Application Of Joint Intensity Algorithms To The Registration Of Emission Tomography And Anatomical Images

by

Yiu Hon LAU

A thesis submitted for the Degree of Doctor of Philosophy

University of Technology, Sydney July 2004

CERTIFICATE OF AUTHORSHIP / ORIGINALITY

I certify that this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Signature of Candidate

Production Note: Signature removed prior to publication.

Acknowledgement

I would like to express my grateful appreciation to Prof. Michael Braun and Prof. Brian F. Hutton who have touched my life by offering their support and assistance to make this thesis possible. They were the driving force in keeping me going when I almost gave up the study. They encouraged me in my area of research and inspired me to submit papers for local and international conferences. There is no doubt that they contributed considerably to the readability and content of this thesis, for which I wish to thank them. I recall the memorable workshop we attended together at Utrecht in Netherlands. They motivated me and made me feel that my work was valued. Prof. Braun introduced me to relevant digital image processing algorithms, and aspects of CT and MR physics. His experience in the field, his many ideas and suggestions have been extremely valuable and instructive. Prof. Hutton introduced me to image reconstruction techniques, the MCAT phantom, IDL programming language and gamma camera physics. What I learnt about SPET cameras, their operation, data acquisition and processing has proved to be of great benefit to this study. Prof. Hutton's expertise in nuclear medicine together with his leadership was invaluable to the research group at the Westmead Hospital. I appreciate the supportive and friendly atmosphere in the group, enhancing scientific interaction among us. Discussions with my supervisors helped me to keep both feet on the ground, which was not always easy.

Special thanks are due to my colleague, Mr. David Skerrett. It has been a privilege to know and work with him over the past few years. He is a senior medical physicist with a special talent in computer networks. He taught me much about UNIX. With his assistance, my life in the computer laboratory was made easier. He also gave me support in the use of software applications, UNIX workstations, networks, MO disks and drives, FTP and emails... and he generously gave of his personal time. I enjoyed talking with him especially when we walked together to the car park after a day of hard work. He kindly proofread the entire thesis. I wish him all the best.

Acknowledgment is also due Dr. Leighton Barnden, Chief Medical Physicist at the Department of Nuclear Medicine of Queen Elizabeth Hospital in Adelaide for providing me with advice on my registration software. He supplied clinical data for validation of the automatic retrospective multimodality image registration package *MIR*. I also thank

Dr. Lennart Thurfjell, then of Uppsala University, for the enlightening discussion about image registration during his visit to Sydney. He gave me the inspiration for the implementation of the registration algorithm. Thanks also to Dr. D.K. Chung and Dr. R. Howman-Giles of the Department of Nuclear Medicine at the Children's Hospital at Westmead in Sydney for critically evaluating *MIR* in clinical practice. They have offered me the clinical data and the opportunity to perform this research.

I thank Rochelle Hatton and Seu Som for invaluable discussions and for the enjoyable atmosphere that made the research pleasant and productive. It was a great pleasure to work with them. I also wish to thank Dr. George Larcos, Dr. David Farlow, Dr. Simon Gruenewald, Dr. Kevin Choong, Dr. Lee Collins and Mr. George Bonovas for supporting this research at the Westmead Hospital. I also wish to acknowledge the contributions of Mr. Erin McKay at St. George Hospital, Sydney for providing SPET and CT images, Dr. S. Meikle at the Royal Prince Alfred Hospital, Sydney, for providing the OSEM reconstruction source code, and Dr. George Zubal of Yale University for providing the Zubal phantom. I acknowledge the financial support provided by the Australian government via the Australian Postgraduate Award as well as the Department of Medical Physics, the Westmead Hospital, and the Department of Applied Physics, University of Technology, Sydney, for assistance with conference expenses.

Finally, from the bottom of my heart, I thank my "better half", Carol, who was always there to support me, along with my kids: Eppie and Anisa. Without their support it would not have been possible for me to finish this study.

The work reported in this dissertation was carried out in the Department of Applied Physics at the University of Technology in Sydney, and the Department of Medical Physics & Department of Nuclear Medicine and Ultrasound at Westmead Hospital in Sydney.

