crystallite size and inhomogenous strain. In this
work a general method for analysing broadened x-ray diffraction profiles is developed. The
proposed method consists of a two-fold maximum entropy (MaxEnt) approach.
Conventional deconvolution/inversion methods presently in common use are analysed and
shown not to preserve the positivity of the specimen profile; these methods usually result
in ill-conditioning of the solution profile. It is shown that the MaxEnt method preserves
the positivity of the specimen profile and the underlying size and strain distributions, while
determining the maximally noncommital solution. Moreover, the MaxEnt method incor-
porates any available a priori information and quantifies the uncertainties of the specimen
profile and the size and strain distributions.

Numerical simulations are used to demonstrate that the MaxEnt method can be applied
at two levels: firstly, to determine the specimen profile, and secondly to calculate the size
or strain distribution, as well as their average values. The simulations include both size-
and strain-broadened specimen profiles. The experimental conditions under which the data
is recorded are also simulated by introducing instrumental broadening, a background level
and statistical noise to produce the observed profile. The integrity of the MaxEnt results
is checked by comparing them with the traditional results and examining problems such as
deconvolving in the presence of noisy data, using non-ideal instrument profiles, and the effects
of truncation and background estimation in the observed profile. The MaxEnt analysis is
also applied to alumina x-ray diffraction data.

It is found that the problems of determining the specimen profile, column-length and strain
distributions can be solved using the MaxEnt method, with superior results compared with
traditional methods. Finally, the issues of defining the a priori information in each problem
and correctly characterising the instrument profile are shown to be critically important in

profile analysis.

XX



Chapter 1

Literature Review

1.1 Introduction

The development of x-ray powder diffraction in the 1930s and 1940s focussed inpart on the
investigation of line-profile broadening (see James 1948), with the realisation that structural
imperfections in material specimens caused this broadening. Moreover, by relating the spec-
imen broadening to physical properties of the material specimen, it was proposed that a
microscopic “picture” encompassing size, distribution and shape of crystallites, as well as
distortions of the crystallite lattice, could be developed.

The implications of developing such an understanding at a microscopic level are immense
for both scientific and commercial reasons. For example, x-ray line-broadening provided the
first indirect evidence for dislocations in metals (Nabarro et al. 1964). X-ray profile analysis
plays an important role in industry. The commercial implication are far reaching, including
metallurgy, the strength of metals, alloys and ceramics, understanding the role of dislocations
in superconductors, and the fabrication of semiconductors for the computer industry.

The problem of developing a “picture” of structural imperfections is made more difficult
by the method of recording intensity distributions, in that the intensity distribution in a
three dimensional reciprocal space is mapped into a one-dimensional space. A consequence
of this “rolling up” or mapping of dimensions when applied to polycrystalline materials is an
averaging over the shape, size and internal distortions. In order to develop a picture of the

microscopic properties of the material, we must work backwards from the one-dimensional



space into a three-dimensional space. Generally this transformation does not produce a
unique solution and many possible solutions may exit. The problem we face is determining
the most plausible or probable of these many possible solutions. This is a problem faced not
only in determining the specimen profile, but also the crystallite/domain size distribution
and the strain distribution. It is the central problem investigated in this study.

In this chapter an overview of specimen profile broadening is presented and described
in reciprocal space (§1.2). The two dominant representations, wviz. the integral breadth
and Fourier representations, for broadened specimen profiles are presented and the physical
quantities are defined using this representation (§1.3). The process of determining the spec-
imen profile, crystallite size distributions, and strain distribution from the observed data is
discussed by drawing on the existing literature. This will map a path to recent developments
and an appreciation for the assumptions, advantages and limitations of the accepted meth-
ods (§1.4). More importantly, this lays the necessary foundations to make some observations
concerning the underlying problems of determining the specimen profile, crystallite/domain
size and strain distribution. On the surface, these problems look different, however it is

shown that they can be solved using a unified approach.

1.2 An overview of size- and strain-induced x-ray pro-

file broadening

1.2.1 Conditions for diffraction — ideal case

The condition for Bragg diffraction is best formulated in a reciprocal space by constructing
an Ewald sphere. There are many ways to describe the reciprocal space, but here it is
useful to think of it as a Fourier transform of the real (atomic) space into an inverse space
where a three-dimensional intensity distribution is produced about reciprocal space points
hkl. As a first case, the condition for diffraction is established for an ideal crystal, infinite in
size and containing no distortions. In the simple picture, the atoms can be represented by
delta-functions and in the reciprocal space, the intensity distributions are also represented
by delta-functions located at hkl (Guinier 1963).

Suppose we define the incident beam by a vector Sy, where [Sy| = 1/\ and A is the

2



wavelength of radiation (see Figure 1.1); Sy is from the point N such that the end of the
vector defines the origin, O. About N a sphere (the Ewald sphere) can be constructed with a
radius |Sp|. The vector S in Figure 1.1 is the scattered beam taken from N to the reciprocal
space point, hkl, at P. The scattered and incident beams are joined by the vector d*. The
condition for diffraction is established only if the set of reciprocal space points, hkl, fall on

the surface of the Ewald sphere. Given this condition, the following is true

S =S| = |d’
= |hal +kaj+1aj
1

= = (1.1)

where d* is called the diffraction vector; its magnitude is defined by a set of reciprocal space
basis vectors, {a}; i = 1,2,3} and reciprocal space points hkl; d is the atomic interplanar
distance. In (1.1), the magnitude of d* must be equal to the inverse of the atomic interplanar
distance, d, for diffraction to occur. In the real space of the crystal lattice, the diffraction
vector, d*, is perpendicular to the diffraction planes, hkl, and we can think of these planes
as “reflecting” the x-rays.

Under these conditions the angle between the incident and scattered vectors is 26 = 205,

where 20p is the Bragg angle. From the geometry in Figure 1.1, the length of d* is

2 sin 93

A

d*| = . (1.2)

By equating the last term of (1.1) with (1.2), the Bragg equation for diffraction follows.

1.2.2 Diffraction from real materials

In the previous section the material was assumed to be an ideal crystal, and it was shown
that the diffraction pattern would consist of delta-functions positioned at 20g. It is more
interesting is to consider the conditions that give rise to broadened x-ray diffraction profiles.

Real materials and structural imperfections

For a real material the intensity distribution in reciprocal space is spread about the point

hkl (Langford & Louér 1996). In Figure 1.1, the spreading of the intensity distribution is
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Figure 1.1: Schematic diagram of the Ewald sphere of radius 1/). The incident beam is given by S and
the scattered beam by S. The angle between these vectors is 26 and the difference between the vectors
defines the diffraction vector by S — Sg = d*, where |d*| = 1/d and d is the atomic-interplanar distance in
real space. The Bragg condition is satisfied when the sphere falls on the set of hkl reciprocal-lattice points
(small circles). The reciprocal-lattice points have been enlarged to represent the spreading of intensity from
a real crystal. For an ideal crystal the reciprocal-lattice points would indeed be represented by a point. Also
note that the “cone of diffraction” for a semi-angle 20 can be constructed from the figure. Adapted from

Warren (1969).

schematically represented by circles. The spreading or broadening characterises the struc-
tural imperfections of materials'.

There are various classes of structural imperfection, such as finite size broadening, in-
homogeneous strain and dislocations, which give rise to the broadening of the intensity

distribution about hkl (Langford & Louér 1996). Finite size broadening refers to Bragg

'Here polycrystalline materials or powders are considered. Polycrystalline materials are thought of as
simply interlocking single crystals whose crystallographic axes are randomly distributed, while powders are

discrete particles in the range of 0.1 — 1000 pm.



scattering from crystallites or domains in the direction of d*. This scattering can be related
to an average dimension of the crystallite or domain in the direction of d*, but is indepen-
dent of the order of diffraction. The domains may be a consequence of discontinuities or
boundaries in the crystal lattice; for example, small grain-boundaries produce size broaden-
ing and the corresponding dimension represents the distance between boundaries (Langford
& Louér 1996). For inhomogenous strain there is distortion of the atomic lattice (twisting,
bending etc.) which causes a variation in the d-spacings (Stokes & Wilson 1944q, Langford
& Louér 1996) and is dependent on the order of diffraction. In the case of dislocations, both
size and strain broadening results: the size broadening may define the mean length between
regions of low and high dislocation densities, while the inhomogenous strain is a result of

strain fields from the dislocations (van Berkum et al. 1996, Langford & Louér 1996).

Broadened diffraction profiles

Given that structural imperfections produce the spreading of the intensity region in reciprocal-
space, it is worth discussing how diffraction profiles, are produced. In Figure 1.2, a schematic
representation of an intensity distribution about the hkl point is given. In many ways this
can be thought of a “close up” of Figure 1.1.

As was shown in §1.2.1, the distance of OP is |d*|. Suppose a vector s is defined at
O and is rotated in all directions, defining a sphere of radius |s| = 2528 about O, given
by @ in Figure 1.2. As the radius of the sphere increases, it cuts the intensity distribution
about P and an integration of the spherical cross-sections takes place. This can be replaced
by a plane ¢t' normal to d* and the integration approximated over the planar region that
cuts the intensity distribution about hkl (Guinier 1963). For 26 < 20z, s — d* < 0 and the
intensity distribution increases; for 20 = 20, s — d* = 0, and the intensity is a maximum,
since it corresponds to the maximum cross-section of the intensity distribution; for 260 > 2605,
s — d* > 0 and the intensity distribution decreases. In other words, the diffraction profile
is centered about d* and the intensity measurement at a given 260 on a diffraction profile
is a result of the integration over the sphere surface, (). Using this representation it can

be seen how the diffraction profile from polycrystalline materials can be an averaging of

shape, size and lattice distortions. This says that the ensemble of crystallites with varying



Ewald sphere

Figure 1.2: A schematic diagram of the intensity region about O and P. As the radius, |s|, increases (for
increasing 26) an integration over the cross-section of the intensity takes place. This corresponds to the

intensity measurement at given 26. Adapted from Guinier (1994).

size and shapes and internal distortions contributes to the spreading of the intensity region
about hkl. As the sphere @) cuts the intensity region and the integration over its surface
is carried out, an averaging of the various contributions from their ensemble is taking place
(Guinier 1963, Krivoglaz 1995).

The vital issue that must now be addressed is how to quantify the broadening of the

diffraction profiles and relate the measure of broadening to the structural imperfections.



1.3 Size and strain broadening of x-ray diffraction pro-

files

There are two main approaches to quantifying the specimen broadening of the diffraction
profile presented here. The first approach is the integral-breadth representation, which
simply provides a measure of the broadening in terms of the area of the profile. It can be
considered as a semi-quantitative approach as it does not take into consideration the shape
of the line profiles. The second approach is the Fourier representation of the profile. This
approach decomposes the line-profile into Fourier coefficients and relates them to broadening
from the structural imperfections. By incorporating information concerning the shape and
broadening of the profiles, it can be used to make quantitative predictions concerning the
shape of diffraction profiles. The integral-breadth and Fourier representations of profile
broadening have become the central means of analysing size-, size/strain- and dislocation-

broadened profiles and other methods for profile analysis draw on these representations.

1.3.1 Integral-breadth representation of size- & strain-broadened

profiles
Integral-breadth description of size-broadening

Stokes & Wilson (1942) expressed the broadening of a line profile from the diffraction of small
crystallites in terms of their shape. The broadening was quantified by the integral breadth of
the profile (area of profile/profile maximum) and the common-volume (or “ghost”) function

" A V(0)
~ cosfp [V(L)dL

where (394 is the integral breadth determined from the profile in 26-space (in units of radians);

Bag (1.3)

A is the wavelength of radiation; V(0) is the volume of the crystallite; and V(L) is the
common-volume of the crystallite shifted a distance L, parallel to the diffraction vector, d*.
The limits of integration in (1.3) are over —L,,0; < L < Lyyaq, such that V(Lpe:) = 0.

The integral breadth can be expressed in reciprocal-space units (the preferred usage in this



study) as

5:xqm[/¢M$vu3d4_{ (1.4)

Lmaac

This approach provides a physically meaningful representation of size broadening, in
that the shape of the crystallite, given by V (L), has been included. In principle the average
dimensions of the crystallite can be determined if enough ($-values for a set of hkl-lines can
be determined. This has recently been established (for example see Louér et al. 1983, Vargas
et al. 1983) and the procedure will be discussed in §1.4. Alternatively the integral breadth
can be expressed in terms of the cube-root of the crystallite-volume, sometimes known as
the “true” size (Langford & Wilson 1978) via the Scherrer constant, which is also dependent

on a model for the crystallite shape, expressed as
B=— (1.5)

where 3 is in reciprocal space units; K is the Scherrer constant and is of order unity; p is the
cube-root of the crystallite volume. The Scherrer constant is also dependent on a model for
the crystalites. Stokes & Wilson (1942) pointed out that determining K was mathematically
demanding, but by determining the common-volume function and relating it to the integral
breadth, they in effect “side-stepped” the need to determine the the Scherrer constant.

The integral-breadth, (1.4), can be related to the mean thickness of the crystallite perpen-
dicular to the (hkl)-plane. Moreover, its physical interpretation was only correctly defined
by Stokes & Wilson (1942). Using (1.4), we can define the volume-averaged crystallite size
as

(L)o=p67" (1.6)

(L), is an apparent dimension of the crystallite parallel to the diffraction vector (i.e. per-
pendicular to the (hkl) planes) and using a suitable crystallite model its overall dimensions
can be determined. Figure 1.3 shows a schematic representation of the crystallite and its
“ghost” shifted a distance L perpendicular to the (hkl) planes.

By arriving at (1.6), Stokes & Wilson (1942) considered the integral breadth for various
shapes. However, they also assumed that the crystal lattice was cubic and all crystallites
had the same dimensions. In other words, the size distribution was assumed to be a delta-

function. The analysis demonstrated that in the case of size broadening, the integral-breadth
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Figure 1.3: A schematic digram of a crystallite (solid line) and its “ghost” (dashed line) shifted a distance L
in the [hkl] direction. The V(L) for a crystallite can be related to the integral breadth (1.4) and size-Fourier
coefficients (see §1.3.2).

and (L), were in general dependent or the crystallographic direction, [hkl] and were expressed
in terms of the hkl-indices. The shapes considered were regular parallelepipeds, tetrahedra
and octahedra. Spherical crystallites were shown to be the exception, in that (L), is the
same (i.e. isotropic) in all [hkl]-directions. Stokes & Wilson (1944b) generalised their results

for non-cubic lattice-symmetries.

Common-volume function and apparent size

Following the developments of Stokes & Wilson (1942), (1.4) and (1.6) could be used to
express (L), in term of the dimensions of the crystallite. A simple example is a sphere, when
V(L) is given by (Stokes & Wilson 1942) as

™

V(L) = D

(D — L)*(2D + L) (1.7)



where D is the diameter of the sphere. On applying (1.4) and (1.6) the volume-weighted
size is given as
3

(L), = <D. (1.8)

The common-volume of a crystallite can be related to another measure of the crystallite

thickness in the direction of the diffraction vector. This dimension is the area-weighted size,

11 (dV(D)
<L>a“v<o>< i ) (19)

where (L), is interpreted as the ratio of the crystallite volume projected onto the crystal-

(L), and is given by

lographic plane (hkl) (Langford & Wilson 1978, Guinier 1963). It can be shown that in
general (L), will be less than (L),. Like (L),, (L), is an apparent dimension which can be
related to the dimensions of the crystallite if a model is assumed. In the case of a sphere,

(1.9) can be applied to (1.7) resulting in
(L), ==D (1.10)

and the ratio of the (L), to (L), is & (see Appendix B).

Similarly (L), and (L), can be related to the thickness parallel to the diffraction vector, if
the Scherrer constant is known for each measure of size. Langford & Wilson (1978) reviewed
the Scherrer constants for (L),, (L), using simple shapes. The constants were represented
as contour maps. This representation allowed the extrema and saddlepoints of the Scherrer
constant to be determined. The resulting diffraction profiles were also determined and
compared for different shapes, for a given hkl. It was also shown that an equivalent Scherrer
constant can be determined when there exists a distribution of crystallites.

Wilson (1962) and Lele & Anantharaman (1966) developed the Scherrer constants and
common-volume functions for various shapes in terms of the indices hkl. They used various
crystal lattice systems, such as the hexagonal crystal system for triangular and hexagonal
prisms and the tetragonal system for square prisms and cylinders. In order for these results
to be applied to other crystal systems, the correct transformations must be applied (Langford
& Wilson 1978). Building on the results of Lele & Anantharaman (1966), Wilson (1969)
developed the common-volume function for cylinders, prisms and hemispheres. Rather than

deriving the common-volume function in terms of hkl, they were expressed in terms of the
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angle, ¢, between the axis of the crystallite (i.e. the [001] direction) and the diffraction
vector. The angle ¢ depends on the lattice system but this approach is more general and
practical.

The application of these common-volume functions to experimental data, where the av-
erage dimensions and thickness could be determined, has come quite recently. The notable
developments of applying the common-volume functions to experimental data are by Louér
et al. (1972), Auffredic et al. (1980), Langford & Louér (1982), Vargas et al. (1983), Louér
et al. (1983), Langford (1992) and Langford et al. (1993). Langford & Louér (1982), Vargas
et al. (1983) and Louér et al. (1983) applied the common-volume for the cylindrical and
hexagonal crystallites to ZnO. The cylindrical case is an approximation to the hexagonal
crystallites (Vargas et al. 1983, Louér et al. 1983). Grebille & Bérar (1985) determined
the common-volume function for convex-polyhedra and applied it to boehmite (AIOOH)
crystallites. This is a particularly challenging problem due to the irregular edges of the
polyhedron, but showed that the volume can be broken down into elementary prisms. Re-
cently, Audebrand et al. (1998) have used x-ray techniques to examine the microstructure
of nanocrystalline ZnO powders by using V(L) for a cylindrical shape and showing how the

dimensions of the crystallite change with temperature.

Integral breadth description of strain broadening

Stokes & Wilson (1944a) attempted to relate the integral breadth to the inhomogeneous
strain by defining the apparent strain, 7. This was analogous to the integral-breadth de-
scription of size broadening (1.4). This analysis was based on the broadening of diffraction
patterns (Debye-Scherrer lines) from cold-worked metals®. Stokes & Wilson (1944a) noted
that there may be three factors which contribute to the broadening of x-ray diffraction pat-
terns from cold worked metal: (i) scattering domains of size < 0.1um; (ii) grain boundaries
having different lattice parameters; (iii) the distortion of large crystallites, ~ 1um. In (i),
domain-size broadening would result and would be independent of the order of diffraction,
d*. The distinction between points (ii) and (iii), is that in (ii) the different lattice parame-

ters are due to homogeneous strain being applied to the specimen which causes a uniform

2The process of cold-worked hardening of metals involves controlling the plastic deformation of a metal

well below the recrystallisation temperature (Schlenker 1986).
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distortion of the lattice in a particular direction. The diffraction pattern would reveal a
shifting of the peak positions as a consequence of the change in lattice parameters. In (iii)
the applied strain causes a non-uniform distortion of the crystal lattice (i.e. bending, twist-
ing etc.). This results in the broadening of the intensity region about Akl in reciprocal-space
and consequently a broadening of the diffraction profile.

It was also pointed out by Stokes & Wilson (1944a) that the homogeneous and inho-
mogeneous strain would be dependent on the order of diffraction, d*. The analysis of
Stokes & Wilson (1944a) centered on (iii). However, their treatment can be considered
as a first approximation of inhomogeneous deformation caused by dislocations, in that it
assumes that a specimen has experienced different homogeneous deformation (Ryaboshapka
& Tikhonov 1961a). Their analysis did not take into consideration the strain gradient and
its dependency on the distance perpendicular to the diffraction planes.

The integral breadth from a strain-broadened profile was shown by Stokes & Wilson
(1944a) to be related to the apparent strain, 7, by

n = [Pagcotlp (1.11)

= 28/d’ (1.12)

where (9 is the integral breadth in 26-space (expressed in units of radians); /3 is the strain
in reciprocal-space units.

Like the volume-averaged crystallite size, (L),, nin (1.11 & 1.12) is an apparent quantity
and is considered as a measure of the maximum strain (Klug & Alexander 1974). This was
realized by Stokes & Wilson (1942) and two models were proposed: (i) assumed that all the
strain values, between zero and the maximum, were equally probable; (ii) the mean-square
strain was drawn from a Gaussian distribution. Model (ii) is appropriate and useful, in that
it relates n in terms of the root-mean-square strain drawn from a Gaussian strain distribution
with a zero mean. Stokes & Wilson (1944a) expressed the apparent strain in terms of the

root-mean-square strain as

n = 24/2n(e?)

~ 5(e%)2. (1.13)
The physical interpretation of this model is that the “distortions” are randomly distributed

12



in the specimen, constant and isotropic at all distances and directions in [hkl]. Generally, the
assumption that the strain distribution is isotropic in [hkl] is not valid since most materials
are elastically anisotropic. The (€2)2 in (1.13) really defines the order of magnitude of the
rms-strain.

When Stokes & Wilson (1944a) presented their analysis of strain broadening, there was
no direct evidence of dislocations and it was realised that these results need to be generalized
to include this theory (Wilson 1952). This problem focused essentially on cold-worked met-
als, where dislocation theory explained many of the properties of cold-worked metals and the
broadening observed in the x-ray diffraction profiles (for example see Nabarro 1952, Nabarro
et al. 1964). Wilson (1949, 1952), made the initial attempts at incorporating models of bent
lammellae (Wilson 1949) and screw dislocations (Wilson 1952) into a kinematic theory of
x-ray diffraction. As a result of applying dislocation theory in explaining the broadening of
diffraction profiles, competing interpretations emerged (Williamson & Hall 1953, McKeehan
& Warren 1953, Williamson & Smallman 1954, Williamson & Smallman 1956, Warren 1959).
The debate centred around the nature of the strain distributions and domain/strain broad-
ening from plastically deformed metals.

Krivoglaz & Ryaboshapka (1963) and Krivoglaz (1995) showed that a Gaussian profile
resulted from randomly distributed screw dislocations from a cylindrical crystal. More-
over, they demonstrated that § is proportional to tanf and established that in general
it would be dependent on the orientation factor, I, and the direction of the scattering
vector. Ryaboshapka & Tikhonov (1961a, 1961b) pointed out that the rms-strain would
be dependent on the density of dislocations, elastic properties of the material and I" (e.g.
Wilkens 1970a, Wilkens 1970¢, Wilkens 1987). In other words, the rms-strain is a function
of the ensemble of dislocations (or “distortions”) in the material. van Berkum et al. (1996)
showed that 5 depends strongly on the relative width of the strain field of dislocations. It
was shown that for w, — oo, (1.12) became applicable; however as w, — 0, 3 o< d*?. Ungar,
Ott, Sanders, Borbély & Weertman (1998), Ungdr, Révész & Borbély (1998) and Ungéar &
Borbély (1996), have shown that £ is a function of d* (C)z, where (C) is the contrast (or ori-
entation) factor of the material which describes the broadening for isotropic and anisotropic

broadening of line profiles. Wu, Gray & Kisi (1998) and Wu, Kisi & Gray (1998) adapted
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the work of Krivoglaz & Ryaboshapka (1963) and Wilkens (1970a) for Rietveld refinement of
powder patterns where the dislocation density and slip system can be determined by refining
the integral breadth of the profile on a shape parameter.

An alternative way to describe the broadening of the line profile due to dislocation fields

and crystallite size is to decompose the specimen profile in terms its Fourier coefficients.

1.3.2 Fourier representation of size- & strain- broadened profiles
Fourier representation of the specimen profile

The Fourier representation was developed by Averbach & Warren (1949) and Warren &
Averbach (1950, 1952) and it essentially associated size and strain broadening with the
Fourier coefficients independent of d* in the case of size broadening and dependent d* in case
of strain broadening. By defining the coefficients in this manner, the basis for separating size
and strain broadening can be established. It also enables the instrument broadening to be
removed by applying methods such as those developed by Stokes (1948) which decompose
the observed profile into the Fourier coefficients of the instrument and specimen profiles.

The size/strain-broadened specimen profile can be expressed as

f(s—so, d Z A*(L) CY(L,d*) exp 2mi(s — so)L (1.14)

L=—o00

where A°(L) and C¢(L, d*) are the exponential Fourier coefficients for the size and distortion
(or strain) contribution, respectively; 2 = v/—1; sy = d* such that f(s — sq, d*) is centred
about d*. In applying the summation, we note that C%(L,d*) = A%(L, d*) + «B%(L, d*)
where A4(L, d*) = A4(—L, d*) and B4(—L, d*) = —B%(L, d*), and A*(L) € R for all
|L| > 0; (1.14) reduces to

f(s—sp,d*) = Z AS(L) AYL, d*) cos2m(s — s9)L
L=-c0
+ Z A*(L) BYL, d*) sin2m(s — sq)L (1.15)
L=—o0

where A%(L, d*) and B%(L d*) are the real and imaginary strain coefficients, respectively. By
decomposing the specimen profile in terms of Fourier coefficients, the shape of the profile is

taken into consideration rather than just its width or breadth.
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Equation (1.14) represents the inverse Fourier transform of the product A*(L) C¢(L, d*).
Applying the convolution theorem, the specimen profile, f(s — sg, d*), can be expressed in

terms of a “size/domain” profile, f*(s — s) and a “strain” profile f(s — sg, d*) as

f(s—s0, d*) = f*(s — s0) * f(s — 50, d¥) (1.16)

where x is the convolution operator. That is, the strain/size-broadenedspecimen profile can
be interpreted as the convolution of a “size profile” with a “strain profile”. Furthermore, if
f5(s—s0) = d(s— sp), the strain broadening will be dominant and the crystallite size will be
infinitely large. On the other hand, f%(s — sg, d*) = §(s — s, d*), corresponds to a strain-
free specimen where size broadening is dominant. Another observation that can be made
of (1.14 & 1.15) is that the size coefficients are independent of the order of diffraction, but
dependent on the distance, L, parallel to the diffraction vector, while the strain coefficients
are dependent on L and d* (Warren & Averbach 1952, Eastabrook & Wilson 1952).

If f(s — s, d*) is symmetrical, the imaginary coefficients B¢(L, d*) will be zero for
all L and d* and the real coefficients will be non-zero for all L and d*. In the case of
an asymmetrical specimen profile, the imaginary coefficients will be non-zero and as the
asymmetry increases the magnitude of these coefficients will increase relative to the real
coefficients. The imaginary Fourier coefficients are not usually interpreted physically (van
Berkum et al. 1994), however there are some exceptions which Ungar et al. (1989) have

discussed.

Size-Fourier coefficients

Warren & Averbach (1950, 1952) and Bertaut (1950, 1952) demonstrated that the size co-

efficients can be expressed in terms of a column-length distribution, p,(L) as

(L) = /| S = L) pa(L) AL (1.17)

L

where p,(L) has unit area and the apparent crystallite-size, (L), is given by

(L), = /0 " Lpe(L)dL. (1.18)

Following on from (1.17), it was also shown by Warren & Averbach (1950, 1952) and
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Bertaut (1950, 1952) that the (L), can be determined from the initial slope of A*(L) as

< L1>a = - (dfgéL))HO (1.19)

and taking the second derivative of A*(L) in (1.17) produces the column-length distribution,
pa(L), as

1 d%A%(L)
(L), dL?>
We can interpret A*(L) in terms of the common-volume function, V(L)/V(0) and the in-

pa(L) = (1.20)

tegral breadth, (1.4), can be alternatively expressed in terms of the size-Fourier coefficients

(Averbach & Warren 1949, Warren & Averbach 1950, Eastabrook & Wilson 1952) as

00 -1
8= [/ A%(L) dL] | (1.21)

0
This also implies that the first and second derivative of the common-volume are directly

equivalent to (1.19) and (1.20), respectively.

Some observations about the size distribution

Guinier (1963)3 related the area-averaged column-length, p,(L) to the volume-averaged dis-
tribution, p, (L), and established a relation between (L), and its volume-weighted equivalent,
(L), The relation between the two quantities was established via the common-volume func-

tion. Guinier (1963) showed that

pa(L) _ po(L)
(L)a L

In (1.22), either the volume- or area-weighted distribution can be determined from knowing

(1.22)

the other.

Wilson (1968, 1971) showed that the area-averaged size, (L),, is the average thickness nor-
mal to the reflecting planes. This was established in terms of the common-volume function,
in that V(0)/V’(0) was shown to be the area of the crystallite projected onto the reflecting
planes. Moreover, Wilson (1968, 1971) showed that V" (0)/V(0) had two interpretations.
The first considered it as the rate at which the crystal tapers in the direction perpendicular
to the reflecting planes; secondly, it can be considered as the distribution function giving the

fraction of the volume of the crystallite with a thickness L and L + dL given in (1.20). The

3Dover (New York) edition, first published in 1994.
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resulting crystallite/domain size was interpreted as a crystal made up from all the crystals
in the sample and the projected area equal to the sum of projected areas of each crystal. It
was also pointed that (L), will in general not be equal to the average crystallite dimension,
(D) of the ensemble of crystallites.

Smith (1972) interpreted the area-averaged size in terms of the average-surface area of
a catalyst. It was proposed that x-ray profile analysis could be used in determining the
total surface-area of the catalyst. Smith (1972) pointed out that (L), was more appropriate
since it defined an area-averaged size, while (L), represented a volume-weighted size. The

area-averaged size was expressed as

(L)y = /LdS//dS

= V(0)/Apn (1.23)

where L is the dimension normal to the reflecting plane; dS is the projected area of the
crystallite onto the (hkl)-plane; V(0) is the volume of the crystallite and Apg; is the total
area of the crystallite projected onto the (hkl)-plane. This can be related to the surface-area

of the of the crystallite, § in terms of the mass, m, and density, o of the catalyst, as

S =4m/(¢(L)a) (1.24)

where S is the average surface area of the crystallite. This model assumes that the catalyst
has a uniform shape (i.e. spherical). Hence using x-ray diffraction profile analysis the average
crystallite size can be determined and used to determine the average surface area.

Smith (1976) also demonstrated the relationship between p,(L), which behaves as an
“apparent-size” distribution, and the true size distribution, P(D), for a given dimension of
the crystallite. In the particular case that the fraction of spherical crystallites, P(D) with a
diameter between D and D + dD is mapped into the distribution of columns, p,(L) is given
as

pa(L) = / " G(L, D) P(D)dD (1.25)

Do(L)

where G(L, D) is the shape kernel defining how the distribution of crystallite diameters
(or more general dimension) is mapped into the column-length distribution, p,(L); Dy (L)

is the least value of D and is dependent on L. For a sphere, Dy = L for all (hkl)-planes.
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Smith (1976), showed that in general (L), # (D) because G(L, D) smears the particle
diameter, P(D). This is the same result Wilson (1968, 1971) showed. The shape kernel can
be determined from the second derivative of the volume of the crystallite. For a spherical
crystallite, G(L, D) = 5L, constant for all D and L € [0, Ly,,]. Smith (1976) demonstrated
that a similar relationship can be determined for other shapes such as cubes and tetrahedra.
Moreover, Smith (1976) pointed out that the column-length distribution is representative
of the crystallite because of the mapping relationship given in (1.25) and that p,(L) does
not correspond to the distribution of crystallites determined from direct methods, such as
electron microscopy. LeBail & Louér (1978) showed that a size-broadened profile can be

expressed as

0o . 92
sin” 7(s — sg)an
f(s—s0) = E : in? (s — so)a Pa(n) (1.26)
n—0 S ™ 0
where (s — so) = 280 _ g*: ¢ is the step-size in the Fourier space and is given by a =
)

(25in02 _ 2si/r\101)

3 ~! for the profile over the region of [26;, 26]; n is the harmonic-order of the

Fourier order. The distance perpendicular to the diffraction planes is given by L = an; that
is, the size-broadened profile can be considered as a set of columns of length L diffracting

independently to each other. The size-profile corresponds to the weighted sum of intensities

sin® 7(s—so)an

Sn? n(5—s0)a in (1.26) is the scattering kernel from a column-length

from each column. The
amn; as n — 0o, the crystallites are infinitely large and the specimen profile becomes a delta

function as described above.

Strain-Fourier coefficients

Warren & Averbach (1950, 1952) and Eastabrook & Wilson (1952) expressed the strain
coefficients in (1.14) in terms of the strain distribution, p(ez), parallel to the diffraction

vector as

AL, d*") = (cos2mLerd") (1.27)
+o00
= / p(er) cos2mLerd” dey, (1.28)

where (cos 2w Le;,d*) represents the average quantity. The strain coefficients, (1.27 & 1.28)
can be interpreted in terms of the average value of the complex structure factors, FF™,

where F™* is the complex (imaginary) conjugate of F' (Stokes & Wilson 19444, Eastabrook &
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Wilson 1952). The distribution, p(ey,), is dependent on a physical model of strain fields. It
attributes a probability distribution to the strain averaged over the distance L perpendicular
to the diffraction planes. If there were dislocations in the specimen, €7, and p(er) would be
dependent on the ensemble of dislocations and the strain field due to their presence at
distance L. For the case of inhomogeneous strain, p(e) will have a zero mean and the
rms-strain will be non-zero. (The case where p(e;) has a non-zero mean corresponds to
homogeneous strain.) The shape of p(er,) will also influence the shape of the diffraction

profile.

Some observation about A(L, d*), ¢;, and p(e;)

It is interesting to notice that (1.27) is a cosine-Fourier transform of the strain distribution,
p(€r), and in principle p(er,) can be determined from the data. However, there are several
difficulties with taking the inverse cosine-Fourier transform of (1.27) which will be discussed
in the next section (§1.4) and in greater detail in Chapter 5. McKeehan & Warren (1953)
and Warren (1959) made this observation and discuss the validity of applying the inverse
cosine-Fourier transform to (1.27). Eastabrook & Wilson (1952) looked at a number of
cases in which the maximum information concerning the size and strain distribution can be
extracted from the specimen profile. They pointed out that the strain Fourier coefficients

could be expressed in a general form as
A(L, d*) = exp [=|L| f(d")] (1.29)

where L € (—o0, 0c0) and f(d*) is a function describing the displacements. Eastabrook
& Wilson (1952) showed that depending on the form of §(d*), A(L, d*) could represent the
Fourier coefficients of many possible functions, including Gaussian and Lorentzian functions.
Williamson & Hall (1953), Williamson & Smallman (1954) and Williamson & Smallman
(1956) investigated the influence of the strain distribution on the shape of the specimen
profile for cold-worked metals. In these contributions it was proposed that dislocations were
the source of both size and strain broadening. That is, if the dislocations were arranged

in a particular structure which consisted of regions of low-dislocation densities and regions
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of high-dislocations densities this would produce incoherent scattering domains* and (L),
corresponds to the mean dimension of the domain parallel to the diffraction vector. It was
also suggested by these workers that the strain distribution could be characterized by a
Lorentzian distribution. The difficulty with this is that the rms-strain, (¢2)2, is not finite,
so a “tunable parameter” was often introduced to produce a finite rms-strain (Williamson
& Smallman 1954, Warren 1959, Takahashi 1969). van Berkum (1994) pointed out that if
the strain-distribution is describe by a Pearson-VII function (see Appendix A), then (¢2)2
is finite for the exponent, m > % In this region the Pearson-VII function describes an
intermediate-Lorentzian. Williamson & Smallman (1956) discussed the influence the shape
of the specimen profile has in determining the dislocation density. A range of dislocation
densities were determined with the Gaussian and Lorentzian functions defining the two
extremes.

Using (1.27) the statistical nature of the strain broadening can be taken into consider-
ation. That is, quantities such as A(L, d*), 1, and p(er) describe the “macroscopic state”
of the specimen and each term is dependent on the ensemble dislocations. On the other
hand, describing the Fourier coefficients and strain broadening by (1.27), €1 and p(er)
provide a phenomenological description of strain broadening (Krivoglaz 1995). That is,
it does not account for the “microscopic state” of the specimen or for the underlying mecha-
nisms which result in profile broadening or quantify the type of dislocations, their densities
and mean spacing. This was realised by a number of contributors (e.g. Ryaboshapka &
Tikhonov 1961a, Ryaboshapka & Tikhonov 19615, Krivoglaz & Ryaboshapka 1963, Krivoglaz
1995, Wilkens 1970¢, Wilkens 19705, Wilkens 1970a, Wilkens 1987, Groma et al. 1988, Ungar
et al. 1989, Klimanek & Kuzel 1988, Kuzel & Klimanek 1988, Vermeulen et al. 1995, Wu,
Gray & Kisi 1998, Wu, Kisi & Gray 1998, Ungar & Borbély 1996, Ungdr, Ott, Sanders,
Borbély & Weertman 1998, Ungar, Révész & Borbély 1998). These various contributions
have common features: for example, the dislocations are assumed to be randomly distributed

throughout the specimen, and the contrast (or orientation) factors for various isotropic and

anisotropic materials need to be included into the models as well as the Burgers vectors

4Warren (1959) and van Berkum et al. (1996) discuss incoherent scattering domains; essentially the phase
of the scattered wave changes randomly between 0 and 27 from one domain to the next. Another term is

uncorrelated scattering (Cohen 1966).
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and slip system of the dislocations. However, the statistical nature of describing diffraction
from a polycrystalline material, together with the mathematical difficulties of introducing
dislocation theory to describe the profile broadening often results in limiting cases, such as
randomly distributed dislocations, being considered (for example see Krivoglaz 1995).

van Berkum et al. (1996) has developed a model in which the Fourier coefficients of
the specimen profile are defined in terms of periodically spaced low- & high- regions of
dislocations, the mean dimension between the dislocations, width of high-dislocation regions
and rms-strain. van Berkum et al. (1996) showed that if the relative width of the strain
field (or dislocations), w,, is infinitely broad, the Fourier coefficients and the resulting strain
coefficients in (1.27) are for a Gaussian function. On the other hand, if the w, — 0 then
(1.27) is independent of the order of diffraction, the resulting broadening being interpreted
as size broadening. Hence, for intermediate values of w, both size and strain broadening
would occur irrespective of the functional form of p(ez).

The Fourier coefficients and rms-strain can describe strain broadening in terms of dis-
locations and their properties (Wilkens 1970¢). The strain Fourier coefficients are given

as

A(L, d*) = (exp 2miLd*er) (1.30)

where €7, denotes the strain averaged over L parallel to the diffraction vector and can be

expressed as

1 —|—L/2
€, = — / 60(1‘ + Seo) ds (131)
LJ_ 1

where r is the position vector and ey a unit vector parallel to d*. In (1.31), €y about the core
of the dislocation is being smeared as it is averaged over different lengths L. In the limit
L — oo, then ¢, — 0 decreasing monotonically; for L — 0 the e, — ¢,. If (1.27) or (1.30)

are expanded as a power series we have (Wilkens 1970¢)
1 1
AL, d)=1- 5(27rd*L)2 (2) + E(?wd*L)‘* (€1) 4+ -+ (1.32)

where (e2), (€7) etc. are the even strain moments. These terms can be related to the
dislocation density, p, the orientation factor, C' and Burgers vector b; in the case of (€2) this

would be given by (Wilkens 1970c¢)
(e2) = (b/2m)*m pCf(Lsinty/R,) (1.33)
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where f(Lsinty/R,) is a function of the effective outer cut-off radius, over the distance L
in the xy plane. The orientation factor will depend on the elastic nature of the material
and lattice system. The (e2) in (1.31) is the same quantity determined by Ryaboshapka
& Tikhonov (1961a, 1961b), Krivoglaz & Ryaboshapka (1963) and by van Berkum et al.
(1996). This approach also enables the above quantities to be compared with transmission
electron microscopy (TEM) results. For example Ungar & Borbély (1996), Ungér, Ott,
Sanders, Borbély & Weertman (1998), and Ungar, Révész & Borbély (1998) have obtained
very good agreements for the dislocation densities between TEM and x-ray analysis (also see
Mughrabi 1983, Mughrabi et al. 1986, Ungar et al. 1982, Ungér et al. 1986, Ungar 1994).
In this section the integral and Fourier representations of the line-profile have been re-
viewed. These representations have been defined in terms of the “size” and “strain” con-
tribution and the underlying physical quantities have been discussed. The central difficulty
which is encountered in analysing broadened diffraction profiles is determining the unknown
quantities in experimental conditions. This is especially challenging if both size and strain

broadening are present. In the next section dominant and most recent methods for analysing

broadened profiles are discussed and reviewed.

1.4 Analysing broadened diffraction profiles

The integral breadth and Fourier descriptions of crystallite size and strain broadening gave
rise to two dominant methods for analysing the broadened specimen profile, the Williamson
& Hall (1953) and Warren & Averbach (1950, 1952) methods, respectively. The application,
procedure and interpretation of these methods will now be discussed, together with recent
methods that define profile broadening in terms of the microscopic properties of the specimen.
However, before any size/strain analysis can be undertaken the instrumental broadening

must be removed; various methods for doing this will be outlined.
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1.4.1 Determining the specimen profile
The observed profile

The observed profile, g, recorded at the output of a diffractometer can be expressed as the
convolution of the specimen profile, f and instrument profile, k£, superimposed onto a (slowly

varying) background level, b, and statistical noise, n as
9(20) = / k(20 — 20) £(26') d(20') + b(20) + n(20). (1.34)

In (1.34) the specimen profile is being mapped from the 26'-space into 26-space via the
instrument profile which characterises the finite response of the diffractometer to the ra-
diation source and is a function of the non-ideal optics, and equatorial, axial aberrations
(see Wilson 1963, Klug & Alexander 1974). The background level, b, can be made up of
various components such as air and thermal diffuse scattering, fluorescenes of the specimen,
amorphous content, the substrate and even the specimen holder. The noise is essentially
errors in the counting and follows Poisson statistics; for large counts (2 10) the noise can
be approximated by Gaussian statistics (Sivia 1996).

The first problem faced in profile analysis is determining a suitable instrument profile.
There are two dominant approaches for determining the instrument profile: the fundamental
approach which defines & as the convolution of aberration functions (for example see Klug &
Alexander 1974, Cheary & Coelho 1992, Kogan & Kupriyanov 1992, Cheary & Coelho 1998a,
Cheary & Coelho 1998b); and the experimental approach which uses a reference material
that has negligible imperfections (for example see Fawcett et al. 1988, Louér & Langford
1988, Rasberry 1989, Scardi et al. 1994). For example, in their fundamental parameters
approach, Cheary & Coelho (1992) defined the instrument profile in terms of the Cu K«

emission profile and instrumental aberration functions as
k=Lxky xky*ksx---xk, (1.35)

where L = L(26) is the emission profile from Cu K« radiation and k; = k;(20) where i =
1,2,3,..., n. The Cu K« radiation consists of a number of K« components which include
the Ka; and Kay components and a number of satellite lines. Seven instrumental aberration

functions were considered by Cheary & Coelho (1992), which included the receiving-slit
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width, slit-length, flat-specimen and absorption functions. The instrument profile in (1.35)
was fitted with the observed profile and the parameters defining k; were adjusted until the
difference between the calculations and observations were minimised. This approach can
also include a specimen profile refined on a particular size and strain model.

