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Abstract  
In current practice, it is common in medical diagnosis or treatment monitoring for a 

patient to require multiple examinations using different imaging techniques. Magnetic 

resonance (MR) imaging and computed tomography (CT) are good at providing 

anatomical information. Three-dimensional functional information about tissues and 

organs is often obtained with radionuclide imaging modalities: positron emission 

tomography (PET) and single photon emission tomography (SPET). In nuclear 

medicine, such techniques must contend with poor spatial resolution, poor counting 

statistics of functional images and the lack of correspondence between the distribution 

of the radioactive tracer and anatomical boundaries. Information gained from 

anatomical and functional images is usually of a complementary nature. Since the 

patient cannot be relied on to assume exactly the same pose at different times and 

possibly in different scanners, spatial alignment of images is needed. In this thesis, a 

general framework for image registration is presented, in which the optimum alignment 

corresponds to a maximum of a similarity measure. Particular attention is drawn to 

entropy-based measures, and variance-based measures. These similarity measures 

include mutual information, normalized mutual information and correlation ratio which 

are the ones being considered in this study. In multimodality image registration between 

functional and anatomical images, these measures manifest superior performance 

compared to feature-based measures. A common characteristic of these measures is the 

use of the joint-intensity histogram, which is needed to estimate the joint probability 

and the marginal probability of the images. A novel similarity measure is proposed, the 

symmetric correlation ratio (SCR), which is a simple extension of the correlation ratio 

measure. Experiments were performed to study questions pertaining to the optimization 

of the registration process. For example, do these measures produce similar registration 

accuracy in the non-brain region as in the brain? Does the performance of SPET-CT 

registration depend on the choice of the reconstruction method (FBP or OSEM)? The 

joint-intensity based similarity measures were examined and compared using clinical 

data with real distortions and digital phantoms with synthetic distortions. In automatic 

SPET-MR rigid-body registration applied to clinical brain data, a global mean accuracy 

of 3.9 mm was measured using external fiducial markers. SCR performed better than 

mutual information when sparse sampling was used to speed up the registration process. 

Using the Zubal phantom of the thoracic-abdominal region, SPET projections for 

 xvi



Methylenediphosponate (MDP) and Gallium-67 (67Ga) studies were simulated for 360° 

data, accounting for noise, attenuation and depth-dependent resolution. Projection data 

were reconstructed using conventional filtered back projection (FBP) and accelerated 

maximum likelihood reconstruction based on the use of ordered subsets (OSEM). The 

results of SPET-CT rigid-body registration of the thoracic-abdominal region revealed 

that registration accuracy was insensitive to image noise, irrespective of which 

reconstruction method was used. The registration accuracy, to some extent, depended on 

which algorithm (OSEM or FBP) was used for SPET reconstruction. It was found that, 

for roughly noise-equivalent images, OSEM-reconstructed SPET produced better 

registration than FBP-reconstructed SPET when attenuation compensation (AC) was 

included but this was less obvious for SPET without AC. The results suggest that 

OSEM is the preferable SPET reconstruction algorithm, producing more accurate rigid-

body image registration when AC is used to remove artifacts due to non-uniform 

attenuation in the thoracic region. Registration performance deteriorated with 

decreasing planar projection count. The presence of the body boundary in the SPET 

image and matching fields of view were shown not to affect the registration 

performance substantially but pre-processing steps such as CT intensity windowing did 

improve registration accuracy. Non-rigid registration based on SCR was also 

investigated. The proposed algorithm for non-rigid registration is based on overlapping 

image blocks defined on a 3D grid pattern and a multi-level strategy. The 

transformation vector field, representing image deformation is found by translating each 

block so as to maximize the local similarity measure. The resulting sparsely sampled 

vector field is interpolated using a Gaussian function to ensure a locally smooth 

transformation. Comparisons were performed to test the effectiveness of SCR, MI and 

NMI in 3D intra- and inter-modality registration. The accuracy of the technique was 

evaluated on digital phantoms and on patient data. SCR demonstrated a better non-rigid 

registration than MI when sparse sampling was used for image block matching. For the 

high-resolution MR-MR image of brain region, the proposed algorithm was successful, 

placing 92% of image voxels within ≤2 voxels of the true position. Where one of the 

images had low resolution (e.g. in CT-SPET, MR-SPET registration), the accuracy and 

robustness deteriorated profoundly. In the current implementation, a 3D registration 

process takes about 10 minutes to complete on a stand alone Pentium IV PC with 1.7 

GHz CPU and 256 Mbytes random access memory on board. 
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Chapter 1 
 

Introduction 
The developments of medical imaging apparatus and reconstruction algorithms have 

advanced greatly over the past two decades. Ionizing radiation has been used to produce 

images of the interior of the body and in the treatment of cancer. Gamma radiation 

produced by radionuclides and x-rays are both used to study specific organs and 

diseases in the body via 2D planar images. The planar projection images are overlaid 

with internal body structures that cause deterioration in delineating anatomical structure 

and tissues inside body. With the development of digital computers it was subsequently 

possible to reconstruct cross-sectional images of body, resulting in computerized 

tomography. Another important development utilizing non-ionization radiation has been 

magnetic resonance imaging which has become a major diagnostic imaging tool. In the 

following sections, a brief introduction of different image modalities is discussed, 

followed by a short overview of the rationale for image registration and finally defining 

problems for image registration. 

 

1.1 Historical overview of medical imaging 

In 1895 Roentgen discovered x-rays and in 1896 Becquerel discovered radioactivity and 

very soon afterwards these were applied in medicine [1,2]. The use of x-rays and 

radioactivity to investigate the body resulted in the development of the field of 

diagnostic imaging in radiology and nuclear medicine, respectively. X-rays are a form 

of electromagnetic radiation with a very short wavelength. They are emitted when high-

speed electrons are rapidly decelerated. The basis of x-ray imaging is primarily based 

on the interaction of x-ray with matter to produce contrast between anatomical structure 

and background. This interaction leads the intensity of the radiation attenuating as it 

passes through matter. The attenuation depends on the composition of the material. 

After Roentgens discovery photographic film and the fluorescent screen have been used 

to display x-ray images. The film is used as a permanent record of a 2D projective 

image. In a chest x-ray radiograph, as shown in Figure 1.1, the 3D structure of the body 

is represented by a 2D image. All the planes in the patient that are parallel to the x-ray 

film are superimposed on top of each other. 
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The process of creating a 2D projective image from the emissions of radionuclides 

within the body is quite different from that for x-rays, where radiation is normally 

applied from an external source while radioactive substances are taken internally. The 

first gamma camera that was capable of producing a 2D projection image of the 

radioactive distribution of an administered radionuclide in the body was invented in 

1957 by Anger. Because of the overlay of structures of the body, one intrinsic problem 

of these planar projection images is the reduction of contrast of anatomical structures 

and the lost of spatial resolution in the direction perpendicular to the image plane. 

 

A further development in the 1970s was the introduction of tomography (both emission 

and transmission). X-ray computerized tomography (CT) was developed by Godfrey 

Hounsfield [3] and Allan Cormack. It is of interest to note that the mathematics of 

reconstruction of a function from its projections had been studied in the early 1900s by 

Radon. Another important development in diagnostic imaging was nuclear magnetic 

resonance imaging, realized in the mid 1970s [2]. Modern medical imaging applications 

were made possible by the development of computer technology and the availability of 

high quality 3D image data. With the improvements in imaging instrumentation and 

algorithms for image reconstruction, modern imaging technologies provide a wide range 

of non-invasive image acquisition capabilities. These modalities can be used to acquire 

data of human anatomy and function in 3D.  Whereas conventional planar imaging 

results in a two-dimensional projective view through the body, computed tomography 

produces images of transaxial slices of the body. 

 

The problem of obscuring body structures has been largely eliminated by computed 

tomography. Furthermore, images produced are in digital format, which facilitates ease 

of display and analysis. Software must handle more and more complex problems 

demanded by the ongoing needs of clinical applications, such as those arising in 

neurology, radiotherapy, cardiology and computer-aided surgery. The development of 

3D medical image processing techniques has not occurred in isolation. In large part, it 

has been due to the increased availability of fast computers and digital networking, 

enabling a rapid, accurate manipulation of large quantities of data to produce images 

that are useful to physicians. Picture Archiving and Communication System (PACS) is 

an acknowledged requirement for the modern radiology department  [4,5]. The ease of 

accessing images from multiple modalities has led to a greater use of image fusion that 
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drives registration development  [4,5]. For routine clinical practice applications, 

automatic software is required to align medical images. This thesis is concerned with 

the automatic retrospective spatial alignment of images from different image modalities. 

 
Figure 1.1: An x-ray film. The attenuation information for the patient’s chest is superimposed onto the 
(horizontal) image plane. The output image shows overlying ribs, soft tissue and lungs. (Image courtesy 
of Curriculum Development Institute of Hong Kong) 
 

1.2 Functional and anatomical medical images 

The human body contains many structures overlying other structures within the body. 

This limits the amount of information that can be obtained from conventional planar 

images. A significant advance in the use of medical images came with the development 

of computed tomography. This technique makes it possible to image axially, or view 

slices at any cross section required. Tomography refers to any process that produces an 

image of a single plane of the body [6]. When multiple contiguous slices are 

reconstructed, the stack of these 2D slices makes up a 3D volume. If the projections are 

formed by radiation transmitted through the body, the technique is referred to as 

transmission computed tomography (CT), the best known example being x-ray CT.  In 

radionuclide imaging, it is called emission tomography (ET). The method that uses the 

rotating gamma camera(s) to detect photons is called the single photon ET, or SPET. In 

positron emission tomography, or PET, rings of detectors detect the annihilation 

radiation emitted from a patient injected with a positron emitting radionuclide. A further 

form of tomography, which is known as magnetic resonance or MR, uses entirely 

different physical phenomena. MR is based on the principles of nuclear magnetic 

resonance, a spectroscopic technique used by scientists to obtain microscopic chemical 

and physical information about molecules. A transverse slice for CT, MR and SPET is 

depicted in Figure 2.1. In the remainder of this section, physical principles underlying 

each modality are described briefly and their clinical applications are outlined.  
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1.2.1 Anatomical imaging 

Because x-ray CT and MR produce high resolution images with excellent depiction of 

body tissues, these two image modalities have long been the choice for examination of 

anatomical information. As the techniques, technology and computer processing power 

have improved, their applications have multiplied. 

 
X-ray computed tomography 

X-ray computed tomography is a medical imaging technique that produces image of 

transaxial planes through a body. When compared to the conventional 2D radiograph, 

which is a many planes superimposed on each other, a CT image exhibits significantly 

improvement in contrast (i.e. the ability to distinguish an object with its background). In 

x-ray radiography and in CT, the incident x-rays are a form of electromagnetic radiation 

with a very short wavelength. An x-ray source, such as a rotating anode x-ray tube, is 

often used to generate x-rays by bombarding a piece of target metal with high-speed 

electrons. The electrons are produced by thermionic emission from a hot cathode. They 

are accelerated by a high voltage potential and collide with the target.  The x-ray tube 

used in CT is typically operated in the range of 100 kV to 150 kV. The incident x-ray 

beam is attenuated by interaction of the x-ray photons with body tissue. Attenuation of 

x-rays is most easily explained using a narrow (pencil) beam.  Assuming a pencil beam 

of monoenergetic x-rays, the intensity I of the beam after transmission through a small 

volume of tissue of infinitesimal thickness δxi and uniform attenuation coefficient µi is 

given by 

ixioeII δµ−= , (1.1) 

where Io is the incident x-ray intensity. The attenuation depends on the composition of 

the material. Comparing two types of body tissue e.g. muscle and bone, shows the 

difference well. In general, four processes (coherent scatter, photoelectric effect, 

Compton scatter and pair production1) can result in loss of energy from x-ray beams in 

tissue. A detailed description of each process is outside the scope of this thesis. 

Interested readers may refer to [7] for detailed description of these processes. 

 

In a radiograph, the 3D structure of the body is compressed into a 2D image. In this case, 

overlying structures within the body are superimposed. Because of the superposition, 

                                                 
1 Does not occur at diagnostic x-ray energy levels. 
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radiographs do not exhibit high contrast and depth information. Bone and air cavities 

are easily seen but very little contrast is obtained in soft tissue regions, e.g. a blood 

vessel surrounded by muscles will not be seen. X-ray computed tomography produces 

an image of a 2D slice through the body, thus reducing the problem of superposition to 

the small thickness of the slice. The original CT scanners generated a pencil shaped 

narrow beam of x-rays from an x-ray tube. An array of several hundred x-ray detectors, 

are mounted so as to receive the beam as the tube rotates. The x-ray detectors in a CT 

scanner do not directly produce an image. The detector measures x-ray intensity 

transmitted through the chosen slice from many directions. Figure 1.2 depicts a simple 

CT scanner and illustrates acquisition of a large number of projections taken at different 

angles as the x-ray tube rotates around the patient.  

 
Figure 1.2: An x-ray computed tomography unit. As the x-ray tube rotates, a fan-beam of x-rays is 
scanned across the patient to acquire a projection that is made up of a large number of rays transmitted 
through the body. (Image courtesy of Curriculum Development Institute of Hong Kong) 
 

  

Figure 1.3: A schematics diagram to show a single projection of CT scan. An intensity profile (middle) 
and an attenuation profile (right) are illustrated. 
 

The emerging (pencil) monoenergetic x-ray beam will have been attenuated by n voxels, 

each of thickness δx, where the attenuation in each voxel is given by Equation (1.1).  

The combined attenuation is expressed as 

∑
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where i is an index for voxels in the path of the x-rays. If, as is often the case, the path 

length through each voxel is the same, the logarithm of the relative intensity is 

proportional to the sum of the attenuation coefficients along the path through the body, 

hence the term raysum. A single parallel projection is shown in Figure 1.3 to illustrate 

schematically an intensity profile and its corresponding attenuation profile using 

Equation (1.2).  Modern CT scanners use a fan-beam geometry but the parallel beam is 

shown here for the sake of simplicity. The CT image is reconstructed mathematically 

(usually using filtered back projection as discussed in Subsection 5.4.1) from a large 

number of projections of a chosen plane. Each projection is made up of a large number 

of raysums, acquired electronically using a linear array of solid-state detectors and an x-

ray source at different angles around the patient [8]. The in-plane resolution is typically 

0.5-2.0 mm and slice thickness is typically 1-10 mm [9]. In a CT image (Figure 1.4), the 

value of each voxel is related to the local linear attenuation coefficient. The measured 

attenuation coefficients are normally converted to CT numbers, which express the 

attenuation coefficients relative to the attenuation coefficient of water. Due to its high 

contrast and spatial resolution, CT is used routinely in radiology for a wide range of 

clinical applications that include diagnosis, surgical planning [10,11], prosthesis design 

[12], stereotactic biopsy planning [13,14] and radiotherapy treatment planning [15,16].  

 
Figure 1.4: A typical CT scan of the thorax region of a body showing high contrast and resolution.  

 

Magnetic resonance imaging  

In contrast to x-ray CT using ionizing radiation to produce images of the inside of the 

human body, MR is free of the hazards associate with ionizing radiation. Over the past 

twenty years, MR has become one of the most important imaging modalities. Reviews 

of the relevant magnetic resonance physics and MR imaging principles can be found in 

[7,17,18,19,20]. According to classical electromagnetism, a spinning sphere of charge 
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generates a magnetic dipole moment like a microscopic bar magnet. The hydrogen 

nucleus exhibits a non-zero spin.  In a unit volume element corresponding to a voxel of 

an image, there are many protons, each with an associated magnetic dipole moment, and 

the net macroscopic magnetization M of the volume element is the vector sum of the 

individual dipole moments. In the absence of an external magnetic field, the spatial 

orientation of each dipole moment is random and hence M = 0. Because of the very 

high water content in the human body, hydrogen is the most common element in tissues 

and gives rise to a relatively strong MR signal. For that reason, hydrogen is the 

mainstay of MR imaging. When a static magnetic field (main field) Bo is applied, the 

random microscopic oriented dipoles respond to the force of the external magnetic field 

that are exerted on them by trying to align with it.  However, the alignment is not 

instantaneous. It takes a finite time to overcome loss of energy from the spin system due 

to thermal randomization. When Bo (along the z-axis) is turned on, the net 

magnetization M takes time to grow from zero towards its full longitudinal 

magnetization value Mo along the z-axis. The net bulk magnetization M are generally 

not aligned exactly with the external main field Bo, but rather make an angle, and will 

be forced into a precessional motion. This is analogous to the wobbling of a top as it 

spins under the influence of the earth’s gravitational force. The precession motion of M 

about Bo can be described by oγ
dt

td BMM
×=

)( . The precession frequency, known as 

the Larmor frequency, is proportional to Bo, oo γB=ω . The constant of proportionality 

is the so-called gyromagnetic ratio γ, which is characteristic of each nuclear species. 

Longitudinal magnetization along the main magnetic field cannot be measured directly. 

If a radio frequency (RF) field B1, tuned to the Larmor frequency, is applied in a 

direction perpendicular to the main field Bo, it will cause the net magnetization M to 

nutate away from equilibrium orientation along the z-axis towards the transverse plane 

(Figure 1.5). When the B1 field is switched off, i.e. at the end of the RF pulse, M will 

continue to precess about the direction of Bo. This precessing magnetization will induce 

an oscillating signal (known as free induction decay FID signal) in a receiver coil, 

resonant at oω , situated in the transverse plane. This is the signal detected in MR. In a 

simple model, MR image is a map of the transverse magnetization at a given time by the 

use of RF excitation pulse [18].   
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Figure 1.5: Schematic diagrams to show radio frequency field and MR signal received by the coils. (Left) 
A radio frequency field B1 rotating at the Larmor frequency (in resonance) produces a transverse 
magnetization. Note that alignment of the individual magnetization moments creates a net macroscopic 
magnetization M pointing along the main field Bo. (Middle) If the duration of the B1 field is sufficient to 
nutate the magnetization M by a 90° angle, the entire magnetization ends up in the transverse plane. 
(Right) Following the radio frequency pulse, the transverse magnetization Mxy rotates about the axis of 
the main field. An RF signal in the receiver coil situated in the transverse plane will be induced (free 
induction decay signal) by electromagnetic induction as flux is changing across the coil by the rotational 
motion of Mxy.  
 

In general, the amplitude and duration of the RF excitation pulse can be tailored to 

nutate M through specific angles such as 90° pulse, 180° inversion pulse or 180° 

refocusing pulse. In reality, the precessing M decays gradually via two relaxation 

processes, namely, spin-lattice and spin-spin relaxation, which are characterized by the 

relaxation time T1, and T2, respectively. Both phenomena cause energy loss from the 

spin system to the surrounding lattice or exchange of energy between spins. The 

dynamics of net magnetization can be described by the following two equations for the 

transverse Mxy and longitudinal Mz of the macroscopic magnetization at resonance [21], 

2T
t

xy e
−

= AM  

1T
t

oz e
−

−= CMM , 

 

where Mo denotes the full longitudinal magnetization value along the z-axis, A and C 

are constants that depend on the initial conditions at the time immediately after the RF 

pulse excitation. Thus the particular type of pulse sequence employed governs these two 

constants. It is worth noting that MR contrast depends on the relaxation times T1 and T2 

in various tissues rather than spin density [22].  

 

To obtain spatial information during image acquisition, magnetic field gradients are 

superimposed on the static magnetic field. The purpose of these gradients is to 

specifically relate signal frequency (or phase) to the spatial coordinates in which the net 
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magnetization of a particular voxel of tissue resides. The field gradient helps to 

differentiate spatial location of MR signals obtained by the receiver coils. There are 

different approaches to MR acquisition; however, three steps are generally involved: 

excitation, phase encoding and readout.  In a typical process, the excitation step selects 

an image slice. A 90° RF pulse is applied to the body in the presence of a field gradient 

(along z-axis) orthogonal to the slice plane. Within the slice, the RF excitation pulse 

will selectively nutate M from along the z-axis to the transverse plane. It should be 

noted that the RF pulse has a narrow bandwidth ω∆ . A thin slice perpendicular to the 

field gradient of thickness zGγ/ω∆=∆z  is selectively excited. Because the field 

gradient can have any direction, a slice of any desired orientation can be imaged. in the 

phase encoding step, after the slice-selection RF pulse, a gradient Gy is applied causing 

the nuclei to precess at frequencies which depend on their location with respect to the y-

coordinate. At the end of this step, the net magnetization M in different locations builds 

up a phase angle that is uniquely related to the position of the voxels along the y-axis. 

The readout step follows the removal of the gradient Gy.  A readout gradient Gx is 

applied to create a distribution of frequencies along the x-axis. Depending on the 

location of the net magnetization M along the x-axis, the precessional frequencies of M 

vary and are determined by the field gradient Gx. This precessing magnetization 

undergoes decay and produces the FID signal in a receiver coil. The phase encoding and 

the readout steps provide data in the Fourier space.  The information gathered from one 

such cycle (excitation, phase-encoding, readout) is not sufficient to reconstruct an image 

slice and the cycle has to be repeated with a different setting of the field gradient Gy. 

For a matrix size of 128×128, the required number of cycles or FID signals is 128, each 

corresponding to a different value of the phase encoding gradient. Each FID signal 

detected by the receiver coil is digitized into 128 samples and stored in the memory of 

the computer. By applying a field gradient for a short time between excitation and 

signal acquisition, and repeating the process a number of times with different 

amplitudes of Gy, it is possible to generate a 2D phase encoded MR data in the 2D 

spatial frequency domain [18,23]. The image can be reconstructed by taking a 2D 

Fourier transform of the encoded MR data. Alternatively, gradient are set to provide 

projection data (Figure 1.6) and the image is reconstructed by filtered back projection 

[24].  
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Figure 1.6: If a field gradient G is applied during MR signal acquisition, the resulting signal will be 
frequency encoded in the direction of the gradient. The Fourier transform of this signal will produce a 
projection through the object at right angles to the gradient direction. By varying the direction of G, 
multiple projections are obtained and the image can be reconstructed by filtered back projection. 

 

 
Figure 1.7: A typical MR T2-weighted image. There is good soft tissue contrast. Note the intense signal 
from the gray matter around the surface of the brain and from white, grey matter, CSF and 
skin/epithelium. Abnormal tissue (a large tumour in the left hemisphere) is clearly visible. Note the very 
weak signal (dark area) is from the bone (skull), which has the lowest water content of all tissues.   
 

Unlike x-ray CT, MR can image slices in any desired plane by an appropriate use of 

gradients. Many different images may be obtained by varying the RF/gradient pulse 

sequence, for example, in order to change the T1 and T2 weighting. A single slice of a 

typical image consists of 256×256 or, increasingly, 512×512 voxels. The in-plane 

resolution is typically 0.2-2.0 mm with slice thickness of 1-5 mm. One of the most 

important applications of MR is to investigate the brain and spinal cord, where 

abnormal tissue can be precisely identified (Figure 1.7).  Because of its excellent 

depiction of soft tissues, MR is used to examine suspected tumours, multiple sclerosis 

[25,26] and degenerative diseases. Cardiac MR and abdominal imaging are areas of 

increasing importance. A paramagnetic contrast agent [27,28] can be employed to 

highlight blood flow to investigate, for example, coronary artery disease [29]. MR can 

also be used to investigate brain function [25,30]. Any brain activity requires energy, 

resulting in an increased oxygenated blood flow to that area which allows this area to be 

identified. However, MR is usually employed as an anatomical modality. 
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1.2.2 Functional imaging based on radionuclide emission 

The essential idea of radionuclide imaging is to use a radioactive substance as a tracer to 

study a particular physiological process in the body. Radionuclide imaging can be used 

to estimate the function of an organ, monitor chemical transportation in the body or 

simply examine the spatial distribution of a labeled compound through the body. The 

ability to follow the movement of radioactive materials through the body was helped by 

Hal Anger’s invention of the gamma camera in 1958 [31]. Further major advances in 

the early 1970s occurred as image reconstruction algorithms, initially developed for 

computed x-ray tomography, were applied to nuclear medicine studies and produced 

transaxial slices of the activity distribution in the body [32]. Two main techniques have 

been developed, single photon emission tomography (SPET) and positron emission 

tomography (PET). SPET and PET make use of a wide variety of radioactive isotopes 

and the chemicals that carry them to particular cells or tissues in the body. For example, 

radionuclides can be used to assess the efficiency of the heart as a pump, the rate at 

which the kidneys process blood and eject urine to the bladder or the blood perfusion in 

brain. These functional studies indicate the presence or absence of disease, and whether 

or not medication or a surgical intervention is indicated. The efficacy of such 

intervention or treatment can also be validated by follow-up scans.  

 

Single photon emission tomography 

In SPET, radionuclides that emit single photons are used. The typical energy of the 

photons used for SPET lies in the range of roughly 100 to 400 keV. Gamma photons 

from radionuclides are detected by a gamma camera taking a series of planar images at 

successive angles around the patient. Each planar image is analogous to a plain x-ray 

film. Figure 1.8 shows a single head gamma camera acquiring data from a thorax 

phantom and the corresponding projective planar image (view). If many views are taken 

from different angles around the patient, it is possible to reconstruct the tracer 

distribution in 3D [33].  A typical image data set contains multiple slices, each slice 

consisting of 64×64 or, increasingly, 128×128 pixels. The typical slice thickness is 4-8 

mm. These images demonstrate the concentration of the radiopharmaceutical taken up 

or excreted by various organs, typically over a time span of several minutes.  The image 

data can be used as a diagnostic indicator of the patient’s well-being. The ideal 

radiopharmaceutical must be taken up rapidly, completely and specifically by only the 

target organ or tissue under investigation. Therefore, the pharmaceutical used to image 
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blood flow in the heart will be different to that used to image the brain or kidneys, but 

both may be labeled with the same radioactive marker.  

 
Figure 1.8: A single-head SPET camera is used to scan a thorax phantom (left). A projection acquired by 
the camera (top right) and a transverse slice of the reconstructed image with the torso and cardiac insert 
(bright ring in the bottom right image) is shown. The projection and the reconstructed image is shown in 
reversed colour (Image courtesy of Westmead Hospital) 
 

The radioactive markers most commonly used are technetium-99m (99mTc) with gamma 

photon energy of 140 keV, and iodine-123 with gamma photon energy of 160 keV. 

Various phosphate compounds can be tagged with 99mTc to provide an image of the 

skeleton for studying the function of the bone. Red blood cells can be labeled with 
99mTc, providing opportunities for monitoring cardiac function. Gallium-67 citrate 

uptake provides information on lymphoma or infection. SPET is a useful tool for the 

management of patients with stroke, epilepsy, recurrent brain neoplasms, and some 

forms of dementia [34]. Classic problems in SPET involve improving sensitivity, and 

correcting for attenuation, scattered radiation and distance-dependent resolution 

[35,36,37,38]. A more detailed discussion of SPET acquisition and reconstruction will 

be presented in chapter 5. A typical Gallium-67 SPET uptake to detect liver 

hepatoblastoma and its corresponding MR image is shown in the Figure 1.9. The image 

illustrates the difficulty in delineating the “functional area” accurately because of poor 

spatial resolution and low uptake in some tissues of the target region. 
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Figure 1.9: A transverse slice of a MR (left) and Gallium-67 SPET (right) in the abdominal region is 
shown. Note the poor spatial resolution of SPET compared to MR. 
  

Positron emission tomography 

In PET, the radionuclide used for labeling is a positron emitter rather than a gamma 

emitter [39,40]. The emitted positrons combine with electrons to annihilate each other, 

resulting in the emission of two gamma photons, each of energy close to 511 keV, that 

travel in opposite directions (Figure 1.10). Since each event results in two photons 

traveling in opposite directions, the detection of these photons in coincidence on two 

opposing detectors identifies the line containing the location of the annihilation event, 

without the need for conventional collimation (Figure 1.11). The data can be reordered 

into projections and reconstructed in the same way as SPET data [41,42,43]. Examples 

of positron emitters include oxygen-15 and fluorine-18. The most widely used PET 

tracer is 18F-fluoro-deoxyglucose (FDG) (Figure 1.12). This substance follows a part of 

the glucose metabolic chain but then is trapped so that the activity distribution reflects 

the metabolic rate of glucose. Since most tumours have an elevated glucose metabolic 

rate, FDG is useful in localising both primary tumours and metastases [39,40]. PET is 

also used to diagnose heart disease, and it is often used to investigate the function of the 

brain, providing information about dementia, stroke and epilepsy [44, 45]. 

 
Figure 1.10: Positron emission and annihilation produces two anti-parallel 511 keV photons. 
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Figure 1.11: The detector consists of a series of rings of detector elements that register a count whenever 
a photon falls on it. If pulses from opposing detector elements coincide, it is assumed that the registered 
photons arose from the same annihilation event. 
 

 
Figure 1.12: A typical CT (left) and 18F-fluoro-deoxyglucose (FDG) PET (right) scan of a transverse 
slice through the abdominal region of a body. (Images courtesy of Children Hospital, Westmead) 
 

1.3 Why medical image registration? 

At the present stage, clinicians can employ a vast array of specialized state-of-the-art 

instruments to acquire images for the use of medical diagnosis. Some of these image 

modalities include computed tomography (CT), magnetic resonance imaging (MR), 

positron emission tomography (PET), single photon emission tomography (SPET), 

functional magnetic resonance imaging (fMR) and ultrasound imaging (US). Different 

imaging techniques rely on different physical principles producing images of diverse  

contrast, signal-to-noise ratio and resolution. Some images (e.g. CT, MR) are 

intrinsically able to yield high resolution anatomical details and have less noise relative 

to other images (e.g. SPET, PET). The need for fusion comes primarily from the fact 

that images from different modalities will provide better diagnosis, management and 

treatment of patients. For example, PET and SPET provide mainly functional 
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information and lack anatomic details, and vice versa for CT and MR. Here image 

fusion helps to associate these functional activity to specific anatomical region. Image 

fusion is also valuable for longitudinal study. It helps to monitor the growth or change 

in an organ for certain pathology when images are acquired for the same body region at 

different time instances. In certain circumstances, information derived from different 

images is utilized to provide navigational aids for image-guided surgery [46]. In general 

the integration of images from two different scans is not trivial since the relationship 

among them and to the scene coordinate system are different.  These give impetus to the 

needs of image fusion, which drive the development of registration to represent 

information pertaining to the same object system of study in a common coordinate 

system.  

 

Since medical image fusion has emerged as a particularly active field, there has been 

much interest in the development of image registration [47,48,49,50]. This has resulted 

in applications of registration techniques, which help to detect, locate, monitor and 

measure pathological and other physical changes in patients. The registration of 

functional (SPET, PET) and anatomical (MR, CT) images permits correlation of 

changes in metabolism, blood flow, and other functional measurements with regional 

anatomy and morphological changes, and is important for diagnosis, surgery and 

therapy [49,51,52]. Due to the high sensitivity and specificity in detecting cancer 

comparing to CT and MR, PET and SPET scans can distinguish malignant from benign 

lesions and can identify areas of cancerous involvement. Utilisation of high resolution 

anatomic images to better localise identified lesions has a significant impact on patient 

management [53,54]. The registered images can be used to aid image-guided treatments 

and monitor progress pre-, intra-, and post-therapy [55]. An introduction to the 

terminology of image registration, classification of registration techniques and a survey 

of clinical applications can be found in [47,49,50,56]. Some reported clinical 

applications are given below briefly.  

 

By far the most widely used applications of image registration are in the brain. One 

particular example is the ictal to inter-ictal 99mTc-HMPAO SPECT image registration 

which can be used to define the seizure focus in the diagnosis of focal epilepsy [57, 

58,59]. With the incorporation of the subtracted ictal and interictal images, image-

guided surgery has been developed to resect these epileptic foci with reference to the 
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registered MR [60]. Other examples include the studies to detect brain functional 

changes in Alzheimer's disease compared to normal data [61,62,63,64]. In brain tumors, 

PET-MR registration is clinically useful for disease staging and therapy control. It 

allows differentiation of tumor recurrence from scar-tissue, fibrosis and necrosis that 

may result from therapy [65,66]. Others have suggested using CT-MR brain registration 

to plan skull base neurosurgery, staging nasopharyngeal carcinoma and radiation 

therapy planning [67,68,69,70,71,72].  

 

A growing number of papers focus on registration outside the head. Mutic et al. [73] 

suggest the use of multimodality image registration as quality assurance for conformal 

3D treatment planning in the neck as well as in the head. Other applications include 

image fusion of xenon-133 SPET ventilation studies and chest CT images to assess the 

anatomic extent and location of impaired ventilation. Munley et al. [74] reported that 

pre-radiotherapy SPET and PET refine treatment planning when functional data are 

available to assist in radiation field design. Several papers demonstrate the use of 

registration to improve understanding of specific pathophysiology. Somer et al. [75] 

used PET-MR image registration to study soft tissue sarcoma in the knee, thigh, groin, 

flank or back. Forster et al. [76] registered CT and SPET to study neuroendocrine 

abdominal tumours with liver metastases. Other authors registered PET and CT images 

of the thorax [77,78], aligned SPET with CT scans in patients with metastatic thyroid 

carcinoma to identify patients with suspected recurrence of thyroid cancer [79,80], or 

matched dual-isotope SPET with CT images of endocrine carcinomas in the thoracic-

abdominal region [81]. A number of research groups applied a cardiac perfusion image 

(SPET or PET) registration with a normal template to determine the abnormalities in the 

heart [64,82,83,84]. Fei et al. [55] used registration to assess the feasibility for 

interventional MR-guided treatment of prostate cancer.  

 

Examples of image registration are also found in other image processing applications, 

such as partial volume correction, image reconstruction and motion correction [49].  

Due to their coarse resolution, functional images manifest significant partial volume 

effects. There is an inter-regional spillover of counts into adjacent structures, which 

leads to a reduction of the true activity signal within identified regions [85]. Anatomical 

MR images can be used to correct this partial volume effect. One approach is to use a 

segmented MR image to simulate a PET or SPET image. After generating a simulated 
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"noise free" image from MR and registering it to the measured functional image data, a 

multiplicative correction of intensity can be performed [85,86,87]. Another use of 

registration is in the correction for heart motion. This motion induces blurring during 

PET and SPET studies. Correction of myocardial studies has been reported to reduce 

artefactual perfusion defects [88,89,90]. Registration has been applied to correct for 

head motion to minimize motion artefacts in the reconstruction. One approach is to 

reorient the reconstructed image in 3D until the alignment of the constructed and 

measured projection is optimal [91,92]. The head motion correction can be extended to 

image-guided surgical procedures that rely on continuous on-line tracking of the 

patient's head during surgery [93]. Image registration can also be used to refine SPET 

resolution using Bayesian reconstruction, where a registered MR study serves as a prior. 

Smoothing in the reconstruction is constrained to within anatomical boundaries of the 

MR prior with the aim of improving the reconstructed resolution [94,95,96]. The list of 

applications is by no means complete. Interested readers are referred to [49].   

 

1.4 Problem statement 

To combine different scans of the patient is a non-trivial task because image 

information cannot be integrated directly. The patient cannot be relied on to assume 

exactly the same pose at different times, and possibly in different scanners. Furthermore, 

images can be acquired for the same patients at different time instance in longitudinal 

study. The aim of image registration, also known as co-registration, alignment and 

matching, is to calculate the best geometric transformation between corresponding 

images. Multimodality image registration refers to spatial matching of two images from 

different imaging modalities (Figure 1.13).  The main purpose of this thesis is the 

registration of 3D anatomical and functional images. When correctly registered, each 

location in the functional image will reflect physiological information about the 

corresponding location in the anatomical image. In general, image registration involves 

rotating, translating, scaling and possibly warping of image grids. Beside the 

misalignment between scans, there are specific difficulties attributed to the 

characteristics of functional images. One challenge is the large difference in image 

resolution between functional and anatomical modalities. PET and SPET are usually 

much more noisy due to the relatively small photon flux.  Furthermore, these images 

suffer modality specific image degradation due to the limited resolution (e.g. partial 

volume effect) and artefacts because of motion (e.g. respiration and cardiac motion). 
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Another challenge is the difference of intensity distribution between images. The ideal 

radioactive tracer for nuclear medicine targets only one particular type of tumour or 

tissue with little or no uptake in other tissues. Such local specific distributions are not 

well suited to registration because of insufficient information to constrain the alignment 

of images. A further major challenge is that different organs are misaligned in different 

ways.  For example, rotational misalignment in spine between images was reported in 

[81], and upward and outward misregistration was found in the thoracic region by [97]. 

Image registration may require non-rigid transformation to align images because of 

local misalignment of internal organs due to the change in body posture or changes in 

the state of internal organs (e.g. empty versus full bladder). Thus a robust and accurate 

registration procedure is necessary to tackle these challenges.  

 
Figure 1.13: Registration of a functional and an anatomical image enables image fusion.  Additionally, 
registration with a brain atlas allows boundaries of brain regions to be delineated on the clinical data. 
(Image courtesy of Dr. L. Thurfjell) 

 
1.5 Thesis overview 

This thesis describes a study of the application of joint intensity algorithms to the 

registration of emission tomography and anatomical images. The emission tomography 

images are acquired by targeting appropriate radiopharmaceuticals in SPET or PET to 

extract specific functional information. CT and MR provide anatomical images. In this 

thesis, work on rigid body medical image registration is described first, followed by 

non-rigid registration.  

 18



A review of medical image registration literature is given in Chapter 2. A generic 

structure of the registration process is invoked, incorporating coordinate transformation, 

intensity interpolation, similarity measures and optimization, in order to describe and 

compare different registration methods.  The second part of Chapter 2 gives an 

overview of different validation techniques that can be used to assess the accuracy, 

robustness and precision of a registration algorithm. A theoretical discussion of joint 

intensity histogram techniques, including entropy-based and variance-based approaches 

can be found in Chapter 3. Based on the assertion that an image can be taken as a 

random variable, mutual information, normalized mutual information and correlation 

ratio are developed. As an extension of the correlation ratio, a symmetrical correlation 

ratio is proposed. The mutual information and normalized mutual information 

techniques use entropy as a means to characterize dispersion of intensity distribution in 

the joint histogram. The correlation ratio and symmetrical correlation ratio are variance-

based methods that rely on minimizing the variability of intensity distribution of one 

image given the observation of intensity in the other image.   

 

In Chapter 4, the symmetrical correlation ratio is compared to other joint histogram 

techniques in the context of registration of medical images constrained to rigid body 

transformations. A quantitative evaluation is included in this chapter. Because synthetic 

misalignment can only simulate real misregistration in a limited sense, clinical data of 

real misalignment obtained from 12 patients using external fiducial markers are also 

used for the evaluation of registration accuracy. 

 

Chapter 5 describes the application of a torso phantom to simulate the specific 

degradation, artefacts and noise in SPET. The segmented digital phantom simulates a 

distribution of a particular radioactive marker in a clinical SPET image. Furthermore, 

non-uniform attenuation and depth dependent resolution are incorporated in the 

simulated SPET. Two popular reconstructions, filter-back projection and accelerated 

statistical reconstruction [98], are used to simulate various SPET studies from the digital 

phantom to validate registration methods. 

 

Chapter 6 is an extension of Chapter 5 in that the digital phantom is used as a tool to 

analyse registration issues in thoracic-abdominal region. Several aspects, which 

potentially influence accuracy, are controlled in the registration process to investigate 
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their effect on the performance of registration. These aspects include the choice of the 

reconstruction algorithm, attenuation compensation, image noise, pre-registration 

processing, and field of view. Several clinical examples are presented to show the 

feasibility of the proposed approach. The registered images demonstrate improved 

localization of functional abnormalities in relation to the anatomy. 

 

Chapter 7 gives the main theoretical description of a novel non-rigid registration. Local 

misalignments between images are recovered by sub-image block registration. This 

provides a displacement vector field to warp one image to the other image. This chapter 

also investigates optimum setting of different parameters such that the computational 

cost is minimized without sacrificing accuracy of registration.  Since it is 

computationally too expensive to estimate the displacement vector at each voxel, sparse 

sampling together with a multi-level approach is used to accelerate the process.  

 

Chapter 8 presents a quantitative validation of intra- and inter-modality registration in 

brain and non-brain regions. In most cases, “ground truth” is difficult to determine. A 

realistic simulation based on actual clinical data is used to assess the accuracy of 

registration. In this chapter, the recovery of a known displacement field is evaluated on 

a point-by-point basis and the mean difference between the derived and actual 

displacement fields calculated. The validation study is described for MR-MR T1 images, 

MR-T2-proton density images, and MR-SPET images in the brain region, as well as CT-

SPET images in the thoracic-abdominal region.  

 

The final chapter summarizes the findings of the investigations described in this thesis 

and gives suggestions for further work.  
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Chapter 2 
 

Review of medical image registration 
 
2.1 Introduction 

Medical imaging plays a vital role in clinical diagnosis, as well as planning and 

evaluation of therapy. Several imaging modalities are in widespread use in current 

clinical practice. They can be divided broadly into anatomical and functional modalities. 

Anatomical modalities, such as x-ray computed tomography (CT), magnetic resonance 

(MR) imaging and ultrasound imaging, show detailed anatomical structure. Functional 

modalities, including single photon emission tomography (SPET) and positron emission 

tomography (PET) as well as functional MR (fMR), depict the physiological and 

pathological status of tissues or organs. The appearance of some of these images can be 

seen in Figure 2.1. Images gained from anatomical and functional modalities can 

provide complementary information for diagnosis, radiation therapy planning, surgical 

guidance, and monitoring of treatment. Integration of these images is often desired. For 

example, in radiotherapy treatment planning, a CT scan is needed for dose distribution 

calculations while the contours of the target lesion are often best outlined on MR 

images. In nuclear medicine, localization of dysfunctional areas is helpful in planning 

surgery for focal epilepsy. A critical step in this process is the spatial alignment of 

images.  

 
Figure 2.1: Examples of clinical images showing transverse sections of the brain. CT, MR and SPET. 
(from left to right) 
 

There are numerous ways to categorize image registration methods. Brown [99] 

surveyed registration in the context of remote sensing, computer vision and medical 

imaging. Van den Elsen et al. [56] compiled an overview of medical image registration 

and, more recently, Maintz and Viergever [47] comprehensively surveyed and 
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systematically classified medical image registration methods. Lester and Arridge [100] 

discussed elastic image registration in detail. Hill et al. [48] reviewed registration 

algorithms and provided an account of the development of voxel-based registration.  A 

number of recent reviews focused on particular areas of application. Hawkes [101] 

focused on registration of anatomical images in diagnostic radiology and their clinical 

application. Hutton et al. [49,102] reviewed image registration and its applications in 

the context of nuclear medicine.  More recently, Pluim et al. [50] gave a comprehensive 

survey of image registration based on mutual information as an introduction to those 

new to the field.  

 

2.1.1   Classes of application 

Applications of medical image registration can be classified according to the subject 

and the image modality. Intrasubject registration is necessary for comparison of serial 

studies of the same patient, but intersubject registration can also be of interest, 

particularly in medical research. The images can be of the same kind (intramodality) or 

acquired by different techniques (intermodality). Following Maintz and Viergever [47] 

and Hutton et al. [49], four basic classes of application are distinguished.  

