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Abstract  
In current practice, it is common in medical diagnosis or treatment monitoring for a 

patient to require multiple examinations using different imaging techniques. Magnetic 

resonance (MR) imaging and computed tomography (CT) are good at providing 

anatomical information. Three-dimensional functional information about tissues and 

organs is often obtained with radionuclide imaging modalities: positron emission 

tomography (PET) and single photon emission tomography (SPET). In nuclear 

medicine, such techniques must contend with poor spatial resolution, poor counting 

statistics of functional images and the lack of correspondence between the distribution 

of the radioactive tracer and anatomical boundaries. Information gained from 

anatomical and functional images is usually of a complementary nature. Since the 

patient cannot be relied on to assume exactly the same pose at different times and 

possibly in different scanners, spatial alignment of images is needed. In this thesis, a 

general framework for image registration is presented, in which the optimum alignment 

corresponds to a maximum of a similarity measure. Particular attention is drawn to 

entropy-based measures, and variance-based measures. These similarity measures 

include mutual information, normalized mutual information and correlation ratio which 

are the ones being considered in this study. In multimodality image registration between 

functional and anatomical images, these measures manifest superior performance 

compared to feature-based measures. A common characteristic of these measures is the 

use of the joint-intensity histogram, which is needed to estimate the joint probability 

and the marginal probability of the images. A novel similarity measure is proposed, the 

symmetric correlation ratio (SCR), which is a simple extension of the correlation ratio 

measure. Experiments were performed to study questions pertaining to the optimization 

of the registration process. For example, do these measures produce similar registration 

accuracy in the non-brain region as in the brain? Does the performance of SPET-CT 

registration depend on the choice of the reconstruction method (FBP or OSEM)? The 

joint-intensity based similarity measures were examined and compared using clinical 

data with real distortions and digital phantoms with synthetic distortions. In automatic 

SPET-MR rigid-body registration applied to clinical brain data, a global mean accuracy 

of 3.9 mm was measured using external fiducial markers. SCR performed better than 

mutual information when sparse sampling was used to speed up the registration process. 

Using the Zubal phantom of the thoracic-abdominal region, SPET projections for 
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Methylenediphosponate (MDP) and Gallium-67 (67Ga) studies were simulated for 360° 

data, accounting for noise, attenuation and depth-dependent resolution. Projection data 

were reconstructed using conventional filtered back projection (FBP) and accelerated 

maximum likelihood reconstruction based on the use of ordered subsets (OSEM). The 

results of SPET-CT rigid-body registration of the thoracic-abdominal region revealed 

that registration accuracy was insensitive to image noise, irrespective of which 

reconstruction method was used. The registration accuracy, to some extent, depended on 

which algorithm (OSEM or FBP) was used for SPET reconstruction. It was found that, 

for roughly noise-equivalent images, OSEM-reconstructed SPET produced better 

registration than FBP-reconstructed SPET when attenuation compensation (AC) was 

included but this was less obvious for SPET without AC. The results suggest that 

OSEM is the preferable SPET reconstruction algorithm, producing more accurate rigid-

body image registration when AC is used to remove artifacts due to non-uniform 

attenuation in the thoracic region. Registration performance deteriorated with 

decreasing planar projection count. The presence of the body boundary in the SPET 

image and matching fields of view were shown not to affect the registration 

performance substantially but pre-processing steps such as CT intensity windowing did 

improve registration accuracy. Non-rigid registration based on SCR was also 

investigated. The proposed algorithm for non-rigid registration is based on overlapping 

image blocks defined on a 3D grid pattern and a multi-level strategy. The 

transformation vector field, representing image deformation is found by translating each 

block so as to maximize the local similarity measure. The resulting sparsely sampled 

vector field is interpolated using a Gaussian function to ensure a locally smooth 

transformation. Comparisons were performed to test the effectiveness of SCR, MI and 

NMI in 3D intra- and inter-modality registration. The accuracy of the technique was 

evaluated on digital phantoms and on patient data. SCR demonstrated a better non-rigid 

registration than MI when sparse sampling was used for image block matching. For the 

high-resolution MR-MR image of brain region, the proposed algorithm was successful, 

placing 92% of image voxels within ≤2 voxels of the true position. Where one of the 

images had low resolution (e.g. in CT-SPET, MR-SPET registration), the accuracy and 

robustness deteriorated profoundly. In the current implementation, a 3D registration 

process takes about 10 minutes to complete on a stand alone Pentium IV PC with 1.7 

GHz CPU and 256 Mbytes random access memory on board. 
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