In the case of an experimental approach, a reference material is used to characterise the
instrumental broadening. The reference material is chosen to have large crystallites and
negligible lattice distortions so that broadening in the line-profile consists of the non-ideal
optics of the diffractometer. As an example, reference materials used in determining the
instrument profile consist of LaBg (NIST SRM 676) (Fawcett et al. 1988), annealed-BaF,
(Louér & Langford 1988) and KCI (Scardi et al. 1994). Systematic errors can be introduced
into the specimen profile if the structural imperfections in the reference material are not min-
imized. For example NIST SRM 676 has recently been shown to contain lattice distortions
(see Cheary & Coelho 1998b); hence, the instrument profile consists not only of instrumental
broadening from the diffractometer but also specimen broadening of the reference material.
In deconvolving out the instrumental broadening, it may be over-compensated by the de-
convolution method. (This problem is discussed in Chapters 4 & 6.) Furthermore, if there
is differential absorption between the reference material and the specimen, the absorption
must be corrected in order to eliminate systematic errors in the specimen profile.

Once the diffraction pattern of the reference material is recorded it can be fitted with
a suitable analytical profile and the parameters that defined it as a function of angular
position, 26. For example, Scardi et al. (1994) defined the instrument profile as a pseudo-
Voigt function (see Appendix A) and the after fitting it to the KCI line-profiles a set of
calibration graphs of the full-width at half maximum (FWHM) and mixing parameters, 7,
were determined as a function of 26. This enabled the instrument profile to be defined at
the angular position of the observed profile for the specimen. Usually, the FWHM is fitted
using (see Cheary & Cline 1995)

FWHM? = Atan® 0 + Bcot? 0 + Ctan + D. (1.36)

Cheary & Cline (1995) have investigated the dependence of (1.36) (see equations (7) & (8),
p81 Cheary & Cline 1995), and the asymmetry on the divergence slit, receiving slit and the

number of Soller slits. This analysis can be used as a guide for suitable slits in optimizing
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the instrument profile. In addition to determining the specimen profile, it may be necessary
to correct for the effect of truncation of the specimen profile or to resolve overlapped profiles.
Various studies and methods exist (e.g. Mortier & Costenoble 1973, Rondot & Mignot 1977,
de Keijser & Mittemeijer 1980, Zocchi 1980, Delhez et al. 1982, Delhez et al. 1986, Sonneveld
et al. 1991, Vermeulen et al. 1991, Vermeulen et al. 1992). Delhez et al. (1982) provide a
detailed procedure for the various corrections and suggest that in the case of background
estimation that the observed profile be plotted on a logarithm scale. This has the advantage

that any distortions in the profile can be highlighted.

Deconvolution methods

The problem of determining the specimen profile from (1.34) involves a deconvolution. A
detailed mathematical analysis and simulations of the various deconvolution methods used
in profile analysis are discussed in Chapter 2. However, it is worth making some observations
about the methods. The problem of removing the instrumental broadening was first realised
by Stokes (1948) who applied the Fourier transform to the convolution product in (1.34)
(the background level and noise were not considered) and expressed the Fourier transform
of the observed profiles as a product of the transforms of the specimen and instrument
profiles. Today this method can be applied rapidly by using digital computers and fast
Fourier transform algorithms, reducing the number of operation to ~ N log, N, as opposed
to ~ N? operations for a discrete Fourier transform (see Arfken & Weber 1996, Vesely
1994). However, this method is very sensitive to noise and usually results in ill-conditioning
of the solution (Kalceff et al. 1995). Other common deconvolution methods, such as the
iterative deconvolution (Ergun 1968) and constrained deconvolution methods (Louér et al.
1969, Louér & Weigel 1969, Louboutin & Louér 1972) used in profile analysis also suffer
similar problems (see Chapter 2). Moreover, these methods do not preserve the positivity
of the specimen profile. This aspect is important since the specimen profile represents an
intensity distribution.

A direct convolution approach has been developed to overcome these difficulties (e.g.
Howard & Snyder 1989, Cheary & Coelho 1992). The direct convolution approach assumes

an analytical profile function for the specimen profile; the convolution product between
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the instrument and specimen profile is refined, by updating the parameters that define the
specimen profile, until the error between the calculate and observed data is minimised. This
method is basically a means to an end; that is, it does not ensure that the specimen profile
is unique since many different functions can be chosen to fit the data. Moreover, there is
often no physical basis for choosing a particular profile function, except that it results in
a minimised error. However, since the profile functions are positive definite it ensures that

this aspect is preserved.

1.4.2 Williamson-Hall method

Separating size & strain — Integral breadth approach

Williamson & Hall (1953) proposed that the size and strain contribution from a broadened
line profile can be resolved if the the total integral breadth for a Lorentzian (or Cauchy)
shaped profile is the sum of the size integral breadth, §°, and strain (or distortion) integral

breadth, 3¢. Using (1.4) and (1.12) for a Lorentzian profile, we have
B(d) = B + B (137)

If the line profile is Gaussian, it can be shown that the square of the total integral breadth

is equal to the sum of squares for the size and strain integral breadths
BQ(d*) — BSQ + ,BdQ(d*) (138)

where 3, 5% and 3% are in reciprocal-space units.

Equations (1.37) and (1.38) simply define the total breadth in terms of the size and
strain integral breadths, (1.4) and (1.12), respectively. Both (1.37) and (1.38) have order-
independent and order-dependent terms that are needed to describe the size and strain
broadening. However, the Williamson & Hall (1953) method assumes a functional form of
the profile, either Lorentzian or Gaussian. These cases are seen as defining two extremes
which can be quantified by the shape parameter ¢ = FWHM /S (Langford 1992). For the
Lorentzian and Gaussian limits, ¢, is defined by 0.6366 < ¢ < 0.9394 (Langford 1992).

Considering the Lorentzian case, (1.37), and using the results (1.4) and (1.12), the inter-

cept can be related to the volume-weighted size, (L), and the slope is proportional to the
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apparent strain, 7,
1

(L)
The Williamson & Hall (1953) method provides a qualitative understanding of the specimen

Bd) = + gd* (1.39)

broadening, which includes determining the dominant source of specimen broadening, and
whether the specimen broadening is isotropic or anisotropic in hkl (e.g. Langford 1980,
Delhez et al. 1982, de Keijser et al. 1982, Louér et al. 1983, Langford et al. 1988, Howard &
Snyder 1989, de Keijser et al. 1983, Langford 1992, Langford et al. 1993, Louér 1994). The
most notable contributions include Langford (1992) and Langford et al. (1993), where the
Williamson & Hall (1953) method was applied qualitatively and quantitatively. Langford
(1992) reviewed the application of the Williamson & Hall (1953) method to various samples
including tungsten filing and ZnO powder. A positive slope and zero intercept in (1.39)
implies that strain broadening is dominant and crystallite size is large. On the other hand, if
the slope is zero and has a positive intercept, the specimen broadening is dominated by size
broadening. In the case of anisotropic size or strain anisotropy, multiple orders of hkl indices
are used to determine the relevant quantities. For example Langford (1992) demonstrated
that for ex-hydroxide nitrate ZnO (see “sample B”, Figure 3(d)), the 8 for the h00 and
00/ had a non-zero slope and different values, indicating the presence of anisotropic strain
broadening for those indices. Moreover, it was shown that the crystallites had a prismatic
shape since the intercept of the 00/ was less than the intercept of the A0O lines.

The Williamson & Hall (1953) method can only be applied quantitatively if a suitable
physical model for the strain and size broadening is adopted. In the case of size broadening it
generally requires the common-volume function, V(L), to be related to the integral breadth
using (1.6) and its overall dimensions can be determined. However, this assumes that the
powder consists dominantly of particular shaped crystallites and the crystallite distribution
is narrow (see Langford 1992, Langford et al. 1993). Langford et al. (1993) showed that
for ex-oxalate ZnO powders a spherical model with average diameter, (D) = 453 A was
applicable; for another ZnO powder specimen a cylindrical model, with a diameter, (D) =
404 A and height (H) = 404 A was also applicable. In the case of strain broadening, the
apparent strain 7 is related to the rms-strain by using (1.13), which defines an order of

magnitude for the rms-strain. Langford (1992) used (1.13) and (1.38) on tungsten filings
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to determine (L), = 670 A and (¢2)z = 2.98 x 1073 and a spherical crystallite model was
determined resulting in (D) = 860 A. This was established by noticing that 8 was isotropic
in hkl. However, on applying (1.13), it is assumed the distortions are randomly distributed

throughout the crystallite.

Intermediate cases

The Williamson & Hall (1953) method given by (1.37) and (1.38) defines two extremes for
Lorentzian and Gaussian profiles, respectively. However, due to a mixture of historical and
empirical reasons, size-broadened profiles have been attributed to Lorentzian profiles, while
strain-broadened profiles were considered to be Gaussian (see Stokes & Wilson 19444, James
1948). Generally, this is not the case. In the case of size-broadening, (1.25) clearly indicated
that the combination of shape and crystallite size distribution will determine the shape of
the size profile. In the case of strain, it is the arrangement of dislocations that influences the
strain Fourier coefficients (see (1.32)) and in turn determines the strain profile. In (1.16),
the size/strain-broadened profile was represented as the convolution of “size” and “strain”
profiles. Defining the size profile as a Lorentzian and the strain profile by a Gaussian the
convolution product results in a Voigt function (e.g. Ruland 1965, Schoening 1965, Handler
& Wanger 1966, Ruland 1968, Langford 1978). Its integral breadth is given by (Langford &

Louér 1996)
_ Ba
b= exp(k?) [1 — erf(k)]
BL

where k£ = NI is the Voigt parameter which relates the Gaussian, Ss and the Lorentzian,

(1.40)

By, integral breadth and erf(k) is the error-integral (see Arfken & Weber 1996).

The Voigt function has been used successfully in integral breadth analysis since it so
readily quantifies the specimen broadening in terms of Lorentzian and Gaussian components
(e.g. Langford 1980, Langford et al. 1988, de Keijser et al. 1982, de Keijser et al. 1983,
Langford 1992, Langford et al. 1993, Louér 1994). It is also suited for rapid analysis (Langford
1978), making it ideal for a commerical environment. Langford (1992) gives a detailed
review of the Voigt function and its application in the Williamson & Hall (1953) method.
Wu, Gray & Kisi (1998) and Wu, Kisi & Gray (1998) have adapted the Voigt function

and Rietveld method to determining the dislocation densities and for studying plastically
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deformed isotropic materials.

The almost standard application of digital computers in size-strain and profile analysis
has seen the development of analytical functions which account for specimen and instru-
mental broadening. It has meant that rapid analysis can be applied to a diffraction profile®.
The application of profile functions ranges from single profile analysis to Rietveld and whole
pattern analysis (e.g. Rietveld 1969, Huang & Parrish 1977, Delhez et al. 1982, Benedetti
et al. 1988, Enzo et al. 1988, Fawcett et al. 1988, Langford et al. 1986, Howard & Snyder 1989,
Vogel 1990, Cheary & Coelho 1992, Scardi et al. 1994, Louér 1994, Cheary & Coelho 1996).
Langford & Louér (1996) have reviewed in detail the role of methods such as Rietveld anal-
ysis and line profile analysis in characterising the microscopic properties of polycrystalline
materials. Balzar & Popovié¢ (1996) have shown that systematic errors can arise in deter-
mining the crystallite/domain size when applied in Rietveld analysis. Recently Leoni &
Langford (1998) have posed the question of whether the Rietveld method and line profile
analysis can be combined. They suggests the physical information must be checked with

researchers’ intuition and the results from other methods.

Theoretical limitations

The Williamson & Hall (1953) method is essentially a semi-quantitative method. It is
dependent on assuming a functional form of the specimen profile and a model for the size
and strain broadening in order to ascertain the microscopic nature of line-broadening.

For example, its description of the strain is dependent on the model proposed by Stokes
& Wilson (1944a), which assumes the strain is randomly distributed in a crystallite. At best
this determines an order of magnitude of the strain. It does not determine the characteristics
or density for the dislocations which give rise to the strain broadening.

In terms of size analysis, no information concerning the size distribution can be deter-
mined from the Williamson & Hall (1953) method. The volume-averaged size, (L), is reliant
on the assumptions by Stokes & Wilson (1942), which are that the shape and size of the
crystallites are the same in the sample. Generally, it is likely that (L), will correspond to a

distribution.

5The common profile functions are described in Appendix A
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As a qualitative method for assessing the nature and type of specimen broadening, the
Williamson & Hall (1953) method is successful. That is, this qualitative method can be used
to build a model for the crystallite size broadening. In the case of strain, it can distinguish

between isotropic and anisotropic broadening.

1.4.3 Warren & Averbach method

Separating size & strain — Fourier approach

Building on the results (1.17) and (1.27 & 1.28), Warren & Averbach (1950, 1952) presented
a method for separating the size and strain contributions in the specimen profile. That
is, using the Stokes (1948) method for determining the instrumental profile, the real and
imaginary coefficients of the specimen profile can be determined. From (1.14 & 1.15), it was

observed that the real coefficients are the product of the strain and size coefficients given by
A(L, d*) = A*(L) A%(L, d*). (1.41)
Taking the natural logarithm of (1.41), we have
In A(L, d*) = In A*(L) + In A%(L, d*) (1.42)
and substituting (1.27) into the above result, we have
InA(L, d*) =In A*(L) + In(cos 2w Lerd"). (1.43)

On expanding the cosine term (cos 2mLerd*) ~ (1 — 2n?(e2) L?d*?) and taking the logarithm
of the expansion, In(1 — 27%(e2)L?d*?) ~ —2n?(e2)L?d*? where the result In(1 — z) & —z
for |x| < 1 has been applied. Substituting this result into (1.43), we have the Warren &

Averbach (1950, 1952) equation for separating size and strain broadening contributions as
In A(L, d*) = 1n A*(L) — 27*(e} ) L*d*? (1.44)

where (€2) is the mean-square strain for a given L, perpendicular to the (hkl) plane. The
graph of In A(L, d*) versus d*? for a given L will have an intercept of In A*(L) and a slope
equal to —27%(e2) L%, where (€2) can be determined from the slope. From In A%(L), the size

Fourier coefficients can be determined and the area-weighted size, (L), determined using
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(1.19). In principle p,(L) can also be determined. Originally the Warren & Averbach
(1950, 1952) method was applied to cold-worked metals (e.g. McKeehan & Warren 1953,
Warren 1959, Warren 1963), but it can also be applied to a wide range of polycrystalline

materials, including ceramic high-T, superconductors (Balzar et al. 1993).

Fourier analysis

In the same manner that the Williamson & Hall (1953) method can be used in qualitative
analysis, the Warren & Averbach (1950, 1952) method can be used to make a qualitative
analysis of the broadened profile. In the case of size broadening, this becomes important in
determining a suitable crystallite model (see below). For strain broadening, examination
of the Fourier coefficients will indicate either isotropic or anisotropic broadening. This
information combined with the Williamson & Hall (1953) method analysis can be used
to develop the best approach for a quantitative analysis. In the case of isotropic strain
broadening, the Fourier coefficients become narrower with increasing d*. For anisotropic
strain broadening no such monotonic relationship exists. In this case the analysis is limited
to multiple orders. It also illustrates the limitations of the Warren & Averbach (1950, 1952)
method in accounting for anisotropic strain broadening by not describing it in terms of a
microscopic picture.

Equation (1.44) will be linear for all L and d*?, only if the strain distribution, p(ez), is
a Gaussian. Otherwise, the accuracy of (1.44) will be limited for small L. (1.44) can be
compared to (1.32), where (1.44) consists only of the second term in the power series. This
limitation was noticed by a number of researchers who presented variations or modifications
to the original Warren & Averbach (1950, 1952) method (e.g. Pines & Surovtsev 1963,
Vogel et al. 1974, Delhez & Mittemeijer 1976, Mignot & Rondot 1977, Delhez et al. 1980,
Turunen et al. 1983, Schlosberg & Cohen 1983, Nandi et al. 1984, Hosemann et al. 1985,
van Berkum et al. 1993, van Berkum et al. 1994). Delhez & Mittemeijer (1976) proposed
a modification for separating the size and strain Fourier coefficients and claimed a 10%
improvement in determining the size coefficients and 30% in the (e?)-values. They also
observed that neglecting higher-order terms in the logarithm expansion introduced large

errors for (e2)-values, while for large values the error was less pronounced. This modification

31



differs in not applying the logarithm,
A(L, d*) = A*(L) — 2m*(2)L*d*? A5(L) (1.45)

where by plotting A(L, d*) versus d*?, the intercept is given by A*(L) and (€2) can be found
from the slope for a given L. van Berkum et al. (1993, 1994) investigated the region of validity
for the Warren & Averbach (1950, 1952) method and a modified method that assumed p(er,)
was independent of L (see equation(10), p347 van Berkum et al. 1994). The difference
between the Warren & Averbach (1950, 1952) and alternative method is that the former
method uses the Fourier coefficients of different profiles for a given L, while the latter uses
the coefficients for different L-values. It was shown that the Warren & Averbach (1950, 1952)
method was reliant on approximately Gaussian strain distributions, while the alternative
approach was dependent on small strain gradients and broad crystallite-size distributions.

A number of contributors have proposed that (€2) is inversely proportional to L for cold-
worked metals (see Rothman & Cohen 1971, Schlosberg & Cohen 1983, Adler & Houska
1979), expressed as

(1) = 02(#[) (1.46)

where G2(hkl) is a constant of proportionality and is in general dependent on hkl. (Also also
note that G2(hkl) has units of length.). For cold worked metals G? ~ 10~* nm (Schlosberg
& Cohen 1983, Nunzio et al. 1995). Taking the square-root of (1.46), (¢2)2 o« L™2. Adler &
Houska (1979) showed that for cold-worked metals, the exponent was in the range of -0.380
to -0.610 and had an average value of -0.463 (also see the appendix, pp3286-3287 Adler &
Houska 1979). van Berkum et al. (1994) pointed out that (1.46) corresponds to very large
L, where the local strain consists of an ensemble of independent contributions.

In general there will be a direct correlation between the Fourier coefficients, (1.27) and

the microscopic properties which give arise to models like (1.46) for specific ranges of L.

Crystallite models in Fourier analysis

The Fourier methods can be used, in a similar way to the Williamson & Hall (1953) method,
to develop a qualitative understanding of specimen broadening. In the case of size broadening

Louér et al. (1983) determined the Fourier coefficients of ZnO specimen profiles which showed
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that size broadening was dominant and anisotropic in hkl. This confirmed the Williamson &
Hall (1953) method. Furthermore, comparing the h0l Fourier coefficients showed that (L),
increased with [ while the Fourier coefficients for 100 and 110 were isotropic. This suggested
that prismatic crystallites with a base which is isotropic in shape. Applying the analytical
results from Langford & Louér (1982), the common-volume function for a cylinder was used
to relate (L), to the dimensions of the cylinder. Louér et al. (1983) showed for the ZnO data
the diameters and heights to be 154 A and 213A, respectively. Vargas et al. (1983) refined
the results by applying a hexagonal prism model and calculated the sides to be of length
87 A and height 213 A. From Vargas et al. (1983), the average diameter of the hexagons
(from face to face) is 151 A, which is in very close agreement with the cylindrical model.
Vogel (1990) applied an analytical model derived for spherical crystallites to catalysts
by expressing the Fourier coefficients in terms of a Hermite polynomial. Using this model,
Vogel (1990) determined the crystallites distribution from (1.20). Rao & Houska (1986) used
spherical crystallites and determined the column-length distribution assuming a log-normal

diameter distribution.

Determining the column-length distribution, p,(L)

Bienenstock (1961, 1963) considered the case of crystallite size broadening and related the
Fourier coefficients of the specimen profile in terms of the column-length distribution, p, (L),
via a finite difference equation as,

Ay — 245+ A5
Ao — 4

pa(n) = (1.47)

where is n is the Fourier harmonic-order and p,(n) is the column-length distribution ex-
pressed in terms of n. The difficulty with (1.47) is that it does not preserve the positivity
of the distribution, resulting in ill-conditioning due to systematic and random errors in the
Fourier coefficients. Essentially, (1.47) is a numerical method for determining the second
derivative given in (1.20).

Young et al. (1967) used (1.47) to examine the effect of background over estimation
on the Fourier method and p,(L). In this classic work, they showed that (L), and p,(L)
were sensitive to truncation and background estimation. It was shown that 0.5% truncation

caused a 5% error in (L),, while a 20% truncation caused a 160% error in (L),. That is, for
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increasing truncation and background estimation, a “hook-effect” in the Fourier coefficients
was produced. This causes an over-estimation of the (L),. The effect this had on the
pa(L) was to produce negative values, particular for p,(0). As the truncation or background
estimation was increased the negativity in p,(0) also increased. Moreover, it is noticeable
that p,(L) is shifted towards large L (see Figure 7, p159 Young et al. 1967). The reason for
this is that the extended tails in a size-broadened profile characterises crystallite small, while
the larger crystallite contribute to the main peak region of the profile. As the truncation or
background estimation is increased, information concerning the smaller crystallites is being
removed and the remaining information is related to large crystallites. The results for p,(L)
are biased towards large L since the underlying information for the larger crystallites has
not been affected by the truncation or background estimation.

Once p,(L) is known, it can be related to the volume-weighted distribution, p,(L), by
(1.22). Like their respective size quantities , p,(L) and p,(L) are apparent size distributions,
given in (1.25). That is, the distribution of columns for a single crystallite of a particular
shape is “smeared” over the distributions of crystallites.

Developments towards formal and alternative methods in determining the column-length
distribution were proposed by de Bergevin & Germi (1972), Pausescu et al. (1974) and
Popescu & Benes (1977). These contributions have a number of common threads. The
proposed method stems from the following observations
d?A(L)

dL?

d*V (L)
dL?

x / Oo(s —50)? f(s — s0) exp[2me(s — s0) L] (1.48)

o

Pa(L)

where (1.48) is the second derivative of Fourier transform®. The difficulties encountered

with this approach were that the presence of truncation, incorrect background estimation
and noise produced spurious oscillations in the solution size-distribution. Various ad hoc
approaches to removing the oscillations were applied, such as removing negative oscillations
and deconvolving out the sinz/x terms which arise from truncation. These efforts were just

treating the symptoms rather attempting to solve the underlying inverse problem.

8Given 4 F{f(z)} = 2™ F{f(x)} (also see Arfken & Weber 1996)

dzn
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The contribution by LeBail & Louér (1978) is significant because it treats the problem
of determining the column-length distributions, p,(L), as an inverse problem. Using (1.26),
LeBail & Louér (1978) realised that (1.26) can be expressed in terms of a matrix-vector
product as

f= Kpa (149)

where f is the specimen profile expressed as an [N x 1] vector; K is the scattering kernel
expressed in terms of an [N x M| matrix, where M < N; and p, is the column-length
distribution expressed as an [M x 1] vector. The temptation is to express the column-length
distribution as p, = (K7K) 'KTf. However it was realised by LeBail & Louér (1978) that
this produces an ill-conditioned solution.

Transforming the size-broadened profile into (1.49) enabled a regularisation inversion/deconvolution
method, applied by Louér et al. (1969), Louér & Weigel (1969) and Louboutin & Louér
(1972) in removing the instrumental broadening, to determine the unknown p,. This in-
volved maximizing the regularisation function, pI Hp, with respect to the misfitting function
(f — Kp,)? (f — Kp,) (Regularisation/deconvolution methods will be discussed in detail in
Chapter 2.) It should be noted that the solution to the inverse problem proposed by LeBail
& Louér (1978), in general, does not preserved the positivity of p,(L). This is important
because any subsequent calculations assume that p, (L) is positive definite and any negative
values or truncation of p,(L) to eliminate the negative values may corrupt the final results.

LeBail & Louér (1978) applied regularisation/deconvolution methods successfully in de-
termining the column-length distribution for Ni(OH), crystallites and obtained good agree-
ment between the area-averaged column-length size for it and the Fourier method (see
Table 3, pb4 LeBail & Louér 1978). It is interesting to point out that the regulariza-
tion inverse/deconvolution method (Louér et al. 1969, Louér & Weigel 1969, Louboutin &
Louér 1972) was also applied to removing instrumental broadening, suggesting a “two-fold”
approach to determining the size-broadened specimen profile and the corresponding crys-
tallite size. Louér et al. (1983) applied the inversion/deconvolution method to determining
the column-length distributions for ZnO crystallites and showed that the column-length dis-
tributions in the xy-plane of the ZnO were isotropic, confirming the results from integral

breadth and Fourier analyses that the crystallites had an isotropic base.
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Guérin et al. (1986) applied a statistical inference method to determine the column—length
distribution. This approach is an application of the maximum entropy method developed by
Jaynes (1957). The same approach was applied by Frieden (1972) in deconvolving blurred

spectra. For discrete data the specimen profile was expressed as

M
fi= ZKijpaj (1.50)
7=1
fori=1,2,..., M and
Paj = €XP (g €Xp [— ZakKjk] (1.51)
k
where {ay; k =1,2,..., M} are a set of unknown Lagrangian parameters. Effectively, there

are M + 1 nonlinear equations with M + 1 unknowns (which includes ). Usually numerical
methods such as the Newton-Raphson algorithm are applied in similar problems (Burden &
Faires 1993). However, Frieden (1972) reported that good estimates of the initial values of
{ax} are needed for the Newton-Raphson algorithm to converge onto the correct solution.
Once the {oy} are know then {p,;;j =1,2,..., M} can be determined from (1.51). Deter-
mining the full set of Lagrangian parameters {cay} is important in ensuring the uniqueness
of the solution and a global maximum. The presence of statistical noise in the data further
complicates the problem.

However, Guérin et al. (1986) claimed that only three Lagrangian parameters are needed
to determine the column-length distribution. Given the above discussion, in general, it seems
doubtful that the solutions proposed by Guérin et al. (1986) would represent the underlying
physical phenomena. Bonetto et al. (1993) developed a computer program, which determined
the set of Lagrangian parameters. Although Guérin et al. (1986) employed the basic results
of the maximum entropy method, there was no attempt to include the a priori model,
apply the method to removing instrumental broadening and to incorporate the statistical
noise of the experimental data. Lutterotti & Scardi (1992) attempted to generalise Guérin
et al. (1986), by including an analytical expressions for the strain. However, this assumes a
particular analytical strain model.

Nunzio et al. (1995) has proposed a Monte-Carlo method for determining the column-
length distribution and the (eL)%—distribution from the broadened x-ray diffraction profile.

Their approach essentially determines a frequency distribution, W(L;,€;), which includes
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both the strain and size information. By determining the frequency distribution W (L, ¢;),
the column-length distribution, volume-averaged size, (L), and rms-strain (¢2)z can be
determined (see equations (6-9), p148 Nunzio et al. 1995). The difficulties encountered by
Nunzio et al. (1995) were that the Monte Carlo method can produce a number of possible
solutions, rather than a unique solution. In order to overcome this, W (L;, ¢;) was determined

which maximizes the size distribution.

Determining the strain distribution, p(e;)

In comparison to the problem of determining the column-length distribution, determining the
strain distribution has received very little attention. Although they are both inverse prob-
lems, determining the strain distribution is very challenging. McKeehan & Warren (1953)
applied the Warren & Averbach (1950, 1952) method to cold-worked tungsten. The size
strain Fourier coefficients were determined. In this case tungsten is an elastically isotropic
material, hence strain broadening will also be isotropic (Ryaboshapka & Tikhonov 1961a).
McKeehan & Warren (1953) noticed that (1.28) was a cosine Fourier transform and the

inverse will result in p(er), for a given L
p(er) = 2L / dd* AY(L, d*) cos 2m Led". (1.52)
0

The strain distributions were determined for L = 125, 150, 175, 200 A and were argued to
be Gaussian in shape; however, some truncation in the tails of the result is noticeable (see
Figure 5, p55 McKeehan & Warren 1953). Using the strain distribution the (2)z-values
were compared with the values determined from (1.44) and were in agreement with each
other. The difficulty of determining p(ez) from A®*(L, d*) is the insufficient information.
That is, in a diffraction pattern a limited number of line-profiles can be extracted and for a
given L the A*(L, d*) must be interpolated as a function of d*. This is especially the case for
high-symmetry lattice systems. In other words, inverse cosine Fourier transform in (1.52)
assumes that the information for A*(L, d*) is complete for all L and d*; however, in dealing
with experimental data this not the case.

Another difficulty that is faced with trying to determine p(e;) is that it is reliant on
isotropic strain broadening. In the case of anisotropic strain broadening, at best three or-

ders of diffraction from a conventional diffractometer can be recorded and there is insufficient
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data to determine p(er,). Eastabrook & Wilson (1952) outline what information could be
developed concerning p(er). Warren (1959) also noted the difficultly in determining p(er,).
Harrison (1966, 1967) and Ungér (1967) determined p(er) using a method of moments of the
line-profile. Essentially, the strain moments were determined from the strain coefficients and
used to determine the coefficients for Hermite polynomial together with a suitable weight
function that represented the strain distribution. Harrison (1966) reported that this ap-
proach needed at least three reflections. Ungar (1967) observed that the crystallite size
information could also be determined using this approach. It also should be noted that very
little work has been done is correlating the strain distribution with the type, density and

arrangement of dislocations (see Krivoglaz 1995).

1.4.4 Recent developments

Recent developments in the crystallite and strain analysis has seen the rise of two methods
for analysing broadened profiles. Generally, these include the work of van Berkum et al.
(1996) and Ungar & Borbély (1996), Ungar, Ott, Sanders, Borbély & Weertman (1998,
1998). These recent development had their origins in the work by Ryaboshapka & Tikhonov
(1961a, 1961b), Wilkens (1970c¢, 19705, 1970a, 1987), Groma et al. (1988), Ungar et al.
(1989), Krivoglaz (1995), Delhez & Mittemeijer (1976) and van Berkum (1994). However,
they represent a clear alternative to the tradational Williamson & Hall (1953) and Warren
& Averbach (1950, 1952) method by correlating the integral breadth and Fourier methods

to the microscopic picture that gives rise to line-profile broadening.

van Berkum method

van Berkum (1994) based his approach on the kinematic Fourier representation of size and
strain broadening given in §1.3.2, but proposed to relate the strain broadening to a “distor-
tion field” projected onto the x-axis in the direction of the diffraction vector. The distortions
were assumed to be spaced by a distance D; projected onto the axis, with an average spacing
of (D). The distortions were averaged over the region by

z+L/2
Z(z) = / (') dz’ (1.53)

—L)2

38



where €(z) is the strain projeced onto the x-axis. The proposed model relates the Fourier
coefficients for a periodically distributed set of distortions. The distortions included screw
dislocations and assumed that the specimen was elastically isotropic. The formulation is
general in that different dislocations could be included. This resulted in the Fourier coeffi-
cients for this model was expressed in terms of the (¢?) and the dimensionless parameters:
L, = L/(D), the relative distance parallel to the diffraction vector; w, = w/(D), the relative
width of the disortions (see equation (7), p733 van Berkum 1994). The integral breadths were
determined using (1.21). As pointed out in §1.3.2, the relative width, w,, was used to define
the region of validity for the method. That is, depending on the value of w,, Gaussian and
non-Gaussian strain broadening, as well as domain broadening, had been taken into consid-
eration. The method proposed by van Berkum (1994) involved fitting the Fourier coefficients
and integral breadths to the relevant experimental data and refining on the unknown pa-
rameters. The van Berkum (1994) model was applied to ball-milled tungsten which showed
isotropic broadening and using all the avaliable line profiles, the mean spacing of the distor-
tion was determined to be (D) = 21 nm; the relative width of the distortions as w, = 0.115;
and <62>% = 6.8 x 107 3. Using the value for w,, a prediction was made of the values the
Williamson & Hall (1953) and Warren & Averbach (1950, 1952) methods would yield. The
Williamson & Hall (1953) method predicted (D) = 33nm, (€2)2 = 2.2 x 1073, compared
to the experimental values of 62nm and 2.5 x 1073, respectively. The difference between
the calculated and experimental (D) was explained by the assumption of spatial periodicity
for the distortions in the new method. When applied to predicting the expected Warren &
Averbach (1950, 1952) results, the new method gave (D) = 18 nm and (€2)z = 1.6 x 1073
identical to the experimental. In this case the method proposed by van Berkum (1994) was
successful in yielding physically meaningful results as to the spacing, width and rms-strain
of the distortions; it also predicted how the traditional method would preform.

The difficulty with this appraoch is it assumed the strain broadening is isotropic. It was
suggested that in the case of anisotropic strain broadening multiple orders should be used.
However, in most cases the strain broadening is likely to be anisotropic, which suggests that

a microscopic description of the anisotropic broadening is lacking.
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Ungar method

The method developed by Ungér & Borbély (1996), Ungar, Ott, Sanders, Borbély & Weert-
man (1998) and Ungér, Révész & Borbély (1998) applied to randomly distributed dislocation
for isotropic and anisotropic materials. Building on the results of Groma et al. (1988) and

Ungar et al. (1989), the Fourier coefficients of the broadened profile are given as

In A(L, d¥) ~  InA*(L) — pBL?In(R,/L)(d**(C))
+ QB?L*In(R,/L)In(Ry/L)(d**(C))?
+O(L°) (1.54)

where p is the dislocation density; (C) is the average contrast factor; @ is related to the
two particle correlations in the dislocation ensemble; B = wb?/2 for the Burgers vector b;
and R., R,, R, are the effective cut-off radii of the dislocations and auxiliary parameters,
respectively. The expression for the integral breadth included the same terms (see equation
(8), p3694, Ungar, Révész & Borbély 1998). The critical term in (1.54) is the average contrast
factor, (C), which defines the elastic propertities of the material for a particular dislocation
and Burgers vector, b, in the direction of the diffraction vector (see equations (3)-(5), p3694,
Ungdr, Révész & Borbély 1998). Ungér & Borbély (1996) gave the (C')-values for copper (see
Table 1, p3173 Ungar & Borbély 1996). In the case of a specimen consisting of different types
of dislocations, (C') will be the weighted sum of the (C) from different types of dislocation,
where the weight is the relative population of the dislocation in the specimen. This enables
the type of dislocations in the specimen to be inferred from the fitting of the experimental
data. For isotropic material the dependency on (C) is weak, while for anisotropic material
the dependency is strong.

By plotting In A(L, d*) versus d*?(C)) for a given L, the unknown parameters can be
determined. Similarly, the integral breadths can be plotted as a function of d*2?(C). Here
we notice a distinct difference from the Williamson & Hall (1953) and Warren & Averbach
(1950, 1952) methods, in that the constrast factors define a suitable variable to quantify
the broadening. The consequence of this is that Fourier or integral breadth results which
show no systematic behaviour when graphed as a function of d*2, and traditionally would

involve using the multiple-orders, exhibit a systematic behaviour when graphed in terms
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of d*2(C) (compare Figures 2 & 3 and Figures 6 & 8, pp 3697-3698, Ungdr, Révész &
Borbély 1998). Ungéar & Borbély (1996) applied the method to copper deformed by an
angular press, producing a crystallite/domain size in the rangle of 75 to 385nm and a
dislocation density, p = 1.7 x 10 m~2. These results compared favourable to the electron
transmission results. Ungar, Révész & Borbély (1998) reported that the effective cut-off
radius of dislocations, R,, was greater than the crystallite/domain size. It was explained as
a statistical parameter associated with the ensemble of dislocations.

The disadvantage that this method may suffer is the complexity and difficulty in de-
termining the (C)-values for a range of materials may make it inaccessible for practical
calculations. Moreover, the method assumes that the dislocations are randomly distributed
on all slip system. However, as van Berkum (1994) has shown, the dislocations can be ap-
proximated to have a spatial periodicity. This will also have implications for the physical

values determined from the model.

An alternative approach

In the proceding sections, the underlying theory and methods for size/strain analysis of
broadened profiles have been discussed. It is interesting to observe a commonality in the
expressions for observed profile, (1.26), the size-broadened profile, (1.34), and strain broad-
ening, (1.28). The common feature in these expressions is that the distributions of interest,
f(20), p.(L) and p(er,) are all positive definite. Furthermore, each expression is an integral
equation of the first kind, where in (1.34) we assume the background level has been removed,
and (1.26) is simply a discrete form of the continuous result. Determining these distributions
entails numerically solving an inverse problem.

Suppose that these distributions could be determined with a suitable method which
makes the least assumptions about the distributions, preserves the positivity, incorporates
the statistical noise and (if available) includes a priori information of the distributions;
this would enable information concerning the specimen profile, column-length distribution,
and strain distribution to be determined.Using these distributions a greater understanding
of the variation of the strain or crystallite size over a particular range could be developed

rather than just relying on the corresponding average values. For example, determining the

41



specimen profile is the first step in determining microscopic size and/or strain contributions
which could be used in the various methods described above. Mathematically speaking,
it is a simple case of an integral equation, where the instrument profile is assumed to be
shift invariant. Furthermore, from the similarity between the integral equations, it seems
plausible that in the case of size-broadend profiles, the inverse method could be applied again
to determine the column-length distribution, p,(L).

This data is useful in the production of catalysts, for example, where the researcher can
design the material to have a specific range of crystallite sizes. In the case of strain broadening
data, the same method could be used again to determine p(e;) and the rms-strain, rather
than relying on the expansion of the Fourier coefficients. Although p,(L) and p(er) are
apparent quantities, there is an opportunity to test theoretical models by incorporating
them as a prior: information in the inverse method and testing their plausibility. Using this
approach an inference can be made as to the underlying physical quantities. That is, the
commonality of (1.26), (1.34) and (1.28) suggests a single method could be developed to
determine each distribution.

The constrained/inversion and iterative deconvolution method outlined in §1.4.1, could
be used to determine f(26), p,(L) and p(e;). However, these methods will not, in general,
preserve the positivity of the f(26), p,(L) and p(e;) and are restricted in the use of a
priori information. A detailed analysis of the deconvolution methods outlined in §1.4.1 is
presented in Chapter 2 for the case of determining f(26). The results from this analysis
could also be adapted for the cases of p,(L) and p(er). An alterative approach to determine
the f(20), p,(L) and p(er) is presented in Chapter 3. This method is the maximum entropy
method. The fundamental characteristics of the entropy function ensure that the resulting
distributions are positive definite. It is also extended to incorparate the a prior: information,
the statistical nature of the noise, and to quantify the regions of uncertainty in the solution.
In Chapters 4 & 5, the maximum entropy method for determining the specimen profile,
column-length and strain distributions is developed and tested using simulated broadened
profiles. This maximum entropy method is also applied to alumina x-ray diffraction data
where information concerning the crystallite size distribution is determined and compared

with traditional methods.
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1.5 Summary

In this chapter a qualitative overview of broadened line profiles has been developed and it
has been outlined how the intensity distribution in a three dimensional space is mapped into
one-dimensional (see 1.2.1). The integral breadth and Fourier representations for broadened
line-profiles have been developed and it has been shown how the broadened profile is re-
lated to the underlying structural imperfections. It is seen from this representation that line
broadening is associated with apparent quantities and relies on a model to be adopted in
order for any physical interpretaion to be made. This became clear in how the two dominant
approaches, which apply the integral breadth and Fourier representations, determine the
apparent quantities (see §1.4.2 & 1.4.3). In the case of size broadening, it has been shown
how the integral breadth and Fourier representations can be used to develop a qualitative
and quantitative picture of the specimen broadening, shape and distribution of crystallites.
However, for the case of strain broadening the problem of relating the specimen broadening
to the microscopic propertities of the specimen is very difficult. This is due to the ensemble
nature of distortions, like dislocations, and corresponding strain fields. It is difficult to inter-
pret the rms-strain unless a suitable model is adopted. Recent developments have attempted
to resolve this problem and have been reviewed. The initial results are encouraging; however,
due to their mathematical complexity or the limited physical cases that are considered, the

practical value may not be fully realised.
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Chapter 2

Analysis of Deconvolution Methods

used in X-ray Diffraction

Various deconvolution methods were outlined in Chapter 1. It was pointed out that there
are two approaches in determining the specimen profile. These are the direct convolution
(Howard & Snyder 1989, Cheary & Coelho 1992) and various deconvolution/inversion meth-
ods (see 1.4.1). In this chapter, an analysis of the common deconvolution/inversion methods
used in x-ray diffraction is presented. This analysis has been adapted from a general discus-
sion by Lagendijk & Biemond (1991). It is also based on the discussion presented by Arm-
strong & Kalceff (1998), concentrating on an eigensystem analysis of x-ray deconvolution
methods which include: unconstrained matrix inversion and deconvolution (Stokes 1948);
iterative deconvolution (Ergun 1968) and the constrained deconvolution methods (Louér
et al. 1969, Louér & Weigel 1969, Louboutin & Louér 1972). These deconvolution/inversion
methods are linear inversion methods. That is, they can be expressed as a linear combina-
tion of a set of orthonormal vectors. This enables the formulation of an error-bound function,
which defines the maximum difference between the solution and true specimen profiles.
The principle aim of this chapter is to address an important theoretical issue in profile
analysis, concerning the mathematical behaviour of the deconvolution methods and the effect
individual terms have on the solution profile. The central issue which emerges from the
analysis and numerical results is the conditioning of the solution profile. This conditioning

raises questions as to the integrity of the solution profile and the physical quantities (i.e.
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crystallite size and rms-strain) that can be “extracted” from a specimen profile. Although
this chapter focuses on the issue of determining the specimen profile, the analysis is equally
applicable in determining the column-length and strain distributions. In this sense the issues
discussed here have a greater importance concerning the conditioning of the column-length
and strain distributions.

The eigensystem analysis reveals that the error-bound function expresses the sources
of misfitting and ill-conditioning as a function of the control parameters for a particular
method. In addition, it shows that even for the optimum values of certain control parameters,
positivity is not preserved and spurious oscillations appear in the solution profile. The
results from the analytical discussion presented in §2.1 are illustrated with a simulation of
an instrument-broadened diffraction profile (see §2.2). The implications that the analytical

and computational results have on experimental data are discussed in §2.2.5.

2.1 Theory

2.1.1 Background

As discussed in the previous chapter, an observed diffraction profile, g, can be written as
the convolution of an instrument function, k, and a specimen profile, f, superimposed onto

a background signal, b, and a random noise distribution, n,
4(20) = / k(20 — 20') £(26) d(26) + b(20) + n(20). (2.1)

From this we seek to determine f(26'), the specimen profile whose shape and width are
characterized by properties of the material, such as microstrain and crystallite or scattering
domain size. Physically, it is expected that the positivity of the specimen profile would be
preserved and that the integrity of the physical quantities, such as crystallite/domain size
and microstrain, would not be compromised by spurious oscillations occurring in the solution
profile.

The instrument profile, k&, is assumed to be a linear shift-invariant function. That is, the
shape of the function does not change over the region of integration and only depends on the

difference (26 —26'). The function, k, can be thought of as mapping the specimen profile, f,

45



from a 26'-space into a 26-space. This results in the blurring (i.e. convolution) of f, defined
by g, when measured in 26-space. In general, k£, will be an asymmetrical function about the
Bragg angle. However, in this chapter, only symmetrical instrument profiles are considered.
The reason for this will become apparent in the analysis that follows.
The convolution equation (2.1) refers to a set of continuous functions associated with
a linear function space (Wing 1991). However, the measurements of the observed and in-
strument profiles are made at discrete time intervals. To convey this, we apply a discrete
representation of (2.1) (Arfken & Weber 1996, Wing 1991),
gi = Z kijw; fj +b; + (2.2)

j
where g; is the i-th element of observed profile; k;; are the (¢, j)th elements of the instrument
profile calculated over a large interval for 20 and 26', such that, k;; = k(260; — 20;-) where
i, =1,2,3,...,N; w; is the j-th element from a chosen quadrature scheme and accounts
for the integration in (2.1); f; are the j-th elements of the specimen profile, while b; and n;
are the background level and the noise distribution, respectively.