 

Intra-subject, intra-modality applications include treatment verification by comparison 

of pre- and post-intervention images, comparison of ictal and inter-ictal SPET images in 

epileptic patients, time series MR or CT scans to monitor growth of tumours, and fMR 

time sequences. Registration of CT (x-ray attenuation) and MR (tumour delineation) 

will benefit radiotherapy treatment planning. Another example is the registration of a 

functional study (SPET or PET) with an anatomical scan (MR or CT) to align 

anatomical and functional data. This allows localization of increased accumulation of a 

radiopharmaceutical within specific anatomic structures. Examples of intersubject, 

intramodality applications include measurements of cross-population variability 

[103,104] using statistical parametric mapping (SPM) [105,106,107,108], and matching 

of an individual subject’s image to an anatomical reference atlas [109]. Finally, 

alignment of images of different subjects across different modalities  (intersubject, 

intermodality) is required in extracting group characteristics of neuronal function, as 

related to an anatomical framework. 
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2.1.2  Dimensionality 

The domain of the image is typically 3D (CT, MR, SPECT, PET) but some modalities 

are intrinsically 2D (x-ray projection imaging, planar radionuclide scans, conventional 

ultrasound imaging).  However, anatomical structures are intrinsically 3D so that even 

problems posed as 2D-2D may require determination of 3D transformation for 

successful registration.  Registration in serial digital angiography is a 2D-2D image 

alignment. With this technique, a sequence of 2D digital x-ray projection images is 

acquired to show the passage of injected contrast material through the vessels of interest.  

Background structures are largely removed by subtracting an image acquired prior to 

injection. The subtraction is made ineffective by patient motion. To correct for the 

motion, a 2D geometrical transformation that accounts for the projective effects of a 3D 

transformation is required. The registration is difficult since the projection geometry is 

unknown. Interested readers may refer to Meijering et al. [110] for a comprehensive 

review of motion correction in digital subtraction angiography.  

 

The 2D-3D registration has been applied to correct for patient motion in SPET 

reconstruction [91,92,111]. These algorithms seek a projective transformation of the 3D 

image that comes closest to the observed projection data. Another example is the 

registration of a portal image to a CT image to verify patient positioning for 

radiotherapy [112,113,114]. Penney et al. [115] compared algorithms that register a 2D 

fluoroscope image to a CT volume. This thesis is primarily concerned with 3D-3D 

image registration.  In most instances, the term ”image” will refer to a full 3D image 

data set. 

 

2.1.3 Generic algorithm for image registration  

The aim of image registration is to determine a spatial transformation that aligns an 

(floating) image to a second (reference) image to obtain the best correspondence. A 

schematic diagram in Figure 2.2 is used to illustrate some major steps for rigid-body 

images registration. Points in xyz space can be expressed as vectors of homogeneous 

coordinates where they are represented as a four-element column vector of three 

coordinates, for example: x ≡ (x1, x2, x3, 1)T. One advantage of this approach is that 

translation, which normally must be expressed as an addition, can be represented as a 

matrix multiplication. These position vectors are translated, rotated, scaled, and skewed 

by multiplying them by rigid-body transformation matrices. Thus, to express a 
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transformation that includes translations as a single transformation matrix Q, the 

position vector will be expressed in homogeneous coordinates (x1, x2, x3, 1)T and Q will 

be a 4×4 matrix. Let a rigid-body transformation T be described by a mapping of image 

A to A′, , where the transformation is parameterized by θ. In general, this 

can comprise both spatial and intensity changes but here only global geometrical 

transformations, 

'AAT →=θ

)A()A(T)(A' θ xxx Q== are considered.  

Figure 2.2: A general scheme for image registration. At each cycle of iteration, a measure of similarity 
between the transformed 3D floating image and the 3D reference image is computed until a global 
maximum is reached. 
 

Registration algorithms aim to find a transformation that maximizes similarity between 

the transformed floating image TθA and the reference image B. Let Φ denotes the 

similarity measure. Then the outcome of the registration algorithm is given 

by . The many reported image registration algorithms have 

certain features in common. In general, four main components can be identified: the 

similarity measure, the spatial transformation, interpolation, and optimization. The 

similarity measure determines the “goodness” of alignment between images. The 

transformation performs the spatial alignment. Interpolation fills in the image values at 

required points. Optimization usually follows a search strategy in a least-squares [116] 

)BA,(T max argT̂
T

θΦ=θ
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fitting of two 3D points sets to determine the transformation for the maximum similarity 

between images. When automatic or semi-automatic registration algorithms use a search 

strategy, they often proceed by iteratively adjusting the spatial transformation 

parameters until a global similarity measure computed between the transformed floating 

image and the corresponding reference image reaches maximum or another stopping 

criterion is satisfied. A detailed discussion of the various elements of the registration 

algorithm follows. 

 
2.2 Similarity measures 

All automatic and semi-automatic registration algorithms require an explicit similarity 

measure to quantify the alignment between the two images. When the two images are 

optimally registered over the overlapping volume, the similarity measure is expected to 

reach a maximum value. In clinical applications, the true registration is unknown and it 

is expected that the registration results will depend on the image modality, image noise, 

distortion (global or local), and the body part (brain or non-brain). Other factors such as 

the dimension of the parametric space, as well as the behavior and capture range of the 

similarity measure, also affect the accuracy and robustness of registration. 

Implementation aspects of the algorithm, including the choice of techniques for 

transformation, interpolation and optimization, will also affect the performance of 

registration. Current registration algorithms can be divided broadly into two approaches: 

feature-based and voxel-based.  All similarity measures can be calculated globally (on 

the entire image) or locally (on a subimage). The choice between these two approaches 

is based on image characteristics as well as the context of the application.  

 

2.2.1 Feature-based measures 

It is sometimes possible to extract suitable features from the two images to be registered. 

These extracted features can be points, edges or surfaces, yielding progressively more 

information from the image data for the registration process. Because these features 

contain relatively few data points, registration is, in general, faster than the voxel-based 

approach. The similarity measure would typically be formulated as the negative of the 

Euclidean distance between the sets of corresponding features,  

∑
=

−−=Φ
N

xx||)(
1i

2
iiθ ||)B()A(BA,T Q ,   (2.1) 
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for a set of N feature points x  in image A and B.  Maximizing the similarity measure is 

equivalent to minimizing the distance between the corresponding feature sets. If noise 

(white and Gaussian) is additive, the maximum of this measure corresponds to the 

maximum likelihood solution [117,118]. The main drawback of this measure is its lack 

of robustness in the presence of severe outliers. Outliers have to be rejected otherwise 

the maximum may become less pronounced [119].  

 

Point-based measures 

Point measures are used if a small number of corresponding pairs of points are available 

in the two images. These points, also known as markers, can be extrinsic, anatomical or 

geometrical. Extrinsic markers are typically fiducial markers either on the patient’s skin 

or attached to stereotactic frames [120,121]. The markers should be visible in both the 

floating image A and the reference image B.  Their form and composition depends on 

the modality (e.g. CuSO4, NiCl2 or petroleum jelly for MR, iodinated compounds for 

CT, or gamma emitters for SPET). They vary in terms of ease of implementation and 

patient tolerance. The most invasive is the stereotactic frame which has to be screwed 

into the skull [121]. The location error of the markers needs to be accounted for; e.g. the 

movement of skin between scans is a problem with skin markers. The most important 

limitation is that extrinsic markers require patient preparation and are therefore 

unsuitable for retrospective image registration. External markers also have been used to 

validate registration algorithms [122,123]. In this case, the residual displacement of the 

surface markers following registration indicates the performance of a registration. In 

this case, registration is considered optimal when the mean Euclidean distance between 

corresponding sets of points is minimum. In the case of rigid body transformation, 

Equation (2.1) can be treated as a least-squares fitting of two 3D sets of points known as 

the Procrustes problem [48,116,124,125,126]. Given two sets of N non-coplanar points 

 and where , the negative Euclidean distance Φ to be maximized 

is given by . Where Q is a 4×4 matrix representing a rigid-body 

transformation, the problem can further be simplified by referring the coordinates to the 

respective centroids of each point set. Let 
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where y  is the centroid of , }{ iy x  is the centroid of , Q′ is a 3×3 rigid-body 

transformation matrix, R′ is a 3×3 orthonormal rotation matrix and t is a 3-element 

}{ ix

 26



translation vector, the original least-squares problem is further reduced 

to . The optimum transformation T is decoupled and estimated in 

two steps:  First, rotation 

∑
=

−′−=Φ
N

yx||
1i

2'
i

'
i ||R ˆ

R̂ that maximizes Φ is found by singular-value decomposition 

(SVD) [127] of the matrix , where the superscript T

i

T'
i

'
i UDV=∑

N
yx T denotes transpose, 

D is a diagonal matrix and U and V are orthonormal matrices. The rotation R′ is given 

by . Second, the translation TVUR =′ t̂  is given by xˆyˆ Rt −= . Interested readers may 

refer to the work of Arun et al. [116]. 

 

External skin markers provide a measurement of the registration error at the body 

surface and results may not extrapolate to the points inside the body. In many cases, 

since the definition of the measure does not involve averaging, and the number of 

markers F are much less than the number of voxels N, then 
2N

1j
jj

2F

1i
ii ∑∑

==

−<− yxyx QQ . In this case the similarity measure Φ does not provide 

an upper bound. However, when the external markers are attached to a stereotactic 

frame, the greater the distance of the markers from the image centre (assume that the 

rotation is about the image centre) the greater is the rotational displacement of the 

markers. Thus they may provide an upper bound of average residual registration error 

within the whole image. Several groups suggested various anatomical landmarks for 

registration of brain images [120,128]. These can be any localized prominent features in 

bones, soft tissue organs or blood-vessels. Localization of features in both images is 

generally carried out by an expert observer and is labour intensive.  Based on external 

fiducial markers, inter-modality registration of the cervical spine [129] and of the brain 

[121] was performed. Due to the intrinsically poor resolution, anatomical landmarks are 

difficult to identify in SPET and PET.  Such difficulty is partly overcome with a dual-

isotope SPET image in which a tumour scan and a bone scan are acquired 

simultaneously. Internal landmarks in the anatomical image and the SPET bone image 

were used to determine the transformation that registers the anatomical image and the 

tumor SPET image [81,130]. This method is only applicable to some specific cases and 

it increases the radiation dose to the patient. Like the external fiducial markers, 

anatomical markers can be used to assess the accuracy of inter-subject brain registration 
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[128,131] or to validate registration algorithms in terms of the target registration error 

[123,125].  

 

Geometrical landmarks are extremal points (such as corners), which can be extracted by 

a differential operator from the line of maximum curvature or as a singularity of the 

isointensity surface in 3D images [132]. In a high resolution CT or MR image, the 

extremal points method is reliable and works automatically.  In SPET and PET images, 

which are characterized by low resolution and low signal-to-noise ratio, the object 

surface is generally not sufficiently well defined for the extremal points methods. 

 

Curved-based or geometrical feature-based measures 

Edges derived from intrinsic structures such as object boundaries in 2D or curvatures in 

3D isointensity surfaces (e.g. skull, brain) can be used to register images when these 

structures are delineated in both images. The geometrical features defined by 

isointensity surfaces often coincide with anatomical (object) boundaries defined by 

segmentation. Gradient and higher order derivative operators are applied to locate edge 

features. Differential operators incorporate smoothing (e.g. Gaussian kernel) to reduce 

the detection of noise-induced edges and sometimes to allow multiscale algorithms to 

be used. In the 2D curves method, differential operators such as the Laplace operator or 

the Canny detector [133] can be used to detect edges or ridges (crest lines) in the image. 

Tissue boundaries can also be extracted by a deformable model-based approach that 

ensures continuity and smoothness of boundaries, such as the active contour model 

[134]. The deformable models still use differential operators to measure the strength of 

the edge but their performance can be improved by incorporating prior knowledge of 

the shape (e.g. smoothness) of the boundary or characteristics of the region enclosed by 

the boundary such as the minimum variance criterion [135]. Registration is optimal 

when the least-squares distance between the corresponding edges is a minimum.  

Feature curves defined by the intersection of the interhemispheric plane and the skull 

surface have been used to register MR and PET brain images [136,137,138]. The 

method relies on intrinsic symmetry property of the brain, an assumption that may not 

apply in other parts of the body. Maintz et al. [139] made use of ridge seeking operators 

to register CT and MR brain images. 3D feature curves are detected as extrema of 

curvature in the image isointensity surface. Thirion et al. [132] defined the feature curve 

as the line of maximum curvature (crest line) and used it to register CT images 
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[140,141]. Gueziec [142,143] used a B-spline surface to build ridge lines and used them 

for registration of two CT images [119]. Once the corresponding feature curves in the 

two images were established, an iterative method was used to register brain images 

[144]. The edge method is constrained by the availability of good quality, high 

resolution images in which corresponding tissue boundaries exist. However, it cannot be 

assumed that edge features will be replicated in images of different modalities.  For 

example, in SPET and PET, the grey levels measure local concentration of a 

radiopharmaceutical administrated to the patient which may not correlate well with 

regions enclosed by anatomical boundaries. Similarity measures based on edges are 

unlikely to be useful for registration of functional and anatomical images. 

 

Surface-based measures 

There exist a wide variety of registration methods using 3D surface information. A 

detailed summary was complied by Audette et al. [126]. In high resolution CT and MR 

images, surfaces formed by tissue boundaries are commonly used. Three methods 

dominate surface registration: the head-hat algorithm, the iterative closest point 

algorithm and the chamfer matching algorithm. The head-hat algorithm, proposed by 

Pelizzari et al. [145], is one of the better known surface-based methods for the 

registration of anatomical and functional brain images. Surfaces are formed from 2D 

contours extracted slice-by-slice from each image. The surface in the high resolution 

anatomical image serves as the ‘head’ and a relatively sparse set of points in 3D 

extracted from the contours in the low resolution functional image serves as the ‘hat’. 

Registration amounts to fitting the hat to the head by minimizing the distance of the hat 

from the head surface. A similar approach was applied to the registration of CT and 

PET images of the thorax by Yu et al. [78]. They extracted the pleural surface of CT 

and PET transmission scans to define the head and hat, respectively. In some cases, the 

brain surfaces delineated in both the MR and the PET image were used [146,147]. 

Based on the same approach, an external fiduciary band was used to define hat points in 

the SPET image which were aligned with the head surface obtained from the CT image 

[79]. 

 

In the iterative closest points (ICP) algorithm [148], images are registered using points 

on a 3D surface (e.g. surface curvature values at extrema) extracted from the image. The 

ICP algorithm searches, iteratively, for the transformation that minimizes the mean-
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square distance from points on the floating image surface to the closest points on the 

reference image surface.  The algorithm then determines a new closest point set (surface 

points) and continues until the mean-square distance reaches a threshold or stabilizes to 

within a set tolerance. Corresponding point pairs are used to register the images by 

using either a least-squares approach or a modified algorithm [149]. The modified ICP 

approach has been used for the registration of high resolution intramodality images 

[150,151,152]. Declerck et al. [83] reported an application of the ICP algorithm to the 

registration of cardiac SPET images. 

 

In the chamfer matching algorithm [153,154], the feature surface forms a boundary of a 

segment in the reference image. For each image voxel, the algorithm finds its closest 

point on that surface and the distance to it. Thereafter, all voxels in the image volume 

have a value corresponding to the distance to the nearest surface pixel.  The distance 

map does not provide information explicitly about the correspondence between point 

pairs on the corresponding surfaces of images. In this case, the distance map is used as a 

potential function to compute a distance potential of a floating image with respect to the 

surface points in the reference image. Registration is optimal when the total distance 

potential is a minimum (maximum similarity). The chamfer matching algorithm has 

been applied in the CT to MR brain image registration [68,155,156]. Based on the 

strong signal from the skull in CT and the corresponding weak signal in MR, van den 

Elsen et al. [157] extracted the feature curves of the skull as ridge-lines in CT and 

trough-lines in MR. The chamfer method was then applied to register the CT and MR 

brain images. Applications of the chamfer matching algorithm include registration of 

MR-PET and MR-SPET brain images [158,159] and CT-PET lung images [160] 

limitation of this algorithm is the uncertainty in determining the skull outline in the 

SPET and PET images. 

 

2.2.2 Voxel-based measures 

The feature-based measures require that the intensity values be processed with a 

detector to extract the corresponding features in each of the images separately. But 

feature detection generally requires good signal-to-noise ratio, resolution and tissue 

contrast in image, and may not work well in functional images. By contrast, voxel-

based measures are robust in that, in general, they are derived from image statistics and 

do not require feature detection. Voxel-based measures include intensity difference, 
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cross-correlation, minimum variance, and measures related to the joint intensity 

histogram. Measures based on moments or principal axes are sensitive to differences in 

shape and intensities between images [161,162,163]. They are of limited use in 

registering functional and anatomical images and therefore are not discussed further in 

this review.  

 

Intensity-difference based method 

This is an intuitive measure that computes, voxel by voxel, the sum of the differences of 

intensity values between the floating image and the reference image. Based on the 

intensity difference, the distance measure Φ in Equation (2.1) has two versions as 

expressed in Equation (2.2) sum of the absolute differences (SAD) when 1=n  and 

square root of sum of squared intensity differences (SSD) when  which minimizes 

Φ in a least-squares sense during registration [164,165,166].  The sum is over N voxels 

in the overlapping image volume, 
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The  case corresponds to the L1 norm and 1=n 2=n  case to the Euclidean L2 norm. 

The intensity difference measures have been used for intrasubject intramodality 

registration, such as serial MR registration or ictal and iter-ictal SPET studies [167,168]. 

They rely on the assumption that intensity values in the two images are similar. Because 

image intensities obtained from different modalities are intrinsically dissimilar, methods 

based on intensity differences are problematic for multi-modality registration. Both 

methods are sensitive to outliers (e.g. where large intensity differences between the 

images are due to a contrast agent). Eberl et al. [165] showed SAD to be more robust 

than SSD and demonstrated it to be widely applicable in clinical practice. 

 

Cross-correlation based measure 

The cross-correlation function measures the statistical relationship between intensity 

value of images A and B,   
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where A  and B are the mean intensities in the respective images and N is the number 

of voxels in the overlapping image volume. Compared to the intensity difference 

measures, the intensity assumption is relaxed allowing the intensity values of the two 

images to be linearly related. The measure has been applied in intra- and inter-modality 

registration [169,170,171]. Since a linear intensity relationship cannot be relied on 

across modalities, a slightly different approach is needed for inter-modality registration.  

In this case, an intensity mapping is estimated and applied to create a floating image 

that has a similar intensity distribution to that of the reference image. The images are 

then registered by cross-correlation. Maintz [139] introduced a morphological operator 

that can be applied to both MR and SPET brain images to bring out edge information 

for use in cross-correlation based registration [169]. 

 

Minimum variance based measure 

For multi-modality registration, a simple intensity cross-correlation function cannot be 

used as a similarity measure because intensities in different modalities are intrinsically 

dissimilar. To circumvent this difficulty, minimum variance measures [131,172] have 

been proposed. They assume each image to be approximately piecewise constant (same 

tissue manifests similar intensity). When transformation is optimal, a region of uniform 

intensity in the reference image (MR) will correspond to a region of uniform intensity in 

the floating image (PET). In order to register the lower resolution image (PET or SPET) 

to the higher resolution image (MR or CT), the higher resolution image is first 

segmented. Woods et al. [172] used a level-set segmentation based purely on intensity. 

Ardekani et al. [131] used a more general approach in which segmentation was 

accomplished by K-means classification followed by connected component analysis. 

For any spatial transformation, the segmentation is “induced” in the lower resolution 

image.  The registration algorithm seeks to maximize the uniformity (minimize intensity 

variance) of the voxel values within each induced segmented region.  

 

In the method of Woods et al. [172], let b denote intensity of the reference MR image B.  

Each b defines an intensity-labeled segment (a level surface) of B, 

and Ω{ bxBx B =Ω∈ )(: } B is the image domain of B. If there are M possible intensity 

values so that 1},{0,1,2,... −∈ Mb , image B will be partitioned into M segments, some 

of which may be null.  The level-set of the MR image generates M sparse binary images, 
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one for each intensity, assuming no local correlation. It is worth noting that the partition 

splits the image (strictly speaking image domain) into “disjoint” subsets 

whose union is the image. Also, the term "partition" applies to 

the set of subsets rather than an individual subset in the rest of this Chapter. For 

registration of the floating image A to the reference image B, a similarity measure is 

computed over the "induced" partition of the transformed image of A.  Let  

be defined as in the Subsection (2.1.3), by interpolation, at 

grid points of B (a subset of 

}{ 1210b M-,...,N,N,NNN ∈

)A(Q)A(T)(A' xxx θ ==

BΩ ).  Only the common part of the grid ABΩ  

(i.e. BTABAAB Ω∩Ω=Ω∩Ω=Ω ' ) is used to compute Φ.  For Woods' algorithm, the 

partition is confined to the common grid and defines { }bxBxS ABb =Ω∈= )(: .  This 

also partitions (this is also referred to as induced segmentation) the common part of the 

floating image A′. The statistics of each induced segment can then be examined in 
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where andbµ bσ are the mean and the standard deviation of voxel intensities of the 

segment in A′ induced by intensity b in B. 

 

Ardekani et al. [131] took correlation among neighboring voxels into account in 

segmentation and partitioned the image into K connected components , 

. The similarity measure Φ becomes , where 
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2 ])(A[1 µσ . The statistical parameters kµ and kσ are defined in exactly 

the same way as in the Equation (2.4) except the subscript b is replaced by k. In the 

Woods’ approach, b stands for intensity and a location index in A′. For Ardekani’s work, 

k stands for location index rather than intensity.    
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Joint intensity histogram based measure 

Inspired by the success of Woods’ algorithm [172], Hill et al. [173] proposed an 

adaptation of woods’ methods by constructing a feature space to capture the relationship 

between intensities in different images. The feature space is a 2D intensity plot showing 

the combinations of grey values in each of the images for all corresponding points. 

Figure 2.3 shows such a feature space plot for an MR image with itself. Compared to 

the feature-based registration, the main advantage of these approaches is the capability 

for intra- and inter-modality image registration. The 2D intensity plot is generated by 

plotting the intensity of the transformed image A′ against the intensity of the 

corresponding voxel in the reference image B where )A()(A' xxa Q== and )B(xb = . 

   
Figure 2.3: A joint intensity histogram created from a pair of images (A and B). The intensity at each 
point (a,b) represents the number of voxels in the overlapping region of the two images that have an 
intensity ‘a’ in A and ‘b’ in B.  A high intensity can be interpreted as a high probability of obtaining the 
particular pair of intensities in corresponding voxels of the two images. Starting from perfect alignment 
(left), a relative translation by 1 pixel (middle), and 5 pixels (right) reduces the number of coincidences 
and disperses the data. To improve display, each histogram was independently scaled to its maximum 
value. 
 

Compared to [131,172], a region of similar intensity values is defined in the 2D 

intensity plot instead of in the images. The underlying model for these approaches relies 

on the uniformity of intensity in one image with respect to the intensity in the second 

image.  Alternatively, a relationship is assumed to exist between corresponding groups 

of voxels in the images but without any assumption about the form of relationship 

between voxel intensities. Each entry in the histogram represents the number of voxels 

with intensity }1,{0,1,2,... −∈ Ma  in one image that coincides with voxels of intensity 

 in the second image. Again, M denotes the number of intensity 

levels in each image with the assumption that both have the same levels. The 

normalized histogram estimates a joint probability distribution of intensities. Based on 

the probability distribution, several methods have been derived for the measurement of 

the dispersion of the histogram. These include joint entropy [174,175], mutual 

}1,{0,1,2,... −∈ Mb
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information [176,177,178,179], normalized mutual information [180] and correlation 

ratio [181,182].  These measures are constructed in the intensity domain and do not 

depend explicitly on spatial relationships between voxels.  Instead, a spatial relationship 

of intensity values is implied in the construction of the intensity pair 

at location x. The uniformity of the 2D joint histogram, as 

measured by entropy or variance, is at a minimum when images are aligned correctly. 

West et al. [183] and Kagadis et al. [184] compared the performance of volume-based 

techniques with the surface-based techniques. They showed that, for CT-MR 

registration (and, to a lesser extent for the PET-MR registration), the joint intensity 

histogram techniques give more accurate and more reliable results than the surface-

based methods. By far the most common joint intensity histogram measure currently 

used for anatomical and functional image registration is the mutual information. A 

detailed discussion of these measures is given in Chapter 3.  

( )B(),(A')( xxa,b = )

 

2.3 Transformations 

 
2.3.1  Rigid-body transformation 

The transformation used in the registration problem can be classified into two main 

types, namely the rigid and non-rigid models. An illustration of Types of 

transformations categorized by domain (global/local) and elasticity (rigid-body and 

nonrigid) are shown in Figure 2.4. The rigid-body transformation preserves angles and 

lengths so geometric relationships among points in the image do not change. In general, 

the rigid transformation is applied for intrasubject intramodality registration (e.g. fMR 

time sequences) or intermodality registration where it is assumed that the distance 

between any two points in the object is the same regardless of how the object is scanned.  

That distance must be measured in physical units rather than voxels, as voxel 

dimensions change from one modality to another.  
 

The validity of the rigid-body model should be considered separately for intra- and 

intermodality applications. In intramodality applications, it is assumed that the 

misalignment can be approximated by rigid-body transformations.  This implies that the 

acquisition protocols and imaging systems are the same or, more realistically, that the 

differences in acquisition can be approximated by rigid-body transformations.  The 

approximation may fail in (e.g. MR) due to nonlinear field distortions.  In the same 
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subject, the rigid-body model is a reasonable assumption for at least some parts of the 

anatomy (bones and bone-encased volumes, such as the brain), unless they are 

nonrigidly distorted by a pathological condition.  In other parts of the body, the 

approximation is not as good due to nonlinear distortions arising from posture changes. 

For inter-subject applications, the rigid-body assumption is not warranted. In the 

intermodality intra-subject applications, a body part, such as the brain, can usually be 

assumed to be a rigid body irrespective of the modality. In addition, the rigid-body 

assumption must also capture differences between modalities.  

 
Figure 2.4: Types of transformations categorized by domain (global and local) and elasticity (affine and 
non-affine). Local affine transformation may induce discontinuity (e.g. gaps or overlaps) of variation in 
shape and boundaries across blocks. In local non-affine transformation gaps or overlaps do not occur. The 
local affine transformation can be constrained so that the variations in shape and boundaries are 
continuous and smooth between blocks. Thus every set of local transformation (particularly if made 
continuous across blocks) can be represented by a global transformation, though this representation could 
be very complex.  The local or global divide is therefore an issue of implementation. 
 

A rigid-body transformation requires six parameters (three rotations and three 

translations). Many papers have reported the use of rigid body transformation for 

intrasubject intramodality and intermodality registration, making use of measures based 

on features or the joint intensity histogram. Although rigid-body transformation is 

predominantly used in the intrasubject registration of brain images, it is also used to 

align images of other parts of the body where deviations from the rigid body assumption 

are small, especially at low resolution. Before applying rigid body transformations, 

especially in multimodality applications, the image field of view, slice orientation, scan 

geometry and the voxel dimensions should be made consistent between scans.  
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2.3.2 Affine transformation 

The rigid-body transformation is a special case of the affine transformation.  In addition 

to rotations and translations, the affine transformation includes independent scaling of 

each axis and skew in any direction. Shapes may not be preserved but parallel lines 

remain parallel.  Scaling parameters were used to register retinal images [185]. Other 

affine parameters, have been used in several applications [186,187,188,189,190]. It is 

possible to obtain a reasonable registration of most images using just 9 parameters (3 

translation distances: tx, ty and tz, 3 rotation angles: ϕx, ϕy and ϕz, and 3 scale factors: sx, 

sy and sz).  The skew is rarely applicable in the case of medical images registration and 

the three skew parameters are omitted in this discussion. The 9-parameter affine 

transformation can be represented, in homogeneous coordinates, as a product of 4×4 

matrices representing translation T, rotation R and scaling S. The translation and 

scaling matrices are expressed as 
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Using homogeneous coordinates, let  denote the position of a voxel 

in the floating image and  its position following the affine 

transformation.  Although the individual matrices could be combined in different 

permutations, the following order of operations (right to left) is assumed in this thesis 

unless otherwise indicated, 

T
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where, C represents the image center, v is the voxel dimension and the subscript refers 

to the floating (f) or the reference (r) image. In global registration, all 9 parameters are 

varied independently until the similarity measure Φ is at optimum. The overall 

expression for TRS can further be simplified to }{ ijq=Q as a function of the affine 

transformation parameters. Q reduces to a rigid-body transformation by setting 

1=== zyx sss . 

 

2.3.3 Non-affine transformation 

If an affine transformation is unable to account for variability between images, 

[186,191,192,193], a non-affine global transformation may be employed (e.g. 

polynomial transformation [194,195,196,197]. Most non-affine transformations adopt a 

physical model of tissue elasticity and are expressed in terms of a local displacement 

vector field. In the physical model, the floating image is modeled as a physical object, 

such as a thin metal plate [198], a linear elastic solid [199,200], or a viscous fluid 

[201,202], deformed using forces derived from a local gradient of a potential function. 

The potential function is computed at a number of control points, such as the locations 

of anatomical landmarks. In these approaches, local constrained transformation of one 

image with respect to the second image is allowed. The optimum image transformation 

expresses equilibrium between external driving forces and internal restoring forces 

arising within the transformed image. Meyer et al. [186] and Slomka et al. [203] 

demonstrated the usefulness of the thin-plate spline model to register thoracic PET and 

CT images. Modifications suggested by Little et al. [204] incorporate rigid structures in 

the transformation. Rohr et al. [205] proposed to relax the transformation in order to 

account for (anatomical) landmark localization errors. In a further modification to 

landmark based thin-plate spline, the transformation was made reversible and intensity 

matching was applied between the floating image and the reference image [206]. 

 

Smoothing and regularization techniques have been used in an attempt to overcome the 

ill-conditioned problems associated with image transformation. Basically, these 

methods attempt to force smoothness on the solution of a least-squares error problem. In 

the physical models, regularization in the form of internal constraints induced by the 
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elastic continuum, is applied to smooth out the local transformation [193,207]. In 

general, the physical model based transformation is formulated by partial differential 

equations. These equations are solved analytically or numerically. Christensen et al. 

[201] estimated the transformation based on the finite element approach.  Bookstein 

[198] and Malcolm [200] calculated the solution analytically using basis spline 

functions. Bro-Nielsen and Gramkow [202] adopted a convolution filter to solve the 

fluid transformation.  Any spatial transformation can be expressed as a displacement 

vector field comprising displacements of all points in the image. Complex non-affine 

transformations can be estimated by measuring the displacement of each image voxel 

with respect to the second image. Figure 2.5 shows a complex global transformation 

(e.g. rotation) can be approximated by a set of simple local transformations. Estimating 

the deformation vector at all voxels is computationally expensive and may result in 

noisy estimates. Dividing the image space into subimages and computing the 

displacement vector for each subimage can accelerate the registration process. Both the 

floating image and the reference image are divided into subimages with a uniform 3D 

discrete grid pattern whose nodes correspond to subimages centers.  For each subimage, 

a displacement vector is obtained that maximizes a local similarity measure. The 

displacement field is usually filtered to enhance the smoothness of the local 

transformation [208]. The transformation away from nodes is propagated by spline 

[193,207,209], radial basis functions [210] or Gaussian interpolation [182,211].  

 
Figure 2.5: A complex global transformation can be approximated by a set of simple local 
transformations. The floating image (left) is divided into subimages (one is shown as a white box) and 
each subimage is translated to best match the reference image (right). These local translations can be 
visualised as the displacement vector field (middle).  The field defines the transformation that must be 
applied to the floating image to align the reference image (illustrated here for a simple rotation).  
 
2. 4 Interpolation of transformed data 

The basic problem in registration of an image A (floating) and a second image B 

(reference) is to find a spatial transformation T such that is as similar as possible to ATθ
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B. In general, T does not map voxel centres in A to voxel centres of the original grid and 

interpolation is needed to estimate the intensity at each voxel. Interpolation is often 

required following a transformation as shown in the 2D example in Figure 2.6. In 

volumetric imaging, interpolation is often used to compensate for anisotropic data 

sampling and different voxel sizes. A 3D interpolation is employed to produce isotropic 

voxels for visual inspection. However, it is undesirable as it increases complexity and 

overhead without adding new information for image registration. 

Figure 2.6: Interpolation is often required following a transformation.  A 2D transformation T maps 
every point x in image A to a point y in the transformed version of image A′. To obtain A′, each y is 
assigned a grey value derived by bilinear interpolation of the nearest 4 pixels of grey value P1, P2, P3 and 
P4 from A. It shows also the mapping of a point (e.g. bottom left node of the grid) outside the image 
domain. 
 

Interpolation algorithms are reviewed in several papers [212,213,214,215]. According 

to Parker et al. [216], sampling the interpolated image is equivalent to convolving the 

image with a sampled interpolation kernel function. The complexity of implementation 

for image registration depends on the type of kernel function (polynomial, B-spline, 

Lagrange or Gaussian) and kernel size κ (i.e. the extent of the kernel function in the 

spatial domain). Let us express an interpolated value  at some continuous non-

integer coordinates  from its discrete samples evaluated at integer 

coordinates . The interpolation can be described as the convolution of the κ 

discrete image samples with the interpolation kernel function, . 

Although the sinc function provides the exact reconstruction of , it requires an 

infinitely large kernel width. In 3D image registration, the most popular approximation 

to the sinc filter is trilinear interpolation. In nearest neighbour (zero order) interpolation, 

the intensity value at  is assigned the intensity of the spatially closest neighbour. 
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No matter how many dimensions are involved, there is only one discrete sample that 

contributes to . It is seldom used for image interpolation due to the severe loss 

of quality arising from aliasing and blurring. The trilinear interpolation calculates the 

intensity values at  from the values of eight nearest voxels (i.e. κ = 8). The 

trilinear interpolation can be carried out as a sequence of bilinear interpolations in the 

three orthogonal directions as illustrated in the Figure 2.7. 

)A( xQ

)A( xQ

 
Figure 2.7: (Left) Trilinear interpolation of a point (x,y,z) in a 2×2×2 neighborhood. Interpolation is 
performed in the y direction first. The intermediate grey values are generated by four 1-D interpolations. 
This is followed by two 1-D interpolation in the x direction. The resulting two points are colinear with 
(x,y,z).  The final 1-D interpolation is carried out in the z direction. (right) The Figure illustrates a plane 
view of the top of the cube (left).  The main point of (right) is to show weights derived from areas (in 2D) 
or volumes (in 3D).  But since this is a sequence of linear interpolations, the weights are linear at each 
step. For each interpolation, weights the values at direct neighbours. The grey value at point P is 
expressed as ‘P1A3+ P2A4 + P3A1 + P4A2’ where Ai is the partial area in 2D of each of the closest 4 pixels. 
In a 3D tri-linear interpolation, partial volume is used instead of the partial area for interpolation. 

 
Trilinear interpolation, although not as fast as the nearest neighbour interpolation, is 

faster than other methods – an important consideration as interpolation is required many 

times during the iterative registration process.  Higher order interpolation kernels, such 

as the Gaussian [217], cubic [218] and B-spline [213] approximates the ideal sinc 

interpolator more accurately. However, their larger kernel size increases the 

computational cost. The kernel of the trilinear interpolation  is stated as )(xw
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A problem with image interpolation is that it blurs the resulting image. This is 

especially notable if smoothing accumulates through successive transformations. 

Interpolation can also cause artefacts in the joint-intensity histogram based similarity 

measures and may prevent image registration from achieving sub-voxel accuracy [219]. 

Figure 2.8 illustrates this effect as a function of translation for a MR image and a SPET 

image.  
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Figure 2.8: Variation of NMI (left) and MI (right) for a MR image and a SPET image as a function of 
translation in pixels. Full sampling and trilinear interpolation is used for non-integer translations. The true 
alignment occurs at zero translation. Both similarity measures manifest local maxima. The vertical axis 
refers to the value of similarity measures of NMI and MI respectively. 
 

Because interpolation alters intensity values, even a small variation in the value of 

transformation parameters may change the histogram of the floating image leading to 

unpredictable changes in the dispersion of the joint intensity histogram. Trilinear partial 

volume (PV) interpolation has been suggested to reduce this problem [220,221]. PV is a 

normal trilinear interpolation in image space - only the way of expressing the resulting 

value as a vector of coefficients is different.  It is a modified method of estimating the 

voxel count of a cell in the joint histogram. PV updates the joint histogram fractionally 

by adding the corresponding weights wi (not a count of one) corresponding to a 

transformed location Qx and its eight neighbours corresponding to the histogram cells 

. The weights are the trilinear interpolation weights associated with the 

eight nearest neighbours around Qx. The shape-based interpolation [222], which takes 

into account the shape of the image intensity histogram, interpolates more accurately 

than intensity interpolation and warrants further investigation. Where a transformation 

maps points outside the target image domain, interpolation must give way to 

extrapolation. The large errors associated with extrapolation make it unattractive for 

medical image registration.  Instead, computation of the similarity measure is confined 

to the volume of overlap between the transformed floating image and the reference 

image. It is therefore important to detect points transformed outside the overlap volume.   
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2. 5 Optimization 

Most registration algorithms require an iterative approach to search for the optimal 

transformation. One exception is the point-based rigid-body registration, where the 

optimal transformation to align corresponding points of the floating image and the 

reference image can be computed in one step by singular-value decomposition 
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[48,223,224]. The iterative optimization routine searches in a parameter space whose 

dimension is defined by the required number of parameters. A rigid body transformation 

has six degrees of freedom (corresponding to 3 rotations and 3 translations) giving a 

six-dimensional parameter space. A full affine transformation requires a twelve-

dimensional parameter space. Every time transformation parameters change, a new 

iteration is performed until an optimal similarity measure Φ is reached. The iterative 

process continues until it satisfies a stopping rule, which may be expressed in terms of 

the rate of change of the similarity measure or the parameter values, or a preset number 

of iterations. Press et al. [127] describe optimization algorithms in general and Maes et 

al. [225] compare the performance of various optimization methods in the context of 

image registration using mutual information.  

 

Optimization methods are classified into two main categories based on whether they 

require the function’s derivatives.  Of the methods used in image registration, Powell’s 

algorithm  (used in [145,179,208,220,225,226]) and the simplex method (implemented 

in [182,186,227]) do not require derivatives whereas gradient descent (employed in 

[177,189,207]) and the Levenberg-Marquardt method do [218]. It is worth noting that 

these methods are sensitive to local maxima in the parameter space and need to be 

initialized close to the optimal (unknown) solution. In an ideal situation, the similarity 

measure is well-behaved as a convex function in the parameter space so that there is a 

wide capture range for the optimization algorithm to converge to the global optimum.  

In reality, this is not always the case. The variation of similarity measures in parameter 

space is generally far from quadratic, and multiple local optima often exist.  Noise, 

coarse resolution and interpolation artefacts make image registration more difficult by 

generating undesirable local maxima or reducing the value of the global maximum.  An 

optimization algorithm may fail to converge to the global maximum if it becomes 

trapped at a local maximum.  In clinical practice, all image registration should be 

visually checked to validate the correctness of the registration. Commonly used 

methods to reduce local maxima include smoothing of the images before registration, 

rebinning the joint-intensity histogram, and using a multi-resolution strategy.  

 

An alternative approach to circumvent the problem of local optima is by stochastic 

methods, such as the simulated annealing and the genetic algorithm, which theoretically 

guarantees convergence to a global optimum.  In simulated annealing (used in 
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[185,228,229]), optimization is taken as a cooling process which is deliberately slow to 

ensure a global optimum. In the genetic method (employed in [184,229,230,231]), 

optimization is modeled as the evolutionary survival of the fittest and needs to evaluate 

a large number of fitness functions. These two methods are computationally expensive 

and converge slowly. To speed up convergence, Jenkinson and Smith [192] proposed a 

pseudo global optimization method and applied this to intermodality registration with an 

intensity-based similarity measure. A coarse grid is initially found over three rotation 

angles and at each grid point optimal translation is found by local optimization. 

Registration is refined on a smaller grid by evaluating the lowest cost function over all 

grid points.  

 

2. 6 Validation 

Developers and users of registration methods have measured the accuracy and precision 

of their methods in many ways. The validation is, in general, a complex issue that is 

nearly impossible to characterize. Differences in scan protocol, sample size, anatomic 

site, implementation strategy, intended application, and clinical requirements have made 

it difficult to compare the registration algorithms quantitatively.  Thus, it is necessary to 

provide a basis for the selection of a registration algorithm for use in a given application. 

The validation of an image registration algorithm focuses on three main elements: 

evaluation criteria, metrics and the data sets for evaluation. They are interrelated and 

should not be discussed in isolation. 

 

2.6.1 Criteria for evaluation 

A good image registration technique should be able to demonstrate its “goodness” in 

terms of accuracy, precision, robustness and reliability. Accuracy refers to how close a 

measurement comes to its ground truth. To define the true registration is non-trivial. In 

the clinical uses of registration, ground truths are unknown and it cannot assess the 

absolute accuracy of different implementation strategies. In the absence of ground truth, 

the overall registration accuracy, or at least accuracy at a specific image location, could 

be assessed quantitatively by comparison to some a priori superior reference (the gold 

standard). West et al. [122] used a fiducial-marker based method as the “gold standard” 

to evaluate registration accuracy of a group of retrospective registration techniques 

applied to clinical data. By quantifying registration accuracy, it is possible for a 

clinician to differentiate among registration techniques for a particular clinical 
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application. However, such a gold standard is only applicable to rigid body registration. 

In validating non-affine body registration, one needs to define true values locally but the 

issue is still controversial.  

 

Precision indicates the variation of registration errors as the registration algorithm 

brings the image close to the correct alignment but fine residual error remains.  In this 

case, the error can be measured as the distance between corresponding control points 

(e.g. fiducial markers, anatomical landmarks, vertices of a bounding box, or randomly 

generated voxels) in the two images after registration. If the standard deviation of the 

registration error is small, the registration is regarded as precise.  

 

Robustness refers to the ability of a registration technique to give consistent results 

regardless of the initial starting conditions. A robust registration technique is expected 

to converge to approximately the same result with a high success rate on all trials 

regardless of the variation in image conditions [192,232,233]. A good registration 

technique also needs reliability to provide a good performance on registration, 

independent of the image data set and scans protocols so that the results are easily 

transferable to different clinical applications. To make meaningful comparisons of 

results from different studies, all criteria for accuracy, precision, robustness and 

reliability should be reported. However, these criteria are difficult to compare among 

different reports without referring to the metrics and the image data set used for 

registration. 

 

2.6.2 Metrics for evaluation of registration methods 

 

A priori reference 

The Euclidean distance with respect to a priori gold standard is the most common 

choice of metric for evaluation of registration techniques. It measures the length of the 

spatial displacement between corresponding voxels in two images after registration. The 

measurements can be expressed in terms of the mean, maximum, median or root-mean-

square (RMS) displacements over the voxels in a region of interest. The advantages of 

the spatial distance for the comparison are that (1) it gives a direct indication of the 

registration accuracy in mm; (2) is relatively simple for investigators to provide an 

accurate identification of the markers; (3) is adaptive to inter or intra-modalities; (4) can 
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be applied to a group of images.  Fiducial markers, anatomical landmarks, vertices of a 

bounding box and randomly generated voxels within a volume of interest have been 

reported for use in validation.  Fiducial markers, visible in both images, are attached to 

the subject’s skin or mounted to a stereotactic frame. The RMS distance between the 

corresponding markers taken over all markers gives the fiducial registration error (FRE).  

