DAUNORUBICIN KINETICS AND DRUG RESISTANCE IN LEUKAEMIA

By

Peter Galettis
B. Sc. (Hons)

A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy in Science of the University of Technology, Sydney

March, 1996
Acknowledgements

I acknowledge receipt of an NSW State Health Department Scholarship that enabled the studies described in this thesis to be undertaken.

I wish to express my thanks to my supervisors Dr David Ma, Dr John Boutagy and Dr Anita Piper for their guidance and support.

I am especially grateful to Brownyn Williams and Dr John Marwood for their assistance in the preparation of this thesis.

I would like to thank Janet McLachlan for her help in performing the P glycoprotein assays.

I thank all the staff of Wards 12D and 12H Royal North Shore Hospital for their assistance in obtaining patient blood samples.

I would also like to thank the entire staff of both the Haematology and Clinical Pharmacology Departments at Royal North Shore Hospital for their help and support throughout my years of study.

Finally, I express my gratitude to John Burnside and Brownyn Williams for their moral support through all the good and bad times during my years at Royal North Shore Hospital.
Abstract

The aims of this thesis were to examine: (1) plasma and cellular pharmacokinetics of daunorubicin and its major metabolite daunorubicinol in patients with acute leukaemia, and the relationships between pharmacokinetics, patient response and the presence of P glycoprotein; (2) actions of the multidrug resistance reversing agents cyclosporin A and trifluoperazine, at clinically achievable concentrations, on daunorubicin accumulation and retention in human leukaemia cell lines and patients with acute leukaemia; and (3) effect of daunorubicin on the cell membrane of both sensitive and resistant cell lines, with and without the multidrug resistance reversing agents.

Twenty-seven patients with acute leukaemia received daunorubicin as part of induction therapy. The plasma and cellular levels of daunorubicin and its metabolite daunorubicinol were determined using HPLC. There were no significant differences between patients who went into complete remission (12/23) compared to those who did not respond for any of the plasma pharmacokinetic parameters. There was a significant difference in the cellular daunorubicin and daunorubicinol area under the concentration-time curve between responders and non responders (p < 0.02), as well as in cellular Cmax, cellular clearance and cellular volume of distribution. Eleven patients were P glycoprotein positive and 10 P glycoprotein negative (no sample available for 2 patients). There was no correlation between patient response and the presence of P glycoprotein; nor a correlation between the cellular concentration of daunorubicin or daunorubicinol and P glycoprotein. Patients responding to chemotherapy had higher cellular daunorubicin and daunorubicinol compared to non responders. In contrast to in vitro studies, overexpression of P glycoprotein was not the reason for the lower cellular daunorubicin levels.

Cyclosporin A was capable of increasing both cellular accumulation and retention in the drug resistant CEM/MLB and HL 60/ADR cell lines, but not in the drug sensitive CEM and HL 60 cell lines. Trifluoperazine had no effect in any of the four cell lines. In contrast to the cell line findings, only the combination of cyclosporin A and trifluoperazine were able to increase both accumulation and retention in the blast cells of patients at initial presentation. The multidrug resistant reversing agents alone had no effect in increasing accumulation or retention in the blast cells of P glycoprotein positive patients, nor patients in relapse. The cell line studies show that at clinically relevant concentrations only cyclosporin A is capable of increasing daunorubicin accumulation in both the drug resistant P glycoprotein positive (MLB) and P glycoprotein negative (ADR) cell lines. Thus, cyclosporin A does not work only by inhibiting the actions of P glycoprotein. Trifluoperazine
was unable to reverse drug resistance at clinically relevant concentrations in either cell lines or patient blast cells. However, the combination of cyclosporin A and trifluoperazine increased accumulation in patient blast cells at initial presentation, suggesting that these agents may be more useful in patients at initial presentation than relapse.

Daunorubicin was immobilised by linking it to poly vinyl alcohol and the effect of immobilised-daunorubicin was studied on the four cell lines above. The immobilised-daunorubicin was able to decrease cell growth in the drug sensitive HL 60 cell line but not in the drug resistant VLB or ADR cell lines. Poly vinyl alcohol itself was cytotoxic to the CEM cell line. The multidrug resistance reversing agents cyclosporin A and trifluoperazine were only capable of increasing cytotoxicity in the HL 60 cell line, with no effect in the drug resistant VLB or ADR cell lines.
Publications supporting this thesis

Publications in preparation

In addition, some of the work contained in this thesis has been presented at Scientific Meetings as follows:

on cell lines and patient leukaemic cells. Vth World Conference on Clinical Pharmacology and Therapeutics, Yokohama.