Alternatively, the discrete form of (2.1), given by (2.2) can be expressed using column
vectors and a matrix. That is, the specimen and observed profiles are represented as column
vectors and the instrument profile as a convolution matrix by employing the bra-ket notation.
In the bra-ket notation the bra vector, (v|, represents a row vector, while the ket vector, |v),
represents a column vector. The inner product for two ket-vectors, |v) and |u), that span a
real, N-dimensional Euclidean space, E, is defined as (v|u) = Y.V | v; u; where v; and u; are
the i-th components of the vectors and ¢ = 1,2,3,...N. Also, in E, the Ly-norm for |v) is

defined as ||v|| = \(U|U>|% = \/ﬂ

Thus, (2.1) and (2.2) become
9) = R[f) +[b) + [n) (2.3)

where |g) represents the observed profile, such that |g) = {g;,7 = 1,..., N}; R is the convo-
lution matrix which includes the terms generated from k(26 — 26') and a quadrature such
that (R);; = kijw;; |f) is the specimen profile; |b) is the background count; and |n) is the
noise distribution. We define R as a real, nonsingular, symmetric [N x N| matrix, where

{|vi), i = 1,..., N} are the set of orthonormal eigenvectors belonging to R, and \; are the
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corresponding real and non-zero eigenvalues for . The eigenvectors of R define a set of
basis vectors in E. Hence, any vector in this space can be expressed as a linear combination
of the eigenvectors of R. By decomposing the solution using an eigen-system analysis, the
solution profile is simply represented as a linear combination of the eigenvectors, and an
understanding of the deconvolution methods in this space can be developed (see equations
(2.8), (2.29) & (2.39)). The conditioning of this space can be understood by examining the
eigenvalues, |\;|. The eigenvalues can be arranged in a monotonically decreasing sequence,
Al > Ao > N3] > -+« > |An|. If || — O for ¢ — N, then the matrix R becomes
near-singular and its inverse will result in an ill-conditioned matrix. It is this characteristic
which contributes to noise amplification (see equations (2.13), (2.32) & (2.41)). Another con-
sequence of |\;| = 0 as ¢ — N is that |v;) becomes linearly dependent, and the uniqueness
of the solution is compromised. Defining R as a real and symmetric matrix is equivalent to
saying that the instrument profile is symmetric. However, the generality of the results pre-
sented in this chapter can be qualitatively extended to the case of an asymmetric instrument
profile.

Before the deconvolution of (2.1) or the inversion of (2.3) is undertaken, the background
signal is usually estimated and subtracted from the observed data. The error that results
from this estimation propagates into the deconvolution and any subsequent calculations. To

reflect this, we define the background-corrected observed data, |§), as

19) = 1g) — 1b) (2.4)

where |13> is the estimated background level. The specimen profile is usually determined from

this corrected data, |g).

2.1.2 Unconstrained Inversion/Deconvolution Methods
Unconstrained Matrix Inversion

The eigen and error-bound function analysis proceeds as follows: suppose that we only know
3) and R, and we make no assumptions about the noise. We write the solution profile, | f)

in the form

RIf) = 13) (2.5)
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where taking the inverse of R will produce |f). Multiplying (2.5) by the eigenvector (v;| and
using the result (v;]R = \; (v;| and then multiplying both sides by ;! produces

(Wil f) = A7 (wilg)- (2.6)

We can now express |f) as a linear combination of the eigenvectors, |v;), (see Arfken &
Weber 1996, Kreyszig 1993) by multiplying both sides by |v;) and summing over all i. We

arrive at
N N

> (il f) o)y =) A wil@) |vi). (2.7)

i=1 i=1
The left hand side of (2.7) is simply |f). Substituting (2.3) and (2.4) into the right hand
side of (2.7), we have

N
B o= XN (BIF)+ 1) + n) = ) 03 (2.8)
N N
= Z vl f) Ivz)+z H(uileg,) (o) + ) AT (wiln) o) (2.9)
Py i=1
where |e;,) = |13) — |b) is the misfitting error between the estimated background level and

true background level. The first term in (2.9) is simply |f). The error between the solution

and true specimen profiles is | f) —|f). We can express

D=1 = leg)
= DA ) )+ YA ()

= Z[A 1)wilegs) + (viln))] [vi)- (2.10)

The terms in the square brackets of (2.10) are the components of the error vector. Taking

the norm of (2.10) defines the error-bound function (see Kreyszig 1993). We have,

[ N 2

If-£| = ZAZQ ((viln) + ( 1)<Ui|ef)b>)2] (2.11)

" N N %
< ZA;%ZW + ZA;2<vileab>2] (2.12)
_]\z[:l Nz:l
< Il ) AT wiles)| (2.13)
=1 =1
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where (2.12) is arrived at by using the Schwarz inequality! while the result in (2.13) is arrived
at by employing the triangular inequality. For notational convenience we have, f= | f) and
£=1f).

The first term in (2.13) represents amplification of the noise, resulting in the ill-conditioning
of | f ). That is, unphysical oscillations and artefacts corrupt the solution profile. This comes
about if | \;] = 0 and the ‘)\i_ 1‘ in (2.13) amplifies the noise term. Similarly, the second term
in (2.13) represents the amplification of the misfitting error in the background estimation.

A similar argument can be made for the Stokes (1948) deconvolution method.

Stokes (1948) Method

The Stokes (1948) method is also an inversion method, with the unconstrained inversion
taking place in the Fourier space of the profiles. It has been shown in numerical studies that
this method produces an ill-conditioned specimen profile when deconvolving in the presence
of noise (for example see Kalceff et al. 1995). In this section a detailed analysis of the Stokes
(1948) method is performed. However, the Fourier basis functions and Fourier coefficients
are defined in place of the eigen-vectors and -values.

The Fourier series of a piecewise-continuous function, f(z), is defined over the interval

x € [—a, a], and is given by,
flz) = Z F.. exp(eram/a) (2.14)

where the summation is over m = 0, £1,£2,4+3...,2 = v/—1 and F,, are the complex Fourier
coefficients of f(x) given as,
1 +a

F,, = 5 | f(z) exp(—wrzm/a) dzx (2.15)

form =0,+1,+2, +£3....

Zfil a; b;

i (see Kreyszig 1993). The result in (2.12) is arrived at by the following corollary (which requires the

1 1
Schwarz inequality to prove it), /3N, (a; + b;)? < [Zil a%] * [Eil bf] *. This result can be further

generalized for cases arising in (2.32) and (2.42).

!The Schwarz inequality is given by,

i=1 "1 i=1"1

< [ZN a2]% [EN b?]% where a;, b; € R for all

49



The Stokes (1948) method can be derived by expressing the instrument and background-

corrected profiles in terms of their Fourier coefficients (see Warren 1969). It is given by
FruKim = Gy, form =0,+1,+2 +3... (2.16)

where IA:m, K,, and G,, are the complex Fourier coefficients for the solution specimen profile,
the instrument profile and the corrected observed profile, respectively. Taking the inverse of
K, in (2.16) will result in the Fourier coefficients for the solution profile. At this point the
coefficients are used in the Warren-Averabach method (Warren & Averbach 1950, Warren
& Averbach 1952, Warren 1969). The result from the Stokes (1948) method is analogous
to (2.5) in its form and the fact that no assumptions concerning the solution or the noise
distribution have been made.

In order to determine the error-bound function for the Stokes (1948) method, similar
steps as those carried out in the matrix inversion method are followed, with the exception
that the space which defines the operations is a linear function space. The next step assumes
that the complex Fourier coefficients for b(z), b(z) and n(z) exist. In general this will be
the case and the complex coefficients for each term in (2.1) and (2.4) are substituted into
the right-hand side of (2.16) and by dividing both sides by K,,, where | K;,,| # 0 for all m,
results in

Fin = Pt (=1)Ega /K + N /K, (217)

where Egg, is the error in the complex Fourier coefficients between the estimated and true
background level and N,, are the complex Fourier coefficients for the noise distribution. The

error between the solution and true Fourier coefficients of the specimen profile is given by

~

Fro = Fi = (=1)Egg /K + N /Ko (2.18)

where multiplying both sides by exp(#7rmz/a) and summing over all m transforms the error

from the Fourier space and results in

f(z) = f(z) = ej(a)
= Z[ﬁm — Fp] exp(emrma/a)

= Z[(—l)EEBm/Km + N, /Kpn] exp(emma/a) (2.19)
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where e, is the error function defined over the range of z. The Lo-norm for (2.19) is defined
in a continuous space, given by |le(z)|| = /[*, |e(z)|?dz. Applying this definition to the
results in (2.19) and taking into consideration that the terms in the square-brackets are

complex, we arrive at

1 /() = fl@) || = [ZZ [(=1)Egg /K + Nows /Kiw]*

m m
1

X [(=1)Egg,n/Km + N /Kin] 5mmf] 2 (2.20)

2

= [Z Eggm/Km + Nm/Km‘2] (2.21)
where in (2.20), 8pm = [* exp[er(m — m/)z] dz such that

1 ifm=m'
Omm! = i (2.22)
0 ifm=#m
The result in (2.21) is arrived at by summing over m. Using the same steps that were used

to arrive at (2.13), the error-bound function for the Stokes method is given by
17(2) = @) | <) Eggmn/Kanl + D INu/Ku (2.23)

Equation (2.23) is essentially the same as the result derived in the matrix inversion method,
(2.13), the only difference being that in place of the eigenvalues of R, the Fourier coeffi-
cients of the instrument profile have been used. The ill-conditioning of the Stokes (1948)
method is a result of |K,,| — 0 as |m/| increases. As in (2.13), there are two terms in (2.23)
that will contribute to the ill-conditioning of the solution specimen profile. The first is the
Fourier coefficients in the estimation error of the background level and the second is the
noise distribution.

The results from this section demonstrate that when carrying out an unconstrained in-
version, either in a vector space or in a Fourier space, the solution specimen profile will be
ill-conditioned due to the amplification of the noise distribution and the misfitting error in

the background level.
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2.1.3 Iterative Deconvolution Method

The iterative method applies successive approximations to determine | f ). It was first intro-
duced into x-ray diffraction by Ergun (1968). Taking the expression for the iterative method
(see equ.(4) Ergun 1968), the integral term can be rewritten using a quadrature (see §2.1.1)

and expressed in the bra-ket notation. We have,

|frs1) = B13) + 1= BR)| fi) (2.24)

where we have introduced the scalar quantity, #, which controls the rate of convergence
(Luenberger 1984) and Iis an [N x N] identity matrix. In this form of the iterative method,
the matrix R need not be normalized, but limits on the value of 8 can be defined via the
eigenvalues of R. These will be discussed in the latter part of this section. Expressing (2.24)

in terms of the eigenvectors, we have

Fes) Z[ ([3) + (1= BA)wlfo)] 0. (2:25)

i=1

Starting with |f) = |0), and substituting it into (2.25), we arrive at a result for |f;),
£ = Y5 )
= 8o (2.2
Substituting this result back into (2.25), the expression for |f,) can be written as
[F2) = D 18wila) + B(1 = BA) (]3] lvs)
= Zﬁ [T+ (1 = BA)] (vilg) [vi)- (2.27)

By continuing to operate iteratively in this manner and taking note of the orthonormal

properties of |v;), we arrive at the following for the £ + 1 term:

|]3k+1> = Zﬁ [Z (1- ﬂ)\i)j (vi|g) |vi) (2.28)
= ZA{I 1= (1= 8] (vilg) v (2.20)

where the expression in the square bracket of (2.29) is a result of summing the geometric

series in (2.28).
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At this point it is important to consider the nature of the eigenvalues. There are three
cases that arise. The first is where )\; > 0 for all 7. For convergence to be obtained,
|1 — BX\| <1, for all 4, or for 0 < 5 < 2//\£,§La)x, where /s is the largest positive eigenvalue.
The second is where \; < 0 for all i. Again, for convergence |1 — g\;| < 1 for all ¢, which
implies that # must be negative and satisfy 2/)\%;1)95 < B < 0, where Moy is the largest
negative eigenvalue. A schematic diagam of these cases is shown in Figure 2.1. The third
case is where some \;s are positive and others are negative. A 5 cannot be found such that
|1 — BA;| < 1 for all i that satisfies both positive and negative eigenvalues, and in this case
convergence of the iterative method cannot be achieved. Hence, a very simple method for
determining whether convergence can be achieved is provided by determining the eigenvalues

of the convolution matrix and inspecting their signs.

(CNCNCN | N N/ N/
S N/ NANGYA B N WA Al O
—2/\ max, neg 0 +2/\ max, pos

Figure 2.1: A schematic plot showing the acceptable range for 3: (i) When all the \’s are positive (given
by crosses), then 0 < 8 < 2/)\("Ta)w, where |/\$,fa)$| = Amaa,pos; (ii) When all the A’s are negative (given by
circles), then 2//\57{,1)z < B < 0, where |A5{a)w| = Amaz,neg-

Using (2.3) and (2.4) in (2.28), the difference between the solution and true specimen
profiles is given by

)= 1f) = . [(=1) (1 = B (wil £)
+ /\z_l [1 —_ (1 —_ ,B)\Z')]H—l] <’U1|7”L>
+ (DA 1= (1= B8R (v

e i) (2.30)

Taking the norm of (2.30) and using a similar approach to that carried out in §2.1.2 defines

the error-bound function for the iterative method. This is given by
N
e =11 < D0 (1= BN [uil )]
i=1
N
+ YA (= B Guid)
i=1
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N
+ D= @ = B0 [iless)] (2.31)
i=1

< Ep(k) + Ea(k) + Eyy (k). (2.32)

Unlike the results in §2.1.2, the error-bound functions for the iterative deconvolution methods
are functions of their control parameters. The Ef(k) term in (2.32) represents the restoration
error as a function of £, in that it defines the misfitting error between the solution and
true specimen profiles after k-iterations have been completed. For instance, if there were
no noise or background terms in (2.32), E;(k) would be the only source of misfitting and
the iterative deconvolution method would converge onto the true specimen profile as the
number of iterations increased, i.e. as k increases, E¢(k) — 0. The E, (k) term represents
noise amplification as a function of &, since for increasing £ and for small |);|, E, (k) will
dominate. The Ej, (k) is the misfitting error in the background level, with characteristics
very similar to those of F, (k). The sum of these three terms defines a minimum in the
error-bound function. The value of £ which minimizes the error-bound function defines the
optimum number of iterations, and the solution that corresponds to the optimum number

of iterations is considered the optimum solution for a given level of noise.

2.1.4 Constrained Deconvolution Method

The constrained deconvolution method was first introduced into x-ray diffraction profile
analysis by Louér et al. (1969). This method has its foundations in the work of Phillips
(1962), Twomey (1963) and independently Tikhonov (1963). The starting point for this
method is to write down the Lagrangian function Q(f) which includes the regularization
function, S(f), and the misfitting function, C'(f). The function S(f) can be thought of as
a measure of the smoothness of f, while C(f) measures the misfitting of a given f in (2.4)
(Twomey 1977). Following Twomey (1977), we define the regularization function (in the

orthodox vector/matrix notation), S(f), as
1
S(f) = -5 (f - m)" H (f — m) (2.33)

where m is the a priori model representing our knowledge/ignorance concerning f, and H

is an [N x N| smoothing matrix. Here we set H = I, the identity matrix. The misfitting
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function, C(f), is written as
C(f) = (g — Rf)" (g — Rf). (2.34)

Using the equations for S(f) and C(f), and writing the Lagrangian function in the bra-ket

notation, we get

Q) = —as(E)+00) (2.35)
= 5 (Fl= (m) H (1) = [m))
+ 2 (G~ {FIR") (1g) — RIf)) (2.36)

where « is the regularization parameter, such that 0 < o < oo and can be considered as
a measure of the coupling between the regularization and misfitting function. By defining
the smoothing function, (2.33) and (2.34), we are seeking to determine the specimen profile
which minimizes (2.33) with respect to (2.34). This is embodied in the Lagrange function,
Q(f). In order to minimize this function, we want to determine the specimen profile, f',
which results in VQ(f) = 0. This is equivalent to finding the vectors, VS(f) and VC(f)
such that, VS(f) || VC(f) i.e. VS(f) and VC(f) are parallel to each other as illustrated in
Figure 2.2. This property of Lagrangian functions becomes a useful tool in developing a
maximum entropy method in the next chapter (see Chapter 3).

In the case where we are ignorant of |m), we assume that it takes on a uniform distribution
which is equal to the average value of the observed data. On the other hand, if we have

some a priori evidence for |m), then this a priori information should be used. By minimizing

(2.36) (see Twomey 1977), such that VQ(f),_, ; = 0, we have
(R™R + o) |f) = RT|g) + a|m) (2.37)

where taking the inverse of (RTR + aI) on the left hand side of (2.37) results in the solution
profile, | f). It is interesting to compare the results in (2.4) and (2.37). When a = 0, (2.37)
reduces to (2.5). On the other hand, for a positive and nonzero «, the identity matrix in
(2.37) is scaled. The consequence of this is that it offsets the small eigenvalues in the matrix
R and tries to prevent the (RTR + aI) becoming ill-conditioned.

To express (2.37) in terms of the eigenvectors of R, we apply similar reasoning to that

emploved in deriving equations (2.5 - 2.13). We start by multiplying both sides of (2.37) b
ploy g €q y piyimg y
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Figure 2.2: A schematic diagram showing the surface mapped out by the functions S(f) and C(f). Q(f)
is minimized for a given f when the vectors V.S and VC are parallel to each other. Here V.S = grad S and

VC = gradC.

(v;| and arrive at,
X (il f) + afuilfy = X (uilg) + o (vlm)
(a+ X)Wl f) = X (ilg) + a (v;|m). (2.38)

By dividing through by (o + A?), multiplying both sides by |v;) and summing over i, we

arrive at

=R (2.39)

After substituting (2.3) and (2.4) into (2.39) and after some manipulation, the error between

the solution and true specimen profiles can be expressed

Y =1f) = lej)
N
— Z( )\) <'Uz|f |Z>+Z /\2U1|m |Z>
i=1 ?
N
S el ), 5l 20
i=1

Using (2.40), an error-bound function can be written as

a(ulf)] =
e ‘+ +;

a (vilm)
N+«

Ai {vileg,)

fF—f| <
| I ¥ +a
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Xl -
< E_f(a) + En(a) + By (o) + En () (2.42)

where Ef(c) is the restoration error as a function of «. In the case of no noise or background
level, E(«) would be the only source of misfitting for the constrained method. The E,,(«)
term represents the uncertainty in our choice of the a priori model. As the a priori model
approaches f, the E,(«) decreases and the solution profile improves. The Ej (a) term
is the error resulting from the misfitting in the background level and E,(«) is the noise
amplification term. For small values of o the E, () and Ej,(«) terms dominate, while for
large values of ¢, the E;(«) and E,,(«) terms dominate. As was the case in the iterative
method, a minimum in the error-bound function can be defined. The optimum a-value which
minimizes the error-bound function and the corresponding solution from (2.37) is considered

the optimum solution for a given noise level.

2.2 Computational Results and Discussion

2.2.1 Simulated Diffraction Profiles

A simulation of an instrument-broadened x-ray profile was carried out to demonstrate the
properties of (2.37) and (2.42) and the corresponding deconvolution methods. The simu-
lations consisted of generating an observed profile from the convolution of an instrument
and specimen profile. The instrument profile was assumed to be a symmetrical Lorentzian
(Cauchy) function, centred about 20 = 60 °26. The full width at half maximum (FW HM)
was determined using Cheary & Cline (1995) (see their equation (6) with A = 3.52246x10™%;
B = 5.55491 x 107% C = 5.25000 x 10™*; D = 6.23203 x 107°). The instrument profile
had a FWHM = 0.03°20, an amplitude of 100 counts, and was determined over the in-
terval (26 £ 0.5)°26. The convolution matrix was determined in the manner discussed
in §2.1.1. The elements of the convolution matrix are made up of the instrument profile,
kij = k(20; — 20}) where i,j = 1,2,3,...,100, determined over the interval (205 4 0.5) °20
and a quadrature which was chosen to be the trapezoidal rule (Burden & Faires 1993). The

resulting convolution matrix was a [100 x 100] matrix. The eigenvalues of the convolution
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matrix were calculated and found to be all positive, which implies that the convolution ma-
trix is positive definite. The eigenvalue of the convolution matrix decreased monotonically,
from the largest positive eigenvalue, Aords = 4.578 to the smallest value, /\5:221 = 0.0834. The
specimen profile was chosen to be a pseudo-Voigt function with a FW HM = 0.05°260 and a
mixing parameter, n = 0.45 (see Appendix A). The amplitude of the specimen profile was
set to 1361 counts and was calculated over the interval (60.0+0.5) °26 with 100 data points.
Poisson noise was added to the convolved result. The noise level corresponds to 1.6% of the
peak maximum for the convolved result (peak max = 3938 counts). The background level
was generated using Poisson noise, with a mean of 295 counts (7.5% of the peak maximum
of the convolved profile). The normalized specimen and instrument profiles, as well as the
simulated observed profile, are given in Figure 2.3.

In order to determine the individual terms in (2.32) and (2.42), the specimen profile, noise
distribution and background, misfitting errors were calculated. The specimen profile used
to calculate the observed profile was also used in (2.32) and (2.42). The noise distribution
was determined from the difference between the observed profile with noise added to it and
the noiseless observed profile. The misfitting error for the background level was determined
from the difference between the true background level and the estimated background level.
The estimated background level was deliberately under-estimated to demonstrate the effect
of the misfitting error of the background level. It was taken to be a constant distribution
at 270 counts (or 6.9% of the peak maximum). The solution profiles were also determined
using the above methods and were compared with the true specimen profile using an R-factor
defined as

S (- )

R; = x 100%
Zz{il f22

where f; and f; are the components from the |f) and |f), respectively.

2.2.2 Unconstrained Inversion/Deconvolution Methods

The matrix inversion and Stokes (1948) methods were applied to the background-corrected

observed profile. In the case of the matrix inversion method, the inverse of the convolution
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Figure 2.3: (a) Normalized specimen profile (solid lines) and instrument profile (dashed lines); (b) Observed

profile with noise and background level added.

matrix was determined (see (2.5)) and was used to produce the solution profile. The inverse

of small eigenvalues in the convolution matrix resulted in the amplification of the noise
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and misfitting error in the background level (see (2.13)), hence the ill-conditioning of the
solution profile, typically illustrated in Figure 2.4(a). The positivity of the solution profile
in Figure 2.4(a) is not preserved. Even if the negative amplitudes were set to zero, the
result would still be ill-conditioned, compromising any subsequent calculations. The ill-
conditioning is reflected in the large value of Ry = 43.7%.

In the case of the Stokes (1948) method, the Fourier coefficients of the corrected observed
and instrument profiles were determined using a fast Fourier transform algorithm. The
Fourier coefficients of the instrument profile ranged from |K,,4;| = 4.578 to |Kyyin| = 0.084. In
order to determine the Fourier coeffients of the solution profile, the inverse of the instrument
profile was taken and multiplied by the coefficients of the corrected observed profile (see
(2.16)). The inverse Fourier transform was applied, resulting in the solution profile (see
Figure 2.4(b)). In a similar manner as the inverse matrix method, amplification of the
noise and misfitting error in the background estimation has occurred due to the small |K,,|
values given in (2.23). The solution profile is corrupted with spurious oscillations. The ill-
conditioning of the result in Figure 2.4(b) is also reflected in the large value of Ry = 43.5%.

This is almost identical to the inverse matrix result.

2.2.3 Iterative Method

The error-bound function for the iterative method was calculated over the range of 1 to 500
iterations. The eigenvalues of the convolution matrix are positive definite, so convergence is
expected. A boundary for the suitable values of 8 was established as discussed in §2.1.3. The
largest positive eigenvalue was 4.511, which implies 0 < # < 0.443. For these calculations
f = 0.01. The individual terms for this function were also determined (see Figure 2.5). It
is seen that for a small number of iterations, the E;(k) term is dominant and decreases as
the iterations increase. Conversely, the E,(k) and Ej (k) terms, which have very similar
behaviour, become dominant and increase as the number of iterations increases. These
terms define the amplification of the noise and background misfitting error as a function
of the number of iterations. A minimum occurs when the E;(k), E,(k) and Ej (k) terms
are combined in a sum (see equation (2.32)). This minimum corresponds to the optimum

number of iterations; it can be considered as a compromise between the restoration error
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Figure 2.4: Plots of the solution from the unconstrained inversion/deconvolutions methods, given by (2.5)
& (2.16), rspectivitely: (a) Showing the specimen profile (solid line) and the solution profile (dashed line),
R; = 43.7%, for the matrix inversion method; (b) Showing the specimen profile (solid line) and solution

profile (dashed line), Ry = 43.5%, for the Stokes method.
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and the noise/background error terms. The results in Figure 2.5 indicate that if the iterative
method were halted before the optimum number of iterations was reached, then the major
source of error would be due to the restoration term. On the other hand, if the method were
halted after the optimum number of iterations, then the major source of error would be due

to the combined influences of the background and noise terms.
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Figure 2.5: Plots for the terms in (2.32): (a) Showing the misfitting term in (2.32), E;(k) vs k ; (b) Showing
the noise amplification term in (2.32), E,(k) vs k, for a noise level at 1.6% ; (c) Showing the background
error term in (2.32), E;, (k) vs k, for a background level 7.5% of the peak maximum; (d) Showing the sum
of terms on the right hand side of (2.32).

A set of solution profiles for £ = 50, 100 and 350 iterations was determined (see Fig-
ure 2.6). The solution profile for £ = 100 iterations corresponds to the optimum solution;
its Rf(= 11.5%) was the lowest value for the set of profiles. The solution profile for £ = 50
iterations demonstrates that at this stage the major source of uncertainty is due to restora-
tion error. This is evident in the under-fitting of the solution profile when compared with
the true specimen profile. In addition, it is noticeable that noise amplification has been
suppressed. In the case of the solution profile for £ = 350 iterations, the major source of
error and misfitting is due to noise amplification, which results in the negative oscillations

about the baseline. These oscillations are unphysical artefacts and will affect any subsequent
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calculations such as the crystallite size or microstrain. The case for £ = 100 iterations can
be considered as a compromise between the components in (2.32) (see Figure 2.5). That
is, there is less misfitting compared with the solution profile for £ = 50 iterations and less

noise/background amplification compared with the solution profile for k& = 350 iterations.

2.2.4 Constrained Deconvolution Method

The error-bound function for the constrained deconvolution method (2.42) was calculated
over the range of a € [107*, 10] (see Figure 2.7). The a priori model for the data was set
equal to the average of the observed data. In Figure 2.7(a), both the E;(«) and E,,(«)
terms are given as functions of a. These terms increase monotonically with increasing a.
The poor choice of the a priori model as the average of the observed data is reflected in the
large magnitude in Ep,(a). On the other hand, we notice that the E, (o) and Ej,(«) terms
given in Figure 2.7(b & c) decrease with increasing . For small «, the E,(«) and Ej,(«)
terms are large, which signals the ill-conditioning of the solution profile. The sum of these
terms defines a minimum, which is given in Figure 2.7(d). As was described in the case of
the iterative method, this represents an optimum value for the regularization parameter, «.
The results shown in Figure 2.7 suggest that for large a-values, the restoration and a prior:
model errors are dominant, while for small a-values, the noise and background misfitting
errors are dominant. This is demonstrated in Figure 2.8.

The optimum solution is given in Figure 2.8(a), for o & 0.15, resulting in the lowest Ry =
19.7%. The solution has negative oscillations about the baseline of the profile, especially on
the outer edges. The results for small and large a-values are shown in Figure 2.8(b). In the
case o = 0.005, there are considerable oscillations about the baseline and misfitting about
the peak of the profile. This can be considered as a case where the coupling between S(f)
and C(f) in (2.35) is “weak” and S(f) as the smoothing function is ineffectual. In the case of
a = 5.0, the noise amplification has been suppressed; there is considerable misfitting of the
profile about the sides; and its background has been raised. In this case the coupling between

S(f) and C(f) is “strong”. The S(f) term is dominant, suppressing any noise amplification.
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Figure 2.6: Plots of the solution profiles from the iterative method (2.24): (a) Showing the specimen profile
(solid line) and the solution profile for the optimum number of iterations k£ = 100, Ry = 11.5%; (b) Showing
the specimen profile (solid line) and solution profile for k = 50 iterations, Ry = 21.8% (short dash line) and
k = 350 iterations, Ry = 17.8% (long dash line).
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Figure 2.7: Plots of the terms in (2.42): (a) Showing the misfitting term in (2.42), Ef(a) vs « (solid line)
and the misfitting error of the a priori model in (2.42), E,,(a) vs a (dashed line); (b) Showing the misfitting
background error term in (2.42), E;, (a) vs a; (c) Showing the noise amplification term in (2.42), E,(a) vs a,
for a noise level of 1.6%; (d) Showing the sum of terms on the right hand side of (2.42). The minimum at

a & 0.15 corresponds to the optimum value a.

2.2.5 Implications for Experimental Data

In developing a deconvolution method that removes the instrument broadening from an
observed profile in the presence of random noise, it is expected that the solution profile
be physically consistent. That is, two basic requirements are fulfilled: that positivity be
preserved; and the solution profile be free of spurious oscillations. The results given for the
iterative and constrained deconvolution methods demonstrate that the optimum solution in
the simulated case (i.e. the solution that is found when the errors have been minimized)
does not fulfil the basic requirement given above. The results also highlight the difficulties
in determining an optimum value of the control parameter without any a prior: information
of the noise and background level. The consequence of this is that the physical quantities
determined from the solution profile will be compromised.

The implications that these results have on an experiment and subsequent calculations
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Figure 2.8: Plots of the solution profiles from the constrained method (2.37): (a) Showing the sample
profile (solid line) and solution for a = 0.15 and Ry = 19.7% (dash line); (b) Showing the specimen profile
(solid line) and two other solutions, & = 0.005, Ry = 32.3% (short dash line) and o = 5.0, Ry = 65.8% (long

dash line), respectively.

is that a reasonable understanding of the background level is required to minimize the

misfitting errors. In order to reduce the ill-conditioning due to noise, a tolerable noise level
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for the deconvolution method must be determined, which in turn places demands on the
conditions for collecting the experimental data, such as an optimally adjusted diffractometer

and adequate counting times.

2.3 Summary

The common deconvolution methods used in x-ray diffraction have been decomposed using an
eigen-system analysis. A comparison of the deconvolution profile and the sample profile was
achieved by defining the error-bound function. The unconstrained inversion/deconvolution
methods do not have control parameters. However, the error-bound function (which in this
case consists of single numbers), from a theoretical point of view, accounts for ill-conditioning
in the solution profile. In the case of the iterative and constrained deconvolution methods,
the error-bound function was defined in terms of the control parameter. This enabled the
various components which define the observed profile and affect its deconvolution, such as
the background level and noise distribution, to be studied and quantified.

A simulated instrument-broadened profile, composed of a Poisson noise distribution and
a background level, was used to evaluate the error-bound function of each method. The solu-
tion profiles for the unconstrained/inversion methods contain spurious oscillations. The pos-
itivity for the solution profiles is not preserved. The results for the iterative and constrained
methods from the simulated profiles showed that the optimum value of the control parameter
can be considered as a compromise between the restoration error and the noise/background
estimation error. Under these optimum conditions (which are generally not known a priori)
the positivity was not preserved and spurious oscillations corrupted the solution profile. It
was also shown that the under- or over-estimation of the control parameter resulted in one of
two sources of misfitting and ill-conditioning becoming dominant. The results demonstrate
that the various sources of misfitting and ill-conditioning can be quantified and related to

the corresponding features in the solution profile.
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Chapter 3

Development of a Maximum Entropy
Method for X-Ray Diffraction Profile
Analysis

The maximum entropy (MaxEnt) method has proven to be very successful for data analy-
sis. In many areas of scientific research it has been adopted as the standard approach; in
particular, Bayesian and MaxEnt methods have been applied in deconvolving neutron pro-
files, analysing neutron reflectivity data and determining structure factors in powders (see
Sivia 1990, Sivia et al. 1993, Sivia & David 1994, Geoghegan et al. 1996)'. The specific aim
of this chapter is to present MaxEnt as an alterative method for x-ray diffraction profile
analysis. The generality of the MaxEnt method allows the specimen profile, the column-
length distribution and the strain distribution to be determined from the observed profile.
The particular problem of determining the specimen profile is considered here.

X-ray diffraction profiles are compared with other common distributions that are found
in physics. It is shown that they share certain features, in that they are positive and
additive distributions. Based on these features a suitable function is determined, the entropy
function, which preserves these characteristics and the maximum entropy principle can then

be established (see §3.1). Bayesian probability theory is then used to transform the principle

!The review by Gilmore (1996) is an interesting and practical review of MaxEnt methods used in crys-

tallography.
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into a working method.

To determine the specimen profile (see §3.2), the MaxEnt method incorporates the en-
tropy function, observed profile, instrument profile and counting statistics. The use of the
Skilling & Bryan (1984) maximum entropy algorithm enables these elements to be considered
in determining the specimen profile. Not only does the MaxEnt method allow the specimen
profile to be determined, but it also enables the column-length distribution and strain distri-
bution to be found. In other words, after the specimen profile is known the MaxEnt method
can be applied again to calculate the underlying distributions.

The MaxEnt method is shown to be a fully quantitative method in that the uncertainties
in the specimen profile can be quantified. This has important significance since uncertainties
in subsequent calculations and physical quantities can also be determined. The difficulties

and limitations in the Skilling & Bryan (1984) algorithm are outlined (see §3.3).

3.1 The Maximum Entropy Principle

3.1.1 Positive and additive distributions

Many distributions that appear in physics are positive and additive distributions. Some
examples are astronomical images (optical and radio), electron density distributions from
crystallography, and size distributions from small-angle x-ray scattering. As expected, by
positive we mean that the distributions cannot take negative values; in the case of astro-
nomical (optical) images, for example, it is a spatial distribution of light intensity over the
surface of a film or detector that is being measured. By additive, we imply that the total sum
of the distribution has a physical meaning. Again using the example of optical astronomical
images, the total light flux received by the detector may have implications as to the nature
of the light source. Another important example of positive and additive distributions in
physics relates to probability distributions. It is meaningless to have negative probabilities,
and the additivity condition ensures that the distribution can be normalized. In the case
of statistical mechanics, the normalization term of the probability distribution, or partition
function, can be used to determine all the necessary macroscopic physical quantities.

The same observations can be made of x-ray diffraction profiles. The positivity of the
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profile is a result of the intensity of the electric field being scattered by a set of atoms in a
particular plane of the atomic lattice. This is represented by the square of the magnitude of
the structure factor, |F|?. If the intensity is recorded as a function of angular position, 26,

the positivity of an x-ray diffraction profile is given as
1(20) >0, V26. (3.1)

The additivity condition of diffraction profiles can be seen in the physical meaning of the
total integrated intensity. The structure factor is the total contribution of the scattering from
individual atoms for a particular crystallographic direction, [hkl]. The integrated intensity of
a diffraction profile, hkl, for a random powder in terms of the structure factor (see Langford

& Louér 1996, Warren 1969) is
Ihkl = IoK/\?)V_QUmhklPL|Fhkl|2 (32)

where [ is the intensity of the primary beam; K depends on x-rays being collected; V' is the
volume of the unit cell; v is the diffracting volume of the specimen; myy; is the multiplicity
of the hkl profile; P is the polarization factor; L is the Lorentz factor; and |Fjy|? is the
structure factor. The important feature in (3.2) is that integrated intensity is related the
structure factors |Fjp|%.

These two observations are important in formulating a “method” that can determine
both the specimen profile from the observed x-ray diffraction profile and underlying distri-
butions such as the column-length and strain distributions. That is, we expect our method
to extract this information from the observed data and produce results which preserve the
positivity and additivity of the profile or distribution. These features could be included in
some of the deconvolution methods discussed in Chapter 2. For example, in the constrained
deconvolution method, (see §2.1.4), an additional Lagrangian parameter could be added to
preserve the positivity of the solution profile, £, However, to include this additional param-
eter adds an extra degree of freedom to the problem, in that an extra unknown Lagrangian
multiplier must be determined. In addition, from an aesthetic point of view it is somewhat
“messy” to arbitrarily add an extra parameter and it implies that the inverse method is
“incomplete”. Rather, it should be possible to incorporate the properties of positivity and
additivity without making additional assumptions about, say, the functional form of the dis-

tribution or without having to arbitrarily include parameters in the deconvolution/inverse
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method. These conditions ensure that the specimen profile or column-length distribution

determined from the observed profile can be interpreted in general terms.

3.1.2 The maximum entropy principle

Using positivity and additivity as conditions for the consistency of a method for determining
the specimen profile or column-length distribution, we are presented with a new problem of
assigning values to the profile or distributions. Again, this is a problem that is often seen
in physics. For example, in statistical mechanics, the problem of a system (i.e. canonical
ensemble) with a fixed number of particles and a specified average energy is common. How
do we assign a probability distribution to all the possible microstates and determine their
corresponding energies? Similarly, in x-ray powder diffraction the problem of determining
the probability p(I) dI that the intensity I, lies between I and I + dI is often encountered.

The problem of assigning values to distributions has been embodied in a host of arguments
(see Jaynes 1957, Jaynes 1968, Shore & Johnson 1980, Jaynes 1982, Jaynes 1983, Johnson
& Shore 1983, Tikochinsky et al. 1984, Skilling & Gull 1985, Skilling 1989b, Skilling 1990).
The single most important conclusion that can be drawn from these arguments is that
the most probable distribution best represents our knowledge of the “system” and that
this distribution will have mazimally uncommitted information or the least assumptions
(Wu 1997). To illustrate the discussion, the so called “monkey argument” (see Skilling 1984,
Skilling & Gull 1985, Gilmore 1996, Sivia 1996) is presented.

The monkey argument

The following discussion is based on Sivia (1996): suppose we want to assign probabilities
to M distinct outcomes, represented by z; for ¢ = 1, 2, 3,..., M, given some background
information, Z. Z may include properties about x; or assumptions about the underlying
mechanics (Loredo 1990). Suppose we were to employ a team of monkeys to throw a large
number, N, of red balls, into M identical boxes, where N >> M. The monkeys represent a
random and unbiased system and the boxes represent the possibilities, z;. After they have
finished, we examine the number of balls in the boxes. There will be a distribution of the

number of balls in the boxes, {n;} or p. There may be n; balls in the first box, ny red
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balls in the second box and similarly we may find n,, balls in the M-th box. We let the
monkeys repeat the experiment many times, each time recording the resulting distribution

of red balls. The total number of balls will be conserved

N = i n;. (3.3)

The probability of n; red balls being in the ith box is given by

pi:%, Vi=1,2,3,...,M (3-4)

such that p ={p;;i =1, 2, 3, ..., M}. After a large number of repetitions, we notice that
some distributions occur more often than others which are consistent with Z. We can define

the number of ways a distribution p or {n;} occurs by determining its frequency,

a(fn}) = SUn) (35)

where G({n;}) is the number of times the distribution {n;} has appeared and M?" is the
number of ways N red balls can be arranged into M boxes. To evaluate the G({n;}), we
must first determine the number of ways, say, n; red balls can be drawn from N balls, given
by the combination, NC,, = % For ny, this would be ¥-"C,, = Z,(N_—"l)_'),, and

so on for "™, . Using these terms, G({n;}) is given by the product of the combinations,

GHni}) = VO, x VTMCp, X o x "™MC,

N!
e — 3.6
Using this result in (3.5) and taking the logarithm, we have,
InQ = —NIn(M)+In(N!) — ln(nl' nol ... ny!)
= —NIn(M) + In(N!) Z Inn;!. (3.7)
For large n, we can apply the Stirling formula,
In(n!) ~ nln(n) —n (3.8)
and remembering that n; = N p;, after some manipulation we arrive at the result,
M
InQ~ -NIn(M) - N> pilnp; (3.9)
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where Zf\il pi = 1, and M and N are constants. Given a distribution, p or {n;}, its
frequency of occurrence can be determined from (3.9). The distribution which best represents
the system of red balls, that is consistent with Z and constrained by NV, will have the greatest
frequency. In other words, this distribution will be the most probable distribution. For this
condition to be satisfied, In {2 must be a maximum, which implies — Zf;f 1 pi Inp; must also

be a maximum. We define — Zf\i . pilnp; as the entropy function, S(p), of the distribution

D,
M
S(p)=-— Zpi In p;. (3.10)
i=1

where 3" pi = 1.

The significance of the above discussion is that our best choice of p was made with the
least added information. That is, we did not need to include any additional assumptions
about the nature of the distribution, such as its functional form. Also, this distribution was
determined with the information supplied. Hence, we can now assign a probability distribu-
tion to {z;}, by determining the distribution p which has a maximum entropy. As stated
earlier, this distribution will be the maximally noncommittal distribution or the distribution
with the least assumptions (Wu 1997); this defines the MaxEnt principle.

We can generalise the monkey problem further by considering the case where the boxes
have different sizes (see Sivia 1996). In the above case, all the boxes were assumed to
have been the same size, which implies that it is equally likely that a ball will be found
in any one box. The a priori model is defined as a uniform probability of 1/M for all
t. In the case where the boxes do not have the same size, the probability distribution,
m= {m;i=1,2 3,..., M}, will be non-uniform. As usual the distribution must sum to

unity (the additivity condition),
d mi=1. (3.11)

The frequency of the {n;}, (3.5), is “modulated” by the probability of a ball being found
in a particular box, m. This results in a multinomial distribution (Sivia 1996). Following
the same steps that produced (3.9), we can show that the best distribution will be when

— M piIn 2 is a maximum. This is similar to (3.10), with the exception that m; appears
=1 m
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as the denominator in the logarithm. This defines a general entropy function, S(p),

M
Sp)=—> n 1n% (3.12)
i=1 t

In the case where all the boxes have the same size (3.12) reduces (3.10). The difference
between the two forms of entropy is that (3.12) allows the entropy function to be transformed.
We define m as a Lebesgue measure, first introduced by Jaynes (1968). It ensures that (3.12)
remains invariant under transformation.

The distribution m also provides us with a prior: information about the possible distri-
bution of the balls. Suppose for a moment we had not carried out the experiment with the
monkeys. By the maximum entropy principle, the distribution which maximized the entropy
function would be m and this would represent our best understanding of the distribution
of balls. However, after the experiment the information about the possible distribution of
balls, m, is imparted onto the distribution that maximises (3.12). Hence, (3.12) quantifies
the transfer of information from m to p (Gilmore 1996).

From this we define m as the a priori model. Being able to define and include the «a
priori model in a maximum entropy method becomes very important for determining the
column-length distribution and strain distributions from observed diffraction profiles. In the
later chapters, it will be demonstrated that the a priori model influences the uncertainty

region of the solution.