Table of contents

List of acronyms and mathematical symbols List of illustrations List of tables Abstract

1	Intro	duction		1		
	1.1	Historic	al overview of medical imaging	1		
	1.2	Function	nal and anatomical images	3		
		1.2.1	Anatomical imaging	4		
		1.2.2	Functional imaging based on radionuclide emission	11		
	1.3	Why medical image registration?				
	1.4	Problem statement Thesis overview				
	1.5					
2	Revie	w of med	lical image registration	21		
	2.1	Introduc	ction	21		
		2.1.1	Classes of application	22		
		2.1.2	Dimensionality	23		
		2.1.3	Generic algorithm for image registration	23		
	2.2	Similari	ty measures	25		
		2.2.1	Features-based measures	25		
		2.2.2	Voxel-based measures	30		
	2.3	Transfo	rmations	35		
		2.3.1	Rigid-body transformation	35		
		2.3.2	Affine transformation	37		
		2.3.3	Non-affine transformation	38		
	2.4	Interpolation of transformed data				
	2.5	Optimization				
	2.6	Validation				
		2.6.1	Criteria for evaluation	44		
		2.6.2	Metrics for evaluation of registration methods	45		
	2.7	Image data set				
3	Joint	-intensity	histogram techniques	51		
	3.1	Images	as random variables	52		
	3.2	Joint int	tensity histogram and its interpretation	54		
	3.3	Measure	ement of dispersion	57		
	3.4	Entropy	r-based algorithm	58		
		3.4.1	What is entropy?	58		
		3.4.2	Entropy of an image	60		
		3.4.3	Mutual information	62		
		3.4.4	Normalized mutual information	67		
	3.5	Varianc	e-based algorithms	68		
		3.5.1	Image variance	68		
		3.5.2	Conditional variance	69		
		3.5.3	Correlation ratio	72		
		3.5.4	Extension – symmetric correlation	75		
	3.6	Conclus	sion	75		

4	Com	parison of	SCR with other joint histogram techniques	77		
	4.1	Introduc	tion	77		
	4.2	Measure	s of performance	78		
		4.2.1	Displacement of selected points	78		
		4.2.2	Displacement of fiducial markers	79		
	4.3	Experim	ental techniques	79		
		4.3.1	Subsampling and multi-level sampling	80		
		4.3.2	Interpolation	81		
		4.3.3	Histogram and intensity rebinning	82		
		4.3.4	Multi-level strategy	83		
		4.3.5	Optimization	83		
		4.3.6	Default implementation	84		
	4.4	Registra	tion accuracy in clinical data with simulated misalignment	84		
		4.4.1	Default implementation 8 tration accuracy in clinical data with simulated misalignment 8 Experimental setup 8 Results and discussion 8 tration accuracy in clinical data with real misalignment 9 Experimental setup 9 tration accuracy in clinical data with real misalignment 9 Experimental setup 9 ts 9 Comparison of registration accuracy at default setting 9 Effect of sampling and quantization 9 ssion 1 uction 1 acquisition in nuclear medicine 1 e reconstruction in SPET 1 Filtered back projection 1 Maximum likelihood expectation maximization 1 e degradation 1 Distance dependent resolution 1 Attenuation 1			
		4.4.2	Results and discussion	86		
	4.5	Registra	tion accuracy in clinical data with real misalignment	90		
		4.5.1	Experimental setup	90		
	4.6	Results		95		
		4.6.1	Comparison of registration accuracy at default setting	95		
		4.6.2	Effect of sampling and quantization	97		
	4.7	Discussi	on	99		
	4.8	Conclusion				
5	SPE	SPET acquisition and a torso phantom				
	5.1	Introduc	tion	105		
	5.2	Data acq	uisition in nuclear medicine	105		
	5.3	3 Image reconstruction in SPET		109		
		5.3.1	Filtered back projection	111		
		5.3.2	Maximum likelihood expectation maximization	114		
	5.4	Image degradation				
		5.4.1	Distance dependent resolution	116		
		5.4.2	Attenuation	117		
		5.4.3	Scatter	119		
		5.4.4	Patient motion	120		
		5.4.5	Partial volume effect	121		
		5.4.6	Noise	121		
		5.4.7	Noise properties of FBP and OSEM	122		
	5.5	The SPE	ET torso phantom	123		
		5.5.1	3D digital phantom	124		
		5.5.2	Projection data	125		
		5.5.3	Image reconstruction with FBP and OSEM	127		
	5.6	Conclusi	ion	128		
6	Anal	ysis of reg	istration in non-brain SPET	129		
	6.1	Introduction				
	6.2	Methodo	blogy	132		
		6.2.1	Image data	132		
		6.2.2	Projection data	132		
		6.2.3	Reconstruction	132		
		6.2.4	Similarity measure	133		