Preface

The work described in this thesis was carried out in the Departments of Haematology and Clinical Pharmacology, Royal North Shore Hospital, under the supervision of Dr David Ma, Dr John Boutagy and Dr Anita Piper. This thesis has not been submitted for a degree at any other university. Full acknowledgement has been made where the work of others has been cited and used. A list of publications in support of this thesis is included.

Peter Galettis
Table of Contents

Table of Contents .. i
List of Figures ... vi
List of Tables ... viii
Glossary of Abbreviations .. xii

CHAPTER 1 .. 1
INTRODUCTION .. 1
1.1. Mechanisms of Action of Anthracyclines 2
 1.1.1. DNA Intercalation ... 2
 1.1.2. Free Radical Formation 7
 1.1.3. Cell Membrane Effects 10
1.2. Multidrug Resistance ... 14
 1.2.1. P-glycoprotein Mediated Resistance 15
 1.2.2. Reversal of Multidrug Resistance 17
 1.2.3. Non P-glycoprotein Mediated Resistance 19
1.3. Acute Leukaemia .. 20
 1.3.1. Treatment .. 21
 1.3.2. Problems Associated with Treatment 24
 1.3.3. Pgp and Acute Leukaemia 25
1.4. Pharmacokinetics .. 27
 1.4.1. Principles .. 27
 1.4.2. Pharmacokinetics of Anthracyclines 29
 1.4.3. Metabolism of Anthracyclines 30
1.5. Aims of this Thesis ... 31

CHAPTER 2 ... 33
Materials and Methods ... 33
2.1. Materials ... 33
2.1.1. Cell Culture .. 33
2.1.2. HPLC Assay ... 34
2.1.3. P glycoprotein assay ... 34
2.1.4. Immobilisation ... 35
2.1.5. Cell Lines ... 35
2.1.6. Patients ... 35
2.2. Methods .. 36
2.2.1. Buffers .. 36
2.2.2. Culturing of Cells ... 36
2.2.3. Cell Viability .. 37
2.2.4. MTT assay .. 37
2.2.5. Clonogenic Assay .. 40
2.2.6. Collection of blood and sample preparations for pharmacokinetics .41
2.2.7. Accumulation/ Retention Experiments41
 2.2.7.1. Isolation of Cells .. 41
 2.2.7.2. Accumulation ... 41
 2.2.7.3. Retention .. 42
 2.2.7.4. Retention with the addition of MDR reversing agents42
2.2.8. HPLC assay .. 43
 2.2.8.1. Chromatographic Conditions ... 43
 2.2.8.2. Standard Solutions for Assay Calibration43
 2.2.8.3. Plasma Samples .. 43
 2.2.8.4. Cellular Samples ... 45
2.2.9. Calculation of Pharmacokinetic Parameters45
2.2.10. P glycoprotein assay ... 45
2.2.11. Immobilisation of DNR46
 2.2.11.1. Preparation of immobilised DNR .. .46
 2.2.11.2. Washing of immobilised DNR .. .48
 2.2.11.3. Amount of DNR bound to PVA48
 2.2.11.4. Sterilization of immobilised-DNR .. .49
 2.2.11.5. Experiments using immobilised DNR49
CHAPTER 3 .. 51

Actions of DNR and MDR Reversing Agents on Leukaemic Cell lines 51

3.1. Introduction ... 51
3.2. Cytotoxicity of DNR on Cell lines ... 52
3.3. Effects of MDR reversing agents on DNR cytotoxicity 52
3.4. Cytotoxicity of DOL on Cell lines ... 59
3.5. Accumulation of DNR in Cell lines with or without MDR reversing agents 59
 3.5.1. CEM .. 60
 3.5.2. VLB .. 60
 3.5.3. HL 60 ... 60
 3.5.4. ADR .. 65
3.6. Retention of DNR in Cell lines with or without MDR reversing agents ... 65
 3.6.1. CEM .. 65
 3.6.2. VLB .. 69
 3.6.3. HL 60 ... 69
 3.6.4. ADR .. 69
3.7. Effect of MDR reversing agents after removal of DNR 73
3.8. Accumulation and Retention of DOL by CEM 73
3.9. Discussion .. 73

