CORAL BLEACHING: PHOTOSYNTHETIC IMPACTS ON SYMBIOTIC DINOFLAGELLATES

ROSS HILL

JANUARY 2008

A THESIS SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN SCIENCE

DEPARTMENT OF ENVIRONMENTAL SCIENCES
INSTITUTE FOR WATER AND ENVIRONMENTAL RESOURCE MANAGEMENT
UNIVERSITY OF TECHNOLOGY, SYDNEY
CERTIFICATE OF AUTHORSHIP/ORIGINALLITY

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Ross Hill
ACKNOWLEDGEMENTS

First and foremost, I would like to thank my supervisor, Associate Professor Peter Ralph, for his tireless enthusiasm, fountain of ideas and ongoing support. This has been a challenging, rewarding and humbling experience and I thank Peter for his guidance and advice.

Many thanks are also extended to my co-supervisors, Anthony Larkum and Kenneth Brown, who have been available for discussions and pivotal in experimental design.

Throughout this project, several people have assisted in the collection and analysis of data. Specifically, I would like to thank Karin Ulstrup for genetic analysis of Symbiodinium samples, Cécile Frankart for methodological advice, Martin Trtilek and Ladislav Nedbal for assistance with instrument operation and data interpretation and Steven Moody for assistance with electron microscopy.

I would like to extend my appreciation to all laboratory and technical staff in the Department of Environmental Sciences at UTS, as well as those on Heron Island Research Station, for their assistance during this project. In addition, I am grateful to the Australian Institute of Marine Science (AIMS) for use of the GelScan2000 system.
Thanks to Neil Ralph and Brian French for the design and construction of so many components of my experimental equipment. The execution of many of my experiments would have been more difficult, if not impossible, without your works of art.

Thank you to all members of the Aquatic Photosynthesis Group (APG): Karin Ulstrup, Lucy Buxton, Isabel Jimenez, Alex Griffin, Rachael Smith, Kim Wilson, Nikolaus Császár, Cate Macinnis-Ng, Katharina Petrou, Cliff Seery and Martina Doblin. I have thoroughly enjoyed working with you over the last few years and will miss our trips to Heron Island together.

During my candidature I have been involved in a number of collaborative research projects. I would like to thank Selina Ward, Zoë Haws, Simon Davy, Ken Ryan and Kylie Pitt for inviting me to work with them.

Throughout this project, I have obtained grants from a number of sources. Without these financial contributions, many of these experiments would have not been possible. I would like to thank the Faculty of Science and Department of Environmental Sciences at UTS, the PADI Foundation and the Great Barrier Reef Marine Park Authority for their Science for Management award. In addition, I would like to acknowledge the Australian Coral Reef Society for providing funding for travel to international and domestic conferences.
And last, but certainly not least, I would like to thank my family for the support they have given me during my years at university. Thank you for the opportunity and inspiration you have provided in the completion of this thesis.
PUBLICATIONS

PEER REVIEWED JOURNAL ARTICLES ARISING DIRECTLY FROM THIS THESIS:

Chapter 3:

See Appendix 1

Chapter 4:

See Appendix 2

Chapter 5:

Chapter 6:

Chapter 7:

See Appendix 3

Chapter 8:

See Appendix 4

Chapter 9:

PEER REVIEWED JOURNAL ARTICLES RELEVANT TO THE THESIS, BUT NOT CONTRIBUTING TO IT:

Table of Contents

Certificate of Authorship/Originality

Acknowledgements

Publications

Peer reviewed journal articles arising directly from this thesis

Peer reviewed journal articles relevant to the thesis, but not contributing to it

Table of Contents

List of Figures

List of Tables

Abbreviations

Abstract

Chapter

1. General Introduction

1.1 Threats to coral reefs

1.2 The coral-algae symbiosis

1.3 Thermal-induced coral bleaching

1.4 Identifying the physiological trigger of coral bleaching

1.4.1 Coral bleaching and photoinhibition

1.4.2 The oxygen evolving complex

1.4.3 Photosystem II reaction centre

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Certificate of Authorship/Originality</td>
<td>ii</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>iii</td>
</tr>
<tr>
<td>Publications</td>
<td>vi</td>
</tr>
<tr>
<td>Peer reviewed journal articles arising directly from this thesis</td>
<td>vi</td>
</tr>
<tr>
<td>Peer reviewed journal articles relevant to the thesis, but not contributing to it</td>
<td>viii</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>ix</td>
</tr>
<tr>
<td>List of Figures</td>
<td>xvii</td>
</tr>
<tr>
<td>List of Tables</td>
<td>xxxi</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>xxxiv</td>
</tr>
<tr>
<td>Abstract</td>
<td>xxxviii</td>
</tr>
<tr>
<td>1. General Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Threats to coral reefs</td>
<td>2</td>
</tr>
<tr>
<td>1.2 The coral-algae symbiosis</td>
<td>3</td>
</tr>
<tr>
<td>1.3 Thermal-induced coral bleaching</td>
<td>5</td>
</tr>
<tr>
<td>1.4 Identifying the physiological trigger of coral bleaching</td>
<td>7</td>
</tr>
<tr>
<td>1.4.1 Coral bleaching and photoinhibition</td>
<td>9</td>
</tr>
<tr>
<td>1.4.2 The oxygen evolving complex</td>
<td>10</td>
</tr>
<tr>
<td>1.4.3 Photosystem II reaction centre</td>
<td>10</td>
</tr>
</tbody>
</table>
1.4.4 Dark reactions of photosynthesis 12
1.4.5 Thylakoid membrane integrity 12
1.5 Photosynthetic condition of expelled zooxanthellae 13
1.6 Inter-species variation in bleaching susceptibility 14
1.7 Investigating the health of photosynthetic organisms 17
 1.7.1 The Z-scheme of photosynthesis 17
 1.7.2 Chlorophyll a fluorescence – a measure of photosynthesis 19
 1.7.3 Analysis of the chlorophyll a fluorescence signal 21
 1.7.3.1 Pulse Amplitude Modulated (PAM) fluorometry 21
 1.7.3.2 Plant Efficiency Analyser (PEA) fluorometer 24
 1.7.3.3 Double-modulation fluorometer 27
 1.8 Research objectives and thesis outline 27