However, the measurement of FRE is subject to the so-called fiducial localization error 

(FLE) caused by marker movement between scans and uncertainty in localization of the 

markers.  The main drawback of this approach is that it needs special preparation with 

addition of identifiable markers during imaging. It is not suitable for retrospective 

registration. For most clinical applications, the most important error measure is the 

target registration error (TRE), which is the RMS distance after registration between 

corresponding points of interest (target) other than the centroids of fiducials 

[122,123,234,235]. In most cases, internal anatomical landmarks are used as the target 

to calculate TRE. The characteristics of TRE in point-based rigid-body registration have 

been reported extensively [125,236,237,238]. FLE and the markers’ configuration were 

considered to be important factors governing TRE [236]. Grachev et al. [128] used 

anatomic landmarks to assess the accuracy of two popular non-affine intersubject 

intramodality registrations [239,240,241]. Figure 2.9 shows the difference between the 

FRE and TRE to measure registration performance. The fiducial markers in general 

appear to be skin markers and the anatomical landmarks are usually deep interior inside 

body. This is often the case but anatomical landmarks also appear on the body boundary 

(e.g. bony protrusions). Perhaps the more important difference in the FRE and TRE is 

its extrinsic and intrinsic nature of the registration accuracy.  Intrinsic errors use body 

tissues so they give a true measurement of performance whereas extrinsic errors may 

not. However, these two errors are related as reported in [236]. 

 

Another approach to validating a registration technique is based on the RMS distance 

measured over all vertices of a bounding box compared to a gold standard (e.g. fudicial 

markers) after registration [133,221].  The maximum displacement error of the vertices 

provides an upper bound on the registration error within the volume of the box. The 

registration accuracy can also be calculated in terms of spatial displacement between a 

set of corresponding voxels in the floating image and the reference image selected 

randomly over the region of interest before and after registration [233,242]. An 

alternative approach is to define the accuracy of registration in terms of the difference 
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between the registration parameters and the gold standard registration parameters. The 

registration error is expressed in mm for translational errors and in degrees for rotational 

error [232,243,244]. It does not give the registration error directly in term of the spatial 

distance. There is also the issue of noncommutativity (changing the order of rotations 

may lead to different outcomes) and nonuniqueness (the same orientation could be 

obtained with different parameter values). Small values indicate that the registration is 

close to the gold standard estimate.  

 
Figure 2.9: Illustration of FRE (extrinsic) and TRE (intrinsic) registration errors. Perhaps the more 
important difference is in the extrinsic/intrinsic nature of the markers used to estimate the errors.  Intrinsic 
markers are body tissues so they give a true transformation whereas extrinsic markers may not. FRE is 
measured at each fiducial as the distance between the corresponding fiducial markers (circles) in the 
reference image and the floating image after registration. TRE is measured as the distance between the 
corresponding anatomical landmarks (squares) in the reference image and the floating image after 
registration. 
 

Consistent  transformation 

As happens to real data sets, fiducial markers are often not available for the gold 

standard validation. Woods et al. [239] suggested the use of internal inconsistency 

measures as an alternative approach to validate registration.  Given three scans (A,B,C) 

of  the same subject, registrations between image pairs are performed among the three 

images with transformations TAB, TBC, TCA corresponding to the registration of A to B, B 

to C and C to A. In an ideal situation of perfect registrations between image pairs, the 

combined transformation ABBCCA TTT οο maps image A back to its original orientation. 

The composition of these transformations is an identity transformation I. Any deviation 

from I indicates a discrepancy resulting from misregistration (known as error 

transformation). Internal inconsistency (in mm) is measured by multiplying the error 

transformation with the position vectors of some selected voxels of the images to 

compute global mean of the summed squared displacement error. It can be argued that 
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internal inconsistency is a measure of registration accuracy. Since it does not require 

fiducial markers, some authors suggest its use for evaluation of registration accuracy 

[239]. Holden et al. [242] used it to compute the registration accuracy over serial MR 

images. An alternative approach is to multiply the recovered transformation matrix by 

the inverse of the known transformation matrix at different known positions to compute 

the error transformation [57]. A practical issue of this approach is a need for 3 images of 

a single subject. This technique does not give the registration error directly in terms of 

the target registration error. Further study in this area is warranted to assess target 

registration error relative to the consistency approach and the fiducial marker based 

method.  

 

Visual assessment 

Accuracy can also be measured qualitatively by visual assessment. For the qualitative 

assessment of registration accuracy, visualization tools such as dual cursor display [245] 

or fused images [146,245,246,247] are used to provide the clinician with sufficient 

information to verify the goodness of registration. This approach relies on the clinician 

to reject or accept a registration outcome based on a subjective judgment. Clinically, 

visual inspection insures against severe misregistrations that most algorithms produce in 

a small number of studies for subtle reasons.  Unfortunately, visual assessment is an 

extremely labour-intensive process. It suffers from both intra and inter-observer 

variability, which make the definition of correctness in registration difficult. Despite 

such variability, the sensitivity and reliability of visual assessment is the subject of 

study by various research groups. Ardekani et al. [131] deliberately misregistered MR 

and PET brain image pairs by translational and rotational displacements about all three 

axes separately relative to a gold standard. The minimum displacement corresponding 

to “definite misregistration” as perceived by radiologists, was recorded. The study 

showed that a trained clinician could detect PET-MR misregistrations of 2.5° rotation 

about the x- and y-axes, 2.0° rotation about the z-axis, 2 mm in x- and y-translations, 

and 3 mm in the z-translation. The gold standard for this study was an automatic 

minimum variance algorithm described earlier [131]. Wong et al. [248] also evaluated 

the ability of a trained clinician to detect PET-MR misregistration visually. With the 

mutual information algorithm used as the gold standard registration, they showed that a 

rotational error of greater than 4.0° and a translational error of greater than 3 mm were 

 48



reliably detected by a trained observer. A more recent study of MR-CT registration 

shows that a human observer can visually detect errors of 2 mm or greater relative to the 

fiducial algorithm as the gold standard [223,224]. These studies suggest that registration 

error of 2 mm is the limit of an observer’s ability to detect a misalignment in 

intrasubject intermodality brain registration for most clinical data sets. It is interesting to 

note that the Figure is comparable to the registration accuracy of voxel-based 

algorithms compared to fiducials registration in [123]. Median target registration errors 

in the range of 2.0-3.6 mm were reported by West et al. [122] for MR-PET registration 

using Wood’s algorithm and mutual information. 

 

2. 7 Image data set  

Validation of in vivo studies is complicated by the lack of ground truth. Apart from 

clinical images, synthetic images and physical phantoms were used in a large number of 

studies for validation. Ordinary MR or CT images of a real subject correlated with post 

mortem sections can be used to synthesize a SPET dataset (e.g. Zubal phantom  

[249,250], Visible Human data set  [251], digital brain phantom [252]). The synthetic 

image data set is controlled in almost every aspect to simulate images acquired in a 

clinical situation. Furthermore, registration with simulated data permits controlled 

evaluation over a wide range of conditions such as contrast, spatial resolution, scan 

geometry, field of view, slice orientation, noise, scatter and non-uniform attenuation.  

Using digital phantoms to assess the performance of PET-PET [253] and CT-SPET 

[254] registrations have been developed and employed. In simulation, ground truth is 

known and accurate gold standards can be produced. To validate MR-PET registration 

techniques, one approach is to simulate PET images by segmentation of MR images 

followed by the assignment of different uptake values to various tissue types. The 

simulated PET images are then registered to the MR images using various initial 

starting transformations so that the exact (rigid body) transformation between each MR 

image and its associated simulated PET images is known. The registration results are 

compared to the known transformation in order to evaluate the registration accuracy 

[253,255,256,257,258]. Since the same anatomical phantom is used to mimic different 

modalities, it can be used to test intermodality registration algorithms. However, the 

digital phantom fails to model some factors that contribute to scan-to-scan variability in 

clinical data, such as non-rigid deformations due to respiratory or cardiac motion, 

distortions due to non-rigid movement of internal organs during scan acquisition and 
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artefacts due to field inhomogeneities in MR. Image data for validation can also be 

generated by a physical phantom. The merit of the physical phantom is that it is subject 

to true image acquisition with all experimental limitations and artefacts. Moreover, 

activity uptake in the various “tissue” compartments can be independently controlled. 

These phantoms include the Hoffman brain phantom [259] simulate uptake in the brain, 

the anthropomorphic cardiac phantom [260] with lung, heart and spine inserts for 

cardiac SPET imaging and the torso phantom [186,261] to simulate normal patient’s 

abdominal-thoracic imaging. Cold and hot “lesions” can be simulated in the scans. To 

obtain the ground truth, markers are often attached to the phantom for use as fiducials in 

quantitative assessment of registration accuracy. The downside of the simple physical 

phantoms is that they do not adequately model the anatomical and physiological 

complexity of the human body. Furthermore, the design of any physical phantom 

requires a long-term chemical stability and reproducibility, which is difficult to achieve. 

Clinical data are therefore needed to evaluate registration accuracy. One critical issue 

that will be important for the future acceptance of these approaches to validation will be 

the choice of the data set. The data should include a wide range of image quality, a large 

number of subjects, as well as a variety of modalities and acquisition regimes within 

each modality.  The data should be made available to all investigators. Since most 

studies depend implicitly on data sets to test for accuracy, reliability and robustness, this 

makes it easier to repeat implementation and to replicate image acquisition parameters, 

but on different subjects, for objective evaluation.  
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Chapter 3 
 

Joint-intensity histogram techniques 
 

The purpose of this chapter is to present joint-intensity histogram based image 

registration techniques. In these methods, registration is based solely on the intrinsic 

properties of intensity or grey-scale values of volume elements of the two images to 

estimate the degree of similarity between them.  These recent developed techniques are 

derived from communication and statistical theories endeavouring to use the full content 

of the image information involved. One distinct capability of such matching criteria is 

robustness and registration performance for multimodality image registration. 

 

The concept of image intensity as random variables in the context of registration is 

introduced. The probability density distribution and the joint probability density 

distribution of these random variables are estimated from a 2 dimensional plot showing 

the combinations of intensity values in all the corresponding points of the two images. 

In the case of information theory based methods, image registration is viewed as a 

communication in a noisy channel with an input signal (floating image) and an output 

signal (reference image). An optimal registration is obtained when the relative 

redundancy of information of the input and the output signal is minimized. Signal 

redundancy is measured by joint entropy.  Thus the entropy as well as the joint entropy 

of images and their measurement is introduced. The other approach is to use simple 

statistical measures (e.g. mean, variance and conditional variance) for image registration.  

These methods make use of a general observation that, in spite of the different intensity 

sets that represents various tissues, uniformity of physical properties (such as 

attenuation coefficient in CT, proton density in MR and tracer concentration in SPET or 

PET) measured in image partitions is a robust similarity measure. The layout of this 

chapter is to introduce the notation that an image voxel can be taken as a random 

variable for the purpose of image registration. It follows with the description of the joint 

intensity histogram to estimate probability distribution and joint probability distribution 

of intensity gray values and a discussion of the entropy-based and variance-based image 

registration. Adaptation and modification of these algorithms are also presented. 
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3.1 Images as random variables 

Despite the different modalities for image acquisition, typical medical images are 

reconstructed in the form of a 3D matrix or grid consisting of discrete volume elements. 

Each element creates a 3D volume element, or "voxel", which is shaped like a little box. 

This is depicted in Figure 3.1. In the case of isotropic mode of image acquisition, equal 

dimension voxels are obtained in all three orthogonal planes. In the anisotropic mode, 

one of the voxel dimensions is unequal to the others. For example, the spacing between 

contiguous axial planes along the z direction may be larger than the voxel size in the 

transverse x-y plane. In this case, length along the axial direction is larger. The intensity 

value(s) that represents a voxel depends on the imaging modality, signal intensity and 

the tissue type involved from the corresponding location. The intensity value of each 

voxel gives an average signal acquired from tissue within the corresponding voxel.  For 

example, bones may appear with low intensity in MR images but with high intensity 

values in CT images.  

 
Figure 3.1: Each discrete 3D volume element in the image represents a voxel of tissue. 
 
For the sake of image registration, it is assumed that each voxel expresses a random 

variable that is quantized to some discrete set of values called intensity or grey-scale. 

An important consequence of treating images as random variables is that a statistical 

framework can be used to investigate the image registration problem. To simplify the 

description of how the intensity of each voxel is reached, each voxel value is treated as 

a mapping from the 3D matrix volume elements onto a finite set of discrete values 

{0,1,2,…,M-1} that represent intensity. For an 8-bit encoded image, M equals 256. Thus 

each voxel may take an intensity (grey) value from this set of number in the range 0 

(black) to 255 (white) for 8-bit encoding. All voxel values are assumed to be 

independent with the same probability density function (PDF). For a 3D image having a 

sufficiently large number of voxels, the PDF of intensity values can be approximated by 

histogram measurements. By examining a large collection of voxels, the histogram 
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estimate of the PDF is the frequency ratio [262]. In an image A the PDF of intensity 

 is denoted by P(a) which is given by  }1,...,2,1,0{ −∈ Ma

N
)(N)(P aa = , (3.1) 

where N(a) represents the total number of voxels having intensity “a” and N denotes the 

total number of voxels. Figure 3.2 illustrates an intensity histogram computed from a 

MR image. The use of PDF makes an idealized assumption that all voxels with a 

particular intensity represent the same subimage. As in Chapter 2, the term “partition” 

refers to the set of subsets (rather than an individual subset) in the rest of this chapter. 

Thus intensity labels each voxel of the image according to which partition it belongs.  

The image is partitioned into M “disjoints” subsets, the size of each giving the 

probability of the corresponding intensity being measured. Thus intensity has a 

probability associated with it.  

 
Figure 3.2: Example of an intensity histogram for a MR image is illustrated. The vertical axis denotes the 
occurrence frequency of intensity and is scaled logarithmically. The horizontal axis refers to the intensity 
values.  
 

The concept of PDF of a single image can be extended to the joint PDF of two images. 

Assuming that images A and B are comprised of independent voxels in three 

dimensions, one may use the same approach to treat the voxel intensity of the images as 

random variables with associated PDFs. The PDF of intensity in A and B are denoted 

by P(a) and P(b), respectively, where { }1-0,1,..., , Mba ∈ . Here A and B are assumed 

to have the same discrete grey-scale values. The joint PDF P(a,b), denoting the 

probability of occurrence of intensity pair (a,b) with intensity and A∈a B∈b , is 

approximated by 
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where N(a,b) is the number of occurrences of (a,b) and N denotes the total number of 

voxels.  This concept is useful for image registration since all voxel-based similarity 

measures rely on the fact that there is a statistical relation between intensities of the 

corresponding voxels in the images [48].  In order for this method to work, statistical 

methods must be used for the computation of the relationship between P(a) and P(b). To 

estimate the PDF and the joint PDF of images is non-trivial. A Parzen window [189] 

and joint intensity histogram [179] were used to approximate the joint probability 

density function. The so-called Parzen estimate of PDF is computationally more 

expensive than the histogram approach. Thus the Parzen method is not considered in 

this thesis. The joint intensity histogram approach is easy to implement and gives a 

visual interpretation of image alignment. It will be discussed in the next section. 

 

3.2  Joint intensity histogram and its interpretation 

To visualize the dependence between the transformed image A′ and the reference image 

B, a 2D joint histogram is created by counting the number of co-occurrences of each 

intensity pair (a,b) of intensity A'∈a  against the corresponding voxel of intensity 

for all voxels over the overlapping image volume of A′  and B [173,175,176].  

The 2D joint histogram involves a spatial transformation T, which maps A to A′ by 

. Let 

B∈b

ATA θ=' )A()A(T)('A θ xxx Q== where the transformation matrix Q maps an 

element of the domain ΩA of image A to the domain ΩB of image B. Consider the value 

of a voxel x of the reference image to be b and bx = )B( , Bx Ω∈ . The location of the 

voxel x is transformed by Q to x′ (i.e. x'x =Q ) and the corresponding value in the 

transformed image A′(x) is given by 

            otherwise,  ),(A
'             ),'(A
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Where is a neighbourhood of x′, An Ω⊂ }, ||'|| :{ A ε≤−Ω∈= yyyn  over which a 

weighted average is computed with weights wy. That is, if the transformed voxel 

position does not lie on the grid of A, its value is obtained by a local interpolation. The 

intensity is computed over the overlap region of B and A′ of the grid 

BTABAAB Ω∩Ω=Ω∩Ω=Ω ' , and ABx Ω∈ . Each point (a,b) in the joint histogram 
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represents the number of voxels N(a,b) that have an intensity “a” in the transformed 

floating image A′ and an intensity “b” in the reference image B. A joint PDF of 

intensity can be estimated from the 2D histogram by dividing each entry N(a,b) in the 

histogram by the total number of voxels  N as in Equation (3.2). The PDF and marginal 

PDFs of the intensity for image A and B are given by ∑∑ ==
bb

babaa ),(N
N
1),P()P( , 

and ∑∑ ==
aa

babab ),(N
N
1),P()P( , respectively, where P(a,b) is the joint PDF. The 

marginal probabilities P(a) and P(b) are effectively determined from the 2D joint PDF 

by summing the entry of P(a,b) on the two orthogonal axes rather than by direct 

computation from the voxels in the images. Figure 3.3 depicts the formation of the joint 

histogram. In general, the 2D intensity histogram depends on the size of overlapping 

region ΩAB. It is important to note that the marginal probabilities implicitly depend on 

both the size and location of overlap between the two images.  

 
Figure 3.3: Formation of the joint histogram of a MR image with itself is shown.  Two images A 
(floating image) and B (reference image) are defined over discrete 3D grid. The intensity pair 

 refers , ))(B),(A'(),( xxba = A'∈a B∈b  and ABx Ω∈ . The intensity a of A′ is related to A via a 
spatial transformation T. In registration, transformation T maps A to A′ where .  

A′(x) may not coincide with the grid point of Ω

)A()A(T)(A' xxθx Q==

A and local interpolation is needed to compute the 
intensity of A′ at x. See text for details. 
 
The centre of voxels of the transformed image TθA may not coincide with the center of 

voxels in image A.  Intensity interpolation is needed at grid ΩA in image A to obtain the 
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intensity values at A′(x). It may also happen that interpolated positions may fall outside 

the bounds of the image A. That is, elements of the x, y, or z arguments that are either 

less than zero or greater than the largest subscript in the corresponding dimension of A. 

The interpolated intensity values can be set either equal to the value of the nearest voxel 

of A or to a user-specified value. This introduces two practical considerations. First, 

interpolation involves blurring and new intensity values may be introduced in the 

resulting image A′. The new intensity values may affect the histogram and joint PDF, 

producing a negative effect on the performance of registration [48]. Second, TθA may 

fall outside the bounds of the image A. The joint histogram is defined only for ABx Ω∈ . 

Interpolation is meaningful if the transformation position x′ (i.e. ) is inside the 

overlapping region Ω

xx Q='

AB. Steps must be taken to avoid histogram computation outside 

ΩAB.  

 

The dependence of A on B is quantified, with the aid of the joint intensity histogram, 

using a similarity measure. The histogram changes as the transformation parameters 

change. A general observation in the joint histogram is that intensity pairs seem to 

disperse when the registration deviates from an optimal registration [48]. However, with 

an improvement of alignment, the distribution of intensity pairs in the joint histogram 

tends to show more peaks as well as fewer clusters. When the images are registered, 

intensity values of the particular anatomical structures, which they both represent, are 

aligned in the joint histogram. For example, peaks with less dispersion are observed 

along diagonal direction in the joint histogram as shown in Figure 3.4 when MR and 

SPET images are registered. When the images are misaligned, the joint histogram 

shows dispersion or “blurring” because an intensity value in one image is mapped to a 

large range of intensity values corresponding to different tissue types in the other image. 

The greater the misalignment, the more dispersion is observed as the intensity cluster 

becomes more contaminated by the intensities from other anatomical structures. Based 

on this observation of the characteristic of the joint histogram of two images, 

quantitative measures of dispersion emerged for use in image registration.  
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Figure 3.4: A 2D intensity histogram for a MR (top left) and a SPET (top right) is given. The histogram 
(bottom left) arises when the images are correctly registered. The histogram at the bottom right shows the 
results when the images are misaligned. 
 

3.3  Measurement of dispersion  

All the voxel based similarity measures evaluated, attempt to quantify the observed 

variation in the 2D joint histogram with spatial transformation to account for the change 

of dispersion [175,178,179,232]. Certain quantities such as variance and entropy are 

used to express the statistical relationship between two images. The formulation of each 

measure makes assumptions about the nature of the relationship.  These, in turn, are 

affected by how the image registration problem is defined. Various similarity measures 

for use in image registration will now be formulated and their assumptions examined. 

The most general assumption in image registration is that some form of a relationship 

exists between intensities corresponding to the same anatomical structure in the images 

A and B [48]. When the images are registered, they should verify that relationship. As 

pointed out by Roche et al.  [263], dependence of the images intensity can be modeled 

in a number of different ways using identity, affine, functional or statistical 

relationships. The specifics of the registration problem will dictate the form of the 

relationship and the choice of the similarity measure. Image registration can also be 

viewed as a maximum likelihood problem [263,264]. Given the intensities in one image 

as the input signal, the problem of image registration is to reconstruct the intensities in 

the corresponding voxels of the other image as the output signal with minimum 
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probability of error. In other words, the optimum transformation for image registration 

is one that minimizes the likelihood of uncertainty, confusion or variability in the output 

intensity of the floating image based on the input observable intensity of the reference 

image. Thus when two images are registered, one image is a good predictor of the other 

image with minimum uncertainty. If image registration is treated as an intensity 

mapping between images, then by analogy with communication systems, as depicted in 

the Figure 3.5, the images are registered when the communication channel between A 

and B is optimal. The idea of image registration based on information theory was 

proposed by Collignon et al. [176,220] and by Viola and Wells [117,177,189], and was 

applied with great success in rigid-body multimodality registration problems. This 

technique will be referred to as the entropy-based image registration approach. Another 

approach, suggested by Woods et al. [172], Ardekani et al. [131] and Roche et al. 

[181,265], is based on variance. Image registration is optimized by minimizing the 

variance of the reconstructed intensity in one image with respect to partitions defined in 

the other image.  Woods’ approach (described in Subsection 2.2.2) partitions the MR 

image based on intensity values, Ardekani’s method (also in Subsection 2.2.2) uses 

segmentation to define spatially connected partitions, and Roche’s method (to be 

described in detail in Subsection 3.5.3) is similar to Woods’ but uses a different 

normalization. It is worth noting that because both the Woods’ and Roche’s methods 

sample the histogram, they can be interpreted in terms of joint histogram while 

Ardekani’s method probably cannot.  

 

3.4  Entropy-based algorithm 

 
3.4.1  What is entropy? 

Entropy is a measurement of information content of a signal that arose from 

communication theory in the 1940s [266,267]. Shannon was a mathematician who 

worked on problems in signal transmission within a communication system as shown in 

the Figure 3.5. He was concerned with the amount of information carried by a signal 

rather than with the meaning of the message. He realized that the information contained 

in the message depends upon the degree to which expectation was confirmed by the 

receiver and not on the set of symbols that comprise the transmitted message. Suppose 

that there is a soccer match between two teams, one at the bottom and the other at the 

top of their division. What is the information conveyed by the two alternative radio 

 58



announcements: ‘the bottom team lost’ and ‘the bottom team won’? A listener would 

not be surprised to hear the first but would be surprised by the second. The first message 

conveys what he/she would expect to hear (the event was highly likely). The second 

message would surprise the audience because that event was unlikely to occur.  

 
Figure 3.5: A generic communication system 
 

The two alternative messages are equivalent in that they comprise the same number of 

words, take the same amount of time to say, and so on, yet the information content is 

clearly different. Shannon [266] proposed to quantify the information about an event 

having some probability of occurrence by the negative of the logarithm of that 

probability.  

)(log- 2 yprobabilitn Informatio ∝  (3.3) 

The smaller the probability of an event, the more information is conveyed. If an event is 

certain to occur, its occurrence conveys no information (-log1 = 0). The more rare the 

event, the more it can surprise the one who receives the message but, on average, the 

expected information is low because it has a small chance of occurrence. In the real 

world, it is more meaningful to consider the average amount of information conveyed 

by the event. Weighting the information per event with its probability of occurrence 

does this. As a hypothetical example, let us consider a student who performs an 

experiment to count the occurrence of each number (“1” to “6”) for a fair dice and an 

unfair dice (i.e. loaded). The outcome is assumed to be a random variable of a set of 

numbers . In the fair dice, all numbers are equally likely to occur. However, 

for the unfair dice, this is not the case. Let the probability of occurrence of each number 

in the fair dice be 0.167 (here an approximation of 1/6 has been made) while they 

}6,5,4,3,2,1{
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change to 0.95 for “1” and 0.01 for the rest of the numbers from “2” to “6” in the unfair 

dice. In the fair dice the average information to be gained is equal to 0.298 for each 

number. However, in the unfair dice the average information is 0.048 and 0.046 

corresponding to “1” and  “2” to “6” respectively which are much smaller than the 

amount of information gained from the fair dice for each number.  To further illustrate 

the example, in the unfair dice, the information given by the number “2” is 4.605 

(compared to 1.792 in the fair dice) but its amount of information gained on average is 

only 0.046 (compared to 0.298 in the fair dice). Since not all letters are equally likely to 

occur in a message comprised of English letters, the probability of occurrence of each 

letter was taken into account when Shannon defined the information content of a 

message. He considered a message consisting of n permissible letters with probability of 

occurrence . He weighted the information of each symbol by its 

probability of occurrence. The Shannon-Wiener entropy measure H is defined as 

1210 P,....,P,P,P n-

 ( ) }P{logEPlogPlogPP,....,P,PH 22
1

0
21-10 −=−=−= ∑

−

=

n

i
iin  (3.4) 

Note that entropy H is the mean or expected information of a probability distribution 

from a certain set of events rather than the individual information associated with a 

particular event. The resulting entropy of a set of events is the average amount of 

information to be obtained from the set of their probabilities of occurrence [268].  A 

logarithmic base 2 is assumed in the rest of this chapter. Entropy is also a measure of 

uncertainty. Shannon showed that H is at maximum when the probability density 

function is uniform (all events are equally likely). In this case, it is not possible to tell 

which event is more likely than any other. In the example of rolling a fair dice and an 

unfair dice, the entropy of the fair dice is 1.79 while the entropy has dropped to 0.28 

when one number is dominant. There is less uncertainty about which number will come 

up in the unfair dice than the fair dice. When you roll the unfair dice, the number is 

almost certainly to be “1”.  

 

3.4.2  Entropy of an image 

As defined in Section 3.1, an image maps a grid of voxels into a set of intensity values 

. The probability density function P(a) of the intensity values in 

image A can be determined by the number of occurrences of each intensity value in the 

image and divided by the total numbers of voxels.  The entropy of an image is subtle 

{ 1-0,1,2,..., Ma ∈ }
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and it is difficult to explain and describe its meaning. Suppose a set of possible voxel 

intensity values whose probabilities of occurrence are known. The entropy measures the 

amount of information [266] generated by the image per voxel. It gives the number of 

bits per voxel, on average, required to represent the image. For example, if an image has 

a uniform intensity, its entropy is zero. Whenever you pick a voxel, the intensity value 

is certainly known (no uncertainty or zero information content). In this case, one (20) bit 

is required to store the image.  The entropy of an image depends on the number of 

intensity values (bins). An image with many different intensities has high entropy. 

When rebinning reduces the number of intensity values, the image has lower entropy. It 

implies that less number of bits is needed to regenerate the image as the number of bins 

reduces. For example, when the number of intensity levels in a MR image (Figure 3.6) 

is reduced from 256 to 2 in steps with a factor of 2, its entropy changes gradually from 

3.66 to 0.58.  

 

 
Figure 3.6: Effect of intensity rebinning of an image A (e.g. MR image) on entropy is shown. The images 
(from left to right) of intensity bins 21, 24 and 27 show the change of grey levels. The plot shows the 
variation of entropy H(A) with number of intensity bins is by A. The number of bins in the horizontal axis 
is scaled logarithmically. The plot A* shows the change of entropy for a hypothetical image A* of 
uniform probability distribution for the intensity value. At 26 bins H(A*) referred by the dotted arrow is 
greater than H(A) denoted by the solid arrow. The smaller entropy of H(A) indicates intensity distribution 
in A is not truly uniform. 
 

The results show a linear relationship of entropy with the logarithm of the number of 

intensity bins. The maximum value of entropy is when the probability of occurrence of 

voxel intensity values is uniform and all probabilities are 1/M, where M is the number 

of intensity bins. The hypothetical MR image A* of uniform probability distribution 
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always generates more entropy than the MR image A (Figure 3.6). It indicates that the 

intensity distribution of the MR image is not uniform and preference of intensities exists.  

 

Intensity rebinning changes the intensity distribution of an image by repartitioning its 

intensity histogram. Any change towards a more uniform histogram will increase the 

entropy [48]. Such changes may result from image smoothing (see Figure 3.7).  

Paradoxically, noisy images also manifest higher entropy, as noise distributes intensity 

values about a mean. Smoothing does not necessarily increase entropy. If the image is 

noisy, smoothing may decrease entropy by suppressing noise. Interpolation also 

involves smoothing and hence will affect the entropy of the image [219].  

 

 
Figure 3.7: Effect of blurring on an image is shown. The left image shows the original MR, and the 
middle and right images show original MR after using 73 and 113 boxcar-smoothing filter. The variation 
of entropy against smoothing kernel size is shown. The entropy dips when the kernel size is 33 because 
smoothing reduces the noise in the image.  

 
3.4.3  Mutual information  

The key difficulty in image registration is to determine how one image is related to the 

other image. One needs to quantify the dependence of one random variable (say, image 

) on the other random variable (image }1,...,3,2,1{)(A −∈ Mx }1,...,3,2,1{)(B −∈ Mx ). 

Since the information content of an image can be calculated from entropy (uncertainty), 

then it can be used to quantify the information content of the joint histogram for images 

A and B. In this section, the joint probability distribution and its relationship to entropy 

will be considered and how this may be used to interpret the dependence between the 
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two random variables. In section 3.2, the stochastic relationship between two random 

variables was described by the 2D joint intensity histogram. After normalization by the 

total number of histogram entries, the joint probability density function P(a,b) is 

estimated. The joint entropy H(A,B) is defined as 

( ) )},P( {log-E),P( log ),P(BA,H bababa ab
a b

=−= ∑∑ . (3.5) 

Information in one image is expected to reduce the uncertainty of the other image. This 

is expected since entropy can be used to relate the uncertainty of two random variables. 

The joint PDF P(a,b) of two random variables A and B is related to the conditional 

probability P(a|b) and marginal probability P(b) by the following probability equation 

)P( )|P(),P( bbaba = , 
)P( )|P(),P( aabab = , (3.6) 

Where . Since the two joint PDFs P(a,b) and P(b,a) are identical, Bayes’ 

formulation is obtained 

1)|(P =∑ ba
a
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ababa = . Expanding the expression for the joint 

entropy (3.5) by (3.6), H(A,B) can be rewritten as  
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(3.7) 

For any particular value b that B can assume there is a conditional probability P(a|b) 

that A has the value a. Shannon proposed to define the conditional entropy ( )B|AH  of 

A given B as the average of the entropy of A for each value of B, weighted according to 

the probability of getting particular B. The first term in (Eq. 3.7) is the conditional 

entropy of A given B. This quantity measures on average the uncertainty of A given the 

knowledge of B. The second term is the entropy H(B) which measures the uncertainty 

of B. Therefore, the joint entropy of A and B is given by 

( ) ( ) ( )BHB|AHBA,H += . (3.8a) 
( ) ( ) ( )AHA|BHBA,H += . (3.8b) 
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It can be shown that the equation is symmetrical with respect to the two random 

variables A and B. The relationships among the joint entropy, conditional entropy and 

entropy of the two independent variables can best be visualized graphically as shown in 

Figure 3.8.  

 
Figure 3.8: A schematic diagram of the relationships involving the joint entropy H(A,B), conditional 
entropies  and , marginal entropies H(A) and H(B), and the mutual information 
MI(A,B). Note that MI measures the amount of the reduction of uncertainty about one image due to the 
knowledge of other image. 

( B|AH ) )( A|BH

 

Equation (3.8a-b) states that the total uncertainty of two random variables (images A 

and B) is a sum of two terms: the conditional entropy of A given B, which measures the 

uncertainty of image A when image B is known (and vice versa), and the entropy of A, 

which gives the uncertainty of image A.  Note that there is a reduction in the amount of 

uncertainty (i.e. “choice” of voxel intensity values) about one image given the 

knowledge of the second image. The amount of reduction of entropy (uncertainty or 

information content measured by the average number of bits per voxel) is an important 

measure that quantifies the degree of dependence between the two images. The measure 

of this reduction in uncertainty of one image given the other image is known as mutual 

information (MI) and its most frequently used definition is 

( ) ( ) ( )B|AHAHBA,MI −= , 
( ) ( )A|BHBHB)MI(A, −= . 

(3.9a) 
(3.9b) 

It is not difficult to recognize that A and B in Equation (3.9) are interchangeable. From 

Equations (3.9) via (Eq. 3.8), MI can further be expressed in its second definition  

( ) ( ) ( ) ( )BA,HBHAHBA,MI −+= .  (3.10) 

Note that, if H(A) and H(B) are fixed, maximization of MI(A,B) is equivalent to 

minimization of H(A,B).  Consider image registration as an optimization problem that 

aims to maximize the amount of reduction of uncertainty of the transformed floating 

image A′ when the intensity value of the reference image B is known a-priori. Images 
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are registered spatially in such a manner that a maximum amount of information content 

(bits per voxel) can be reduced to restore the floating image given the reference image. 

It also implies that there is a maximum reduction of the amount of “choice” involved to 

predict the voxel intensity values on A′ by a measurement of voxel intensity values 

performed on B. When images are registered, the intensity value of a voxel in B is a 

good predictor of the intensity of the corresponding voxel in A′. The purpose of the 

registration algorithm is to find a transformation that maximizes MI between the 

transformed floating image TθA and the reference image B. The outcome of the 

registration algorithm using MI is given by ( )BA,TMI maxargT
T

θ=θ . Entropies of the 

individual images play an important role in registration problems since entropy depends 

on the size and information content of the overlap between the images. One 

consequence is that entropy of the images for registration, computed from the histogram, 

may change as a function of transformation. If the individual entropies are not taken 

into account, background voxels will bias the registration so that the images will be 

completely misaligned, as shown in the 2D example in Figure 3.9.  

 
Figure 3.9: Entropies and mutual information of MR and SPET images are plotted as a function of 
translation along the x-axis. Each image has 128×128 pixels and 256 intensity bins. The measures are 
computed, with full sampling, in the overlap between the images. Entropies H(A,B), H(A) and H(B) are 
sensitive to translation. The global minimum of all entropies occurs beyond 128 pixels where the overlap 
between the images vanishes.  MI has a global maximum at the zero translation (true alignment). Joint 
entropy H(A,B) shows a local minimum at zero translation.  

 

This helps to explain why joint entropy is inferior to mutual information as the 

optimization criterion for image registration [48,269]. The effect of including the non-

overlapping region on entropies is shown in Figure 3.10. The entropy of the MR image 

(reference image A) is constant while the entropy of the SPET (floating image B) 
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decreased gradually as a function of translation along x-axis. The entropy of MR is 

constant while entropy of the transformed SPET varies with translation as the 

interpolated position is outside the image domain of the original SPET.  

 
Figure 3.10: Entropies and mutual information (vertical axis) of MR (reference image) and SPET 
(floating image) are plotted as a function of translation in pixels along the x-axis. The measures are 
computed at full sampling and include the non-overlapping region. Entropy of MR denoted by H(A) is 
independent of translation while the entropy of SPET varies with the translation. The position of zero 
translation corresponds to the registered position found by MI(A,B). 
 
Alternatively, mutual information can be expressed as a third frequently used definition 

in terms of the Kullback-Leibler distance [270], also known as cross-entropy employed 

in [271]. Given two random variables P and G, the K-L distance is defined as 

∑=
i iG

iPiPGPd
)(
)(log)(),( 2 . Expanding Equation (3.10), the third definition of MI is 

obtained as the Equation (3.11) 
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The K-L distance compares two probabilities P(a,b) and P(a)P(b). If the occurrence or 

non-occurrence of intensity a in A has no effect on the occurrence of intensity b at the 

corresponding voxel in B, then A and B are said to be independent. The probability of 

occurrence of intensity in one image is the same whether or not the intensity in the other 
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image is known. Symbolically, if A and B are independent, then  and 

. Then Equation (3.6) becomes 

)P()|P( aba =

)P()|P( bab = ).P( )P(),P( baba =  With reference to 

Figure 3.8, this corresponds to zero overlap between the entropy of A and B. From (Eq. 

3.11), mutual information of A and B is zero. When measurement on A does nothing to 

reduce uncertainty about B, these relations hold: ( ) )A(HB|AH = , ( ) )B(HA|BH =  

and ( ) )B(H)A(HBA,H += when ( ) 0BA,MI =  by virtual of independency between A 

and B. At the other extreme, A and B are perfectly dependent.  We can predict one 

perfectly given the other and it follows that ( ) , 0A)|H(BB|AH ==  and 

. Thus the entropies of A and B are the same. ( ) B)H(A,H(B)H(A)BA,MI ===

 

3.4.4  Normalized mutual information 

Recall that the total number of voxels used to normalize the joint histogram varies with 

the size of the overlap between the two images, and this changes with the 

transformation. Consider the case where the transformation maps some voxels in one 

image to fall outside the domain of the other image. The joint entropy H(A,B) and the 

marginal entropy of each image A and B all vary with the size of the overlap. Thus MI-

based image registration can fail in such situations. To reduce the dependence of mutual 

information on the size of overlap, Studholm et al. [180] proposed a normalized version 

given by 

( ) ( ) ( )
( )BA,H

BHAHBA,NMI +
= . (3.12) 

They argued that when the marginal entropies H(A) and H(B) increase faster than the 

joint entropy H(A,B), mutual information MI(A,B) increases with misregistration as a 

result of a decrease of overlapping regions. To illustrate the dependence of entropies on 

the overlapping region, the marginal entropies H(A) and H(B), and joint entropy 

H(A,B), mutual information MI(A,B) and normalized mutual information NMI(A,B) 

were evaluated directly for a pair of 2D MR and SPET images with different rotational 

misalignments (Figure 3.11). The graphs show that NMI was able to predict the true 

registered position at zero rotation while MI gave a false maximum around ±20° 

rotations in axial direction. The plot on the left also show that H(A,B) increases faster 

than H(A) and H(B). It explains why NMI gives better registration than MI for this 

particular case. 
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Figure 3.11: The left plot shows the effect of reducing overlapping region on the marginal entropy and 
joint entropy for SPET (image A, 128×128) and MR (image B, 128×128).  These entropy measures are 
computed by using full sampling and plotted as a function of in-plane rotation in the overlap region 
between the images. The position of zero rotation is the registered position. Increase of marginal entropy 
and joint entropy as a function of rotation is found. The plot on the right shows the mutual information 
(MI) and normalized mutual information (NMI) (at full sampling) plotted as a function of in-plane 
rotation. The position of zero rotation is the registered position. On each side of zero, a local maximum is 
observed, which may lead to failure of registration using MI. The NMI is maximum at the position of 
zero rotation (registered position). 
 

3.5  Variance-based algorithms 

 
3.5.1  Image variance 

In Section 3.1, intensity values of images are introduced as random variables. The joint 

intensity histogram was found to be an effective method of picturing a relationship 

between images. Beside entropy, classical statistical quantities such as the mean and 

variance were suggested by a number of research groups [131,172,175] to describe the 

joint histogram in a quantitative way. Again, let the intensity , at each voxel in 

an image, be a random variable. They are all independent. Suppose a set of possible 

intensity values  whose probabilities of occurrence are known. Let 

the mean intensity µ be, by definition, the expected intensity of a sufficiently large 

image  

)(A xa =

{ 1-0,1,2,.., Ma ∈ }

∑==
a

a aaa )P( ][Eµ  (3.13) 

The dispersion of the joint histogram changes as a function of transformation and, 

therefore, it may differ greatly. To describe how sample intensity of the image is spread, 

the variance  of the sample data is used to measure how far on average the 

observations will be from the sample mean. It is defined as the squared deviation on 

average of observations from the sample mean µ and is given by 

)(σ2 a
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a

−=−= ∑  (3.14) 

When the sample intensity of a region is composed of a single tissue type, the variance 

of intensity values is expected to be small. To apply the statistical concept of variance 

for image registration, three assumptions have to be made.  

 

First, anatomical structures can be delineated by virtue of tissues. The way intensity is 

presented in anatomical and functional images depends on the physics of the imaging 

process. Excellent soft tissue contrast and high signal-to-noise ratio are found for 

anatomical images such as CT and MR images. In SPET and PET images, voxel 

intensity values are frequently corrupted by noise, finite resolution and partial volume 

effect (presence of multiple tissues within a voxel) causing inhomogeneity of intensity 

within functional structures. Second, an image can be partitioned into subimages 

according to voxel intensity values. Voxel intensity values and volume elements (voxels) 

of tissue are related as a result of image acquisition. Thus the intensity value can be 

used to partition each voxel into one of M different tissue classes, . 

Third, corresponding anatomical structures are spatially aligned when images are 

registered.  Together with the first assumption, this implies that a region of uniform 

intensity in one image will correspond to a region of uniform intensity in the other 

image when they are registered. Under these assumptions, image registration may be 

formulated as a process that maximizes the uniformity of intensity in one image given 

the knowledge of intensity of the other image. This is equivalent to an optimization 

algorithm that seeks to minimize variance of intensity in A when intensity in B is 

known.   