The uniqueness of the entropy function

The monkey argument demonstrates in a particular case that (3.12) can be used to assign
values to a distribution. This argument is also applicable to cases where an ensemble of
identical systems can be prepared such as in statistical mechanics. However, it has little
bearing on the physical reality of recording and analysing an x-ray diffraction profiles. That
is, only one pattern is recorded by the diffractometer and we often do not have the liberty of
generating a large number of candidate patterns. In recording an x-ray profile and analysing
it, we have to work with the available data and information. Accepting that this is the
general situation, the following question arises: how can we be sure that there are not other
functions, such as —) . Inp; or ), ,/p;, which preserve the positivity and additivity of p
and produce the same or a better result than applying (3.12)?
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This question has been addressed in various ways (see Shore & Johnson 1980, Johnson
& Shore 1983, Tikochinsky et al. 1984, Gull & Skilling 1984, Skilling 19895, Skilling 1990,
Goambo & Gassiat 1997). As was the case in the problem of assigning values to a distribu-
tion, the central conclusion that can be made is that (3.12) is consistent with the principles
of statistical inference. If another function is used, it may produce inconsistent results, un-
less it has the same maximum (Shore & Johnson 1980, Johnson & Shore 1983). In the case
of reproducible experiments it has been shown that the maximum entropy principle was the
only consistent approach to inferring discrete probabilities (Tikochinsky et al. 1984).

In the case of powder x-ray diffraction, it is interesting to note that the problem of
determining the probability, p(I) dI, for the intensity, I, first presented by Wilson (1949),
can be determined independently by using the entropy function. This was demonstrated by
Sivia & David (1994) and indicates that the maximum entropy principle can independently

produce consistent and reliable solutions.

3.2 The Maximum Entropy (MaxEnt) Method

In the monkey argument we addressed the problem of assigning a probability distribution
to a set of outcomes, {z;}. We found that the distribution which was consistent with the
background information, Z, and which represented our best knowledge of the system of red
balls, was the distribution that maximised the entropy function (3.12). We can argue that
this distribution will have the least added information.

Using (3.12), we want to formulate a “method” that allows us to determine the profile
or distribution (i.e. column-length or strain distribution) which has a maximum entropy
subject to experimental data. This can be done by appealing to Bayesian probability the-
ory. We apply this theory because it incorporates the process of inductive reasoning. It
also provides us with a “grammar” (Loredo 1990) or set of rules to incorporate the en-
tropy function and experimental data. It does this by taking into account the hypothesis
(the a priori information) with the data (likelihood information) (Loredo 1990, Sivia 1996).
The hypothesis and likelihood information are characterised by the a prior: and likelihood
probability distributions, respectively. These distributions are mapped into the posterior

probability distribution, which determines the plausibility of the hypothesis in the presence
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of the experimental data. In applying Bayesian theory, probability is defined as the mea-
sure of the plausibility of a proposition when there is incomplete information or evidence to
establish with certainty its truth or falsehood (Loredo 1990, Sivia 1996). The measure of
plausibility is represented by a mapping onto the real number interval [0, 1], where 0 defines
the proposition as being false and 1 defines it as being true (Cox 1946). By introducing a
process of inductive reasoning and defining probability in this manner, we can determine
the plausibility of a specimen profile or column-length distribution in the presence of the
observed profile (i.e. experimental data).

The following section will consider a MaxEnt method for x-ray profile analysis by ad-
dressing the problem of deconvolving the observed profile, given in (2.1) and (2.4) such that
the specimen profile, f can be determined. The maximum entropy methods for determin-
ing the column-length and strain distributions from the specimen profile are discussed in
Chapters 4 & 5, respectively.

The diffraction profiles are assumed to be single profiles from monochromatic radiation.

3.2.1 A prior: probability distribution

The hypothesis is founded on the positivity and additivity properties of x-ray diffraction
profiles and entropy function, (3.12), to infer the values of the specimen profile. This infor-
mation constitutes our a priori information and can be expressed in terms of a probability

distribution as
exp [a S(f)]
Zs

where « is a positive constant, such that a € [0, oo); S(f) is the entropy function, (3.12).

p(flm, a, 7) = (3.13)

Zg is the normalisation term such that

[ pitim, 0. DE =1 (3.14)

where the measure Df accounts for the volume element in f-space (see Skilling 1989a).
The term on the left-hand side of (3.13) is interpreted as the probability of f, conditional

(i.e. “|”) on the a priori model, m, some positive value of o and the background information

Z. The a priori model, m, incorporates our knowledge (or lack of it) about the specimen

profile. This information may include theoretical knowledge of the specimen profile or include
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information from a Rietveld refinement. In the absence of this information we must assume
a uniform model equal to the average number of counts of the observed profile, in which case
(3.12) reduces to (3.10). The background information, Z, incorporates the knowledge that

the profiles are non-overlapping and consist of only monochromatic radiation, say.

3.2.2 Likelihood probability distribution

The hypothesis needs to be tested in the presence of the experimental data (i.e. the ob-
served profile). The likelihood probability distribution determines the plausibility of g for a
particular or ¢rial specimen profile, f, which is embodied in the experimental model, such
as the convolution equation described by (2.1) and (2.4).

In order to determine this probability distribution, the statistics of the experiment must
be considered. The process of recording an x-ray diffraction pattern or profile is simply a
counting experiment in which the underlying statistics are governed by a Poisson process.
In the case of large counts (2 10) it can be shown that the Poisson process can be approxi-
mated by a Gaussian probability distribution. Following a similar discussion to Sivia (1996),

suppose we consider the probability of obtaining the ¢th datum, g;, given as

)= 3¢ exp(—gs)

P(6il g T) = =1 (3.15)

where g; is conditional on the noiseless data, g; (which has been corrected for the back-
ground level) and on Z. For the corrected observed profile there are M data points and the

corresponding probability distribution becomes

. U o7 exp(—ai)
pgle, 7) =] BT (3.16)
i=1 L

where § = {g;; i = 1, 2, ..., M}, and similarly for g. Where the counts are very large, we

can take the logarithm of (3.16),

In[p(g| &, I)] = Zﬁz‘ In g; — Zﬁi - Zgi Ing; + Zﬁi - %Zln@ﬂﬁi) (3.17)

where the last three terms are arrived at by applying Stirling’s (full) formula on In(] [, g!) for

large g. Here we want to determine In[p(g| g, Z)] in the region about the noiseless data and
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must take into account that g; will be corrupted by the uncertainty, n;, such that g; = g; +n;,

where (n;) =0 and (n?) = 02 = §; ~ §; for all 4. Substituting this result for g; we arrive at,

9i

7

nlp(g] . 7)) =~ 3 (a4 3 ) n (142 - %;m@wgi). (3.18)

1 and the result can be further

The 3 term in (3.18) can be dropped since §; + n; > 3

approximated by expanding the In (1 + %) term as a Taylor series to the second order
(Sivia 1996). Substituting the terms of the series into (3.18) and after some manipulation

we arrive at

L nd 1 ) 1 T,
np(glg I)] = —) 722 Y In(2mg;) — 3 > @G-8 o

i

Q

—% Zln(%ﬁi) - % Z (i — )7 /9 (3.19)

where the ), % term can be dropped since n; can take on both negative and positive values
and will be small after the summation. In the case of large counts, the result g; = o2 can be
used in (3.19). Ignoring the constant term, (3.19) demonstrates that Poisson statistics can
be approximated by a Gaussian process?. The noiseless data is defined by the convolution
of the trial specimen profile, f, and the instrument profile, such that § = K{f}, where K is
the convolution operator. The likelihood probability can be stated in terms of a Gaussian

distribution as

p(glf, 0% 1) ~ []

Q

(3.20)

where the trial specimen profile, f and variance, o2, have been included on the left hand
side of (3.20) to signify that g will be conditional on f. The left hand side of (3.20) defines

the probability of obtaining g conditional on the trial specimen distribution, f, the noise

2

variance, o*, and the background information, Z. In (3.20), Z¢ is the normalization term,

such that Zal =11, 21 ~. The variance has been approximated by 0% ~ g when the counts
7T0'1;

are very large.

2Tt is also useful to point out the above result can be obtained by applying the central limit theorem.
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C(f), the statistic function is given as

o) = (3.21)

1M
o

Q, |

e

(3.22)

This function embodies our understanding of the experiment, the corrected observed profile,
g, the trial specimen profile, f and statistical noise; it is equivalent to the x? used in classical

statistics.

3.2.3 Bayes’ Theorem

Two important parts of Bayes’ theorem have been established, the a prior: and the likelihood
probability distribution given in (3.13) and (3.20), respectively. To unite these two terms, we
must formulate the joint probability distribution, which is just an application of the product

rule in probability theory (Cox 1946) given as
p(f, glm, 0, I) = p(f|m, o, I) p(g| £, 0, I) (3.23)

where the left-hand-side of (3.23) is the joint probability distribution of f and g being true,
conditional on m, o and I. There is also a symmetry in the product rule, such that (3.23)
can be written as

p(f, glm, 0, I) = p(g| Z) p(f|g m, 0, 7). (3.24)
Equating the results on the right-hand-side of (3.23) and (3.24) and dividing both sides by

p(g|Z), where p(g|Z) > 0, we arrive at Bayes’ theorem,

p(f‘ m, &, I) p(g‘ f, o, I)
p(g|1)

Thus, Bayes’ theorem is simply a corollary of the product rule for probabilities. On the

p(flgm, 0, 7) = (3.25)

right hand side of (3.25), we have our hypothesis, given by the a priori probability distribu-
tion, p(f| m, «, ), combined with the experimental information described by the likelihood
probability distribution, p(g| f, o, Z). The result is mapped into a posterior probability dis-
tribution, to determine the plausibility of the specimen profile conditional on the corrected
observed profile, as well as an a priori model and the background information, Z. This is

the process of inductive reasoning.
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Introducing (3.13) and (3.20) into (3.25) and ignoring the denominator in (3.25), since

it is a proportionality constant, we arrive at
1
p(flgm, 0, ) x expa S(f) — EC’(f). (3.26)

Using the same reasoning that was applied in the monkey argument, the best choice of f
is the distribution that maximises (3.26). This is equivalent to maximising o S(f) — £C(f),
because of the monotonic nature of the exponential function. This is the essence of the
MaxEnt method, which consists of determining f such that it maximises S(f) subject to
C(f).

However, maximising o S(f) — $C(f) introduces a new problem: the computational prob-
lem of developing a robust algorithm that determines the unknowns o and f, while using the
nonlinear entropy function, (3.12). This is discussed in the next section and is embodied in

the Skilling & Bryan (1984) MaxEnt algorithm.

3.3 Skilling & Bryan MaxEnt Algorithm

A detailed discussion of the Skilling & Bryan (1984) algorithm is presented here. This
algorithm has proven to be reliable and robust for solving a variety of inverse problems,
deconvolving the observed profile to determine the specimen profile and solving the inverse
problems related to crystallite size and strain distributions (see Chapters 4-6). For each
problem the MaxEnt method preserves the positivity of the distribution and determines a
solution which has a maximum entropy.

1

The maximum entropy problem can be stated by interpreting a S(f) — ;C(f) as a La-

grangian function,

Qf) = a S(f) — %C(f) (3.27)

where « is the unknown Lagrangian parameter. Given (3.27), we want to maximise Q(f) with
respect to f. That is, we seek the specimen profile, f, such that V Q(f' ) = 0. The geometrical
interpretation of this condition is given in Figure 2.2. The problem of determining o and f
is made difficult because of the nonlinearity of (3.27). At this point the significance of the a
priori model in determining the o and f becomes clear. Given that m defines our knowledge

of the specimen profile, it also contributes to the estimate of o and f, which in turn affects the
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determination of the uncertainties in the solution. By using a uniform a prior: model, our
lack of knowledge is being incorporated into the MaxEnt method and any solution represents
the worst case scenario. In other words, if our estimate of the a priori model is accurate or
contains information which has “structure”, we expect the solution profile to approach the
actual profile and the uncertainties in the solution profile to be reduced.

Maximising (3.27) is essentially a nonlinear optimization problem. The use of the log-
arithmic form of the entropy function is an important feature, because it preserves the
positivity of the solution profile and distributions. The nonlinearity also implies that a com-
putational algorithm can only determine the solution iteratively, rather than in an exact
form. It is shown in this section that the Skilling & Bryan (1984) algorithm satisfies these

requirements.

3.3.1 The rationale of the Skilling-Bryan algorithm

The MaxEnt method is commonly applied to the numerical solution of inverse problems. As
we have seen, in x-ray diffraction profile analysis the inverse problems of deconvolving the
instrument kernel from the observed data, and determining the crystallite size and strain
distributions are expressed as integral equations of the first kind (also see Chapters 4-5).

The discussion in Chapter 2 demonstrated that in the case of deconvolving the observed
data, certain methods at best produced ill-conditioned specimen profiles. It was shown
that ill-conditioning occurred when the kernel was near singular. In the worst case, the
kernel may be singular and not have a unique inverse. To picture this, we define a set of
feasible solutions, {f}. This is analogous to the monkey argument where a set of feasible
distributions, {p} was defined. The aim is to determine the most probable solution, f, from
the set of feasible solutions. As discussed earlier, the most probable solution is the solution
with the maximum entropy.

The first step in achieving this is to define a subset of solutions, {f}supser Which are
consistent with the experimental data. The solutions which are not consistent with the
experimental data are simply rejected. The criteria for defining the subset is given by the
statistic function, C'(f), by imposing the constraint C'(f) < Ci;, where Cyip, is some preset

critical value. It is normally set equal to the number of data points, M.
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In {f}ypse there are still many feasible solutions, which are consistent with C(f) < Cyip-
From these, we want to choose a single solution. This is achieved by imposing the entropy
function on the subset. The solution that maximises the entropy function is the maximally

noncommittal solution.

3.3.2 Defining the subspace

The Skilling & Bryan (1984) algorithm does not attempt to determine the MaxEnt solu-
tion in the space mapped by Q(f). This would be a computationally demanding task since
f = {fi;1 =1,2,3,...,M}, where M can be quite large. It introduces difficulties when
attempting to prevent search vectors from becoming linearly dependent. Moreover, in meth-
ods such as the Newton-Raphson technique, the Hessian matrix may become ill-conditioned,
producing ill-conditioned solutions. To overcome this, a subspace with fewer dimensions,
r, than M is defined. This allows the problem to be mapped into the subspace where the
solution is determined, then mapped back into the solution space (i.e. f-space). This is a
computationally inexpensive task and also has the benefit that the conditioning of the basis
vectors, which span the subspace, can be guarded against becoming linearly dependent.
The subspace is defined by a set of basis vectors, ey,..., e, where 3 < r < 10. We define

the first two basis vectors as,

ep = f(V5S) (3.28)

and

where V.S = {05/0f% i=1,2,3,...,M}and VC = {0C/df*; i=1,2,3,...,M}. The mul-

tiplication in (3.28) and (3.29) is component-to-component, such that f (VS) = {f' 9S/0f*, ...

and similarly for f (VC). The weighting by f favours more intense regions of the distribu-
tion and prevents negative values. Futhermore it is noticeable that the terms V.S and VC
from (3.28) and (3.29) are drawn from V(). This suggests that the next set of vectors for
the subspace can be drawn from VV(@Q. Allowing VVS and VVC to operate on e; and
e, respectively, and weighting each term with f, four terms are produced. However, this

decreases to two, since f(VVS) = —I, where I is the identity matrix and nothing new is
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obtained. Using the remaining terms, a third vector can be defined as
es = |[VS|"H(VVO)f(VS) — |[VC| H{(VVC) f (VC) (3.30)

Additional basis vectors can be determined in a similar manner, but ey, es, e3 are usually
sufficient; however, this does depend upon the complexity of the problem.

At this point it is useful to reinforce the above discussion and place it in a wider context.
Usually in the Raphson-Newton method, the Hessian matrix, VVQ ™, is determined for each
step. However, the choice of the basis vector, (3.28-3.30) “builds up” information about the
Hessian matrix (Wu 1997). It should be noted that the Newton-Raphson method assumes
the curvature is parabolic. However, this is not the case in the computational problem of
determining the maximum entropy solution, where the curvature of Q(f) is dominated by
the entropy function. It is this geometrical property which underlies the problem and defines

the inner product of vectors.

3.3.3 Entropy metric

The curvature of the solution space is dominated by the entropy metric, defined as,
gi; = (=VVS) (3.31)
= 5y/f (3.32)
where 0;; is the Kronecker delta. The entropy metric is a covariant tensor quantity. The

transformation from covariant to contravariant metric, g;; — g, is given by

i colgiy)
gl = det(g;-) (3.33)
= ;f’ (3.34)

where co(g;;) is the cofactor of g;;, determined by eliminating the ith-row and jth-column
from g;; and taking the determinant of the remaining matrix; det(g;;) is the determinant of
gij- This simply means that the transformation g;; — g involves taking the inverse of the

gi; matrix. The length of the contravariant quantity is given by

fl = Ve fifi (3.35)
= ij (3.36)
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and using the contravariant form of the entropy metric, (3.34), the inner product of covariant
quantities, such as V.S and V(' is given by
VSP? = g7 (VS); (VS);
= 3 /1 (08/0f7)? (3.37)
J
and
IVC]? = g7 (V0);(VO);
= ) f(ec/af) (3.38)
J
where VS and VC are covariant vectors. Hence, by using ¢ in (3.37) and (3.38), respec-
tively, the vectors are being transformed from covariant to contravariant vectors. This also
implies that VVS and VVC must be multiplied by g to ensure that the mapping from

a covariant to contravariant vector is preserved; it also accounts for the weighting terms in

(3.28-3.30).

3.3.4 Formulating the problem in the subspace

Now that the subspace and inner product of quantities have been defined, the problem of
determining the f that maximizes (3.27) is transformed into this subspace. Within the
subspace a generalized coordinate system, x* where y = 1, 2,..., r, is adopted and the
entropy and statistic functions can be expanded as

~ 1
S(x) =Sp+ S, at — 3 Juv at ¥ (3.39)

and

1
Cx)=Co+Cpa" + 3 M, =" z” (3.40)
where, S, = el - VS; g, = e} -e,; C, = e - VC and M, = e - VVC -e,. The next

iteration is given by
frev = f 4 zfe, (3.41)
= f+of (3.42)

where the length of the step-size is given by

l = /gt (3.43)
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Orthogonalizing the subspace

The vectors spanning the subspace, {e,}, are not orthogonal and may be linearly dependent.
In order to prevent this, the subspace must be orthonormalized (using the Gram-Schimdt
process). A consequence of this is that the matrices, g,, and M), are simultaneously diago-
nalized. This provides a way of guarding against linear dependency. If the eigenvalues of g,
are near to zero, they are discarded with their corresponding eigenvectors. Both matrices
will be [r x r] symmetrical matrices. The M, matrix will be convex, which implies that
its eigenvalues will all be positive. Another consequence of the orthonormalization of the
subspace is that the coordinate system is transformed into a Cartesian system and the dis-
tinction between covariant and contravariant vectors disappears. In the Cartesian subspace,
(3.39) and (3.40) become,
S(x) = So+ S, w, — %fcu T, (3.44)
and
C(x)=Cy+C, xu—l—%)\u Ty Ty, (3.45)

where A, are the eigenvalues of M,,,. The step size in the orthonormalized space is
l=\T,1,. (3.46)

Basic Control

In the orthonormalized subspace the search for a maximum begins. That is, we maximize S
subject to the constraints, C = Clp and 12 = I3. However, the eigenvalues, ),, are positive

which implies that the C'(x) has a minimum defined by z, = —Cy/\,, given by

~ 1

Comin = Co — 5)\;10#(7“. (3.47)

This value may not be attained or may exceed the preferred Cy;,. In such a case a modest

statistic value is chosen, given by
~ 2 ~ 1
CVa,z'm = max{gcmin + gCOa Caz'm}- (348)

C decreases monotonically and will eventually settle onto the preferred value. The maximum

step-size that is allowed in the subspace is set by

P<iZ~(01~ 0.5ij). (3.49)

J
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Using (3.44) and (3.45), the Lagrangian function, Q, is defined in the subspace as

Q(x) = aS(x) — C(x) (3.50)
and can be maximized such that, dQ/dz, = 0. This results in
asS, —C,
== "F o1
T, o (3.51)

The result in (3.51) can be substituted into (3.45) and an « can be determined such that
C = Caim- Using each calculated value of «, (3.51) is then evaluated and checked against
(3.49). If the inequality is satisfied, the next increment, "¢, can be determined. This is

repeated until C = Claim-

Additional control

There are cases, especially in the initial iterations, where the preferred step-size, [2, is over-
estimated i.e. when (3.49) does not hold. This threatens the expansion of (3.44) and (3.45)
within the subspace. To guard against this, an additional constraint must be included. The

Lagrangian function in the subspace is modified, such that,
Q(x) = aS(x) — C(x) — BI” (3.52)

where # is an additional Lagrangian multiplier. Maximizing (3.52) dQ/dx, = 0 produces
asS, —Cy

T, = ————.

A+a+p

For a given «, (3.53) can be substituted into (3.45) and a § determined such that C' = Cyjpn.

(3.53)

Once f has been calculated, (3.53) can be evaluated and used to determine f™¢.
Having determined f™*", a new set of basis vectors is calculated and the above steps

repeated, until C = Claim-

Convergence criteria

After each iteration the parallelness of the VS and V(' vectors can be checked against a
preset value, d4;,,. The geometrical interpretation for this condition is given in Figure 2.2.

The parallelness of V.S and V' is given by
1 vSs B vC
- 2(|VS| |VCO
IfC =0C,,, and § < 0aim, the algorithm can be halted.

2

(3.54)
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3.3.5 Determining the uncertainty in f

The result in (3.26) defines the posterior probability distribution of f in an M-dimensional
space. This distribution has a maximum centered about the solution profile, f. In addition,
the “spread” in p(f|gm, o, Z7) defines the uncertainty about the £ 1f approximated as a
Gaussian distribution in f-space, the variance of f can be determined.

We begin by first substituting (3.27) into (3.26), given as

p(flg, m, 0, 7) xx exp [Q(f)] . (3.55)

Expanding (3.55) in a Taylor series about f, we have
| . . .

x exp [Q(f)} exp [—%(f —HIVVQ@E)(f - f)] (3.56)

where exp [Q(f‘ )] is a constant. In this expansion the first derivative term, VQ(f' ), vanishes,
since it indicates the maximum of p(f|g, m, o, Z). The second derivative (i.e. the second
term in (3.56)) is a Gaussian centered about f. We can therefore conclude that the variance
will be given by

o =VVQ(f)™ (3.57)

where (3.57) is evaluated using f. If VVQ ! is a diagonal matrix, the elements will define
the variance of f. However, in general, VV Q! is not diagonal, rather it defines an [M x M]
correlation matrix. As suggested by Skilling (1990), the uncertainties in f, o, can be

determined by evaluating

of=u"-[VVQ| ™" u (3.58)

where GJ% = {0,2%; i =1,2,3,...,M}; [VV Q]! is the correlation matrix; u is an M-
dimensional vector. In general the correlation matrix will not be diagonal. If it were,
determining the uncertainties in f would simply involve taking the diagonal terms; however,
ignoring the off-diagonal terms when [VV Q]! is a “full” matrix could result in information
about the data not being incorporated into the uncertainties. In order to avoid this, the vec-

tor u in (3.58) is defined and takes into consideration a region of interest which corresponds

to the resolution of the data Hansen & Pedersen (1991). By “region of interest” it is meant
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the region where the i-th element in f has ones on either side and zeros elsewhere. The un-
certainties in (3.58) account for the deconvolution, but do not account for systematic errors
that occur in background level estimation. Other approaches of determining the uncertainty
regions in the MaxEnt solution have been suggested by Skilling et al. (1991) and Hansen &
Wilkins (1994).

The important implication that arises out of the above discussion is that uncertainties in
the specimen profile can be used to determine uncertainties in any subsequent calculations
and their physical quantities, both of which arise from the Warren-Averbach and Williamson-
Hall methods. Another consequence of determining the uncertainties in the specimen profile
is that the uncertainty regions in column-length and strain distributions can be determined.
This enables column-length and strain distributions to be used in a comparison with theo-

retical models.

3.3.6 Limitations of the Skilling-Bryan Algorithm

The Skilling & Bryan (1984) MaxEnt algorithm discussed in this section does have some diffi-
culties which are mostly concerned with the theoretical and the epistemological developments
of MaxEnt. At the centre of the theoretical difficulties is how the Lagrangian parameter, «,
is determined (see Titterington 1985, Skilling 19894, Gull 1989, Bryan 1990, MacKay 1991,
Donoho et al. 1992, Strauss et al. 1993, Wolpert, & Strauss 1995). More recently, a difficulty
has arisen concerning the application of a term known as the evidence (i.e. the denominator
in (3.25)) (see Strauss et al. 1993, Wolpert & Strauss 1995).

In the discussion of the Skilling & Bryan (1984) algorithm, above, it was pointed out
that C(f) is set equal to the number of data points. Under this constraint « is determined.
It is worth noting that the C'(f) = M condition is somewhat arbitrary, since C(f) can take
on values in the range M + +/2M. Skilling (1990) has pointed out that this criteria is
a “frequentist” view and does not constitute a Bayesian method. It assumes on average
C(f) = M would occur after many repeated measurements. However, the specimen profile is
only measured once. As pointed out by Titterington (1994), the C'(f) = M criteria can lead
to an under-fitting of the data and the solution will be biased towards the observed data in

the case of little blurring.
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In order to overcome these difficulties, Gull (1989) developed a MaxEnt method based on
Bayesian theory. This can be achieved by extending (3.26) to include an a priori distribution
for a, resulting in a joint probability distribution which includes f and «. In this distribution,
either one of the terms can be integrated out. This derivation results in the entropy function
defining the number of “good data”, M,, and the statistic function defining the number of
“bad data”, My, such that M = M, + M,. This is the critical difference with the Skilling &
Bryan (1984) algorithm, in that the good data are used to determine ¢, rather than using
the C(f) = M criteria. This results in (Gull 1989)

R Ai
—245 = Zoeri (3.59)

= M, (3.60)

where )\; are the eigen-values from Hessian matrix in the entropy metric (see Gull 1989,
Miiller et al. 1996, Sivia 1996). The variance, on the other hand, can be determined from M,
Using (3.60) assumes that the posterior distribution for « is narrow (Wolpert & Strauss 1995,
Sivia 1996). This usually corresponds to M, 2 10 (Sivia 1996). Bryan (1990) has developed
an algorithm for the case where M, << 10. It is interesting to note that Geoghegan et al.
(1996) have applied the C(f) = M criteria to neutron reflectometry data.

Nevertheless, in the application to x-ray profile analysis, simulations and calculations
have shown that the Skilling & Bryan (1984) algorithm is a reliable and consistent algorithm.
This will be demonstrated in Chapters 4, 5 & 6.

3.4 Summary

In this chapter, the MaxEnt method has been presented as a new method for determining the
specimen profile from an observed x-ray diffraction profile. This is based on the charactisitics
of x-ray diffraction profiles being positive and additive distributions. These characteristics
allowed the entropy function to be defined. Based on this, it has been shown that the entropy
function is the only function which is consistent with the principles of statistical inference.
Futhermore, the generalised entropy function incorporates an a prior: model concerning the

unknown specimen profile.
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The MaxEnt method was formulated using Bayesian theory which introduces a prior:
information about the characterisitics of the profile and the nature of the experiment. It
has also been shown how the uncertainties in the solution profile can be determined. This
important extension makes the MaxEnt method a fully quantitative method for analysing
x-ray diffraction profiles, enabling the uncertainties in subsequent results to be determined.
Moreover, the general formulation of the MaxEnt method allows other inverse problems to
be solved, such as determining the column-length and strain distributions from the observed

profile.
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Chapter 4

A Maximum Entropy Method for
Determining the Column-length

Distribution

In this chapter, a novel two-fold application of the MaxEnt method is presented; the first
application determines the specimen profile from an observed size-broadened x-ray diffraction
profile, and the second obtains, from this the area-weighted column length distribution.
The two-fold procedure is important in presenting an altenative approach to removing
instrumental broadening and determining the specimen profile and draws upon the discus-
sion of the MaxEnt method presented in Chapter 3. Once the specimen profile is known,
conventional methods for crystallite/domain size and microstrain strain analysis can be ap-
plied. In the particular case of crystallite-size broadening only (i.e. no strain present),
the determination of the specimen profile and column-length distribution can be combined
into a single step (see Appendix C). However, in general we cannot know a priori that
crystallite-size effects are the only source of broadening. The usual approach is to determine
the specimen profile first by removing instrumental broadening and then to apply semi-
quantitative methods such as the Williamson & Hall (1953) method (see §1.4.2) to them to
establish the nature of the broadening (see Langford & Louér 1996). In the two step ap-
proach described here, the MaxEnt method determines the set of distributions (viz. specimen

profile and column-length) that are consistent with the experimental data while maximiz-
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ing the entropy function, thus producing the mazimally noncommittal solution (Skilling &
Bryan 1984, Sivia 1996, Wu 1997). The work described in this chapter has been accepted
for publication in JAC (see Armstrong & Kalceff 1999a).

The MaxEnt method for determining the column-length distribution is presented in §4.2.
To evaluate the performance of the MaxEnt method and the integrity of its results, extensive
simulations and calculations have been carried out (see §4.3). The simulations report three
cases (see §4.4): the first one determines the best background level and examines the effect
of truncation on the specimen profile and column distribution, as well as the subsequent
results. The second case examines the effects of under- and over-estimation of the background
level on the specimen profile, column-length distribution and subsequent results. Finally,
we examine the effects of deconvolving with non-ideal instrument profiles and the effect
this has on the specimen profile, Fourier coefficients, column-length distribution, and area-
and volume-weighted sizes. In all cases the uncertainties in the specimen profile, Fourier
coefficients, column-length distribution and size results are determined. The implications of
these calculations for experimental conditions used in gathering diffraction data are discussed

in §4.5.

4.1 Crystallite size broadening and analysis

4.1.1 Crystallite size broadening

The models for size broadening of x-ray diffraction profiles in polycrystalline materials de-
scribed by Bertaut (1950, 1952) and Warren & Averbach (1950, 1952) represent the crys-
tallites (or diffracting domains) as consisting of columns perpendicular to the diffracting
planes. The columns making up the crystallites diffract independently and the resulting
size-broadened profile can be interpreted as a weighted sum of intensities from each column.
The weighting terms correspond to the fraction of columns having length L to L + dL that

contributes to the intensity distribution. This can be expressed in a continuous form as

F(s— s0) = /000 K(s — s, L) pa(L) dL (4.1)

where f(s — sg) is the size-broadened profile defined in reciprocal space dimensions, s — so;

K (s—so, L) is the scattering kernel that defines the intensity being diffracted from a column
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of length L, perpendicular to the diffraction plane over a range of s — sy in reciprocal space;
pa(L)dL is the area-weighted column-size distribution for columns of length L to L + dL
perpendicular to the diffraction planes. We require that p,(L) > 0 for all L, satisfying
fooo po(L)dL = 1.

It was also shown by Bertaut (1950, 1952) and Warren & Averbach (1950, 1952) that
(L), can be determined from the initial slope of the Fourier coefficients of f(s — sg), given
by Warren (1969) as

1 d A(L)

m. -~ dar (42)

as L — 0. The (L), term in (4.2) represents the average area-weighted apparent crystallite
/domain size; that is, it is the ratio of the total volume of the crystallite to the area pro-
jected onto the crystallographic plane. This also corresponds to V,.(0)/V/(0), where V., is the
common (or ghost volume) and V/(0) = dV.(L)/dL as L — 0 (Langford & Wilson 1978).
The column size-distribution in (4.1) can also be expressed in terms of the second deriva-
tive of the Fourier coefficients of f(s — so) (see equation (13.31) in Warren 1969). Alter-
natively, the Fourier coefficients can be expressed in terms of the area-weighted column

distribution as

A(L) = ﬁ /|: (L' = L) pa(L') . (4.3)

The area-weighted size and column length distributions can be related to another measure

of the crystallite/domain size, the volume-weighted crystallite size (Guinier 1963),

pL) = 7= ralL) (4.4
where p,(L) > 0 for all L, satisfying [~ p,(L)dL = 1. The volume-weighted size, (L),
is identical to the result described by Stokes & Wilson (1942), where they relate (L),to
the integral breadth (profile area/peak maximum) of a size-broadened profile for a given

crystallite shape, expressed as
A

B(20) cosb
where ) is the wavelength of radiation used and 3(26) is the integral breadth of the size-

(L), = (4.5)

broadened profile determined in 26-space. The integral breadth can also be expressed in
terms of the common-volume (or ghost) function, V.(L), for a crystal translated a distance

L perpendicular to the hkl-plane (see equation (1) in Stokes & Wilson 1942).
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The area-weighted distribution, p,, is defined by the direction of the diffraction vector
and geometry of the crystallite. It does not correspond to the distribution of crystallites
measured by direct methods applied in electron microscopy (Smith 1976). For p,(L) to
be related to the fraction of crystallites, P(D)dD, that have a dimension between D and
D + dD, it must be related via the shape of the crystallite. This can be expressed as
(Smith 1976),

pa(L) = /D OO(L) G(L, D) P(D)dD (4.6)

where Dy(L) is a function that defines the smallest column and G(L, D) is the shape kernel
that maps the dimensions of the crystallites into the column lengths. G(L, D) is expressed
in terms of the second derivative; in the special case of a distribution of spherical crystallites,

it is given by Smith (1976) as

G(L, D) = gL (4.7)
and Dy(L) = L. The column distribution is given by
pa(L) = gL / P(D)dD. (4.8)
L

where P(D) is the distribution of diameters. In (4.8), both distributions are independent of
crystallographic direction.

The problem of determining f and p, from experimental data is complicated by the finite
response and aberrations of the diffractometer. In the next section the convolution equation

that produces the observed profile is discussed.

4.1.2 Instrument broadening

The observed profile, g(26), at the output of a diffractometer is the convolution product of
the specimen profile and an instrument profile, superimposed onto a statistical noise and

background level according to
9(20) = / k(20 — 20') £(26) d(260') + b(20) + n(20) (4.9)

where k(20 — 20') is the instrument profile, and f(26) is the specimen profile containing

information about its microscopic properties'; b(26) is the background level and n(26) is the

IThis chapter only considers crystallite size broadening. However, in general the specimen profile will

contain both microstrain and crystallite size broadening that will need to be separated (also see Warren
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noise distribution.
In removing the instrument profile and determining f(26), it is essential that the solution
(i.e. specimen) profile be free from spurious oscillations and for the positivity of f(26) to be

preserved, otherwise errors are introduced into subsequent calculations.

4.2 Maximum Entropy Method for X-ray Profile Anal-
ysis

The dual problems of removing the instrument broadening from an observed x-ray diffraction
profile (by deconvolving (4.9)) and determining the column-distribution in (4.1) are good
candidates for the MaxEnt method, in that both are inverse problems. Information concern-
ing p, or f is embedded in (4.1) & (4.9), respectively. In applying the MaxEnt method we

extract the maximally noncommittal solutions from (4.1) & (4.9).

4.2.1 Background estimation of the observed profile

Before determining the specimen profile, f(26), the background level of the observed profile,
g(20), must be removed. We write
Gg=g-b (4.10)

where b is the estimated background level and g is the background-corrected observed profile.

The effects of poor background correction are well known (see Bertaut 1952, Warren 1959,
Pines & Sirenko 1962, Young et al. 1967, Warren 1969). Over-estimating the background
produces the so-called “hook effect”, in which a negative curvature appears near the origin
of a plot of the Fourier coefficients; this is because there is a reduction in the area of the
profile, and the zeroth-order coefficient, which is proportional to the area of the profile,
therefore decreases relative to the higher order coefficients. When (4.2) is applied, the
negative curvature causes an over-estimation of (L),. On the other hand, when there is
under-estimation of the background, the total area of the profile is increased and the zeroth-

order coefficient is increased relative to the higher order coefficients. Thus, a discontinunity

1969, van Berkum et al. 1996)
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or “kink” appears after the zeroth-order in a plot of the Fourier coefficients. When (4.2) is
applied, this causes an under-estimation of (L),.

A qualitative method for determining the best background using the MaxEnt method
is presented in §4.4.1 & 4.4.3, together with calculations showing the effects of systematic
under- and over-estimation of the background level on the MaxEnt solution specimen profile,
Fourier coefficients, column-length distribution and apparent size results (see §4.4.2).

The MaxEnt method for determining the specimen profile was presented in Chapter 3.
After the background has been removed, the MaxEnt method is applied in order to determine
the specimen profile. It essentially involves maximizing (3.27). This is the first level of

application. The second level involves determining the column-length distribution.

4.2.2 Determining the column distribution

In deconvolving (4.9), the instrument profile was assumed to be shift-invariant over the
interval defining the observed profile. This enabled us to express the trial observed profile
in terms of the Fourier convolution operator. The problem of determining the area-weighted
column length distribution, p,(L), is very similar, with the exception that the scattering
kernel, K (s — sq, L), in (4.1) is not linearly shift-invariant.

The entropy function for this problem is similar to (3.12), but with f replaced by p,:

S(pa) = _Z Daj ln( Pa ) (4.11)

maj

where p, = {ps;; 7 = 1,2,3,..., N} is the solution column-length distribution and m, =
{mqj;j = 1,2,3,...,N} is the a priori model for the column-length distribution. The
statistic function used in (3.21) now uses the solution specimen profile, f , as the “observed”
profile from which the column-length distribution will be extracted. The scattering kernel
given in (4.1) is expressed as an [M x N| matrix, such that K = {K;;;1=1,2,3,..., M, j =
1,2,3,...,N}, where N < M. The statistic function for this problem is given by
M F _ Fy2

C(pa) = ; % (4.12)

where f is the solution specimen profile determined from the MaxEnt method; f ={ fi; 1=

1,2,3,..., M} is the trial specimen profile given by fi = Z;VZI Kijpaj; and o}, are the
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uncertainties corresponding to f calculated using (3.58).

Using (4.11) and (4.12), the Lagrangian can be expressed similarly to (3.27) and the
Skilling & Bryan (1984) algorithm can be modified for the new kernel, K, and used to
determine p,. As discussed in §3.3.5, the uncertainties in the calculated p, can be determined.

The average value, (L),, of the column lengths can be determined using

(L)a = /0 " Lpa(D)dL. (4.13)

Using the result from (4.4), p,(L) can be determined and the volume-weighted result, (L),

can also be evaluated in a similar manner to (4.13).

4.3 Simulated profiles

4.3.1 Simulated size broadened profiles

The size-broadened profiles used were modelled for an alumina sample assuming spherical
crystallites and no lattice distortions or microstrain. The modelling did not take into account
the absorption of x-rays or other effects such as extinction and diffuse scattering. The 113
and 226 multiple orders were used to test the performance of the MaxEnt method under

different conditions.

Particle distribution, P(D)

A set of particle distributions with average crystallite diameters corresponding to (D) =

20, 50 & 100nm were calculated using the function (also see Delhez et al. 1982)

1
P(D;u,t,r)= Zo(utr) D" exp(—uD") (4.14)

where D is the diameter of the spherical crystallites, u, ¢ and r are parameters, and Zp(u, t,r)

is a normalization term that ensures fOOO P(D;u,t,r)dD =1, given by

r+1 ].
Zp(u,t,r) =t tu T T (T—i_ > (4.15)

with I'(z) being the Gamma function. From (4.14), the average diameter can be de-

termined by (D) = [ DP(D)dD. Table 4.1 gives the values of u, t and r, and the
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Figure 4.1: Actual particle size and column-length distributions for spherical crystallites of alumina: (a)
Particle size distribution for (D) = 20nm (dashed line), 50 nm (solid line) and 100 nm (dots); (b) Column-

length distributions for the corresponding particle distributions. All distributions are normalized for unit

area.
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corresponding (D) values. Also, Figure 4.1(a) shows the particle-size distributions for

(D) = 20,50 & 100 nm calculated using (4.14).
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Column-length distribution

For spherical crystallites, size-broadening is independent of the diffracting plane. Using (4.7),
(4.8) and (4.14), the column-size distribution, p,(L) was found? to be,

1 LT (lﬂ, uLt)
pa(Liu, t,r) = — 4 - (4.16)
VA% I (&)

where I'(z, y) is the incomplete Gamma function. The normalization term in (4.16), Zr, was
determined numerically. Figure 4.1(b) shows the column length distributions for spherical
crystallites with (D) = 20, 50 & 100 nm.

From (4.16), the theoretical values for the area-weighted, (L)I"  and volume weighted,
(L)Ih sizes were determined. For (L)I™ the usual result, (4.13) was used. For (L)I"

v

po(L) was first determined from (4.4), and (L)X" was found in a similar manner to (4.13).

Table 4.1 also shows the values for (L)1" and (L)I" for different distributions and {D)values.
Appendix B discusses the effect the particle distribution, P(D), has on (L), and (L), for a

given crystallite shape.

(D) (nm) 20 50 100
u, t, T 0.15, 1.00, 2.00 0.08, 1.00, 3.00 0.05, 1.00, 4.00
(L) (nm) 22.2 50 93.3
(L)Th (nm) 30 65.6 120

Table 4.1: Average diameters, (D), determined using the u, t & r parameters in (4.14); the theoretical

area- & volume-weighted sizes, (L)I" & (L)Th respectively, determined from (4.16), are also shown.

Size-broadened profiles

Modelling of the size-broadened profiles requires the discretisation of terms in (4.1), by

dividing the column-length, L, into n unit cells,

L =na (4.17)

2The integration in (4.7) was performed using Mathematica 3.0, Wolram Research Inc. 100 Trade Center
Drive Champaign, Tllinois, 61820-7237.
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where n defines the harmonic order and is the number of unit cells parallel to the diffracting
plane which makes up the column, and a is the dimension of the unit cell which defines the
step-size in Fourier space. The column-length distribution, (4.6), was evaluated in “column-
length space” (L-space), and transformed into “unit cell space” (n-space), by using the
relationship in (4.17). The consequence of this is that the discretised column-length distri-
bution can be thought of as an N-dimensional column vector. Hence, the scattering kernel

is evaluated as an [M X N] matrix in n-space,

sin?man (s — sg)

K(s—sg,n) = (4.18)

sin?ma (s — so)
where the reciprocal space variable s — sy = % (sin @ — sin Ap) was divided into M-intervals
over the range of (20p % 5)°26 at a step-size of 0.01°26; a = 3 (sinf, — sin 0,)""; and n =

0,1,2,...,N—1. Figure 4.2, shows the true specimen profiles (normalized) over the interval

(20p £+ 1) °26 and the Fourier coefficients, corresponding to (D) = 20, 50 & 100 nm.

4.3.2 Simulated instrument profiles

The simulation of instrument profiles in this study was based on a LaBg standard reference
material. The optics of the diffractometer and reference material were modelled using the
XFIT program (Cheary & Coelho 1992, Cheary & Coelho 1996). The XFIT parameters used
were: slit length = 15 mm; slit width = 0.1 mm; divergence angle = 1°; linear absorption
coefficient = 500 cm™!; target size = 0.04 mm; axial sample length = 15 mm; axial source
length = 15mm; primary Soller angle = 2.3°; secondary Soller angle = 2.3°; radiation
source = CuKy14 + CuKy1p. Three sets of LaBg profiles (each numbering 22 peaks) were
simulated, including an ideal instrument reference profile with no microstrain or crystallite
size broadening, and two others consisting of size broadening from spherical crystallites of
100nm and 500 nm, respectively. The peaks in each set of instrument profiles were fitted
with a split Pearson-VII function; the defining parameters w and m were fitted to a low-order
polynomial for each.

The reference instrument profiles were evaluated in 26-space over the interval (205+5) °26
at a step-size of 0.01°26. Instrument profiles with residual size broadening (i.e. non-ideal

instrument profiles) were used to examine the effect on subsequent calculations.
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Figure 4.3 shows the ideal and non-ideal instrument profiles for the 113 and 226 peaks
over a range (20p £+ 1) °26.