		6.2.5	Default implementation	133
		6.2.6	Analysis of registration accuracy	133
	6.3	Experim	ients	137
		6.3.1	Effect of the choice of reconstruction algorithm	137
		6.3.2	Comparison of similarity measures	138
		6.3.3	Effect of background	139
		6.3.4	Effect of matching the image resolution	139
		6.3.5	Effect of intensity windowing in CT	140
		6.3.6	Effect of body boundary in SPET	140
		6.3.7	Effect of absence of lung in CT	141
		6.3.8	Effect of field of view	141
		6.3.9	Effect of bounding box size	142
	6.4	Results		142
		6.4.1	Effect of the choice of reconstruction algorithms	142
		6.4.2	Performance of similarity measures	147
		6.4.3	Effect of background	148
		6.4.4	Effect of image resolution matching	149
		6.4.5	Effect of intensity windowing in CT	151
		6.4.6	Effect of body boundary in SPET	152
		6.4.7	Effect of absence of lung in CT	153
		6.4.8	Effect of field of view	154
		6.4.9	Effect of boundary box size	157
	6.5	Discussi	on	159
		6.5.1	Reconstruction algorithm	159
		6.5.2	Similarity measures	161
		6.5.3	Image quality	162
		6.5.4	Field of view	164
		6.5.5	Shortcomings and further analysis	167
		6.5.6	Magnitude of registration error	168
	6.6	Clinical	example	170
	6.7	Conclus	ion	172
7	Deve	lopment o	f a non-rigid registration method	174
	7.1	Introduc	tion	174
	7.2	Problem	formulation	177
		7.2.1	Similarity measure	177
		7.2.2	Interpolation of the displacement vector field	179
		7.2.3	Coarse-to-fine displacement	181
	7.3	Methodo	ology	183
		7.3.1	Implementation	183
		7.3.2	Image data	184
		7.3.3	Registration error analysis	186
	7.4	Evaluati	on of non-rigid registration in 2D	187
		7.4.1	Effect of downsampling – an experimental study	187
		7.4.2	Effect of Gaussian kernel width	188
		7.4.3	Effect of other settings	188
		7.4.4	Effect of filter type on registration	189
		7.4.5	Comparison on similarity measures	189
	7.5	Results	of evaluation of non-rigid registration in 2D	190
		7.5.1	Effect of downsampling	190

		7.5.2	Effect of Gaussian kernel width	193
		7.5.3	Effect of registration settings	194
		7.5.4	Effect of the filter type on registration	195
		7.5.5	Comparison of similarity measures in intra-modality	196
		750	registration	100
		/.5.6	comparison of similarity measures in inter-modality	198
	7.6	Discussio	m	200
	7.7	Conclusio	on	204
8	Valid	lation of 3D) non-rigid registration in multi-modality image	205
	8.1	Method		205
		8.1.1	Image data	206
		8.1.2	Implementation	210
		8.1.3	Evaluation of 3D non-rigid registration	212
	8.2	Results		212
		8.2.1	Intra-modality registration	212
		8.2.2	Inter-modality registration	217
	8.3	Discussio	n	222
	8.4	Conclusio	n	230
9	Conc	lusion and	further work	231
	9.1	Rigid boo	ly registration	232
	9.2	Non-rigid	l body registration	234
	9.3	Further w	vork	235
Bił	oliograr	ohv		238
Lis	t of pul	blications		268
Ap	pendix			271
-				

List of acronyms and mathematical symbols by chapter

Chapter 1	
2D	two dimensional
3D	three dimensional
СТ	computerized tomography
MR	magnetic resonance
NMR	nuclear magnetic resonance
SPET	single photon emission tomography
PET	positron emission tomography
PACS	picture archiving and communication system
μ	linear attenuation coefficient
Μ	macroscopic magnetization
\mathbf{M}_{xy}	transverse magnetization
$\mathbf{M}_{\mathbf{Z}}$	axial magnetization
B	magnetic field
T_1	longitudinal relaxation time / spin-lattice relaxation time
T_2	transverse relaxation time / spin-spin relaxation time
PD	proton density
γ	gyromagnetic ratio
ω_{0}	larmor frequency
RF	radio frequency
G	magnetic field gradient
FDG	¹⁸ F-fluoro-deoxyglucose
Chapter 2	
fMR	functional MR
Q	4×4 matrix representing a rigid-body transformation in
	homogeneous coordinates
Q′	3×3 rigid-body transformation matrix
Т	4×4 translational matrix in homogeneous coordinates
R	4×4 rotational matrix in homogeneous coordinates
S	4×4 scaling matrix in homogeneous coordinates
Ι	Identity transformation
R ′	3×3 orthonormal rotation matrix
t	3-element translation vector (t_x , t_y , t_z)

Ddiagonal matrixU, Vorthonormal matrices

φ

 \mathbf{S}' $\overline{y}, \overline{x}$

SVD Q^T

||x - y|| Euclidean distance between x and y

3-element rotation vector (ϕ_x , ϕ_y , ϕ_z)

