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effective quantum yield, while the first data point in (c) is maximum quantum yield. 

Measurements on zooxanthellae from the 28°C (�), 30°C (�) and 32°C (�) treatments 

are shown from the time of expulsion up until 96 h. The bar indicates the light regime 

over the experiment (white = light, black = dark). Light intensity = 400 μmol photons m–2 

s–1 during initial expulsion and 100 μmol photons m–2 s–1 at other time periods. Averages 

± S.E. of mean shown (n = 4). 
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Figure 7.3: Percentage of healthy-looking zooxanthellae in the four expelled 

zooxanthellae populations: 0-6 h (a), 6-12 h (b), 12-24 h (c) and 24-36 h (d). The 

percentage of healthy-looking zooxanthellae from the 28°C (�), 30°C (�) and 32°C (�) 

treatments are shown from the time of expulsion up until 96 h. The bar indicates the light 

regime over the experiment (white = light, black = dark). Light intensity = 100 μmol 

photons m–2 s–1.  Averages ± S.E. of mean shown (n = 4). 

 

Figure 8.1: Chlorophyll fluorescence induction kinetics measured in a control sample. 

The NPQ components are indicated. SP = saturating pulse; AL = actinic light. 

 

Figure 8.2: Maximum quantum yield for the controls (�; 225 μmol photons m-2 s-1 and 

25˚C), the high-light (
; 475 μmol photons m-2 s-1 and 25˚C), the elevated temperature 

(	; 225 μmol photons m-2 s-1 and 32˚C) and high-light plus elevated temperature (�; 475 

μmol photons m-2 s-1 and 32˚C) treatments. The 0 h control and 1-8 h time periods are 

plotted. Averages ± standard error of mean are shown (n = 4). 

 

Figure 8.3: Total non-photochemical quenching (NPQ) for controls (�; 225 μmol 

photons m-2 s-1 and 25˚C), the high-light (
; 475 μmol photons m-2 s-1 and 25˚C), 

elevated temperature (	; 225 μmol photons m-2 s-1 and 32˚C) and high-light plus elevated 

temperature (�; 475 μmol photons m-2 s-1 and 32˚C) treatments. The 0 h control and 1-8 h 

time periods are plotted. Averages ± standard error of mean are shown (n = 4). 
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Figure 8.4: The contribution of the three components of non-photochemical quenching 

(qE = black columns; qT = light grey columns; qI = dark grey columns) to the total non-

photochemical quenching for the controls (a; 225 μmol photons m-2 s-1 and 25˚C), high-

light treatment (b; 475 μmol photons m-2 s-1 and 25˚C), the elevated temperature 

treatment (c; 225 μmol photons m-2 s-1 and 32˚C) and the high-light plus elevated 

temperature treatment (d; 475 μmol photons m-2 s-1 and 32˚C). The 0 h control and 1-8 h 

time periods are plotted. Averages ± standard error of mean are shown (n = 4). 

 

Figure 9.1: The relative intensity of light between the wavelengths of 180-880 nm for 

light sources used throughout the experiments. a) wavelengths from the PSI double 

modulation fluorometer’s blue, red and far-red LEDs. b) the wavelengths of light from 

the sun at 06:00 (solid line) and 12:00 (dashed line) hrs. c) the difference between the 

12:00 and 06:00 hrs solar spectra. d) the spectra of the halogen lights used in Experiment 

3. 

 

Figure 9.2: Fast induction curves at (a) 04:00 hrs, and (b) 06:00 following darkness (�), 

10 s exposure to far-red light then 0.1 s of darkness (�), and 10 s exposure to blue and red 

light then 0.1 s darkness (	) for Cyphastrea serailia. Average curves are shown (n = 4). 

The corresponding Fv/Fm value for each light treatment is shown for (c) 04:00 hrs, and (d) 

06:00 hrs. Averages ± standard error of mean shown (n = 4). The letters above the 

columns in c) and d) are the result from Tukey’s post hoc comparisons test. 
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Figure 9.3: Effect of length of dark-adaptation (DA) on fast induction curves and Fv/Fm 

values. Fast induction curves for (a) Pocillopora damicornis, (b) Acropora nobilis, and 

(c) Cyphastrea serailia following 5 min of DA, then 10 s far-red light and 0.1 s darkness 

(�), 5 min DA, (�), 10 min DA (�), 20 min DA (
), 30 min DA (�), and 60 min DA (	). 