CHAPTER 4 .. 79

Pharmacokinetics of DNR in patients and the role of P glycoprotein .. 79

4.1. Introduction ... 79
4.2. Patients .. 80
4.3. Patients Response to Treatment .. 80
4.4. Pharmacokinetics .. 82
 4.4.1. Plasma .. 82
4.4.2. Cellular ... 89
4.5. Relationships between Pharmacokinetics and Patient Response 91
 4.5.1. Plasma Pharmacokinetics ... 96
 4.5.2. Cellular Pharmacokinetics ... 96
4.6. P glycoprotein .. 100
4.7. Relationship between P glycoprotein and Patient Response 103
4.8. Relationship between P glycoprotein and Cellular Pharmacokinetics 103
4.9. Discussion ... 105

CHAPTER 5 .. 109

Effects of the MDR reversing agents Cy A and Tri on DNR accumulation and retention in patient leukaemic cells 109
 5.1. Introduction ... 109
 5.2. Patients .. 110
 5.3. Accumulation of DNR in acute leukaemic patients and the effect of the MDR Reversing agents 110
 5.3.1. Presentation .. 110
 5.3.1.1. Initial Presentation .. 110
 5.3.1.2. Relapse .. 114
 5.3.2. P glycoprotein .. 114
 5.3.2.1. Pgp positive .. 114
 5.3.2.2. Pgp negative .. 117
 5.4. Retention of DNR in acute leukaemic patients and the effect of the MDR reversing agents 117
 5.4.1. Presentation .. 117
 5.4.1.1. Initial Presentation .. 117
 5.4.1.2. Relapse .. 120
 5.4.2. P glycoprotein .. 120
 5.4.2.1. Pgp positive .. 120
 5.4.2.2. Pgp negative .. 120
5.5. Relationship between patient presentation and Pgp ... 122
5.6. Discussion .. 122

CHAPTER 6 .. 125
Actions of Immobilised-DNR .. 125

6.1. Introduction ... 125
6.2. Preparation of immobilised-DNR ... 126
6.3. Amount of DNR bound to PVA .. 128
6.4. Amount of DNR released in immobilised-DNR experiments 128
6.5. Cytotoxicity of immobilised-DNR .. 128
6.6. Effects of MDR reversing agents ... 132
6.7. Discussion ... 139

Chapter 7 .. 145
General Discussion ... 145

7.1. Overview of the studies conducted ... 145
7.2. Implications and future work .. 152

Bibliography ... 157
Figure 1.1	Structure of Anthracylines	3
Figure 1.2	Diagram of DNR intercalated into d(CpGpTpApCpGp), showing intermolecular attractions	5
Figure 1.3	View of the intercalator perpendicular to the base plane	5
Figure 1.4	Free radical and alkylating intermediates produced by the anthracyclines	8
Figure 1.5	Free radical production from the DOX-iron complex	9
Figure 1.6	A diagrammatic representation of the proposed orientation of P-glycoprotein in the plasma membrane	16
Figure 2.1	Chromatograms obtained from patient plasma samples	44
Figure 2.2	Preparation of Immobilised-DNR	47
Figure 3.1	Dose response curve for the cytotoxic actions of DNR on the drug sensitive CEM cell line and drug resistant Pgp positive VLB cell line	53
Figure 3.2	Dose response curve for the cytotoxic actions of DNR on the drug sensitive HL 60 cell line and drug resistant Pgp negative ADR cell line	55
Figure 3.3	Dose response curve for the cytotoxic actions of DNR on the drug sensitive CEM cell line and the drug resistant Pgp positive VLB cell line	57
Figure 3.4	Dose response curve for the cytotoxic actions of DNR on the drug sensitive HL 60 cell line and the drug resistant Pgp negative ADR cell line	58
Figure 3.5	Concentration-time curve of DNR accumulation in the drug sensitive CEM cell line	61
Figure 3.6	Concentration-time curve of DNR accumulation in the drug	
sensitive CEM cell line, drug resistant Pgp positive VLB cell line and the addition of Cy A to the VLB cell line

Figure 3.7 Concentration-time curve of DNR accumulation in the drug sensitive HL 60 cell line

Figure 3.8 Concentration-time curve of DNR accumulation in the drug sensitive HL 60 cell line, drug resistant Pgp negative ADR cell line and the addition of Cy A to the ADR cell line

Figure 3.9 Concentration-time curve of DNR retention in the drug sensitive CEM cell line

Figure 3.10 Concentration-time curve of DNR retention in the drug sensitive CEM cell line, drug resistant Pgp positive VLB cell line and the addition of Cy A to the VLB cell line