4.3.3 Modelling of “observed” profiles

Simulation of the “observed” alumina 113 and 226 profiles required the evaluation of (4.9)
using a fast Fourier algorithm over the range in (205 + 5) °26 at a step-size of 0.01°20. The
intensities for the 113 and 226 peaks were scaled to reflect the relative intensities expected
from their structure factors and Poisson noise was imparted on the convolved product. The
background level was modelled on diffuse thermal and air scattering over the range of each
peak, (20p + 5)°20 at a step-size of 0.01°26. The result from Larson & von Dreele (1994)
was used, N
b= DB+ Z <B2j % + Baj1 C;—;J)
j

where ) = 27/d, d is the interplanar spacing over the 26-range and the B; coefficients were
modelled from the experimental data used by Kalceff et al. (1995). In order to reflect the sta-
tistical nature of the background, Poisson noise was imposed on the calculated background;
the convolved product (with noise) was added to this in order to produce the simulated
diffraction profiles, shown in Figure 4.4 for the (D) = 20 nm specimen.

To simulate the practical situation, where the available range may be restricted by
neighbouring profiles, the simulated profiles for the 113 and 226 peaks were truncated to

(205 £+ 1) °26. Similarly, the instrument profiles used in the deconvolution were only deter-

mined over the interval (205 + 1) °26, also at a step-size of 0.01°26.

4.4 Computational Results and Discussion

In this section, we evaluate the MaxEnt method for deconvolving the simulated profile and,
in the case of size-broadened profiles, for determining the column-length distribution and the
average area-weighted size. This is done for the observed profiles corresponding to specimens
with (D) = 20, 50 & 100 nm.

We begin by describing some preliminary calculations, including the procedures for deter-

mining the background level and uncertainties in the solution specimen profile, column-length
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distribution and apparent-size results.

4.4.1 Preliminary calculations
Determining the background level

The simulated profiles were corrected for background according to (4.10). The background
level was determined iteratively by visual inspection of the Fourier coefficients from the
solution profile. First, a linear estimate was made over the end-points of the simulated
(observed) profile, g, defined over the truncated interval; this was subtracted from g, and
the MaxEnt method was applied to determine the solution profile. The Fourier coefficients
were examined for any “distortions” arising from under- or over-estimation. By “distortions”,
we mean the effects as discussed in §4.2.1. As suggested by Delhez et al. (1982), it was found
that plotting the logarithm of the observed profile gave a very good indication of the profile
regions affected by the background estimation.

This method of background estimation relies on a deconvolution method that produces
well-defined solution profiles, with no corruption of the Fourier coefficients. The MaxEnt

method was found to be ideally suited for this.

Determining the specimen profile and column distribution

The Skilling & Bryan (1984) algorithm was programmed using Mathematica 3.0. The ba-
sic code was taken from Shaw & Tigg (1994) and extended to meet the full requirements
discussed by Skilling & Bryan (1984). Determining the specimen profile with the MaxEnt
method simply required determining the instrument profile for the corresponding observed
profile and the variance (see §4.4). The instrument profile was normalized for unit amplitude
and used as the kernel. The trial distribution was defined using a fast Fourier algorithm,
with the deconvolution of the observed profile carried out in 26-space. The C,;,, value was
taken to be equal to the number of data points in the observed profile, M. In most cases,
the MaxEnt method converged onto the preferred Cy;,, and was halted by a preset d-value
(see Chapter 3). The algorithm usually took less than 50 iteration to converge. It was found
that the ability of the MaxEnt method to converge onto the preferred C,;,, depended on

the noise level in the observed profiles. After the specimen profile was determined using
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the MaxEnt method, its results were transformed from 26-space into (s — sq)-space, so that
the column-length distribution could be determined. The solution specimen profile, f , was

compared with the true specimen profile, f, by determining R, given by

Z(zf:—;?fy] 2 x 100% (4.19)

The MaxEnt method was applied again to calculate the column-length distribution, using

Ry =

a matrix kernel as described in (4.18) (see §4.2.2). The resulting column distribution was
then used to determine the uncertainties (see below), before being transformed from n-space
into L-space, (where L is the physical length of the columns).

The theoretical area- and volume-weighted sizes were compared with the calculated ones

by determining dif f, their percentage difference,

) L cal
an=}-

x 100% (4.20)

Determining the variance and uncertainties

Deconvolution of the observed profiles requires the variance of the noise in the statistic
function, (3.21). This was determined using the result that for large counts (>> 10), the
Poisson distribution can be approximated by a Gaussian distribution, which implies o =
g; for i = 1,2,3,..., M. After the MaxEnt method had converged onto a solution, the
uncertainties in the solution profile were determined in the manner described in §3.3.5. The
region of interest in (3.58) consisted of ones over f;_1, f; and f;;1 and zeros elsewhere, and
similarly for determining the uncertainties in p,.

The un-normalized solution profile and its corresponding uncertainties were used in the
MaxEnt method again, to determine the column-length distribution and its uncertainties.
The uncertainties in the solution profile, f , were transformed into variances, 0)25, and used
in the statistic function, C'(p), given by (4.12). The uncertainties in the solution column-
distribution were determined in the same manner as the uncertainties for the solution profile,
while those in the integral-breadth result, (L)!, were found from the error in the integral

breadth in (4.5).

F

2> a set of profiles were randomly drawn

In order to determine the uncertainties in (L)

from the uncertainty region of f using a Gaussian distribution. From each profile, the
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Fourier coefficients were calculated and the quantity (L)I" determined. From the set of
(L)F quantities, the standard error in the mean was calculated and quoted as the error in
the quantity. This approach ensured that the quoted error represents the +1o region of
a Gaussian distribution. A similar procedure was followed to calculate the uncertainty in

(L)a-

a

4.4.2 Using the MaxEnt method to determine f(26), A(L), p.(L)

and size results.

In this section, the MaxEnt method is applied to determine the solution profile, Fourier
coefficients and column-distribution for the best background level estimate. These calcula-
tions are performed on the 113 and 226 simulated profiles corresponding to (D) = 20 nm.
In applying the MaxEnt method, the ideal instrument profile was assumed to be known.
Both the simulated and instrument profiles were truncated to (20 £ 1)°26. The effect of this
truncation on the column distribution is presented and it is shown how this can be solved

when a suitable a priori model is chosen.

Deconvolving the 113 & 226 peaks

The results from applying the MaxEnt method for deconvolving the 113 and 226 simulated
profile corresponding to (D) = 20 nm are given in Figures 4.5 & 4.6, respectively. A summary
of the Rs-values and apparent size results using an ideal instrument profile are also given
in Tables 4.2(al) & 4.3(al). In Figures 4.5(a) & 4.6(a), the solution (specimen) profiles are
given. From the 113 and 226 solution profiles the following can be determined: the integral
breadth and volume-weighted size, given by (4.5), Fourier coefficients (see Figures 4.5(b)
& 4.6(b)) and area-weighted size, given by (4.2).
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Size Coeff., A(L)
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Column Length, L (nm)

Figure 4.2: Simulated size-broadened profile and theoretical Fourier coefficients: (a) Size-broadened profile
for the 113 peaks, corresponding to particle sizes (D) = 20nm (dashed line), 50 nm (solid line) and 100 nm
(dots), over the interval (260 &+ 1)°20. The 226 has similar profiles which are not shown; (b) Theoretical
Fourier coefficients for the 113 & 226 profiles, corresponding to particle sizes (D) = 20nm (dashed line),
50nm (solid line) and 100nm (dots).
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Figure 4.3: Ideal and non-ideal instrument profiles for the 113 & 226 peaks in alumina: (a) The non-ideal

instrument profiles for the 113 peak with 100 nm (solid line) and 500 nm (dots) size-broadening, respectively,

and the ideal case (dash line); (b) The non-ideal instrument profiles for the 226 peak with 100 nm (solid line)

and 500nm (dots) size-broadening, respectively, and the ideal case (dashed line).
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Figure 4.4: The 113 and 226 simulated (“observed”) profiles corresponding to (D) = 20nm over the
interval of (26 +1) °26: (a) The 113 profile; (b) The 226 profile. The observed profiles for (D) = 50 &100 nm

are not shown.
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Figure 4.5: MaxEnt results for the optimum background level for the 113 peak corresponding to (D) =
20nm: (a) True 113 specimen profile (solid line), solution specimen profile (dashed line) and lower- &
upper-uncertainty regions (dots); (b) Theoretical Fourier coefficients (solid line), Fourier coefficients from
the solution profile (dashed line), given in (a), and lower- & upper-uncertainty regions (dots); (c¢) True
column-length distribution (solid line), the solution column-length distribution (dashed line), lower- & upper-
uncertainty regions (dots), and the uniform a priori model (dash-dot lines); (d) As for (c), but using a non-
uniform a priori model (dash-dot line). Note: The distributions showing the lower- & upper-uncertainty
regions (dots) are not normalized for unit area, while the solution column length distribution and non-uniform

a priori model are normalized for unit area. 110



We note that the positivity of each solution profile has been preserved and solutions are
resonably well-conditioned. It is interesting to compare the 113 and 226 simulated profiles.
The 113 profile is a strong peak, while the 226 profile is much weaker, and consequently
has a greater fractional noise level. For example, the 226 profile corresponds to a noise
level of ~ 1.6%, while the noise level for the 113 peak is ~ 0.6%. Also, the relatively low
number of counts in the 226 profile means the effect of background will be more pronounced.
The relatively high 26-position also means that the instrumental broadening will be more
pronounced. With these factors in mind, some spurious oscillations in the 226 solution profile
are noticeable. It should also be noted that an a priori model has not been used for the
deconvolution of the 113 and 226 simulated profiles. It is expected that if such a model were
used (with experimental data), for instance by taking information from other sources, such
as Rietveld refinement, then a better result would be obtained.

C'/Clim values are shown for the MaxEnt deconvolution and column-length distributions
in Tables 4.2 & 4.3. In most cases C/Cyim ~ 1 for determining f and p, (e.g. see Tables
4.2(al) & 4.3(al)). For the cases were C'//Cyim, >> 1 (i.e 2.5 to 6.0) there are a number of
possible contributing factors, such as incorrect instrument profile, noise-level, background
estimation and truncations effects (e.g. see Tables 4.3(b2)).

In addition to the solution profiles given in Figures 4.5(a) & 4.6(a), the uncertainty regions
for the solution profiles are given. The uncertainties for the solution profile, f , were used to
determine the uncertainties in the subsequent calculations, such as the Fourier coefficients,
column-length distribution and the size results (see parts (b), (c¢) & (d) in Figures 4.5 & 4.6,
& Tables 4.2(al) & 4.3(al)).
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Figure 4.6: MaxEnt results for the optimum background level for the 226 peak corresponding to (D) =

20nm: (a), (b), (¢), & (d) as in Figure 4.5.

Determining the column-length distribution

Applying the MaxEnt method again to the 113 and 226 solution profiles, the solution column

distribution can be determined (see Figures 4.5(c) & 4.6(c)). For a uniform a priori model
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Specimen prof.

H 1. L, Bg ref. instr. profile

‘ 2. Lo Bg + 500 nm instr. prof. ‘ 3. Lo Bg + 100 nm instr. prof.

(a)

spherical cryst.
(D) =20nm
(L)Th = 22.2nm
(L)Th = 30.0 nm

Ry = 6.3%

C(f)/Caim = 1.0

(L)L = (30 £ 4)nm

diff < 0.5%

(LYY = (22.9 £0.3) nm
diff =3.2%

(LYM — (26,6 +0.3) nm
diff =19.7%
C(pa)/Caim = 1.0
(L™ = (22.7£0.1) nm
dif f =2.0%
C(pa)/Caim = 1.0

Ry =T7.7%
C(f)/Caim = 1.0
(LYI = (32 £ 5)nm

dif f = 8.1%

(L)F = (24.6 £ 0.3) nm
dif f =10.8%

(L)Y = (29.4 +0.3) nm
dif f =32.1%

C(pa)/Caim = 1.0
(L)M™ = (2324 0.1) nm
diff = 4.2%
C(pa)/Caim = 1.0

Ry = 26.3%
C(f)/Caim = 1.0
(L) = (45 £13) nm

diff = 50.6%
(LYY =(37+2)nm
diff = 66.3%

(DM = (53.0 + 0.4) nm
diff = 141.3%
C(pa)/Caim = 1.0
(L)Y™ = (24.44£0.2)nm
diff = 9.7%
C(pa)/Caim = 1.0

Ry =15.0%
C(f)/Caim = 1.0
(L) = (68 + 23) nm

R; =19.6%
C(f)/Caim = 1.35
(L) = (80 £ 32) nm

(b) diff =4.7% Gl 7 - 20.7%
(L)F = (51 £ 3)nm (Z)F = (5'8 ;4)
= nm
spherical cryst. diff =1.3% @
dif f = 16.6% N/A
(D) = 50nm (Lya"™ = (75.6 £ 1.2) nm (;];fM,u B N/°A /
(LYTh = 50.0nm dif f =51.3% o e c_ Nd
(L)Th = 65.6 nm C(pa)/Caim = 1.0 (P;I)i wim = N/
(LYM™ — (51.0 4+ 0.5) nm (LY2"™ = (48.8 + 0.3) nm
dz.f; 3% T diff = 2.4%
—1.3%
C(pa)/Caim = 1.0
C(pa)/Caim = 1.0 (pa)/
Ry =8.1%
CU)/Caim = 15 Ry =19.1%
wm e C(f)/Caim = 2.5
(L)Y = (120 & 30) nm f
© diff < 0.5% (L)L = (158 + 19) nm
- 0
diff = 31.4%
(LYF = (100 £ 7) nm
herical crust d.f; o0, (L)F = (110 + 3) nm
spherical cryst. i M* 0% diff = 18.2% /A
(D) = 100 nm (L)a"" = (120 % 2) nm, M
(L)Th = 93.3nm diff = 28.1% (Lya ™ =N/

(LYTh = 120.0nm

C(pa)/Caim = 1.0
(LM = (97.4 4 0.8) nm
diff = 4.4%

C(pa)/Caim = 1.0

C(pa)/Caim = N/A
(L)Mm — (141.5 + 0.6) nm
diff = 51.6%
C(Pa)/caim =6.0

Table 4.2: Apparent size results from the 113 solution profile obtained using different instrument profiles
as kernels in the deconvolution of the simulated profile. Shown are the Ry for each solution profile, apparent
sizes, (L)L, (LYE) (LYM and (L)M™] and differences between theoretical and calculated results for different
particle distributions corresponding to (D) = 20, 50 & 100nm. The superscripts, I, F, (M,u) and (M,n)
mean Integral, Fourier, MaxEnt with uniform prior model and MaxEnt with a non-uniform prior model,

respectively.
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Specimen prof.

H 1. L4 Bg ref. instr. profile ‘ 2. Lo Bg + 500 nm instr. prof. ‘ 3. LgBg + 100 nm instr. prof.

(a)

spherical cryst.
(D) = 20nm
(LYTh = 22.2nm
(LYTh = 30.0nm

Ry = 5.4%

C(£)/Caim = 1.5

(LY = (31 £ 5)nm

diff =2.3%

(LYF = (22.2 £ 0.4) nm
dif f < 0.5%

(LY = (30.2 £ 0.4) nm
diff =35.7%
C(pa)/Caim = 1.0
(LM = (23.74£0.1) nm
diff = 6.7%

C(pa)/Caim = 1.0

Ry = 5.1%
C(f)/Caim = 1.5
(L)L = (32 £10)nm

diff =81%

(LYY = (24.6 £0.8) nm
dif f =10.5%

(LY = (40.3 £0.7) nm
diff = 81.4%

C(pa)/Caim = 1.0
(LM = (22.9 £ 0.2) nm
diff = 3.4%

C(pa)/Caim = 1.0

Ry =24.4%
C(f)/Caim = 1.63

(L)} = (44 £ 33) nm
diff = 47.2%

(L)F = (35 £ 4)nm
diff =59.7%
(Lya"* = N/A
C(pa)/Caim = NJA
(L)eh™ = N/A
C(pa)/Caim = NJA

Ry =5.3%
C(f)/Caim = 2.5
(L)L = (66 £ 13) nm

Ry = 11.2%
C(f)/Caim = 3.5
(LY = (77 £ 15) nm

(b) diff =0.7% dif f =17.5%
(LYF = (48.7 £1.2) nm (LYF = (59.8 £2.0) nm
spherical cryst. dif f =3.1% dif f = 19.6% N/A
(D) = 50nm (LYM-v = (78.2 4 0.6) nm (LYM-v = (93.3 £ 0.7) nm
(LYT? = 50.0nm dif f = 56.4% dif f = 86.8%
(LYT? = 65.6 nm C(pa)/Caim = 2.5 C(pa)/Caim = 2.5
(D)Mo — (52,2 +0.3) nm (D)Mo — (56.9 + 0.3) nm
dif f = 4.4% diff = 13.9%
C(pa)/Caim = 2.5 C(pa)/Caim = 2.5
Ry = 4.5%
Ry = 17.8%
C(f)/Caim = 2.25
C(f)/Caim = 2.5
(LY = (112 £ 24) nm
(L) = (152 & 45) nm
(¢) diff =6.1% _
dif f = 26.4%
(LYY = (474+1)nm
(LYF = (51 £ 3)nm
spherical cryst. dif f = 49.1%
Mo dif f = 45.1% N/A
(D) = 100 nm (L)g ™ = (102 £ 2)nm LM n/a
(L)Th = 93.3nm dif f = 9.8% W =

(LYTh = 120.0nm

C(pa)/Caim = 1.0
(LM = (93.1 £ 0.6) nm
dif f < 0.5%

C(pa)/Caim = 1.0

C(pa)/Caim = NJ/A
(L)X — (95.8 + 0.6) nm
diff =2.6%
C(pa)/Caim = 1.0

Table 4.3: Apparent size results from 226 solution profile obtained using different instrument profiles as
kernels in the deconvolution of the simulated profile. Shown are the Ry for each solution profile, apparent
sizes, (L)L, (LYE, (LYM and (L)M™, and differences between theoretical and calculated results for different

v a? a

particle distributions corresponding to (D) = 20, 50 & 100 nm. Notation is as in Table 4.2.
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a

the resulting MaxEnt area-weighted size, (L);"* (where the superscript (M, u) represents the

MaxEnt method using a uniform a priori model) are considerably larger than those for (L)*
(see Tables 4.2(al) & 4.3(al)). The reason for this is clear from the solution distributions in
Figures 4.5(c) & 4.6(c), respectively, which have been shifted or “biased” towards the larger
column-lengths.

This shifting of the solution column distribution can be explained by the truncation of
the simulated observed profiles. The diffraction from small columns results in the extended
tails of a size-broadened profile, while diffraction from the larger columns results in the nar-
row region about the Bragg angle. When the observed profile is truncated, the tails of the
underlying specimen profile are removed and information concerning the small columns is
also eliminated, while information related to the large columns is unaffected. Consequently,
once the instrument broadening has been removed and the column-length distribution de-
termined using the MaxEnt method, the solution is biased towards the larger columns. The
information provided by the uniform a priori model is ineffectual, since it assigns a uniform
probability over the range of L and basically describes our ignorance about the columns.

The profiles used in these calculation were truncated to (205 £+ 1)°26 in order to in-
vestigate the effect on the column-length distribution. In the practical case, especially for
low symmetry material where there is considerable overlapping of profiles in the diffraction
pattern, it may be necessary to truncate the profiles to a smaller interval than (205 £+ 1) °26.
Based on the above results, the column-length distribution would be biased toward larger
columns and produce erroneous results in the apparent size results. In order to minimise
this, it would be necessary to separate the overlapped profiles and resolve their tails over a
much larger 26-interval. In principle, the method developed by Sivia & David (1994) could
be used for this purpose.

The effects of truncation can also be reduced by introducing a non-uniform a prior:
model. The definition of the entropy function for the column distribution (4.11) allows a
priori information to be included in the MaxEnt method. In these sets of calculations, a
non-uniform model with the parameters v = 0.175, t = 1.0 and » = 2.0 was aribitrarily
chosen and evaluated using (4.14 - 4.16). Physically, this model can be thought of as a set
of spherical crystallites with (D) = 17.14nm and (L), = 19.05nm. Using this model in
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the MaxEnt method, an improvement in the solution column distribution was obtained (see
Figures 4.5(d) & 4.6(d)), with the column distribution not biased towards larger columns.
Also, considerable improvement in the MaxEnt size results is achieved (see Tables 4.2(al) &
4.3(al) compare (L)M:u (L)Mm and the diff values).

It is interesting to make some observations about the use of a prior: models in the
MaxEnt method for determining the column-length distribution. As mentioned earlier, the
uniform a priori model is ineffectual since it does not discriminate between the smaller
and larger crystallites. It simply defines our ignorance concerning the column-distribution.
Additional calculations suggest that as the a priori model is modified to include increasing
physical information about the crystallites, for example the shape of the crystallites and
a suitable particle distribution (see (4.6)), the solution column distribution approaches the
true column distribution and the effects of truncation on the column-length distribution
and apparent size results are reduced. A carefully determined model would include the
shape and common-volume using model-based methods (see Langford & Louér 1996) and
applying Bayesian model selection methods (see Sivia et al. 1993) to determine a suitable
particle distribution. Another approach would involve using “low resolution” methods (see
Bienenstock 1963, LeBail & Louér 1978) to estimate the column-length distribution and fit
this distribution to an appropriate function; however, this is dependent upon determining a
suitable function and its parameters. A similar problem has been encountered in determining
the size distribution in small angle scattering, and the methods used there could be adopted
in x-ray profile analysis (see Miiller & Hansen 1994, Miiller et al. 1996).

In summary, the results from this section demonstrate that with careful consideration
of the background level, the solution profile can be determined using the MaxEnt method.
Moreover, the solution profile can be used in subsequent calculations to determine (L), and
(L), by the traditional integral breadth and Fourier methods, respectively. More impor-
tantly, the MaxEnt method also provides a better alternative approach not only for deter-
mining an average value of the area-weighted size, but also the corresponding column-length

distributions and its uncertainity region.
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4.4.3 The effect of background estimation on f(260), A(L), pa(L)

and size results.

We now examine the effect of background estimation on the MaxEnt results. The rationale
is to assess the MaxEnt method for determining the solution specimen profile, Fourier coeffi-
cients, column-length distribution, and for ascertaining the integrity of subsequent physical
quantities, such as (L) (LI (L)M when the estimated background level is systematically
under- or over-estimated.

In the previous section, the best background level estimate was obtained from the ob-
served profile corresponding to spherical crystallites for (D) = 20nm. For the calculations in
this section, this best level was defined as the “zeroth-level” and the estimated background
level was systematically lowered and raised relative to it. For the 113 observed profile, the
estimated background level ranged from 35% below to 35% above the zeroth level, while
for the 226 observed profiles, this was done over the range of —20% to +20%. In these
ranges, the negative values correspond to under-estimation, while the positive ones are over-

estimates. The deconvolution was carried out using the MaxEnt method and the reference

instrument profiles for the 113 and 226 peaks.

Effect of background estimation on the apparent size

In Figure 4.7, the Ry-values for each solution profile were determined over the range of
background estimation for the 113 and 226 solution specimen profiles. While the R values
for the 113 profile vary smoothly as the background level is increased, the factors discussed
in the previous section contribute to the result for the 226 specimen profile. That is, the 226
specimen profile is a relatively weak peak and the pronounced instrumental and background
effects as well as the increase in noise level all contribute to the observed R, values in
Figure 4.7. For both the 113 and 226 profiles a uniform a priori model was assumed. It
is expected that a non-uniform a priori model could also be used to improve the solution
profiles, as was the case with the column-length distributions.

Figure 4.8 shows the apparent size results for the integral breadth method, (L,)! the
Fourier method, (L)', the MaxEnt method for a uniform a priori model, (L)% and for the

MaxEnt method for a non-uniform a priori model, (L)™' obtained from the 113 and 226
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Figure 4.7: Rj-values for the 113 (diamond) and 226 (squares) solution profiles, determined from the
MaxEnt method for different background levels.

simulated profiles for different background estimations. This is illustrated in Figures 4.9(a)
& 4.9(b) for the 113 solution profile which show the solution profile and Fourier coefficients
for an over-estimation of 20%.

For the (L)! results, as the estimated background level increases, the integral breadth

in the solution profile increases. This results in the (L)! values increasing over this region.

I
v

The relatively large errors in the (L)! (about +13%) suggest that the systematic error in

the background estimation is being transmitted to the solution profile and integral breadth.

Th
v

However, the difference between the theoretical value, (L);", and the calculated one does
not go beyond about 10% (see Figures 4.8(b) & (d)).

In general, the results for the 113 and 226 peaks are similar in that they show the same
trends over the range of background estimation. This can be seen in the values for (L)X, In
the case of the 113 specimen profile results, the region of under-estimation, from -35% to 0%,

the “kink” effect appears in the Fourier coefficients, which produces an under-estimation of

the (L)' results. That is, dA(L)/dL — oo at L = 0, which implies that the (L) — 0 (see
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(4.2)). For this region, the difference between the (L)T" and (L) values reaches a maximum
of ~ 30% (see Figure 4.8). For the region of over-estimation, from 0% to +35%, the “hook
effect” appears in the Fourier coefficients, resulting in an under-estimation of (L)¥. That is,
the negative curvature in the Fourier coefficients causes dA(L)/dL — 0 at L = 0, therefore
(L)' — oo (again, see (4.2)). For this region, the difference between the (L)I" and (L)F

values reaches a maximum of ~ 95%.
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Figure 4.8: Apparent size results from different methods, determined from 113 & 226 solution profiles
corresponding to (D) = 20nm over a range of background levels: (a) Apparent sizes from the 113 solution

profile using the integral breadth method (L)!, (diamonds + solid line), Fourier method, (L) (cross +
M,u
a

dashed line), MaxEnt method using a uniform model, (L), (squares + small dashed line) and MaxEnt

M,n
a

method using a non-uniform a priori model, (LY}", (triangles + dots); (b) Corresponding differences
between the theoretical area- & volume-weighted sizes and apparents sizes given in (a); (c) Apparent sizes
from 226 solution specimen profiles. Symbols as described in (a); (d) Showing the corresponding differences

between the theoretical area- & volume-weighted sizes and apparents sizes given in (c).



For the MaxEnt method, using a uniform a priori model, (L) the influence of increas-
ing background estimation from -35% to +35% is noticeable, but not as significant as in the
(L)F results. Generally, for increasing estimated background levels, the simulated profile
is being consistently truncated and the information related to the small columns is being
removed, causing the solution to be biased towards the larger columns. This can also be seen
in the difference between the (L)T" and (L)M* values, where the difference increases from
~ 10% at —35% background, to ~ 30% at +35% background. The results from the MaxEnt

YM.n are relatively constant and accurate over

method, for a non-uniform a priori model, (L
the range of —35% to +35%. Even though the background estimation is being increased,
resulting in information related to the smaller columns being removed, the non-uniform a
priori model prevents biasing towards the larger columns by attempting to fill in the missing
information. This is clearly demonstrated in Figure 4.9(c). A similar pattern is also found

in the apparent size results from the 226 solution profile over the range of —20% to +20%
of the estimated background.
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Figure 4.9: MaxEnt results for the background level of +20% for the 113 peak corresponding to (D) =
20nm: (a) True 113 specimen profile (solid line), solution specimen profile (dashed line); (b) Theoretical
Fourier coefficients (solid line), Fourier coefficients from the solution profile (dashed line), given in (a); (c)
True column-length distribution (solid line), the solution column-length (dashed line) and the uniform a
priori model (dashed line); (d) As for (c), but using a non-uniform a priori model (dash-dot line). Dotted

line in the above represent the uncertainties in the respective MaxEnt calculations.
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In summary, a set of MaxEnt calculations for varying background levels were carried out
to ascertain the effect of background estimation on the solution profile, Fourier coefficients,
column length distribution and apparent sizes. For deconvolving the 113 and 226 profiles
and determining the specimen profile, the MaxEnt method consistently produced R-values
below ~ 10% over the entire range of background estimation. In the case of determining
the apparent sizes from the solution profile, it is clear that the error in the background
estimation is also being imparted to the size results. The results from the Fourier method,
(L)F proved to be the most variable, followed by the MaxEnt method using a uniform a
priori model, (L)M*. The results from the integral breadth method, (L)!, are reliable, but
the uncertainties in the results imply that the integral breadth is also being compromised by
errors in the background estimation. This may be resolved if a suitable a priori model were

used in the deconvolution of the simulated profile. The results from the MaxEnt method

M,n

., were both reliable and accurate. This can be

using a non-uniform a priori model, (L)

Mn
a

seen in the uniformity of the (L) values over the range of estimated background levels.

4.4.4 Effect of non-ideal instrument profiles on f(26), A(L), pa(L)

and size results.

Calculations were performed to examine the effects of deconvolving an observed profile with
a size-broadened instrument profile on the solution profile, Fourier coefficients, column-length
distribution and apparent size results. The rationale for this set of calculation also arises
from the experimental situation where the instrument profile is determined from a standard
reference material which may have finite-sized crystallites.

Two sets of size-broadened instrument profiles were used as kernels in the MaxEnt
method. Both were simulated from a LaBg reference material which had no microstrain
and consisted of spherical crystallite shapes, whose diameters were 100nm and 500 nm, re-
spectively (see §4.3.2). The instrument profiles were generated for the 113 and 226 positions
for alumina over the range of (205 £ 1) °260. The set of observed profiles for the 113 and 226
peaks, described in §4.3.3, were truncated from (205 4 5) °26 to (205 £ 1) °26. Different non-
uniform a priori models were also used in determining the column-distribution corresponding

to (D) = 50& 100 nm, respectively. These a priori models had the parameters v = 0.09,
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t = 1.0 and r = 3.0 (see (4.14) & (4.16)) for the (D) = 50nm and v = 0.06, ¢ = 1.0 and
r = 4.0 for the (D) = 100 nm. These non-uniform a priori models correspond to spherical
crystallites with (D) = 44.4 & 83.3nm. Calculations using the reference instrument profiles

were also performed, to provide a comparison.

Deconvolving with an ideal instrument profiles.

The (ideal) reference instrument profiles (containing no size or microstrain broadening) were
used to deconvolve the simulated profiles corresponding to (D) = 20, 50 & 100nm. The
results for the integral breadth, (L), Fourier methods, (L)!", and the MaxEnt method using

M,n
a

values (see Table 4.2 (bl-cl) & 4.3 (bl-cl)). The results from the MaxEnt method using a

a non-uniform a priori model, (L) compare closely with the corresponding theoretical
uniform a priori model, (L)M:* are disappointing, but can be accounted for by the truncation

of the simulated profiles.

Deconvolving with a non-ideal instrument profile.

Unlike the ideal reference instrument profile, the size-broadened instrument profile not only
characterizes the diffractometer’s optics, but also the size-broadening from the finite LaBg
crystallites. By deconvolving with a size-broadened profile, we expect the MaxEnt method
to over-compensate for the instrumental broadening in the profiles. This over-compensation
effectively results in removing information which concerns size-broadening in the underlying
solution profiles, and produces a narrower solution profile relative to the true specimen
profile. The consequence of the over-compensation is that the apparent sizes will, in general,
increase relative to their true values. The apparent size results in Table 4.2(a2-c2) & 4.3(a2-
c2) for the 500 nm size-broadened instrument profiles demonstrate this point for increasing
(D). We examine, for example, the values for the (L)I" and (L)! in Table 4.2(a2-c2) for the
113: for (D) = 20nm, (L)?" = 30nm and (L)! = (32 + 5)nm, an 8.1% difference, and for
(D) = 100 nm, (L)T™ = 120nm and (L)! = (159 + 19) nm, a difference of 31.4%. A similar

v

trend can also be seen for the (L)' values. For the 226 line in Table 4.3(a2-c2), much the
same results appear, with the exception of (D) = 100nm, where the MaxEnt method for

deconvolving and determining the column-length distribution could not converge onto the
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preferred C;,, value.

The over-compensation in the solution specimen profile (i.e. narrower solution profiles)
also shifts or biases the solution column distribution towards larger columns, in addition to
the biasing that occurs due to the truncation of the simulated profile. That is, the MaxEnt
method “views” the narrower profile as a result of larger columns contributing to the diffrac-
tion. Given this information, it determines the solution which produces larger (L), values.
This can be seen in values for (L)M™ in Table 4.3(a2-c2) using the 500 nm size-broadened
instrument profile. In some cases the MaxEnt method was unable to produce a meaning-
ful result (see parts b3 & ¢3 in Tables 4.2 & 4.3). This is not a problem with the MaxEnt
method, but rather with the information that is being used. However, biasing towards larger
columns was reduced when a non-uniform a prior: model was used in the MaxEnt method.
Generally, the use of a non-uniform a priori model in the MaxEnt method produced (L)M-m

values that were closer to the theoretical values, (L)I". Figure 4.10 illustrates this point,

where using a non-uniform a prior:i model improves the solution column distribution.
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Figure 4.10 continues over. . .
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Figure 4.10: Maxent results for the 113 peak corresponding to (D) = 50 nm when a non-ideal (500 nm
size-broadened) instrument profile is used in the deconvolution: (a) The true 113 specimen profile (solid line),
solution specimen profile (dashed line); (b) Theoretical Fourier coefficients (solid line), Fourier coefficients
from the solution profile (dashed line), given in (a); (c) True column-length distribution (solid line), the
solution column-length distribution (dashed line) and the non-uniform a priori model (dashed-dotted line).

Dotted lines in the above represent the uncertainty in the respective MaxEnt calculations.
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In the case of the instrument profile with 100 nm residual-size broadening, the over-
compensation of the broadening in the profile defines an upper limit in the MaxEnt method’s
ability to determine the solution profile and column distribution. The only case, for both
the 113 and 226 profiles, in which a result was obtained using the MaxFEnt method for the
simulated profile corresponding to (D) = 20 nm (see Table 4.2(a3) & 4.3(a3)). In the case of
the simulated profiles corresponding to (D) = 50 & 100 nm, the over-compensation prevents
the MaxEnt method from obtaining a meaningful physical result.

In summary, deconvolving with a non-ideal instrument profile is a problem of decon-
volving with incorrect information, in which the MaxEnt method attempts to determine
the maximally noncommittal solution. However, the apparent size results from the MaxEnt
method, using a non-uniform a prior: model, suggest the missing information can be filled
in. It is plausible that, if a suitable non-uniform a priori model were used in the deconvolu-
tion of the simulated profile, the effects of over-compensation may be reduced in the solution

profiles.

4.5 Summary

We have presented the MaxEnt method as an alternative method for removing instrument
broadening in x-ray diffraction profiles. In the case of size-broadened specimen profiles, it
was shown that the MaxEnt method can be applied a second time to determine the column-
length distribution of the crystallites. This demonstrates the robustness and flexibility of
the MaxEnt method, in that it can be applied sequentially to solve a variety of inverse
problems. In addition, uncertainties in the solution profile and column distribution can
be determined and used in subsequent calculations, such as the integral breadth, Fourier
coefficients, column-length distribution and resulting apparent sizes. This makes the MaxEnt
method a fully quantitative method for analysing x-ray diffraction profiles.

In addition, the MaxEnt method could be incorporated to include a full Bayesian statis-
tical approach to determine «, a suitable a priori model, and background level. While the
author did not seek to use this here, the Bayesian technique has been applied in other areas,
such as neutron diffraction (see Sivia 1996).

Working with the simulated profiles for (D) = 20, 50, & 100 nm, the solution specimen
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profile, Fourier coefficients, column-length distribution and apparent sizes, (L), (L)) (L)M~
and (L))" were determined for a number of cases. These cases included the best background
level (see §4.4.2); the effect of background estimation (see §4.4.3); and deconvolving with
non-ideal instrument profiles (see §4.4.4). In each case, the simulated profiles were truncated
from (205 £5) °26 to (205 £1) °26 at a step-size of 0.01°26. In general, where the noise level
was relatively high and for varying amounts of instrument broadening, the MaxEnt method
was able to determine the solution profile and preserve the positivity of the specimen profile,
which enabled subsequent calculations to be performed.

The significance that can be drawn for this study, especially from the last two cases, is
that the MaxEnt method can tolerate, to an extent, incorrect or missing information that
may arise in the truncation of the observed profile, background estimation and deconvolving
with a non-ideal instrument profile. The method produces physically consistent profiles
and distributions. Even in the worst case scenarios, the positivity of these profiles and
distributions are always preserved. Moreover, when a suitable non-uniform a priori model is
used, improvements in the final results are obtained. That is, a priori information that has
“structure” attempts to replace the missing or incorrect information, to produce an accurate
and precise result. This was clearly evident when using a non-uniform a priori model in the
MaxEnt method to determine the column-length distribution and area-weighted size.

As expected, when an instrument profile is used which is itself broadened due to a non-
ideal reference material, the ensuing results are compromised. The necessity for a good
reference material can not be overstated.

Although a non-uniform a priori model was not used in the deconvolution of the profiles,
it is the opinion of the author that such a model may reduce the systematic errors introduced
in background estimation and using a non-ideal instrument profile on the solution profile
and other subsequent results. However, this raises a number of important issues, such as
what information should be used in the a priori model and how should a suitable model
be selected? Although this issue has not been addressed here, it is conceivable that the
approach taken by the small-angle scattering community (see Potton et al. 19885, Potton
et al. 19884, Hansen & Pedersen 1991, Miiller & Hansen 1994, Miiller et al. 1996), may

provide hints as to how best to resolve these issues.
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Chapter 5

A Maximum Entropy Method for

Determining the Strain Distribution

In the previous chapter, it was shown how the two-fold maximum entropy method can be
applied to determine the specimen profile and the column-length distribution. It was also
demonstrated how the MaxEnt method could be used to determine the uncertainties in the
solution profile and column-length distribution.

In this chapter, the MaxEnt method is applied to the second problem related to the
broadening of x-ray diffraction profiles, viz. determining the strain distribution from the
broadened profiles. Two extreme cases of strain broadening are considered: the first is
Gaussian strain and the second is non-Gaussian strain in the near-Lorentzian limit. As in
the previous chapter, the application of the MaxEnt method is two-fold, first determining the
specimen profile and then the strain distribution. However, for the strain problem the two-
fold application is critically important, because strain is order-dependent (i.e. dependent on
hkl ) and requires the Fourier coefficients of all available orders of reflection from the x-ray
diffraction pattern. In determining the strain distribution using the MaxEnt method, the a
priori model becomes important in correctly determining the Lagrangian parameter, o, the
strain distribution, and in turn its uncertainties. It is demonstrated how a non-uniform a
priori model can be determined from the data to improve the MaxEnt solution distribution,
but issues concerning the information used to determine a priori model are raised. This

work is in preparation for the literature (see Armstrong & Kalceff 19995).
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The background to strain broadening of x-ray diffraction profiles is presented in §5.1 and
the difficulties in determining the strain distribution from the available data are discussed
here. The two MaxEnt methods for determining strain distributions are presented in §5.2.
The first of these is a theoretical approach, for it assumes that the strain moments are known
(experimentally this is very difficult to determine). Moreover, it illustrates the role of the
entropy function and the a priori model or measure in determining the strain distribution,
p(er). The second approach is more practical in that it requires the available Fourier co-
efficients of the profiles in the diffraction pattern and applies the Skilling & Bryan (1984)
algorithm. To evaluate the performance of the second MaxEnt method and the integrity
of its results, a series of simulations were carried out, as described in §5.3. Two cases of
inhomogeneous strain broadening are examined in §5.4 and were modelled on the copper
diffraction peaks: the first case considers Gaussian strain, where the MaxEnt method is
compared with traditional methods such as the Warren & Averbach and Williamson & Hall
methods; the second case examines non-Gaussian strain, where the strain distribution is in
the near-Lorentzian limit.

Specimen profiles and simulated observed profiles with instrument broadening, statisti-
cal noise and background effects were generated. From these the MaxEnt solution profiles
and strain distributions were determined, together with their uncertainties, and used in sub-
sequent, calculations of Fourier coefficients, integral breadths and root-mean-square strain.

The implications of these calculations for experimental conditions are discussed in §5.5.

5.1 Strain broadening of profile

5.1.1 Specimen profile and Fourier coefficients

A specimen profile can be expressed in terms of a Fourier series as

f(s=s0,d") = Y [A(L, d*) cos2rL(s — so) + B(L, d) sin 27 L(s — so)] (5.1)

L=—o0

where s — s is the reciprocal-space variable given by s —sy = % sin @ —d*, A is the wavelength
of radiation, d* is the reciprocal of the atomic interplanar distance and 6 is the angular

position. L in (5.1) is the column length in real space perpendicular to the diffraction plane
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(i.e. parallel to the diffraction vector) and is directly related to the harmonic order, n, of
the Fourier coefficients whereby L = na, with a defining the “step-size” in real space given
as a = 3(sinf, —sin 6; )" for the angular range [26;, 26,]. Usually (5.1) has a slowly varying
scale factor in front of the summation which is set to unity here. A(L, d*) and B(L, d*) are
the real and imaginary Fourier coefficients, respectively, which characterise the information
concerning the nature of the inhomogeneous lattice strain (order-dependent) distortions and
crystallite/domain size (order-independent) broadening contributions. In this chapter, we
are only interested in the order-dependent contributions.

Applying the kinematic theory of x-ray diffraction, the Fourier coefficients for the the

order-dependent contributions can be expressed as (see Warren 1969)

A(L,d*) = (cos2merLd")

= / pler) cos2mer, Ld* de, (5.2)

o0

and

B(L,d") = (sin2me;Ld")

= /00 p(er) sin(2mer, Ld*) dey, (5.3)

where €7, is the strain averaged over the length of column L perpendicular to the diffraction
planes, and p(er) is the strain distribution at L. The Fourier coefficients in (5.2) and (5.3)
are functions of both L and d* and represent the averaging over all the distortions in the
diffraction volume of the sample (van Berkum et al. 1996). This averaging is represented by
(---). If p(er) is an even function, then the B(L, d*) is zero for all L and d*. The resulting
specimen profile will be symmetrical about d*. This implies that the real Fourier coefficients,
A(L, d*) are of most interest.

Expressing the Fourier coefficients, (5.2) and (5.3), in terms of p(e,) is a phenomenological
description of strain broadening of x-ray diffraction profiles. That is, it provides an empirical
understanding to strain broadening. A deeper insight can be gained from an understanding of
the microscopic arrangement, orientation and type of dislocation (see Wilkens 1970a, Wilkens
1970¢, Groma et al. 1988, Ungar et al. 1989, Ungar & Borbély 1996, Ungar, Ott, Sanders,
Borbély & Weertman 1998, Ungér, Révész & Borbély 1998). From an epistemological point

of view, there is an analogy with the theory of heat, in that it can be developed from two
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directions. The first describes heat in terms of macroscopic variables, while the second
applies a microscopic and statistical approach and describes the macroscopic quantities as
ensemble averages. The strain distribution, p(ey), can be considered as a“signature” of the
microscopic description of the strain field in that it assigns a probability distribution to
the strain, averaged over a distance L, parallel to the diffraction vector. In other words,
p(er) is a function of the ensemble of dislocations in the crystallite. Determining p(ez,) from
the experimental data may provide an approach to testing theoretical models related to
dislocation broadening.