Average curves are shown (n = 4). The corresponding Fv/Fm value for each light 

treatment is shown for (d) P. damicornis, (e) A. nobilis, and (f) C. serailia. Averages ± 

standard error of mean shown (n = 4). Asterisks (*) indicate where the far-red light 

treatment had a significantly higher Fv/Fm than the darkness treatment. 

 

Figure 9.4: Fast induction curves for (a) Pocillopora damicornis, (b) Acropora nobilis, 

and (c) Cyphastrea serailia during control conditions, and for (d) P. damicornis, (e) A. 

nobilis, and (f) C. serailia following 5 h under bleaching conditions. Corals were given 

10 min dark-adaptation (DA) (�), 10 min DA, 10 s far-red light and 0.1 s darkness (�), 

10 min DA, 10 s far-red light and 1 s darkness (�), 10 min DA, 10 s far-red light and 10 s 

darkness (
), and 10 min DA, 10 s far-red light and 200 s darkness (�). Average curves 

are shown (n = 4). 

 

Figure 10.1: Conceptual model of impacts to the light reactions of photosynthesis under 

(a) optimal and (b) bleaching conditions. Under optimal conditions electrons are donated 

by the OEC to the PSII electron acceptors of QA (on the D2 protein) and QB (on the D1 

protein), then transported to PSI (P700). Excess light energy absorbed by PSII is 

dissipated by NPQ. 60% is dissipated via qE, 20% via qT and 20% via qI pathways. 

Under these conditions, the OEC is thermally stable up to 35°C and the thylakoid 
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membrane is stable up to 37°C. Under bleaching conditions, a rise in the abundance of 

QB non-reducing centres (PSIIX) on the D1 protein occurs, resulting in reduced electron 

flow. A greater amount of absorbed light energy is dissipated by NPQ, with a rise in the 

contribution of qT to total NPQ. Under these conditions 40% is dissipated via qE, 40% 

via qT and 20% via qI pathways. Furthermore, OEC thermostability increases to 39°C 

and thylakoid membrane thermostability increases to 42°C under bleaching conditions. 

 

 

All photographs were taken by the author, unless otherwise stated in the Figure caption. 
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Table 3.1: Total μmol photons m-2 reaching the corals on each day of the experiment for 

the three coral species. 

 

Table 3.2: P values of the rmANOVA analyses which tested for changes in the O, J, I 

and P steps over the two-day experimental period for the three species during winter and 

summer. * indicates significant change (� = 0.05). 

 

Table 4.1: Zooxanthellae density (cm-2 x 106) and chl a and c2 concentration per cm-2 

(μg) in P. damicornis, A. nobilis and C. serailia. Measurements were taken from the end 

of the control treatment (control), the first measurement prior to exposure to bleaching 

conditions (pre-treatment) and the end of the exposure period (exposure). Averages ± 

S.E. of mean shown (n = 4). Asterisk (*) indicates significant differences between 

treatments (where, � = 0.05) and superscript letters indicate where these differences lie. 

 

Table 5.1: Zooxanthellae density (cm-2 x 106) and chlorophyll a and c2 concentrations 

(μg cm-2) in P. damicornis before (pre) and after (post) exposure to the control and 

bleaching treatments for the 12 h and 5 d experiments. Averages ± S.E. of mean shown (n 

= 4). Asterisk (*) indicates significant differences between treatments (where, � = 0.05) 

and superscript letters indicate where these differences lie. 
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Table 5.2: Effective quantum yield (
PSII) of expelled zooxanthellae from the 5 d 

experiment before and after DPC addition. Measurements were taken 1 h prior to the 

lights turning off each evening at the end of each of the 5 days. Averages ± S.E. of mean 

shown (n = 4). P values indicate whether any significant differences exist between the 


PSII values taken before and after DPC addition (right-hand column) or between the 

values measured on each day (bottom row). Asterisk (*) indicates significant differences 

between treatments (where, � = 0.05) and superscript letters indicate where differences 

lie between 
PSII values on each day. 

 

Table 6.1: Effect of heating rate and presence/absence of far-red light on initial Fv/Fm, Tc 

and Tp of F-T curves performed on cultured Symbiodinium sp. (CS-156). Averages ± 

standard error of mean shown (n = 6). P values and Tukey’s post hoc comparison tests 

are shown as superscript letters. 