{ }1-0,1,..., Ma ∈

 

3.5.2  Conditional variance 

Given two images A and B, the search for the correct alignment can be cast as a 

variance minimization problem. As suggested by Viola [117], when the probability of a 

random variable “a” drawn from a distribution is high, the occurrence of “a” has 

smaller uncertainty (low entropy).  A high and narrow peak corresponds to a small 

variance with low entropy where the observations will not be far away from the sample 

mean. It follows that a marginal probability distribution of a joint histogram with a 

narrow peak has low uncertainty because most of the measurements will fall in the 
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region where the density in PDF is high. A broad marginal distribution has a high 

uncertainty because the sample is spread out with a large variance, which corresponds 

to a high entropy and low density in PDF. This permits an interpretation of the 

uncertainty (entropy) and variance of the joint histogram in terms of probability. If A is 

dependent on B, knowledge of image B should reduce the variance (uncertainty) of 

image A [265].  It is useful to define a conditional expectation, which gives the mean 

intensity value of image A given the intensity value of image B. In multimodality 

registration, image B is generally the one with the better resolution. Intuitively, the 

conditional variance gives a measure of the average intensity for an induced region in A 

which is partitioned by the intensity “b” in B. The induced sub-region 

{ bxxb }=Ω∩Ω∈= )(B:S BA  refers to a subimage Sb of A defined by the intensity 

“b” of image B, where ΩA and ΩB is the domain of image A and B respectively. The 

partition splits the image into disjoint subimages whose union is the image. The 

conditional expectation Ea[a|b] denotes a mean intensity of an induced sub-region in A 

while Ea[a] denotes the mean of intensity values in A as a whole. Since Ea[a]  and 

Ea[a|b] originate from the joint histogram, they depend on the overlap region and, 

consequently, on the transformation. Let the mean intensity of induced region in A by 

the intensity b in the image B be bµ , then  

b
a

a µa|ba a|b == ∑ )P(][E  (3.15) 

The variance of intensity in each induced region in A corresponding to a given region of 

intensity “b” in B and is denoted as , where . The 

conditional variance evaluates the homogeneity of intensity within each induced region 

in A. It is computed from the conditional probability distribution derived from the joint 

intensity histogram for each b, defined by 
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(3.16) 

The variance  per induced segmentation in A via the intensity “b” of B is 

weighted by its probability of occurrence P(b) in B as shown in the Equation (3.17). The 

higher the frequency of the intensity in B, the greater the weight is assigned to the 

variance. The expected variance , which is known as conditional variance, 

)|(σ2 ba

)]|([E 2 bab σ
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gives the average amount of dispersion of the joint histogram of A given the knowledge 

of B. In other words,  measures the uncertainty of A when B is known by 

means of variance rather than relying on entropy. Recall that a high and narrow peak 

histogram gives a small variance corresponding to a low entropy (small uncertainty) 

probability distribution. The expected value of the conditional variance is defined in 

terms of the marginal and conditional probabilities, 
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(3.17) 

Using Equation (3.15), can be expressed more succinctly as )]|([E 2 bab σ

])[(E)]|([E 22
bbab µaba −=σ . (3.18) 

A transformation where the images become disjoint will minimize the conditional 

variance although the images are grossly misaligned. To avoid a minimum when the 

overlap is small, one approach is to normalize the conditional variance by the image 

variance [264].  The normalized conditional variance (NCV) is given by 
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(3.19) 

where , , ∑=
a

b a|baµ ) P( ∑=
a

aaµ ) P( ∑=
b

baa ),P()P(  and  are all 

computed from the joint histogram. In this approach, image registration could be 

regarded as a least square optimization weighted by the occurrence of intensity pairs in 

the joint histogram.  Note that the conditional variance is asymmetrical, 
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Figure 3.12: An illustration of the relationship between , µ, µb and “a” is given by Equation 
(3.20). The symbol µ denotes the overall average intensity in A. µb gives the average intensity of an 

induced region in A which corresponds to a region of the intensity “b” in B. is the sum of the 
square deviation of intensity “a” from the mean intensity in A. Conceptually, the difference between µb 
and µ represents the reduction of uncertainty of a sub-region of A given the knowledge of B. The 
difference between “a” and µb represents the uncertainty in predicting the intensity in the induced sub-
region of A given the intensity “b” in B. The relative frequency of occurrence of each intensity (vertical 
axis) is plotted against the intensity value (horizontal axis). 
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3.5.3  Correlation ratio 

If A and B are dependent, the variance of intensity in A can be explained by the 

knowledge of B, 
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If , which gives a mean intensity of a sub-region of A corresponding to the sub-

region of intensity “b” of B, is inserted inside the curly brackets, σ
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(3.20) 

A schematic diagram showing the relation of , µ, µb and “a” is given in Figure 

3.12. When P(a) and P(b) are independent, 

)(2 aσ

)P()P( aa|b =  and . P(a) 

is the prior distribution and P(a|b) is the posterior distribution. Unless A and B are 

independent, the posterior P(a|b) gives some information about P(a) and the intensity of 

][E]|[E aba aa =
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“b” in B is useful to predict the intensity in A. The difference between the most 

probable values of and  give a Bayesian information gain which 

reduces the uncertainty about A given the knowledge of B. Note that if 

, the conditional expectation is unbiased with respect to reference 

image intensity “b”. This can be shown as follows: 
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Expanding Equation (3.20), we have 
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expressed as   
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For more details the reader may refer to the reference [181].  It is interesting to note 

here that the variance of A can be split into two parts. is the part of A that can 

be predicted by B whereas is the part of A that is independent of B. The 

correlation ratio CR is defined by [181]: 
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Figure 3.13: Correlation ratio CR and normalized conditional variance NCV (at full sampling) for MR 
(128×128) as the reference image and SPET, denoted the floating image, (128×128) is plotted as a 
function of in-plane rotation. CR is maximum while NCV is minimum at zero rotation (true alignment). 
 

For multimodality registration, a linear dependence between images is unlikely. Unlike 

the correlation coefficient [272] that computes linear relationship between voxel 

intensities, CR relies on the variance to measure the functional dependence between two 

images and it is therefore useful for multimodality registration. CR equals 1 when two 

images are perfectly dependent and is zero when the images are independent. CR is 

related to the conditional variance (Equation 3.19) by a constant term. Maximizing CR 

is equivalent to minimizing the normalized conditional variance NCV. Unlike mutual 

information, CR is not symmetrical and depends on which image is used to predict the 

other. Figure 3.13 shows the resulting CR and NCV for rotational displacement of up to 

±50° about the z-axis. Maximization of CR seeks a transformation where the 

normalized conditional variance is minimized. To compute CR from the joint histogram, 

the following equation can be used. 
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(3.23) 

 

The correlation ratio is closely related to an earlier measure proposed by Woods et al. 

[172] and described in detail in Subsection 2.2.2.  Their similarity measure (Equation 

2.4) can be rewritten, using the notation of this chapter, as ( )bb ba µσ /)|(E  where 

is the conditional variance (Equation 3.16) and )|(σ2 ba bµ  refers to the mean intensity 

of an induced region in PET. This algorithm partitions the MR image (B) based on the 

 74



MR intensity, and maximizes the uniformity of intensity within each induced partition 

in the PET image (A) for registration. Woods et al. [172] minimize the standard 

deviation of the PET intensity normalized by its mean whereas Roche et al. [181,265] 

minimize the conditional variance of intensity normalized by  (Equation 3.22). 

The Woods’ technique has been widely used for MR-PET registration  [48] but its use 

in other modalities is not documented. A drawback of the Woods’ criterion is that it 

requires an extra step to edit out the non-brain regions (i.e. skin, skull, and dura) from 

MR, otherwise bias might occur in P(a|b) which may lead to local extrema. This can be 

done manually or automatically [273].  Without this step, the performance of Woods’ 

algorithm in MR T

)(σ2 a

1-T2 and PET-MR registration was consistently better than MI but 

less accurate than CR when sparse sampling was used [265].  

 

3.5.4  Extension - Symmetric correlation ratio 

A symmetrical correlation ratio is a measure independent of which image is used to 

estimate the other. A simple approach is to evaluate the normalized conditional variance 

as the sum of two CRs [182] 

A)CR(B,B)CR(A,SCR += , (3.24) 

where CR is defined in Equation (3.23). The mean of CR(A,B) and CR(B,A) would be 

an alternative approach to retain symmetric property of the similarity measure by CR. 

The symmetric correlation ratio is independent of the size of the overlap between the 

images A and B. Here σ2(a) and σ2(b), estimated from the joint histogram, are the 

variances over the overlap region defined by the relative transformation of images A 

and B. The joint probability P(a,b) and the marginal probabilities P(a) and P(b), as well 

as the conditional probabilities P(a|b) and P(b|a) are computed from the normalized 

joint and the marginal intensity histograms, respectively. 

 

3.6  Conclusion 

Registration of different image modalities is the preliminary and mandatory step to 

combine anatomical and functional information. The integration of multiple 

complementary data into a common reference allows a more comprehensive analysis of 

patient treatment, which is not available while looking at images from a single modality. 

For the purpose of image registration, 3D medical images are taken as comprising of 

voxels and each voxel is treated as a random variable. An important consequence of 
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treating images as random variables is that statistical measures can be used to 

investigate the image registration problem. In this chapter a theoretical framework of 

the joint intensity based registration method has been presented, which is coarsely 

divided into approaches based on information theory versus statistical measures. In the 

first category, registration relies on the entropy; in the latter, registration relies on mean 

and variance. The use of a two-dimensional plot showing the combinations of intensity 

values in each of the two images for all the corresponding voxel pairs is found to be 

useful for image registration. Given a joint intensity histogram of two images, entropy 

measures information content, uncertainty and dispersion of the intensity pairs of these 

two images. In connected or dis-jointed sub-regions of an image, mean measures the 

central tendency of intensities and variance measures the dispersion around the mean. 

These sub-regions are based on the clustering in the joint intensity histogram. The 

underlying process of how misregistration influences the pattern of the joint intensity 

histogram, the joint probability distribution and the marginal probability distribution is 

subtle and difficult to understand. Over the past few years a large amount of image 

registration has been applied based on the use of mutual information, normalized mutual 

information and correlation ratio for multimodality images registration. From the 

diversity of studies reported in literature, it is clear that these similarity measures are 

generally applicable for a wide range of multimodality image registration without 

preprocessing, user initialization or parameter tuning. From the conclusion of certain 

comparison studies that mutual information is not a cure for all image registration; 

adaptation (e.g. normalized mutual information [180]) and alternative approaches (e.g. 

correlation ratio [264,181]) are suggested by a number of research groups. A modified 

correlation ratio is proposed to retain the symmetric property of this similarity measure. 

To assess the feasibility of using this proposed similarity measure for multimodality 

image registration; the accuracy of the technique needs to be evaluated both by phantom 

experiments and on patient data. The implementation, the effect of subsampling, 

intensity rebinning, interpolation, optimization and its accuracy will be discussed in the 

next chapter.  
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Chapter 4 
 

Comparison of SCR with other joint histogram techniques 
 
4.1 Introduction  

 Several different approaches have been used in the study of multi-modality image 

registration based on the use of the joint intensity histogram technique. Similarity 

measures, including mutual information (MI), normalized mutual information (NMI) 

and correlation ratio (CR), have been demonstrated to be applicable for image 

registration. Thurfjell et al. [258] demonstrated that intensity rebinning and 

subsampling improve the efficiency of SPET-MR registration in brain, while 

maintaining registration accuracy.   The improvement was demonstrated for several cost 

functions including CR. However, CR is not symmetric in that the outcome changes 

when images are swapped.  The symmetrical correlation ratio (SCR) is proposed as an 

alternative version of CR to improve its symmetrical property [182]. Broadly speaking, 

MI and NMI are entropy-based algorithms while CR and SCR are variance-based 

methods. These very different approaches may have different registration performances 

depending on experimental techniques, pre-registration processing and/or imaging 

modalities. The experiments performed in this chapter concern the practical aspects of 

implementation, such as subsampling schemes, intensity rebinning, interpolation, multi-

level sampling and optimization.  

 

The aim of this chapter is to test and validate the proposed symmetrical correlation ratio 

(SCR) for matching T1-T2 MR and MR-SPET brain scans. It also presents a comparison 

of SCR with MI, NMI and CR on registration accuracy achievable using various 

parameters. The evaluation consists of three studies to assess the performance of SCR. 

The first experiment involved a clinical data set of T1 and T2 MR image pairs with 

simulated misalignment or rigid transformation to study the effect of intensity rebinning 

and various subsampling techniques on registration accuracy. Determining the 

Euclidean distance of vertices of a bounding box before and after registration assesses 

the matching error. In the final experiment, accuracy in clinical MR and SPET images is 

measured. Quantification of the registration error is based on the spatial distance of a set 

of external fiducial markers between MR and SPET images after registration.  
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4.2 Measures of performance 

To assess the registration algorithm, a numbers of approaches have been reported. 

Interested readers may refer to Chapter 2 (Subsection 2.6.2) for a more detailed 

discussion on metrics for evaluation of registration methods. Registration accuracy 

gives a direct interpretation of registration performance if it is measured by Euclidean 

distance. It is generally determined from the spatial distance between corresponding 

pairs of points on a floating image and a reference image after registration. In the 

present study, two approaches are used to determine accuracy after registration: 

displacement of selected points and displacement of fiducial markers. 

 
Figure 4.1: Error is computed from the distance between the corresponding corners (a,b,c,d,e,f,g,h) of a 
bounding box after registration. After registration the corners became (a′,b′,c′,d′,e′,f′,g′,h′). 
 

4.2.1  Displacement of selected points 

When clinical image data is used, it is difficult to evaluate registration accuracy because 

ground truth is, in general, unknown. To resolve this problem, a known transformation 

may be applied to one image and a second image is then registered to it.  This allows an 

estimate of the spatial discrepancy of selected points after registration to be made.  In 

one approach, selected points are the vertices of a bounding box around a pair of 

registered MR brain images, such as proton-weighted (image A) and T2-weighted 

(image B) MR. To assess registration accuracy, the reference image B is relocated by a 

known random transformation. The floating image A is registered to B to recover the 

transformation. The registration error is determined by the average Euclidean 

displacement between corresponding points over all the eight vertices of the bounding 

box after registration [179,242,258]. Figure 4.1 illustrates the distance between 

corresponding vertices.  denotes the transformation applied to the reference )(app xθ
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image B, and refers to the recovered transformation after A is registered to B. 

The displacement of each vertex 

)(rec xθ

)()( apprec ii xθxθ −  was computed and averaged over 

all vertices to yield the displacement error, ∑
=

−=
8

1
apprec )()(

8
1DE

i
ii xθxθ , to measure 

registration accuracy. 

 

4.2.2 Displacement of fiducial markers 

The use of simulated transformation to assess registration accuracy is convenient 

because it permits controlled evaluation over a wide range of conditions for image 

acquisition. However, it is not a real clinical misalignment studies to evaluate actual 

registration accuracy. In the absence of salient features, registration error is best 

characterised by the distance between external fiducial markers after registration 

[75,122,123,236]. After registration the averaged Euclidean displacements over all 

markers for each subject gives the fiducial registration error (FRE). The FRE is defined 

as ∑
=

−=
n

1
||||

n
1FRE

i
ii yxQ , where n denotes the number of fiducial markers,  and  

is position vectors of the corresponding marker i on the floating image and the reference 

image respectively. Q denotes the matrix representing the recovered transformation.  

ix iy

 

4.3 Experimental techniques 

The problem of image registration is to find the best spatial correspondence between 

two images. The stationary image to be registered is referred to as the reference image 

(B) and the image that is registered is denoted as the floating image (A). The reference 

image center is taken as the origin of the coordinate system for the transformation. All 

image alignment is restricted to the rigid-body type in this chapter. The registration 

parameters θ are represented by a 6-dimensional vector (ϕx, ϕy, ϕz , tx, ty, tz) where ϕx, ϕy, 

ϕz,
 are rotation angles in degrees about the x-, y- and z-axis respectively, and tx, ty, tz are 

translation offsets in mm along the x-, y- and z-axis, respectively. When a 

transformation Tθ is applied to the floating image, a transformed floating image TθA is 

generated. For the purpose of registration, a transformation that minimizes a negated 

similarity measure Φ of TθA and B need to be estimated. Thus the registration process 

is to find Tθ such that 
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B)]A,(T[ min argT̂
T θθ Φ= , (4.1) 

evaluated over the region of overlap of the two images. Two images A (floating image) 

and B (reference image) are defined over a 3D spatial coordinate system. The intensity 

pair  is defined over the overlap region))(B),(A'(),( xxba = ABx Ω∈ of the two images, 

where a is the interpolated voxel intensity in the transformed floating image A′ and b is 

the voxel intensity in the reference image B. The intensity a of A′ is related to A via a 

spatial transformation T and an interpolator IAB. In registration, transformation T maps 

A to A′ where )}{A()A(T)(A' θ xIxx AB Q== .  A′(x) may not coincide with the grid 

point of ΩA and local interpolation is needed to compute the intensity of A′ at x. See 

Section 3.2 for details. For a given transformation Tθ, the similarity measure Φ is 

computed via a joint histogram created by plotting a point (a,b) for every pair of 

corresponding voxels in ABx Ω∈ . 

 

4.3.1  Subsampling and multi-level sampling 

A typical rigid-body registration could involve several hundred iterations to evaluate a 

similarity measure, depending on the image size, optimization algorithm, parameteric 

space dimension and interpolation technique. For example, image pairs of size 

128×128×128 involve 221 interpolations to update the joint histogram for each degree of 

freedom in the parameteric space making the registration algorithm computationally 

expensive. An effective tactic is to use a multi-resolution approach, subsampling 

scheme and/or an intensity rebinning to speed up the process 

[218,225,244,258,269,274,225,271]. To construct the joint intensity histogram, different 

sampling rates can be applied to each axis. Given sampling rates nx, ny and nz along the 

respective axes, the total number of voxels is reduced by a factor of nxnynz. Since the 

computational cost of sampling images (TθA and B) and the calculation of the similarity 

measure varies linearly with the number of samples, this subsampling method 

accelerates the registration process by a factor of nxnynz. Furthermore, in a multi-

resolution and multi-levels approach, coarsely sampled images are registered first and 

the result serves as the starting point for the registration of more finely sampled images 

to fine tune the alignment. 
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Two methods have been previously proposed to perform subsampling for image 

registration. The first method creates a stack of progressively blurred images, e.g. by 

averaging neighbourhood voxels, prior to subsampling.  It is done by down sampling 

(subsampling) a blurred version of the images TθA and B at low resolution to construct 

the joint histogram and then progressively refining the sampling interval at increasing 

resolution of the images. This strategy has been employed to register intra- and inter-

modality images in [175,232,244,258,275]. One possible side effect of this approach is 

that the smoothing of images may change the joint histogram in such a way that the 

high frequency component information of the image will appear different at a lower 

resolution. In the second approach, a multi-level sampling scheme is applied to the 

transformed floating image TθA and the reference image B at full resolution using 

integral subsampling factors to construct the joint histogram. In this case, the problem 

of the dispersal of image information from high frequencies to low frequencies in the 

joint intensity histogram can be reduced because the image intensity values will not 

change as a result of blurring. 

 

To do the coarse sampling, one may transform the floating image A as a whole and then 

subsample TθA and B at the integral subsample grid points defined in the reference 

image coordinates. Without reducing the total number of voxels used for transformation, 

this method is computationally expensive. The problem can be circumvented by only 

using a fraction of the voxels (grid points) pre-determined along the three orthogonal 

axes via subsampling factors respectively. The grids are then transformed, and 

interpolation is used to reconstruct the intensity values in TθA corresponding to the 

transformed voxel locations at the center of these grids.  

 

4.3.2 Interpolation 

Evaluation of the criterion of registration as defined in Equation (4.1) involves 

resampling of the transformed SPET and computation of SCR. The computational cost 

of interpolation is an important consideration as it is required many times during the 

iterative process for image registration. When a transformation is applied to the floating 

image A, TθA is resampled implicitly according to the parameters of the spatial 

transformation model. To speed up the registration process, one may use a lookup table 

to infer the precomputed weights of the interpolation kernel without repeating the 
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computation to speed up the registration [276]. Due to the discrete nature of the floating 

image, the transformed position of a voxel in TθA will not coincide exactly with a voxel 

position in A. Intensity resampling is usually required to reproduce TθA by intensity 

interpolation at grid points Qx of the transformed image. Although higher order 

interpolators approximate the ideal sinc interpolation more closely, trilinear 

interpolation is used for its speed. One difficulty in performing interpolation is that parts 

of the floating image may fall outside the grid of the floating image. A predefined 

intensity value (other than zero) may be used to label voxels outside the floating image 

to solve this problem. This intensity value is then ignored in computing the joint 

histogram.  

 

4.3.3  Histogram and intensity rebinning 

After the floating image has been transformed and resampled, the image intensities of 

the voxel pairs are used to construct the joint intensity histogram from which the 

marginal, conditional and joint probability density functions (PDF’s) are estimated from 

the normalized joint histogram. The voxel intensity of the two images is quantized into 

a fixed number of discrete bins (referred to as intensity bins hereinafter). The total 

number of bins is an important parameter of the joint-intensity histogram-based 

registration. The reference image and the floating image can have different numbers of 

intensity bins. To estimate the joint histogram the frequency of occurrence of intensity 

pairs is plotted in a 2D array of size Mf×Mr where Mf and Mr correspond to the number 

of intensity bins of the floating image and the reference image, respectively. Rebinning 

is a requantisation of the intensity values of the joint intensity histogram. Reducing the 

number of bins is equivalent to reducing the detail of the joint histogram. Considering 

8-bit encoded images, it is done implicitly by rescaling all intensity values of images 

linearly that lie in the range {0,1,2,…,255} into the range where M is 

the intended number of intensity bins of the joint intensity histogram. Suppose the 

image size is 128×128×128 subsampled by a factor of 4 along each axis and M

}1,...,2,1,0{ −M

f  = Mr = 

256.  The sample data are reduced from 221 to 215 giving, on average, only 0.5 voxels 

per bin in the joint histogram. Thurfjell et al. [258] showed that reducing the number of 

bins yields smoother responses with fewer local minima. It was also demonstrated that a 

registration algorithm incorporating a coarse to fine sampling scheme with adaptive 

intensity rebinning was more computationally efficient without compromising 
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registration accuracy. By adaptive rebinning, the joint intensity histogram is 

progressively rescaled linearly in a coarse-to-fine manner.  

 

4.3.4 Multi-level strategy  

It has previously been shown that multi-level sampling and adaptive intensity rebinning 

is effective in reducing image registration time and avoids local minima [258]. In this 

approach, coarse images are registered first at a very low computational cost. The 

resultant registration parameters are the starting estimate for the finer-image registration 

at the next sampling level. In order not to change the intensity distribution of the images 

and hence the joint histogram, no image blurring is applied prior to registration. The 

schemes of [8,8,1|24], [8,4,1|32] and [4,4,1|64] are used for a three level registration. In 

this notation, [n1,n2,n3|M] denotes down sampling of the transformed floating image 

TθA and the reference image B by a factor of [n1,n2,n3]  in the x-, y- and z-direction 

respectively, and M is the bin size of the intensity histogram. The registration process 

will take the difference of voxel sizes of images into consideration during computation 

to obtain the optimum registration. 

 

4.3.5 Optimization 

The optimal registration is usually found by iteratively minimizing the negated 

similarity measure (e.g. MI, NMI and SCR). The simplex algorithm described by Press 

et al. [127] is adopted in this work. Compared to gradient-based optimization 

techniques, the simplex algorithm is more efficient and simpler to implement because it 

does not require one-dimensional minimization or calculation of derivatives. Several 

independent studies have shown the simplex algorithm to be as robust as conjugate 

gradient and Levenberg-Marquardt algorithms for rigid-body registration [225,277]. 

The optimization starts its search with the centers of the two image volumes aligned. 

The simplex algorithm takes a series of steps to optimize the similarity. In the rigid-

body registration, a 6 dimension (6D) parametric space corresponding to the six 

transformation parameters is employed. To search for the minimum of the similarity 

measure, a 6D hypercube is reflected, expanded and contracted in the parametric space. 

At each sampling level, termination occurs when the absolute change of the similarity 

value drops below 0.00001. A limit of 100 iterations was set as a secondary criterion to 

terminate the process at each level. Thus a maximum of 300 evaluations is performed 

for the 3-level registration.  
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4.3.6  Default implementation 

The settings for the three-level subsampling scheme, trilinear interpolation and simplex 

optimization, when taken together are referred to as the default settings in the rest of 

this chapter unless otherwise specified.  

 

4.4  Registration accuracy in clinical data with simulated misalignment 

In this experiment, 3D anatomical image data sets were used to evaluate the inter-

modality registration performance of the proposed similarity measure (SCR) compared 

to MI and NMI.  

 

 

 

 
Figure 4.2: Examples of MR data used for evaluation. The diagrams show transaxial slices and coronal 
slices through four of the T1 (upper block) and T2 (lower block) MR images. Each image comprises 
128×128×99 voxels of size (1.8 mm)3. 
 

4.4.1 Experimental setup 

 

Image data set 

In order to assess the accuracy of registration for entropy-based algorithms (MI and 

NMI) and variance-based algorithms (CR1, CR2 and SCR), 10 independently acquired 
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MR T1 and T2 images of the brain were used. The original MR data set containing 

256×256×24 voxels of size 0.9×0.9×5.0 mm3 were converted to 128×128×99 cubic 

voxels of size 1.8 mm). Four of the MR images are shown in the Figure 4.2. Each image 

pair was registered during the acquisition as no misalignment was detected between the 

corresponding image data sets  

 
Image misalignment  

To obtain T1 MR with a known difference in orientation as compared with the 

corresponding T2 MR, the T1 MR was repositioned using a rigid transformation. The 

transformed T1 image is donated to as the reference image B, and the T2 image is 

denoted as the floating image A. The parameters used for the transformation were 

generated in random order from a uniform distribution bounded by ±15° rotation about 

each axis and ±27 mm translation along each axis. The T2 image was then registered to 

the transformed T1 image using rigid registration. This process was repeated 3 times for 

each of the ten pairs of T1 and the T2 data giving a total of 30 registrations. The same 

experiments were performed for the entropy- and the variance-based similarity 

measures.  

 

Experimental parameters 

To assess the effectiveness of implementation, three different settings were used. These 

were: (1) the default setting (Subsection 4.3.5); (2) a modified default setting S1 and S2 

in which adaptive intensity rebinning was discarded. The registration was repeated for 

256 and 128 intensity bins independently, with S1={[8,8,1|256], [4,8,1|256], [4,4,1|256]} 

and S2={[8,8,1|128], [4,8,1|128], [4,4,1|128]}; (3) a modified setting in which multi-

level strategy was abandoned. The number of intensity bins was fixed at 128 throughout 

the registration process. Three sampling schemes [2,2,2], [4,4,4] and [8,8,8] were used 

for image registration. When the registration algorithm proceeded through multiple 

sampling levels as in the cases of (1) and (2), simplex optimization [127] was used. A 

similar termination criterion as in Subsection 4.3.5 was applied to the optimization. 

 

Preliminary investigation showed that 300 iterations were sufficient to ensure the 

registration to converge, as a further increase in number of iterations did not improve 

the registration. For the modified setting in (3), the registration process was terminated 

after 300 iterations or by a predefined threshold condition of absolute change of 
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similarity measure by 0.0001. To evaluate the registration accuracy a bounding box 

around the MR images was used (Subsection 4.2.1). Registration error was determined 

from the displacement of the corresponding vertices after registration. The average of 

the displacement error for all vertices, taken over all 30 registrations was referred to as 

the mean registration error. The median error, maximum and standard deviation of error 

were also determined to assess the registration performance. Two-tailed unpaired t-tests 

was used to compare mean registration error between similarity measures statistically, 

whenever possible. 

 

4.4.2 Results and Discussion  

 

Comparison of similarity measures  - default implementation 

The result of T1-T2 MR registration is given in Figure 4.3 (left). All measures performed 

similarly. This is confirmed by statistical test (one-way non-parametric ANOVA) and 

no significant differences (p<0.05) at 5% level were found among mean registration 

errors. The entropy- and the variance-based algorithms were all shown capable of 

registration accuracy comparable to the voxel size (1.8 mm) for anatomical image 

registration. West et al. [122] reported similar results for CT-MR registration based on 

mutual information.  

 

Figure 4.3: (Left): Mean registration error for MR T1-T2 registration for various similarity measures 
using sampling scheme of {[8,8,1|24], [8,4,1|32] and [4,4,1|64]}. Error bars show the standard deviation 
of each distribution. (Right): Displacement error averaged over eight vertices of the bounding box along x, 
y and z-direction for SCR registration. 
 

A typical registration time was 56 seconds for SCR using a stand alone PC (666 MHz) 

with 192 Megabytes of random access memory.  With full sampling, the time rose to 

870 seconds so the default implementation accelerates the registration process by a 

factor of about 15.  Summary of statistics of the registration is given in table 4.1 for 

each similarity measure with default implementation. Again, median and maximum 
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registration errors were all comparable among similarity measures. It is worth noting 

that the residual displacement error was not isotropic in the experiment. A typical in-

plane residual displacement error was about 0.2 mm while residual displacement error 

along the axial direction was 1.5 mm as shown in Figure 4.3 (right). This may be due to 

the lower image resolution along the axial direction of the MR with the 1.5 mm error 

corresponding to 5 mm voxel depth and 0.2 mm error to 0.9 mm in-plane voxel size. 

 MI NMI CR1 CR2 SCR 
Mean ± SD (mm) 1.8 ±0.3 1.8 ±0.5 1.6±0.3 1.7 ±0.4 1.7±0.4 
Median (mm) 1.7 1.6 1.6 1.6 1.6 
Max (mm) 2.4 3.5 2.2 3.4 3.8 

Table 4.1: Registration errors using default sampling scheme: [8,8,1|32], [4,8,1|48], [4,4,1|64]  

 

Intensity rebinning 

The results of registration using fixed numbers of bins for registration are given in the 

Figure 4.4. The scatter plots reveal sub-voxel accuracy for variance-based measures and 

NMI. Except for MI, the errors distribution for NMI, CR1, CR2 and SCR registration 

are almost identical among similarity measures, irrespective to 128 and 256 numbers of 

bins. The plots also show little, if any, effect of number of intensity bins on registration, 

and this is supported by the statistical test. The results of t-test (two-tailed unpaired) at 

5% level show that the difference of mean registration error between modified default 

implementations S1, S2 and the adaptive rebinning schemes were not significant 

regardless of NMI, CR1, CR2 and SCR, with an exception in MI. Furthermore, typical 

registration accuracy for variance-based similarity measures were of the same order of 

accuracy as that of results using the entropy-based approach for anatomical images 

registration in [122]. For example, the mean (±SD) registration error for SCR was 

1.7±0.3 mm, compared to MI (2.8±4.3 mm), using intensity bins of 128 although no 

statistical different between SCR and MI was found. This may suggest that variance-

based methods and NMI are less dependent on the quantization of the joint histogram 

when sparse sampling and 256 numbers of bins are used. It is worth to note that 

registration deteriorated drastically when MI was used.  

 

Using the unpaired t-test, the mean registration error of MI was found to be significantly 

different at 5% level from all other measures using 256 bins. This indicates MI is more 

sensitive to the change of numbers of intensity bins than other measures and more likely 

leads to misregistration. To further illustrate the results of registration, summary 
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statistics are shown in the Table 4.2 for 128 and 256 intensity bins respectively. The 

median errors for MI, NMI, CR1, CR2 and SCR registration were almost identical to 

each other. However, the mean (±SD) errors of MI increased from 2.8±4.3 mm to 

9.6±16.4 mm for the case of 128 bins and 256 bins. The increase of mean registration 

error for MI is probably due to major failures at 256 and 128 bins, as shown in Figure 

4.4, when sparse sampling was used for registration.  

 

Figure 4.4: Scatter plots of registration error of T1-T2 MR registration for various similarity measures 
(MI, NMI, CR1, CR2 and SCR) using default implementation, with modified default sampling scheme: 
S1 (left) and S2 (right). S1={[8,8,1|256], [4,8,1|256], [4,4,1|256]}, S2={[8,8,1|128], [4,8,1|128], 
[4,4,1|128]}. 
 

 
 MI NMI CR1 CR2 SCR 
DE in mm S1* S2 S1 S2 S1 S2 S1 S2 S1 S2

Mean ±SD 9.6±16.4 2.8±4.3 1.8±0.3 1.8 ±0.3 1.6±0.4 1.7±0.4 1.7 ±0.2 1.7±0.2 1.7±0.4 1.7±0.3
Median  1.9 1.9 1.8 1.7 1.6 1.5 1.7 1.7 1.6 1.6 
Max  56.4 25.5 2.8 2.6 3.3 3.0 2.1 2.2 3.1 2.4 

Table 4.2: The statistics measures of registration error using a modified default implementation: 
S1={[8,8,1|256], [4,8,1|256], [4,4,1|256]}, S2={[8,8,1|128], [4,8,1|128], [4,4,1|128]}. The asterisk denotes 
the presence of catastrophic outliers.  
 

Multi-level registration 

Scatter plots of the registration results for the three subsampling schemes are given in 

the Figure 4.5. SCR is proposed as an extension of the correlation ratio for rigid 

registration of multi-modality images, by incorporating symmetrical property. 

Surprisingly, SCR shows no failure as compared to other measures even when a large 

sampling factor is used for multi-modality MR image registration. The results support 

the assertion that variance-based measures (correlation ratio and symmetric correlation 

ratio) are less sensitive to subsampling while entropy-based measures (mutual 

information and normalized mutual information) show more pronounced local extrema 

(Figure 4.5). Similar observations were reported by [181].  In particular, SCR is better 

behaved than other similarity measures when images are sparsely sampled. This is an 

important consideration in practical application of registration where speed is one of the 
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prime factors in clinical applications. Table 4.3 shows statistics of the MR registration 

for the three sampling schemes and the four similarity measures (MI, NMI, CR and 

SCR). The robustness measures are also included.  

 

 
Figure 4.5: Effect of sampling scheme on MR registration carried out with different similarity measures. 
Individual registration errors are shown (in logarithm scale) for each similarity measure. The numbers 2, 
4 and 8 denotes the various sampling scheme. Except the sampling schemes and 128 intensity bins, 
default implementation was used for registration. Same maximum is used in vertical scale for all graphs 
for comparison. 
 

 Sampling scheme Mean ±SD (mm) Median (mm) Max (mm) 
2 4.2±13.1 1.6 73.2 
4 3.2±7.0 1.8 40.3 

MI

8 23.0±20.1 17.9 77.8 
2 1.8±0.5 1.7 3.9 
4 1.8±0.4 1.8 3.1 

NMI

8 13.1±14.7 3.6 49.9 
2 1.8±0.5 1.6 3.8 
4 2.7±5.7 1.6 33.0 

CR2

8 4.8±9.9 1.8 45.5 
2 1.6±0.2 1.6 2.3 
4 1.6±0.4 1.6 3.0 

SCR

8 1.8±0.3 1.7 2.9 

Table 4.3: The statistics measures of registration error as a function of sampling scheme. The numbers 2, 
4, 8 represent sampling rates corresponding to [2,2,2|128], [4,4,4|128] and [8,8,8|128]. For each sampling 
scheme, default implementation and a maximum of 300 iterations is used.  
 

Figure 4.5 also shows that the performance of registration depends on the choice of the 

similarity measures and sampling schemes. MI gives rise to large mean registration 

errors compared to other measures. When the registration error of MI is compared with 

multi-level implementation (e.g. compare [4,4,4|128] with ([8,8,1|128], [4,8,1|128], 
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[4,4,1|128])), the mean (±SD mm) registration error deteriorated from 2.8±4.3 to 

3.2±7.0 while maximum error (mm) increased from 25.5 to 40.3. A wide spread error 

distribution was found for MI. The results revealed that, except in the case of a less 

sparse sampling in [2,2,2] and [4,4,4], a large median error was found in MI (17.9 mm) 

using [8,8,8]. SCR performed consistently better than MI, NMI, CR1 and CR2. SCR 

gave smaller mean, median and the maximum registration errors, implying that it is less 

sensitive to variations in the number of bins than other measures under investigation. 

The performance of SCR in registering anatomical and functional images in clinical 

studies is investigated in the following section. 

 

4.5 Registration accuracy in clinical data with real misalignment 

Further evaluations were performed to investigate the performance of SCR in the more 

difficult alignment of SPET to MR. In this case, experiments were performed using 

clinical data with actual misregistration. For the purpose of validation, external fiducial 

markers were attached individually to the subject’s skin. The objective of the 

experiments was to investigate automatic SPET-MR image registration and, in 

particular, to compare the performance of the five similarity measures derived from the 

joint histogram algorithms: SCR, CR1, CR2, MI and NMI. For CR1 and CR2, variance 

of SPET and MR was used to normalize the conditional variance respectively (also see 

Subsection 3.5.3). The tests were designed to compare the accuracy and robustness of 

registration obtained using sparse sampling and using full sampling, as well as to 

examine the effectiveness of subsampling in increasing the speed of the registration 

without adversely influencing registration accuracy. 

 

4.5.1 Experimental setup 

 

Image data  

For validation of the registration on clinical data, 13 subjects were scanned with both 

SPET and MR. Two healthy volunteers and eleven patients under medical or psychiatric 

investigation participated. Six fiducial markers visible in both SPET and MR scans were 

attached to each subject’s skin. The volunteers and patients were given intravenous 

injections of 500 MBq and 750 MBq of 99mTc-HMPAO, respectively. The 

radiopharmaceutical was technetium-99m hexamethyl-propylene amine oxime (99mTc-

HMPAO), widely used as a tracer for brain perfusion imaging. Each subject lay quietly 
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in a darkened room for at least 5 minutes after injection. The SPET scan was performed 

within the first hour, followed by an MR scan within 4 hours after injection. All subjects 

provided informed consent.  The SPET and MR images datasets were provided on CD-

ROM by the Queen Elizabeth Hospital, Adelaide. In each case, the MR image was the 

reference image while the SPET data formed the floating image.  

 
Figure 4.6: Three orthogonal slices from the original SPET (99mTc-HMPAO) dataset are shown in the top 
row. The point sources and the facial activity were edited out from the SPET dataset. Corresponding 
slices from the original MR image dataset are shown in the bottom row. The cross-wires give the relative 
orientations of the planar cuts. For the purpose of the display, the MR image was resampled to give cubic 
voxels. 

 
Image acquisition and preprocessing 

The SPET studies were performed using a triple-head gamma camera (Trionix Research 

Laboratories) with ultra-high resolution fan beam collimators. The system’s spatial 

resolution is 8 mm full-width at half-maximum. The following acquisition parameters 

were used: 128×64 matrix and 90 or 72 stops over 360°. The projection data were 

passed through a 6th-order Butterworth filter with a 0.7 cycles/cm cut-off before image 

reconstruction. Transaxial SPET images were reconstructed using filtered back-

projection with attenuation correction (attenuation coefficient 0.12/cm) to reconstruct 

images with 3.6 mm cubic voxels.  In this particular experiment, MR images were 

acquired using a GE Signa 3D spoiled-gradient sequence with a 30° flip angle, 

inversion-recovery sequence with the inversion time TR= 500 ms and TE = 1.5 ms, 

sampled into a 256×256 matrix of 124 slices. Each slice was separated by 1.5 mm from 
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center-to-center. The 256×256 matrix was reduced to 128×128 giving pixel size 1.9 mm 

in eleven subjects and 1.72 mm in the remaining two subjects. Figure 4.6 shows 

sections of the SPET and MR images in three orthogonal directions.  

 
Figure 4.7: Two fiducial markers are shown against a millimeter scale. The marker on the left is fitted 
with a rubber sleeve.  (Image courtesy of Dr. Leighton Barnden) 
 

Fiducial markers 

Each fiducial marker (as shown in Figure 4.7) was contained in a cavity (2 mm in 

diameter and 3.5 mm deep) within a Perspex™ cylinder attached to a Perspex circular 

base (12.5 mm diameter). Each cavity was loaded with 6 micro-litre of fluid containing 

80 kBq 99mTc mixed with MR contrast agent (gadodiamide). The fluid was prevented 

from leaking by a tight-fitting rubber sleeve. Double-sided adhesive tape was attached 

to the base for attaching the marker onto the subject’s skin. After the skin at each point 

had been cleaned with alcohol and allowed to dry, the markers were firmly pressed onto 

the skin using the adhesive. The six fiducial markers were widely spaced around the 

head. They were attached to each subject in pairs, 80 mm apart on the forehead, the ear 

and the crown. When attached, the fluid was 6 mm from the skin. Since the fiducial 

markers were attached to the subject’s skin, SPET could be acquired without increasing 

the scan radius or altering spatial resolution. However, displacement of markers 

between scans could introduce systematic errors. In the rest of this chapter, the fiducial 

marker is referred to as a point source and its position is estimated by its centroid. The 

SPET image, from which the point source and facial activities are removed, will be 

referred to as the edited SPET. 
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Fiducial marker localization 

Attenuation correction in SPET influenced the point source blur and increased errors in 

centroid localization. Hence, SPET without attenuation correction was used to 

determine the centroid location by a “center-of-mass” algorithm [278]. The MR and 

SPET were of different voxel sizes, matrix dimensions and coordinate systems. To 

allow the spatial position vector of each fiducial marker in SPET and MR to be 

consistently measured before and after registration, a common coordinate system was 

used in both of the images. The coordinate system used in the study is right-handed so 

that when looking from a positive axis to the origin, a positive rotation is 

counterclockwise. This coordinate system is the physical coordinate system of the 

selected image data. For example, for a transverse section of an image displayed in a 

graphic window, the x-axis runs across the display, the y-axis is vertical, and the 

positive z-axis extends out from the display to the viewer. A 90° positive rotation about 

the z-axis transforms the x-axis to the y-axis. Spatial coordinates are integers, ranging 

from (0,0) at the bottom-left corner to (127,127) at the upper-right corner of the 

transverse image.  

 

Figure 4.8: A screen shot from the GUI used to localize fiducial markers. The markers are visible in 
SPET (top row) and MR (bottom row). The scale has been transformed to enhance the appearance of the 
markers in SPET and MR. Note that the scale is over enhanced to visualize the markers in MR at the 
expenses of losing contrast. An operator initially, and then refined using intensities within a predefined 
cubic voxel estimated the centroid of a cylindrical marker. The current position of the cursor is indicated 
by the coordinates at the bottom left in each of the display windows. 
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Figure 4.8 shows the MR and SPET images with fiducial markers and the cross-wires 

manipulated by the user to measure the position of the markers. The center location of 

each fiducial marker was estimated in the images by an interactive program written in 

IDL™ (Interactive Data Language, Research Systems Inc, Boulder). The initial position 

of each marker was estimated in SPET and MR from cursors positioned by an operator 

in three orthogonal planes. To refine the location for each marker, a “center-of-mass” 

algorithm was applied to the voxels within a cube around the identified marker positions 

[278]. The size of the cube was 7×7×7 voxels and 3×3×3 voxels, respectively, in SPET 

and MR images. A total of 67 fiducial markers from 12 subjects (one data set was 

corrupted) were used to compute the registration error. A number of markers were 

dislodged between SPET and MR scans. Six markers were seen in the images of 8 

subjects, two markers in 2 subjects and three markers in one subject. Once each 

retrospective registration was completed and Tθ was obtained, the residual displacement 

between the corresponding fiducial markers in the SPET and MR images could be 

computed easily. In order to facilitate the computation of the fiducial registration error, 

image preprocessing was performed to convert the dimension of each SPET to be the 

same as the corresponding MR before determining the spatial position of the fiducial 

markers.  

  

Experimental parameters 

In each pair of images, the edited SPET image was registered to the MR image. In total, 

60 registrations were performed, 12 subjects for each of the five similarity measures. To 

evaluate the performance of each method, FRE (Subsection 4.2.2) was computed 

directly as a measure of the registration accuracy for each similarity measure without 

referring to the Procrustes approach [116] (gold standard registration). The average FRE 

for the 3D displacement error of all fiducial markers over all subjects was computed.  