2. General Methods 31
 2.1 Study sites 32
 2.2 Coral specimens 33
 2.2.1 Description of Acropora millepora (Ehrenberg) 33
 2.2.2 Description of Acropora nobilis (Dana) 34
 2.2.3 Description of Acropora valida (Dana) 35
 2.2.4 Description of Cyphastrea serailia (Forskål) 35
 2.2.5 Description of Goniastrea australensis (Milne Edwards and Haime) 36
 2.2.6 Description of Montipora digitata (Dana) 37
2.2.7 Description of *Pavona decussata* (Dana) 38
2.2.8 Description of *Pocillopora damicornis* (Linnaeus) 39
2.2.9 Description of *Porites cylindrica* (Dana) 40
2.2.10 Description of *Stylophora pistillata* (Esper) 40
2.3 Chlorophyll fluorometers 41
2.3.1 Pulse Amplitude Modulated (PAM) fluorometers 41
2.3.2 Plant Efficiency Analyser (PEA) fluorometer 42
2.3.3 Double-modulation fluorometer 42
2.4 Standard methods 43
2.4.1 Cell density calculations 43
2.4.2 Chlorophyll \(a\) and \(c_2\) concentrations 44

3. Diel and Seasonal Changes in Fluorescence Rise Kinetics of Three Scleractinian Corals 45

3.1 Introduction 46
3.2 Materials and methods 50
3.2.1 Coral specimens 50
3.2.2 Fluorescence measurements 51
3.2.3 Experimental protocol 52
3.2.4 Statistical analysis 54
3.3 Results 55
3.4 Discussion 64
3.5 Summary 72
4. Photosystem II Heterogeneity of *in hospite* Zooxanthellae in Scleractinian Corals Exposed to Bleaching Conditions

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Introduction</td>
<td>74</td>
</tr>
<tr>
<td>4.2 Materials and methods</td>
<td>79</td>
</tr>
<tr>
<td>4.2.1 Coral specimens</td>
<td>79</td>
</tr>
<tr>
<td>4.2.2 Fluorescence measurements</td>
<td>79</td>
</tr>
<tr>
<td>4.2.3 Experimental protocol</td>
<td>82</td>
</tr>
<tr>
<td>4.2.4 Zooxanthellae density and chlorophyll concentration determinations</td>
<td>83</td>
</tr>
<tr>
<td>4.2.5 Statistical analysis</td>
<td>84</td>
</tr>
<tr>
<td>4.3 Results</td>
<td>84</td>
</tr>
<tr>
<td>4.4 Discussion</td>
<td>95</td>
</tr>
<tr>
<td>4.5 Summary</td>
<td>102</td>
</tr>
</tbody>
</table>

5. Impact of Bleaching Stress on the Function of the Oxygen Evolving Complex of Zooxanthellae from Scleractinian Corals

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Introduction</td>
<td>105</td>
</tr>
<tr>
<td>5.2 Materials and methods</td>
<td>110</td>
</tr>
<tr>
<td>5.2.1 Zooxanthellae cultures and coral specimens</td>
<td>110</td>
</tr>
<tr>
<td>5.2.2 Inhibition of OEC and artificial electron donation to PSII</td>
<td>110</td>
</tr>
<tr>
<td>5.2.3 Appearance of the K step along FICs</td>
<td>114</td>
</tr>
<tr>
<td>5.2.4 Statistical analysis</td>
<td>115</td>
</tr>
</tbody>
</table>
5.3 Results 116
5.4 Discussion 128
5.5 Summary 133

6. Temperature Induced Changes in Thylakoid Membrane
Thermostability of Cultured, Freshly Isolated and Expelled
Zooxanthellae from Scleractinian Corals 135
6.1 Introduction 136
6.2 Materials and methods 140
 6.2.1 Coral specimens 140
 6.2.2 Fluorescence measurements 141
 6.2.3 Experimental protocol 144
 6.2.4 Genetic identification of zooxanthellae 146
 6.2.5 Scanning transmission electron microscopy 147
 6.2.6 Statistical analysis 148
6.3 Results 149
6.4 Discussion 160
6.5 Summary 167

7. Post-Bleaching Viability of Expelled Zooxanthellae from the
Scleractinian Coral *Pocillopora damicornis* 169
7.1 Introduction 170
7.2 Materials and methods 174
8. Impact of Bleaching Conditions on the Components of Non-Photochemical Quenching in the Zooxanthellae of a Coral

8.1 Introduction

8.2 Materials and methods

8.2.1 Experimental procedure

8.2.2 Statistical analysis

8.3 Results

8.4 Discussion

8.5 Summary

9. Dark-Induced Reduction of the Plastoquinone Pool in Zooxanthellae of Scleractinian Corals and Implications for Measurements of Chlorophyll a Fluorescence