 

Table 6.2: Light intensity (μmol photons m-2 s-1, provided by halogen lights, Portable 

Floodlight, FL200, Arlec Lighting) and temperature (°C) of the four experimental 

treatments (control (low light and low temperature), high light + low temperature, low 

light + elevated temperature and high light + elevated temperate) for the cultured and 

freshly isolated zooxanthellae samples. 

 

Table 6.3 (see page 151): The Fv/Fm, Tc, Tp, Finitial/Fmaximum, T50 and T0 parameters for 

each of the 10 coral species studied during summer and winter, as well as for cultured 

Symbiodinium sp. and A. carterae. Coral species are grouped by zooxanthellae genotype. 
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Superscript letters indicate variation between species and show the groups into which 

they fall within each season for each parameter (determined by Tukey’s post hoc test 

where � = 0.05. The P value is shown at the bottom of each list of species). Asterisk (*) 

indicates differences between summer and winter for each species and each parameter 

and is shown on the significantly higher value (� = 0.05). Averages ± standard error of 

mean shown (n = 8). 

 

Table 6.4: Coral species, sample number (n) and observed SSCP genotype frequency (f) 

of clade A, C (C1, C2 and C•) and D (fA, fC1, fC2, fC• and fD, respectively). Dominance is 

given where multiple types were harboured simultaneously. 
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ABBREVIATIONS 

 

A  Absorbance 

A0  Primary electron acceptor of PSI 

A1  Secondary electron acceptor of PSI 

ANOVA Analysis of variance 

chl  Chlorophyll 

CSIRO  Commonwealth Scientific and Industrial Research Organisation 

DA  Dark-adaptation 

DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea 

DPC  Diphenyl carbazide 

Dz  Degraded zooxanthellae 

e-  Electron 

FE  Steady fluorescence after DCMU addition 

FIC  Fast induction curve 

Finitial/Fmaximum Ratio of the initial Fo to the maximum Fo 

FIZ  Freshly isolated zooxanthellae 

Fm  Dark-adapted maximum fluorescence 

Fm’  Light-adapted maximum fluorescence 

Fo  Dark-adapted minimum fluorescence 

FT  Steady maximum fluorescence after DCMU addition 

Ft  Steady-state fluorescence 

F-T  Fluorescence-temperature 
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Fv  Variable fluorescence 

Fv/Fm  Maximum quantum yield of Photosystem II 

H+  Proton/hydrogen ion 

Hz  Healthy-looking zooxanthellae 

ITS1  Internal transcribed spacer 1 

LED  Light emitting diode 

LHC  Light harvesting complex 

NADP+ Nicotinamide adenine dinucleotide phosphate 

NADPH Reduced form of NADP+ 

NPQ Non-photochemical quenching 

OEC Oxygen evolving complex 

O-I1-I2-P Peak nomenclature along a fast polyphasic fluorescence rise kinetic 

transient from Fo to Fm (Neubauer and Schreiber 1987) 

O-J-I-P Step nomenclature along a fast polyphasic fluorescence rise kinetic 

transient from Fo to Fm 

P680  Photosystem II reaction centre 

P700  Photosystem I reaction centre 

PAM Pulse amplitude modulated 

PCR Polymerase chain reaction 

PEA  Plant efficiency analyser 

Phaeo  Phaeophytin 

PQ  Plastoquinone 

PSI  Photosystem I 
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PSII  Photosystem II 

PSIIA  Active PSII centres/QB reducing centres 

PSIIX  Inactive PSII centres/QB non-reducing centres 

PSII�  PSII centres with both inner and peripheral LHCs 

PSII�  PSII centres with only inner LHC 

QA  Oxidised primary electron acceptor of PSII 

QA
-  Reduced primary electron acceptor of PSII 

QB  Oxidised secondary electron acceptor of PSII 

QB
-  Reduced secondary electron acceptor of PSII 

qE  Energy dependent quenching 

qI  Photoinhibitory quenching 

qP  Photochemical quenching 

qT  State transition quenching 

RC  Reaction centre 

rmANOVA Repeat measures analysis of variance 

ROS  Reactive oxygen species 

SSCP  Single stranded conformational polymorphism 

T0  Temperature at which Fv/Fm reaches zero 

T50  Temperature at which Fv/Fm reaches 50% of its initial 

Tc  Critical temperature 

tFmax  Time to reach maximum fluorescence 

Tp  Temperature of peak fluorescence 

Tris  Tris (hydroxtmethyl)aminomethane 
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UV  Ultra violet 