Figure 3.11 Concentration-time curve of DNR retention in the drug sensitive HL 60 cell line

Figure 3.12 Concentration-time curve of DNR retention in the drug sensitive HL 60 cell line, drug resistant Pgp negative ADR cell line and the addition of Cy A to the ADR cell line

Figure 3.13 The effect of leaving the MDR reversing agent after the removal of DNR

Figure 4.1 Plasma concentration-time curve for DNR and its metabolite DOL for all patients receiving a 50 mg/m² dose of DNR

Figure 4.2 Plasma concentration-time curve for DNR and its metabolite DOL for all patients receiving a 25 mg/m² dose of DNR

Figure 4.3 Cellular concentration-time curve for DNR and its metabolite DOL for all patients receiving a 50 mg/m² dose of DNR

Figure 5.1 Representative concentration-time curve of DNR accumulation in a patient (Patient 3) at initial presentation

Figure 5.2 Representative concentration-time curve of DNR retention in a patient (Patient 11) at initial presentation
List of Tables

Table 1.1 Classification of Acute Leukaemia 22

Table 2.1 Concentrations of DNR in the MTT assays 38
Table 2.2 Concentrations of DNR in the MTT assays with modifiers 39

Table 3.1 IC\textsubscript{50} values for DNR with or without the MDR reversing agents in the CEM and VLB cell lines 54
Table 3.2 IC\textsubscript{50} values for DNR with or without the MDR reversing agents in the HL 60 and ADR cell lines 56
Table 3.3 Accumulation of DNR by Leukaemic Cell Lines 62
Table 3.4 Retention of DNR by Leukaemic Cell Lines 68

Table 4.1 Patient Characteristics 81
Table 4.2 Plasma DNR Pharmacokinetic Parameters 85
Table 4.3 Plasma DOL Pharmacokinetic Parameters 86
Table 4.4 Plasma DNR Pharmacokinetic Parameters adjusted for administered dose of DNR 87
Table 4.5 Plasma DOL Pharmacokinetic Parameters adjusted for administered dose of DNR 88
Table 4.6 Cellular DNR Pharmacokinetic Parameters 92
Table 4.7 Cellular DNR Pharmacokinetic Parameters adjusted for administered dose of DNR 93
Table 4.8 Cellular DOL Pharmacokinetic Parameters 94
Table 4.9 Cellular DOL Pharmacokinetic Parameters adjusted for administered dose of DNR 95
Table 4.10 Relationship between the plasma DNR pharmacokinetic parameters and patient response 97
Table 4.11 Relationship between the plasma DOL pharmacokinetic parameters and patient response 98
Table 4.12 Relationship between the cellular DNR pharmacokinetic parameters and patient response 99
Table 4.13 Relationship between the cellular DOL pharmacokinetic parameters and patient response 101
Table 4.14 Pgp measurements for patients in the pharmacokinetic study 102
Table 4.15 Relationship between P-glycoprotein and intracellular DNR or DOL 104

Table 5.1 Patient Characteristics 111
Table 5.2 Accumulation of DNR in the blast cells of patients with acute leukaemia at initial presentation and at relapse 113
Table 5.3 Detection of Pgp in patient blast cells 115
Table 5.4 Accumulation of DNR in the blast cells of patients with acute leukaemia according to P glycoprotein 116
Table 5.5 Retention of DNR in the blast cells of patients with acute leukaemia at initial presentation and at relapse 119
Table 5.6 Retention of DNR in the blast cells of patients with acute leukaemia according to P glycoprotein 121

