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ABSTRACT 

Excessive phosphorus (P) is one of the major pollutants in natural water that are 

responsible for algal blooms and eutrophication. P removal by soil and slag is an 
attractive solution if the P sorption capacity of soil or slag is significant. To 
design an efficient land treatment facility, basic information on the behaviour of 
Pin the media-water environment is required. In this study, detailed experiments 

were conducted to study P removal under static and dynamic conditions, and 
mathematical models were developed to describe these processes. 

The kinetic studies on P sorption onto a sandy loam soil from North Sydney, 

Australia, and dust and cake waste products from the BHP steel industry 
revealed that P sorption is a slow process. More than 90% of the P was adsorbed 
within 70, 12 and 60 hours in a mixing system for soil, dust and cake 
respectively while it was within 240, 24 and 120 hours respectively in a static 

(no stirring) system. Dust adsorbed P the most, compared to the other adsorbents 
(220-225 times and 4-5 times of the sorptivity of soil and cake respectively). P 
sorption in the batch experiments was described better by an equation using the 
Langmuir isotherm than one using the Freundlich isotherm. The kinetics of P 

sorption were satisfactorily explained by a static, physical, non-equilibrium 
sorption model (SPNSM). 

The pH of the P solution played a critical role in the extent of removal and the 

removal mechanisms of P. Removal was at a minimum at pH 2. The effect of pH 
on P removal varied depending on the type of adsorbents and the initial P 
concentration. The dominant removal mechanism of P at pH <8 was physical 
sorption, while it was chemical precipitation at pH> 10. Batch flocculation 

experiments revealed that the P removal efficiency increased with an increase of 
adsorbent dose, flocculation (contact) time and mixing rate. P sorption is 
affected by the presence of NH4 which competes for available sites on the 
adsorbents. The amount of P adsorbed by dust and cake in the presence of NH4 

was less than that in a single solute system. The reduction percentage of P for 
dust ranged from 33 to 57%. 

Detailed column experiments conducted with soil, dust and cake as media 
indicated that dust and cake have much higher sorption capacities than soil. The 
solid phase P concentrations on dust and cake calculated from batch 
experimental isotherm constants are substantially higher than those estimated 
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from the dynamic column experiments. A program to fit a generalised, non­
linear, advective, dispersion model (MCMFIT) was used to estimate the optimal 
model parameter values. All the columns exhibited characteristic S-shaped or 
curvilinear breakthrough curves. The simulated results from a dynamic physical 
non-equilibrium sorption model (DPNSM), based on Freundlich isotherm 

constants K and N (obtained from column experimental results) satisfactorily 
matched the corresponding experimental breakthrough data. P removal under 
dynamic conditions was explained better as a physical non-equilibrium process 

than an equilibrium one. The mobility of P is restricted by the adsorbing medium 

and it is proportional to the sorption capacity of the adsorbents. The DPNSM 
predictions were better than those of the equilibrium sorption model (ESM). The 

ESM predictions were similar to DPNSM predictions at high influent P 

concentrations for dust and cake. 

An increase of pH value occurred at the initial stage of P removal. This is due to 
the liberation of Mg2+ and Ca2+ ions into the solution from the dust and cake 

media. The sorption capacity of P in dust and cake columns decreased in the 

presence of NH4 due to the competition for sorption sites. 

Dust and cake can be applied (i) as an adsorbent in sewage treatment plants, (ii) 

as a substratum in constructed wetland systems and (iii) as a suppressing 

material for the release of P from sediments due to their high sorption capacity. 
The effluent concentrations of heavy metals in the dust and cake column were 

low enough not to harm any living organisms. 
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