3-element scale vector (s_x, s_y, s_z)

centroid of $\{y_i\}$ and $\{x_i\}$ singular-value decomposition

transpose of a matrix Q

SAD	sum of the absolute differences
SSD	sum of squared differences
Ā	mean intensity in image A
Ν	number of voxels in the overlapping image volume
F	number of fiducial markers
PV	partial volume interpolation
Φ	similarity measure
M	number of intensity bins
FRE	fiducial registration error
TRE	target registration error

Chapter 3

А	floating image to be aligned with the reference image
A'	transformed floating image (unless otherwise indicated, this image
D	is interpolated and sampled in the domain of the reference image)
В	reference image
$x = \Lambda(x)$	voxel position expressed in nonogeneous coordinates
a - A(x) b - D(x)	voxel intensity of image A at x
$\widetilde{O} - \mathbf{B}(x)$	continuous domain ("field of view") of image A
$\Sigma 2_A$	discrete image domain of A: $\Omega_A \subset \Omega_A$
Ω_{AB}	discrete overlap of image domains of A' and B,
	$\Omega_{AB} = (\widetilde{\Omega}_{A'} \cap \widetilde{\Omega}_{B}) \cap \Omega_{B}$
\mathbf{S}_b	a subimage of A' induced by b in B such that
	$S_b = \{x \in \Omega_{AB} : B(x) = b\}$
Т	a mapping of A to A' that includes interpolation
T_{θ}	a mapping parameterized by transformation parameters θ
θ	a vector of registration parameters ($\phi_x, \phi_y, \phi_z, t_x, t_y, t_z$)
Τ _θ Α	transformed image A'
PDF	probability density function
Q	matrix representing a spatial transformation of voxel coordinates,
-	$x' = \mathbf{Q}x$
$A(\mathbf{Q}x)$	transformed image A' such that $A'(x) = T_{\theta}A(x) = A(\mathbf{Q}x)$
<i>x</i> ′	location of voxel x transformed by \mathbf{Q} : $x' = \mathbf{Q}x$
P(a)	probability density function of intensity in image A
P(b)	probability density function of intensity in image B
(<i>a</i> , <i>b</i>)	intensity pair of a joint intensity histogram of images A and B,
	where <i>a</i> belongs to the range of A and <i>b</i> belongs to the range of B
P(a,b)	joint probability of A and B
P(a b)	conditional probability of A given B
H(A)	entropy of an image A
H(A,B)	joint entropy of images A and B
H(A B)	conditional joint entropy of image A given the knowledge of B
MI(A,B)	mutual information of images A and B
NMI(A,B)	normalized mutual information of images A and B

μ_A	mean intensity of image A
μ_b	mean intensity of a subimage S_b
$\sigma^2(a)$	variance of intensity of image A
$\sigma^2(a \mid b)$	conditional variance of intensity of a subimage S_b given b in B
CR(A,B)	correlation ratio of A and B
SCR(A,B)	symmetric correlation ratio of A and B

Chapter 4

$[n_1, n_2, n_3 M]$	downsampling of the transformed floating image $T_{\theta}A$ and the reference image B by a factor of n_1 in the x-direction, n_2 in the y-direction and n_2 in the z-direction and M is the number of bins in
	direction and h ₃ in the 2-direction, and <i>M</i> is the number of onis in
	the intensity histogram
^{99m} Tc-HMPAO	technetium-99m hexamethyl-propylene amine oxime (HMPAO)
DE	displacement error measures the average Euclidean displacement over all eight vertices of a bounding box
FLE	fiducial location error

Chapter 5

PMT	photomultiplier tube
NaI (Tl)	sodium iodide crystal doped with about 0.5% of thallium oxide
PHA	pulse height analyzer
PSF	point-spread function
FWHM	full width at half maximum
d	path length in an attenuating medium
f(x,y)	radioactivity distribution in Cartesian coordinates
$\hat{\mathbf{f}}(x,y)$	estimated radioactivity distribution
FBP	filtered back projection reconstruction
$g(s, \theta)$	slice profile (projection) is defined as the total count detected in a
	time interval at pixel s from the origin when the detector is at an
	angular position θ
р	total number of projections
MLEM	maximum likelihood expectation maximization reconstruction
OSEM	ordered Subsets Expectation Maximization reconstruction
$N_{ heta}$, N	number of projection angles and number of bins per projection
A	transition matrix such that $g = Af$
g _i	number of counts in the i^{th} measurement
α, β	collimator constant and collimator scale of a given gamma camera
d	source-detector distance
σ	Gaussian width $\sigma = \alpha + \beta \times d$ used to estimate the PSF of a
	gamma detector