Table 6.1 The amount of DNR released and cytotoxicity of the media 127
Table 6.2 The effect of CL-PVA and immobilised-DNR on the drug sensitive CEM cell line and its drug resistant subline VLB 130
Table 6.3 The effect of CL-PVA and immobilised-DNR on the drug sensitive HL 60 cell line and its drug resistant subline ADR 131
Table 6.4 The effect of the MDR reversing agents Cy A and Tri on the CEM and VLB cell lines 133
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 6.5</td>
<td>The effect of the MDR reversing agents Cy A and Tri on the CEM and VLB cell lines</td>
<td>134</td>
</tr>
<tr>
<td>Table 6.6</td>
<td>Effect of the MDR reversing agents on the cytotoxicity of immobilised-DNR in the drug sensitive CEM cell line</td>
<td>136</td>
</tr>
<tr>
<td>Table 6.7</td>
<td>Effect of the MDR reversing agents on the cytotoxicity of immobilised-DNR in the drug resistant VLB cell line</td>
<td>137</td>
</tr>
<tr>
<td>Table 6.8</td>
<td>Effect of the MDR reversing agents on the cytotoxicity of immobilised-DNR in the drug sensitive HL 60 cell line</td>
<td>138</td>
</tr>
<tr>
<td>Table 6.9</td>
<td>Effect of the MDR reversing agents on the cytotoxicity of immobilised-DNR in the drug resistant ADR cell line</td>
<td>140</td>
</tr>
<tr>
<td>Table 7.1</td>
<td>Cytotoxicity and accumulation of DNR in drug sensitive (CEM, HL 60) and drug resistant (VLB, ADR) cell lines with and without MDR reversing agents</td>
<td>147</td>
</tr>
</tbody>
</table>
Glossary of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACDA</td>
<td>acid citrate dextrose A</td>
</tr>
<tr>
<td>ADR</td>
<td>HL 60/ADR, doxorubicin resistant HL 60 subline</td>
</tr>
<tr>
<td>ALL</td>
<td>acute lymphocytic leukaemia</td>
</tr>
<tr>
<td>AML</td>
<td>acute myeloid leukaemia</td>
</tr>
<tr>
<td>ANLL</td>
<td>acute nonlymphocytic leukaemia</td>
</tr>
<tr>
<td>Ara C</td>
<td>cytosine arabinoside</td>
</tr>
<tr>
<td>at-MDR</td>
<td>atypical multidrug resistance</td>
</tr>
<tr>
<td>AUC</td>
<td>area under the curve</td>
</tr>
<tr>
<td>AUMC</td>
<td>area under the first moment curve</td>
</tr>
<tr>
<td>CEM</td>
<td>T cell lymphoblastic leukaemia cell line</td>
</tr>
<tr>
<td>CL</td>
<td>clearance</td>
</tr>
<tr>
<td>CL-PVA</td>
<td>cross linked polyvinyl alcohol</td>
</tr>
<tr>
<td>Cmax</td>
<td>maximum drug concentration</td>
</tr>
<tr>
<td>CR</td>
<td>complete remission</td>
</tr>
<tr>
<td>Cy A</td>
<td>cyclosporin A</td>
</tr>
<tr>
<td>DMSO</td>
<td>dimethyl sulfoxide</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>DNR</td>
<td>daunorubicin</td>
</tr>
<tr>
<td>DOL</td>
<td>daunorubicinol</td>
</tr>
<tr>
<td>DOX</td>
<td>doxorubicin</td>
</tr>
<tr>
<td>DSIM</td>
<td>double strength iscoves medium</td>
</tr>
<tr>
<td>EPI</td>
<td>epirubicin</td>
</tr>
</tbody>
</table>
FCS foetal calf serum
FE Fisher exact test
Fr Friedman two-way analysis of variance
GSH glutathione
HL 60 acute myeloid leukaemia cell line
HPLC high performance liquid chromatography
IC 50 inhibitory dose at 50% cell death
IDA idarubicin
Imm-DNR immobilized-daunorubicin
KW Kruskal-Wallis one way analysis of variance
MDR multidrug resistance
mdr1 multidrug resistance gene
mRNA messenger ribonucleic acid
MRP multidrug resistance-associated protein
MRT mean residence time
MTT 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide
MW Mann-Whitney U test
n number
NR non responders
PBS phosphate buffered saline
PCR polymerase chain reaction
Pgp P-glycoprotein
PKC protein kinase C
PR partial remission

xii
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVA</td>
<td>polyvinyl alcohol</td>
</tr>
<tr>
<td>RNA</td>
<td>ribonucleic acid</td>
</tr>
<tr>
<td>SD</td>
<td>standard deviation</td>
</tr>
<tr>
<td>SOD</td>
<td>superoxide dismutase</td>
</tr>
<tr>
<td>Tm</td>
<td>transition temperature</td>
</tr>
<tr>
<td>Tmax</td>
<td>time at maximum drug concentration</td>
</tr>
<tr>
<td>topo II</td>
<td>topoisomerase II</td>
</tr>
<tr>
<td>Tri</td>
<td>trifluoperazine</td>
</tr>
<tr>
<td>Vd</td>
<td>volume of distribution</td>
</tr>
<tr>
<td>VLB</td>
<td>VLB 100, drug resistant CEM subline</td>
</tr>
<tr>
<td>W</td>
<td>Wilcoxon signed rank test</td>
</tr>
</tbody>
</table>