From a practical point of view, being able to determine p(er) from strain broadened
profiles offers an alternative approach to determining the root-mean-square strain, <6%>é,
over standard methods such as those of Warren & Averbach and Williamson & Hall. Both
these methods make specific assumptions about the nature of the strain. In the case of the
Warren & Averbach method, the real Fourier coefficients are expanded for a small L. If
p(ez) is a Gaussian distribution, the Warren & Averbach method is linear for all d*2. The
Williamson & Hall method is also based on assumptions about the shape of the specimen
profile and the contributions of the crystallite size and strain effects. This is a consequence
of attempting to generalize the work of Stokes & Wilson (1942, 1944a). More specifically,
in the case of strain Stokes & Wilson (19444a) assume the strain distribution is independent
of L, resulting in a linear dependence [(d*) for all d*. In this chapter, we are not only
interested in determining (¢2)2, but also p(e,) using a robust and reliable method with a
minimum of assumptions.

For a symmetrical p(er), (e;) = 0 for all L, and the mean-square strain, {(¢2), is nonzero

and given by,

(&) = / 2 pler) des (5.4)

from which (¢2)2 follows.
5.1.2 Inverse Cosine Fourier Transform

Equations (5.2) and (5.3) are simply cosine and sine Fourier coefficients. An obvious ap-
proach to determining p(e;) is to apply an inverse cosine Fourier transform to (5.2) for a

given L. This approach is analogous to the Stokes (1948) method for deconvolving the ob-
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served profile to determine the specimen profile, in that it is a naive approach which does
not take into consideration the ill-conditioning of the problem and any limitations in the

data. Expressing p(er) in terms of A(L, d*) (see McKeehan & Warren 1953, Warren 1959),
pler) = 2L / A(L, d*) cos(2rLerd*) dd" (5.5)
0

Equation (5.5) assumes complete information about A(L, d*) for all L and d*. However,
in the light of experimental data, this is not generally the case and we are presented with
several difficulties in determining p(e;). For a given L, the number of points for A(L, d*)
is limited to the number of lines in the diffraction pattern. For high symmetry materials
a few diffraction profiles (typically < 10) are recorded due to the multiplicity (e.g. cubic
lattice system), but the profiles are usually well separated. This implies the profiles can be
well resolved, but because of the limited number of reflections only a small number of points
in A(L, d*) for a given L can be determined. In the case of low symmetry materials, the
multiplicity is generally lower, implying a greater number of lines in the diffraction pattern,
but the profiles are often overlapped. This makes it difficult to resolve individual profiles
and in turn reduces the number of points in A(L, d*) for a given L. There is also the case
where the strain is anisotropic, causing the diffraction spot in reciprocal space not to be
symmetrical for all crystallographic directions, [hkl]. For this case, multiple orders need to
be considered. However, for a standard diffractometer, at best, only three multiple orders
can be recorded which in turn reduces the number of points for A(L, d*).

The consequence for all these situations is incomplete information for A(L, d*). In addi-
tion to these fundamental limitations, the experimental data (i.e. Fourier coefficients) may
contain noise and systematic errors. The noise may be imparted from the observed profile,
while systematic errors may be due to incorrect background estimation and/or truncation
errors affecting the solution profiles. In turn, these factors may contribute to producing
erroneous strain distributions or truncation of the distribution due to negative oscillations.
This point was not lost on McKeehan & Warren (1953), who demonstrated that in principle
p(er) could be determined from (5.5) for strained tungsten diffraction data which is both
isotropic and has a cubic atomic lattice system. It was also pointed out by the same authors

that in determining p(er,) (see pp. 54-55 McKeehan & Warren 1953):

The analysis from which these curves are obtained requires a high degree of accu-
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racy in the experimental data, and the reliability of the final curves is somewhat

uncertain.

Another observation about (5.5) is that it does not preserve the positivity of p(e;,) and
does not take into account any a priori information. These last two points are important.
The strain distribution, like any probability distribution, is a positive and additive distribu-
tion and we expect any method for determining p(e,) to preserve this property. By applying
the positivity condition the number of feasible solutions is also reduced. The use of a prior:
information is also an important point, in that the above-mentioned limitations result in in-
complete information for A(L, d*). If a priori information is available, however, from either
a theoretical model or additional experimental data, it contributes to “filling in” the missing
information or overcoming the fundamental or practical limitations. In the next section we

consider the MaxEnt method which can incorporate these important features.

5.2 Maximum Entropy (MaxEnt) method for p(¢;)

An alternative approach to determining p(ez,) that preserves the positivity, quantifies the dis-
tribution and incorporates a priori information is the maximum entropy (MaxEnt) method.
In fact, there are two ways in which p(e;) can be determined using the MaxEnt method.
The first is interesting from a theoretical point of view. It determines p(ez) by maximising
the entropy function with respect to the moments of the strain distribution and reveals at
a fundamental level the influence to which the measure or a priori model has on the solu-
tion. This discussion has been adopted from the general discussion presented by Mead &
Papanicolaou (1984).

The second MaxEnt method (see §5.2.2) is more practical in that it uses the available
data, the Fourier coefficients, and does not rely on the moments of the strain distribution,
but rather on resolving the Fourier coefficients of all the available profiles in the diffraction
pattern. It also follows on from the approach discussed in Chapter 4: that is, a two-fold
application, while treating the problem of determining p(e;) as an inverse problem. The
first stage applies the MaxEnt method to removing the instrumental broadening and de-

termining the uncertainties in the corresponding solution profile; the second stage consists
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of determining the Fourier coefficients of all solution profiles (i.e. for a range of d* and L
values, see (5.2) & (5.3)) and applying the MaxEnt method again to determine p(er) and
its corresponding uncertainties. Subsequent results such as (¢2) and their uncertainties can

also be determined.

5.2.1 First approach: Method of moments

This approach relies on knowing the moments of the strain distribution. Experimentally this
is difficult because is involves expanding the Fourier coefficients, (5.2) and (5.3). From the
Warren & Averbach method, only the second moments, (¢2), can be determined for small
L and two or more orders must be known. However, it is worth investigating since this
approach demonstrates the application of the entropy in such problems.

Suppose that p(er,) is a symmetrical distribution centred about €;, = 0. All odd moments
will be zero for all €;. Only the even moments, (¢2"), for n =1, 2, 3,... will be nonzero for
all L. This can be stated in terms of the strain distribution p(er,)

@)= [ @paria (5:6)

[e.e]
where we assume that p(ey) is normalised for unit area, and also that a finite number of
moments can be determined such that n = 1,2,3,..., N and for n = 0, (¢?) = 1. Strictly
speaking, the entropy functional for p(e;) can be expressed as

Slp(es)] = — / " p(en) I [ples) /my(er)] des (5.7)

o0

where my(€,) is the a priori model or measure for p(e;) (see Chapter 3) and the square
brackets in (5.7) distinguish it as a functional’. We now want to maximize (5.7) with

respect to (5.6). To do this we usually write down the Lagrangian functional

“+o0

pler) In[p(er)/myp(er)] der, — Zan [/ o e pler) der, — ()] (5.8)

o

Qlpter) = [

- n=0

LA functional takes a function as its argument and returns a number. This is in some ways similar to a
function, but a function takes a number as its argument and returns a number. However, unlike a function,
a functional is dependent upon the overall properties of the function, in this case p(er). In other words a

functional maps an infinitely differentiable function into a number (Ryder 1985).
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where {a,} for n =0,1,2,3,..., N are the set of positive Lagrangian multipliers. Applying
the calculus of variation we have

6Qp(e)] _ [T der =S an [ @ ap(ey) de
PR [ Inlpten) ()] + 1) dpten) des Z/ dp(er) der

= _/_+°° [ln[ (er)/my(er)] + 1 —1—2 o, eL] dp(er) der,

[e o]
= ()’
since 0p(er) is arbitrary and the term in the square bracket must be zero for % = 0.

Taking the term in the square brackets, we arrive at the following

N
p(er) = my(er) exp [—1 — oy — Z oy, e%"] . (5.9)
n=1
However, we require that (5.9) be normalised for all €/, such that

/_+0° pler)der, =1 (5.10)

and by substituting (5.9) into (5.10) and after a little manipulation, we can define the

normalisation term

exp [1 + )

= /_+°° exp[ Zan ]deL (5.11)

o

Z(ay, o, Q3,...,0pN)

which is analogous to the partition function encountered in statistical mechanics. Z(ay, o, as, - ..

has many interesting properties, such as being able to express the average quantities in terms

of (5.11). (These are not considered here, however.) Using (5.11) in (5.9) we can express
p(er) as

pler) = % ex p[ Z Qp € ] (5.12)
where the even moments, (€2") for n = 1,2,3,..., N can be determined from p(e;). This
approach requires solving N +1 nonlinear simultaneous equations and for practical problems,
N is large. Conventional methods for numerically solving nonlinear simultaneous equations,

such as the Newton-Raphson method, require a good initial guess of {«,}. We also notice

in (5.12) the influence the a priori model, m,(€), has on the solution, in that it “modulates”
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the exponential term in (5.12). If my(e) is a uniform distribution, no a priori information is
conveyed. However, if m,(€) is a non-uniform distribution, information concerning the scal-
ing, shape and position of the distribution is conveyed. Later in this chapter, the significance
of m,(€) is discussed. The uniqueness of this solution is determined by the sequence of mo-
ments. In this case, all the even moments, (€?*) for n = 1,2,3,..., N must be a monotonic
sequence (Mead & Papanicolaou 1984). Moreover, the above solution assumes that there
is no uncertainty in the moments. Suppose the moments were determined experimentally;
then the above solution can be generalised to include the uncertainty in (€2") by introducing
a x? statistic (see Wu 1997).

For this version of the MaxEnt method, the positivity of the strain distribution is pre-
served, a priori information concerning p(e;) can be included and the method can be
generalised to include uncertainties in the moments. However, the moments of p(er,) are
not usually known and from a numerical point of view, this approach requires numerically

solving N + 1 nonlinear equations.

5.2.2 Second approach: Using the Fourier coefficients

The second approach to determining the p(er,) uses the Fourier coefficients of the specimen
profile. By applying the Skilling & Bryan (1984) algorithm, the numerical difficulties of
determining the set of Lagrangian multiplier is reduced to determining a single multiplier
and the algorithm takes into consideration the uncertainties in the Fourier coefficients. In
this approach we can treat the profile and coefficients as discrete data and the entropy

function for the strain distribution is
N .
S(p) = — Cn(—L 5.13
(p) jE:l P n(mpj) (5.13)

where p = {p;; =1,2,3,...,N}and m, = {m,;; j = 1,2,3,..., N} represents the a priori
model for the strain distribution. A uniform distribution over some region of ¢; for the a
priori model represents our worst choice in that it states our ignorance concerning p(er).
However, a theoretical model or intrinsic model (Miiller & Hansen 1994) determined from
the observed data by an independent approach can be used as an a priori model for p(er).

This is one of the advantages the MaxEnt method has over existing methods for determining
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p(€r): it incorporates the a priori information concerning p(er,) and the positivity of p(ey)
is preserved.
The entropy function is maximized with respect to the statistic function which incorpo-

rates the experimental data and uncertainties in A as

Clp) =3 W (5.14)

where A = {A;;i = 1,2,3,..., M} are the trial real Fourier coefficients; A= {flz,z =

1,2,3,..., M} are the real Fourier coefficients determined from the MaxEnt solution profiles

*

for a particular L over a range of d* € [0, d},,.

|; 04, are the corresponding uncertainties of
A which are determined from the uncertainties in the solution profile, f (also see §(3.3.5)).
Maximizing (5.13) with respect to the constraints of p; > 0 for all i, (5.14) can be

expressed simply in terms of a Lagrangian function, Q(p) as

Q(p) = aS(p) — C(p) (5.15)

where « is the unknown (positive) Lagrangian multiplier. In maximizing @Q)(p) we are search-
ing for a solution distribution, p, which satisfies VQ(p) = 0. We have found the Skilling &
Bryan (1984) algorithm (see §3.3) is well suited to this task. The algorithm determines the
Lagrangian multiplier, o, and the solution distribution, p, when the constraint C'(p) = Cyim,
where Cly;,n, is set equal to the number of points. The use of the a prior: model has an
important influence in determining «, p and in turn the uncertainties in the solution profile
(see (3.58)). The algorithm is halted when the vectors VS and VC are parallel (or near

parallel).

Trial data and kernel matrix

The trial coefficients given in (5.14) can be expressed in terms of the kernel and strain

distribution, p(er,) as

N
A=) Wip; (5.16)
j=1

where A = {A;;i = 1,2,3,..., M} are the trial Fourier coefficients; W = Wi =
1,2,3,...,M,j = 1,2,3,...,N} is the kernel in (5.2) expressed as on [M x N| matrix
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where NV < M. Each term in the kernel matrix is given by
I/Vij = QAGL COS(QWLd:GLj) (517)

where A€, = e€gj41 — €r;; d* is divided into M terms over the range [0, d7,..] and €, in
divided into N terms over the range [0, €Lmaz]-

The MaxEnt method presented here assumes the imaginary coefficients (5.3) are zero for
all L and d*. This implies that the specimen profile and strain distributions are symmetrical.
However, in the case of asymmetrical specimen profiles, the kernel in (5.16) and (5.17) for
the MaxEnt method should be re-expressed to take into consideration the nonzero imaginary

coefficients.

Determining the uncertainty in p(ez)

The uncertainties in the solution strain distribution, p(e) are calculated in the same manner
outlined in Chapter 3 and applied in Chapter 4. The uncertainties in (e%)é can be determined
from the uncertainty region of p(er,). That is, a set of distributions is randomly drawn from
the uncertainty region of p(e;). From the set of distributions, a set of (¢2)z values can be
determined from which the standard error in the mean can be calculated. The mean value

was taken as that value of (€2)2 determined from the solution distribution, p(ey,).

5.3 Simulated strain broadened profiles

The two-fold MaxEnt method is evaluated by considering two extreme cases of inhomoge-
neous strain broadening. The first case involves a Gaussian strain distribution from which
we expect the standard results from the Warren & Averbach method. This becomes the
bench mark against which to compare the MaxEnt method. The second case involves a
non-Gaussian distribution modelled on a Pearson-VII function in the near Lorentzian limit.
This demonstrates the breakdown of the Warren & Averbach method and the ability of the
MaxEnt method to determine the strain distribution in the near-Lorentzian limit. These two
cases are considered “extreme” because they define the full “spectrum” of inhomogeneous

strain broadening.
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Using the distributions for p(ey,), the Fourier coefficients and the corresponding specimen
profiles can be generated. The profiles are modelled on a copper specimen using the six most
intense peaks, viz. 111, 200, 220, 311, 331 and the 420. The crystallite size is assumed to be
infinite. The specimen profiles are convolved with an instrument profile, with a background-

level and statistical noise being added.

5.3.1 Strain distribution and specimen profiles
Case 1: Gaussian strain distribution

In the first case, a Gaussian distribution was considered, given by

1 (er — <€L>)2:|

pler) = m exp [— 2(e2) (5.18)

where €/, is the strain averaged over the distance L perpendicular to the diffraction planes;
(er) is the average strain and is set to zero for all L; (€2) is the mean-square strain averaged
over the distance L.

For these simulations a simple model for (¢2) for straight dislocations has been applied.
(€2) is proportional to L™ (Rothman & Cohen 1971, Adler & Houska 1979, Schlosberg &
Cohen 1983, Nandi et al. 1984), given by

2

(1) = % (5.19)
where G2, is a constant dependent on the crystallographic direction, [hkl], and has units of
length; L is the distance perpendicular to the diffraction planes, determined from L = na
where a and n have been defined (see §5.1). L can take on both negative and positive values
over the region (—oo, oc). Here G,, was made independent of [hkl] and was set to a value of
1.0 x 10~ nm. This model is often used to describe cold-worked metals and the quoted value
is considered typical (Adler & Houska 1979, Nunzio et al. 1995). Using (5.18) and (5.19) the
Fourier coefficients can be determined. Equation (5.18) is an even and symmetrical function
and the imaginary coefficients (5.3) are zero for all L and d*. The real Fourier coefficients
become

A(L, d*) = exp [—27* L* (e} ) d**] . (5.20)
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A(L, d¥)

Substituting (5.19) into (5.20) we arrive at
A(L, d*) = exp [-27* |L| Gy 4] (5.21)

where L € (—o0, +00). We notice in (5.21) that the Fourier coefficients are for a Lorentzian
function. Even though a Gaussian strain distribution has been used, it is the spatial depen-
dence of the distributions that determines the Fourier coefficients. If the strain distribution
were constant for all L, then the results from Stokes & Wilson (1944a) would apply. Figure

5.1 shows the Fourier coefficients for the six most intense lines in copper using (5.21).

60 80 120 140

Distance, L (nm)

Figure 5.1: Showing the real Fourier coefficients of the specimen profiles using Gaussian strain distributions

for different values of d* from 111 to 420 peaks.

From (5.20) or (5.21) the integral breadth in (s—sg)-space can be determined analytically
from
-1

B(d") = [/M A(L, &) dL} | (5.22)

o0

Substituting (5.21) into (5.22), we arrive at the following result for the integral breadth

We point out that (5.23) is proportional to d*2. The usual linear dependence which is
the basis of the Williamson & Hall method, assumes that the strain distribution, p(er), is
independent of L.
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Applying a Fourier transform, the specimen profile in (s — sq)-space can be determined,
and can be transformed (i.e. mapped) into 260-space. The modelled profiles assumed isotropic

strain in [hkl].

Case 2: Non-Gaussian strain distribution
The non-Gaussian strain distribution used in this case consisted of a Pearson-VII function
(also see van Berkum 1994)

pler) = alow, m) |1+ (L] (5.21)

where m is the exponent and influences the tails of p(e). For m = 1, (5.24) becomes a
Lorentzian function and as m — oo, (5.24) becomes a Gaussian function. In general, m
will be dependent on L, but in this case m = 1.55 for all L (i.e. independent of L); 20y, is

the full width at half maximum (FW HM) of the strain distribution and is dependent on

T'(m)
Vrimo(m—1)

equal to unity. The distribution is centred about ¢; = 0 and has an average set to zero in

L; a(or, m) = is the normalization term which ensures the area of (5.24) is

(5.24). As was the case for Gaussian strain, a simple model for the dependence of (¢%) and
the FWHM, 207, was used. Following van Berkum (1994) and Adler & Houska (1979), oy,
is given by

0o

=i (5.25)

g,

where oy is a constant with units of (length)? and had a value of 7.5 x 1073 nm:. % defines

the “wavelength” of the distortions (van Berkum 1994) and was set to ¢ = % This value

of ¢ is often interpreted as an ideal-paracrystal model (see Somashekar & Somashekarappa
1997, Hosemann et al. 1985, Zocchi 1980) and has recently been applied to metallic samples
(Somashekar & Somashekarappa 1997). The mean-square strain for (5.24) is only finite for

m > % and is given by
mo?
2m —3

(1) = (5.26)

where (5.25) is used in (5.26).

The real Fourier coefficients using (5.24) are given by (also see van Berkum 1994)

A(L, &%) = r(2y) 2 K, (22) (5.27)
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A(L, d°)

where L € (—o0, +00), ¥ = m — 3; z = my/moy |L|d*; and K,(2%) is a Bessel function of
the first kind?. Figure 5.2, shows the Fourier coefficients using (5.27), for the six most intense
copper peaks. From (5.27) the integral breadth using (5.22) can be determined. Here, we

evaluated the integral breadth by numerical integration and were able to described it as

B(d*) = ¢(ao, g, m) d* (5.28)

where 9(0g,q,m) is a function dependent on the parameters oy, ¢ and m. In (5.28) we
notice a similar quadratic dependency in the integral breadth. Furthermore, the imaginary
Fourier coefficients will be zero for all L and d* since the distribution p(e;) is an even and
symmetrical function. As in the approach followed in the Gaussian case, the specimen profiles

were determined by taking the Fourier transform of (5.27) and mapping into 26-space.

1.0 T
200 — 7

..'T."i---... T L |

0 50 100 150 200 250 300 350 400 450 500

Distance, L (nm)

Figure 5.2: Showing the real Fourier coefficients of the specimen profiles using non-Gaussian (Pearson-VII)

strain distributions for different values of d* corresponding from the 111 to 420 profiles.

2This integration was performed using Mathematica3.0, Wolfram Research Inc., 100 Trade Center Drive

Champion, Illinois, 61820-7237.
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5.3.2 Simulated instrument profiles

The instrument profile used in this study was based on the “ideal” reference profile modelled
on a LaBg standard reference specimen. This was applied in §4.3.2. By “ideal”, we mean that
the reference profile only characterizes the optics the diffractometer and does not include
finite size broadening effects or lattice distortions that may arise from the sample. The
settings were assumed to be those for a standard diffractometer with a radiation source of
CuKy1q + CuKgy1p. (The full set is given in §4.3.2). The peaks of the reference profile were
fitted with a split Pearson-VII function. The parameters defining the split-Pearson-VII were
fitted to a low order-polynomial. Figure 5.3 shows the w and m parameters for the Pearson-
VII function. The instrument profiles were evaluated over the same range as the specimen

profiles.

5.3.3 Modelling of “observed” profiles

The modelling of the “observed” copper profiles essentially involved convolving the instru-
ment profile with the specimen profile and including a background level and noise. After the
convolution of the instrument profiles and specimen profiles, the intensities of the resulting
profiles were scaled to a peak maximum of 6000 counts. This simulated the experimental
case where the profiles were recorded to have a particular peak maximum and was done for
the six peaks with a relative intensity greater than 5%. Statistical noise was taken from a
Poisson distribution and added to the convolved product of the instrument and specimen
profile. The background level was assumed to be constant at 10% of the peak maximum
over the 2f-range and Poisson noise was also imparted onto it. An illustration of the low-
and high- angle simulated observed profiles representing the two extremes of broadening, for
the Gaussian strain case, are shown in Figure 5.4. The corresponding non-Gaussian strain
cases are also shown in Figure 5.5. For clarity the 200, 220, 311 and 331 profiles for both

cases are not shown.

147



0.07 F #
0.06
0.05
0.04

w °20

0.03
0.02

0.01 - .

20 40 60 80 100 120 140
Position °260

0.6 - .
0.3 .

0.0 1 1 1 1 1 1
20 40 60 80 100 120 140

Position °26

Figure 5.3: Calibration plots for the parameters w and m defining the Pearson-VII profile generated from
an (ideal) reference LaBg diffraction pattern: (a) w vs 26, where 2w = FW H M °26 for the low- (diamonds)
& high- (crosses) angle sides of the peak; (b) m vs 26, for the low- (diamonds) & high- (crosses) angle sides
of the peak.
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Figure 5.4: The 111 and 420 simulated (“observed”) profiles for the Gaussian strain: (a) The 111 observed
profile over the interval (20p % 2)°26; (b) The 420 observed profile over the interval (20p + 5)°26. The

observed profiles for the 200 to 331 lines are not shown.

If we were to consider the case of anisotropic inhomogeneous strain, then it would be

essential to include the 222 and 400 profiles, because these profiles make up a multiple order.
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However, these peaks have a low relative intensity (< 5%) and experimentally it would be
impractical to record them as part of a normal full scan using a conventional diffractometer

due to the effects of background and statistical noise making the recording times very long.

5.4 Computational Results and Discussion

5.4.1 Preliminary calculations
Background estimation

The background estimation for the simulated observed profiles was conducted using the
method outlined in §4.4.1. In summary, a linear estimation was made over the profile, the
MaxEnt method was applied to determine the specimen profile, and the Fourier coefficients
were examined. This was done iteratively, with each iteration involving a lowering or raising
of the background level until the distortions (especially about the origin of the Fourier
coefficients) were reduced (see §4.2.1). In addition to this procedure, we found that plotting

the In A(L, d*) versus L for a given d* highlighted any distortions.

Determining the specimen profile and strain distribution

For determining the solution profile and strain distribution, the same procedure and MaxEnt
algorithm used in Chapter 4 was applied. The deconvolution was carried out in 26-space
and Cy;,, was set equal to the number of data points in the background-corrected observed
profile. The region of deconvolution varied depending on the broadening of the profile. For
relatively low angle peaks, such as the 111 and 200 lines, the number of points was 200 or
(20p £ 2) °26 at a step-size of 0.01 2. This increased to 1000 points or (205 £ 5) °26 at the
same step-size of 0.01°26. Deconvolutions for all six most intense profiles were carried out.
The solution profiles, f , and actual profiles, f, were compared by evaluating the R-factor,

Ry

Ry =

mg=p o

> It

Once all the solution profiles had been determined, the Fourier coefficients and uncertain-

ties were calculated. This also enabled other methods such as the Warren & Averbach and
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Figure 5.5: The 111 and 420 simulated (“observed”) profiles for non-Gaussian strain: (a) The 111 observed
profile over the interval (205+£2)°26; (b) The 420 observed profile over the interval (26 p+5)°26. The observed

profiles for the 200 to 331 lines are not shown.

Williamson & Hall methods to be applied. For a given value of L, the Fourier coefficients

and their uncertainties for all available d* were interpolated. A set of values for A(L, d*)
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for a particular value of L were interpolated over the range of d* € [0, d},,,], where d ..
consisted of the maximum d* value in the data (in this case the 420 profile). In the case
of d* = 0nm™!, the corresponding strain Fourier coefficient was given by A(L, 0) = 1 for
a given L value. Although A(L, 0) cannot be measured directly, setting it to unity can be
justified from the definition of the strain Fourier coefficients given in (5.2) and (5.3). The
solution strain distribution, p(er,), was normalized for unit area, and the mean-square strain,
given by (5.4), was determined.

The difference between the theoretical quantities, (x)rp, and calculated quantities, ()4,
were compared by determining the percentage difference, diff,

<~'L' ) cal

(T)n

diff = ‘1 - x 100%. (5.30)

Determining the variance and uncertainties

For the deconvolution of the simulated observed profiles, the approach discussed in §3.2.2 and
applied in §4.4.1 was followed here. The average number of counts in the observed profiles
is large (>> 10) and the only assumption made about the variance was that o? = g;. This
assumption is valid under the central limit theorem and can be applied to both simulated
data and experimental data (see Chapter 6). The uncertainties in the solution profile, f ,
were determined as discussed in §3.3.5 and applied in §4.4.1. The covariance matrix that
was used to determine the uncertainties for f is generally not a diagonal matrix. The
uncertainties were determined using a window vector as described in §3.3.5 and given by
(3.58). The window vector incorporates the non-diagonal terms in the covariance matrix for
the uncertainties in f . The window vector was centered about f, and ones were set either
side of fz with zeros outside the region of interest. The same approach was also used to
determine the uncertainties in the solution strain distribution, p(ey,).

The uncertainties in the solution profile were transformed into uncertainties for the

The un-

Fourier coefficients. These were interpolated over the region of d* € [0, d,,..]-

certainty in the strain coefficients at d* = 0 was set arbitrarily to be small, a value of 0.01
being chosen to avoid problems of division by zero in later calculations of error. The uncer-
tainties in the Fourier coefficients were also used in the matrix kernel form of the MaxEnt

method.
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The uncertainties in the strain distribution, p(ey,), were determined in the same way
as the uncertainties for the solution profile. This enabled the uncertainties in <6%>% to be

determined using the approached discussed in §4.4.1.

5.4.2 Case 1: Gaussian strain

In this section the MaxEnt method was applied to determine the specimen profiles and
Fourier coefficients for the case of Gaussian strain. The deconvolution for the peaks in the
copper pattern (the six most intense lines) was carried out over varying regions dependent

on the relative broadening of the simulated profiles.

~

Determining the specimen profile, f(26)

There are several observations that can be made about the characteristics of the strain
and instrumental broadening for this case. First, the strain broadening increases as tan®6
(compare with (5.23)). The implication of this is that for high angle peaks, such as the 331
and 420, the broadening extends over a large range (about +10°26). This in turn results
in a greater noise component in the simulated observed profiles (compare Figures 5.4(a) &
5.4(b)), because the amplitude decreases (to keep the intensity constant) hence noise is a
larger fraction of the signal. Secondly, the instrumental broadening relative to the strain
broadening is relatively small as demonstrated by overlaying the specimen and observed
profiles. Based on these two observations, the central task of the MaxEnt method in this case
involves noise removal. Another difficulty that was encountered was background correction.
It was very easy to overestimate the background level and introduce truncation effects into
the Fourier coefficients of the solution specimen profile. These factors (the insignificant
instrumental broadening, noise level, and incorrect background estimation) contributed to
the MaxEnt results summarised in Table 5.1. The solution profiles are shown in Figures 5.6
& 5.7.

We notice from the Table 5.1 the inability of the method to converge onto Cl;,, with
C/Clim ideally ~ 1. The C/Cyn, while in the range of unity, are all greater than unity,
which suggests the solution profile is under-fitted. The failure of the convergence onto Cgp,

can be accounted for by the above mentioned factors. The noise contribution is likely to be
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111 200 220 311 331 420

C/Claim 2.5 2.0 1.5 2.0 1.5 1.5
Ry (%) 5.5 5.9 6.2 5.2 4.1 48
B(°260)  0.214+0.04 0.29+0.04 0624009 0.99+0.09 29403 3.5+04
diff (%) 1.6 <05 6.5 4.3 16.1 20.1

Table 5.1: The parameters and results from applying the MaxEnt method to determine the specimen
profile for the Gaussian case: C/Cqim is the ratio of the final to the preferred statistic value; Ry is the
R-factor from (5.29); 5(°26) is the integral breadth of the solution profile over 26-space; and diff is the

percentage difference between the theoretical and calculated integral breadth of the specimen profile.

the main factor. It can be inferred from Figures 5.6 & 5.7 that the noise also affected the
solution profile, as spurious oscillations are evident. Despite this the R in Table 5.1 are less
than 10%.

The large percentage differences in the integral breadths, 3(26) in Table 5.1 in the 331
and 420 solution profiles can be accounted for by incorrect background estimation. That is,
the systematic errors have been propagated from the observed profiles into the 331 and 420
solution profiles.

It should be pointed out that in determining the solution profiles for this case, a uni-
form model was used in the MaxEnt method, as we have assumed ignorance concerning the
specimen profile. The consequence of this choice of an a priori model should be pointed
out: the choice of the model influences the value of the Lagrangian parameter, «, which in
turn influences the solution. This was also demonstrated in Chapter 4, where the choice of
a priori model played an important role in determining the correct column-length distribu-
tion. Moreover, the a priori model also has an underlying influence an the magnitude of
uncertainties in the solution profiles, since the covariance matrix in (3.58) is determined by
the solution profile, f , and a.

In Figure 5.6(a) the uncertainty region encompasses the solution profile and by visual
inspection the region is narrow relative to the FFW HM of the solution profile. The greatest
uncertainty is about the peak of this distribution. In Figure 5.7(a) the uncertainty region

is broad relative to the F'W H M of the solution profile. This demonstrated the inadequacy
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Figure 5.6: MaxEnt results for the 111 peak for Gaussian strain: (a) True 111 specimen profile (solid
line), solution specimen profile (dashed line) and lower- & upper-uncertainty regions (dots); (b) Theoretical
Fourier coefficients (solid line) using (5.21) for d* = 1/d;11, Fourier coefficients from the solution profile

(dashed line) given in (a), and lower- & upper-uncertainty regions (dots).

of the a priori model. The results in Figures 5.6(a) & 5.7(a) and Table 5.1 represent the

worst case scenario in that a uniform a prior: model was used and no useful information was
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Figure 5.7: MaxEnt results for the 420 peak for Gaussian strain: (a) & (b) as in Figure 5.6 except for

d* = 1/d420.

imparted on the solution profile. The Fourier coefficients for the 111 and 420 profiles are
given in Figures 5.6(b) & 5.7(b), respectively. In Figure 5.6(b) the Fourier coefficients for
the 111 solution profile fit closely with the theoretical coefficients, given by (5.23) for dj;;
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over the region of L € [0, 75] nm. Beyond this region there are some oscillations in the tails
which are insignificant.

The effect of incorrect background estimation which resulted in the large percentage
difference for the integral breadth for the 420 profile is also evident in Figure 5.7(b), shown
by the misfitting between the solution Fourier coefficients and the theoretical coefficients,

given by (5.23) for d}y,.

Determining p(e) — using a uniform model

The Fourier coefficients and their uncertainties for the six profiles were used in determining
the strain distribution. This was the second stage of the two fold MaxEnt approach. As
a first case the strain distribution was determined using a uniform a priori model in the
MaxEnt method. It should be pointed out that for all cases involving uniform and non-
uniform models, the MaxEnt method converged onto the preferred statistic value, Cgy,, of
200.

The strain distributions were determined over the range of L € [2, 20| nm. They were
also determined over the positive region of ¢y, since they are symmetrical about the origin.
The kernel matrix, (5.17), was determined as a [200 x 200] matrix over €;, € [0, 4¢] and
d* €0, d;

mazx

|, where ¢ is the period in (5.17) which was found by setting, ¢ = ﬁ to be

suitable for a given L. The uniform model was defined by

my = - (5.31)
€Lmaz — €L min

where €7, min = 0 and €y, e = 4¢. The normalising of the solution distribution and determin-
ing the rms-strain was carried out over the region ¢, € [0, 2FW H M|, where the FWHM

is the full width at half maximum of the solution distribution?.
The MaxEnt strain distributions are shown Figure 5.8, for L = 5, 13, & 20 nm over the
region ¢;, € [0, 2FW HM]. These solutions represent the probability density on the strain
at a column-length distance, L, parallel to the diffraction vector. The distribution assigns a

probability to the elongation of the column-length as a result of the ensemble of dislocations

throughout the crystallite.

3This is effectively integrating over [0, 40] and in the Gaussian limit corresponds to a confidence limit of

greater than 99.5%.
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The solution distributions given in Figure 5.8 demonstrate how ineffectual the uniform
model, (5.31), is in the MaxEnt method. There is a misfitting of the solution distribution
about the origin, and the tails are extended, rather than decreasing rapidly as expected
for a Gaussian distribution. These results show that the uniform model is not well suited
for determining the strain distribution, but it does provides an understanding of the solu-
tion distribution. The above features are evidence that a better a prior: model is needed.
The use of the uniform model represents our lack of knowledge about the solution. This
was demonstrated by the broad uncertainty region about the solution distribution and was
reflected in the uncertainty of the F'W H M of the solution distributions in Figure 5.8.

Although the solution for a uniform model represents our worst case, the positivity has
been preserved, and there are no spurious oscillations in the tails of the solution. This is
somewhat surprising given the difficulties in the deconvolution and misfitting in the Fourier
coefficients (see Figure 5.6(b)). They appear not to have contributed to the ill-conditioning

of the solution distribution.
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Figure 5.8: The MaxEnt strain distributions for Gaussian strain using a uniform a priori model for L =
5, 13 & 20nm over the region of €z, € [0, 2FW HM]: (a) True strain distribution (solid line) for L = 5nm, the
solution strain distribution (dashed line), lower- & upper-uncertainty region (dots), and the uniform a priori
model (dash-dot lines); (b) Solution distribution for L = 13nm; (¢) Solution distribution for L = 20 nm.
Note: The distributions showing the lower- & upper-uncertainty regions (dots) are not normalised for unit

area.

Determining p(e;,) — non-uniform model

The features of the solution distribution, shown in Figure 5.8, are a consequence of using a
uniform a priori model. In order to improve these results a non-uniform a priori model was
developed; that is, a model determined from the observed data using an independent or low
resolution method. In this case we have formulated a non-uniform model using a discrete

form of (5.5) given as

N
mp; = 2LAd" > A; cos(2rm Ley;d;) (5.32)
i=1
where Ad* = d;,, — d; and was determined over the region of ¢, € [0, ;5z—] and d* €

[0, d.,.] - As discussed above, this approach does not preserve the positivity of the model
and it was found that negative spurious oscillations appeared in the non-uniform model. In

order to overcome this, the non-uniform model was fitted using a “tunable” function such as
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a Pearson-VII | (5.24), to 1% of its amplitude. The parameters from the fitted model were
used to generate a model which was positive definite. This fitted model was then used in the
MaxEnt method. The MaxEnt method was applied over the reduced region of 2FW H Ms
of the fitted model.

The solution strain distributions, using a non-uniform model, were determined over the
range L € [2, 20]nm. In Figure 5.9, the solution distributions for L = 5, 13& 20 nm are
given. By comparing these results with Figure 5.8, an improvement in the solution distribu-
tion is noticeable. The extended tails and misfitting that are present in Figure 5.8 have been
reduced. The uncertainty region for these sets of solution distributions is narrower com-
pared with the distributions in Figure 5.8, while tapering off for increasing e;. The solution
distribution for L = 5nm, Figure 5.9(a), has the greatest misfitting for the solution using a
non-uniform model. The reason for this is in the poor quality of the Fourier coefficient data
at this column length, L. Generally the positivity of the solutions has been preserved, and
the misfitting between the solution and true distributions has been reduced. This clearly
demonstrates the influence a non-uniform a prior: model has upon the solution distribution
and uncertainty region. This last point is important, in that it shows the influence of the
a priori model on the Lagrangian multiplier, o, in (5.15), and on the uncertainties of the

solution distribution.
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5.4.3 Case 2: Non-Gaussian strain

The purpose of this case is to examine the MaxEnt two fold approach in the limit of non-
Gaussian strain. Furthermore, it is important to develop an understanding of the factors
that may affect the MaxEnt method. As in the Gaussian case for uniform and non-uniform
models, the MaxEnt method converged onto the preferred statistic value, Cy;,, of 200.

In determining the solution specimen profile and strain distribution, the same procedure

that was applied in the previous section was applied here.

Determining f(26)

The shapes of the specimen profiles are very different in this case. The tails are extended
and the peak is narrow. Table 5.2 summarises the performance of the MaxEnt method in
determining the specimen profiles. As was found in §5.4.2, the MaxEnt method was unable
to converge onto the preferred Cyjp,, but C/Cuim ~ 1. To illustrate the MaxEnt solution
profiles, the low-angle 111 and high-angle 420 profiles are given in Figures 5.10 & 5.11,

respectively.
111 200 220 311 331 420
C/Clim 2.75 2.0 1.5 1.67 1.5 1.45
Ry (%) 28.8 17.4 15.4 17.4 8.8 3.5
B(°26) 0.11+£0.04 0.134+0.04 0.31+0.07 041+£0.10 12+£03 1.5=£0.3
dif f (%) 23.7 8.4 10.8 5.1 18.3 15.9

Table 5.2: Parameters and results from applying the MaxEnt method to determine the specimen profile
for the non-Gaussian case: C/Cl;n, is the ratio of the final to the preferred statistic value; Ry is the R-factor
from (5.29); 5(°260) is the integral breadth of the solution profile over 26-space; and dif f is the percentage

difference between the theoretical and calculated integral breadths of the specimen profile.

The solution profile for the 111 peak is given in Figure 5.10. The deconvolution was
carried out over a region of (20 £ 1)°20 at a step-size of 0.01°26. The Cy;,, was set to a
value of 200. The main region of the profile has not been correctly resolved and on close

inspection the uncertainty regions of the solution profile do not include the true specimen
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profile. Also the spurious oscillations in the tails of the solution are an indication that the
noise in the observed profile has not been fully removed. The Fourier coefficients of the
solution profile fit closely to the true coefficients up to ~ 60nm. Beyond this region the
misfitting between the coefficients increases and the amplitude of the spurious oscillations
increases, which implies that the oscillations in the solution profile are being imparted into
the Fourier coefficients.

The results for the 420 specimen profile, given in Figure 5.11(a), are somewhat more
encouraging, in that the MaxEnt method has been able to resolve the features of the profile:
the amplitude of the spurious oscillation have been reduced; and the uncertainty region of
the solution profile encompasses the true solution profile. Although the uncertainty region
is broad, which is also indicated by the FW HM of the solution profile, the misfitting of
the solution and true specimen profile has been reduced. Overall the results are reasonably
good. However, the effects of truncation error are noticeable in the Fourier coefficients, given
in Figure 5.11(b). The misfitting between the theoretical and solution Fourier coefficients is
considerable and for small L the Fourier coefficient errors fail to encompass the theoretical
coefficients. However, unlike the Fourier coefficients in Figure 5.10(b), the are no spurious
oscillations.

In the light of these results and the results in §5.4.2 an attempt was made to develop
a non-uniform model for determining the specimen profile, but proved to be unsuccessful.
Developing the a priori model involved smoothing the (background corrected) observed
profile using a suitable smoothing (i.e. convolving) distribution and using it in the MaxEnt
method. The rationale for smoothing the observed profile was that the resulting model
would contain the underlying specimen profile and the process of smoothing the observed
profile would reduce the noise in case this produced any ill-conditioning in the solution
profile. The instrument profile was used as the smoothing distribution, since there was
no theoretical justification for selecting any other smoothing distribution. However, this
approach was found to have little influence on the solution profile. The reason for this was
the additional broadening in the model. Additional calculations showed that the non-uniform
model had to be very “close” to the true specimen profile for any noticeable improvement

in the solution profile. However, these models were not used since there is no theoretical or
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physical justification for doing so.

From the attempts to develop a non-uniform model for the strain distributions, it seems
plausible that a similar approach could be applied to developing a non-uniform model for
determining f . This would consist of applying another deconvolution method, such as the
forward deconvolution approach (Howard & Snyder 1989, Cheary & Coelho 1992) since this
approach attempts to preserve the positivity of the solution profile, and information about
the specimen can be incorporated. This result could then be used as the model in the

MaxEnt method.

Determining p(e;,) using a uniform model

The uniform model was applied in the first case for determining the strain distribution in
the near-Lorentzian limit. The procedure applied in §5.4.2 was applied in this section and
the uniform model was determined using (5.31). The matrix kernel was evaluated over the
region of €7, € [0, 5¢] and d* € [0, d},,.]- The normalisation of the solution distribution was
carried out over the region of four FW H Ms of the solution distribution. However, in the
solution distribution for L > 46 nm, the integration was applied over ¢, € [0, 5¢] and was
found to be better suited because of the extended tails of the distribution solution.

The solution distributions were determined over the region of L € [5, 50| nm. Figure
5.12 shows the strain for the particular column lengths, L = 10, 30, & 50 nm. The extended
region for L comes about because of the long tails in the Fourier coefficients. For example,
compare the Fourier coefficients in Figures 5.7(b) & 5.11(b); the range over which 5.11(b) is
plotted is ~ 3 times as great compared to Figures 5.7(b). This increases the working range
of the MaxEnt method for determining the strain distribution.

The main difficulty in the result for the strain distribution is the misfitting of the solution
distribution about the origin of the distribution. In Figure 5.12(a) the solution distribution
fails to fit the true distribution about the origin. The failure is due to the use of uniform a
priori model. That is, no information about the scale of the distribution and its shape has
been specified. There is also some misfitting in the tails of the strain distribution, which
is again due to the lack of information about the shape of the strain distribution in the

model. In using a uniform model, the solution distribution and its uncertainties represent
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the worst case situation. This is evident by visual inspection of the F'W H M in the solution
distributions. The use of the uniform model influences the value of the Lagrangian multiplier,
which in turn influences the magnitude of the uncertainties. This can be seen in examining
(3.57). The uncertainty region for the solution strain distribution in Figures 5.12 (b) & (c)
encompasses the true distribution. However, in Figure 5.12 (a) the uncertainty region does
not encompass the central region of the distribution due to the lack of information in the
uniform a prior: model.