The median and maximum FRE over all subjects were also calculated. The experiments 

were designed to examine the influence of subsampling on the accuracy and robustness 

of registration, and to determine whether subsampling of the data could be used to 

increase registration speed without adversely affecting the registration accuracy for 

SPET-MR registration. The default sampling/quantization scheme (Subsection 4.3.5) 

was varied to assess the effect of subsampling and intensity rebinning on SPET-MR 

registration. The following sampling strategies were used: (S1) default subsampling 
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strategy; (S2) [8,8,1|24], [4,4,1|32], [2,2,1|64]; (S3) [1,1,1|24], [1,1,1|24], [1,1,1|24] and 

(S4) [1,1,1|128], [1,1,1|28], [1,1,1|128]. For each of the 12 subjects, rigid-body 

registration of SPET to MR was carried out using each sampling strategy. In S1 and S2 

they both started equally “coarse” but a “finer” strategy was used in S2 at the third level 

to determine if registration accuracy could be improved. S3 and S4 were intended to 

look at quantization effects.  

 

4.6 Results 

 
4.6.1 Comparison of registration accuracy at default setting 

Registration accuracy is indicated in Figure 4.9 where a box-whiskers plot is used to 

illustrate the variation of mean FRE for the different similarity measures. When 

comparing the results for CR2 and MI, the plots both show a relatively large spread of 

error (i.e. large standard deviation) compared to NMI, CR1 and SCR. The results 

revealed that SCR, CR1 and NMI had similar performance and is confirmed by 

statistical test at 5% (one-way nonparametric ANOVA). The default settings gave better 

registration than CR2 and MI. For example, the difference of mean FRE was found to 

be significant for both CR2 and SCR, MI and SCR (two-tailed paired t-test, p < 0.05). 

However, MI and NMI were not found to be significantly different (p = 0.1039). The 

large maximum errors indicate that CR2 (13.1 mm) and MI (9.6 mm) are less robust 

than the other three methods.   

 
Figure 4.9: Distributions of FRE in mm are shown for SPET-MR registration against similarity measures. 
The line drawn across each box indicates the median of the data. The bottom and top edges of the box 
mark the first (25th percentile) and third (75th percentile) quartiles, respectively. The vertical line extends 
above and below the box to show the highest and lowest values. Default setting is used to assess the 
registration accuracy. 
 

Table 4.4 further illustrates the means for FRE across the five methods based on the 

default setting for registration. The mean error decreases for CR2 to SCR from 7.5 mm 

to 3.9 mm. The mean error was supplemented by the median, maximum and standard 

 95



deviation of FRE. For entropy based methods, NMI performed better than MI over the 

12 subjects. For the variance-based approaches, the mean FRE was 7.5 mm for CR2, 4.4 

mm for CR1 and 3.9 mm for SCR. The fiducial displacement error in x-, y- and z-

directions are illustrated in Figure 4.10.  

  CR2 MI NMI CR1 SCR 
Mean ± SD (mm) 7.5±3.3 5.6±2.3 4.4±1.4 4.4±1.1 3.9±1.3 
Median (mm) 7.3 5.2 4.1 4.6 3.8 
Max (mm) 13.1 9.6 7.5 6.5 7.1 

Table 4.4: The table shows the SPET-MR fiducial registration errors averaged over 12 clinical data sets 
using the default sampling scheme: [8,8,1|32], [4,8,1|48], [4,4,1|64]. No prior smoothing of the data was 
applied before registration.   
 

 

 
Figure 4.10: The distribution shows the variability of the x (left), y (middle) and z (right) displacement 
errors for SPET-MR registration across all subjects. The middle line shows the median values.  
 

In general, most of the mean errors in each direction were small, revealing that the 

registration errors were mainly random in nature. Nevertheless, it was found that the 

largest mean and median error observed is generally in the z-direction (out-of-plane) 

and smallest in the y-direction (in-plane) irrespective to the similarity measures. For 

example, the mean and the maximum FRE of NMI in the z-direction were 0.6 mm and 

0.8 mm, and the corresponding values in the y-direction were 0.1 mm and 0.4 mm 

respectively. These observations can be explained by the fact that the registration was 

less well conditioned in out-of-plane translation as the facial activity was not included 

in the edited SPET for registration. CR2 shows the largest displacement error while MI 
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is marginally worse than NMI, CR1 and SCR in the negative x- and z-direction. Based 

on the results of registration, the maximum rotational error was found around z-axis and 

the maximum translational error was along z-axis, which were 15º and 22.5 mm 

respectively. This may suggest that the most prominent misregistration was probably 

due to rotation around z-axis and translation along the z-direction. 

 

4.6.2 Effect of sampling and quantization 

The mean FRE obtained when using full sampling S4 and 128 intensity bins was taken 

as a reference. In the full sampling S3 and S4, simplex minimization was restarted after 

100 iterations by reinitializing the registration using the parameters obtained in the last 

result so as to avoid a local minimum. The results of registration accuracy for the 

clinical data sets are given in Table 4.5, two sparse sampling schemes S1 and S2, and 

two full sampling schemes S3 and S4 are compared over the five similarity measures. 

The first observation of the results show that the mean FRE is roughly identical between 

similarity measures, except MI, for all sampling schemes. Using two-tailed unpaired t-

tests, the difference between CR1 and similarity measures (NMI, MI, CR2 and SCR) 

was significant at 5%. For a given sparse subsampling scheme, CR2 and MI are found 

to give worst registration accuracy compared to NMI, CR1 and SCR. For example, 

mean FRE (±SD) in mm for CR2, MI, NMI, CR1 and SCR are 7.5±1.3, 5.6±3.3, 

4.4±2.1, 4.4±1.4 and 3.9±1.1 respectively. SCR was again found to give the smallest 

mean FRE. The results for CR2 and MI indicated that they were least accurate with 

respect to the three methods regardless of the subsampling scheme used. For full 

sampling S4, when comparing the results of NMI to MI, SCR to CR2 and to MI, 

significant differences were found (p < 0.05). The results of the SCR and CR1, SCR and 

NMI did not differ significantly.  

Mean (±SD) FRE (mm) CR2 MI NMI CR1 SCR 
S1 Sparse sampling 7.5±1.3 5.6±3.3 4.4±2.1 4.4±1.4 3.9±1.1 
S2 Sparse sample 7.2±1.2 4.8±3.5 4.0±1.5 4.1±1.0 3.8±1.1 
S3 Full sampling 6.8±1.1 4.7±3.2 4.0±1.5 4.0±1.0 3.8±1.0 
S4 Full sampling 7.0±1.0 4.7±3.2 4.0±1.2 4.1±1.0 3.9±1.2 

Table 4.5: The table shows the mean FRE error (in mm) of SPET-MR registration over 12 clinical data 
sets using various sampling scheme: S1 denotes default scheme; S2 denotes {[8,8,1|24], 
[4,4,1|32],[2,2,1|64]}; S3 denotes {[1,1,1|24], [1,1,1|24], [1,1,1|24]}; S4 denotes {[1,1,1|128], [1,1,1|128] 
and [1,1,1|128]}.  
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Figure 4.11: FRE (mm) for SCR using different subsample schemes. S1: default subsampling strategy; 
S2: {[8,8,1|24], [4,4,1|32], [2,2,1|64]}; S3: {[1,1,1|24], [1,1,1|24], [1,1,1|24]} and S4: {[1,1,1|128], 
[1,1,1|28], [1,1,1|128]}. 
 

The second observation is that, based on the measurement, no significant difference at 

5% level (two-tailed unpaired t-test, p > 0.05) was found between sparse subsampling 

S1 and S2 or full sampling S3 and S4 regardless of NMI, CR2, CR1 and SCR. As an 

illustration, typical results for SCR are given in Figure 4.11showing comparable mean 

FRE over the sampling schemes. Therefore, a finer subsampling strategy at sparse 

sampling or intensity quantization at full sampling is not critical for multi-level SPET-

MR registration when NMI, CR1 and SCR were used. This results show that, except for 

MI, the registration accuracy obtained when sparse sampling S1 and S2 was used show 

little change in mean FRE when compared to the full sampling schemes S3 and S4, and 

this is confirmed statistically and no significant difference was found (two-tailed 

unpaired t-test, p < 0.05). This finding is important from a practical standpoint that 

image registration process can be accelerated using sparse sampling without adversely 

affecting accuracy. In this particular study a registration speed-up factor of about 22 

was achieved by subsampling S1 without apparently deteriorating the registration 

accuracy when compared to the registration accuracy using full sampling S4.  

Sampling schemes Time (min) Acceleration factor 
S4: [1,1,1|128], [1,1,1|128], [1,1,1|128] 18.1 1.0 
S3: [1,1,1|24], [1,1,1|24], [1,1,1|24] 12.3 1.5 
S2: [8,8,1|24], [4,4,1|32], [2,2,1|64] 1.3 14.2 
S1: default subsampling strategy 0.8 22.0 

Table 4.6: Typical processing times for SPET-MR registration as measured by a stand alone PC (666 M 
Hz and 192 Mbytes of RAM) for the four subsampling schemes (S1, S2, S3 and S4). Registration method 
SCR and default setting was used for image alignment. 
 

Table 4.6 lists the computation time for SCR registration over the four sampling 

schemes for the same default setting. For automatic image registration, typical 

registration times (in minutes) were 0.8, 1.3, 12.3 and 18.1 for S1, S2, S3 and S4 
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sampling schemes respectively. The results of the experiments also suggest MI is more 

sensitive to the sparse sampling than the other registration measures. It is also 

interesting to note that, for the full sampling, the number of intensity bins had little 

influence on the accuracy. There was no significant difference at 5% level (two-tailed 

paired t-test, p = 0.05) between mean FRE for full sampling using 24 bins and 128 bins 

for all the five measures. When comparing the maximum error across the five similarity 

measures, full sampling improved registration by reducing the maximum error 

irrespective to MI, NMI and SCR. For example the maximum error decreased from 7.1 

mm for S1 sparse sampling to 5.9 mm for S4 full sampling in SCR. This implies the full 

sampling is more robust although no significant difference in mean FRE was found 

between sparse and full sampling for each similarity measure. The scatter of FRE was 

measured by the standard deviation (SD) of the error in the table. MI shows a relatively 

large spread of error (i.e. large standard deviation) compared to NMI, CR1 and SCR, 

which imply that MI was less precise for registration. This could also be attributed to 

the fact that MI was more likely to be affected by sparse subsampling.  

 

4.7 Discussion 

In this chapter, five joint intensity histogram based similarity measures were evaluated 

to study the effect of subsampling and multi-level approach on registration accuracy. 

Two similarity measures, mutual information and normalized mutual information, are 

based on entropy. The other three measures using variance-based registration are the 

correlation ratio (two versions depending on which image is used for normalization of 

the conditional variance) and the symmetrical correlation ratio.  

 

For the variance-based similarity measures, looking at the results for T1-T2 MR images 

registration in Figure 4.5, SCR has a slight but statistically significant advantage in 

"robustness" over its two components. The plots are most dramatic, which shows that 

CR1 and CR2 both have several outliers but SCR has none. When a unilateral failure 

occurs, say in CR1, it implies that CR1 has a local maximum, probably far from the true 

maximum.  Assuming that CR2 registers within acceptable limits and it has just one 

maximum, therefore the local max will be half the relative magnitude in SCR.  This 

may be enough for a local optimization algorithm to avoid getting caught there, which 

aids in explaining why SCR produces a slightly better registration over either CR1 or 

CR2. In the case of dissimilar images, the results of SPET-MR registration (Figure 4.9) 
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show that CR2 is substantially poorer than either of CR1 or SCR. It suggests the order 

of image used for normalization is very important if images are substantially different. 

This is premised on the view of SPET activity as being generally confined to anatomical 

boundaries but not necessary uniformly distributed within those boundaries. For 

example, if the high activity areas (hot spots) of SPET are within grey matter when the 

SPET and MR are aligned, the regions induced in MR will fall within grey matter 

intensity range.  Ignoring resolution effects and some intrinsic variation, it is reasonable 

to expect that the hot spots in SPET map to a uniform MR region.  Variance in such 

regions in MR is low which, in turn, produces a high CR value (Eq. 3.23). It means that, 

for CR from SPET to MR, voxel intensity in MR is highly predictable by the voxel 

intensity in SPET. However, for CR from MR to SPET, if the entire grey matter volume 

in MR is considered, the region this induces in SPET will have highly variable intensity 

and therefore high variance and low CR.  This implies that the voxel intensity in SPET 

is less likely to be predictable by the voxel intensity in MR. In SPET-MR registration, 

SCR comprises the performance of the CR from MR to SPET and verse versa (i.e. CR 

from SPET to MR), and the performance of SCR may not better than the higher of the 

two CRs. Thus it may not be the best approach for SPET-CT registration. On the other 

hand, the registration performance of CR1 looks similar to SCR.  In other words, 

registration error would be comparable if CR1 is used (CR from SPET to MR) instead 

of SCR. However, the mean FRE was found to be consistently less than CR1 although 

their difference is not statistically significant (Table 4.5). The slight better performance 

of SCR than CR1 may suggest that it gives a smoother registration function and 

introduce less spurious local maxima compared to CR1. 

 

The results of the experiment on subsampling and intensity rebinning suggest that SCR 

is less affected by sparse sampling and gives a more robust registration than other 

similarity measures for sub-image block registration. Similar observations were 

obtained in [181,182]. Interpolation induced artefacts, appearing as a pattern of local 

extrema in the similarity measure, are observed at full sampling [1,1] irrespective to MI, 

NMI, CR and SCR. Local minima were found when translation is at the integer 

multiples of a slice thickness due to the interpolation artifacts [219]. Here, the term 

interpolation artefact refers to the effect of interpolation on the similarity measures. This 

is different from the effect of interpolation on image quality. The results indicated that 

the effect of artifacts due to sparse sampling depends on the choice of the similarity 
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measure. In the case of sparse sampling [4,4], MI and NMI suffer more spurious local 

maximum than both of CR and SCR. The entropy based approach appeared to be more 

sensitive to the subsampling of images and this helps to explain the inferior 

performance of MI compared to SCR.  

 

 

 

 
Figure 4.12: Example of interpolation effect for various similarity measures at full resolution [1,1] and 
sparse sampling [4,4] where data are sampled every fourth pixel in x and y directions. The measures are 
evaluated for a pair of 2D MR T1 and T2 images of size 128×128 and bins size 256. The position of zero 
translation is the matched position. Note the variation of the entropy based similarity measure as sampling 
factor increased to [4,4] when compared to [1,1]. The entropy-based methods are shown to be more 
sensitive to subsampling. To magnify the variation of similarity measures versus translation, the units of 
vertical axis in all plots are different 
 

This observation can be understood by referring to the Figure 4.12 where variation of 

SCR is found to be almost independent of sampling factor for translational matching of 
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T1 and T2 MR of size 128×128 with bins size 256. They yield with translation a much 

smoother function, containing fewer erroneous extrema, and lead to an increase in 

performance of registration using sparse sampling. For CR and SCR, they both have a 

roughly identical result in full sampling but SCR gives a slightly more smooth variation 

than CR for [4,4] sparse sampling. It may help to explain SCR gave better performance 

than its two components shown in Figure 4.5. A registration scheme using adaptive 

intensity rebinning and subsampling schemes is able to preserve registration accuracy. 

With adaptive intensity rebinning, the sampling strategy has a small influence on the 

registration accuracy of the method. However, intensity quantization has little effect on 

registration accuracy when full sampling is used for SPET-MR registration. To further 

evaluate the performance of these measures based on real clinical data with actual 

misregistration, fiducial markers attached to the subjects’ skin were used to compare 

these similarity measures by measuring residual displacement error after registration. 

The fiducial accuracy can be determined either by direct measurement (method used in 

this chapter) or indirectly by referring to a gold standard registration [122,123]. The 

gold standard registration was achieved by minimizing the distance between the 

corresponding fiducial markers in the two images in a least-squares sense [116].   

Subject FRE  Max FRE FREg Max FREg  

1 3.9 7.2 4.0 7.1 
2 3.1 4.0 3.8 5.5 
3 7.1 10.0 4.9 8.2 
4 4.6 6.0 2.8 6.1 
5 4.2 8.4 3.5 7.7 
6 3.0 5.1 2.5 4.8 
7 4.9 8.3 3.9 7.1 
8 ⁄ ⁄ 5.0 6.3 
9 4.6 7.7 5.1 8.2 

10 3.7 6.4 3.5 6.1 
11 3.8 6.7 4.0 6.0 
12 2.2 4.2 4.4 5.5 
13 2.2 2.9 2.2 4.2 

Mean±SD (mm) 3.9±1.3 6.4±2.1 3.8±0.9 6.4±1.2 

Table 4.7: The table shows fiducial registration error for each subject and means fiducial registration 
errors over all subjects in mm for SPECT-MR registration using SCR and default implementation. Notes 
that the subject 8 data was corrupted in the current study. FREg obtained with referencing to the gold 
transformation is also given for comparison.  
 

To distinguish these two cases a subscript g is added to denote FRE obtained indirectly. 

Results in Table 4.7 shows that differences of mean FRE between direct and indirect 

measurements were not significant statistically (two-tailed paired t-test, p<0.05). 
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Similar observation was obtained for maximum FRE obtained directly or indirectly. 

This implies that registration accuracy can be determined directly without necessary 

referring to a gold standard registration, such as Procrustes approach [116]. These 

results suggest that a direct measurement of spatial distance for the corresponding 

fiducial markers in SPET and MR after registration can be an alternative and efficient 

approach to assess registration accuracy. This removes the need for the extra step in 

establishing registration accuracy relative to a method based on the gold standard 

registration. The errors (FRE = 3.9 mm) obtained for SPET-MR registration can be 

compared with results of Collignon (3.6 mm) and Hill (3.2 mm) for PET to MR 

registration errors as published by West et al. [122]. Intrinsic registration error based on 

internal anatomical features provides a more realistic error measures. The intrinsic 

SPET to MR registration error (IRE = 2.5 mm) determined from anatomical locations 

using SCR in [123] is also comparable to [122], where the intrinsic registration errors 

for the PET-MR registration using MI was 2.4 mm. Given that the SPET resolution is 

worse than PET resolution, these results are quite satisfactory. The uncertainty of 

localization of the center of a point source distribution gives the so-called fiducial 

location error (FLE), which may be due to skin markers movement between scans, non-

uniformity in MR scans or subject’s motion during image acquisition. The FLE was 

monitored by the systematic error due to inter-marker transformation between MR and 

SPET scans. The distance from one marker to another in MR was compared to 

corresponding distances in SPET [123]. The distance was measured over all marker 

pairs to give the mean discrepancies for each subject. The discrepancy in distance gives 

a measure of symmetric error that is independent of the registration process. Across all 

subjects, most of the discrepancy was smaller than 1 mm except for subjects 3 and 7 

(Figure 4.13). These results suggest that displacement of one or more fiducial markers 

between MR and SPET scans was small. Thus the effect of FLE in the current 

experiment was minimal and had little effect on the FRE measurement. Because of the 

discrete nature of images, the transformed image grid rarely coincides with the 

reference image grid and interpolation is required. Another complication is that the 

transformed floating image may fall outside the grid of the reference image. This 

problem is solved either by padding out the reference image with an arbitrary intensity, 

such as zero, and later discarding these data or by restricting the computation to voxels 

in the overlapping region [192]. The reconstruction accuracy of voxel intensity values is 

dependent on the interpolation kernel used (e.g. nearest neighbour [225], trilinear [123] 
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or partial volume interpolation [275]). It is unclear how the subsampling factors would 

influence the registration due to the effect of aliasing. The decrease in the number of 

voxels due to subsampling may yield a less smooth registration function from the joint 

histogram as less sample data and information from images is available [230]. Thus, a 

reduced number of bins are desirable so that there is at least one entry per bin when 

subsampling is applied to the images. However, too few bins can result in a loss of 

image detail. The strategy to increase the number of bins adaptively with finer sampling 

seems applicable for T1-T2 MR registration and MR-SPET registration without 

worsening the registration accuracy.  

 
Figure 4.13: The vertical axis denotes the mean discrepancy in mm for each subject. The data set 8 is 
missing because the data were corrupted.  
 

4.8  Conclusion 

In summary, a symmetrical correlation ratio for 3D multi-modality registration is 

validated. The performance of the proposed algorithm is compared to MI, NMI and CR 

for T1-T2 MR registration and MR-SPET registration. Comparative studies of adaptive 

intensity rebinning and subsampling schemes over MI, NMI and SCR have been 

undertaken. Results suggest that the proposed method based on multi-level strategy and 

SCR is effective to accelerate registration without sacrificing registration accuracy. The 

algorithm is robust, fast and reliable, even in the case of inter-modality registration. 

Using SCR, the mean displacement error for T1-T2 MR registration and the mean 

fiducial registration error for SPET-MR registration are both in the order of one voxel, 

which is sufficient for most medical applications. 
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Chapter 5 
 

SPET acquisition and a torso phantom 
 

5.1  Introduction  

Understanding characteristics of data acquisition for each modality involved in a 

registration problem is important to the development of registration methods and their 

validation. In particular, this understanding is crucial to simulation of SPET. This 

chapter presents background material relating to SPET acquisition.  Although not as 

popular as neurological registration, the subject of non-brain registration is receiving 

increasing attention [79,81,130,160,197,279,80,280,281,282,283]. Somer et al. [75] 

studied the performance of PET-MRI rigid-body registration in soft tissue based on a 

point-based external marker technique and compared the results with those obtained 

using mutual information. Yu et al. [77,78] proposed a surfaces-based algorithm to 

register the CT and PET studies in the thorax region. Noz et al. [196] studied 

registration of CT/MRI and SPET data using a polynomial warping technique. A 

number of multimodality registration studies in the non-brain area were based on 

phantoms [254,261,260]. Based on a thorax phantom, Meyer et al. [186] used affine 

mapping and rigid-body mapping to study PET-CT and SPET-CT registration 

performance, respectively. Livieratos et al. [253] used digital phantoms to assess PET-

PET registration in the abdomen. In order to lead into the discussion of a digital torso 

SPET phantom, this chapter sets out the principles of acquisition of SPET, describes 

image degradation factors that need to be incorporated in a SPET phantom, and briefly 

presents principal reconstruction methods. This is followed by the description of the 

SPET torso phantom developed for the purpose of assessing the feasibility and accuracy 

of SPET-CT retrospective registration in the thoraco-abdominal region. 

 

5.2 Data acquisition in nuclear medicine 

In nuclear medicine procedures, patients are administered radioactive substances for the 

purpose of diagnosis or therapy. In this chapter, the focus is on diagnostic imaging, with 

emphasis on the Single Photon Emission Tomography (SPET). The main objective of 

clinical SPET is to study the functioning of organs and tissues. This is achieved by 

administering to the patient compounds tagged with a radionuclide 
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(radiopharmaceuticals) whose distribution in the patient’s tissues reflects their function. 

Radionuclide decay may be accompanied by the emission of α, β, and γ radiation. Only 

γ emission is useful for diagnostic imaging because α and β particles have a short range 

and become absorbed before they can be detected. Often, the radipharmaceutical will 

concentrate in a particular organ of the body, allowing detailed imaging and functional 

analysis of that organ. The distribution can be imaged over time to see how it changes 

(dynamic) or just imaged once to demonstrate its spatial distribution (static) as shown in 

Figure 5.1, where a planar projection view of a whole-body scan is illustrated. The 

essential idea is that the radioactive substance should act as a tracer for a particular 

physiological process. A list of the more common radionuclides used in diagnostic 

imaging is given in table 5.1.  

Radionuclide Photon energies (keV) Half-life (hours) 
99mTc 140 6.0 
111mIn 172 and 247 67.2 
67Ga 93, 185 and 300 78.24 
201Tl 135 and 167 72.96 
123I 159 and 529 13.3 

Table 5.1: Radionuclides commonly used in diagnostic nuclear medicine. 
 

 

 
Figure 5.1: A whole body scan shows the accumulation of the tracer in bone: front view (left) and rear 
view (right). Metabolic bone abnormalities tend to lead to an accumulation of the radiopharmaceutical. 
The hot areas (dark spots) indicate possible locations of bone disease.  
 

The radionuclide must have certain properties. It should emit only γ radiation of an 

energy suitable for easy detection by a gamma detector (camera) and have a suitably 

short half-life to reduce the radioactive exposure to the patients. In SPET imaging, the 

emission energy of the radiopharmaceutical lies in the general range of 100 to 400 keV. 
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The principal imaging device used in nuclear medicine is the scintillation gamma 

camera originated from the principles developed by Anger in 1958 [31]. A schematic 

diagram is shown in the Figure 5.2. The basic SPET system consists of one or more 

gamma cameras that rotate around the patient in order to acquire photons from different 

directions. The essential components of a gamma camera are: (1) the collimator to 

define the incident photon direction; (2) the scintillating crystal to transform the 

incoming γ photon into visible light flashes; (3) an array of photomultiplier tubes (PMT) 

to convert the flashes into amplified electrical pulse; and (4) associated circuitry used to 

determine the location and energy of detected photons [7,284,285].  

 

The detection process of a gamma camera can be described as follows. When a γ photon 

is absorbed in the scintillator (usually a sodium iodide crystal doped with thallium), the 

scintillator atoms are raised to an excited state. They subsequently return to the ground 

state by the emission of visible light. These minute flashes of light provide a means of 

detecting γ photons. In the gamma camera, the scintillator is a large sodium iodide 

crystal [286,287], activated with about 0.5% of thallium oxide, abbreviated to NaI (Tl), 

usually circular or rectangular in shape, up to 500 mm across, and from 6 mm to 25 mm 

thick. Since the crystal is highly transparent to its own light emission, the visible light 

will escape from the crystal. As the light flashes are too small to be detected directly, 

they need amplification using an array of photomultipier tubes (PMT), positioned 

immediately behind the scintillator. The size of the output electrical pulse is directly 

proportional to the incoming photon energy. The most intense signal is obtained from 

the PMT nearest the event, and progressively weaker signals found as the distance 

increases. By examining the relative strength of signals from all PMTs, the position-

decoding circuit determines the location of the scintillation event which, in turn, is in 

line with the source of the γ photon. This provides a means of identifying where in the 

emitting organ the original γ photon originated. The pulse height analyzer (PHA) is used 

to ensure the γ ray has energy within the range expected for the radionuclide used. This 

reduces the possibility of detecting stray radiation but is mainly intended to minimize 

the detection of photons that have undergone Compton scatter in the body (see 

Subsection 5.4.3 on scatter). The energy of the incident γ photon deposited in the crystal 

is estimated by summing all the PMT pulses and then feeding the sum to a PHA. If the γ 
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photon energy falls within a selected range of energy (referred to as the energy window), 

the γ photon is accepted.  

 
Figure 5.2: Schematic diagram of a typical Anger gamma camera, with a parallel-hole collimator is 
illustrated. A single planar view or “projection” is shown. A few rays are shown to illustrate typical 
modes of propagation. Ray 1 travels in the direction perpendicular to the collimator and is detected the 
crystal. Rays 2 show the range of incidence angles that will still result in detection, but the finite 
dimensions of the collimator hole will cause image blurring.  Ray 3 is scattered towards the camera but is 
detected as non-scattered ray. Ray 4 is absorbed by the septa because its angle of incident is too large to 
pass through the collimator. Ray 5 is absorbed by the body or is scattered away from the camera.  
 

In digital acquisition, the detector is viewed as a matrix consisting a grid of (e.g. 64×64, 

128×128) square detector elements, which form the 2D digital planar image. In general, 

the field of view of a typical gamma camera is about 0.5×0.5 m2. The number of 

scintillations or counts obtained in each detector elements over a period of time is 

recorded and stored in the memory of a computer. During image acquisition, the camera 

is placed adjacent to the patient and both patient and the camera are kept still while 

counts accumulate. This results in a single planar view or “projection” of the 

radionuclide distribution within the patient (Figure 5.2). Projection data conceal 

information regarding the depth at which disintegrations occur. Thus radioactive 

sources that overlay each other along the line of sight to the camera cannot be 

distinguished. It is, therefore, necessary to acquire multiple projections of the patient at 

different angles so that sufficient data are obtained to reconstruct the 3D activity 

distribution within the body. Since these scintillation crystals are incapable of defining 
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the incident γ photon direction, gamma cameras are provided with collimators. A 

collimator consists of a honeycomb with tens of thousands of holes, parallel to the axis 

of the collimator. The lead separations between the holes are called septa and these 

ideally limit detection to only those photons that travel perpendicular to the detector, 

thus clearly defining their incident direction. All non-axial γ photons are absorbed in the 

lead septa. The performance of collimator depends on the size of the collimator holes, 

the thickness and the length of the septa, and the source camera distance [284]. The hole 

size and the septa length determine the acceptance angle of the collimator. The number 

of detected photons per activity unit defines the sensitivity. Long septa limit the 

acceptance angle of collimator holes, so few γ rays are accepted (low sensitivity) but 

those accepted will be aligned close to the ideal projection line (a good spatial 

resolution). The collimator design is a compromise between spatial resolution and 

sensitivity [288,289]. The thickness of the septa is chosen to match the relevant energy 

of the γ ray being just thick enough to stop non-axial rays penetrating, but not too thick 

to reduce sensitivity. 

 

5.3 Image reconstruction in SPET 

In SPET, the camera rotates around the patient, with its plane parallel to the patient’s 

long axis, acquiring 2D projections of the 3D radionuclide distribution at different 

angles.  This section is concerned with the process of reconstructing the SPET image 

from these projections. In general, the camera(s) rotate about the patient along an arc 

spanning at least 180°, acquiring projections at a number of positions, to provide 

sufficient information for reconstruction. Projection images are often acquired with a 

matrix size of 64×64 or 128×128 picture elements. Each row in the matrix represents a 

projection of a single slice. A n×n acquisition matrix contains the projections of n slices 

at a particular angle. Therefore, the complete set of projections provides information 

required to reconstruct n tomographic slices acquired by the gamma camera field of 

view. For a typical gamma camera diameter of 400 mm, the slice thickness is 

approximately 6.3 mm for a 64×64 matrix acquisition. For the sake of simplicity, data 

acquisition of a single slice is shown in Figure 5.3.  It is assumed that the intensity of 

radioactive decays is proportional to radioactivity distribution f(x,y) and that single 

photon emissions are released in an isotropic manner. The slice profile g(s,θ) is defined 

as the total counts detected in the detector pixel located at s from the origin when the 
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detector is at an angular position θ. The projection g(s,θ) of f(x,y) is known as the 

Radon transform which represents the line integral (ray sum) of the values of f(x,y) 

along the ray inclined at an angle θ with respect to the x-axis at a distance s from the 

origin. The ray is defined by the line equation θyθxu sincos += . The Radon transform 

of f(x,y) along the ray is given by Equation (5.1) 
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(5.1) 

The integration path variable u is measured along the ray (Figure 5.3).  

 
Figure 5.3: A schematic diagram of the projection geometry corresponding to a SPET acquisition with a 
rotation camera is shown. At each angle θ, slice profile g(s,θ) refers to the variation of intensity through 
(at right angles to) the slice. It gives a projection of radioactivity distribution within a transverse slice 
through the patient onto the detector. As the camera rotates about the patient, it acquires a 2D projection 
image at each θ, and each row of the projection image corresponds to a projection of the slice. A profile 
of a single slice is shown. The schematic diagram shows the ray sum g(s,θ) of a ray passing through the 
point (x,y) is identified by the angle θ  it forms with the x axis, and its perpendicular distance s from the 
origin.  
 

 
Figure 5.4: A phantom slice (left) and its corresponding sinogram (right). Each row of the sinogram is a 
projection of the slice at a specific view angle. The projection in the bottom row is obtained at 0o and that 
in the top row is obtained at 180o.  There are 128 views (projections) equally spaced over the 180o range. 
This simulation is noise free. 
 

In discrete form, the integral represents the sum of the values f(x,y) along the ray, and is 

known as the ray sum. The radioactivity distribution of the slice f(x,y) is estimated from 
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the projection data g(s,θ). The projection data can be represented by a 2D diagram 

known as a sinogram. In the sinogram (Figure 5.4), the horizontal axis denotes the 

location on the detector and the vertical axis denotes the angular position of the detector. 

The sinogram gives the number of counts at each point s of the detector for each 

projection angle θ. The problem is: given a sinogram g(s,θ), what is the radioactivity 

distribution f(x,y) in the slice? Many algorithms for SPET reconstruction exist 

[6,32,290,291 This section briefly discuses two widely used approaches, the filtered 

back projection (FBP) and maximum likelihood expectation maximization (MLEM) 

algorithms. The mathematics of image reconstruction is treated by 

[292,293,294,295,296,297] and a more in-depth treatment is in [298]. 

 

5.3.1 Filtered Back Projection 

It is possible to estimate f(x,y) from the measured projections g(s,θ) by a simple back 

projection operation defined by (5.2a). Since the projections acquired at angles between 

π and 2π do not provide new information in an ideal condition (e.g. without attenuation), 

the back projection can be limited to π radians. In the back projection process, the 

measured signal corresponding to each ray sum is assumed to distribute equally over all 

points along the ray. In other words, for a given projection angle θ, the projection g(s,θ) 

at location s that is corresponding to the ray sum passing through the point (x,y) in the 

slice is added. The process is repeated for all projection angles θ, and followed by 

dividing the total with the number of projections. Algorithmically [298], an estimate of 

the image  can be expressed as (5.2b) ),(f̂ yx
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where 
p
πθ =∆  is the angular step between successive projections, p is the total number 

of projections acquired over π radians and θk is the kth angular position of the detector. 

Figure 5.5 shows a simulation of the back projection operation.  
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Figure 5.5: The top row: Direct back projection (BP) reconstruction of the phantom shown in Figure 5.4. 
Here an ideal case is considered, without attenuation, scattering and noise. Partial reconstructions after 1, 
32, 64, 94 and 128 projections are shown (left to right). The BP reconstruction image of 128 projections 
(second image from the right) is similar to a blurred version of the original image. The last diagram 
shows the difference between BP reconstructed image and the original image. 
 
The middle row: As in the top row, but each projection data set was pre-processed by a ramp+Hamming 
filter prior to back projection.  
 
The bottom row: MLEM reconstruction of the same phantom. Poisson noise was added to projection data 
(128 views over 180 angles). The image noise increases as the number of iterations is increased from 1, 5, 
20 and 40 iterations (left to right). The MLEM reconstruction in the second rightmost image used 40 
iterations with the median root prior [299]. The rightmost image used 40 iterations with post filtering. 
Each image display is scaled independently. 
 

It is interesting to note that, after back projection, the reconstructed image is not quite 

the same as the original image. Rather, it resembles a blurred version of the original 

image (Figure 5.5 top row, second image from the right) and is characterized by a loss 

of resolution and contrast. It can be shown that the point-spread function that describes 

the blurring is a “1/r” function, where r is the distance from the point source 

[295,297,300,301]. Consider a point source and its projections. Its reconstruction is a 

star like object because counts are smeared uniformly at all pixels along each non-zero 

ray when it is back projected.  For infinitely many projections, intensity will drop off at 

a rate inversely proportional to distance r. As any radioactivity distribution can be 

decomposed into point sources, the resulting reconstruction is a convolution of the 

reconstructed object with the function 1/r. To reconstruct the true image from the back 

projected image, the “1/r” blurring factor must be eliminated. In filtered back projection 

(FBP), this is done by applying a filter with ramp-like frequency response (Fig. 5.6) to 
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the projection profiles prior to the back projection operation. Note that the bandwidth of 

the ramp filter is limited to a cut-off frequency. The ramp filter has the desirable effect 

of reducing the 1/r blurring.  

 

 
Figure 5.6: Ramp filter representation in the frequency domain (top left) and spatial domain (top right). 
Note the cut-off is sharp in the frequency domain and the negative side-lobe of the ramp filter in the 
spatial domain. Bottom: the sinograms of the slice phantom obtained with and without ramp+Hamming 
filtering are shown. A typical row profile extracted from these sinograms is also shown. Note the negative 
values of the row profile after filtering.  
 

In FBP, each row of the sinogram is convolved with a decaying oscillating function (the 

impulse response of the ramp filter), which introduces negative values before 

backprojection. The filtered sinogram (Figure 5.6) shows two dark bands encapsulating 

each sine wave. A typical line profile with and without filtering is also shown. The blur 

is reduced because negative and positive values cancel each other near the edges of the 

image (Figure 5.5 middle row). In an ideal situation without attenuation, scatter, depth 

dependent resolution and noise, the original object f(x,y,z) is recreated faithfully. In 

practice, noise exists in the projection data and its frequency spectrum extends to high 

frequencies. Therefore, one major disadvantage of the ramp filter is that it will amplify 

high frequency image noise. This problem can be reduced by windowing the frequency 

response of the ramp filter (i.e. augmenting the high-pass ramp filter with a low-pass 

filter), thus providing a gentler high frequency roll-off. The rounding of the sharp 
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transition at the cut-off frequency will also prevent ringing artefacts in the reconstructed 

image [302]. However, there is a trade-off involved: by limiting high frequency 

component, not only the image noise is reduced but spatial resolution and image 

contrast may also be lost. A more detailed discussion on filters can be found in 

[293,295,298,301,303]. 

 

5.3.2 Maximum Likelihood Expectation Maximization 

FBP is an efficient method of reconstruction, but it is based on a simple assumption that 

the data are simple projection ray sums. When image degrading factors such as 

attenuation, depth dependent resolution, scatter and Poisson noise are present, FBP 

approaches are likely to produce artefacts [38]. Stochastic reconstruction methods 

improve the estimate of the radioactivity distribution f(x,y,z) by incorporating a realistic 

model of the acquisition process that can account for noise, collimator geometry, non-

uniform attenuation and scatter. In addition, a Bayesian formulation of the stochastic 

model permits the incorporation of a priori information about the radioactivity 

distribution [299,304]. A general discussion on iterative reconstruction algorithms in 

nuclear medicine can be found in [296].  

 

The detection process in SPET can be modeled in discrete form as follows. Let the 

image be f(x,y,z) denoted as an image of total D voxels such that 

and the voxels in f are indexed by j. Suppose there are N},...,2,1:f{f Djj == θ 

projection angles and N bins per projection (i.e. N is the size of acquisition matrix), the 

acquisition data can be represented by a one dimensional vector of measurements 

},,...,2,1:g{g NNmmiii ×=== θ , where m is the number of projection angles 

multiplied by the number of projection bins [294]. Thus gi denotes the number of counts 

in the ith measurement defined over the produce space  and is given by a 

weighted sum of D voxel values in the image f, . The weight aij 

represents the contributions of voxel j to the i

NN ×θ
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th detector count. Stochastically, aij 

measures the probability of a photon emitted from voxel j being detected in ith 

measurement in the detector. This equation can be put in a more compact form as 

, where the matrix A is known as the transition matrix [296,98]. The advantage fg A=
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of stochastic reconstruction is that non-uniform attenuation, scatter, depth dependent 

resolution and acquisition geometry can be incorporated into the transition matrix A, 

leading to improved reconstruction accuracy [305]. The most commonly used stochastic 

reconstruction method is the iterative maximum likelihood expectation maximum 

(MLEM) algorithm proposed by Shepp and Vardi [292], which incorporated the 

Poisson nature of the acquired data. Their reconstruction algorithm attempts to estimate 

the source distribution that most likely produces the emission projection data with the 

highest probability. The MLEM algorithm works as follows. Initially, a uniform count 

in each slice voxel is assumed. Next, each voxel estimate is updated according to two 

steps: the E step (forward step) estimates the expected projection based on the current 

estimate of activity distribution; the M step (back projection) compares the expected 

projection with the measured projection. A discrepancy found in the M step is used to 

update the estimate of the activity distribution. This leads to the iterative scheme 

[306,307,308], 
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(5.3) 

where is the kkf̂ th estimate of the activity distribution in the image. The MLEM 

algorithm converges slowly and the reconstruction becomes noisier with increasing 

iterations (as demonstrated in the first four images from left to right in the bottom row 

of Figure 5.5). Possible ways to reduce image noise are: (1) stopping the iteration 

process early [309]; (2) using a prior to regularize the reconstruction [299,304,307] 

(second last image in bottom row of Figure 5.5); (3) post filtering the reconstructed 

image [310] (last image in the bottom row of Figure 5.5). 

 

One major drawback of MLEM is its long computation time when compared to the FBP 

reconstruction, especially when a complex projection model is involved. Hudson and 

Larkin [98] split the measured data set into ordered subsets (OS) and used only one 

subset for each MLEM sub-iteration. For example, if there were 64 projections, one 

might divide the projections into 16 subsets (OS16), each consisting of 4 projections. In 

the ordered subsets expectation maximization (OSEM), projection data are grouped into 

subsets of projections, ordered so as to provide maximum new information at each sub-

iteration. In the sub-iteration, the same E and M steps are applied but only a subset of 
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the complete set of projections is used, giving a significant reduction in the processing 

time. One complete iteration of OSEM is defined as one pass through all the sub-

iterations. Theoretically, OSEM will speed up the reconstruction by a factor which 

equals the number of ordered subsets. For example, a 16-subset OSEM will accelerate 

the reconstruction by a factor of 16 relative to the standard MLEM. OSEM has become 

the most popular choice of iterative reconstruction algorithm in nuclear medicine. A 

detailed discussion of OSEM, from a clinical perspective, can be found in [38].  

 

5.4  Image degradation 

SPET image quality degrades due to several factors [284]. These factors are caused by 

the finite spatial resolution of the camera (partial volume effects) and the depth 

dependence of resolution, non-uniform attenuation and scatter of photons in the patient, 

patient movement, and noise in the projection data. An overview of image degradation 

is given below. 

 

5.4.1 Distance dependent resolution 

The spatial resolution of a gamma camera is limited by detector properties, but is 

dominated by the geometric resolution of the collimator. Due to the finite collimator 

hole size, rays not exactly parallel to the collimator axis may still be detected by the 

camera (ray 2, Figure 5.2). Because the angle of incidence determines whether a ray 

will be detected, the camera resolution depends on the source to camera distance. The 

spatial resolution of a camera is usually described by the point-spread function (PSF), 

which can be approximated by a Gaussian curve. The spatial resolution of a camera is 

usually specified by the full width at half maximum (FWHM) of the PSF. The FWHM 

of the collimator PSF increases approximately linearly with source distance from the 

camera as illustrated in Figure 5.7. This effect limits the ability of the physicians to 

discriminate between closely located activity sources, leading to difficulty in 

interpreting the pathology and functional information present in the image. The spatial 

resolution of a camera can be improved by reducing the collimator hole diameter, but 

this leads to a reduction in sensitivity because of the smaller number of number of 

photons being detected. The effect of collimator blurring and methods of reducing the 

blur have been widely discussed (e.g. Rosenthal [284]). Stochastic reconstruction 

algorithms that incorporate a realistic physical model of the acquisition process can 
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improve spatial resolution [311]. Lower resolution, higher sensitivity collimators are 

preferable for brain and cardiac studies [312,313]. 