9.1 Introduction
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.2</td>
<td>Materials and methods</td>
<td>216</td>
</tr>
<tr>
<td>9.2.1</td>
<td>Coral specimens</td>
<td>216</td>
</tr>
<tr>
<td>9.2.2</td>
<td>Fluorescence measurements</td>
<td>216</td>
</tr>
<tr>
<td>9.2.3</td>
<td>Experimental protocol</td>
<td>218</td>
</tr>
<tr>
<td>9.2.3.1</td>
<td>Experiment 1</td>
<td>218</td>
</tr>
<tr>
<td>9.2.3.2</td>
<td>Experiment 2</td>
<td>219</td>
</tr>
<tr>
<td>9.2.3.3</td>
<td>Experiment 3</td>
<td>220</td>
</tr>
<tr>
<td>9.2.4</td>
<td>Statistical analysis</td>
<td>220</td>
</tr>
<tr>
<td>9.3</td>
<td>Results</td>
<td>221</td>
</tr>
<tr>
<td>9.3.1</td>
<td>Experiment 1</td>
<td>221</td>
</tr>
<tr>
<td>9.3.2</td>
<td>Experiment 2</td>
<td>224</td>
</tr>
<tr>
<td>9.3.3</td>
<td>Experiment 3</td>
<td>226</td>
</tr>
<tr>
<td>9.4</td>
<td>Discussion</td>
<td>229</td>
</tr>
<tr>
<td>9.5</td>
<td>Summary</td>
<td>237</td>
</tr>
<tr>
<td>10.</td>
<td>General Discussion</td>
<td>238</td>
</tr>
<tr>
<td>10.1</td>
<td>The primary site of photochemical impact</td>
<td>239</td>
</tr>
<tr>
<td>10.1.1</td>
<td>Sensitivity of photosystem II reaction centres</td>
<td>240</td>
</tr>
<tr>
<td>10.1.2</td>
<td>Photosystem II heterogeneity</td>
<td>242</td>
</tr>
<tr>
<td>10.1.3</td>
<td>Efficiency of photoprotection pathways</td>
<td>243</td>
</tr>
<tr>
<td>10.1.4</td>
<td>Thermostability of the OEC and thylakoid membrane</td>
<td>245</td>
</tr>
<tr>
<td>10.2</td>
<td>Survivorship of expelled zooxanthellae</td>
<td>250</td>
</tr>
<tr>
<td>10.2.1</td>
<td>Capacity for long-term survival by expelled zooxanthellae</td>
<td>251</td>
</tr>
</tbody>
</table>
10.2.2 Role of expelled zooxanthellae in coral recovery 252

10.3 Complexities of performing chlorophyll a fluorescence measurements on *in hospite* zooxanthellae 253

10.4 Summary of the key findings 255

10.5 Significance of the findings 258

10.6 Future directions and research 260

References 262

Appendix 306

Appendix 1 307

Appendix 2 319

Appendix 3 329

Appendix 4 338
List of Figures

Figure 1.1: Location and role of sites along the photosynthetic chain of events suggested as the primary site of photochemical impact during bleaching events. These include the oxygen evolving complex (OEC), photosystem II (PSII) reaction centres, the Calvin cycle and the thylakoid membrane. Electron excitation by light, water splitting, electron transport and proton transport is indicated by arrows. The lumen and stroma side of the thylakoid membrane within the chloroplast is labelled.

Figure 1.2: Simplified photokinetics of the movement of electrons through the Z-scheme. Water molecules are split by the oxygen evolving complex (OEC) into electrons (e-), protons (H+) and oxygen molecules (O\textsubscript{2}). Electrons are excited in the photosystem II (PSII) reaction centre, P680, where they are shifted to a higher energy state once the reaction centre (RC) is illuminated and becomes excited (P680*). The electrons are transferred to phaeophytin (phaeo), and then to the primary electron acceptor QA, followed by Q\textsubscript{B}. Plastoquinone (PQ) becomes reduced and electrons are passed to the photosystem I RC (P700). The illuminated RC becomes excited (P700*) and the electron again reaches a higher energy state. A\textsubscript{0} and A\textsubscript{1} accept the electron and with the enzyme FNR, NADP+ is reduced to NADPH. The oxidation-reduction potential is indicated on the y-axis.

Figure 1.3: The potential fates of all light energy captured by the photosynthetic apparatus.
Figure 1.4: Kinetics of light and dark-adapted fluorescence measurements (from Schreiber and Bilger 1993).

Figure 1.5: Fast induction curve transient, plotted on a log10 time scale. The O, J, I and P steps are indicated, as well as t_{F,max} (time to reach maximum fluorescence) (Strasser et al. 2000).

Figure 2.1: Uniform branches of an *Acropora millepora* colony. The distinctive tubular shape of the axial corallites can be seen. Scale: bar = 3 cm.

Figure 2.2: a) Colony of *Acropora nobilis* illustrating the brown branches with paler coloured tips (Photograph: Doug Fenner). Scale: bar = 5cm. b) Tip of *Acropora nobilis* branch showing the variation in the size of corallites (Photograph: Valerie Taylor). Scale: bar = 5 mm.

Figure 2.3: Colony of *Acropora valida* with the purple branch tips and strongly appressed radial cream-coloured corallites visible. Scale: bar = 3 cm.

Figure 2.4: a) Colony of *Cyphastrea serailia*. Scale: bar = 3 cm. b) Corallites with 12 primary septa can be distinguished (Photograph: Ed Lovell). Scale: bar = 3 mm.
Figure 2.5: Colony of *Goniastrea australensis* (Photograph: John Veron). Scale: bar = 3 cm.

Figure 2.6: Colony of *Montipora digitata*. Scale: bar = 10 cm.

Figure 2.7: a) Side view of the vertical plate-like structure of a *Pavona decussata* colony (Photograph: John Veron). Scale: bar = 3 cm. b) Close up of the coral surface with individual polyps visible. Scale: bar = 1 cm.

Figure 2.8: a) Colony of *Pocillopora damicornis*. Scale: bar = 8 cm. b) Close up of a single branch with individual polyps visible. Scale: bar = 1 cm.

Figure 2.9: Colony of *Porites cylindrica*. Scale: bar = 3 cm.

Figure 2.10: Branches of *Stylophora pistillata*. Scale: bar = 2 cm.