Chapter 6

θ	rigid body transformation, $\theta(x) = \mathbf{R} x + \mathbf{t}$
R , t	rotational and translational misalignment
θ_{app}	applied transformation

$\theta_{\rm rec}$	recovered transformation
ε	registration error
\mathcal{E}_R	rotational error, $\varepsilon_{\rm R} = \frac{1}{8} \sum_{i=1}^{8} \left\ (\mathbf{R}_{\rm app} - \mathbf{R}_{\rm rec}) x_{\rm i} \right\ $
\mathcal{E}_t	translation error, $\varepsilon_{t} = \ \mathbf{t}_{app} - \mathbf{t}_{rec}\ $
$\overline{\mathcal{E}}$	mean registration error
AC	attenuation correction
SD	standard deviation
Chapter 7	
SSD	sum of squared differences of voxel values between images
u(x)	displacement vector at x
\widetilde{u}	measured displacement vector
T _u	transformation T parameterized by a displacement vector field u
$T_u A(x)$	floating image A transformed with respect to a <i>reference</i> image B using transformation T parameterized by a displacement vector u(x) where x is the position vector in the reference image such that $A'(x) = T_u A(x) = A(x - u(x))$
σ_b^2	conditional variance indexed by b
σ^2	variance of A'
i j	image voxel index $i \in \{0, 1,, N-1\}$ grid nodes index j

grid nodes index j

Gaussian kernal $\phi(x_{ij}) = \exp\left(-\frac{1}{2} \|x_{ij}\|^2 / \delta^2\right)$

Gaussian width δ

Euclidean norm of $||x_i - x_j||$ on \mathbb{R}^3

- x_{ij} column vector consisting of *n* coefficients corresponding to *n* grid nodes such that $u(x_i) = \sum_{j \in Q} \phi(x_{ij}) c(x_j)$ (c_i)
- $\left(\phi_{j'j}\right)$ $n \times n$ matrix of Gaussian weights $\phi_{j'j}$
 - residual displacement vector field obtained by convolution $v(x_i) = \phi(x_i) * \widetilde{v}(x_i)$

displacement error given by $\varepsilon_i = \|u_i - \widetilde{u}_i\|$

DE RMS displacement error

average RMS displacement error ADE

Chapter 8

ø

v

Е

Е	displacement error given by $\varepsilon_i = \ u_i - \widetilde{u}_i\ $
DE	RMS displacement error
ADE	average RMS displacement error over all images

List of illustrations

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8	An x-ray film Depicts a CT scanner A single projection Typical CT scans at thorax region of a body Processes involved in producing NMR signal Principle of MR imaging Abnormal tissue in a MR brain image A single head SPET system acquires a series of projections from a thorax phantom	3 5 6 8 10 10 12
1.9 1.10 1.11 1.12 1.13	An abdominal MR image and its corresponding SPET image Positron emission and annihilation Concepts of coincidence detectors A CT and FDG PET scan An example of anatomical and functional image registration	13 13 14 14 18
 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 	A typical CT, MR and SPET The iterative registration process A 2D joint intensity histogram Various mappings categorized by domain (global and local) and elasticity (affine and non-affine) Global transformation is approximated by simple local transformation Interpolation Trilinear interpolation Interpolation artefacts Fiducial registration error and target registration error	21 24 34 36 39 40 41 42 47
3.1 3.2 3.3 3.4	Image voxel Image intensity histogram Formation of a joint histogram An example of a 2D MR-SPET joint histogram before and after	52 53 55 57
3.5 3.6 3.7 3.8 3.9 3.10	A schematic diagram for signal transmission The effect of reducing intensity levels on entropy The effect of blurring on entropy The relation between joint entropy, conditional entropy and entropy The variation of entropy, joint entropy and mutual information with respect to the translation along x-axis with overlapping region The variation of entropy, joint entropy and mutual information with respect to the translation along x-axis with overlapping region	59 61 62 64 65 66
3.11	included The variation of entropy, joint entropy, MI and NMI with respect to the in-plane rotation	68
3.123.13	A schematic diagram to show the relation between variance, mean intensity and mean intensity of an induced segmented region CR and NCR for rotational displacement about the z-axis	72 74
4.1 4.2	A bounding box used to compute registration error T_1 and T_2 MR image data set	78 84