Although the use of a uniform a priori model produces misfitting of the solution distri-
bution with the true distribution, it defines the worst case scenario. This situation is also

reflected in the broad uncertainty region of the solution distribution.
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Figure 5.9: MaxEnt strain distributions for Gaussian strain using a non-uniform a priori model for
L =5, 13& 20nm over the region of €, € [0, 2FW HM]: (a) True distribution (solid line) for L = 5nm, the
solution strain distribution (dashed line), lower- & upper-uncertainty region (dots), and the non-uniform a
priori model (dash-dot lines); (b) Solution distribution for L = 13nm; (c) Solution distribution for L =
20nm. Note: The distributions showing the lower- & upper-uncertainty regions (dots) are not normalised

for unit area, while the solution distribution and non-uniform a priori model are normalised for unit area.
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Figure 5.12: MaxEnt strain distributions for non-Gaussian strain using a uniform a priori model for
L =10, 30 & 50nm over the region of e, € [0, 2FW H M]: (a) True distribution (solid line) for L = 10 nm, the
solution strain distribution (dashed line), lower- & upper-uncertainty region (dots), and the uniform a priori
model (dash-dot lines); (b) Solution distribution for L = 30nm; (c) Solution distribution for L = 50nm.
Note: The distributions showing the lower- & upper-uncertainty regions (dots) are not normalised for unit

area.

Determining p(e;) using a non-uniform model

For the case of non-Gaussian strain, a non-uniform model was developed using the same
procedure as outlined in §5.4.2 with the exception that the model parameters were fitted to
5% of the amplitude. The reason for this is the large spurious oscillations in the extended tails
in the model. The strain distributions were determined over the region of L € [10, 50] nm.
The reason for the reduced region compared with the results in §5.4.3, was the of large
spurious oscillations in the model using (5.32). Consequently, difficulties were encountered
in fitting the Pearson-VII function, (5.24). The matrix kernel for this case was evaluated
over four FW HMs of the non-uniform a prior: model. The normalising and subsequent
calculations were also carried out over four F'W H Ms of the model.

Figure 5.13 shows the solution distribution for L = 10, 30 & 50 nm. In general there has

been an improvement in the solution distribution compared with the results from the uniform
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model. For all cases in Figure 5.13, the largest uncertainties occur about the origin of the
strain distribution. The reason for the large uncertainties in the region €, ~ 0, is due to the
information that the a prior: model is imparting about the scale of the distribution. In all
cases in Figure 5.13, the model is unable to correctly determine the amplitude of the strain
distribution. This is evident in Figure 5.13(a). In Figures 5.13 (b) & (c), the amplitude
of the model approaches the true distribution. This enables the solution distribution to
converge onto the true distribution. However, the uncertainty region for ¢, ~ 0 is relatively
broad.

On the other hand, compared with the results for the uniform model, the improvement
in the results is clearly demonstrated. This is particularly evident in the uncertainty region
for the FW HM of the solution distribution. The uncertainty region is narrow. Again as
discussed in the above solutions, the influence of the a priori model on «, on p(eyr,), and its

uncertainties must not be underestimated.
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Figure 5.13: MaxEnt strain distributions for non-Gaussian strain using a non-uniform a priori model for
L = 10,30 & 50nm over the region of €z, € [0, 2FW HM]: (a) True distribution (solid line) L = 10nm, the
solution strain distribution (dashed line), lower- & upper-uncertainty region (dots), and the non-uniform a
priori model (dash-dot lines); (b) Solution distribution for L = 30nm; (c¢) Solution distribution for L =
50nm. Note: The distributions showing the lower- & upper-uncertainty regions (dots) are not normalised

for unit area, while the solution distribution and non-uniform e priori model are normalised for unit area.
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5.4.4 Strain Analysis

In the previous section we demonstrated the two-fold MaxEnt method for determining the
specimen profile and the strain distribution. In both cases the uncertainties for the resulting
solution profile and distribution were determined. In this section, physical quantities, such
as the root-mean-square strain, (e%)%, and parameters defining the strain models are deter-
mined. These quantities are compared with the standard approaches such of Williamson &
Hall (1953) and Warren & Averbach (1950). The uncertainties from the solution profiles and
strain distributions were used to determine the uncertainties in the subsequent quantities.
This again demonstrates that the MaxEnt method is a fully quantitative method, in that

the results and uncertainties from the method can be used in subsequent results.

Integral breadth analysis

The integral breadths of the six most intense profiles for the Gaussian and non-Gaussian
cases are shown in Figure 5.14. In both the Gaussian and non-Gaussian cases the classical
Williamson & Hall method fails to produce physically consistent results. This is evidenced
by the negative intercept of the linear fit. The intercept in the Williamson & Hall method
is directly related to the volume-weighted crystallite size (see Chapter 1). The last two
points in Figure 5.14(a) & (b), corresponding to the 331 and 420 profiles, are likely to have
been affected by systematic errors such as background estimation and truncation. This was
pointed out in Tables 5.1 & 5.2. When the 331 and 420 solution profiles were omitted in
the linear fitting, a negative intercept was also produced. This further adds weight to the
idea that the linear model for strain broadening is not suitable. Unphysical terms such as a
negative intercept and consequently unphysical crystallite size still result when eliminating
the influence of systematic error in the linear estimation. The reason for this failure is in the
underlying assumptions of the Williamson & Hall method. That is, the strain distribution is
assumed to be independent of L, resulting in a linear relationship between integral breadth,
crystallite size (given by the inverse of the intercept) and strain (proportional to the slope).
In general this is not going to be case.

The difference between the theoretical curves, given in §5.3, and the data points in

Figure 5.14 for the 331 and 420 lines can only be accounted for by truncation and background
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effects. For both cases the first four data points lie close to or on the theoretical curve.

For both cases, the data was found to follow a d*? relationship which produced a positive
slope and a nonzero, but positive intercept. Unlike the Williamson & Hall method, plotting
B as a function of d*? produces a physically consistent result. For the Gaussian case, given

in Figure 5.14(a), data points were found to fit
B(d*) =m*G*d? + ¢ (5.33)

where G? is the estimated strain constant, independent of hkl, and which defines the mean-
square strain in terms of L, see (5.19); c is the intercept and has the units of 1/length.
(In Figure 5.14(a), (5.33) has been plotted against d* rather than d*? for convenience.) It
is tempting to relate ¢ to a crystal size dimension, but this result should be interpreted
conservatively, the reason being that c is likely to be strongly influenced by systematic
errors such as truncation and background effects discussed above. In the context of these

simulations, the theoretical value of c¢ is zero (see (5.23)).

wH® - wH® WAL WA®  MaxEnt® MaxEnt®
G? x105(nm) 7.74+0.7 94+1 6+2 91404 140404 11.2+04
diff (%) 23 10 40 9 40 12
cx 1073 (nm)~t 8+4 1+5 - - - -

Table 5.3: Estimated parameters using the nonlinear Williamson & Hall (WH), Warren & Averbach (WA)
and MaxEnt methods: WH®") G2 & ¢ estimated for all data points in Figure 5.14(a); WH® G2 & ¢ estimated
for the first four data points in Figure 5.14(a); WA(Y)| G2 estimated over the region L € [1, 34] nm from
Figure 5.15(a); WA G2 is estimated over the region L € [5, 22]nm from Figure 5.15(a); MaxEnt(")| G2
from Figure 5.15(b) using a uniform model in the MaxEnt method; MaxEnt®, G2 from Figure 5.15(b) using

a non-uniform model in the MaxEnt method.

Table 5.3 shows the estimated G? values for all the methods i.e. Williamson & Hall
(more specifically, the G and c¢ results for the non-linear Williamson & Hall, given by
(5.33)), Warren & Averbach and the MaxEnt method. In the first case (see WH®!) all six
points were used. In the second case (see WH(Q)) only the first four points were used. By

comparing the two cases the effect of systematic errors on the estimation of G? and c is
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evident. For both cases the uncertainty in c is larger, in the first case it is ~ 50%, while in
the second case it is larger than the estimated quantity.

In the non-Gaussian case, shown in Figure 5.14(b), a similar d*? relationship was found.
However, the slope of this graph can not be directly related to the parameters ¢, m and oy
from the strain distribution given by (5.24). The slope is a function of these parameters and
there are too few equations to determine them. At best we compare the slope of the fitted

data with its theoretical value for the values of ¢, m and oy. This fitting was found to be
B(d") = (oo, m, q) " + ¢ (5.34)

where (09, m, q) is the function dependent on ¢, m and oy and c is the intercept. Using
(5.34), the slope ¢ was determined as (3.1 + 0.6) x 10™* nm. This can be compared to the
theoretical value of 4.1 x 10~ nm, corresponding to a percentage difference of ~ 25%. The
intercept, ¢, from (5.34) was found to be (64+4) x 10~3nm ™", with another large uncertainty,
almost 67%. As was the situation in the Gaussian case, the size of the uncertainty suggests
that random errors are not the sole cause, and that systematic errors such as truncation and
background effects are the most likely culprits. When the integral breadths for the 331 and
420 profiles are not included in the above analysis, 1 was found to be (4 4+ 1) x 10~*nm
and the intercept, ¢, found to be (34 5) x 107> nm~!. As in the Gaussian case, this clearly

indicates that systematic errors are the cause with the poor estimate in .

e . 1 .. . . .
Determining (¢2): distribution — Gaussian case

The Warren & Averbach method was applied to the Fourier coefficients of the solution profile

in the Gaussian case. It involved separating the strain and size coefficients by applying
In A(L, d*) = In A*(L) — 27? L* d*? (€2) (5.35)

where (¢2) is the mean-square strain for a given L, which can be determined from the slope
of the graph In A(L, d*) versus d*?. The intercept of (5.35) can be used to determine the
size Fourier coefficients and the area weighted size, (L), using (4.2). The (62} distribution
can be determined from (5.35) as shown in Figure 5.15(a).

Figure 5.15(a) shows the variation of the strain over a range of L. For small L, the un-

certainties in (e%)é are large and there is also considerable misfitting between L = 1to 4nm.
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Figure 5.14: Integral breadth, 3, versus d* for Gaussian and non-Gaussian strain: (a) The integral breadth
data from the profiles (diamonds + error bars), theoretical curve (solid line) using (5.23), the Williamson-
Hall (dashed lines) and quadratic fitting (short dashed lines) using(5.33); (b) The integral breadth data from
the profiles (diamonds + error bars), theoretical curve (solid line) using (5.27) in (5.22), the Williamson-Hall
(dashed lines) and quadratic fitting (short dashed lines) using (5.34).
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The reason for this misfitting is due to the small “hook effect” in the Fourier coefficients, es-
pecially in the higher angle peaks. that is, the negative curvature in the Fourier coefficients
produced by incorrect background estimation. The consequence of this is that when the
Warren & Averbach method is applied, the slope from (5.35) is small, and results in a small
(€2} value. Over the range of L € [5,22]nm, the (¢2)? results compare closely with the
theoretical distributions given by (5.19). For L > 22 nm, the uncertainties in the tails of the
Fourier coefficients contribute to the misfitting, like those shown for the 111 and 420 profiles
in Figures 5.6 & 5.7. From the results shown in Figure 5.15(a), the estimated G? values were
determined for two cases, as shown in Table 5.3 (see WA® and WA®). For WAW the G2
values were determined from the fitting (5.4) over the range L € [1, 34| nm. For WA® the
G? values were determined over the range L € [5, 22]nm. It is evident that in the second
case there is an improvement in the estimated G? value. As expected, the intercept in (5.35)
was zero. This implies that the size coefficients were equal to unity (taking the exponential
of In A*(L)). The Fourier transform of this is simply a delta-function, and physically signifies
an infinitely large crystallite size.

Despite the difficulties in determining the specimen profile, the large noise component
and incorrect background estimation, the results for the Warren & Averbach method over
L € [5, 22] nm are reasonable.

The rms-strain results for the MaxEnt method are shown in Figure 5.15(b). The solution
distributions discussed in §5.4.2 were used to determine (e%)% over the range L € [2, 20| nm.
The first set of (e%}é results was determined using a uniform model in the MaxEnt method
— for example see the solution distributions in Figure 5.8. For small L there is a close fit
to the theoretical curve given by (5.19), but as L increases misfitting becomes evident. The
estimated G2 values using these uniform (¢2)2 results are given in Table 5.3 for MaxEnt(®.
These results are poor and highlight the role that the a priori model has on o and deter-
mining p(er), and on subsequent calculations. This can be contrasted with the non-uniform
a priort model which lies reasonably close to the theoretical result — for example, see the
solution distributions in Figure 5.9. In other other words, the a prior: model introduces
information into the solution. The estimated G? value using these non-uniform (e%)é results

are given in Table 5.3 for MaxEnt(®. These result are close to the true the G2 values of
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Figure 5.15: Showing the (e2)? results for both the Warren-Averbach and MaxEnt methods: (a) Showing
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1.0 x 10~*nm, but could be further improved upon by a better estimate of a non-uniform
model.

The range over which the MaxEnt method was applied for uniform and nonuniform
models was L € [2, 20 nm. The reason that this cannot go beyond this range is due to
the uncertainties in the Fourier coefficients and the useful range of the coefficients — for

example, see Figure 5.1.

o . 1 . . . .
Determining (¢?)2 distribution — non-Gaussian case

The second case considered the non-Gaussian strain in the limit of a near-Lorentzian strain
distribution, to which the Warren & Averbach, (5.35), and MaxEnt methods were applied.
Figure 5.16 shows the results for both methods. The Warren & Averbach method, (5.35),
was applied (see Figure 5.16(a)) but has clearly failed to determine the correct (€2)2 values.

The failure of the Warren & Averbach method lies in the assumptions of the method.
That is, the graph of In A(L, d*) versus d*? is linear for all L and d*?, if and only if p(ez)
is a Gaussian distribution, resulting in (5.35). As p(er) moves from a Gaussian case, the
plot In A(L, d*) versus d*? is linear only for small L. In the limit of a near-Lorentzian p(ey),
the validity of the assumptions of Warren & Averbach breaks down completely. In this
particular case the exponent in (5.24) is m = 1.55, which defines the near-Lorentzian limit
and lies at the opposite extreme to the Gaussian case where m must be large (i.e. m — o).
The results in Figure 5.16(a) were used to determined the parameters oq, m and ¢ for the
strain model (5.26) and are shown in Table 5.4. The large percentage difference between
the estimated oy and m parameters are indicators of the failure in the Warren & Averbach
method (see WA in Table 5.4).

For this application of the Warren & Averbach method, non-zero size Fourier coeffi-
cients were produced. From these coefficients an area-weighted crystallite/domain size,
(L)' ~ 13nm was determined. It is tempting to interpret this size-dimension as the spatial
periodicity of dislocations in the specimen (Warren 1959, van Berkum et al. 1996). How-
ever, this dimension should be interpreted conservatively. It is most likely a consequence
of the assumptions built into the Warren & Averbach method. That is, in the limit of the

Lorentzian distribution the separation of the size and strain coefficients incorrectly attributes
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Figure 5.16: Showing the (€2)2 results for both the Warren-Averbach and MaxEnt methods: (a) Theo-
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WA MaxEnt(!) MaxEnt(

o9 x 1073 (nm2)  5+1 75403 7.5+ 0.4
diff (%) 33 0 0

m 2.940.5 1.9045+0.0003 1.99 = 0.02
diff (%) 87 23 28

q 05+£0.2  048+0.02  0.48 £0.02
diff (%) 0 16 4

Table 5.4: The estimated values of oo, m, g and percentage difference diff for various methods: the Warren
& Averbach, (WA); MaxEnt method using a uniform model, MaxEnt"); MaxEnt method using a uniform
model, MaxEnt(®.

size-broadening to the Fourier coefficients and does not correctly determine the strain co-

efficients. As a result, non-zero size Fourier coefficients are produced. If the (L)I" were

meaningful we would expect a correlation between the integral breadth and Fourier sizes®*.

However the positive intercept determined in the integral breadth results is due to systematic
errors. Hence, the (L), dimension produced in these simulations indicates the breakdown of
Warren & Averbach method in the case of a near-Lorentzian strain distribution.

The most surprising outcome is given in Figure 5.16(b). Here the MaxEnt method for
both the uniform and non-uniform a priori models was used to determine (e%)%. If the
solution distributions are examined, for example those given by Figures 5.12 & 5.13, we
notice the solution strain distributions are reasonably good — especially for the non-uniform
model. The Figure 5.16(b) results for the uniform and non-uniform models were fitted to
the strain models (5.25) and (5.26). The estimated values for oy, m and ¢ parameters are
shown in Table 5.4. The percentage differences for the uniform and non-uniform models are
less than those for the Warren & Averbach method. The results from Table 5.4 approximate
the shape and rate at which the curves decrease in Figure 5.16(b) given by the oy and ¢
parameters. The difference between the calculated and theoretical curves can be explained

by the large percentage difference in the m parameter.

“Recently van Berkum et al. (1996) show that the Dy ~ 1.9Dw g for experimental data (see experi-

mental results p741 van Berkum et al. 1996).
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In order to understand this result further, we need to examine (5.26) in terms of the
parameters o and m. We notice that (5.26) is dependent on two parameters (unlike the
Gaussian case) and if there is an uncertainty in both parameters, these are compounded
to produce a large uncertainty in (ei)%. This can be seen by considering each term: the
uncertainty in (¢2)2 with respect to o, varies linearly, while the uncertainty in m varies
nonlinearly. This makes any error in m more sensitive to small changes (i.e. uncertainties).
For example, at L = 10nm, o, = 2.37 x 1073, taking m = 1.55 and using (5.26), (¢2)2 =
9.34 x 1073. Suppose we introduce an error of 5% into each parameter, then (e%}é =
6.29 x 1073, a percentage difference is of ~ 33%. In the case of 10% error in both parameters,
(2)z = 5.32 x 1073, a percentage difference of ~ 43%. Although the MaxEnt solution
strain distributions are visually good, small uncertainties in the parameters produce large
uncertainties in (e2)z.

But what is the underlying cause of these uncertainties in o7, and m? The best explana-
tion lies in the a priori model used. That is, it defines our assumptions and will also include
any uncertainties in the parameters that define it. Not only is the “good” information about
the strain distribution being imparted into the solution, but so too is “bad” information
concerning the an a prior: model. Perhaps the central issue in defining an a priori models

is being able to quantify the “good” and “bad” information which it incorporates?

Further examination of the non-Gaussian case

The half-widths at the half-maximum, oy, for the solution distributions using uniform and
non-uniform models were determined and are shown in Figure 5.17. The influence of the
a priori model can be seem in comparing Figure 5.17(a) (using a uniform model) with
Figure 5.17(b) (using a non-uniform model). The magnitude of the uncertainties in oy, is
reduced and there is misfitting in data points for L < 12nm in Figure 5.17(b). The influence
of the model on «, the solution distribution and its uncertainties have been discussed above.

An attempt was made to fit the results in Figure 5.17 to oy, using (5.25). The estimated
values of o7, and ¢ are shown in Table 5.5. These results are disappointing. The obvious
explanation can be seen in the misfitting in the data point for L < 12nm — especially for

Figure 5.17(a). The underlying explanation is in the a priori models used to determine the
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or, X 10_3

10 20 30
Column Length, L nm

or X 10_3

Column Length, L nm

Figure 5.17: The half-widths or or of the MaxEnt strain distributions: (a) Half-width results from
the theoretical curve using (5.25) (solid lines) and the MaxEnt strain distributions using a uniform model

(diamonds + error-bars); (b) Half-width results from the theoretical curve using (5.25) (solid lines) and the

MaxEnt strain distributions using a non-uniform model (diamonds + error-bars)
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strain distributions for L < 12nm. In Figure 5.17(a) the a priori model has no “structure”
and no information concerning the scale or shape of the distribution is being transferred
into the solution. In Figure 5.17(b) the a priori model has “structure”, but the information
which is being transferred is incorrect, in that the model did not correctly determine the

scale of the distribution. This is demonstrated in Figure 5.13.

MaxEnt)  MaxEnt®

oo x 1073 (nm2) 1.6+02  1.340.2

diff (%) 78.7 82.7
q 0.73 +0.05 0.66 % 0.06
diff (%) 46.0 32.0

Table 5.5: The estimated values for oo and ¢ using (5.25 from Figures 5.12 & 5.13: MaxEnt(!) the oo and
q results from the MaxEnt method using a uniform model; MaxEnt® the og and ¢ results from the MaxEnt

method using a non-uniform model.

In general the near-Lorentzian or non-Gaussian case has proven to be a challenging
problem. The failure of the Warren & Averbach method and its underlying assumptions have
been clearly shown. The (e%)% values for the MaxEnt method are disappointing, but the
solution distributions are good. Moreover, the half-widths, o, from the solution distribution
clearly demonstrate the ability of the MaxEnt method to determine parameters and assign

an uncertainty to those quantities.

5.5 Summary

In this chapter the MaxEnt method has been presented as an alternative for determining
strain distribution, and has also been used to determine the specimen profile from the simu-
lated observed profiles. This two fold approach revealed the robustness and flexibility of the
MaxEnt method. Moreover, developing a MaxEnt method demonstrated how two appar-
ently different problems can be solved under a general and unifying method which preserves
the positivity of the solution specimen profiles and strain distribution, takes into consid-

eration the experimental uncertainties and incorporates a prior: information. It has been
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shown that the MaxEnt method for determining the strain distribution makes minimum
assumptions concerning the characteristics of the solution, unlike the Warren & Averbach
and Williamson & Hall methods, which make specific approximations and were developed
from special examples of size and strain broadening.

Using simulations, the cases of Gaussian and near-Lorentzian inhomogeneous strain
broadening of diffraction profiles were examined. In each case the simulated observed data
consisted of instrumental broadening, background level and statistical noise (see §5.3). For
both cases, the MaxEnt method was applied to determining the specimen profile. This
enabled a strain analysis to be conducted (see §5.4). The problem of determining the spec-
imen profile proved to be challenging due to the relatively high level of statistical noise,
incorrect background estimation and relatively little instrumental broadening (compared to
the specimen broadening). However, using a uniform a priori model, the positivity of the
profiles was preserved and the worst case scenario was defined. Once the specimen profiles
were determined the Warren & Averbach and Williamson & Hall methods were applied.
The uncertainties determined from the MaxEnt methods were used to quantify the strain
broadening in both methods (see §5.4.4). The classical Williamson & Hall method failed to
account for the d*? dependence of the integral breadths in both cases and produced phys-
ically impossible results, such as a negative intercept. It was also demonstrated that this
failure was independent of the systematic errors in the integral breadth. The simulations
demonstrated that the underlying assumptions of the Warren & Averbach methods worked
as predicted only in the Gaussian case, while in the near-Lorentzian limit it simply failed.
The MaxEnt method was used to determine the strain distribution, which in turn was used
to determine the root-mean-square strain. The use of a non-uniform a priori model proved
to be important in determining the strain distribution. This was seen by the visual improve-
ment of obvious characteristics such as the reduced uncertainty region and the shape of the
distribution. However, when these results were quantified, by determining the root-mean-
square strain and the parameters of the strain model, the results were disappointing. An
improved result can only follow with the use of a better a prior: model.

The central issues that emerge from this study are the ability of the MaxEnt method to

remove statistical noise, when there is relatively little instrument broadening, and the use of a
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priori models in the method in developing a better understanding of the specimen profile and
strain distribution. In determining the specimen profile for both cases the MaxEnt method
failed to converge to the preferred statistic value, suggesting that the solution profile was over-
fitted. This was most likely due the high-level of noise in the simulated data. Furthermore, it
indicates that a better approach of noise removal needs to be incorporated into the MaxEnt
method. As discussed in Chapter 4, the a priori model proved to be important in deducing
the effects of background and truncation. The models used in that chapter were assumed to
be known and the parameters defining it were arbitrary chosen. In this chapter, however, an
attempt was made to determine the model from a “low resolution” method. This approach
demonstrated that “good” information concerning the model, such as the scale and shape of
the strain distribution, influenced the Lagrangian parameters, the solution distribution and
its uncertainties. Also, it demonstrated that the “bad” information, such as the uncertainties
in scale and shape of the model, influence the parameters of the strain models. This implies
that a method for determining the likelihood of the proposed model and quantifying the
“good” and “bad” information which it incorporates is necessary. A basis for such a method
could be found in Bayesain statistics by comparing the posterior probability of the models

conditional on the data, and its parameters quantified (Sivia 1996).
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Chapter 6

Application of the Maximum Entropy
Method to Alumina Diffraction Data

In this chapter the two-fold MaxEnt method developed in Chapters 3-5 is applied to alumina
diffraction data. The diffraction data was taken using the NIST standard reference material
(SRM) 676! and was first analysed by Kalceff et al. (1994, 1995).

The first level of application uses the MaxEnt method to deconvolve the instrument profile
from the observed profile, thus determining the specimen profile. Two cases are considered in
determining the specimen profile: the first uses a uniform model (see §6.2), while the second
applies a non-uniform model (see §6.3). In both cases the uncertainties in the specimen
profile are determined and used in the subsequent analysis. A qualitative analysis is applied
to the specimen profiles to determine the nature of the specimen broadening for both cases.
It is shown that the specimen broadening is due to size effects. Also, a quantitative analysis
is carried out using the traditional integral breadth and Fourier methods to determine the
volume-weighted and area-weighted sizes, respectively. At this point the MaxEnt method
is applied again (the so-called second level of application) to determine the column-length
distribution and the corresponding area-weighted size. The issue of determining a suitable
a priori starting model is tested for the two cases (see §6.2.4 & 6.3.5). The x-ray analysis is

compared with scanning electron microscopy images of the alumina sample (see §6.3.6).

IThe NIST SRM 676 (a-Al;03) is a material for quantitative analysis or I/I. determination (Kalceff
et al. 1994).
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6.1 Background to analysis

6.1.1 Overview of previous analysis

The experimental details of sample preparation and gathering the x-ray diffraction data are
discussed in Kalceff et al. (1995). The x-ray diffraction data was recorded using a Siemens
D500 diffractometer equipped with a position-sensitive detector (PSD). The NIST SRM 660
(LaBg) material (Rasberry 1989) was used to determine the instrument profile. It was found
that the split Pearson-VII function best fitted the SRM 660 diffraction profile, producing
R-factors 1 — 2% better than other profile functions (Kalceff et al. 1994).

Scanning electron microscopy (SEM) revealed that the SRM 676 has a hexagonal platelet
morphology of 1—2 pm thickness, and 4—5 um diameter, with laser scattering data producing
a particle size of 1.4 um (Kalceff et al. 1995). The Mach-Dollase ratio for the SRM 676 sample
was also determined and found to be 0.998 (see Table 1, p 348 Kalceff et al. 1994), this result
implying that the particles had no preferred orientation (Larson & von Dreele 1994).

The analysis of Kalceff et al. (1994, 1995) essentially dealt with the issue of determining
the instrument profile or instrument profile function (IPF) and removing the instrumental
broadening. In particular, they applied the MaxEnt method to remove the instrumental
broadening, and the crystallite/domain size analysis used the semi-quantitative Williamson
& Hall (1953) method to determine the volume-weighted size? as 98 nm. The difference
between the volume-weighted size and the SEM size was explained by the presence of small-
angle grain boundaries (SAB) within the alumina crystallites. However, this analysis did not

correct for the additional broadening due to absorption of x-rays by the alumina specimen.

6.1.2 Determining the instrument profile

The instrument profile was modelled using a split Pearson-VII function. The low- and high-
FW HM values and exponents, m, that define the split Pearson-VII were determined from
the diffraction data. These parameter data were fitted with functions dependent on the

angular position, 26, enabling the instrument profile parameters to be determined at the

2These are the corrected volume-weighted crystallite/domain size results. The size results determined by

Kalceff et al. (1995) contain a factor 2 error (Kalceff 1998).

189



position of the observed profile.

The low- and high-FWHMs were fitted using (Cheary & Cline 1995)
FWHM? = Atan® 6 + Bcot>6 + Ctan6 + D. (6.1)
The low- and high-exponents, m, were fitted to a fourth-order polynomial
m = ay + a1z + aux® + asz® + aqz’ (6.2)

where z = 26 and the coefficients {a;; i = 0,...,4} can be determined from the least-squares.
Figure 6.1 shows (6.1) and (6.2) and the parameter data from the fitting of the Pearson-VII
function to the SRM 660 diffraction data.

The fitting of the low- & high-FW HM data in Figure 6.1(a) follows (6.1) closely. How-
ever, there is considerable scattering in the data points for the low- & high-exponents, m.

The uncertainties for this parameter were found to be large (> 10%).

6.1.3 Background-level estimation

Profiles were extracted from the SRM 676 diffraction pattern, non-overlapped profiles viz.
012, 104, 110, 113, 024, 116, 214, 300, 02.10, 226, 21.10, 318 and 410 being used in the
analysis. These peaks are generally strong, with a relative intensity greater than 10%.
The observed profiles for 012 to 300 were truncated to 20g + 1°26 at a step-size of 0.01°26
(consisting of 200 data points). The remaining observed profiles, 02.10 to 410 were truncated
to 20 £ 0.8 °20 at the same step-size — consisting of 160 data points.

Estimation of the background-level for the profiles followed the procedure discussed in
§4.2.1. That is, the MaxEnt method (using a uniform model) was used to determine the
specimen profile, f (20), and the Fourier coefficients, fl(L), were examined. In addition, the
first and second derivatives of the Fourier coefficients were examined. The distortions that
arise in the Fourier coefficients from incorrectly estimating the background-level, such as
the hook-effect, propagate into the first and second derivatives (Young et al. 1967). The
above steps were repeated, with the estimated background-level being lowered or raised,
until distortions in the Fourier coefficients and their derivatives were minimised or had

disappeared.
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Figure 6.1: Calibration plots for the parameters FW HM and m defining the split Pearson-VII profile
generated from an SRM 660 (LaBg) diffraction pattern: (a) FW HM vs 26 for the low- (diamonds) & high-
(crosses) angle sides of the peak; (b) m vs 26, for the low- (diamonds) & high- (crosses) angle sides of the
peak.
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6.1.4 Determining the specimen profile and column-length distri-

bution

Using the MaxEnt method to determine the specimen profile, two cases were considered: the
first applied a uniform a priori model; the second used a non-uniform a prior: model.

The Skilling & Bryan (1984) MaxEnt algorithm (described in Chapter 3 and applied in
Chapters 4 & 5) was applied to determine the specimen profile, f, its uncertainty region,
Fourier coefficients, and integral breadth. The C,;,, value for the MaxEnt method was set
equal to the number of data points, M, in the observed profile (see above). The condition
C(f)/Cum = 1 was satisfied, for the 012 to 300 observed profiles and for the remaining
observed profiles C(f)/Cuim ~ 1 was found to be satisfactory. The Skilling & Bryan (1984)
MaxEnt algorithm generally converged within 25 iterations.

The integral breadth and Fourier coefficients from the specimen profiles were determined
in order to qualitatively assess the nature of the specimen broadening, thus enabling progres-
sion to the next step in the analysis (for example see Louér et al. 1983). This demonstrated
that the specimen broadening was a result of crystallite/domain size effects and that the
residual-strain was negligible (see §6.2 & 6.3), independently confirming the conclusion of
Kalceff et al. (1995).

Once the crystallite/domain size effects had been identified as the major contributors
to specimen broadening, the MaxEnt method was applied a second time to determine the
column-length distribution. In this second application of the MaxEnt method, the specimen
profile and the scattering kernel (4.18) were used in place of the observed and instrument
profiles, respectively. As before, C,;,, was set equal to the number of data points in the
specimen profile. For these calculations, a non-uniform a priori model was used in the
MaxEnt method. Finally, the average area-weighted size, (L)M" was determined from the

solution column-length distribution.

6.1.5 Determining the variance and uncertainties

The counts in the peaks were observed to be much greater than 10 and the variance was

2

estimated to be o

1,2,3,...M. This approximation had been applied for the simulated data (see §4.4.1 &

~ §;, where g; is the background-corrected observed profile and 7 =
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5.4.1) and applies equally well to experimental data.

The uncertainty in the MaxEnt specimen profile was determined using (3.58). The region
of interest, defined by the vector u in (3.58), included ones over £10 data points about fz
and zeros elsewhere. Little change in the uncertainty region was observed for larger regions
of interest. The uncertainties for f were also used in the MaxEnt method for determining
the column-length distribution. Similarly, once p,(L) was determined, its uncertainty region
was determined by setting the region of interest to be ones £3 points about p,; and zeros
elsewhere (see §4.4.1).

The uncertainties for (L) and (L)M were determined using the approach described in
§4.4.1, while the uncertainties in the integral-breadth, 3, were determined from the uncer-

tainty region in f .

6.2 MaxEnt profile analysis using a uniform model

This section presents the SRM 676 diffraction data analysis using a uniform a prior: model
in the MaxEnt deconvolution. A uniform a priori model defines our lack of knowledge
concerning the shape and broadening of the specimen profile. The MaxEnt method is then
applied again to determine the column-length distribution from these specimen profiles and

constitutes a “first attempt” (see §6.2.4).

6.2.1 Deconvolving the observed profile using a uniform model

The uniform a priori model used in the MaxEnt method was defined by the average number
of counts in the background-corrected observed profile. The results of the deconvolution for
the multiple orders 012&024 and 113&226 are shown in Figures 6.2(a & b) & 6.3(a & b),
respectively. Also shown in these figures are the uncertainty regions of the specimen profiles
using (3.58).

In Figures 6.2(a & b) & 6.3(a & b), the MaxEnt solutions suggest that the greatest
uncertainty in the specimen profile is about the “shoulders” of the profile. This can also be
seen for the 012 and 226 specimen profiles, Figures 6.2(a) & 6.3(a) respectively. The most

likely explanation for this comes from the estimation of the exponents, m, for the instrument
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profile from Figure 6.1(b). As this parameter determines how rapidly the Pearson-VII func-
tion decreases on the low- and high-sides of the Bragg-angle, any uncertainty in estimating

m would be imparted to the MaxEnt specimen profile and its uncertainties.
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Figure 6.2 continues over. ..
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Fourier Coeff., A(L)
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Column Length, L (nm)

Figure 6.2: MaxEnt results for the 0124024 multiple-orders using a uniform model: (a) The 012 specimen
profile (solid line) and lower- & upper-uncertainty regions (dots); (b) The 024 specimen profile (solid line) and
lower- & upper-uncertainty regions (dots); (c) The 012 (solid line) and 024 (dashed line) Fourier coefficients.

NOTE: The uncertainty regions for the Fourier coefficients are not shown, for clarity.

In Figure 6.3 the MaxEnt specimen profiles for the 113&226 lines are shown. The 113
is the strongest peak, and so the fraction of noise is small. Also, a reliable estimation of
the instrument profile results in a narrow uncertainty region in the specimen profile. On the
other hand, the 226 profile is a low intensity line (relative intensity 19 %) and the fraction
of statistical noise is greater. It is this statistical noise that contributes to the spurious
oscillations in Figure 6.3(b), while the uncertainty region indicates the poor reliability of the

MaxEnt solution using a uniform a priori model.
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Fourier Coeff., A(L)
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Figure 6.3: MaxEnt results for the 113&226 multiple-orders using a uniform model: (a) The 113 specimen
profile (solid line) and lower- & upper-uncertainty regions (dots); (b) The 226 specimen profile (solid line) and
lower- & upper-uncertainty regions (dots); (c) The 113 (solid line) and 226 (dashed line) Fourier coefficients.

NOTE: The uncertainty regions for the Fourier coefficients are not shown, for clarity.

The MaxEnt results shown in Figures 6.2(a & b) & 6.3(a & b) are characteristic of
the specimen profiles from the SRM 676 diffraction data over the low-, mid- and high-26
range. By applying a uniform a priori model in the MaxEnt method, our lack of knowledge
concerning the broadening and shape of the specimen profile has been incorporated into
the solution method. Given this, the above results could be considered the worst case. In
other words, this lack of knowledge about the specimen profile influences the Lagrangian
parameter in (3.27) and in turn the uncertainty region, (3.58). However, if any additional
information concerning the shape and broadening of the specimen were to be incorporated

as a non-uniform a priort model, an improvement in the specimen profile would be expected.
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6.2.2 Integral breadth, g(d*).

The integral breadth analysis provides a semi-quantitative approach to gathering informa-
tion of the specimen broadening and crystallite/domain morphology. Figure 6.4 shows
the integral-breadth results for each MaxEnt specimen profile (where §(d*) is expressed
in reciprocal-space units). The linear fitting provides information on the apparent-strain
(given by the slope) and the volume-weighted crystallite/domain size, (L), (from the inverse

of the intercept).
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Figure 6.4: Integral breadth 8(d*) versus d* for the MaxEnt specimen profiles using a uniform model

(diamonds + error bars) and the linear fit (dots).

Referring to Figure 6.4, several points can be noted: the error-bars reflect the uncertainty
in the MaxEnt specimen profiles; these uncertainties are most likely an indication of the errors
in estimating the exponent m in Figure 6.1(b) and the statistical noise from the observed
profile. The slope of the linear fitting was constrained to zero. The volume-weighted size (L),
was found to be (91 + 14) nm. The uncertainty in (L), is large at ~ 15%. This (L), value
is consistent with the (corrected) value determine by Kalceff et al. (1995) (see footnote 2,
p 189). The data in Figure 6.4 indicate a negative slope, evident in the decrease of 21.10,
318 and 410 (S-values in Figure 6.4. The remaining [-values are relatively constant. The

decrease of 02.10, 318 and 410 suggests a systematic error arising from the specimen profiles.
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That is, a “weak” dependence on d* (the -value for the 318 is slightly greater than the
21.10).

The B-values for 012 to 226 are relatively constant and lie close to the linear-estimation,
which implies that the specimen broadening is independent of d* and is isotropic in [hkl].
This can be explained if the specimen broadening is due solely to crystallite/domain effects

(independent of d*), and the crystallites/domains have a near-spherical or shape morphology.

6.2.3 Fourier coefficients, A(L)
A qualitative analysis

A qualitative assessment of the Fourier coefficients was undertaken to independently deter-
mine the nature of the specimen broadening. The Fourier coefficients for the multiple orders
012&024 and 113&226 are shown in Figure 6.2(c) & 6.3(c), respectively. The multiple-orders
are plotted on the same axes, providing a good indication of the specimen broadening. For
both sets of multiple-orders, the Fourier coefficients over-lie each other. This suggests that
the specimen broadening is independent of the order of diffraction, d*. Some differences
between the 012 and 024 Fourier coefficients are noticeable over the approximate range
50 — 125 nm; similarly there is a slight difference in the 113 & 226 Fourier coefficients over
the approximate range 75 — 140 nm.

It is tempting to explain this difference in terms of inhomogeneous strain broadening in
the SRM 676 sample. However, if there were strain-broadening, the 024 Fourier coefficients
would be narrower relative to the 012 Fourier coefficients and decrease monotonically as
L increases. Figures 5.1 & 5.2 provides a good example of the Fourier coefficients from
strain-broadened profiles. The results in Figure 6.2(c) & 6.3(c) do not share the same
characteristics.

From Figures 6.2(c) & 6.3(c), the maximum crystallite/domain size can be estimated.
This dimension refers to the upper-limit in the evaluation of the integral-breadth (Stokes &
Wilson 1942). In other words, it defines the L (= Luax) when A(L) or V(L)/V(0) — 0.
From these figures L,y is approximately in the range of 250 — 300 nm.

The Fourier coefficients of all the specimen profiles were plotted on the same axes in

order to determine whether the specimen broadening was independent of d* for all hkl.
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The Fourier coefficients from the 012 to 226 specimen profiles were all close to each other
and systematic narrowing of the Fourier coefficients for increasing d* was not observed,
eliminating the possibility of isotropic strain broadening. However, this does not exclude
the possibly of negligible anisotropic strain broadening, which would cause a non-systematic
narrowing of the Fourier coefficients for increasing d*. Because the coefficients lie close to
each other, size broadening can be considered the dominant effect. For the 21.10, 318 and
410 profiles, the Fourier coefficients were observed to be broader than for other peaks and
did not indicate the characteristics of inhomogeneous strain as shown in Figures 5.1 & 5.2.
As was the case with the [-values, the increase in broadening for the 21.10, 318 and 410
Fourier coefficients followed a “weak” d* dependence (the 318 were slightly broader than the
21.10 Fourier coefficients).
The Fourier coefficients and integral breadth are related by

B(d) = [ /_ T AL, d) dL} - (6.3)

oo

From (6.3), the broadening in the 21.10, 318 and 410 Fourier coefficients would produce a
decrease in B(d*). As pointed out above, the broadening of the 21.10, 318 and 410 Fourier
coefficients followed a weak d* dependency and the decrease in §(d*) also follows a weak
dependency. This can be seen in Figure 6.4.

A likely explanation for the variation in the Fourier coefficients and S for the 21.10, 318
and 410 profiles is the use of the SRM 660 sample to determine the instrument profile. It
is known that SRM 660 contains residual strain broadening at high-20 (Cheary & Coelho
1998b). The low- & high-FW H M and m in Figure 6.1 characterise not only the instrument
broadening arising from the diffractometer, but also the residual-broadening inherent in the
SRM 660 sample. An analogous problem was investigated in the simulations of §4.4.4, where
residual size broadening was introduced into the LaBg specimen. From the simulations it
was demonstrated that the presence of residual broadening in the instrument profile causes
the MaxEnt method to over-compensate for the instrumental broadening and to produce
narrower specimen profiles relative to the true specimen profile. This in turn affects the
Fourier coefficients, (L),, # and (L), results. The negative slope in Figure 6.4 reflects the
residual strain broadening in the SRM 660 sample, which is manifested at high angles. The

reason for this is that strain broadening follows an approximate tanf dependence. The
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consequence of the residual strain broadening in the instrument profiles is that any strain
broadening that may be present in SRM 676 data, particularly at high 26, may be obscured.

From these results it can be stated that the specimen broadening is independent of d*, es-
pecially for the 012 to 226 specimen profiles. Moreover, the results also suggest the specimen
broadening is independent of the direction of diffraction, [hkl]. That is, the size-broadening
(independent in d*) is isotropic in [hkl], implying that on average the crystallite/domain mor-
phology may be of near-spherical or spherical shape. The maximum dimension (or diameter),

Loy, determined from examining all the Fourier coefficients was found to be 250 — 300 nm.

Fourier analysis

The area-weighted size was determined from the Fourier coefficients. This dimension rep-
resents the apparent thickness of the crystallite/domain in the direction of the diffraction
vector and is defined as the ratio of the volume of the crystallite/domain to the area pro-
jected onto the diffraction-planes. The area-weighted size was determined from the initial

slope of the coefficients as

Oriae <%(LL)>% (&4)

a

The (L) results are shown in Figure 6.5(a). In this figure the (L)X have been plotted
over the 260-range of the profiles. There is considerable scatter in the results and this is
much greater than the error in the size results. The size results for the 012 and 024 are in
agreement with each other. This is also the case for the 113 and 226 profiles.

There are two possible explanations for the scatter in (L)F: the first is based on the nu-
merical errors; (L)L is sensitive to numerical errors in the Fourier coefficients and the inverse
of (6.4) results in the amplification of these numerical errors. The second explanation has
a physical basis, in that the scattering may be a consequence of anisotropic size-broadening
in [hkl]. However, this is doubtful in that the Fourier coefficients and integral breadth from
the 012 to 226 profiles suggest the specimen broadening is independent of d* and of [hkl].