Figure 3.1: Fast induction curves from *Cyphastrea serailia* after 0, 1, 2, 5, 10, 20 and 40 mins dark-adaptation. Corals were exposed to > 1000 μmol photons m$^{-2}$ s$^{-1}$ for 2 h prior to dark-adaptation. Average curves are plotted on a log$_{10}$ time scale ($n = 4$). Insert: Changes in F$_{v}$/F$_{m}$ after each time interval. Data points indicate averages ± standard error of mean ($n = 4$).
Figure 3.3: Representative fast induction kinetic transients from the first day of each two-day study in each season. The time periods of 0700, 0900, 1200, 1500 and 0000 are shown to indicate the general diel trend seen in each of three coral species, *Pocillopora damicornis* (a, b), *Acropora nobilis* (c, d) and *Cyphastrea serailia* (e, f), in both winter and summer. Average curves are plotted on a log_{10} time scale ($n = 4$).

Figure 3.4: Amplitude of the O, J, I and P steps along the fast induction curves at each sampling period. Measurements of *Pocillopora damicornis* (a, b), *Acropora nobilis* (c, d) and *Cyphastrea serailia* (e, f), in both winter and summer are shown. Averages ± standard error of mean are shown ($n = 4$). The black and white bars indicate night and day, respectively.

Figure 4.1: Maximum quantum yield (F_v/F_m) of control (closed circles) and treatment (open squares) in *P. damicornis* (a), *A. nobilis* (b) and *C. serailia* (c). The pre-exposure measurement is indicated by the white bar, the bleaching treatment as the black bar (from 0-12 h) and the recovery treatment as the grey bar (12-36 h). Averages ± standard error of mean shown ($n = 4$).

Figure 4.2: Fast induction curves of the pre-treatment and bleaching treatment (0, 4, 8, 12 h) in *P. damicornis* (a), *A. nobilis* (b) and *C. serailia* (c) and the recovery treatment (24, 36 h; indicated by R) in *P. damicornis* (d), *A. nobilis* (e) and *C. serailia* (f). Curves are plotted on a log_{10} time scale. The O, J, I and P steps are indicated. Average curves are shown ($n = 4$).
Figure 4.3: Q_A reoxidation curves following a single turnover flash in *P. damicornis* (a), *A. nobilis* (b) and *C. serailia* (c). The pre-treatment, 2, 6 and 12 h bleaching treatment and 24 and 36 h recovery treatment (indicated by R) are shown. A break in the y-axis data is used to demonstrate the maximum fluorescence and the biphasic Q_A reoxidation kinetics. The dashed line at 0.1 s represents the division between PSII$_A$ (< 0.1 s) and PSII$_X$ (> 0.1 s). Curves are plotted on a log$_{10}$ time scale. Average curves are shown ($n = 4$).

Figure 4.4: The proportion of PSII$_X$ centres in the control (closed circles) and treatment (open squares) in *P. damicornis* (a), *A. nobilis* (b) and *C. serailia* (c). The pre-exposure measurement is indicated by the white bar, the bleaching treatment as the black bar (from 0-12 h) and the recovery treatment as the grey bar (12-36 h). Averages ± standard error of mean shown ($n = 4$).

Figure 4.5: The proportion of PSII$_a$ (closed circles) and PSII$_b$ (open squares) centres in the controls of *P. damicornis* (a), *A. nobilis* (b) and *C. serailia* (c), and in the exposure treatment of *P. damicornis* (d), *A. nobilis* (e) and *C. serailia* (f). The pre-exposure measurement is indicated by the white bar, the bleaching treatment as the black bar (from 0-12 h) and the recovery treatment as the grey bar (12-36 h). Averages ± standard error of mean shown ($n = 4$).
Figure 5.1: Representative fluorescence traces (of \(n = 4 \)) for culture CS-156 upon (a) addition of tris and DPC and (b) upon addition of filtered seawater (FSW). Following 5 mins of dark-adaptation, a saturating pulse was applied and the maximum quantum yield was determined. Actinic light was turned on (40 μmol photons m\(^{-2}\) s\(^{-1}\)) and effective quantum yield measurements taken every 60 s. The left y-axis indicates the fluorescence intensity of the trace (relative units) and the right y-axis indicates the quantum yield values (●) over time.

Figure 5.2: Representative trace of oxygen production (% saturation) of cultured zooxanthellae. Arrows show time of tris and DPC addition. Black bars indicate darkness and white bar indicates light.

Figure 5.3: FIC traces of the culture CS-156 under control conditions, following exposure to tris and exposure to tris and DPC. (a) FICs normalised to O (\(F_r/F_o \)) and (b) relative variable fluorescence of the FICs (\(F_v/F_o \)) of (\(F_m/F_o \)). The O, K, J, I and P steps are labels on (a). The control curve (●) was taken following 5 mins DA. Tris was then added to the solution (0.6 M) and 20 mins later a second FIC was measured (▲). DPC was then added (0.5 mM) and 20 mins later the third FIC was measured (□). Average curves are shown (\(n = 4 \)).

Figure 5.4: Effective quantum yield values before (black columns) and after (white columns) DPC addition on cultured zooxanthellae (CS-156) and freshly isolated zooxanthellae (from \(P. damicornis \)). (a) shows the control (25°C and 40 μmol photons m\(^{-2}\) s\(^{-1}\))
and (b) shows the bleaching (32°C and 425 μmol photons m⁻² s⁻¹) treatment for the cultured zooxanthellae. (c) shows the control (25°C and 100 μmol photons m⁻² s⁻¹) and (d) shows the bleaching (32°C and 425 μmol photons m⁻² s⁻¹) treatment for the freshly isolated zooxanthellae. During this 12 h experiment, measurements were taken prior to exposure to experimental treatments (pre) and then at 0, 1 (only for cultured zooxanthellae), 2, 4, 6, 8, 10 and 12 h. The letters above the columns in (b) and (d) indicate the result from Tukey’s post hoc comparisons test. Averages ± standard error of mean shown (n = 4).

Figure 5.5: Effective quantum yield values before (black columns) and after (white columns) DPC addition on freshly isolated zooxanthellae from *P. damicornis* under (a) control (25°C and 100 μmol photons m⁻² s⁻¹) and (b) bleaching (32°C and 425 μmol photons m⁻² s⁻¹) conditions over a 5 d period. The 12:12 h light cycle is indicated by the white (light) and black (dark) bars. The letters above the columns in (b) indicate the result from Tukey’s post hoc comparisons test. Averages ± standard error of mean shown (n = 4).