                                        

 
Figure 5.7: Images of line sources at 90 mm (top left) and 290mm(top right) source detector distance. 
Siemens Orbitor camera was used with a general purpose collimator. Image blurring worsens the farther 
the line source is from the camera. The horizontal solid lines indicate where the line profiles were 
measured. The line profiles for 90 mm (bottom left) and 290 mm (bottom right) are shown. The system 
resolution at 90 mm and 290 mm was measured as FWHM (full width at half maximum), indicated in the 
profiles by the broken line. A Gaussian curve (solid line) is fitted to the measured data (+) to estimate the 
PSF, and to compute the FWHM. 
 

5.4.2 Attenuation 

Because of interactions with body tissue, a significant number of photons are absorbed 

or deflected from their original path so that they will not be detected by the camera (ray 

5, Figure 5.2).  A detailed discussion of the impact of attenuation and its compensation 

on cardiac SPET was given by King et al. [35,36]. The removal of these photons from 

the beam is referred to as attenuation. For a monochromatic photon beam, attenuation is 

given by the equation below,  

ixioeII δµ−= ,   (5.4) 
where Io is the incident intensity, I is the intensity transmitted through a small volume of 

tissue of thickness δxi and uniform attenuation coefficient µi. Table 5.2 lists the linear 

attenuation coefficient for several types of body tissues [35]. The fraction of photons 

attenuated from a narrow beam after passing 5 cm water-equivalent tissue is about 46% 

for 140 keV photons (µ = 0.15 cm-1) emitted by 99mTc. In the case of SPET imaging, 

broad beam conditions apply, accounting for photon loss due to both absorption and 
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scatter [285]. Furthermore, photons from regions not directly exposed to the beam may 

be scattered with an increase in detected count-rate above what would otherwise be 

expected. For 140 keV photons in water-equivalent tissue, the µ value is approximately 

0.12cm-1 for broad beam geometries (thoracic or abdominal imaging) compared to 

0.15cm-1 in narrow beam condition [284]. In a typical study, photons emitted from the 

center of the abdomen will be reduced by a factor of 5 compared with emission in air. 

Neglecting this effect will lead to an underestimate of the true radionuclides 

concentration, which is most pronounced at the center of the body.  

  Attenuation coefficient at photon energy  
Material Density / kgm-3 73KeV  /cm-1 140KeV  /cm-1

Air 1.3 0.00 0.00 
Muscle 1000.0 0.19 0.15 
Lung 330.0 0.06 0.05 
Bone 1850.0 0.43 0.29 

Table 5.2: The table lists the density and linear attenuation coefficients for several body tissues at 73 keV 
and 140 keV corresponding to 201Tl and 99mTc respectively. Air is included for comparison. 
 

The fraction of photon transmitted through the body will vary with the tissue traversed 

as a result of the differences in attenuation coefficient for different tissues (Table 5.2). 

Algorithms have been suggested for attenuation correction in SPET [284,314,315]. 

However, with analytical attenuation correction, reconstructed images result in a 

varying noise level across the image because the correction factor, such as the Chang 

algorithm [314], depends on spatial distance from the image center. Attenuation 

correction usually relies on the availability of an accurate, patient and energy-specific 

distribution of attenuation coefficient values (attenuation map). The attenuation map is 

estimated with a transmission (TR) scan (Figure 5.8) by using a line source or in newer 

systems, a combined CT/SPET scan, and then taking the ratio of the transmitted 

intensity to the incident intensity [316,317]. Equation (5.4) can be rearranged to solve 

for µi as follows: 
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(5.5) 

An estimate of the attenuation map is obtained by reconstruction (Section 5.3) from the 

attenuation profiles given by Equation (5.5). Figure 1.4 (Chapter 1) shows an example 

of the intensity profile and its corresponding attenuation profile. The TR scans are 

similar to CT (Subsection 1.2.1, Chapter 1) but use a higher energy radiation and 
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different detector configuration, resulting in limited spatial resolution and less soft-

tissue detail than CT. 

 
Figure 5.8: One of a number of transmission scans (left) used in reconstructing the attenuation map 
(right). Note the outlines of the lungs in the transmission scan. 
 

5.4.3 Scatter 

When a photon interacts with matter, its energy and direction may change (ray 3, Figure 

5.2). Besides primary detected photons, the camera may also detect photons that have 

interacted with the body. If photons are coherently scattered, no energy is lost and, so 

long as the scattered direction falls within the admittance cone of the collimator, there is 

no way to distinguish these photons from primary photons. In nuclear medicine, 

incoherent scatter (energy lost) is far more likely than coherent scatter. When photons 

lose energy and change direction due to incoherent (Compton) scatter, their energy 

could still fall within the photopeak energy window due to the finite energy resolution 

of the system. In Compton scatter, a gamma photon interacts with an orbital electron, 

losing energy and changing its direction according to the following equation, 

)θcos1(
511

1
'

−+
=

γ

γ
γ E

E
E .   

 
 

where Eγ is the energy of the original photon, E’γ is the energy of the scattered photon, 

both in units of keV. The scatter angle θ measures the deviation of the scattered photon 

from its original direction and takes a value of 0° to 180°. The loss of energy 

corresponding to 30° scatter is only about 5 keV for 99mTc 140 keV photons [303]. 

Since the energy resolution of the detector is about 10%, many of the detected photons 

carry incorrect position information. A typical energy spectrum recorded from an Anger 

camera is shown in Figure 5.9. The primary photons are recorded as a broad photopeak. 

The breadth of the photopeak will include many scattered events, which degrade the 

SPET image. Scatter accounts for approximately 40% and 50% of the total counts 
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acquired in a SPET study with 99mTc and 201Tl, respectively [318]. Effects of photon 

scatter include a decrease in contrast, loss of resolution and an increased background 

count. A detailed discussion of scatter and its correction can be found in 

[284,285,319,320,321,322,323].  

 
Figure 5.9: Schematic diagram to illustrate an energy spectrum of a typical measurement on a gamma 
camera measured by the pulse-height analyzer. The photopeak corresponds mainly to the primary photons 
while the plateau is mainly due to the Compton scatter. 
 

5.4.4 Patient motion 

It is well recognized that patient motion during image acquisition can cause artefacts 

that can compromise image quality, accurate quantification and clinical interpretation. 

Because of a long acquisition time in SPET (typically > 20 minutes), patient motion is 

virtually unavoidable. Motion may be extrinsic, such as head movement, or intrinsic, 

such as the beating of the heart. Movement of patient causes either blurring of 

projections or inconsistencies in the projection data and tends to produce artefacts in the 

reconstructed SPET image. In cardiac imaging, the change in depth of respiration may 

change the position of the heart in the course of data acquisition. Germano [303] 

reported that 10% to 20% of scans are affected by artefacts due to patient or organ 

motion in the cardiac SPET, and motion greater than 2 or more pixels results in 

clinically significant artifacts [90]. Myocardial motion often involves upward creep, 

bounce and return or nonreturning shift of the heart [303]. The deformation of the 

myocardium and respiratory-induced motion complicate the task of correction for 

myocardial motion artefacts. Brain SPET is also susceptible to movement artefacts. 

 

Several SPET motion correction algorithms have been proposed. One approach is to 

track the motion of the object of interest and apply the measured motion to transform 

the projection images [324,325]. Since tracking the motion by direct measurement is 

difficult to implement, attempts to use the measured projection data have also been 
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proposed [91,92]. The proposed motion correction method is based on a fully 3D 

algorithm to estimate the patient orientation which best matched each reconstructed 

projection with its corresponding measured projection. 

 

5.4.5 Partial volume effect 

The Anger camera has a characteristic “sensitive volume” determined by its resolution. 

When an object partially occupies the sensitive volume, there is an apparent decrease of 

measured signal or counts. The effect is known as the partial volume effect. Rosenthal 

et al. [284] suggested that partial volume effect is due to the mismatch of system 

resolution, object size and pixel size. One consequence of this effect is that objects of 

identical concentration are seen to decrease in intensity with decreasing size. As a result, 

lesion contrast may be reduced and difficult to distinguish from background. Since the 

total counts are preserved for the smaller object, they are distributed over an area larger 

than the physical size of the object. Thus the smaller object appears to be larger and has 

lower average counts than would be expected. The partial volume effect is important for 

both qualitative and quantitative interpretation of SPET images. The effect makes it 

difficult to measure the absolute activity using SPET, if objects of different size are 

imaged, the relative values may be misleading. For example, small central brain 

structures may appear to have fewer counts than the brain cortex. Therefore, brain 

perfusion will appear reduced in these central brain structures compared to the cortex. 

As the dimension of the object becomes larger with respect to the resolution of the 

detector, the detected maximum counts will approach the true counts emitted by the 

object. Several studies describe methods to correct partial volume effect using 

registered anatomical images [326,327]. Koole et al. [328] compared several strategies 

to reduce the partial volume effect with the aim of accurately measuring the true tissue 

tracer activity within a tissue compartment.  

 

5.4.6 Noise 

Due to the limited number of detected photons, there is a substantial amount of Poisson 

noise in the projection data. The noise is assumed to be spatially uncorrelated, i.e. the 

statistical variation of signal in any one pixel is independent of the fluctuation in any 

other pixel. Based on the Poisson statistics, the standard variation of counts in any pixel 

is estimated by the square root of the average value of counts in the same pixel. The 
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signal-to-noise ratio (SNR) is approximated by /N N N= . Thus sufficient counts 

are often required per projection for acceptable reconstructed image quality 

[329,330,331]. However, the nature of noise in the SPET image, reconstructed from the 

Poisson noise dominated projection, is no longer governed by Poisson distribution. A 

more detailed discussion of the noise properties of reconstructed image, and its 

dependence on the image reconstruction algorithm, will be given in the next Section.  

 

5.4.7 Noise properties of FBP and OSEM 

Several studies of the noise properties of FBP and MLEM reconstruction have been 

reported [302,332,333,334,335,336,337,338]. In FBP, the ramp filter amplifies high 

frequency noise. This can be limited by a low-pass filter [301]. The lower the cut-off 

frequency of the filter, the greater the degree of smoothing (Figure 5.10 top row). 

Smoothing reduces noise amplitude but also image resolution. At larger cut-off 

frequencies, a sharper image is observed but its streak artefact is more distinct. For FBP, 

it was demonstrated that noise is correlated over relatively long distances and its 

correlation function is characterized by negative side-lobes as the projections may 

contain negative values after filtering [339]. This effect leads to the image noise 

spreading from the high counts region to the low counts region and results in a relative 

constant noise magnitude of globular structure throughout the image. MLEM 

reconstruction does not suffer from these limitations and demonstrates improved noise 

properties. Noise amplitude is signal-dependent in MLEM images, producing less noise 

in low count regions [334,335,338]. The streak artefacts, common in FBP 

reconstructions, do not appear in the MLEM reconstruction (Figure 5.10). They are 

more pronounced in FBP reconstructions that contain regions of locally high activity. 

For example in bone SPET studies, the streak artefact observed has been shown to be 

intense with FBP but strongly reduced when OSEM is used [340]. Activity is not spread 

outside the body so that the body outline is more clearly defined in OSEM images than 

in FBP images. These differences in appearance may have important implications for 

the performance of image registration, particularly in terms of the ability to align 

intermodality images. OSEM speeds up the MLEM reconstruction and accelerates its 

convergence. However, unregularized MLEM reconstruction exhibits noise 

deterioration with increasing iterations. Note the increased image noise after 4 iterations 

in Figure 5.10. From the point of view of image registration, one of the limiting factors 
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is the image quality, and the most important element of image quality is the noise level.  

In OSEM, once the number of subsets is chosen, the number of iterations entirely 

controls the final noise of the reconstructed images. For FBP, the principal mechanism 

for controlling image noise is the cutoff frequency setting of the low-pass filter. 

 

 
Figure 5.10: Reconstructions from 128 projections over 180o, (with Poisson noise but without scatter and 
non-uniform attenuation) using FBP (top) and OSEM (bottom). All images are displayed with reversed 
contrast and are individually scaled.  FBP images show the effect of decreasing (left to right) the cut-off 
frequency of the low-pass filter. The lower the cut-off frequency, the smoother the reconstruction. At 
higher cut-off frequencies, streak artefacts become more distinct The images in the bottom row show 
OSEM reconstruction using 4 ordered subsets and 1, 4, 8, 12, 16 and 20 iterations, from left to right.  
 

5.5 The SPET torso phantom   

The ability of MLEM reconstruction to incorporate the imaging physics into the 

reconstruction algorithm makes it very attractive. Improvements in computer 

technology and the development of the ordered subsets algorithm make the MLEM 

reconstruction a clinically practical alternative to the FBP reconstruction. Iterative 

OSEM reconstruction has been shown to give superior noise characteristics to FBP 

reconstruction [340]. Noise properties of FBP and OSEM reconstructions have been 

shown to affect image quality [341,342]. However, the difference between OSEM and 

FBP in the performance of multimodality image registration remains an open question.  

One of the aims of this study was to determine whether the OSEM reconstruction 

performs better than classical FBP reconstruction in SPET-CT registration. The 

performance of multimodality image registration is evaluated using a realistic digitized 

torso phantom containing a thoracic cavity, liver, heart, anatomically accurate bones 

and other soft tissues. Furthermore, images of the phantom are reconstructed by FBP 

and OSEM to investigate the effects of the registration algorithm on registration 

performance for SPET-CT registration under different conditions 
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5.5.1 3D digital phantom 

Most digital phantoms are usually designed for a specific purpose such as to simulate 

uptake in the brain (e.g. digital brain phantom in [259,252]) and mimic cardiac SPET 

imaging (e.g. MCAT phantom [37]). Ordinary MR or CT image of a real subject 

correlated with post mortem sections can also be used to synthesize a SPET dataset (e.g. 

Zubal phantom [249,250] and the Visible Human data set [251]). Since anatomically 

segmentation is not available for the Visible Human data set and the MCAT phantom is 

not an ordinary medical image, the SPET simulation described here is based on the 

Zubal digital phantom. The phantom set consists of a CT image and an anatomically 

segmentated image. The CT volume array represents a high-resolution model of the 

human anatomy. Segmented Zubal images (to be referred to as the phantom) were 

created from the CT images by manual segmentation (data supplied with the Zubal 

phantom). The original CT images were acquired in a 512×512 matrix with a resolution 

of 1 mm in the transverse plane. The axial resolution is 10 mm from the neck to the 

mid-thigh and 5 mm from the neck to the crown of the head. Since the computational 

cost of registration increases with the size of image matrix, the CT and the phantom 

were resliced from 512×512×97 matrix (with 1×1×10 mm3 voxels, 25 Mbytes memory) 

to 128×128×243 matrix (with 4×4×4 mm3 voxels, 4 Mbytes memory) by downsampling 

using trilinear interpolation. The segmentation distinguishes 57 body organs (Appendix). 

It gives a realistic model of anatomical structure that provides spatial bounds on the 

distribution of the radioactivity and the attenuation coefficient in each organ. 

 

The activity and attenuation coefficient values were assigned to individual organs in the 

digital phantom based on either published data [343] or clinical cases. To estimate the 

activity distribution from clinical studies, SPET images were rigidly registered to the 

Zubal CT image. The registration accuracy was unknown at this point but provided a 

means of identifying specific organs. The source distributions were estimated by 

applying the anatomical segmentation to the registered SPECT and estimating the mean 

counts in each organ. Based on the mean counts, activity distributions were assigned to 

each organ of the digital phantom. Thus organs and soft tissues are allocated different 

uptakes to mimic the activity distribution of a specific radionuclide. In addition, to 

provide a realistic non-uniform attenuation coefficient distribution, attenuation 

coefficients were assigned according to the tissue type and emission energy of a 

particular radionuclide. Figure 5.11 shows selected transaxial slices of the SPET 
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phantom and the corresponding attenuation maps. Based on the labels in the anatomical 

segmentation, an energy-specific 3D attenuation map and radioactivity distribution can 

be modelled to simulate clinically realistic image data. The attenuation map used in this 

study represents an ideal case of a perfect attenuation for torso simulation. In practice, 

patient-specific attenuation maps would be obtained using simultaneous transmission 

scans. Such maps often contain noise and reconstruction artefacts (Figure 5.4). The 

phantom was further downsampled, with interpolation, to a 64×64×121 matrix. The 

final voxel was a cube of size 8 mm. Two SPET studies were used for simulation 

purposes, namely 67Ga citrate and 99mTc-labelled MDP. Imaging with 67Ga is particular 

useful for assessing both Hodgkin’s and non-Hodgkin’s lymphoma and detection of 

inflammation [330,331] whereas MDP is commonly used for bone imaging. Bone SPET 

is important for detection of a wide range of abnormalities in the skeleton and is often 

helpful in the management of patients with neoplastic disease [329].   

 

 
Figure 5.11: Six transaxial slices selected from the 243 slices of the 3D Zubal phantom showing 
anatomical segmentation (top row) and the corresponding attenuation map (bottom row). Each image is 
individually scaled.  
 

5.5.2  Projection data 

A set of 2D projections was generated from the phantom with a projector, which 

modeled a medium-energy general-purpose parallel-hole collimator and the effects of 

attenuation, with system resolution at a distance from the collimator based on 

manufacturer specifications. Projection data were calculated based on Larkin’s 

implementation on MLEM for ordered subsets reconstruction algorithm [98]. The 

projection data gi is related to the image f by where weight aij represents 

the probability accounting for the i
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th detector counts in the camera from voxel j in the 

image. In order to evaluate the transition matrix ( )ija , three look up tables are prepared 
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to account for (i) geometry, (ii) attenuation and (iii) camera blurring.  The geometry 

describes the projection ray position for each pixel at each projection angle. Assuming 

parallel bin geometry, each voxel’s perpendicular distance to the camera (source-camera) 

was also calculated. Since these distances are the same for all slices of the image, 

computation for a single slice is sufficient. With an n×n acquisition matrix for the 

detector and n projections, there are n3 pieces of information in the geometry lookup 

table. The photon intensity emitted from an image voxel to the detector suffers 

attenuation. The attenuation coefficients are calculated along the ray normal to the 

detector from each voxel in the image. The attenuation coefficients scale the image 

values according to (Eq. 5.4). With n3 voxels in the image and n projections, the size of 

lookup table for attenuation coefficient is n4. Assuming a linear loss of resolution with 

source-detector distance d, the point spread function (PSF) of the detector describes the 

spread of the counts about the geometric projection point by )
2

exp( 2

2

t−
σ , where t is the 

offset from the center of the geometric projection, dβα ×+=σ  is defined by the 

collimator constant α and the collimator scale β.  The spread is used to account for the 

camera blur based on a normal distribution.  The distribution is modeled as a Gaussian 

and a lookup table for each source-detector distance d and offset t is produced.  

 

In the 99mTc-MDP SPET simulation, 45.1=α , and d is the source-

detector distance in mm. Therefore the system resolution at 100 mm was 7.53 mm 

(

-1mm 0174.0=β

σ36.2FWHM = ). For the purpose of projection and reconstruction, assigning tissue-

specific attenuation coefficients within the phantom created an attenuation map. Broad 

beam attenuation coefficients of 0.12, 0.04 and 0.215 cm-1 for 140 keV photons were 

employed for soft tissue, lung and bone, respectively [36,344]. In 67Ga SPET simulation, 

the collimator parameters were set to 15.2=α  and . This gave a 

system resolution of 11.56 mm (FWHM) at 100 mm. Attenuation coefficients were set 

to a weighted of attenuation coefficients at 93 keV and 185 keV, with the weights 

reflecting relative emission abundance and the camera efficiency [345]. The 300 keV 

and higher energy emissions were excluded, as they are not usually acquired clinically. 

Based on the phantom, an energy specific attenuation map was created. Attenuation 

coefficients assigned to soft tissue, lung and bone were 0.134, 0.045 and 0.24 cm

-1mm 0275.0=β

-1, 

respectively. Again, broad beam geometry was assumed.  
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According to Larkin’s implementation on MLEM [98], given a pixel and a projection 

angle, the projection matrix is produced by look up the projection bin, its offset and 

depth from the geometry table to compute the PSF that give the matrix. Finally, this 

matrix is scaled by the lookup attenuation coefficient in the table for each projection 

angle and pixel. Poisson noise is added to the original noise free projection pixel.  SPET 

is simulated from the phantom using a 64×64 pixel grid with 8×8 mm pixels. Over the 

360º span, 64 equally spaced projections were generated with the radius of rotation of 

250 mm. Non-uniform attenuation and depth dependent resolution are included in the 

projection to a mimic real clinical data acquisition situation, but scatter was not 

included in the simulation.  This corresponds to ideal scatter rejection or complete 

correction [342]. Figure 5.12 shows typical projections for 99mTc-MDP (MDP, for short) 

and 67Ga SPET.  

 
Figure 5.12: A typical planar projection image for MDP (left) and gallium (right) SPET shown with 
reversed contrast. 
 

5.5.3 Image reconstruction with FBP and OSEM 

The reconstruction algorithms considered in this study are FBP and OSEM. Each 

algorithm is applied to the same set of noisy projection data. Each SPET slice was 

reconstructed into a 64×64 pixel array that was 1 pixel (8 mm) thick. In the case of 

OSEM, attenuation was modeled directly in the projector and the back projector, using 

subset sizes 4 (OS4) and subset size 8 (OS8), with/without non-homogeneous 

attenuation compensation and no depth-dependent resolution compensation. Given 64 

equally spaced projections over the 360º span, one iteration of OS4 corresponds to 16 

iterations of MLEM. For FBP, the 3D projections of the image data were transferred to 

an ADAC Pegasus workstation for analytical reconstruction based on the built-in 

filtered back-projection (FBP) algorithm. Post-reconstruction filtering was performed 
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using a 3D Butterworth filter of order 5 at various cutoff frequencies, with and without 

Chang’s attenuation correction.  

 

5.6  Conclusion 

In this chapter, two popular approaches, namely FBP and MLEM, for SPET 

reconstruction are introduced. FBP is a fast analytical reconstruction algorithm based on 

a simple assumption that the acquired data are simple projection ray sums. MLEM is an 

iterative method attempted to model the acquisition process. It is then followed by the 

discussion on image degradation factors in SPET. These include collimator factors (e.g. 

depth dependent resolution), patient factors (e.g. motion) and factors arising from 

interactions of radiation with tissues (e.g. scatter and attenuation). These factors, 

together with the reconstruction algorithms, influence the quality of reconstructed SPET 

images. For example, when attenuation, depth dependent resolution, scatter and Poisson 

noise are present, FBP approaches are likely to produce artifacts (e.g. streak artifacts) 

and inferior noise characteristics, which is a major drawback in SPET reconstruction. 

The iterative MLEM algorithm has a number of advantages over FBP. It improves the 

estimate of the image by incorporate a realistic model of the acquisition process that can 

account for noise, collimator geometry, non-uniform attenuation and scatter. MLEM is 

computationally expensive but a fast version of the algorithm based on ordered subsets 

(OSEM) and the improvements in computing technology (faster processor speeds), have 

made OSEM a popular choice in SPET reconstruction. The superiority of noise 

properties in OSEM compared to FBP is well documented but its effect on image 

registration, especially for SPET and CT, is unclear. The use of a digital phantom to 

simulate projection data degraded by attenuation and depth dependent resolution is 

included in the projection data, but only attenuation compensation is applied in the 

reconstruction. The effects of the reconstruction algorithms on registration performance 

for SPET-CT registration under different settings are uncertain, which will be 

investigated further in Chapter 6. 
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Chapter 6 
 

Analysis of registration in non-brain SPET 
 

Relatively few reports describe multimodality image registration outside the brain, 

especially in the thoraco-abdominal region (Section 5.1) and the performance of 

registration in this region has not been adequately analysed. It is of particular interest to 

determine how the new, voxel-based, similarity measures perform in this region. Over 

the past decade, registration algorithms have evolved from feature-based approaches to 

voxel-based methods [47,49, 52,56,99,346]. Unlike the feature-based methods, which 

require features to be extracted from the images prior to registration, the voxel-based 

approaches generally use the full image volume and operate directly on intensity values. 

These registrations have been shown to be accurate [122,123,183,242] and have been 

applied extensively in the brain for multimodality image registration with success. The 

experiments described in this chapter aim to extend our knowledge of the performance 

of voxel-based registration methods to the non-brain region.  

 

To facilitate the study of SPET-CT image registration in the thoracic-abdominal region, 

a digital phantom has been constructed (Section 5.5). Using the phantom, a patient-like 

source distribution was simulated, based on clinical technetium-99m labeled MDP and 

gallium-67 citrate SPET studies. The activity distribution in specific organs was 

obtained from the clinical SPET image, following a pre-registration to an anatomically 

segmented CT image. The data were forward projected and reconstructed using OSEM. 

Attenuation and noise were incorporated in each projection. Random misalignments, 

each with a 6-parameter rigid-body transformation, were applied independently to the 

CT image. The SPET image was registered rigidly to each transformed CT image. The 

registration accuracy was estimated from the residual displacement of a vertex of a 

hypothetical box drawn around the phantom, averaged over the eight vertices.  

 

6.1  Introduction 

The majority of the published work on anatomical and functional image registration is 

focused on the brain, with few studies of the thorax, abdomen, pelvis, and other non-

brain areas. Nevertheless, various registration approaches for multimodality image 

registration in the non-brain region have been reported in literature. For example, the 
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sum of absolute differences method was used to register thoracic SPET and PET image 

[165]. External fiducial markers [75,76,79,80] and internal anatomical markers 

[186,282] have been suggested to register SPET and CT images of the abdomen. Other 

groups reported the use of mutual information [186, 75, 248], “head and hat” algorithm 

[78,145], dual-isotope scans [81,130], transmission map [260] and Compton scatter 

[347] to registered SPET to CT/MR in the non-brain region. Most of these studies were 

focused mainly on the performance of a particular similarity measure without 

addressing the factors arising from the choice of SPET reconstruction method. Filtered 

back projection (FBP) was the method of choice in the reconstruction of SPET data 

until recently. However, an accelerated expectation maximization algorithm based on 

the use of ordered subsets (OSEM) is increasingly used in place of FBP. In general, 

MLEM images have better noise characteristics than FBP images in the lower count 

region. Without attenuation correction, noise is constant across FBP reconstructed 

images. Low count regions in FBP images may produce high noise. In contrast to FBP, 

noise in MLEM is related to signal, and MLEM reconstruction generates less noise in 

low count regions [38].  Compared to FBP, streak artefacts do not appear in MLEM 

reconstructions (Subsection 5.4.7). Hence, MLEM leads to smaller intensity errors in 

the joint intensity histogram and may argue to be better at achieving higher registration 

accuracy. The effect of the choice of the reconstruction algorithm on the registration 

performance has not been reported.  In particular, it is interesting to note that only 

limited studies, if any, have been reported to determine if registration accuracy is 

dependent on image noise level.  

 

Performance of multimodality image registration has been studied extensively in the 

brain region for various similarity measures [122,123]. It is unclear how similarity 

measures, such as MI, NMI and SCR, perform in non-brain regions. Do these measures 

produce similar registration accuracy as in the brain region? Does the performance of 

SPET-CT registration depend on the choice of the reconstruction method (FBP or 

OSEM)? At the heart of these similarity measures (MI, NMI and SCR) lies a joint 

intensity histogram, which is needed to estimate the joint probability and marginal 

probability of images. In these methods, the voxel intensities are typically requantized 

first.  The number of bins and other factors that affect the joint intensity histogram may 

also influence the registration accuracy.  Thus, in a comprehensive analysis of 

registration performance, it is imperative to determine the extent of the influence of pre-
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registration processing, including intensity windowing, attenuation compensation, and 

resolution matching. Registration of the thorax and abdomen presents a somewhat 

different problem from that of the brain, due to the elasticity and movement of organs. 

Due to different protocols and fields of view in different modalities, the imaged 

volumes commonly overlap only in part. Another difficulty is the poor definition of 

organ and body boundaries in SPET. In clinical CT, the field of view is usually kept 

small to minimize the radiation dose to the patient. In SPET, the field of view is limited 

by the geometry of the gamma camera. CT and SPET images to be registered may 

therefore represent different, partially overlapping, volumes. The effect of the presence 

or absence of the body boundary in SPET and the issue of noncoincident image 

volumes has received scant attention. Therefore, one purpose of this study is to examine 

the effect of body boundary and field of view on registration.  

 

The limited size of the existing physical phantom makes it difficult to vary the field of 

view and study its effect on registration. Issues of versatility and ability to control 

individual factors to model acquisition of data; therefore, physical phantoms were not 

used in this study. In order to address the above problems, a digital phantom (Section 

5.5) was used to investigate SPET-CT registration in the thoracic-abdominal region.  

Specifically, the purpose of this study was to investigate: (1) the relative performance of 

the three similarity measures (SCR, NMI and MI), (2) the influence of the choice of 

reconstruction algorithm (OSEM or FBP), with and without attenuation correction; and 

(3) the effect of image attributes, such as intensity window settings in CT, relative 

image resolution, relative image volume and degree of overlap between SPET and CT 

images as well as the presence of boundary information in SPET. Registration 

performance was evaluated by examining how well the corresponding SPET data had 

been registered to a transformed CT under various conditions. The radionuclide 

distribution simulated clinical MDP and gallium-67 SPET studies.  

 

The rest of this chapter is arranged as follows. The implementation of phantom studies 

is described in Section 6.2. The evaluation methods used for examining the registration 

are presented in Subsection 6.2.6 and the experiments are in Section 6.3. Experimental 

results are presented in Section 6.4 and discussed in Section 6.5.  
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6.2 Methodology 

The simulations of radionuclide distribution in clinical SPET studies, specifically 

methylenediphosponate (MDP) and gallium-67 (67Ga), have been described in Section 

5.5. Brief descriptions are given below. For the purpose of registration, the simulated 

SPET image served as the floating image while the CT image was the target image. 

 

6.2.1 Image data 

To study multimodality registration in the thorax and abdomen, the Zubal digital 

phantom [250] was used to generate an image data set as described in Subsection 5.5.1.  

Slices 74-185 were extracted from the CT volume (128×128×243 matrix with 4×4×4 

mm3 voxels), representing the thoracic-abdominal region. The extracted volume was 

57% of the original Zubal CT volume. In SPET, the whole image, from the top of the 

head to the mid-thigh, was used as the default image.  

 

6.2.2  Projection data 

Projections were simulated as described in Subsection 5.5.2. The planar projection 

counts and noise levels were chosen based on clinical studies.  Total counts for a typical 

planar projection were approximately 198k for 99mTc-MDP and 208k for 67Ga 

corresponding to the numbers obtained clinically, and referred to as ×1 clinical count 

level. For ×0.5 count level, the planar projection was approximately half to that of ×1 

count level. To distinguish these two cases in the rest of this chapter, image at ×1 is 

denoted by high-count image while image at ×0.5 is referred by low-count image.  

 

6.2.3 Reconstruction  

 As described in Subsection 5.5.2, SPET images were reconstructed from the projection 

data by filtered back-projection (FBP) and ordered subset maximum likelihood-

expectation maximization (OSEM). A detailed description of the image reconstruction 

for 99mTc-MDP (MDP, for short) and 67Ga SPET is given in Subsection 5.5.3. Briefly, in 

OSEM reconstruction, 1, 2, 4, 8, 16 and 32 iterations of OS4 and 1 iteration of OS8 

were used for SPET reconstruction. For FBP, a 3D Butterworth (order 5) pre-

reconstruction filter of cut-off frequency in the range of 0.2-0.7 cycle/cm in steps of 0.1 

cycles/cm was investigated. A ramp filter (“infinite” cutoff) was also used.  
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6.2.4 Similarity measure 

Measures based on the co-occurrence of voxel intensity values in the two-dimensional 

joint intensity histogram: mutual information (MI), normalized mutual information 

(NMI) and symmetric correlation ratio (SCR), were compared. Requiring only the 

assumption that there is a probability dependence of PDFs for MI and a conditional 

variance for SCR between groups of voxels that have similar values, these methods are 

more robust than feature-based methods and are generally applicable to multimodality 

image registration. Studies [181,182] have demonstrated that the correlation ratio 

method gives more accurate results than mutual information when severe sub-sampling 

is used for multi-levels registration to improve speed comparing to full sampling. A 

symmetric version of the correlation ratio (SCR) was employed for SPET-CT 

registration. In the rest of this chapter, “the similarity measures” will refer collectively 

to SCR, NMI and MI.  

 

6.2.5  Default implementation 

The default setting comprised CT intensity windowing, 3-level strategy, and simplex 

optimization. All studies were carried out on a stand-alone 333 MHz Pentium PC with 

192 Mbytes of random access memory.  

 
Figure 6.1: CT image with (left) and without (right) intensity windowing.  
 

CT intensity windowing 

The intensity histogram of the Zubal CT was found to be largely confined to a narrow 

range of intensities [800,1250]. In general, specific tissues are visualized on CT with a 

choice of predefined standard windows optimized for different clinical applications. In 

this case, however, the aim was to enhance overall contrast among major tissue types 

while compressing the intensity range to 8 bits.  CT intensities were re-mapped linearly 

from interval [800,1250] to [0,255]. Intensities lower than 800 were set to zero and 

those higher than 1250 were set to 255 (Figure 6.1). Where intensity windowing was 
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not applied, the full CT intensity range was rescaled linearly to the available grey scale 

[0,255] without clipping. In the default setting, intensity windowing was applied in the 

CT while the SPET images were linearly rescaled to 256 grey levels regardless of the 

maximum intensity.  

 

3-level strategy 

Experimental techniques similar to those described in Section 4.3 were employed. 

Briefly, a sub-sampling strategy was used to speed up the registration process.  A three-

level scheme [258] was employed, comprising steps: [8,8,1|24], [8,4,1|32] and [4,4,1|64], 

where the notation [n1, n2, n3|b] was defined in Subsection 4.3.4. For example, a 

[4,4,1|64] sampling scheme applied to an image of 1283 voxels will generate 

32×32×128 samples for registration.  The intensity in each image was rebinned into 64 

intensity values. Rebinning was performed implicitly by linear rescaling of image 

intensity. A tri-linear interpolation was used to obtain the intensity values after image 

transformation. The downhill simplex optimization method was adopted from 

Numerical Recipes in C [127]. Optimization similar to that described in Subsection 

4.3.5 was used. Note that, for the purpose of the display, all images in this chapter were 

individually scaled according to their maximum value.   

 

6.2.6  Analysis of registration accuracy  

The accuracy of a similarity measure for rigid registration of clinical image data can be 

established relative to a gold standard, which is based on bone-implanted fiducial 

markers [122]. The main drawback of this approach is that fiducial markers are often 

not available for experiment. In the case of synthetically deformed images, one may use 

the known transformation as the ground truth to evaluate the registration result. The 

results can be used as a consistency check of performance of the similarity measures 

under different experimental conditions. The 3D CT image was transformed randomly 

using rotations (up to ±10° about each of the three orthogonal axes) and translations (up 

to ±80 mm along each axis). The six parameter values of the rigid-body transformation 

were drawn at random from a uniform distribution. Registration was then applied to 

determine rigid registration parameters that best aligned the 64×64 SPET image with 

the transformed CT image. The registration accuracy was obtained by measuring the 
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voxel displacement, averaged over eight vertices of a cuboid box drawn around the 

body surface (Figure 6.2).  

 
Figure 6.2: The box drawn around the CT volume is used to compute the registration error. Dimensions 
of the box were (x,y,z)=(46, 31.2, 43.6) cm. 
 

The box will be referred to as the bounding box even though it does not provide a bound 

along the long axis of the body. The average displacement provided a measure of 

absolute performance of SPET-CT registration. The misalignment applied to the CT 

image is denoted by . A retrospective SPET-CT registration was then applied, 

producing a recovered transformation . In all experiments, the same box was 

used to compute the registration accuracy even if the image volume was altered. The 

registration accuracy is defined as in Subsection 4.2.1 [179,242,258], 
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The maximum vertex displacement gives the upper bound on the displacement of all 

voxels bounded by the box with respect to rotations about an axis through the centre of 

the box. A rigid-body transformation can be expressed as tR += xxθ )( , where R stands 

for pure rotation and t for pure translation. The registration error can be expanded 

further to look at R and t more closely, 
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where the suffix distinguishes between the applied and the recovered transformation. It 

is interesting to examine the mean displacement εr  representing the vector sum of 

residual vertex displacements. Under a rigid body transformation θ, all voxels 

experience identical translational and angular displacements, and the vector sum 

reduces to 

)()( recapprecapp ttRR −+−= xε , (6.3) 

where ∑=
=

8

18
1

i
ixx is the mean position of the box vertices, i.e. the center of the box. If 

the coordinate system is chosen to be anchored to the center of the box, the first term 

will vanish and the mean displacement vector will be given solely by the residual 

translation. However, if the error is defined as a scalar quantity (Eq. 6.2), the rotational 

displacements about the center of the box do not cancel out. Thus the rotational error is 

given by ∑
=

−=
8

1
irecappR )(

8
1

i
xε RR . The upper bound of the registration error is 

therefore composed of the rotational error and the translational error ,tR εεε +≤  where 

recappt tt −=ε . It implies that the mean vertex displacement error depends on the 

mean distance of the vertices from the centre of the box. The lower bound of the mean 

rotational error can be estimated by tR εεε −≈  when Rt εε >> .   

 

The error ε was averaged over independently generated SPET-CT registrations to yield 

a mean registration errorε  for each experiment. Therefore, the upper bound of the mean 

registration error ε  is composed of the mean rotational error Rε  and the mean 

translational error tε . It is noted that these errors are not comparable to those of other 

methods in [122,123] since different parts of body were used to compute the error. 

Unless otherwise specified, registration performance was evaluated for 50 random 

transformations of the CT image.  SPET images were registered to the transformed CT 
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images and the transformation recovered.  The registration error was averaged over the 

50 SPET-CT registrations to give a mean registration error in each of the experiments. 

The sensitivity of similarity measure to the random error introduced by the uncertainty 

in defining random transformation in CT is measured by the registration error.  The 

spread of the error (standard deviation) indicates how precise the result of SPET-CT 

registration is. Unless otherwise specified, two-tailed unpaired t-tests were used as the 

default method to compare the results statistically of the various experiments. There are 

cases where gross misregistration occurs, due to registration error where the registration 

terminates at a local optimum, which is unrelated to the correct alignment. In this case, 

a statistical test is inappropriate in that it compares means, and means can be strongly 

biased by outliers.  The size of the error for an outlier is not very interesting from the 

point of view of registration performance (whether it is 150 mm or 175 mm, it is failure 

for registration).  As a default in the rest of this chapter, a registration error of greater 

than 100 mm is considered a failure in registration, and it is rejected in the computation 

of summary statistics to prevent possible bias of mean and standard deviation of an 

error distribution. Empirical results showed that, in some cases, errors ≥ 100 mm were 

found. So a superior test would be to strip outliers before computing the mean, or to 

compare medians, and also to count the outliers.  It could be that in this case, the 

medians also will not be significantly different, so the number of outliers is the only 

differentiating characteristic of registration performance. No observer detected a 

definite misregistration in the "best" registered image. A threshold of 2.5 pixels (i.e. 20 

mm) of the largest voxel dimension (i.e. 8 mm) is used as the threshold of detection of 

misregistration for SPET-CT registration. In an ideal case, a useful threshold could be 

constructed for each clinical application, based on the clinical requirements. For the 

purpose of measuring the robustness of registration with respect to different conditions, 

20 mm was set as the threshold to compute robustness. It is measured by the rate of 

registration having an error greater than the threshold.  

 
6.3 Experiments  

 
6.3.1 Effect of the choice of reconstruction algorithm  

In this experiment, the effect of reconstruction algorithms on SPET-CT registration was 

investigated. OSEM reconstructions were carried out with various levels of iteration 

cycles and FBP reconstructions were repeated with different values of the cutoff 
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frequency (Subsection 5.5.3). These two parameters control noise in the reconstruction. 

A local measure of image noise is given by the standard deviation (SD) of counts in a 

region normalized by the mean counts and averaged over 3 slices. The region (Figure 

6.3), where the image noise was computed, was homogeneous and large enough to 

ensure sensible statistics. The default setting described in Subsection 6.2.5 and SCR was 

employed. Independently generated SPET images were generated comprising 100 

simulations of 99mTc-MDP and 100 67Ga at high clinical count level (×1), each set split 

equally into 50 simulations with attenuation correction and 50 without. The same 

experiments were repeated for low-count 99mTc-MDP and 67Ga images (×0.5). 

Attenuation correction in SPET imaging is of interest because it removes artefacts that 

may affect registration.  Attenuation effects are greatest in the thoracic-abdominal 

region because of nonuniformity of attenuation in that region. AC is expected to reduce 

attenuation artefacts, but it can also change the magnitude of image noise. Much work 

has been done on attenuation correction in SPET, but its usefulness in image 

registration remains an open question. In this experiment, the effect of attenuation 

compensation (Subsection 5.5.3) is also investigated.  The mean registration error was 

again computed as in Subsection 6.2.6 and averaged over 50 registrations corresponding 

to 50 random transformations of the CT image.  

 
Figure 6.3: Enclosed by dotted contour are the regions in gallium-67 (left) and MDP (right) SPET 
images where image noise was computed. 
 

6.3.2 Comparison of similarity measures  

The purpose of this experiment was to compare the SPET-CT registration performance 

of SCR, MI and NMI. All 200 SPET reconstructions (Subsection 6.3.1) were used to 

account for possible effects of the differing reconstruction methods.  
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6.3.3 Effect of background  

In the simulation of SPET scans, scatter was not taken into account. In practice, photon 

scatter leads to a decrease in contrast, loss of resolution and increased background 

counts. It is unclear whether scatter rejection will benefit SPET-CT registration. In this 

investigation, background counts measured in clinical images were used for SPET 

simulation. Since a background of 7.5% of the liver mean count was observed in 

clinical studies, this figure relative to the simulated liver mean count was superimposed 

on the projection data to create background activity (Figure 6.4). The background 

activity was used to mimic scattering due to septal penetration of the high energy 

gammas from 67Ga through the collimator as observed in projection data at ×1. This 

septal penetration will add an approximately uniform background to the image. Only 

gallium-67 SPET simulation reconstructed with OSEM was used. The registration error 

was determined separately for each of the three similarity measures: SCR, NMI and MI. 

This error was averaged over 25 independently generated SPET-CT registrations. The 

case of zero background activity represented a perfect rejection of scattering in the 

projection data.  

 
Figure 6.4: A planar projection of gallium-67 SPET (64×121) with (left) and without (right) background 
activity at high planar projection count levels. 
 

6.3.4  Effect of matching the image resolution  

Image resolution in SPET is poorer than in CT and this mismatch may affect the 

performance of SPET-CT registration. Some studies [258,232] reported filtering of 

image data to reduce resolution mismatch. The aim of this study was to determine 

whether matching image resolution between CT and SPET could be used to improve 

registration. To this end, the CT image was forward projected with the same settings as 
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for the SPET, with depth dependent resolution and non-uniform attenuation, but without 

Poisson noise. The reconstruction used one iteration of OS4 with AC. The SPET image 

was registered, using the default implementation (Subsection 6.2.5), to the blurred CT 

image, which was transformed randomly. The recovered transformation and the applied 

transformation were used to compute the registration errors (Subsection 6.2.6). The 

measurement was repeated over 25 independently generated SPET-CT registrations to 

yield a mean of the registration error with three similarity measures: SCR, NMI and MI. 