4.3	Mean registration error for T_1 - T_2 MR registration for various similar measures and scatter plot of DE in x y and z axis	86
4.4	Scatter plots of registration error against similarity measures with default and modified default setting	88
4.5	Scatter plots of registration error for different similarity measures with various sampling schemes	89
46	Illustration of the SPET and MR image data	91
4.7	Illustration two of the fiducial markers	92
4.8	MR and SPET images with fiducial markers	93
4.9	Distribution of FRE against registration measures	95
4.10	The distribution of x, y and z displacement error for FRE against registration function	96
4.11	Distribution of FRE against registration measures using defaults and modified default implementation	98
4.12	The interpolation effect for various similarity measures at full resolution and sparse sampling	101
4.13	Plots of the mean difference of inter-marker distance between MR and SPET scans in mm for each subject	104
5.1	A bone scan	106
5.2	A schematic diagram of a typical Anger gamma camera	108
5.3	A schematic diagram of SPET acquisition	110
5.4	Phantom and the corresponding sinogram	110
5.5	A back projection reconstruction, a FBP reconstruction and a MLEM reconstruction	112
5.6	A ramp filter in frequency domain and spatial frequency, line profile of a sinogram with and without filtering	113
5.7	Image of a line source to illustrate depth-dependent resolution	117
5.8	A transmission scan and a attenuation map	119
5.9	A schematic diagram of energy spectrum of a typical measurement on a camera	120
5.10	The FBP and OSEM reconstruction with Poisson noise included in the projection	123
5.11	Selected transaxial slices from the Zubal phantom and the corresponding attenuation map	125
5.12	A typical planar projection image for MDP (left) and gallium (right) SPET	127
6.1	CT image without and with intensity windowing	133
6.2	Hypothetical box around the CT used to compute registration error	135
6.3	Region for image noise computation	138
6.4	Planar projection with and without background activity	139
6.5	CT extracted from [77,140] and [74,185] from the original CT	141
6.6	Results for registration of FBP/OSEM-reconstructed SPET versus image noise with AC	143
6.7	Mean registration error of FBP and OSEM-reconstructed SPET with/without AC versus image noise	143
6.8	Mean registration error at noise equivalent for Ga and MDP SPET registration, using FBP and OSEM with AC	145

6.9	Noise equivalent pair of transverse slices of Ga SPET using FBP and	145
	OSEM, at two image activities	
6.10	The effect of AC on registration accuracy against image noise, using FBP	146
	and OSEM	
6.11	Transverse slices showing noise equivalent reconstruction of Ga SPET	146
	image, using OSEM and FBP reconstruction	
6.12	Registration error versus cutoff frequency and iterations	147
6.13	Performance of MDP FBP and OSEM SPET registration using SCR, NMI	148
	and MI. Examples of noise equivalent pair of MDP SPET are also shown	
6.14	Scatter plots of OSEM Ga SPET registration with background and	148
	without background	
6.15	A blurred version of CT	150
6.16	The performance of registration using SCR, NMI and MI with and	150
	without compatible SPET and CT resolution	
6.17	Without/with CT intensity windowing, registration obtained by	152
	registration functions (SCR, NMI and MI) using default implementation	
	for OSEM and FBP	
6.18	A slice of the gallium OSEM-reconstructed SPET image (with AC) at two	152
	projection count levels, without/with body boundary	
6.19	The distribution of registration errors with/without body boundary	153
6.20	The effect of excluding the lungs from the CT field of view on the	154
	registration performance for Ga and MDP SPET, using OSEM and FBP	
6.21	Effect of axial contraction of the field of view on Ga and MDP SPET	155
	registration performance	
6.22	Effect on registration performance of axial contraction of the field of view	156
	in CT with the field of view in Ga and MDP SPET kept constant at 57%.	
6.23	Registration error distribution with respect to the box sizes for 57% FOV	158
	and vertex displacement error of the box along x, y and z direction	
6.24	Mean registration error measured with the different box sizes for 43%	159
	FOV, and vertex displacement error along x, y and z directions	
6.25	A shift of global maximum for the registration function	161
6.26	A comparison of MI, NMI and SCR as functions of <i>x</i> -axis translation for	162
	the FBP-reconstructed MDP SPET with respect to the CT	
6.27	Effect of intensity windowing in CT on SCR as function of x-axis	164
	translation for the gallium OSEM-reconstructed SPET	
6.28	Scatter plot of registration error when CT was registered to itself and a	169
	blurred version of itself for various similarity measures	
6.29	A clinical application - SPET/CT fusion	170
6.30	A clinical application - FDG PET/CT fusion	171
6.31	A clinical application - Ga SPET/CT fusion	172
7.1	Displacement vector field before and after the application of the median	179
	filter	
7.2	A single data sample in spatial domain and after convolution with the	180
	Gaussian function	
7.3	Non-rigid registration for a rotational distortion using multi-levels sub-	182
	image block	
7.4	Image blocks (shaded) and grid nodes represented by circles and crosses	183
	tor two adjacent levels. Note that the coarse grid nodes (circles) persist to	
	tiner levels	