Figure 5.6: Relative variable fluorescence of FICs \((F_t-F_o)/(F_m-F_o)\) showing the evolution of the K step for *P. damicornis* (a), *A. nobilis* (b) and *C. serailia* (c) during winter and of *P. damicornis* (d), *A. nobilis* (e) and *C. serailia* (f) during summer. Curves for the i) control (○; 21°C in winter and 28°C in summer), ii) the highest temperature where the K step was not present (▲), iii) the temperature where the K step was first observed (Θ)
and, iv) one degree above this temperature (■) are shown in each graph. Average curves are shown (n = 4).

Figure 5.7: Representative traces of oxygen production (% saturation) in nubbins of *P. damicornis* after 8 h exposure to (a) control and (b) bleaching conditions. Following 30 mins of exposure to light (white bar), the sample was placed in darkness (black bar). At this time, in the controls, the temperature either remained at 25°C (solid line), was immediately increased to 34°C (long dashed line), or was increased to 35°C (short dashed line). In the bleaching treatment, when the sample was placed in darkness, the temperature either remained at 32°C (solid line), was immediately increased to 38°C (long dashed line), or was increased to 39°C (short dashed line). Following 5 mins of darkness, the samples were re-illuminated (white bar) for a further 30 mins.

Figure 6.1: Representative F-T curve, where the temperature was increased at a speed of 1°C min⁻¹. The location of F₀, Fₘ, Fᵥ/Fₘ, Tₐ, Tₚ, F_initial and F_maximum, are shown. The temperature (°C) is indicated above the x-axis and time (min) indicated below. This example is of *A. millepora* during summer.

Figure 6.2: Representative scanning transmission electron micrographs of *Symbiodinium* sp. cells from CS-156 at 25°C (A), 30°C (B), 35°C (C), 36°C (D), 37°C (E), 38°C (F), 39°C (G), 40°C (H) and 45°C (I) during a temperature ramp of 1°C min⁻¹.
Figure 6.3: F_v/F_m (open squares), T_c (closed circles) and T_p (closed triangles) of cultured zooxanthellae exposed to control conditions (A) of low light (40 μmol photons m$^{-2}$ s$^{-1}$) and low temperature (25°C), high light and low temperature (B; 400 μmol photons m$^{-2}$ s$^{-1}$ and 25°C), low light and elevated temperature (C; 40 μmol photons m$^{-2}$ s$^{-1}$ and 32°C), and high light and elevated temperature (D; 400 μmol photons m$^{-2}$ s$^{-1}$ and 32°C) from 0-9 h. The temperature (°C) is indicated on the left y-axis and F_v/F_m on the right y-axis. Averages ± standard error of mean shown ($n = 4$).

Figure 6.4: F_v/F_m (open squares), T_c (closed circles) and T_p (closed triangles) of freshly isolated zooxanthellae from *P. damicornis* exposed to control conditions (A) of low light (100 μmol photons m$^{-2}$ s$^{-1}$) and low temperature (22°C), high light and low temperature (B; 400 μmol photons m$^{-2}$ s$^{-1}$ and 22°C), low light and elevated temperature (C; 100 μmol photons m$^{-2}$ s$^{-1}$ and 32°C), and high light and elevated temperature (D; 400 μmol photons m$^{-2}$ s$^{-1}$ and 32°C) at time intervals of 0, 1, 2, 4 and 8 h. The temperature (°C) is indicated on the left y-axis and F_v/F_m on the right y-axis. Averages ± standard error of mean shown ($n = 4$).

Figure 6.5: F_v/F_m (open squares), T_c (closed circles) and T_p (closed triangles) of expelled zooxanthellae from *P. damicornis* exposed to the bleaching conditions of 400 μmol photons m$^{-2}$ s$^{-1}$ and 32°C. Measurements were taken at the time intervals of 0-1 h, 1-2 h, 2-4 h and 4-8 h. The temperature (°C) is indicated on the left y-axis and F_v/F_m on the right y-axis. Averages ± standard error of mean shown ($n = 4$).
Figure 7.1: Maximum or effective quantum yield of *in hospite* (bars) and expelled (circles) zooxanthellae of *Pocillopora damicornis* during experimental treatment. Effective quantum yield measurements were taken prior to temperature ramping, once the temperature reached 32°C (0 h) and at 6, 12 and 36 h. Maximum quantum yield measurements were taken at 24 h following overnight darkness. The top bar indicates the temperature regime (white = 28°C, grey = ramp, black = 32°C) and the second bar indicates the light regime (white = light, black = dark) over the experiment. Light intensity = 400 μmol photons m⁻² s⁻¹. Averages ± S.E. of mean shown (n = 4). Letters indicate statistically distinct groups of *in hospite* zooxanthellae measurements from Tukey’s post hoc comparison tests.

Figure 7.2: Maximum or effective quantum yield of expelled zooxanthellae in each of the four populations: 0-6 h (a), 6-12 h (b), 12-24 h (c) and 24-36 h (d). The effective quantum yield was measured at 6, 12, 36, 60 and 84 h, while maximum quantum yield was measured at 24, 48, 72 and 96 h. Therefore the first data points in (a), (b) and (d) are effective quantum yield, while the first data point in (c) is maximum quantum yield. Measurements on zooxanthellae from the 28°C (●), 30°C (⊙) and 32°C (▲) treatments are shown from the time of expulsion up until 96 h. The bar indicates the light regime over the experiment (white = light, black = dark). Light intensity = 400 μmol photons m⁻² s⁻¹ during initial expulsion and 100 μmol photons m⁻² s⁻¹ at other time periods. Averages ± S.E. of mean shown (n = 4).
Figure 7.3: Percentage of healthy-looking zooxanthellae in the four expelled zooxanthellae populations: 0-6 h (a), 6-12 h (b), 12-24 h (c) and 24-36 h (d). The percentage of healthy-looking zooxanthellae from the 28°C (○), 30°C (□) and 32°C (▲) treatments are shown from the time of expulsion up until 96 h. The bar indicates the light regime over the experiment (white = light, black = dark). Light intensity = 100 μmol photons m⁻² s⁻¹. Averages ± S.E. of mean shown (n = 4).