 

6.3.5 Effect of intensity windowing in CT  

The purpose of this experiment was to investigate whether intensity windowing could 

improve SPET-CT registration. To assess the effect of CT intensity windowing, 

registration with and without windowing was performed, with the default setting 

(Subsection 6.2.5). Twenty five random transformations were applied to the CT and the 

OSEM reconstructed SPET, ×1 count level, was registered to the transformed CT. In 

order to account for a possible variation in the effect due to the choice of the similarity 

measure, all three measures (SCR, NMI and MI) were used.  Likewise, the experiment 

was carried out with both 67Ga and MDP SPET simulations. The registration error was 

computed as in Subsection 6.2.6.   

 

6.3.6 Effect of body boundary in SPET  

The presence of the body boundary in the SPET image provides a spatially extensive 

feature that is common to both SPET and CT.  Given the paucity of common features, it 

is reasonable to expect that the boundary could improve the registration performance.  

To assess the effect of missing boundary information on registration, gallium-67 SPET 

without soft tissue uptake was reconstructed by OSEM with attenuation correction. 

Because of the streak artifacts outside the body boundary that could affect the 

registration, FBP was not considered in this experiment. The relative uptake in soft 

tissue (skin, fat and skeletal muscle) was set to background level (i.e. the mean activity 

is zero). Gallium SPET was reconstructed at high count (×1) and low count (×0.5) level. 

The default setting defined in Subsection 6.2.5 was used. Registration error (Subsection 

6.2.6) was measured for 25 randomly transformed CT images, with three similarity 

measures: SCR, NMI and MI, with and without CT intensity windowing. 
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6.3.7 Effect of absence of lung in CT  

In the experiment described in 6.3.6, the effect of the presence of one prominent feature 

in SPET (body boundary) was investigated.  Other prominent features, such as the lung 

could also provide boundaries to constrain the registration. The purpose of this 

experiment was to investigate whether registration is affected by the exclusion of the 

lungs from the field of view. The lungs were largely excluded by extracting only slices 

77 to 140 from the original 128×128×243 CT volume of (4 mm)3 cubic voxels (Figure 

6.5). Using the default setting in Subsection 6.2.5, the SPET image was registered to the 

25 randomly transformed CT images. The registration was carried out for gallium-67 

SPET reconstructed with OSEM and MDP reconstructed with FBP, both at the clinical 

planar projection count level. All three similarity measures (SCR, NMI and MI) were 

used. 

  
                                                  CT: slices 77- 140           CT: slices 74 - 185 

Figure 6.5: A coronal section through the restricted CT volume that excludes the lungs (left), compared 
to the volume used in previous studies (right).  The range of slice numbers is shown in square brackets. 

 

6.3.8  Effect of field of view 

Scanning protocols in CT and SPET produce different fields of views but the effect of 

such differences on registration is unclear. The purpose of this experiment was to 

investigate this effect via two situations. In one situation, starting with the same field of 

view extracted from SPET and CT images, both volumes were progressively reduced 

concurrently to 79%, 57%, 43%, and 32% of the original value by contraction of the 

field of view along the long axis of the body. In the other situation, the SPET volume 

was kept fixed (at 57%) and the CT volume was varied. Based on the default setting in 

Subsection 6.2.5, the SPET image was registered to 25 randomly transformed CT 

images and registration errors measured. The investigation was carried out for high 

count gallium-67 and MDP SPECT using OSEM and FBP reconstructions driven by 

SCR, NMI and MI similarity measures.  
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6.3.9 Effect of bounding box size 

In the experiments described so far in this chapter, the same bounding box drawn 

around the Zubal phantom was used to compute the registration accuracy irrespective of 

the field of view. The Euclidean distance measured for the residual displacement of 

each vertex, averaged over all eight vertices, yielded the mean registration error. The 

dependence of the mean registration error on the box size is unclear. Therefore, two 

experiments were performed. First, the dependence of the mean registration error on the 

bounding box size was investigated. To this end, 25 random transformations were 

applied to distort the CT image of default volume of 57% (slices 74-185). Gallium and 

MDP SPET images reconstructed at the high count level (×1) were registered to the 

transformed CT image using SCR. Box sizes of 46×31.2×43.6 cm3 (C1) and 

23×15.6×21.8 cm3 (C2, which has half the dimensions of C1) were used to compute the 

mean registration error. Second, the effect of using a smaller CT volume (43% instead 

of 57%) on the mean registration error was studied.  

 

6.4 Results  

 

6.4.1 Effect of the choice of reconstruction algorithms 

Variation of the typical mean registration error ε  (in mm) in SPET-CT registration 

with cutoff frequencies for FBP (left column) and iteration number for OSEM (right 

column), with AC at planar projection count ×1 and ×0.5, is plotted in Figure 6.6. These 

plots gave broad comparisons across cutoff frequencies for FBP and iterations for 

OSEM reconstructed images using SCR. With 67Ga SPET, high count images produced 

better mean registration error than low count images for both of FBP and OSEM 

irrespectively to cutoff frequencies and iterations. With MDP SPET, mean registration 

errors for high count and low count images appeared virtually identical, and varied 

similarly for both FBP and OSEM. The results also show that, with AC, the mean 

registration error for FBP 67Ga was greater than that for OSEM 67Ga regardless of the 

cutoff frequencies in FBP and the number of iterations in OSEM (Figure 6.6 first row). 

Similar observations were obtained for MDP SPET (Figure 6.6 second row).   
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Figure 6.6: Mean registration error (mm) for SPET-CT registration with AC at two image noise levels. 
Each data point represents the average over 50 registrations. The top row shows registration error for 67Ga 
SPET. The bottom row shows typical registration for MDP SPET. For FBP (left column), the numbers 
‘0.2-0.7’ denote the cutoff frequencies of the Butterworth filter at 0.2-0.7 (in step of 0.1) cycles/cm and 
‘inf’ refers to the cutoff frequency of a ramp filter. For OSEM (right column),’1OS8’ refers to 1 iteration 
of 8 ordered subsets OSEM while the numbers 1,2,4,8,16,32 refer 1,2,4,8,16,32 iterations using OS4, 
respectively.   
 

 
Figure 6.7: Variation of mean registration error (mm) against image noise (SD/mean) for FBP and 
OSEM reconstructions of gallium-67 SPET for two cases: with (left) and without (right) AC. ‘wAC’ 
stands for reconstruction with attenuation correction while ‘w/oAC’ indicates no AC.  Each data point 
represents an average over 50 registrations.  
 

Since image quality is different for FBP and OSEM, and it varies with reconstruction 

settings, a comparison of registration performance should be made with reconstructions 

that are, in some sense, equivalent. One approach might be to select as equivalent 

reconstructions that are deemed clinically optimal.  However, this introduces subjective 

judgment and does not aid in the understanding of registration performance.  The image 

quality characteristic that is likely to be of greatest significance to registration 

performance is noise. This suggests the choice of noise-equivalent reconstructions.  
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Thus finding a noise-equivalent pair requires tuning the FBP filter and the OSEM 

iteration number until the reconstructed images manifest the same normalized noise 

measure in a selected region (Figure 6.3).  Variation of ε  with image noise (SD/mean) 

is plotted in Figure 6.7 for reconstructions of gallium-67 citrate SPET. The plots show 

that the range of image noise was different in the FBP and OSEM reconstructions, with 

a small overlap between the least filtered FBP and least iterated OSEM. The difference 

in ε  between FBP and OSEM is pronounced with AC (about 5 mm). For any image 

noise where both reconstructions are available, OSEM provides better registration 

performance than FBP when AC was included in the reconstruction. Similar results 

were obtained for MDP (not shown here). It is surprising, given the strong averaging, 

that two FBP (with AC) data points at 0.4 image noise gave quite different results, 

implying that even though the filter cutoff frequency was changed, the reconstruction 

quality did not.  Statistically, a large difference among sample means implies that the 

sample size may not be large enough to give a decent estimate of the population mean. 

To evaluate the effect of FBP and OSEM on SPET-CT registration, images of roughly 

equivalent noise were used for 67Ga and MDP, with and without AC. Using the two-

tailed unpaired t-test, mean registration error for OSEM was found to be significantly 

smaller (p<0.05) than FBP regardless of image count level of 67Ga and MDP (×1 and 

×0.5) when AC was included. For two selected FBP and OSEM implementations that 

give rise to roughly noise-equivalent reconstructions, distribution of ε  is indicated in 

Figure 6.8. For 67Ga SPET of roughly equivalent image noise, ε (±SD) decreased from 

15.5±6.2mm (FBP, f0.6) to 10.8±4.3mm (OSEM, 1OS4) with AC at clinical planar 

projection count level ×1. The error ε also improved from 16.0±7.3mm (FBP, f0.4) to 

10.5±3.0mm (OSEM, 1OS8) with AC at ×0.5. The error bars in the diagram indicate the 

standard deviation of mean error distribution. Without AC, the difference in the mean 

registration error between FBP and OSEM was not statistically significant, implying 

that the difference was significant with AC. To further demonstrate results, 67Ga SPET 

images with AC for FBP and OSEM at ×1 and ×0.5 are shown in (Figure 6.9). The 

images look smooth with roughly the same image noise but streak artefacts appears only 

in FBP images. 
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Figure 6.8: Distribution of mean registration error (mm) for 67Ga and MDP SPET-CT registration with 
AC, where ‘f0.6’ denotes the cutoff frequency of the Butterworth filter for FBP at 0.6 cycles/cm and 
1OS8 refers to 1 iteration of 8 ordered subsets OSEM. Each mean registration error represents an average 
over 50 registrations. In each bar chart, the first two plots and the last two plots, are noise-equivalent pairs.  
 

 
Figure 6.9: A transverse slice showing roughly noise-equivalent reconstructions of gallium-67 SPET. 
Measured image noise is shown in brackets. the first two pairs and the last two pairs are noise-equivalent. 
All images are scaled independently.  
 

In general, two options, with and without AC, can be applied to reconstruct SPET image. 

Again, to make the comparison of registration accuracy meaningful between images at 

equivalent noise, the mean registration error ε  is plotted as a function of the image 

noise (SD/mean).  Separate plots are given for the registration error obtained in the 

presence or absence of AC, and for each reconstruction technique: FBP and OSEM 

(Figure 6.10). Two-tailed paired t-test was used to determine the difference in the mean 

registration error between FBP SPET with and without AC, with pairing asserted by the 

noise figure. For OSEM, the same test was applied to SPET at roughly equivalent image 

noise levels. The results reveal that attenuation compensation had little effect on the 

performance of SPET-CT registration for OSEM-reconstructed SPET. There was no 

statistical difference (p < 0.05) in the mean registration error between OSEM SPET 

with and without AC. The results in Figure 6.10 (top row) show that the mean error for 

OSEM SPET (both 67Ga and MDP) was largely unaffected by attenuation correction.  
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Figure 6.10: The effect of attenuation correction on registration performance for indicated 
reconstructions.  Mean registration error (mm) is plotted as a function of image noise (SD/mean). All 
registrations used the default implementation with SCR as the similarity measure.   
 

The same outcome was obtained when the image noise level was increased by reducing 

planar projection count to ×0.5 (not shown).  For FBP, AC markedly reduced 

registration performance for 67Ga SPET but not for MDP (Figure 6.10 bottom row). The 

difference in the mean registration error was significant (p < 0.05) for 67Ga irrespective 

of image noise level. For MDP, AC did not produce a significant difference in the mean 

error at either high (×1) or low (×0.5) planar projection count level. Examples of 67Ga 

SPET at roughly equivalent noise are also shown in Figure 6.11. The first three images 

look similar except the rightmost image, which is used to show the effect of a ramp 

filter on reconstruction. The ramp filtered image has a higher noise level but gives better 

contrast than the first three images without ramp filtering.  

 
Figure 6.11: Three noise-equivalent reconstructions of a transverse slice of gallium-67 SPET image.  
From the left: OSEM with 1 iteration of 8 ordered subsets, with and without AC, and FBP reconstruction 
using Butterworth filter with 0.4 cycles/cm cutoff.  For reference, a FBP reconstruction with a ramp filter 
alone is also shown (rightmost).  
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6.4.2 Performance of similarity measures  

The results reveal that the effect of the choice of the similarity measure is dependant 

upon the type of SPET image. For 67Ga SPET-CT registration, the mean registration 

error was similar for MI, NMI and SCR irrespective of which algorithm (OSEM and 

FBP) was used (Figure 6.12 left column).  

 

 

Figure 6.12: Mean registration errors (mm) for various cutoff frequencies in FBP (top row) and various 
iterations in OSEM (bottom row). For FBP, the abscissa gives the cutoff frequency of the Butterworth 
filter in cycles/cm (‘infinity’ refers to the unsmoothed ramp filter). For OSEM, the abscissa gives the 
number of OS4 iterations scaled logarithmically (1OS8 refers to a single iteration of 8 ordered subsets). 
 

Furthermore, as was demonstrated previously for SCR (Figure 6.10), attenuation 

compensation in OSEM reconstruction also shows little effect, if any, on registration 

performance when the MI or NMI similarity measure is used. This is confirmed by the 

fact that there were no statistical differences at 5% level (a non-parametric one-way 

ANOVA test) in the mean registration error among the three similarity measures 

regardless of the OSEM iteration number, with and without AC. Again, a similar 

observation applies to 67Ga FBP SPET without AC, irrespective of which cutoff 

frequency was used.  In the case of MDP SPET-CT registration, the mean registration 

errors among MI, NMI and SCR were significantly different (Figure 6.12 right column), 

as measured by a non-parametric one-way ANOVA test (p = 0.05).  This difference in 

the performance was also found at low projection count levels ×0.5 (not shown), with 

SCR consistently demonstrating a better performance than MI or NMI. For example, the 
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mean (±SD) registration errors (in mm) of MDP SPET-CT registration were 10.0±3.2 

mm, 16.7±5.5 mm and 14.2±4.3 mm for 2OS4 with AC (×1) corresponding to SCR, 

NMI and MI, respectively. To further illustrate the difference of performance between 

MI, NMI and SCR, scatter plot of mean registration errors were given in Figure 6.13. 

Roughly noise-equivalent SPET images (with AC at ×1) of 2OS4 in OSEM and cutoff 

frequency at 0.4 cycles/cm of Butterworth filter in FBP are also shown. Again, FBP 

image generates streak artefacts at the border of highly active regions (spine) but OSEM 

image satisfactorily eliminates this artefacts.  

Figure 6.13: The distributions of the mean registration errors (mm) for MI, NMI and SCR for OSEM and 
FBP SPET-CT registration. Two noise-equivalent SPET images reconstructed with AC are also shown 
(OSEM on the left and FBP on the right). Each image is scaled independently.  
 

6.4.3 Effect of background 

Strictly speaking the background is always present in real clinical data, but in this 

experiment the background can be allowed to assume a nonzero mean count. The 

registration performance for projection data at high count level (×1) and low count level 

(×0.5), with and without background activity, is given in Figure 6.14.  

 
Figure 6.14: Scatter plots of the mean registration error (in mm) for OSEM 67Ga SPET (1OS4) evaluated 
at two projection count levels. Grey dots correspond to reconstructions with nonzero background counts 
while the black dots represent zero background. 
 

For SCR, the corresponding registration errors (mean ± SD) for ×1 with background 

was 9.7±3.6 mm and without background was 10.9±2.8mm, for ×0.5 with background 
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was 12.5±2.9 mm and without background was 10.6±2.8 mm. No significant difference 

between the mean registration errors, at the 5% level, was found between high count 

images (×1) with and without background activity. However, with low count images 

(×0.5), background activity can deteriorate registration performance of gallium-67 

SPET. This is confirmed by statistical test (two-tailed unpaired t-test) which showed 

that the presence of the background counts significantly (p < 0.05) reduced the mean 

registration error for SCR. The performance of NMI and MI was also evaluated. Again, 

the presence of background activity made no significant difference to the registration 

error. The plot shows that, at the clinical noise level, both NMI and MI gave rise to 

large mean registration errors when background was included in the projection data. 

Removal of the background activity still produced a large mean value. To prevent 

possible bias of mean and standard deviation of an error distribution due to gross failure 

in registration (Subsection 6.2.6), mean registration error greater than 100 mm was 

rejected for computing summary statistics. In this case, the mean registration error 

(mean ± SD), with nonzero background activity, for NMI was 11.8±4.8mm and MI was 

15.8±13.5 mm. The large standard deviation of 13.5 mm in MI was due to the presence 

of a few large misregistrations. Thus, one possible differentiating characteristic of 

registration performance is by counting the number of outliers. The total number of 

registrations in which the mean registration error was greater than the threshold (20 mm, 

Subsection 6.2.6) from this simulation was 1 for SCR, 6 for NMI and 15 for MI out of 

the total 100 independent measurements (over high count and low count image, with 

and without background activity). Based on this observation, SCR appeared to perform 

with greater robustness than NMI and MI where the failure rate for SCR was 

consistently lower than for NMI and MI. 

 

6.4.4 Effect of image resolution matching 

An example of a CT image blurred to match the resolution of the corresponding CT 

image is shown in Figure 6.15. A comparison with Figure 6.1 shows the blurring to be 

severe, causing small scale features to vanish.  The distributions of error measured in 

SPET-CT registration experiments are shown in Figure 6.16.  
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Figure 6.15: The blurred version of CT (128×128) has the same resolution as the SPET gallium-67 OS4 
reconstruction 
 

 

 
Figure 6.16: Effect of matched resolution on the performance of SPET-CT registration, for a range of 
similarity measures and for two radiopharmaceuticals (gallium-67 and MDP).  The scatter plots in the top 
row correspond to OSEM, and those in the bottom row to FBP reconstructions. Default implementation 
was used with attenuation correction and the clinical noise level. Grey dots represent resolution matching, 
black dots represent unchanged resolution. For FBP, Butterworth filter of cutoff frequency at 0.6 
cycle/cm was used.   
 

The results are mixed.  For reconstructions other than gallium-67 OSEM at the clinical 

level of planar projection count (67Ga 1OS4 ×1), reducing resolution of CT to match 

that of SPET has no significant effect on the registration accuracy as verified by the 

two-tailed unpaired t-test. Taking SCR and FBP reconstruction as an example, matching 

resolution changed the mean (±SD mm) registration error from 10.2±3.8 to 11.5±3.5 for 
67Ga SPET, and from 12.3±4.5 to 11.8±3.9 for MDP SPET. However, for OSEM-

reconstructed gallium-67 SPET (Figure 6.16, top left), the resolution adjustment is 

associated with a substantial increase in the number of outliers.  The outliers (errors ≥ 

100 mm were removed to prevent bias) raised the mean and standard deviation of the 
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mean (±SD mm) registration error from 10.9±3.1 to 22.1±17.5 (NMI), and from 

11.8±8.6 to 21.3±17.9 (MI).  More tellingly, the failure rate, defined as the proportion 

of registrations that result in the mean error of 20 mm or more, rises with the 

introduction of resolution matching from 0 to 12% (SCR), 0 to 32% (NMI) and 4 to 

28% (MI). 

 

6.4.5 Effect of intensity windowing of CT  

In this experiment, CT pixel values outside the range [800,1250] were clipped to 

enhance contrast. Both the contrast-enhanced CT image and the reference image were 

linearly rescaled to [0,255]. Registration errors are plotted in Figure 6.17. In general, the 

results were diverse. When CT windowing was applied to the CT image before 

registering SPET images at the clinical noise level with the transformed version of CT, 

it introduced no significant effect on registration irrespective of the similarity measures 

(SCR, NMI and MI), and was confirmed by two-tailed unpaired t-test (p<0.05).  Taking 

SCR and FBP reconstruction as an example, CT intensity windowing changed the mean 

(±SD mm) registration error from 13.2±5.4 to 10.2±3.8 for 67Ga SPET, and from 

11.8±5.0 to 12.3±4.5 for MDP SPET. However, for OSEM-reconstructed gallium-67 

SPET at ×1 (Figure 6.17, top left), registration without CT windowing is coupled with a 

considerable increase in the number of outliers (error ≥ 100 mm were excluded in 

computing summary statistics to prevent bias), and the mean registration errors were 

substantially increased. For example, the mean registration errors (±SD mm) increased 

from 10.9±2.8 (with CT windowing) to 19.6±15.9 (without CT windowing) for SCR, 

10.9±3.1 to 27.4±21.1 for NMI, and 11.8±8.6 to 19.1±15.0 for MI. The large SD was 

due to the presence of outliers. In this particular case, the proportion of outliers out of 

25 registrations (the failure rate) changed from 0 to 28%, 0 to 36% and 4 to 28%, for the 

respective similarity measures; SCR, NMI and MI. That is, about a quarter to a third of 

registrations failed by more than 20 mm, as measured by the average displacement of 

the box vertices. Interestingly, CT intensity windowing shows little effect on the 

registration accuracy for MDP OSEM-reconstructed SPET, and this is confirmed by the 

statistical testing at 5% level.  
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Figure 6.17: The scatter plots in the top row correspond to OSEM, and those in the bottom row to FBP 
reconstructions. For OSEM, 1 iteration of OS4 was used. For FBP, Butterworth filter of cutoff frequency 
at 0.6 cycle/cm was used. Default implementation was used with attenuation correction and the clinical 
noise level. Grey dots represent no CT intensity windowing, black dots represent with intensity 
windowing.  
 

6.4.6 Effect of body boundary in SPET  

SPET is generally associated with the poor definition of body boundary in SPET data, 

and the aim of this experiment is to determine whether poor boundary affects 

registration. Depending on the application and the type of radiopharmaceutical used, 

body boundary might not show up at all, or be poorly defined (Figure 6.18).  

 
Figure 6.18: A slice of the gallium-67 SPET image (64×64) at two projection count levels obtained by 
1OS4 reconstruction with AC, without body boundary (left) and with body boundary (right). Each image 
is scaled independently.  
 

SPET images were assigned nonzero uptake in various tissues and organs defined by the 

anatomical labels of the Zubal phantom (see Appendix) to delineate body boundary. 

The statistics of the mean registration error in Figure 6.19 show the registration 

performance with and without body boundary. CT intensity windowing was used as it 
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has been shown to improve registration of gallium-67 SPET to CT (Section 6.4.5). The 

plots show little, if any, effect on the registration performance. The two-tailed unpaired 

t-test demonstrated no significant difference at the 5% level regardless of the clinical 

noise levels, the choice of the similarity measure or the planar projection count level, 

with the exception of NMI at the low projection count level (×0.5) in which the mean 

(±SD) mm registration error change from 12.1±4.0 (with body boundary) to 14.3±3.1 

(without body boundary). The distributions of error for SCR and NMI were, in general, 

more tightly bound than for MI. The mean (±SD) mm registration error for gallium-67 

SPET reconstructed with OSEM at the high projection count level (×1) deteriorated 

from 10.9±2.8 (with boundary) to 11.3±3.4 (without boundary), from 10.9±3.1 to 

12.6±2.6, and from 11.8±8.6 to 13.0±2.5, for SCR, NMI and MI, respectively, but the 

changes in the mean registration error were not statistically significant.   

 
Figure 6.19: Effect of the presence (solid white) body boundary on the registration performance in 
gallium-67 SPET, with high (×1) and low (×0.5) projection counts.  Each bar represents the mean 
registration error averaged over 25 SPET-CT registrations and the error bars show the standard deviation 
of the error distribution.   
 

6.4.7 Effect of absence of lung in CT 

The statistics of the registration error are compared in Figure 6.20 so that the effect of 

excluding the lungs from the CT field of view is assessed. Results show that contracting 

the CT field of view to exclude the lung region did have a marked effect on SPET-CT 

registration, particularly for the MDP SPET simulation.  FBP reconstruction of MDP 

SPET appeared to be more vulnerable, recording the largest errors for all three 

similarity measures. As an illustration, lung exclusion led to the mean (±SD mm) 

registration error for OSEM-reconstructed gallium-67 SPET rising from 10.9±2.8 to 

17.4±10.1 for SCR, from 10.9±3.1 to 14.2±4.3 for NMI, and from 11.8±8.6 to 

18.6±12.4 for MI. Changes were smaller for gallium-67 SPET and no significant 

differences (at the 5% level) were found for FBP-reconstructed gallium-67 SPET (NMI 
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and MI).  In OSEM-reconstructed MDP SPET, SCR was the only similarity measure 

that did not manifest a significant deterioration in registration performance. 

 

 
Figure 6.20:  The effect of excluding the lungs (solid grey) from the CT field of view on the registration 
performance. Shown are the results for 67Ga and MDP SPET, both reconstructed with OSEM (top) and 
FBP (bottom), and registered to CT using the default implementation. All graphs are shown in a common 
scale for easy comparison.  Each data point represents an average over 25 SPET-CT registrations and the 
error bars represent the standard deviation of the distribution. 
 
6.4.8  Effect of field of view 

Figure 6.21 shows that registration varies with field of view (FOV) for gallium-67 and 

MDP, with SCR, NMI and MI, but the results are mixed.  The results, with large SD for 

32% FOV, is certainly poor but the distinction between the remaining means, given the 

high SD, is not significant statistically. These results do not appear to change 

significantly at larger fields of view, and is confirmed by statistical test (two-tailed 

unpaired t-test) that FOV has no significant effect on registration between two 

neighboring FOVs. Registration performance declined only when the FOV was reduced 

to 32% (43% at most) especially for the MDP SPET reconstructions. The number of 

failures, defined again as registrations with error of at least 20 mm (Subsection 6.2.6) 

rises sharply when FOV is at the lower end of the range examined. Results for NMI and 

MI, of all registrations involving MDP SPET image reconstructed with OSEM, were 

amalgamated, giving a total of 50 registrations. The amalgamated failure rate (the 

number of failed registrations out of 50 SPET-CT registrations for each FOV) was 50, 

35, 12, 1 and 0 for image volume increasing from 32% to 100% progressively, but no 
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failure was found for SCR irrespective to the FOV. The failure rate of about 50% and 

higher (for the two smallest fields of view examined) cannot be tolerated in a clinical 

setting. Registration with gallium-67 SPET was less sensitive to the volume change than 

with MDP SPET, as revealed by a large difference in the failure rate: 27/75 (at 32% 

FOV) and 5/75 (at 43% FOV) for OSEM gallium-67 SPET, and 75 denotes registrations 

amalgamated from SCR, NMI and MI. For FBP MDP SPET-CT registration using SCR 

(not shown), the mean registration errors (±SD mm) were 14.7 ±4.3 and 11.0±3.9 for 

32% and 100% FOV, respectively, and was also not significant different. The 

improvement for gallium-67 SPET with increasing volume at NMI and MI was less 

obvious. Comparing the similarity measures, SCR gave a more consistent and superior 

performance than NMI and MI when small FOV was used for MDP registration.  

 

 

 
Figure 6.21: Effect of axial contraction of the field of view on registration performance.  Each data point 
represents the mean registration error averaged over 25 registrations and the error bars give the standard 
variation.  OSEM (solid grey) and FBP (white) reconstructions are shown side by side.  Registrations 
based on gallium-67 SPET are shown in the left column (MDP in the right column).  Each similarity 
measure is treated separately as indicated.  Identical field of view was maintained in CT and SPET.  
Graphs are not drawn to a common scale. 
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In the above study, the field of view in SPET and CT was varied concurrently. A second 

study examined the effect of changing FOV in CT while maintaining the SPET field of 

view at 57% volume. The performance of registration is summarized in Figure 6.22.  

 

 

 
Figure 6.22 Effect on registration performance of axial contraction of the field of view in CT (x-axis) 
with the field of view in SPET kept at 57%.  Each data point represents the mean registration error 
averaged over 25 registrations and the error bars give the standard variation.  OSEM (solid grey) and FBP 
(white) reconstructions are shown side by side.  Results of registrations based on gallium-67 SPET (left 
column) and MDP (the right column) are shown separately for each similarity measure.  Graphs are not 
drawn to a common scale. 
 

The results show that the overall pattern is remarkably similar to Figure 6.21 implying 

that the size of the FOV, as expected, is more important than the matching. However, 

the scale in Figure 6.22 is much smaller, implying that having one FOV at 57% reduces 

the number of outliers at small CT FOVs.  The figure also shows the distribution of the 

mean registration error for registration using 32%, 43%, 57% (default implementation), 

79% and 100% of the original CT FOV. The performance of registration depended on 

the similarity measure. The registration improved when CT FOV increased from 32% 
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up to 57% but its performance deteriorated with a further increase in CT FOV. The 

effect of CT FOV on registration was more profound in MDP than gallium-67 SPET 

regardless of the similarity measure.  Based on the variation of the mean registration 

error with respect to the CT FOV, there is a hint that for CT FOV greater than 57% the 

mean registration error rises. For MDP SPET, the total number of failures (out of 75 

registrations) was lowest at 57% FOV for MDP registration over all similarity measures. 

Moreover, the SD, indicated by the error bars, had less spread in case of matched 57% 

CT FOV. However, the change of FOV has no effect statistically on the mean 

registration error between 57% and FOV greater than 57%. In this case, registration 

accuracy appeared to be indistinguishable from 57% and beyond, although a small mean 

registration error was observed at about 57% CT volume compared to other CT FOV.  

 

6.4.9 Effect of bounding box size  

Given 57% field of view for the CT, it was unclear whether registration accuracy 

depends on the bounding box’s dimension or not. This study examines two cases: the 

“bounding” box size changes when (1) FOV is fixed at 57%; and (2) FOV is fixed at 

43%. To study the first case: SPET was registered to randomly transformed CT with 

57% FOV (both CT and SPET at 57%) using default subsampling schemes, with box C1 

of size 46×31.2×43.6 cm3 (the default size corresponding to the 57% FOV) and box C2 

with half the dimensions (23×15.6×21.8 cm3) and concentric with C1. The two-tailed 

unpaired t-test was used to check the null hypothesis of the difference in the means of 

error distributions corresponding to the two boxes. The results (Figure 6.23, top left) 

show that the box size had, unexpectedly, no significant effect on the registration 

accuracy at 5% level.  In particular, the mean (±SD mm) registration error was 10.9±2.8 

(C1) and 12.1±2.7 (C2) for OSEM gallium-67 and 11.3±3.1 (C1) and 10.0±2.9 (C2) for 

OSEM MDP SPET (not shown). To further analyse the residual registration error, mean 

registration error ε  was decomposed into mean translational error tε and mean 

rotational error Rε  (Subsection 6.2.6). For example, mean translational errors (in mm) 

for OSEM gallium-67 SPET-CT registration were 10.2 for C1 and 12.0 for C2, nearly 

identical to their corresponding mean registration errors: 10.9 and 12.1. Similar 

observations were found for MDP SPET-CT registration. These results indicate the 

residual error was dominated by the residual translational error. An example of 
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registration performance for each of the six transformation parameters is shown for C1 

and C2 boxes in Figure 6.23 (bottom).  

 

 
Figure 6.23: (Top left) Mean registration (±SD) error in mm measured with the C1 and C2 boxes.  Both 
CT and SPET had the same 57% FOV. Default sampling scheme was used. (Top right) Vertex 
displacement error averaged over the eight vertices of the box along x, y and z direction. (Bottom row) 
displacement error distribution for registration of gallium-67 SPET (×1 wAC) to 57% CT volume, with 
C1 (default box size) and C2 (half of the default box size). In the box-whiskers plot, the central horizontal 
line indicates the median, the top/bottom boundary of the box give the 25 and 75 percentile, and the 
extreme values give the highest and lowest error value in the distribution. 
 

In order to compare translational and rotational components of the registration error, the 

rotational error was given as the vertex displacement.  For example, in a 2D plane, 

rotation about the centre of the box by displaces each vertex of the box by 2 sin 2l θ , 

where l is the distance from the box centre to its vertex. It was surprising that, unlike 

any other parameter, ∆θx was not distributed more or less symmetrically about zero; 

instead, it was strongly biased towards positive values and there were very few 

instances of negative values. The graphs also showed that rotational error was more 

tightly bound than the translational error. Of the translational errors, z-axis errors were 

smallest. The distribution of the translational components of the registration error is 

shown in Figure 6.23 (top right). Note that C1 and C2 displayed similar patterns.  

 
In the second case, the FOV of both CT and SPET was reduced to 43% (Figure 6.24). 

The mean registration errors measured with the C1 and C2 boxes were significantly 

(P=0.01, two-tailed unpaired t-test) different. In particular, the larger box showed a 
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larger mean rotational error (Subsection 6.2.6). For example, the mean rotational error 

(in mm) was 6.0 for C1 (large box) but it was 1.8 for C2 (small box) when 43% CT 

volume was used for registration. For 57% CT volume, the mean rotational error was 

0.7 mm for C1 and 0.1 mm for C2. Again, the registration error in mm along x, y and z-

axis were given in Figure 6.24 (right), where the residual error in each component had 

no different statistically at 5% level.  

Figure 6.24: (Left) Mean registration (±SD) error in mm measured with the C1 and the C2 box.  Both CT 
and SPET had the same FOV (43%). Default sampling scheme was used. (Right) Translational 
component of the vertex displacement error along x, y and z direction as measured with the C1 and C2 box.  
 

6.5 Discussion  

In the thoracic-abdominal SPET, methylenediphosponate (MDP) and gallium-67 scans 

were identified for investigation because they are in common clinical use. Gallium-67 

citrate is used in the diagnosis of lymphoma and inflammation. MDP labeled with 

technetium-99m provides images with a high bone to soft tissue contrast for the 

diagnosis and assessment of bone disease. The MDP SPET is often referred to as the 

bone scan. 

 

6.5.1  Reconstruction algorithm 

Given the utilization of two main reconstruction algorithms (FBP and MLEM) in 

clinical SPET, the question of whether the choice of the algorithm affects the 

registration process warrants an investigation. However, a comparison is not 

straightforward as the algorithms produce images of different quality, and each requires 

the setting of different parameter values.  In OSEM, once the number of subsets is 

chosen, the number of iterations entirely controls the final resolution, contrast and noise 

of the reconstructed images [348]. In FBP, for a given choice of the low-pass filter, its 

cutoff frequency controls the quality of the reconstructed image.  The reconstructed 

image noise is likely to be the limiting image quality factor in image registration 
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suggesting that reconstructions be obtained at the same noise level to enable a fair 

comparison of reconstruction algorithms. Because it is not straightforward to predict a 

“noise level” from the setting of these two parameters (number of OSEM iterations and 

FBP low-pass cutoff frequency), a different strategy was adopted. Reconstructions were 

obtained for a range of parameter values, and noise level was measured in the resulting 

image (Subsection 6.3.1).  From this set, pairs of images were selected, which had 

approximately the same noise level.  Thus the comparison between the registrations 

involving FBP and OSEM reconstructions was based on noise-equivalent images.  

Mean registration errors were measured for each reconstructed SPET as a function of 

reconstructed noise, with and without AC.  The results show that the choice of the 

reconstruction algorithm did have a significant effect (p<0.05, two-tailed unpaired t-test) 

on registration but only if FBP reconstruction incorporated attenuation correction. 

However, the assertion could only be tested over a small range of noise levels due to the 

small number of noise-equivalent reconstruction pairs available. This, to some extent, 

supports the assertion that OSEM produced noisier images and led to more accurate 

registration.   

 

It is also worth noting that although AC is essential for removing attenuation artefacts 

from reconstruction, inclusion of AC in OSEM reconstruction had little effect, if any, 

on the SPET-CT registration accuracy (Subsection 6.4.1). By contrast, as pointed out 

above, inclusion of AC in FBP reconstruction (of 67Ga or MDP SPET) had a significant 

deleterious effect on registration accuracy.  This could be related to the AC algorithm 

for FBP reconstruction.  In particular, in Chang’s algorithm [314] used here, a 

multiplicative attenuation correction is applied. Without AC in FBP, noise is relatively 

constant throughout the image. With AC, noise varies across the image perturbing the 

joint intensity histogram. As a result, similarity measure (e.g. NMI) could show a shift 

in optimum, as illustrated in Figure 6.25, for a one-dimensional translation for FBP 

gallium-67 SPET-CT registration. The position of zero translation corresponds to the 

true alignment. The diagram reveals that, with AC, the correct registration position is 

shifted. This helps to explain why the registration for gallium-67 FBP-reconstructed 

SPET was more accurate without AC than with it (Subsection 6.4.1). In registration of 

bone SPET (MDP) to CT, OSEM consistently outperformed FBP-reconstructed bone 

SPET using MI and NMI (Subsection 6.4.2). A similar observation that the OSEM 

reconstruction method gave better results to those of the FBP method in bone SPET was 
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also reported in [340]. This is due to the fact that the FBP reconstruction has some 

disadvantage in bone SPET. The most important shortcomings are streak artefacts and 

negative values in the border of highly active bone regions. In contrast, OSEM is able to 

eliminate, at least partially, almost all artefacts observed with FBP bone SPET (Figure 

6.13). 

 
Figure 6.25: NMI similarity measure as a function of 1D translation for SPET-CT registration, where 
gallium-67 SPET is reconstructed using FBP without (solid line) and with (dashed line) attenuation 
correction.  
 

6.5.2  Similarity measures 

The performance of three similarity measures: SCR, NMI and MI, was compared in a 

number of experiments. Generally, for gallium-67 SPET, the SPET-CT registration 

performance is similar for all three measures and is not affected by the choice of the 

reconstruction algorithm. However, in registration of bone SPET (MDP) to CT, SCR 

consistently outperformed MI and NMI (Subsection 6.4.2). One-dimensional results 

(Figure 6.26) also suggest that SCR is better defined than either NMI or MI, containing 

fewer spurious maxima, and is more likely to converge from an initial estimate to the 

maximum, yielding the correct transformation parameters.  
 
In considering the success or failure of registration, it is helpful to consider two cases: 

fine and gross residual misregistrations. Fine misregistration arises when the registration 

algorithm brings the image close to the correct alignment but residual error remains 

might due to the limitations of image quality (e.g. resolution, noise, artefacts) or the 

registration algorithm (e.g. similarity measures, sampling density). Fine residual errors 

can be meaningfully captured by statistical moments, such as the mean and standard 

deviation of the distribution. The gross misregistration, on the other hand, represents the 
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cases, where the registration algorithm terminates at a local optimum, which is 

unrelated to the correct alignment.  Including such cases in the statistical analysis will 

strongly bias the statistics.  Even the median error may be affected if gross residual 

errors dominate a set of registrations.  Gross registration is more meaningfully measured 

by the rate at which it occurs.  This failure rate is indicative of the reliability of the 

registration method and would be an important consideration in deciding whether to 

adopt the method in clinical practice.  One difficulty with this classification is that it 

relies on the threshold value of error.  It is likely that a useful threshold could be 

constructed for each clinical application, based on the clinical requirements.  If the 

clinical rationale for registration is to distinguish between closely spaced features (e.g. 

to determine whether a tumour found in SPET is located in the rib bone or in the lung), 

the threshold will need to be set low.  A contrary example may arise where the issue of 

interest is whether the uptake in a large organ is abnormally high. In such cases, the 

threshold could be raised without unduly compromising the diagnostic accuracy.  In the 

simulation studies described here, the threshold was set somewhat arbitrarily to 20 mm 

for the sake of comparison between similarity measures. The failure rate, defined as the 

number of registrations with the mean error of 20 mm or more, was used as a measure 

of robustness.   

Figure 6.26: A comparison of (from left) MI, NMI and SCR as functions of x-axis translation for the 
FBP-reconstructed MDP SPET (Figure 6.13 rightmost image) with respect to the CT (Figure 6.1 left 
image). Full sampling was used. Correctly registered position is zero. 
 

6.5.3 Image quality 

One difficulty for SPET-CT registration is the difference in edge quality at the body 

boundary in CT and SPET.  In CT, the body boundary is characterised by a sharp 

transition. By contrast, SPET exhibits a gradual change, if any (where contrast is zero). 

By reducing CT resolution and matching to the image resolution of SPET image, 

registration accuracy may be expected to improve. Results of measurements show that a 
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reduction of CT resolution to match that of SPET had little effect on registration 

accuracy. In the default setting, the raw SPET images were converted to a byte array by 

linear mapping the voxel values to 256 grey levels without clipping. The only effect one 

might expect on the joint histogram would be due to quantization errors (±binsize/2), 

which may eliminate small contrast features. The raw CT was also converted to a byte 

array using linear intensity rescaling in two cases: with and without clipping (CT 

intensity windowing). Because CT intensity re-mapping from intensity interval 

[800,1250] to [0,255] is a linear operation, it has little effect on the histogram but 

clipping of intensities outside the interval may have a significant effect. One might 

expect that, due to the large number of pixels that appear with value 0 and 255 in the 

transformed image, the joint histogram may have large values at the first and last 

column or row. Of course, the co-occurrences that corresponded to pixel values outside 

the interval [800,1250] are now compressed into these two columns/rows. Intensity 

windowing will enhance visual contrast for tissues in the range [800,1250]. Aside from 

quantization errors, one may expect the improved visual contrast to have significant 

effect on the joint histogram by stretching intensity values along the histogram axes. In 

fact, since the tissues that now have a uniform value of 0 or 255 carry zero (Shannon's) 

information, the effect of clipping the image on the histogram would be equivalent to 

excising the clipped parts of the image outside intensity interval [800,1250]. With a 

correct choice of pixel intensity interval, the destruction of contrast for tissues with 

intensity values outside this interval is unlikely to be significant provided that no 

prominent image feature is truncated or lost. Furthermore, tissues that have intensity 

values within the interval [800,1250] will show up visually and increases the Shannon 

information content for registration by spreading intensity values over [0,255] interval. 

This helps to explain, based on the results in Subsection 6.4.5, a significant difference 

was found for OSEM gallium-67 SPET-CT registration irrespective of the similarity 

measure. The results indicate that, because CT intensity windowing improves contrast 

in soft tissue, it can improve registration if activity uptake is found in such tissues. 

However, CT intensity windowing made no significant difference for registration with 

OSEM MDP SPET. An MDP image contains little soft tissue activity. It is characterised 

by clearly delineated landmarks (i.e. bone structure) with good uptake in the bone, 

giving a good correspondence with bone structures in the CT image. Even without 

intensity windowing, bones appear as prominent features in CT (Figure 6.1) that ought 

to provide sufficient information to drive the registration algorithm to the optimum. 
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What's more, with the absence of soft tissue uptake to define body boundary, CT 

intensity windowing plays a critical role for a one-dimensional translation for OSEM 

gallium-67 SPET-CT registration to give a correct registration position, otherwise the 

local maxima is shifted producing spurious maxima (Figure 6.27). In this case, CT 

windowing helps constrain the similarity measure. 

 
Figure 6.27: Effect of intensity windowing in CT (CTW) on SCR as function of x-axis translation for the 
gallium-67 OSEM-reconstructed SPET (without body boundary, Figure 6.18 leftmost) with respect to the 
corresponding CT image (Figure 6.1). Full sampling was used. Zero translation denotes correct 
registration. 
 

A few studies included body boundary information for registration but no comparison 

had been made to study the case of registration without body boundaries. For example, 

Dey et al. [260] and Suga et al. [347] suggested the use of body boundaries to improve 

registration between functional images and anatomical images. Dey et al. used 

transmission scans while Suga et al. used Compton scatter to define the body boundary. 