- An MR T_1 and T_2 image used for the evaluation of the multi-level 7.5 185 registration strategy using TPS distortion
- 7.6 (a): T₁-weighted MR image used for synthetic intra-modality registration. 185
- 7.6 (b) T₂-weighted and proton density MR image used for synthetic inter-165 modality registration. The analytic functions used are bilinear, rotational, thin plate spline, sinusoidal and Gaussian for synthetic deformations
- 7.7 Percentage of successful matches (out of 1000 registrations) for indicated 191 similarity measures is plotted against downsampling factor; block size, the number of intensity bins
- 7.8 Histogram of pixel displacement for the indicated types of synthetic 193 deformation.
- 7.9 Displacement error averaged over five synthetic deformations as a 193 function of Gaussian width
- Variation of average DE with iteration number for specified 194 7.10 implementations. Error bars indicate the standard deviation of DE
- 7.11 Results of registration obtained with various implementations as 195 The reference image was distorted using the bilinear indicated. transformation
- 7.12 DE averaged over five synthetic deformations for different filters 196
- 7.13 Dependence of intra-modality DE on the choice of the subsampling 196 scheme shown for MI, NMI, CR1, CR2 and SCR

197

210

- Simulation of intra-modality registration 7.14
- Comparison of similarity measures in inter-modality simulation 7.15 198 experiments using several subsampling schemes
- 7.16 Effects of changing the sampling scheme for inter-modality registration. 199 The reference image was globally rotated.
- A comparison of SCR and MI as functions of translation (in pixels) along 7.17 202 one axis.
- 7.18 The displacement vector field obtained before and after filtering. 203
- 8.1 One of the three T_1 -weighted MR images used in the 3D study 206 207
- 8.2 Illustration the method used for 3D validation
- One of the ten T₂-weighted and proton density MR images 8.3 208 209
- 8.4 One of the ten T₁-weighted MR and SPET images 8.5 The local transformation of the Zubal CT image
- Frequency distribution of displacement error pooled over all ten 213 8.6
- independent registrations before registration and after 1, 2 and 3 iterations 8.7 Result of intra-modality 3D registration shown in the checkerboard 215 pattern
- 8.8 Comparison of MI, NMI and SCR in 3D intra-modality simulation 216 experiments
- 8.9 Mean displacement error for intra-modality T₁ MR registration before 216 registration and after various iterations
- 8.10 The results of inter-modality for proton density and T₂-weighted MR 217 registration in checkerboard display
- Histogram of displacement error for PD-T₂ MR, MR-SPET and CT-SPET 8.11 218 registration using SCR and default implementation
- 8.12 The results of SPET-MR 3D registration using default implementation 220
- The results of SPET-CT 3D registration using default implementation 8.13 221

- 8.14 Examples of MI and SCR as a function of translation along x-axis, for 225 registration of CT-CT image blocks
- 8.15 Image blocks (enclosed by windows), with and without smoothing, 226 correspond to various image block sizes
- 8.16 Variation of MI as a function of translation of a CT image block to an 227 identical CT blurred with boxcar filter

List of tables

4.1	Registration errors using default sampling scheme	87
4.2	implementation.	88
4.3	Summary statistics of registration error as function of sampling scheme	89
4.4	The table shows summary statistics of SPET-MR fiducial registration error averaged over 12 clinical data sets	96
4.5	The table shows the mean FRE error of SPET-MR registration over 12 clinical data sets using various sampling scheme	97
4.6	Typical processing times for SPET-MR registration as measured by a stand alone PC	98
4.7	Fiducial registration error for each subject and means fiducial registration errors over all subjects for SPECT-MR registration	102
5.1	Some radionuclides commonly used in diagnostic nuclear medicine	106
5.2	Linear attenuation coefficient for several body tissues	118
7.1	Details of implementations: (i) thin-plate spline interpolation, (ii)	189
	unfiltered, (iii) fixed block size of 32^2 pixels, (iv) full implementation and (v) fast implementation	
7.2	The computational time (in minutes) for the full and the fast implementations of the proposed algorithm, averaged over five synthetic studies	195
7.3	Mean processing time for registration with SCR and the specified sampling schemes, as measured on 333 MHz Pentium PC	197
7.4	Comparison of DE values for intra-modality registration with SCR and MI under $[1,1,1]$, $[4,2,1]$ and $[8,4,1]$ sampling schemes	197
7.5	Comparison of SCR and MI for inter-modality registration [1,1,1] and [4,2,1] sampling schemes	199
8.1	Average processing time for 3D registration with SCR for different sampling schemes, as measured on 1.7 GHz Pentium PC	214
	7.	