Figure 8.1: Chlorophyll fluorescence induction kinetics measured in a control sample. The NPQ components are indicated. SP = saturating pulse; AL = actinic light.

Figure 8.2: Maximum quantum yield for the controls (○; 225 μmol photons m⁻² s⁻¹ and 25°C), the high-light (▼; 475 μmol photons m⁻² s⁻¹ and 25°C), the elevated temperature (■; 225 μmol photons m⁻² s⁻¹ and 32°C) and high-light plus elevated temperature (▲; 475 μmol photons m⁻² s⁻¹ and 32°C) treatments. The 0 h control and 1-8 h time periods are plotted. Averages ± standard error of mean are shown (n = 4).

Figure 8.3: Total non-photochemical quenching (NPQ) for controls (○; 225 μmol photons m⁻² s⁻¹ and 25°C), the high-light (▼; 475 μmol photons m⁻² s⁻¹ and 25°C), elevated temperature (■; 225 μmol photons m⁻² s⁻¹ and 32°C) and high-light plus elevated temperature (▲; 475 μmol photons m⁻² s⁻¹ and 32°C) treatments. The 0 h control and 1-8 h time periods are plotted. Averages ± standard error of mean are shown (n = 4).
Figure 8.4: The contribution of the three components of non-photochemical quenching (qE = black columns; qT = light grey columns; qI = dark grey columns) to the total non-photochemical quenching for the controls (a; 225 μmol photons m\(^{-2}\) s\(^{-1}\) and 25°C), high-light treatment (b; 475 μmol photons m\(^{-2}\) s\(^{-1}\) and 25°C), the elevated temperature treatment (c; 225 μmol photons m\(^{-2}\) s\(^{-1}\) and 32°C) and the high-light plus elevated temperature treatment (d; 475 μmol photons m\(^{-2}\) s\(^{-1}\) and 32°C). The 0 h control and 1-8 h time periods are plotted. Averages ± standard error of mean are shown (n = 4).

Figure 9.1: The relative intensity of light between the wavelengths of 180-880 nm for light sources used throughout the experiments. a) wavelengths from the PSI double modulation fluorometer’s blue, red and far-red LEDs. b) the wavelengths of light from the sun at 06:00 (solid line) and 12:00 (dashed line) hrs. c) the difference between the 12:00 and 06:00 hrs solar spectra. d) the spectra of the halogen lights used in Experiment 3.

Figure 9.2: Fast induction curves at (a) 04:00 hrs, and (b) 06:00 following darkness (●), 10 s exposure to far-red light then 0.1 s of darkness (△), and 10 s exposure to blue and red light then 0.1 s darkness (■) for Cyphastrea serailia. Average curves are shown (n = 4). The corresponding F\(_{v}/F_{m}\) value for each light treatment is shown for (c) 04:00 hrs, and (d) 06:00 hrs. Averages ± standard error of mean shown (n = 4). The letters above the columns in c) and d) are the result from Tukey’s post hoc comparisons test.
Figure 9.3: Effect of length of dark-adaptation (DA) on fast induction curves and F_v/F_m values. Fast induction curves for (a) *Pocillopora damicornis*, (b) *Acropora nobilis*, and (c) *Cyphastrea serailia* following 5 min of DA, then 10 s far-red light and 0.1 s darkness (●), 5 min DA (☐), 10 min DA (○), 20 min DA (▼), 30 min DA (Δ), and 60 min DA (■). Average curves are shown ($n = 4$). The corresponding F_v/F_m value for each light treatment is shown for (d) *P. damicornis*, (e) *A. nobilis*, and (f) *C. serailia*. Averages ± standard error of mean shown ($n = 4$). Asterisks (*) indicate where the far-red light treatment had a significantly higher F_v/F_m than the darkness treatment.

Figure 9.4: Fast induction curves for (a) *Pocillopora damicornis*, (b) *Acropora nobilis*, and (c) *Cyphastrea serailia* during control conditions, and for (d) *P. damicornis*, (e) *A. nobilis*, and (f) *C. serailia* following 5 h under bleaching conditions. Corals were given 10 min dark-adaptation (DA) (●), 10 min DA, 10 s far-red light and 0.1 s darkness (☐), 10 min DA, 10 s far-red light and 1 s darkness (○), 10 min DA, 10 s far-red light and 10 s darkness (▼), and 10 min DA, 10 s far-red light and 200 s darkness (Δ). Average curves are shown ($n = 4$).

Figure 10.1: Conceptual model of impacts to the light reactions of photosynthesis under (a) optimal and (b) bleaching conditions. Under optimal conditions electrons are donated by the OEC to the PSII electron acceptors of Q_A (on the D2 protein) and Q_B (on the D1 protein), then transported to PSI (P700). Excess light energy absorbed by PSII is dissipated by NPQ. 60% is dissipated via qE, 20% via qT and 20% via qI pathways. Under these conditions, the OEC is thermally stable up to 35°C and the thylakoid
membrane is stable up to 37°C. Under bleaching conditions, a rise in the abundance of
QB non-reducing centres (PSII_X) on the D1 protein occurs, resulting in reduced electron
flow. A greater amount of absorbed light energy is dissipated by NPQ, with a rise in the
contribution of qT to total NPQ. Under these conditions 40% is dissipated via qE, 40%
via qT and 20% via qI pathways. Furthermore, OEC thermostability increases to 39°C
and thylakoid membrane thermostability increases to 42°C under bleaching conditions.