V  Volts 

�pH  pH gradient 


PSII  Effective quantum yield of Photosystem II 
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ABSTRACT 

 

Global climate change is leading to the rise of ocean temperatures and is triggering mass 

coral bleaching events on reefs around the world. This involves the expulsion of the 

symbiotic dinoflagellate algae, known as zooxanthellae, from the coral host. Coral 

bleaching is believed to occur as a result of damage to the photosynthetic apparatus of 

these symbionts, although the specific site of initial impact is yet to be conclusively 

resolved. This thesis examined a number of sites within the light reactions of 

photosynthesis and evaluated the efficiency of photoprotective heat dissipating pathways. 

Upon expulsion, the capacity for long-term survivorship of expelled zooxanthellae in the 

water column was also assessed. 

 

A reduction in photosystem II (PSII) photochemical efficiency during exposure to 

elevated temperature and high light (bleaching conditions) was found to be highly 

dependent upon the increase in abundance of QB non-reducing PSII centres (inactive PSII 

centres), indicating damage to the site of the secondary electron acceptor, QB, resulting in 

a limited capacity for its reduction. Therefore, this reduced the rate of the reoxidation of 

the primary electron acceptor, QA
-. Fast induction curve (FIC) analysis of the rise from 

minimum fluorescence to maximum fluorescence revealed a lower amplitude in the J step 

along this curve, which was consistent with a reduction in the rate of QA
- reoxidation. 

This photoinhibition of PSII was found to occur once the effectiveness of excess energy 

dissipation through energy-dependent quenching and state-transition quenching was 

exceeded, suggesting that these mechanisms were incapable of preventing photodamage. 
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Antenna size heterogeneity showed little change under bleaching conditions with a 

significant increase in PSII� only apparent in one species of coral. 

 

The thermostability of the oxygen evolving complex (OEC) and thylakoid membrane 

were found to increase during exposure to bleaching conditions and exceeded bleaching 

thresholds of corals. This rapid rise in temperature-dependent thermostability also 

occurred over seasons, where variation in ocean temperatures was matched by gradual 

shifts in OEC and thylakoid membrane thermotolerance. Variation in thermostability 

between species was not found to be linked to zooxanthellae genotype, and instead was 

related to the bleaching susceptibility of the host. Despite this capacity for resilience to 

bleaching conditions, the PSII reaction centres did not exhibit such a mechanism for rapid 

acclimatisation. Corals can only be as tolerant to bleaching conditions as their most 

sensitive component allows. The formation of nonfunctional PSII centres is therefore 

suggested to be involved in the initial photochemical damage to zooxanthellae which 

leads to a bleaching response. 

 

Zooxanthellae were found to be expelled irrespective of OEC function and thylakoid 

membrane integrity, as these sites of the photosynthetic apparatus were still intact when 

cells were collected from the water column. Although zooxanthellae were 

photosynthetically competent and morphologically intact upon expulsion, their longevity 

in the water column was dependent on the time of expulsion following the onset of 

bleaching and the ambient water temperatures. The survivorship of these zooxanthellae 

was restricted to a maximum of 5 days in the water column which suggests that unless 
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expelled zooxanthellae inhabit other environs of coral reefs which may be more 

favourable for survival, their capacity for persistence in the environment is extremely 

limited. 

 

Chlorophyll a fluorescence measurements are a common tool for investigating 

photosynthetic impacts to in hospite zooxanthellae of corals. Pathways causing dark-

reduction of the plastoquinone pool are shown to be active in corals and affect 

measurements which require dark-adaptation. Pre-exposure to far-red light was found to 

be an effective procedure to oxidise the inter-system electron transport chain and ensure 

determination of the true maximum quantum yield of PSII and accurate FICs. 

 

It is concluded that the trigger for coral bleaching lies in the photosynthetic apparatus of 

zooxanthellae and evidence is presented in support of this impact site not being the OEC 

or thylakoid membrane. 
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