Appendix

Segmentation of 57 body of	rgans in the Zubal CT image	271
----------------------------	-----------------------------	-----

Abstract

In current practice, it is common in medical diagnosis or treatment monitoring for a patient to require multiple examinations using different imaging techniques. Magnetic resonance (MR) imaging and computed tomography (CT) are good at providing anatomical information. Three-dimensional functional information about tissues and organs is often obtained with radionuclide imaging modalities: positron emission tomography (PET) and single photon emission tomography (SPET). In nuclear medicine, such techniques must contend with poor spatial resolution, poor counting statistics of functional images and the lack of correspondence between the distribution of the radioactive tracer and anatomical boundaries. Information gained from anatomical and functional images is usually of a complementary nature. Since the patient cannot be relied on to assume exactly the same pose at different times and possibly in different scanners, spatial alignment of images is needed. In this thesis, a general framework for image registration is presented, in which the optimum alignment corresponds to a maximum of a similarity measure. Particular attention is drawn to entropy-based measures, and variance-based measures. These similarity measures include mutual information, normalized mutual information and correlation ratio which are the ones being considered in this study. In multimodality image registration between functional and anatomical images, these measures manifest superior performance compared to feature-based measures. A common characteristic of these measures is the use of the joint-intensity histogram, which is needed to estimate the joint probability and the marginal probability of the images. A novel similarity measure is proposed, the symmetric correlation ratio (SCR), which is a simple extension of the correlation ratio measure. Experiments were performed to study questions pertaining to the optimization of the registration process. For example, do these measures produce similar registration accuracy in the non-brain region as in the brain? Does the performance of SPET-CT registration depend on the choice of the reconstruction method (FBP or OSEM)? The joint-intensity based similarity measures were examined and compared using clinical data with real distortions and digital phantoms with synthetic distortions. In automatic SPET-MR rigid-body registration applied to clinical brain data, a global mean accuracy of 3.9 mm was measured using external fiducial markers. SCR performed better than mutual information when sparse sampling was used to speed up the registration process. Using the Zubal phantom of the thoracic-abdominal region, SPET projections for Methylenediphosponate (MDP) and Gallium-67 (⁶⁷Ga) studies were simulated for 360° data, accounting for noise, attenuation and depth-dependent resolution. Projection data were reconstructed using conventional filtered back projection (FBP) and accelerated maximum likelihood reconstruction based on the use of ordered subsets (OSEM). The results of SPET-CT rigid-body registration of the thoracic-abdominal region revealed that registration accuracy was insensitive to image noise, irrespective of which reconstruction method was used. The registration accuracy, to some extent, depended on which algorithm (OSEM or FBP) was used for SPET reconstruction. It was found that, for roughly noise-equivalent images, OSEM-reconstructed SPET produced better registration than FBP-reconstructed SPET when attenuation compensation (AC) was included but this was less obvious for SPET without AC. The results suggest that OSEM is the preferable SPET reconstruction algorithm, producing more accurate rigidbody image registration when AC is used to remove artifacts due to non-uniform attenuation in the thoracic region. Registration performance deteriorated with decreasing planar projection count. The presence of the body boundary in the SPET image and matching fields of view were shown not to affect the registration performance substantially but pre-processing steps such as CT intensity windowing did improve registration accuracy. Non-rigid registration based on SCR was also investigated. The proposed algorithm for non-rigid registration is based on overlapping image blocks defined on a 3D grid pattern and a multi-level strategy. The transformation vector field, representing image deformation is found by translating each block so as to maximize the local similarity measure. The resulting sparsely sampled vector field is interpolated using a Gaussian function to ensure a locally smooth transformation. Comparisons were performed to test the effectiveness of SCR, MI and NMI in 3D intra- and inter-modality registration. The accuracy of the technique was evaluated on digital phantoms and on patient data. SCR demonstrated a better non-rigid registration than MI when sparse sampling was used for image block matching. For the high-resolution MR-MR image of brain region, the proposed algorithm was successful, placing 92% of image voxels within ≤ 2 voxels of the true position. Where one of the images had low resolution (e.g. in CT-SPET, MR-SPET registration), the accuracy and robustness deteriorated profoundly. In the current implementation, a 3D registration process takes about 10 minutes to complete on a stand alone Pentium IV PC with 1.7 GHz CPU and 256 Mbytes random access memory on board.