All photographs were taken by the author, unless otherwise stated in the Figure caption.
List of Tables

Table 3.1: Total μmol photons m$^{-2}$ reaching the corals on each day of the experiment for the three coral species.

Table 3.2: P values of the rmANOVA analyses which tested for changes in the O, J, I and P steps over the two-day experimental period for the three species during winter and summer. * indicates significant change ($\alpha = 0.05$).

Table 4.1: Zooxanthellae density (cm$^{-2} \times 10^6$) and chl a and c_2 concentration per cm$^{-2}$ (μg) in *P. damicornis*, *A. nobilis* and *C. serailia*. Measurements were taken from the end of the control treatment (control), the first measurement prior to exposure to bleaching conditions (pre-treatment) and the end of the exposure period (exposure). Averages ± S.E. of mean shown ($n = 4$). Asterisk (*) indicates significant differences between treatments (where, $\alpha = 0.05$) and superscript letters indicate where these differences lie.

Table 5.1: Zooxanthellae density (cm$^{-2} \times 10^6$) and chlorophyll a and c_2 concentrations (μg cm$^{-2}$) in *P. damicornis* before (pre) and after (post) exposure to the control and bleaching treatments for the 12 h and 5 d experiments. Averages ± S.E. of mean shown ($n = 4$). Asterisk (*) indicates significant differences between treatments (where, $\alpha = 0.05$) and superscript letters indicate where these differences lie.
Table 5.2: Effective quantum yield (Φ_{PSII}) of expelled zooxanthellae from the 5 d experiment before and after DPC addition. Measurements were taken 1 h prior to the lights turning off each evening at the end of each of the 5 days. Averages ± S.E. of mean shown ($n = 4$). P values indicate whether any significant differences exist between the Φ_{PSII} values taken before and after DPC addition (right-hand column) or between the values measured on each day (bottom row). Asterisk (*) indicates significant differences between treatments (where, $\alpha = 0.05$) and superscript letters indicate where differences lie between Φ_{PSII} values on each day.

Table 6.1: Effect of heating rate and presence/absence of far-red light on initial $F_{\text{r}}/F_{\text{m}}$, T_c and T_p of F-T curves performed on cultured *Symbiodinium* sp. (CS-156). Averages ± standard error of mean shown ($n = 6$). P values and Tukey’s post hoc comparison tests are shown as superscript letters.

Table 6.2: Light intensity (μmol photons m$^{-2}$ s$^{-1}$, provided by halogen lights, Portable Floodlight, FL200, Arlec Lighting) and temperature (°C) of the four experimental treatments (control (low light and low temperature), high light + low temperature, low light + elevated temperature and high light + elevated temperate) for the cultured and freshly isolated zooxanthellae samples.

Table 6.3 (see page 151): The $F_{\text{r}}/F_{\text{m}}$, T_c, T_p, $F_{\text{initial}}/F_{\text{maximum}}$, T_{50} and T_0 parameters for each of the 10 coral species studied during summer and winter, as well as for cultured *Symbiodinium* sp. and *A. carterae*. Coral species are grouped by zooxanthellae genotype.
Superscript letters indicate variation between species and show the groups into which they fall within each season for each parameter (determined by Tukey’s post hoc test where $\alpha = 0.05$. The P value is shown at the bottom of each list of species). Asterisk (*) indicates differences between summer and winter for each species and each parameter and is shown on the significantly higher value ($\alpha = 0.05$). Averages ± standard error of mean shown ($n = 8$).

Table 6.4: Coral species, sample number (n) and observed SSCP genotype frequency (f) of clade A, C (C1, C2 and C•) and D (f_A, f_{C1}, f_{C2}, $f_{C•}$ and f_D, respectively). Dominance is given where multiple types were harboured simultaneously.
ABBREVIATIONS