The average size (L)X from Figure 6.5 is (56 & 2) nm, where the uncertainty represents
the standard error in the mean. Taking the ratio of (L)I" and (L), produces 0.61. If

crystallites/domains were all the same size spheres the ratio of the area- to volume- weighted
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Figure 6.5: The area-weighted size for the Fourier method (diamonds + error-bars), MaxEnt methods

(crosses + error-bars), average Fourier size (solid line) and average MaxEnt size (dots).

size would be exactly 8/9 (see Appendix B). However, this result suggests that there is

significant range in the sizes of the crystallites/domains.

6.2.4 Determining the column-length distribution — first attempt

The specimen profiles determined using a uniform model were used in determining the
column-length distribution. A non-uniform model for the column-length distribution was
developed from the specimen profile using a “low resolution” method. This constitutes a
first attempt to determine the column-length distribution; an improved model is developed
in §6.3 and a second determination of the column-length distribution arising from it is given

in §6.3.5.

Using a “low resolution” method to develop a non-uniform model

The low-resolution method that was used to estimate the a prior: model was the constrained
deconvolution /inversion method discussed in §2.1.4, with a smoothing matrix used as de-
scribed by Twomey (1963). This method does not preserve the positivity of the distribution

and large spurious oscillations were observed in the results. In order to produce a positive-
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definite model, the estimate was then fitted with a distribution dependent on two parameters

p and (L)™. The distribution used is given by (see van Berkum et al. 1996),

-1
m - o L e o L
Pl LUL)G, pim) = Z! (—) exp [——} (6.5)
L)z (L)g
where the “|” in (6.5) reads as “conditional on” and the Z,, is the normalisation term,
Zin = T () {L)g" ] - (6.6)

m

» influence the tails of the distribution and estimation of the

The parameters p,, and (L)

area-weighted size, respectively. The values of the y,, and (L) are shown in Table 6.1.

hkl 012 104 110 113 024 116 214 300 02.10 226 21.10 318 410
(L)a

58 63 74 64 58 59 60 57 - 56 59 52 82
(nm)
fim, 1.8 38 14 21 18 17 16 22 - 14 21 14 13

Table 6.1: The a priori model parameters, (L)™ and p,, for hkl, determined by fitting (6.5) to the results

of the “low resolution” method.

The parameter values for the 012 profile were taken to be equal to the 024 parameters,

but for the 02.10 case the fitting algorithm did not converge.

The MaxEnt size analysis

Using the non-uniform distribution given in (6.5) and the corresponding parameters in Ta-
ble 6.1, the MaxEnt column-length distributions were determined. The constraint, C(p,)/Caim ~
1 was applied (the range of C(p,)/Caim values was 1.0 to 2.0). The MaxEnt sizes, (L)M"

a

are shown in Figure 6.5. The scatter in the (L)M" values is less than that of the (L)

results. The average (L)X was found to be (73 = 1) nm. The average offset between the

Mn

L results is the

size results is 17nm. The most likely explanation for the offset in the (L)
large uncertainty in the specimen profile determined in §6.2.1. That is, the MaxEnt method

is converging onto the appropriate C'(p,)/Clim values, but producing a larger than expected
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(L),. The large uncertainties in the specimen profile are imparted to the column-length
distribution and a greater dispersion of the column-length distribution occurs.

The (L)M" results are doubtful and little credence can be attributed to them. The
results indicated the need to develop a non-uniform a priori model for determining the
specimen profile, rather than relying on the uniform a priori model. As mentioned above, a
uniform model represents our ignorance of the shape and broadening of the specimen profile.
The large uncertainty regions in the specimen profile describe our lack of knowledge of the
specimen profile and this lack of knowledge is also being imparted into the column-length

distribution and estimation of (L),

6.3 MaxEnt profile analysis using a non-uniform model

In the last section the MaxEnt specimen profile, Fourier coefficients and integral breadth

were determined using a uniform a priori model. Large uncertainties in the specimen profile

M,n

. values were observed. In order

and integral breadths and a large offset between the (L)

Mmn

. results, a non-uniform model

to improve the specimen profile, integral breadth and (L)
for the specimen profile was developed. Using an analytical expression for the column-length
distribution and for the related Fourier coefficients. Using this model a second attempt to

determine the column-length distribution was made.

6.3.1 Developing a non-uniform model for the specimen profile

The non-uniform a priori model for the specimen profile was developed using (6.5) in
1 o
AW) = gy [ = DT i) AL (67)
a L

to produce an analytical expression for the Fourier coefficients. The integration® was carried
for L > 0 and resulted in
Lym Lpm
A(L) _ r (1 + i, <L>an> B LT (Na (L)Zn> (6'8)
T (1 + pim) (L) T (1 + i)

3The integration was done using Mathematica 3.0. The result was reduced to (6.8) using the PowerExpand

and Power commands, respectively.
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where I'(z) and I'(z, y) are the Gamma and incomplete-Gamma functions, respectively (see

Arfken & Weber 1996). The (L)™ and pu,, parameters can be determined by fitting the

a

Fourier coefficients from §6.2.3 to (6.8). The values of these parameters are given in Table 6.2.

hkl 012 104 110 113 024 116 214 300 02.10 226 21.10 318 410
(L)'
60 65 61 60 57 B89 55 5T 49 55 56 - 61
(nm)
7 25 24 23 19 18 18 17 1.7 1.1 1.5 1.4 - 14

Table 6.2: The model parameters, {L)™ and g, for hkl, determined by fitting (6.8) to the Fourier coefficients.

It is interesting to notice the relative uniformity of the (L) with hkl. In the case of the
318 line, the fitting algorithm did not converge. There is some difference between the (L)™
and p values for the multiple-orders, suggesting that the parameters are sensitive to small
changes in the Fourier coefficients. The uncertainties in the parameters were estimated
to be > 10%. Using results from Table 6.2 and (6.5), the specimen profile model was
evaluated using the procedure outlined in §4.3.1. The models were determined over the

range (20p + 5) °260 at a step-size of 0.01°20 and then truncated to the same length as the

observed profile.

6.3.2 Determining the specimen profile using a non-uniform model

Using the non-uniform model the specimen profile was determined. The condition C(f)/Cyim =
1 was satisfied for profiles 012 to 300. For the remaining profiles the C(f)/Clin fell in the
range of 1.0 — 1.6.

The MaxEnt specimen profiles for the 0128024 and 113&226 multiple-orders are shown in
Figures 6.6(a & b) & 6.7(a & b), respectively. Comparing the MaxEnt specimen profiles from
Figures 6.2(a & b) & 6.6(a & b), a reduction in the uncertainty region using the non-uniform
model can be seen in the latter figure. The uncertainty region in Figure 6.2(a) was attributed

to the uncertainty in determining the exponents m for the instrument profile; despite this,
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the non-uniform model for the 012 profile achieved a reduction in the uncertainty region

about the shoulders of the profile.
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Figure 6.6 continues over. ..
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Fourier Coeff., A(L)

0 20 100 150 200 250 300
Column Length, L (nm)

Figure 6.6: MaxEnt results for the 0124024 multiple-orders using a non-uniform model: (a) The 012
specimen profile (solid line), the specimen profile model (dashed line) and lower- & upper-uncertainty regions
(dots); (b) The 024 specimen profile (solid line), the specimen profile model (dashed line) and lower- & upper-
uncertainty regions (dots); (c) The 012 (solid line) and 024 (dashed line) Fourier coefficients. NOTE: The

uncertainty regions for the Fourier coefficients are not shown, for clarity.

Comparing Figures 6.3(a & b) & 6.7(a & b), the influence of the non-uniform a priori
model in reducing the uncertainty region in the latter results can also be seen. The spurious
oscillations shown in Figures 6.3(b) have been eliminated in Figure 6.7(b) by applying the
non-uniform model.

In Figures 6.6 & 6.7 asymmetry in the specimen profiles relative to the (symmetrical)
specimen model is noticeable. This is due to absorption in the alumina specimen. The
asymmetry was not noticed in the observed profiles because the instrumental aberrations

over-shadowed the absorption effects.
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Figure 6.7: MaxEnt results for the 113&226 multiple-order using a non-uniform model: (a) The 113
specimen profile (solid line), the specimen profile model (dashed line) and lower- & upper-uncertainty regions
(dots); (b) The 113 specimen profile (solid line), the specimen profile model (dashed line) and lower- & upper-
uncertainty regions (dots); (c) The 113 (solid line) and 113 (dashed line) Fourier coefficients. NOTE: The

uncertainty regions for the Fourier coefficients are not shown, for clarity.

The MaxEnt specimen profiles given in Figures 6.6(a & b) & 6.7(a & b), demonstrate
the influence of the non-uniform model in the MaxEnt method. In this case, information
concerning the broadening and shape of the specimen profile has been incorporated by de-
veloping a non-uniform a priori model using the Fourier coefficients of the specimen profile.
This information aids the method in determining the specimen profile with the maximum

entropy and reducing the uncertainty region.

6.3.3 Integral breadth, 3(d*)

Uncertainties in 3(d*) are also reduced as a consequence of using a non-uniform model, as
can be seen from Figure 6.8.

As was the case in Figure 6.4, the slope is again constrained to zero. The volume-weighted
size, (L),, was determined from the inverse of the intercept and found to be (90 £ 8) nm. In

this case the uncertainty has been reduce to about 9%. Without constraint, a negative slope
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Figure 6.8: Integral breadth 3(d*) versus d* for the MaxEnt specimen profiles using a non-uniform model

(diamonds + error bars) and the linear fit (dots).

is indicated in Figure 6.8. Again the reason for this is that the residual broadening in the
instrument profile had not been corrected in the specimen profile model. For the profiles from
012 to 226 the integral breadth is constant over d*, suggesting that the specimen broadening
is independent of d* and [hkl].

6.3.4 Fourier coefficients
A qualitative analysis

The Fourier coefficients for the 012 & 024 and 113 & 226 multiple-order are shown in Fig-
ure 6.6(c) & 6.7(c), respectively. Comparing these results with Figures 6.2(c) & 6.3(c), little
change in the coefficients is noticeable.

The reason for this is that the (L) and p parameters were determined by fitting (6.8)
with the Fourier coefficients determined in §6.2. The same systematic variation that was
observed above was also observed for these Fourier coefficients, further suggesting that the
non-uniform model was unsuccessful in accounting for the residual broadening in the instru-

ment profile.

210



(L)a (nm)

Fourier size analysis

The (L)Y results using (6.4) were determined from the Fourier coefficients. These results
are shown (with others to be discussed in the next section) in Figure 6.9, plotted over the
20-range of the diffraction pattern. A close agreement for the 012 and 024 size results
can be seen, which is also the case for the 113&226 multiple-orders. The scattering that
was observed in Figure 6.5 is also evident in Figure 6.9, probably indicating that the small

numerical errors in A(L) about L ~ 0 are being amplified in (6.4). The average (L)' from

the results in Figure 6.9 was determined to be (57 £ 2) nm.
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Figure 6.9: The area-weighted size for the Fourier method (diamonds + error-bars), MaxEnt method

(crosses + error-bars), average Fourier size (solid line) and average MaxEnt size (dots).

6.3.5 Determining the column-length distribution — second at-
tempt

The specimen profiles determined in §6.3.2 were used in the MaxEnt method for the column-

length distribution. The non-uniform model and parameters were taken from (6.5) and

Table 6.2, respectively. The column-length distribution and area-weighted sizes were deter-

mined.
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MaxEnt size analysis

For the MaxEnt size analysis the constraint C'(p)/Coim ~ 1 was mostly satisfied, but in some
cases was found to be much greater than unity (in the range of 2.5 — 5.5). These results are
concerning in that theoretically we expect C(p)/Caim = 1. This can be explained in terms
of the observed asymmetry in the MaxEnt specimen profiles. Size broadened profiles are
symmetrical, as shown by the simulations in Chapter 4. As pointed out above, the asymmetry
is due to absorption in the alumina specimen. This asymmetry affects the misfitting of the
trial and specimen profiles, in (4.12), and forces the MaxEnt method to converge onto a larger
C(pa)/Cuaim value. The reason why this was not observed in §6.2.1 is that the uncertainty
regions for the specimen profiles were greater. However, in the present results the uncertainty
region has been reduced and the asymmetry becomes more apparent in determining the
column-length distribution.

The MaxEnt size results, (L)M" in Figure 6.9 are uniform over the 26-range compared

with (L)I" in the same figure. The average (L)M" was found to be (64.3 + 0.8) nm. The
average offset between the (L)M" and (L)I results is about 7nm. In these results the offset
has been reduced compared with the (L)M™ and (L)¥ results in Figure 6.5. This indicates
that the non-uniform model using (6.5) and Table 6.2 has better described the specimen
broadening, but the offset between the size results may suggest the residual broadening in

the reference material has not been accounted for in the deconvolution.

MaxEnt column-length distribution

The MaxEnt column-length distributions for the 012, 024, 113 lines and 226 are shown in
Figures 6.10 & 6.11.

For the multiple-orders the column-length distributions are expected to be the same,
as they represent the distribution of the crystallites in the same crystallographic direction.
However, from Figure 6.10 it can be seen that the 012 and 024 MaxEnt column-length
distribution are not the same. Figure 6.10(a) shows a large uncertainty region about the
solution distribution and spurious oscillations which have no physical meaning. For the 024
column-length distribution, in Figure 6.10(b), the uncertainty region has been reduced and

is also well-conditioned. In both of these cases the uncertainty region encompasses the a
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priori model — implying that the actual distribution lies in this region. The distributions in
Figure 6.10 produce similar (L) values of (61+ 1) nm and (62.8 +0.4) nm for the 012 and
024, respectively.

The MaxEnt column-length distributions for the 113 and 226 lines are shown in Fig-
ure 6.11. The uncertainty regions encompass the a prior: model and indicate that the region
of greatest uncertainty is about the maximum and the tails of the distribution. Both results
are reasonably well-conditioned. The positivity of these results has also been preserved.

The (L)M™ for these distributions are also very similar, (65.84-0.3) nm and (64.840.6) nm
for the 113 and 226, respectively. However the distributions are not the same.

It is interesting to observe the similarities and differences between the column-length
distributions in Figure 6.10 & 6.11. For example, all distributions have extended tails which
decrease to zero at L = 250 nm indicating the maximum dimensions which contributes to
size broadening. Moreover, the 113 and 024 results are very similar. By overlaying the
distributions, they are seem to be almost identical. The separation of the diffraction lines
is small, only about 9°26. On the other-hand, the 012 and 226 column-length distributions
do not share any similarities; the peak positions are separated by 70 °26. However, Fourier
coefficients and integral breadth analyses indicate that the size broadening is independent
of [hkl]. This would also imply that the column-length distributions should be the same or
very similar to each other. It is also worth noting that relative to the a priori model all the
distributions have been shifted torward larger L and the tails are extended. This feature
in the distribution produces the offset between the (L)f" and (L)M™ i.e. the average of the
distribution is biased towards larger L.

How can the differences with the multiple-order distributions and similarities between the
024 and 113 distributions be explained? We know that the instrument profiles contain resid-
ual strain broadening and the strain broadening follows approximately a tan # dependency.
In other words, the residual broadening is dependent on the position, 26; hence, the differ-
ence between the multiple-order distributions, for example 012 and 024 in Figure 6.10, can
be explained as follows: in the deconvolution stage, the MaxEnt method over-compensates
for the instrumental broadening and produces a narrower specimen profile relative to the

actual profile. In the second stage of determining the column-length distribution, the Max-
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Figure 6.11: The MaxEnt column-length distributions for the 113&226 multiple-order: (a) MaxEnt 113
column-length distribution (solid line), non-uniform a priori model (dashed line), and lower- & upper-
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Ent method produces a distribution biased towards larger crystallites in order to satisfy the
experimental data, while the separation between the 024 and 113 (only about 9°26) is not
significant enough for the residual broadening to make any difference between the distribu-
tions. The asymmetry observed in the specimen profile prevents the MaxEnt method from

converging on the preferred C(p,)/Clim value.

6.3.6 Electron microscopy

A scanning electron microscopy (SEM) examination was carried out on the alumina SRM 676
samples. The sample preparation involved coating the powders with Au/Pd film of about
30nm thickness. This prevented deflection of the electron-beam and/or the charging of the
specimen (Stevens-Kalceff 1999). A Joel 6300 field emission scanning electron microscope
was used. The images were taken at 2keV beam energy and 0.6 nA beam current (Stevens-
Kalceff 1999).

“Overview” and “close-up” SEM images of the SRM 676 sample are shown in Figure 6.12.
Figure 6.12(a) shows the alumina powder varying in size and shape and giving the appearance
of single particles. Most distinctive are the platelets of 4 — 5 ym in diameters and thickness
of about 1 um. These particles have near-hexagonal morphology and may be an indication
that the “de-aggregation process” (Kalceff et al. 1995) was incomplete. Also noticeable in
Figure 6.12(a) are particles having a range of shapes, from spherical to platelet fragments,
with a dimension of about 1 — 3 pum.

Figure 6.12(b) shows the alumina powder at higher magnification. It is clear from this
image that these smaller particles also have a range of shapes. It is interesting to note there
are smaller particles of less than 1 ym in dimension. These smaller particles are possibly the
end-product of the de-aggregation process.

From these images it is unclear what is the exact origin of the specimen broadening
in the x-ray diffraction profiles, but it is worth outlining a number of possible sources. If
the platelets pointed out in Figure 6.12(a) are truly single particles then very little size-
boadening would be expected from them. However, if the platelets consist of domains, these
would result in incoherent scattering and contribute to size broadening of the diffraction

profiles. In order for this to be the case, the boundaries between the domains would have to
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Figure 6.12: SEM images of the alumina SRM 676 sample: (a) An overview of the alumina sample at

2500x magnification; (b) A close-up of the alumina sample at 7500x magnification.
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produce discontinuities in the crystal lattice structure. This in turn implies that the strain
is concentrated over a very narrow-region to produce the discontinuity. Small-angle grain
boundaries proposed by Kalceff et al. (1995) would account for this. This also explains why
there is neglible, if any, strain broadening present in the diffraction profiles, since the strain
is concentrated in narrow regions. The particles of < 1 um pointed out in Figure 6.12(b)
could also contribute to size broadening if they are indeed single particles. However, if these
particles consist of domains then this too would contribute to incoherent scattering. The
extended tails of the column-length distributions (see Figure 6.10 & 6.11) suggest that there
is a significant range of domain sizes with a maximum dimension of 250 — 300 nm and an
average between 57 — 64 nm. The spherical morphology which was suggested by the integral-
breadth plots and Fourier coefficients appear to be mostly an averaging over the shape of
the crystallites/domains.

Cathodoluminescence examination of the alumina sample was carried out in an attempt
to image the domains. However, this proved to be unsuccessful due to the resolution of
the SEM, a Joel 3500, which effectively has a probe focus of size ~ 1 ym (compared with
the FEG-SEM used above, probe focus ~ 1nm). There could be some defect migration
occurring during the cathodoluminescence observations, contributing to further blurring of

the image (Stevens-Kalceff 1999).

6.4 Summary

The analysis presented here has applied the maximum entropy (MaxEnt) analysis to alumina
x-ray data at two levels. In the first, two cases were considered, where uniform and non-
uniform @ priori models were applied in the MaxEnt method (§6.2 & 6.3, respectively).
It was shown that the uniform model, which defines our lack of knowledge concerning the
specimen profile, produces large uncertainties in the specimen profile, while the non-uniform
model, determined from the Fourier coefficients, reduces the uncertainties.

In the second level of application the specimen profiles were used to determine the
column-length distribution. The large uncertainty in the specimen profiles from the first
case (uniform model) produced compromised MaxEnt column-length distributions and size

results. However, the specimen profiles from the second case (non-uniform model) produced
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reasonable MaxEnt column-length distributions, and size results that were comparable to
the Fourier size results. The differences between the Fourier and MaxEnt sizes and between
the column-length distributions was explained by the residual strain broadening in the in-
strument profile. This clearly demonstrated the need for an instrument reference material
which is free of residual broadening effects. Despite these difficulties, the specimen profiles,
column-length distribution and area-weighted sizes determined from the MaxEnt method
are most satisfactory and enabled the uncertainties for these quantities to be determined.

The MaxEnt analysis has also attempted to address the problem of determining the
a priori model. Two approaches were investigated: firstly, the use of a “low resolution”
method attempted to estimate the column-length distribution from the specimen profiles, but
proved to be unsuccessful because of the ill-conditioning of the estimate of the column-length
distribution resulting from large uncertainties in the specimen profile. The second approach
modelled the Fourier coefficients of the specimen profile, which contain information about the
shape and broadening of the specimen profile, and proved to be successful. However, further
development of a priori models which incorporate crystallite/domain shape and estimate of
the overall dimensions is needed.

The nature of the specimen broadening was established by examining the integral breadth
and Fourier coefficients. It was found that broadening was independent of d* and of [hkl],
which implied that the major source of broadening was crystallite/domain size effects. This
is also consistent with a spherical or near-spherical crystallite/domain morphology. The
Fourier and MaxEnt method estimated the average area-weighted sizes to be in the range
of 57 — 64nm. The size analysis also indicated that there was a large range of sizes, with
maximum dimension from 250 —300 nm. However, the presence of residual strain broadening
in the instrument reference, SRM 660, may have over-shadowed any inhomogeneous strain
in the alumina sample.

Electron microscopy examinations showed the de-aggregated particles to be in the range
of 1—5 um. They also showed that the crystallite shape varied from near-spherical to platelets
with a six-fold symmetry (the thickness of the platelets was about 1 um). Moreover, the
electron microscopy examinations revealed single crystallites of less than 1 ym in dimension

with a range of shapes. It is proposed that the specimen broadening is a combination of
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crystallites with submicron dimensions and domains existing within the larger crystallites.
The spherical or near-spherical morphology inferred from the x-ray data is an averaging over

variously shaped crystallites/domains.
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Chapter 7

Conclusion

The aim of this study was to develop an general method for analysing x-ray diffraction pro-
files. This entailed solving three problems: deconvolution of the observed profile; determining
the column-length distribution and average size from crystallite/domain size-broadened pro-
files; and determining the strain distribution and root-mean-square strain from strain broad-
ened profiles. It has been demonstrated the maximum entropy (MaxEnt ) method is best
suited for solving these problems, as it determines the solution with the least assumptions,
preserves the positivity and additivity of the solution, incorporates a prior: information into
the solution procedure and quantifies the reliability of the solution. It also proved to be a
robust and flexible method enabling a two-fold procedure to be developed for analysing size
and strain broadened profiles, respectively.

The study consisted of numerical simulations and modelling of instrumental, crystal-
lite/domain and strain broadened profiles. It also attempted to simulate the conditions
under which the data is collected by introducing statistical noise, a background level and
a finite instrument response into the simulated data. Moreover, the analysis examined the
issues of deconvolving the observed profile in the presence of noisy data, using a non-ideal
instrument profile, and the effects of background estimation and truncation of the observed
profile on the physical quantities. These are issues which may affect the integrity of the phys-
ical quantities determined and need to be investigated if an alternative method of analysis
is to be adopted.

In general the MaxEnt method has proven to be successful in solving these three problems,
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and in all cases producing results superior to the conventional methods of deconvolution, size

and strain analysis.

7.1 FEvaluation of common deconvolution methods

The common deconvolution/inversion methods applied in x-ray diffraction profile analysis
were evaluated by applying an eigen-system analysis to formulate the error-bound function
(see Chapter 2). In the case of the unconstrained deconvolution/inversion methods it was
shown that the error in the background estimation and statistical noise contribute to the ill-
conditioning of the solution. This established an analytical result which has been observed
in numerical calculations (for example see Kalceff et al. 1995). The significance of this
study was in expressing the error-bound function as a function of the control parameters for
the iterative and constrained deconvolution/inversion methods. This enabled the individual
components, such as the statistical noise, and background estimation to be quantified in
terms of the control parameters and an optimum solution defined (i.e. when the error-bound
function was a minimum).

Moreover, it was demonstrated that even for the optimum solution the positivity was
not preserved, with negative oscillations present. The error analysis provided a means of
understanding which components were most likely to contribute to the ill-conditioning of the
solution. This analysis not only highlighted the difficulties of deconvolving out the instru-
ment profile, but also, in the case of the iterative and constrained deconvolution/inversion
methods, can be extended to determining the column-length and strain distributions. The
results from this analysis clearly demonstrated that these methods would not be suited for

such a task.

7.2 Determining the column-length distribution

Drawing from a general discussion of the MaxEnt method (see Chapter 3), a novel two-fold
procedure was proposed for determining the specimen profile, column-length distribution
and area-weighted size. The MaxEnt method was shown to fullfill the basic needs for deter-

mining the specimen profile and column-length distribution (see Chapter 4). By determining
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the column-length distribution, useful information concerning the distribution of crystallite
sizes can be obtained. The two-fold method does not make any assumptions about the
specimen broadening, but enables the nature of the specimen broadening to be determined,
before proceeding with the second half of the analysis. It was also realised that the two
problems of determining the specimen profile and the column-length distribution could be
“rolled” into an “all in one” approach (see Appendix C). However, this approach assumes
the crystallite/domain size broadening is the only source of broadening. On the other hand,
it enables the column-length distribution to be determined directly from the observed data.

The two-fold MaxEnt approach for size analysis was evaluated using simulated diffraction
lines modelled on the 113 and 226 alumina peaks, where the specimen consisted of spherical
crystallites. Three case were examined: (i) determining the column-length distribution and
area-weighted size for the best background level; (ii) the effect of background-estimation
on the column-length and average size results; and (iii) the effect of deconvolving with a
non-ideal instrument profile on the specimen profile and column-length distribution.

In (i), it was revealed that the consequence of truncation of the observed profile was to
cause the column-length distribution to be shifted towards larger crystallites and produce
erroneous size results. This was resolved by introducing a non-uniform a priori model, which
attempts to fill in the missing information. The model also influences the uncertainty levels
and the value of the Lagrangian parameters. In turn the uncertainties were usually reduced.

The results from (ii) demonstrate the sensitivity of the Fourier methods to incorrect back-
ground estimation. In the case of under-estimation of the background level, this produced
an under-estimation of the area-weighted size, due the “kink effect”. For over-estimation of
the background level, there was an over-estimation of the area-weighted size, due to “hook
effects”. That is, small distortions to the Fourier coefficients near the origin produced large
uncertainties in the area-weighted size. However, these difficulties were overcome using the
MaxEnt method by incorporating a non-uniform a prior: model.

The calculations from (iii) have a direct bearing on the development of instrument ref-
erence materials, in that it was demonstrated residual size broadening in the instrument
profiles caused the MaxEnt method to over-compensate for the specimen broadening. The

solution profiles were generally narrower relative to the actual specimen profiles and erro-
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neous size results were produced. Hence, these calculations demonstrated the importance of
the instrument profile in accurately characterising the optics of the diffractometer and the
need to reduce the contribution of the profile from the reference material.

Although these calculations concentrated on the effects of truncation, background es-
timation and non-ideal instrument profiles, they did not demonstrate how to determine a
suitable non-uniform a priori model. It was proposed that “low resolution” methods could
be applied to estimate the model. Furthermore, a Bayesian method for determining the
background level, Lagrangian parameter and determining a suitable model could be devel-
oped. However, the central issue of these calculation was to show how the MaxEnt method
could be used to determine the specimen profile and column-length distribution. The de-
convolution of the observed profile only considered the use of a uniform model and can be
considered the worst case scenario. On defining the worst case scenario, the MaxEnt method
is capable of incorporating a prior: knowledge of the shape and broadening of the specimen

profile and the column-length distribution to produce an improved result.

7.3 Determining the strain distribution

The two-fold MaxEnt method was applied to determining the strain distribution from strain-
broadened profiles (see Chapter 4). This problem proved to be challenging due to insufficient
data, especially in the case of high symmetry lattices. The issue of determining a suitable
a priori model was also discussed. The MaxEnt strain analysis was compared with the
traditional approaches, namely the Williamson & Hall (1953) and Warren & Averbach (1950,
1952) methods. It was shown that the strength of the MaxEnt method over traditional
methods was that it does not make specific assumption as to the nature of strain broadening,
but enables any available information to be incorporated into the solution procedure. It also
provide information concerning the distribution of strain perpendicular to the diffraction
planes.

The two-fold approach for strain analysis was evaluated using simulated data. The sim-
ulations were modelled for copper and the strain was assumed to be isotropic. The strain
models were taken from empirical models proposed in the literature. Two cases were con-

sidered: (i) inhomogeneous and isotropic Gaussian strain distributions; (ii) inhomogeneous
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and isotropic non-Gaussian (near-Lorentzian) strain distributions. Instrumental broaden-
ing, background-level and statistical noise were imparted to produce a simulated observed
profiles.

In the case of (i), difficulties were encountered determining the specimen profile using the
MaxEnt method due to the high level of statistical noise, incorrect background estimation
and relatively little instrumental broadening (compared with the specimen broadening). In
the case of the high-angle profile, truncation of the observed profile was a particular problem,
which reduced the range of application for the various methods. For these calculations
a uniform model was used in determining the specimen profile. Due to relatively little
instrument broadening, the problem of determining the specimen profile was essentially a
problem of noise removal.

The strain analysis demonstrated the failure of the classical Williamson & Hall (1953)
method in not accounting for the d*? dependence of the integral breaths. In this particular
case an unphysical negative intercept was produced. The Warren & Averbach (1950, 1952)
method proved to be sensitive to the errors in the Fourier coefficients. That is, due to the
“hook effect” the rms-strain was under-estimated for small L. A “low resolution” approach
was suggested for determining the model and in the case of Gaussian strain it proved to
be successful. In applying the MaxEnt method, the a priori model proved to be critically
important in determining the shape and tails of the strain distribution.

The difficulties encountered in (i), also persisted in case (ii). As in case (i), the classical
Williamson & Hall (1953) method simply failed to account for the d*? dependence of the
integral breadth. The Warren & Averbach (1950, 1952) method also failed, not for numerical
reasons, but because if its assumption of the strain distribution. This resulted in the under-
estimation of the rms-strain. As in case (i), using the non-uniform model in determining
the strain distribution proved to be important. Visually, the MaxEnt results appeared to be
very good. However, on determining the rms-strain, the results were disappointing. It was
also demonstrated that uncertainties in determining the model were being imparted into the
MaxEnt solution.

The significance of these calculations was that the a priori model plays an important

role is determining the shape and tails of the strain distribution. The results also suggest
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that a Bayesian approach may be necessary in determining a suitable model and underlying
parameters. The limitations of this study were that strain distributions were not related
to microscopic properties such as the dislocation densities and dislocation type. Also, the
problem of anisotropic strain broadening was not considered; it will require an extension of

the present work.

7.4 Analysis of SRM 676 x-ray diffraction data

The two-fold MaxEnt method was applied to the NIST SRM 676 x-ray diffraction data (see
Chapter 6). This data was first analysed by Kalceff et al. (1995) and the present results were
in agreement with that study. However, the present analysis went further in determining
the column-length distribution from the x-ray diffraction data, providing information about
the range of crystallite sizes.

The analysis used both uniform and non-uniform models in determining the specimen
profile and non-uniform models in determining the column-length distribution. In the case
of determining the specimen profile, the non-uniform model was determined from Fourier
coefficients. The use of this model reduced the uncertainty region in the specimen profile,
but also highlighted the need for absorption correction in the diffraction data.

The size analysis consisted of analysing the alumina data using the Williamson & Hall
(1953), Fourier and MaxEnt methods. The qualitative analysis revealed that crystallite/domain
size broadening was the dominant source of specimen broadening, and also demonstrated
that the residual strain broadening in the LaBg (NIST SRM 660) instrument profile affected
the integral breadth and Fourier coefficients. This aspect of the analysis highlights the need
for an instrument reference which is free from structural imperfections. It was proposed that
the difference between the Fourier and MaxEnt area-weighted sizes can be attributed to
strain in the LaBg, while the scatter in the Fourier size results can be attributed to numeri-
cal errors near the origin of the Fourier coefficients. The presence of strain in the LaBg may
also overshadow the presence of strain in the alumina data, especially at the high angles.
Further analysis using an annealed reference material is required to overcome these difficul-
ties in the analysis. In general, the analysis indicates that the alumina powder consists of

scattering domains smaller than the overall dimensions of the powder particle observed by
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a scanning electron microscopy examination. The difference between the x-ray and electron
microscopy results can be reconciled if the alumina crystallites consist of scattering domains,
created by strain concentrated over a narrow region so as to produce a discontinuity in the
lattice structure.

The significance of this analysis is that the MaxEnt method when applied to alumina
diffraction data preserved the positivity of the specimen profile. It enabled the column-length
distribution to be determined and information concerning the distribution of crystallite sizes
to be extracted from the diffraction data. Although there were difficulties with the reference

material, the MaxEnt method produced physically consistent results.

7.5 Further research

The application of the MaxEnt method for determining the specimen profile, column-length

and strain distributions has proven to be successful and can be wided with further research.

7.5.1 Determining the specimen profile

e The analysis of the common deconvolution methods concentrated on defining ill-conditioning
in terms of the control parameters of the method. Another issue encountered in profile
analysis is the range of reliability for varying degrees of instrumental broadening; this
analysis could encompass the direct convolution approaches, as well as the MaxEnt

method.

e The issue of determining an a prior: model for the specimen has proven to be important
in this study and requires further work. There is also an opportunity to incorporate
a Bayesian/MaxEnt approach for determining the background level and reduce the

truncation effects.

7.5.2 Crystallite/domain size analysis

e A systematic study could be undertaken for assess the reliability of a prior: models

in determining the column-length distribution. This could incorporate the common-
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volume function of the crystallite to provide information concerning the shape of the

crystallites in determining a suitable model for the column-length distribution.

e Bayesian analysis could be applied to determining the average overall dimensions of

the crystallites.

e Further development of the “all in one” MaxEnt approach is required. This approach
can determine the column-length distribution from the diffraction data. The solution
column distribution can then be used to calculate the specimen profile, without needing

the deconvolution stage.

7.5.3 Strain analysis

e The present work has highlighted the need to assess the reliability of the a priori model
in the MaxEnt method for strain analysis. This may require adopting physical models
concerning the nature of strain broadening. This would also enable physical quantities

for a particular model to be determined from the MaxEnt results.

e The present analysis determines the strain distribution and rms-strain from the x-ray
diffraction data. Further research is needed to relate the rms-strain to a dislocation
model, where the dislocation density and type can be determined. This would relate
the macroscopic description of strain broadening with a microscopic picture of the

strain broadening.

e The present study has only considered the problem of isotropic strain broadening. How-
ever, to make this analysis applicable to the general case, anisotropic strain broadening
must also be considered. This would require a microscopic understanding of the strain
broadening and the introduction of contrast factors to “unscramble” the strain Fourier

coefficients.

7.5.4 Size/strain analysis

e The problem of separating the size and strain contribution has not been considered in

this study. The existing methods such as the Warren & Averbach (1950, 1952) rely on
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the expansion of the Fourier coefficients over a limited range. However, the specimen
profile can be considered as the convolution of a size profile and strain profile. The
difficulty is that the size and strain profiles are unknown. This is essentially a problem
of blind deconvolution, a problem which Newton (1985) has studied. It is proposed that

a blind deconvolution method be developed for separating the size and strain profiles.

Blind deconvolution could also be combined into an “all in one” approach, by intro-
ducing the instrument profile in the blind deconvolution method and determining the

size and strain profiles directly from the data.
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Appendix A

Common Profiles

The common analytical profile functions are presented in this appendix. These function are
used in the fitting of x-ray diffraction profiles and the expressions presented here have been

drawn from Langford & Louér (1996).

Notation

f(0) peak maximum minus the background level;
position of the profile maximum: angular position, (26 — 26);
reciprocal position, s — sq;

2w full-width at half maximum;

integral breadth (peak area/peak maximum);

= 2w/ 3, the shape factor for the profile;

Lorentzian component;

Q =~ & ™

Gaussian component.

Lorentzian function

1
£(@) = £(0) —— (A1)
1+ (3)
where the integral breadth is given by
B =mw (A.2)
and
¢ =2/m. (A.3)
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Gaussian function

/(&) = 1(0) exp [~ 2/ 7] (A4)
where the integral breadth is given by,

8= J%W (A.5)

and

¢ =2+/In2/m (A.6)

Voigt function

The Voigt function is the convolution of the Gaussian and Lorentzian functions
+oo
f@) = [ e -9 sale)de (A7)
and the convolution of two Voigt functions is also a Voigtian (Langford 1978). The analytical
expression for the Voigt function is given by (Langford 1978)

f(z) = f(0)B8 Bg"R{w(2)} (A.8)
where
z = % + 1k (A.9)
and
_ b (A.10)

Vs

Here k is the Voigt parameter and R{w(z)} is the real part of the complex error function
(see equation (21) in Langford 1978). The Gaussian component of the integral breadth, Sg
is given by

Ba = Bexp(k?) [1 — erf(k)]. (A.11)
The shape paramater, ¢, for a Voigt function is bounded below and above by the Lorentzian

(A.3) and Gaussian (A.6) ¢-values, respectively (Langford & Louér 1996).
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Pseudo-Voigt function

This function is a linear combination of the Gaussian and Lorentzian function

f(@) = f0) [nfe(z) + (1 = n)fa(z)] (A.12)

where 7 is the mixing parameter. For n = 1, (A.12) becomes a Lorentzain function, while
for n = 0, (A.12) becomes a Gaussian function. Unlike the Voigt function, the convolution

of pseudo-Voigt functions is not a Voigtian.

Pearson-VII function

This function is a “tunable” in that the free parameter, w, and the exponent, m, can be

determined to fit profiles between the Gaussian and Lorentzian limits

1
f(z) = £(0) A1 Cym (A.13)
where )
1/m
C = % (A.14)
d

" 722" (2m — 1)w

5 (A.15)

(21/m — 1)I'%(m)
The exponents, m, determine the rate at which the tails decrease. For m = 1, (A.13)
becomes a Lorentzian function and as m — oo, (A.13) appproaches a Gaussain function;
usually m = 10 is satisifactory for approximating a Gaussian. In the case of m = 1.5 (A.13)
becomes an intermediate-Lorentzian and for m = 2 (A.13) is know as a modified-Lorentzian

function.

232



Appendix B
The effect of P(D) on (L), & (L)q

In this appendix the influence of the particle distribution on the two apparent dimensions, the
area- and volume-weighted sizes, is discussed using the example of spherical crystallites. Here
the particle distribution is considered as the distribution of a given dimension; in the case
of a sphere this would correspond to a distribution of diameters, P(D). A similar approach
could be applied to other shaped crystallites such as cubes and tetrahedra. However, the

apparent dimensions will then be dependent on the direction of the diffraction vector.

B.1 (L), & (L), for a single size

The results developed by Stokes & Wilson (1942) introduce the common (or ghost) function
for a particular shaped crystallite. However, they assumed that the crystallites all had the
same dimensions. Mathematically, this corresponds to a delta function centered about a
particular dimension. The apparent dimension can be related to the physical dimensions,
such as the diameter and “true” crystallite size by taking into consideration the common-
volume function.

For a sphere (1.7) (also see equation (44) in Stokes & Wilson 1942), the area-weighted
size becomes

(L), = %D. (B.1)

Ko= 7 (B.2)



ol

1
where p is the cube-root of the crystallite volume, for a sphere, p = (%) D and K, is % (%) 3,

Similarly the volume-weighted size is
(L), =-D (B.3)

1
and the corresponding Scherrer constant is 4 (%)2.

Taking the ratio of the area- to volume-weighted sizes, we have

(L)a
L),

(B.4)

—~

(B.5)

©.I oo 5‘5

As mentioned above, these results apply only when the crystallites all have the same shape

and dimension.

B.2 (L), & (L), for a distribution

To investigate how a distribution of spherical particles affects the area- and volume-weighted
sizes, we must apply (1.25). In the case of a sphere, the area-weighted distribution, p, (L),
is given by (Smith 1976)

™

Pa(L) = 5L/Loo P(D)dD (B.6)

where the shape kernel is taken from the second derivative of (1.7). From (B.6) (L), can
be determined; similarly, (1.22) can be used to detemine the volume-weighted distribution

from which (L), can be calculated. Hence, in the case of a sphere we notice that P(D) —

5(D — (D)), {fz = 5.

To test this, a set of numerical calculations were conducted. The particle size distibution,

P(D), was set as a Gaussian distribution with an average diameter, (D) = 50nm. Using
(B.6) and (1.22), (L),/(L), was calculated for a range of standard-deviaions, op. In the case
of a Gaussian function as op — 0, P(D) — 6(D — (D)). The numerical results are shown
in Figure B.1.

From Figure B.1, the intercept with the y-axis produces 0.89 = g. Hence, the effect of

the particle distribution is a “smearing” of the area- (or volume-)weighted distributions.
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Figure B.1: EB: versus op for spherical crystallites. In the limit of op — 0, EBZ — & and the specimen

can be considered as consisting of particle of the same shape and size. Numerical values of gILJgj (diamonds)

and the fitted curve (solid line) using a third order polynomial are shown.
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Appendix C

The MaxEnt “all in one” approach

In Chapter 4, a two-fold MaxEnt procedure is proposed to remove the instrumental broad-
ening and determining the column-length distribution. This application does not make any
assumptions concerning the nature of the specimen broadening and allows it to be deter-
mined before proceeding with the second part of the analysis.

However, if size broadening is the only source of specimen broadening, the two-fold
procedure can be “rolled” into a single method. The advantage of this approach is that
observed data can be used directly to determine the column-length distribution. Once the
column-length distribution in known the specimen profile can be determined, avoiding the

difficulty of deconvolution.

C.1 Overview of the “all in one” approach

The “all in one” approach combines the instrument kernel and scattering kernel into a
single kernel. The instrument kernel must be mapped from 26-space into (s — sg)-space and
expressed as a [M x M] convolution matrix.

Using the scattering kernel in (4.18), the new kernel becomes

M M
Wy=Y > kpkKy (C.1)

p=1 ¢=1

where k£;, is the instrument kernel; K, is the scattering kernel; ¢ = 1,2, 3 ..., M and
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pa(L)

j=1,2,3...,N such that M > N. The statistic function becomes

C(p.) = Z (g’;ifi)? (C.2)

where g; = >, Wi;jpa; and the 0? = ;. The entropy function given by (4.11) can be used
to fomulate the Lagrangian function and this incorporated into the Skilling & Bryan (1984)
algortihm.

As an example of the application of this method, it has been used in the simulated data
presented in Chapter 4, with column-length distribution and simulated observed profile for
the 113 peak for spherical crystallites with (D) = 50 nm (also see §4.4.4). A non-uniform a
priori model was used in this calculation with parameters u = 0.09, ¢ = 1.0 and r = 3.0 (see

(4.14) & (4.16)).

0.030 T T T T T T T T

0025 F .. i
0.020 | -
0.015 S |
0.010

0.005 -/

0.000

0 25 50 75 100 125 150 175 200 225
Column Length, L (nm)

Figure C.1: MaxEnt “all in one” results for optimum background level for the 113 peak corresponding to
(D) = 50nm: True column-length distribution (solid line), the solution column-length distribution (dashed

line), the lower- & upper-uncertainty regions (dots), and the uniform a priori model (dash-dot lines).

The analysis in Figure C.1 was halted after 40 iteration when it was evident that the
algorithm would not converge onto C(p,)/Cuim ~ 1. The final C(p,)/Cyim was 10.5 which is
unacceptable. Also, the uncertainty regions for the solution distribution are very large. These

two results suggest that there are difficulties with the statistic function, (C.1), and possibly
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the kernel, (C.2). Further investigation is necessary to refine this approach, but nevertheless

the results indicate that the two problems can be combined into a single method.
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