A Absorbance
A_0 Primary electron acceptor of PSI
A_1 Secondary electron acceptor of PSI
ANOVA Analysis of variance
chl Chlorophyll
CSIRO Commonwealth Scientific and Industrial Research Organisation
DA Dark-adaptation
DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea
DPC Diphenyl carbazide
Dz Degraded zooxanthellae
e^- Electron
F_E Steady fluorescence after DCMU addition
FIC Fast induction curve
F_{initial}/F_{maximum} Ratio of the initial F_o to the maximum F_o
FIZ Freshly isolated zooxanthellae
F_m Dark-adapted maximum fluorescence
F_m' Light-adapted maximum fluorescence
F_o Dark-adapted minimum fluorescence
F_T Steady maximum fluorescence after DCMU addition
F_t Steady-state fluorescence
F-T Fluorescence-temperature
\(F_v \) Variable fluorescence
\(F_{v/F_m} \) Maximum quantum yield of Photosystem II
\(H^+ \) Proton/hydrogen ion
\(Hz \) Healthy-looking zooxanthellae
ITS1 Internal transcribed spacer 1
LED Light emitting diode
LHC Light harvesting complex
NADP\(^+\) Nicotinamide adenine dinucleotide phosphate
NADPH Reduced form of NADP\(^+\)
NPQ Non-photochemical quenching
OEC Oxygen evolving complex
O-I\(_1\)-I\(_2\)-P Peak nomenclature along a fast polyphasic fluorescence rise kinetic transient from Fo to Fm (Neubauer and Schreiber 1987)
O-J-I-P Step nomenclature along a fast polyphasic fluorescence rise kinetic transient from F\(_o\) to F\(_m\)
P680 Photosystem II reaction centre
P700 Photosystem I reaction centre
PAM Pulse amplitude modulated
PCR Polymerase chain reaction
PEA Plant efficiency analyser
Phaeo Phaeophytin
PQ Plastoquinone
PSI Photosystem I
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSII</td>
<td>Photosystem II</td>
</tr>
<tr>
<td>PSII_A</td>
<td>Active PSII centres/Q_B reducing centres</td>
</tr>
<tr>
<td>PSII_X</td>
<td>Inactive PSII centres/Q_B non-reducing centres</td>
</tr>
<tr>
<td>PSII_α</td>
<td>PSII centres with both inner and peripheral LHCs</td>
</tr>
<tr>
<td>PSII_β</td>
<td>PSII centres with only inner LHC</td>
</tr>
<tr>
<td>QA</td>
<td>Oxidised primary electron acceptor of PSII</td>
</tr>
<tr>
<td>QA^-</td>
<td>Reduced primary electron acceptor of PSII</td>
</tr>
<tr>
<td>QB</td>
<td>Oxidised secondary electron acceptor of PSII</td>
</tr>
<tr>
<td>QB^-</td>
<td>Reduced secondary electron acceptor of PSII</td>
</tr>
<tr>
<td>qE</td>
<td>Energy dependent quenching</td>
</tr>
<tr>
<td>qI</td>
<td>Photoinhibitory quenching</td>
</tr>
<tr>
<td>qP</td>
<td>Photochemical quenching</td>
</tr>
<tr>
<td>qT</td>
<td>State transition quenching</td>
</tr>
<tr>
<td>RC</td>
<td>Reaction centre</td>
</tr>
<tr>
<td>rmANOVA</td>
<td>Repeat measures analysis of variance</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive oxygen species</td>
</tr>
<tr>
<td>SSCP</td>
<td>Single stranded conformational polymorphism</td>
</tr>
<tr>
<td>T_0</td>
<td>Temperature at which F_v/F_m reaches zero</td>
</tr>
<tr>
<td>T_50</td>
<td>Temperature at which F_v/F_m reaches 50% of its initial</td>
</tr>
<tr>
<td>T_c</td>
<td>Critical temperature</td>
</tr>
<tr>
<td>t_Fmax</td>
<td>Time to reach maximum fluorescence</td>
</tr>
<tr>
<td>T_p</td>
<td>Temperature of peak fluorescence</td>
</tr>
<tr>
<td>Tris</td>
<td>Tris (hydroxymethyl)aminomethane</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>UV</td>
<td>Ultra violet</td>
</tr>
<tr>
<td>V</td>
<td>Volts</td>
</tr>
<tr>
<td>ΔpH</td>
<td>pH gradient</td>
</tr>
<tr>
<td>Φ_{PSII}</td>
<td>Effective quantum yield of Photosystem II</td>
</tr>
</tbody>
</table>
Global climate change is leading to the rise of ocean temperatures and is triggering mass coral bleaching events on reefs around the world. This involves the expulsion of the symbiotic dinoflagellate algae, known as zooxanthellae, from the coral host. Coral bleaching is believed to occur as a result of damage to the photosynthetic apparatus of these symbionts, although the specific site of initial impact is yet to be conclusively resolved. This thesis examined a number of sites within the light reactions of photosynthesis and evaluated the efficiency of photoprotective heat dissipating pathways. Upon expulsion, the capacity for long-term survivorship of expelled zooxanthellae in the water column was also assessed.

A reduction in photosystem II (PSII) photochemical efficiency during exposure to elevated temperature and high light (bleaching conditions) was found to be highly dependent upon the increase in abundance of Q_b non-reducing PSII centres (inactive PSII centres), indicating damage to the site of the secondary electron acceptor, Q_B, resulting in a limited capacity for its reduction. Therefore, this reduced the rate of the reoxidation of the primary electron acceptor, Q_A-. Fast induction curve (FIC) analysis of the rise from minimum fluorescence to maximum fluorescence revealed a lower amplitude in the J step along this curve, which was consistent with a reduction in the rate of Q_A- reoxidation. This photoinhibition of PSII was found to occur once the effectiveness of excess energy dissipation through energy-dependent quenching and state-transition quenching was exceeded, suggesting that these mechanisms were incapable of preventing photodamage.
Antenna size heterogeneity showed little change under bleaching conditions with a significant increase in PSIIβ only apparent in one species of coral.

The thermostability of the oxygen evolving complex (OEC) and thylakoid membrane were found to increase during exposure to bleaching conditions and exceeded bleaching thresholds of corals. This rapid rise in temperature-dependent thermostability also occurred over seasons, where variation in ocean temperatures was matched by gradual shifts in OEC and thylakoid membrane thermostolerance. Variation in thermostability between species was not found to be linked to zooxanthellae genotype, and instead was related to the bleaching susceptibility of the host. Despite this capacity for resilience to bleaching conditions, the PSII reaction centres did not exhibit such a mechanism for rapid acclimatisation. Corals can only be as tolerant to bleaching conditions as their most sensitive component allows. The formation of nonfunctional PSII centres is therefore suggested to be involved in the initial photochemical damage to zooxanthellae which leads to a bleaching response.

Zooxanthellae were found to be expelled irrespective of OEC function and thylakoid membrane integrity, as these sites of the photosynthetic apparatus were still intact when cells were collected from the water column. Although zooxanthellae were photosynthetically competent and morphologically intact upon expulsion, their longevity in the water column was dependent on the time of expulsion following the onset of bleaching and the ambient water temperatures. The survivorship of these zooxanthellae was restricted to a maximum of 5 days in the water column which suggests that unless
expelled zooxanthellae inhabit other environs of coral reefs which may be more favourable for survival, their capacity for persistence in the environment is extremely limited.

Chlorophyll a fluorescence measurements are a common tool for investigating photosynthetic impacts to in hospite zooxanthellae of corals. Pathways causing dark-reduction of the plastoquinone pool are shown to be active in corals and affect measurements which require dark-adaptation. Pre-exposure to far-red light was found to be an effective procedure to oxidise the inter-system electron transport chain and ensure determination of the true maximum quantum yield of PSII and accurate FICs.

It is concluded that the trigger for coral bleaching lies in the photosynthetic apparatus of zooxanthellae and evidence is presented in support of this impact site not being the OEC or thylakoid membrane.