Backscatter sources were also utilized [280] to obtain body contour for registration. 

Based on the results of registration comparison with and without body boundary made 

in Subsection 6.4.6, body boundary, caused by uptake in skeletal muscle and superficial 

tissues, in SPET image did not significantly reduce the mean registration error with CT 

windowing. This may due to the fact that organs or tissues deep inside the body could 

provide sufficient information content for registration, without the presence of the 

boundary information. 

 

6.5.4 Field of view 

The effect of changing the field of view in the above studies was measured using the 

mean residual displacement of the vertices of the bounding box.  However, the box was 

fashioned for the 57% field of view (FOV) and, in fact, was no longer bounding when 

FOV was increased to 79% and 100%.  In those cases, it could no longer be said that the 
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error provided an upper bound for the displacement error of all image voxels.  On the 

other hand, when the volume was reduced below 57%, the calculated error became also 

less indicative of the voxel displacement error.  

 

In a clinical situation, the fields of view in CT and SPET rarely coincide. The results 

reported in Subsection 6.4.8 shed light on this problem. Two experiments were 

conducted: (1) both fields of view were concurrently varied; (2) the field of view in one 

modality was fixed while it varied in the other modality.  Since changes in the results do 

not appear to be significant at larger FOV, there is little, if any, correlation between 

mean registration error and "increasing volume". This observation can be explained by 

the fact that image volume affects the joint histogram, although it may not be the sole 

factor, and which tissues are involved do matter. A larger FOV generally contains more 

information for image alignment. By contrast, a smaller FOV produced larger mean 

registration errors and greater standard deviations of the error distribution. This implies 

that one should avoid too small FOVs. Thus, registration performance declined when 

the FOV was reduced to 32% (43% at most) especially for the MDP SPET 

reconstructions. When the FOV is continually reduced, the registration would be 

expected to eventually fail (e.g. histogram-based methods will run out of data). What 

matters here is whether the failure will occur with clinically realistic FOV and, if so, 

which methods may be more vulnerable. In general, the similarity measures (SCR, NMI 

and MI) have a very similar performance except for MDP (bone) SPET of small FOV. 

The results indicated that, with MDP SPET, SCR was more robust (i.e. smaller failure 

rate) than NMI and MI when small FOV were concurrently varied. The results of these 

measurements also demonstrate that MDP was more sensitive to the image volume 

change than gallium-67 SPET, when NMI and MI were used for registration. 

Interestingly, MDP was less robust in the lung exclusion experiments implying that this 

owes much, if not all, to the reduction of FOV rather than exclusion of a particular 

region.  

 

It is generally difficult to match the field of view in SPET and CT. The second 

investigation simulated the case of mismatched fields of view. A 57% SPET volume 

was registered with a range of CT volumes, progressively increasing in the axial 

direction.  The proposition was that irrelevant information in unmatched parts of the 

image volume could affect registration. In particular, tissue types in CT with no 
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corresponding SPET intensity could generate additional local maxima for the similarity 

measure. No significant effect was found for gallium-67 SPET and for most of MDP 

SPET experiments.  However, when MDP SPET, with FOV of 57%, was matched to 

CT (32% FOV), the registration error doubled, at least when using NMI and MI.  The 

relative susceptibility of bone SPET could be related to the fact that it is more like CT in 

contrast and is therefore more likely to develop strong spurious, as well as genuine, 

matches.  The results also suggest that voxels from the same anatomical structures, to 

some extent, were necessary to construct a joint intensity histogram of sufficient 

information contents to achieve an optimum registration. The presence of unmatched 

tissues or organs, such as lung, in the two images may present a problem for fully 

automatic registration.  

 

Registration error used in this chapter was defined as the mean residual displacement of 

vertices of a hypothetical box drawn around the body (Subsection 6.2.6). A smaller 

registration error is expected from a smaller box since the rotational error depends on 

the distance of the vertices from the box center. On the other hand, the registration error 

due to the residual error in translation is independent of the size of the box. The results 

of Subsection 6.4.9 reveal that the mean registration error was very similar to the mean 

of the translational error regardless of the size of the box used to compute the error, so 

long as the CT volume was relatively large (57%). Since the mean registration error did 

not vary with the size of the box, rotation could have only a limited effect on the 

registration accuracy and the error was predominantly due to the translational 

misregistration (Figure 6.23 bottom). Alternatively, the method of estimating the 

registration accuracy might not be sensitive to the box size. However, when a smaller 

CT field of view (43%) was used for registration, the size of the box did affect the 

registration error. This may mean that, for a reduced volume of interest, the registration 

error was more likely to be affected by the misregistration in rotation. Results show that 

mean registration error was reduced when the hypothetical box dimensions were halved 

even though the translational residual error was unchanged. Thus, for a large image 

volume, the mean registration error is dominated by the translational residual error 

whereas for a small image volume, the rotational residual error becomes more 

significant. One possible explanation relates to the method of varying the FOV.  Larger 

volumes were more axially extended and therefore tend to reduce rotation about x and 

y-axes.  For the rotation about the body axis, the measuring box is also extended axially 
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so errors due to axial rotation would also be smaller. And clearly, changing the box size 

will give different results for mean registration error for small FOV. No attempt has 

been made to derive a systematic correction of the mean registration error as a result of 

changing the FOV. For experiments involving FOVs, a rough correction for volume 

size could be made by assuming that the average displacement is all due to rotation 

about box centre. This may probably give a better estimate of the error statistics.  

 

6.5.5 Shortcomings and further analysis 

Several aspects of practical significance need to be considered in the registration of 

thoracic-abdominal SPET and CT images. In the absence of effective immobilization, 

the patient’s body tends to show a relative rotation about the axial direction between 

MR/CT and PET images [349]. To reduce the differences in pose, Forster et al. [76] 

used a patient specific cushion with fiducial markers fixed on it to replicate positioning 

in SPET and CT. Motion of organs induced by respiration is also an issue for image 

registration [97]. The top of liver has been reported to move as much as several 

centimeters during respiration [350] but it is unknown how much movement occurs in 

other parts of the liver and in other tissues. In SPET, such movement can induce motion 

artefacts. The effect of motion artefacts on registration requires further study. The 

effects of organ deformation and of the relative movement among abdominal organs 

have not been fully evaluated. A quantification of these movements could improve the 

SPET phantom simulation.  To account for the local displacement of internal organs 

between scans carried out using different positioning protocols, rigid-body registration 

is not adequate. An affine transformation can be applied as a first approximation, then 

global warping is used for an intermediate correction and finally some local non-linear 

warping model is probably required. Because a large image volume is less sensitive to 

local misalignment, another possible approach is to divide the image into sub-regions 

small enough to detect local transformations. The results of this study highlights that the 

presence of body boundary, a large field of view and CT intensity windowing, all have a 

positive effect on registration. These results should carry over to local registration.  

Thus the presence of boundaries, including boundaries of internal organs, will probably 

improve local registration of sub-volumes that contain such boundaries. Image 

segmentation, although it can be as difficult as the registration problem itself, is one of 

the possible methods to improve registration.  Further investigation is needed to 
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investigate the optimum size of the sub-volume for the purpose of registration and the 

factors that control it.  

 

6.5.6 Magnitude of registration error 

In this study, the mean registration errors were found, on average to be 11 mm, larger 

than the largest voxel dimension (8 mm for SPET), contrary to expectation. A large 

error may be due to the dimension of the box used in estimating the error or to 

interpolation errors and resolution effects, and in a number of cases, it is due to gross 

registration failure. It is worth noting that where the box represents a bound on the 

image volume, the maximum displacement of the vertices gives the upper bound on the 

displacement of all voxels, leading to an overestimation of the typical registration error. 

The absolute magnitude of error may not be a problem when the purpose of 

investigation is to examine relative effects of various factors.  However, if the results 

are compared with those computed by others, using different methods, this approach 

might not give a fair assessment. For the purpose of measuring the highest attainable 

accuracy of registration for gallium-67 and MDP SPET, further experiments were 

conducted. 

 

The registration of the CT with itself probably represents the most favourable case for 

the joint intensity based approach, as the intensity values are perfectly dependent 

between the two images. Any deviation from the ideal case, as a result of smoothing, 

image degradation, sub-sampling and interpolation, could deteriorate the registration 

accuracy. In order to avoid confounding effects of differences in noise, resolution and 

intensity, the CT image was registered with itself using the default implementation 

(Subsection 6.2.5). In addition, to investigate the effect of resolution, the CT image was 

registered to three different versions of itself: (1) a blurred version of CT (128×128×243) 

using a boxcar filter (5×5×5), (2) a trilinear interpolated version of CT (64×64×121), 

and (3) a trilinear interpolated CT (64×64×121) followed by a boxcar smoothing 

(5×5×5).  The trilinear interpolation and boxcar filter helps to reduce the resolution of 

the original CT image.  The error distribution of the CT-CT registration of the four 

cases is given in Figure 6.28, for each of the three similarity measures.  
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Figure 6.28: Scatter plot of registration error when CT (128×128×243) was registered to itself (grey dots) 
and a blurred version of itself (black dots) for the indicated similarity measures is shown on the left. 
Results of the registration when the CT registered with a resized version CT (64×64×121) and the results 
of registration without (grey dots) and with (black dots) blurring the image are shown on the right. 
 

Using the 128×128×243 matrix, the mean registration error was found to be less than 

the pixel size (4mm), irrespective of blurring, and for every similarity measure. For 

example, with SCR, the mean (±SD) error in mm without blurring was 1.4±0.6 

compared to 1.8±0.8 with blurring. Likewise, for NMI, it was 1.0±0.8 to 1.7±0.8, and 

for MI, 0.9±0.9 to 1.8±0.8. Except for SCR, registration accuracy between CT with and 

without blurring was significant at 5% level (two tailed unpaired t-test). It signifies that 

registration could be worse by the reduction of image resolution.  This is further 

supported by the registration results obtained by registering the original CT with a 

reduced resolution version of CT (64×64×121) using SCR, NMI and MI, with and 

without blurring. The reduced version of CT was obtained by trilinear interpolation of 

the original CT. In this case, the mean (±SD mm) error, without blurring, was 10.4±3.7, 

12.1±2.8 and 10.9±3.5 for SCR, NMI and MI, respectively. Again, with blurring, the 

mean (±SD mm) error was 10.2±3.0, 10.9±2.7 and 10.6±3.2 for SCR, NMI and MI, 

respectively. No statistically difference was found between theses two cases, with and 

without blurring. When comparing the results of the registration using CT sized 

128×128×243 to those reduced resolution of CT using 64×64×121, a significant 

(p<0.0001, two-tailed unpaired t-test) difference was found for each similarity measure. 

It suggests that reducing image resolution has a profound effect on registration accuracy. 

It also reveals that attainable accuracy for the SPET-CT registration accuracy from 

experiments described in this chapter is around 11 mm. This helps to explain mean 

registration error for gallium-67 and MDP SPET-CT registration obtained in this 

chapter is close to the limit of accuracy attainable. The same accuracy (10.6 mm) was 
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also obtained by Skalski et al. [351] using mutual information-based similarity measure 

for registration of CT and PET in the thorax.  

 

6.6  Clinical example 

The following three cases demonstrate automatic volumetric registrations in the 

thoraco-abdominal region using SPET/CT and PET/CT data sets [54,352]. In the first 

case, CT data, acquired as 512×512 image matrices of 0.68×0.68 mm2 pixels, 

representing contiguous 10 mm thick slices, were first downsampled to 256×256 

matrices of 1.3×1.3×10 mm3 voxels to reduce the computational burden. The SPET scan 

with iodine-123 metaiodobenzylguanidine (123I-MIBG) was acquired using 128×128 

matrices (4.7×4.7 mm2) with 38 slices of thickness 9.3 mm. Registration was performed 

from SPET (floating image) to CT (target image) using rigid body transformation. 

Figure 6.29 shows a transverse slice of CT, SPET and overlays of the CT on the 

registered SPET image. The area with increased receptor binding in the liver is exactly 

superimposed on the faintly visible lesion of a carcinoid tumuor on CT. At a later time, 

SPET showed an accumulation of receptor binding in the liver and activity distribution 

of 123I-MIBG in other parts of the body (e.g. the kidney). In addition to the lesion, the 

margin of the liver is well registered.  

 

 
Figure 6.29: Transaxial images, following registration, of a patient with liver metastases of a carcinoid 
tumor. (Left panel) one metastasis is faintly visible as a brighter region in the CT image (top left) and as a 
hot spot in the corresponding MIBG SPET image (top right). Fusion images obtained after 16 h (bottom 
left) and 24h later (bottom right).  
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The second case demonstrates registration of 18-fluorodeoxyglucose (FDG) PET and 

CT. The PET scan traces glucose metabolism in vivo. This patient was diagnosed with 

liver metastases (hepatoblastoma) and confirmed by Gallium abnormal uptake. The 

patient received chemotherapy and was subsequently operated on the right liver (hemi-

hepatectomy). However, blood chemistry demonstrated a slowly rising serum liver 

enzyme concentration implying the possible of recurring of the liver lesion. Further 

diagnosis using a gallium-67 scan was negative, but 
18

FDG scan was positive. The 

critical question was whether the lesion found in PET was due to post-surgical scarring 

or recurrence of hepatoblastoma. CT shows both of metastases or scarring while FDG 

only indicates metastases. In terms of image registration, the question being posed was 

whether the CT and FDG lesions coincided. A registration of fluorine 18-

fluorodeoxyglucose (FDG) with CT was performed showing recurrence of the 

metastases. The lesions detected by FDG appeared exactly superimposed on the 

respective CT lesions by visual inspection, which was later confirmed hepatoblastoma 

by biopsy. Figure 6.30 illustrates the fused datasets of PET-CT scans.   

 
Figure 6.30: The area of recurrence of hepatoblastoma was unremarkable in CT. A study of fluorine 18-
fluorodeoxyglucose (18FDG) was performed showing focal localisation of the disease. Fusion of FDG and 
CT is shown in three orthogonal sections (left to right: transverse, coronal and sagittal). Increased uptake 
of 18FDG in the receptor area indicated the corresponding location in the CT.  
 

The third case demonstrates registration of gallium-67 SPET and CT in the chest that 

provided information with significant clinical implications. This patient had a history of 

complex congenital heart disease, requiring several cardiac surgical procedures to insert 

a bioprosthetic pulmonic valve and pulmonary outflow trunk.  Seven months earlier the 

patient had a patch repair of the ventricular septum requiring a surgical procedures by 

formation of a right ventricle to pulmonary artery conduit.  Later, the patient presented 

with high fever and blood-stained sputum. Bacteraemia (Staphylococcus haemolyticus) 

was cultured from blood, and was suspected of causing prosthetic infection.  A gallium-

67 scan was requested. After intravenous injection of 67Ga-citrate, whole body planar 
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and chest SPET images (64×64 matrices) were acquired 48h later after injection. Planar 

images showed a focus of mild gallium-67 localisation in the right mid thorax near the 

mediastinum. The distribution of gallium-67 elsewhere in the body appeared 

unremarkable.  There was insufficient structural detail to establish confidently whether 

the hot spot was due to the intrathoracic lesion in bronchopulmonary tissue or a 

pulmonary vessel. The critical distinction to be made was between pneumonia and 

prosthetic vascular graft infection. When the registered images were reviewed (Figure 

6.31), it was clear that the gallium-67 sensitive lesion was outside the lung tissue and 

within the prosthetic vascular conduit.  An inflammatory focus labeled by gallium-67 

was seen in the thorax and the SPET-CT registered image was conclusive in localising 

the lesion to the vascular prosthesis.  This was confirmed by further imaging. 

 
Figure 6.31: Registered gallium-67 SPET and CT showing the focal localization of uptake. The fusion of 
images confidently located the gallium-67 avid lesion outside of lung tissue and within a prosthetic 
vascular conduit. SPET (top) and CT (middle) images of three orthogonal sections (left to right: 
transverse, coronal and sagittal) are displayed with a linked cursor. Also shown is the fused display 
(bottom). 
 

6.7  Conclusion 

Registration of SPET and CT images in the abdominal and thoracic areas has been 

recognized as a difficult case. As described in this chapter, a digital phantom was 

developed and applied to simulate SPET images of different activity distributions and 

different radiopharmaceuticals.  The simulations were used to investigate SPET-CT 

registration in the thoracic-abdominal region using similarity measures based on joint 
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intensity histogram. One aim was to determine whether the choice of a reconstruction 

algorithm (OSEM or FBP) affected registration performance under various conditions. 

Evaluation based on the SPET phantom is not affected by the quality of SPET images 

and avoids difficulties associated with fiducial markers. The evaluation techniques 

described here can be extended to incorporate local transformations in order to better 

simulate clinically realistic misregistration. One notable result obtained in this study is 

that performance of registration is relatively insensitive to image noise, irrespective of 

which reconstruction algorithm was used. It is also noted that the SPET-CT registration 

is dependent on a particular SPET image and probably application specific. No single 

method could be applied with equal success in all SPET applications. Results of this 

study also show that the registration accuracy, to some extent, depends on which 

algorithm (OSEM or FBP) is used for SPET reconstruction. For a given image noise 

level, OSEM-reconstructed SPET was found to give better registration than FBP-

reconstructed SPET when AC is included, although less obvious for SPET without AC. 

Furthermore, attenuation compensation shows an effect on FBP SPET but little effect 

on OSEM SPET. These results suggest that OSEM could be a preferable choice of 

SPET reconstruction algorithm producing more accurate retrospective image 

registration when AC is used to remove artifacts due to non-uniform attenuation in the 

thoracic region. Registration deteriorated with an increase in projection data noise level 

(decrease in planar projection count). The presence of the body boundary in the SPET 

image and matching fields of view appeared not to be critical for improving registration, 

but pre-processing steps such as CT intensity windowing are helpful to improve 

registration accuracy. Results of experiments also demonstrated that image volume has 

no significant effect on registration, and registration performance deteriorated only 

when the volume is much smaller, such that there is too little information content to 

construct the intensity histogram.   
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Chapter 7 
 

Development of a non-rigid registration method 
 
In this chapter, a fully automated non-rigid image registration method that maximizes a 

local voxel-based similarity metric is investigated. Although the experiments described 

here were all carried out in 2D, the method can be readily adapted to 3D. Moreover, the 

method forms the basis of the 3D experiments described in Chapter 8.  For these 

reasons, references to 3D parameters are also given, where practicable. The proposed 

algorithm for non-rigid registration is based on overlapping image blocks which are 

defined using a 3D grid pattern. The transformation vector field, representing image 

deformation is found by translating each block so as to maximize the local similarity 

measure. A symmetric version of the correlation ratio (SCR) is proposed with a median 

filter to ensure local coherence of the sampled displacement vectors. The resulting 

sparsely sampled vector field is interpolated using a Gaussian function to ensure a 

locally smooth transformation. A hierarchical strategy is adopted to progressively 

establish local registration associated with image structures at a diminishing scale. 

Simulation studies were carried out to evaluate the proposed algorithm and to determine 

the robustness of various voxel based similarity measures: mutual information, 

normalized mutual information, correlation ratio and SCR. In this chapter, a T1-

weighted magnetic resonance image was used to test intra-modality registration. Proton 

density and T2-weighted MR images of the same subject were used to evaluate inter-

modality registration. The proposed algorithm was tested on the 2D MR images 

distorted by known deformations.  

 

7.1  Introduction 

Section 2.3 reviews the general methodology used for image registration, which is 

focused mainly on rigid body alignment. This section will discuss non-rigid registration 

in more detail. The image registration process seeks to find an optimum spatial 

transformation that maps each voxel of one image into another image. Most registration 

methods are constrained to global rigid transformations.  While useful in cases where 

the rigid body assumption is globally valid, they are inadequate where the assumption is 

valid only locally (e.g. articulated joints), where deformations are non-rigid (e.g. soft 

tissue organs deformed by posture changes), or where images of different subjects are 
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matched. Inter-subject registration may be used to enhance the diagnostic value of an 

image by comparing the patient’s image to a control group average. Non-rigid 

registrations have been applied to applications such as atlas-based segmentation 

[353,354] and image-guided surgery [355]. In anatomical atlas matching [356,357], 

non-rigid registration allows automatic anatomical labeling of regions in an MR image 

based on their spatial correspondence to atlas features. For example, Vemuri et al. [353] 

successfully applied non-rigid registration to automatic hippocampal segmentation from 

MR images. Hartmann et al. [354] successfully quantified the brain and cerebellum 

volumes in normal subjects and chronic alcoholics from MR images. Shen et al. [358] 

implemented a deformable registration for constructing a statistical atlas of prostate 

cancer to determine an optimal biopsy strategy. Non-rigid registration in serial MR 

images in the brain is crucial for the neurosurgeon.  Ferrant et al. [355] tracked 

intraoperative brain deformation accurately to provide critical information for 

neurosurgery. Rey et al. [359] used non-rigid registration to detect regions with volume 

variation in local regions by segmenting lesions in a temporal series of images. Subsol 

et al. [360] used an anatomical atlas of the skull to study craniofacial disease related to 

maxillary deformation. Other examples include monitoring after therapy, and 

differences in patient position (example is head and neck where rigid repositioning is 

difficult). The need to minimize local differences, common to these applications, 

motivated the work on non-rigid registration described in this chapter. 

 

Several methods for non-rigid registration have been reported [47,100,361]. Most 

involve constrained local deformation of one image with respect to the other. Static 

constraints are imposed as landmarks or control points. Fitting a surface spline (such as 

the thin plate spline [198,203], or the elastic body spline [200] through the supplied 

control points yields spline coefficients. Deformation at any point in the image space 

can then be computed. The selection of landmarks and their matching is recognized to 

be a difficult and labour-intensive task if performed manually. Non-rigid registration 

can be formulated as a dynamic process where image warping becomes a compromise 

between external driving forces arising from the gradient of a similarity criterion 

(expressing attraction of similar features) and internal restoring forces representing the 

physical properties (such as rigidity) of the body. Based on this approach, Bajcsy et al. 

[199] formulated a 3D elastic image warping algorithm. In order to allow large local 
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deformations, a viscous fluid registration method was introduced by Christensen et 

al.[201]. Bro-Nielsen et al. [202] used a convolution filter to speed up the fluid 

registration process. Non-rigid registration can also be treated as an energy optimization 

problem expressed as a (Bayesian) likelihood maximization problem with a Gibbs’ prior 

[362]. Local energy can be thought of as a prior that penalizes unlikely deformations. 

Gee et al. [363,364] formulated a non-rigid registration by modeling the cross-

correlation between image intensities as an energy function. An elastic energy prior that 

acts to promote smoothness in image transformation penalizes deformation. Another 

likelihood function, based on the sum of squared differences (SSD) of voxel values 

between images, was proposed by Christensen et al. [201]. Their prior was encoded as 

the elastic energy of the viscous fluid and was relaxed gradually to permit large 

deformations. Szeliski and Lavallee [365] used SSD as the likelihood function. 

Deformation was constrained by zero-order and first-order continuity to regularize the 

transformation. Ruiz-Alzola et al. [366] used the intensity and gradient information to 

compute correlation for local matching of areas with a high degree of local structure. 

 
Other approaches to non-rigid registration, such as the optical flow model [367], elastic 

model [199] and viscous fluid model [201,202,368], have been surveyed and compared 

in [100]. In these non-rigid registrations, the driving forces were based either on 

difference images or on the intensity gradients at boundaries. A major downside of 

these approaches is that they are restricted to intra-modality applications; otherwise, a 

pre-registration segmentation step is required to define surfaces of interest.  An 

important feature of these registration algorithms is that the adopted physical model 

imposes significant constraints on the deformation. Another major feature of the elastic 

and fluid algorithms is the long computation time, even using massively parallel 

computers [368,369]. Moreover, most dynamic non-rigid registration methods rely on 

the pixel-to-pixel intensity differences between images to formulate the external force 

and are thus restricted to intra-modality applications. Given the limitations of the above 

methods, the objective of this chapter was to investigate an alternative approach to non-

rigid alignment, based on free-form deformation and joint intensity histogram 

[186,211,370,371], which can be applied to multimodality problems for non-rigid 

registration.  
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7.2  Problem formulation 

The registration problem can be posed as an estimation of the deformation of a floating 

image A with respect to a reference image B using transformation T parameterized by 

an unknown displacement vector u(x) where x is the position vector in the reference 

image. The transformed floating image A' is defined by ))(-A()A(T)(A' xuxxx u == . A 

displacement vector field describes the deformation at all the image voxels. It is 

computationally expensive to estimate the displacement vector u(x) at all positions in a 

3D image. To improve the efficiency, the images are divided into overlapping image 

blocks centred at the nodes of a uniform 3D grid. The displacement field is sampled at 

the grid nodes. Using a suitable similarity measure, the optimum translational 

displacement is found for each floating image block with respect to the corresponding 

reference image. The displacement vector field is then interpolated to give the local 

displacement at other positions in the image. The sampling density of the displacement 

vector field is progressively increased. At first, a coarse grid is used to capture large-

scale misregistration. Then a fine grid is used for small-scale registration. The sampling 

density is changed by a factor of two between adjacent levels. At each level, the 

displacement vector field obtained from the previous level is updated by the current 

estimation. The summed displacement vector field is then used to transform the original 

floating image. The aim of the registration is to find, for each x, a displacement vector 

u(x) that maximizes the spatial correspondence between the transformed floating image 

A' and the reference image B. 

 

7.2.1  Similarity measure  

As discussed in Chapter 2 (Section 2.2), similarity measures fall into two main 

categories: those based on image features and those based on voxel intensity. The 

feature-based approach requires extracting corresponding features from the images to be 

registered and determining a pair-wise transformation that aligns those features. The 

extraction of the corresponding features from both images is generally difficult, 

particularly for inter-modality images. The difficulty is substantial with SPET images 

because of their poor resolution. The feature-based similarity measures are not 

considered here. The voxel-based methods generally use the full image content and 

operate directly on image intensity values. Image registration proceeds by optimizing a 

similarity measure determined from voxel values. Given that image intensities are not 
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linearly related in inter-modality images, the sum of squared differences and the cross 

correlation measures [171,363,364] are unsuitable for this study. Alternative local 

similarity measures include the mutual information [177,178,179,220], the normalized 

mutual information [180,207], the correlation ratio [181,264] and the symmetric 

correlation ratio [182].  These similarity measures assume that the co-occurrence of 

intensity values in the two images is maximized at registration. In intensity space, 

mutual information uses entropy to measure co-occurrence of pixel values while 

correlation ratio uses variance to determine dispersion of the co-occurrence of pixel 

values in the two images.  

 

For a given transformation Tu, we have the image pair A′=TuA and B with intensity 

values “a” and “b”, respectively, sampled from the same finite grey scale }1,...,1,0{ −M . 

Registration can be described as a problem of predicting the intensity values of one 

image given the other image. In an optimum local match, the co-occurrence of intensity 

values in one image block given the observation of the intensity values in the other 

image block is maximized. The transformed floating mage A′ and the reference image B 

are locally aligned over the image block (where the local similarity measure is 

maximum). The local alignment is identical to the rigid body registration case except 

for the domain over which they are defined (i.e. the image block) and the class of 

transformations (i.e. translation only). As defined in Chapter 3, mutual information 

(Equation 3.11) and normalized mutual information (Equation 3.12) are given by  

∑=
ba ab
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The joint probability P(a,b) and the marginal probabilities: P(b) of the reference image 

B and P(a) of the transformed floating mage A′; can be estimated from the normalized 

joint and marginal intensity histograms, respectively. The correlation ratio (Equation 

3.23) is also reproduced here, for the sake of convenience, 
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The symbol µ denotes the overall average intensity in A′. The subscripted version µb 

gives the average intensity of an induced segment in A′, which corresponds to all voxels 

of intensity “b” in B. In general, the correlation ratio is not symmetric, 

, its behaviour depending on which image, A' or B, is used to 

compute the variance σ

)B,A'(CR)A'B,(CR ≠
2. A symmetric CR was proposed in Chapter 3 and defined 

(Equation 3.24) as )A'CR(B,B),CR(A'SCR += . Note that the computational 

efficiency of the optimization process can be improved by subsampling the image block. 

This and other efficiency considerations will be discussed in Subsections 7.2.2 and 7.3.1. 

To obtain an optimal local matching, minimization of negated similarity measures was 

performed. The downhill simplex method [127] was used to optimize the displacement 

of each image block. This method does not require the computation of derivatives or 

line minima. The optimization is initialised at the origin of the parameter space. 

 

7.2.2  Interpolation of the displacement vector field 

Estimates of the displacement field for image registration are generally not well defined. 

Outlier displacements can appear as discrete impulse-like noise. Imposing constraints to 

penalize unlikely deformations can circumvent this problem. For example, a limit can 

be placed on the maximum displacement at each grid node. However, this method may 

prevent the estimation of large but valid deformations. The proposed method does not 

impose an upper limit on the local displacement. Instead, a median filter is employed to 

ensure local coherence of the deformation field (Figure 7.1).  

 
Figure 7.1: The displacement vector field before (left) and after (right) the application of the median filter.  
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The median filter offers superior suppression of impulse noise and generally superior 

preservation of detail when compared to the averaging filters, such as the boxcar or the 

Gaussian filter [211,372,367]. Once the displacement vectors v~  have been determined 

at grid nodes, a 3D median filter is applied to each Cartesian component of the 

displacement vector field. Let the image voxels be indexed by i∈G = {0, 1,..., N-1}, and 

let voxels where nodes occur be indexed by j∈Q⊆G. Suppose c(xj) represents a putative 

displacement field such that each measured displacement vector ( )'~
jxv  sampled at grid 

nodes j′ is a Gaussian weighted sum of all c(xj). The displacement field c(xj) is used for 

interpolation to provide estimates of the displacement vector displacement v(xi) at 

intermediate locations (i.e. at an arbitrary voxel xi) by interpolation with a Gaussian 

kernel (Figure 7.2),  
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(7.2) 

and ijx denotes the Euclidean norm of i jx x− on R3.  

 
Figure 7.2: A single data sample in spatial domain (left) and after convolution with the Gaussian function 
(right). 

 

To determine the coefficients c(xj) the displacement v(xi) is set equal to )(~
ixv  on each 

of the sampled displacement data points at grid nodes j′ ∈Q. Let i in Equation 7.1 

correspond to some grid node j′. A system of linear equations (Eq. 7.3) is formulated to 

compute cj,  

( )( ) ( )jjjj' vc ′=φ ~ , (7.3) 
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where ( )jc  is a column vector consisting of n coefficients corresponding to the number 

of nodes, ( )'jv~  is a column vector consisting of n sampled displacements, and ( )jj'φ  is 

a  matrix of Gaussian weights nn × jj'φ  given by Equation 7.2. Since c is a vector in 

the same sense as u is, i.e. with 3 Cartesian components, Equation 7.3 is a system of 

three equations, one for each component. The computation of the exact solution of 

Equation 7.3 is CPU and memory intensive. For example, in a 3D cubic image data set 

of 1283 voxels, in which every fourth voxel along each orthogonal direction forms a 

grid node, there are 215 nodes. To improve the efficiency an approximate solution is 

obtained by setting jj vc ~= (i.e. setting Gaussian δ to go to zero). In this case, the 

interpolation can be represented as a convolution given by Equation 7.4 of the 

displacement vector field sampled at the grid nodes with the Gaussian kernel.   
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Although the Gaussian has a global support, the contributions from remote nodes are 

generally negligible so that a relatively small convolution kernel can be chosen thus 

reducing the computational cost. The effective size of the kernel is controlled by the 

Gaussian width δ. When δ is small, the relative influence of nearby nodes diminishes 

rapidly with distance from the voxel. Deformation occurs only within a small 

neighbourhood of each grid node without influencing the remaining image. Gaussian 

weighting helps to reduce computation cost because only a small subset need be 

considered. A practical implementation constrains the support to the nearest grid nodes 

giving adequate interpolation of v(x) with improved computational efficiency.  

 

7.2.3  Coarse-to-fine displacement 

The transformation Tu is an image-wide transformation dependent on c, which is 

“piecewise” linear locally given by each block. A strategy that integrates local 

alignment across different coarse-to-fine level in displacement vector space offers 

significant advantages in terms of computational cost and registration robustness. In the 
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proposed implementation, the displacement vector field is first determined using large 

image blocks at a coarse sampling density. Then, registration proceeds by refinements 

through progressively smaller blocks at the finer level of displacement field (Figure 7.3).  

Floating image 

 

Reference image 

First iteration Second iteration Third iteration 

Figure 7.3: Multi-level non-rigid registration illustrated for a rotational distortion of the reference image. 
Superimposed on the floating image are displaced image blocks following the first, second and third 
iteration. For the sake of clarity, every second block is shown, and only if it is subject to a significant 
displacement. This explains the large gap in the middle of the 2nd and 3rd iteration results.   
 

The low-frequency component of the misregistration error is reduced at a coarse level, 

whereas the high-frequency component is reduced at a fine level [365,373]. At coarse-

to-fine level κ, it corresponds to iteration κ and the residual displacement field is given 

by Equation 7.4. The displacement u(κ)(x)  transforms the floating image which is then 

used to estimate the residual displacement field v(κ)(x) at a more refined level of the next 

iteration. The previous estimate u(κ−1)(x) is added to the residual displacement field 

v(κ)(x) producing an updated displacement vector field u(κ)(x),  

( ) ( ) ( ) ( )
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x  and δκ denotes the Gaussian width at iteration κ. 

Updating only the displacement field, and not the image itself, avoids cumulative image 

blurring arising from successive interpolations of the floating image.  To improve the 

 182



computational efficiency, nearest grid nodes were used in the interpolation and the 

degree of interpolating polynomial varied with block size.  

 

7.3  Methodology 

The practical considerations of grid node spacing, image block size and sampling 

scheme for the multi-level implementation of the proposed non-rigid registration is 

introduced in Section 7.3.1. The details of the image data set for intra- and inter-

modality registration studies are given in the Subsection 7.3.2. The results obtained 

from the experiments in this chapter will form the basis for the 3D experiments in 

Chapter 8. 

 

7.3.1  Implementation 

The registration proceeds progressively from coarse level to fine level with square 

image blocks of size 642, 322 and 162 pixels in 2D (643, 323 and 163 voxels in 3D), 

corresponding to grid spacing of 32, 16 and 8 pixels, respectively. The inter-block 

distance is chosen such that each block was completely overlapped by its 8 neighbours 

in 2D (see Figure 7.4) and 26 neighbours in 3D during local matching. The centres of 

neighbouring blocks must be located at midpoints of the sides or the corners of a block. 

After each translation, a tri-linear interpolation was used to obtain the intensity values in 

the translated image block.  

 
Figure 7.4: Image blocks and grid nodes are illustrated for two adjacent levels: at the coarse level, grid 
nodes are circled and the image block is lightly shaded. The centre block is completely overlapped by its 
8 neighbours (centred at circles); at the fine level, nodes are shown with crosses and the image block is 
darkly shaded. Note that the coarse grid nodes persist to finer levels.  
 

The image intensities of each image block were binned into a 2D joint intensity 

histogram for subsequent estimation of the similarity measure. Rebinning was 

performed implicitly by linear rescaling of the image intensity. To improve estimation 

of the joint and marginal probability distributions from the corresponding histograms, 
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the number of bins in the joint intensity histogram was reduced as the block became 

smaller [274,374]. There were 64 bins in the 64×64 block, 48 in the 32×32 block, and 

32 in the 16×16 block. The number of bins was derived empirically [375]. Subsampling 

of the image block can be used to speed up the registration. Notation [n1,n2,n3] 

represents down-sampling of image blocks uniformly by a factor of n1 in the first 

iteration, n2 in the second iteration, and so on. For example, a [4,2,1] sampling scheme 

applied to a square block of size 322 pixels will generate 82 samples in the first iteration, 

162 in the second, and 322 in the third.  At each level, the iterative optimization was 

terminated as in Subsection 4.3.5 when consecutive absolute changes in the similarity 

measure fell below 0.0001. Failing that, the algorithm stopped when a certain number of 

iterations were reached (50, 40, and 30 in the first, second and third level, respectively). 

Fewer optimization iterations were allowed at finer levels where the computation was 

more expensive. All studies were carried out on a dedicated 333 MHz Pentium PC. The 

setting mentioned in this paragraph together with SCR is referred to as the default 

implementation in the rest of this chapter unless otherwise specified. 

 
7.3.2  Image data 

To assess the subsampling with rebinning in the context of the multi-level 

implementation of the local registration algorithm, five pairs of T1 and T2 MR images 

were used, one of which is shown in Figure 7.5 (top). The images in each pair were 

acquired at the same time, showed no visible manifestations of misalignment and were 

therefore assumed to be registered. A 2D transverse section was extracted from each 

pair for this experiment. All 2D transverse images consisted of 256×256 pixels, each of 

size 0.9×0.9 mm2, with 8 bit encoded intensity values. For this purpose, an image A is 

distorted elastically using a thin-plate spline [198] with 5 control points, as illustrated in 

Figure 7.5 (bottom). The four corner points are fixed, while a point in A was randomly 

selected and distorted with a displacement of random magnitude (within predetermined 

limits) and direction.  
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Figure 7.5: An example of data used for the evaluation of the multi-level registration strategy. An MR T2 
image A (left) is elastically transformed with 5 control points: fixed vertices and an interior point subject 
to random displacement within a circle of 15-pixel radius (shown). The transformed image is denoted A′ 
(middle). The transformation is also illustrated with the use of the image grid (bottom).  An MR T1 image 
B (right) was acquired at the same time as A.  An example of a block used to recover the distortion is 
outlined by a square. Image B is registered to image A′. 
 

To evaluate the proposed algorithm for local registration, two 2D MR image data sets 

(simulating intra- and inter-modality problems) were used. The intra-modality image set 

was based on a T1-weighted MR image (0.937 mm/pixel) of size 2562 pixels (Figure 

7.6a). Five analytically known transformations were employed to produce deformations 

in this T1 MR image and the deformed image was taken as the reference image. The 

synthetic deformations were bilinear, rotational, sinusoidal, thin plate spline [198] and 

Gaussian [376].  The original T1 MR image was used as the floating image to be 

registered to the deformed image.  

 
Figure 7.6(a): A T1-weighted MR image (left) used for synthetic intra-modality registration.  
 

The inter-modality image set, was based on a pair of T2-weighted and proton density 2D 

MR images (0.898 mm/pixel) containing 2562 pixels of the same subject (Figure 7.6b). 
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The two images are assumed to have been registered at acquisition. The T2 image was 

deformed by the same synthetic deformations as those applied in the intra-modality case 

and taken as the reference image. The proton density image was used as the floating 

image to be registered to the reference image. 

 

 
Figure 7.6(b): For inter-modality registration, synthetically deformed T2-weighted MR images acted as 
the reference. Five types of deformation were used (counterclockwise from top right): thin plate spline, 
rotational, bilinear, rotational, sinusoidal, and Gaussian. A proton density MR image (bottom rightmost) 
was taken as the floating image. 
 

7.3.3  Registration error analysis 

To assess the performance of the proposed non-rigid registration algorithm, registration 

accuracy for synthetically deformed images was measured with respect to the known 

displacement field. For each voxel, error iii uu ~−=ε  measured the discrepancy 

between the applied displacement iu  and the displacement iu~  recovered by the 

registration process. Squared and summed over all voxels in the image, this gives the 

root mean square displacement error,  

∑
−

=
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εε ,  

where N is the image size.  In 2D registrations, the image was masked to exclude 

displacement falling outside the reference image B or the floating image A′. For 

consistency rmsε is referred by “DE” in the rest of this chapter. DE values are expressed 

in pixels (of size 0.937 mm). As a measure of the performance of registration, DE 

averaged over all synthetic images was also recorded. Statistical analysis (two-tailed 

paired t-test) was applied to differentiate the average DE obtained by two registration 
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algorithms. Studies by independent researchers suggested that a 2 mm misalignment is 

at the limit of a trained observer’s ability to detect a misalignment in intra-subject inter-

modality brain registration for most clinical data [131,208,224,248]. To assess the 

robustness of the proposed algorithm for local registration, thus registration was 

considered successful if the registration error did not exceed 2 pixels (1.8 mm).  

Robustness of the algorithm was quantified as the proportion of successful matches in 

each set of experiments.   

 

7.4  Evaluation of non-rigid registration in 2D 

The non-rigid registration algorithm proposed in this chapter is formulated by using 

multi-level strategy with convolution to interpolate displacement field.  A Gaussian 

kernel was convolved with the sampled displacement field to estimate a continuous and 

smooth transformation Tu over the data volume. This is a considerably more difficult 

problem than the rigid body registration. Factors such as the width of the Gaussian 

kernel, treatment of displacement outliers, image block size, multi-level strategy, choice 

of the similarity measure, and the choice between the full (Eq. 7.1) and the fast 

implementation (Eq. 7.4), can all influence the performance of the algorithm. 

Investigations were performed to assess the influence of these parameters on the non-

rigid registration and to optimize the parameter values where possible. Before turning 

the attention to real 3D clinical image data (Chapter 8), 2D image data with synthetic 

distortions were used in an attempt to understand the proposed algorithm under various 

settings of the implementation. These results will be used to refine the 3D 

implementation.  

 

7.4.1  Effects of downsampling – an experimental study 

The purpose of this experiment was to investigate the effect of downsampling the image 

block and the number of intensity bins on the robustness of the inter-modality 

registration. The general motivation for image block downsampling was to accelerate 

registration without decreasing its performance. The robustness of registration depends 

on the propensity of the optimization algorithm to become trapped at local maxima in 

the similarity measure. For a given similarity measure, robustness depends on the type 

of image, downsampling factors and number of intensity bins. It is not clear how these 

settings would affect the performance of registration. The experiments described here 

will provide an assessment of multi-level image registration, where downsampling 
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strategies are used, and help optimize the settings for both the global and local image 

registration.  

 

The selected interior point in image A (see Figure 7.5) was displaced from its original 

position randomly in the range 0-15 pixels with uniform distribution. The TPS 

transformed image was taken as the reference image and denoted by A′. B was referred 

to as the floating image. The transformation of A′ was non-rigid which was determined 

by the TPS interpolation. The floating image B was then registered to the distorted 

image A′ using image blocks to recover the displacement. For each of the 5 image pairs, 

the TPS distortion and the image block registration was repeated for 10 random 

displacements of each of the 20 randomly selected control points, giving a total of 1000 

registrations for each experiment. The experiment was carried out for each similarity 

measure (MI, NMI, CR and SCR) and each of three block sizes (64×64, 32×32 and 

16×16), with 128, 64, 48, 32 and 16 intensity bins as well as downsampling by a factor 

of 2, 4 and 8 along each axis. For each experiment, the registration error and its 

distribution were recorded. Since subsampling is used synonymous with downsampling, 

subsampling refers to downsampling in the rest of this chapter for the sake of 

consistency in the thesis. 

 

7.4.2 Effect of the Gaussian kernel width  

To examine the influence of the width δ of the Gaussian kernel on registration, the intra-

modality image set was used. Default implementation (Subsection 7.3.1) was used for 

the local match. Values of δ ranging from 0.3 to 1.0 of the grid spacing were used. The 

displacement error was averaged over the five synthetic deformations. 

 

7.4.3 Effect of other settings  

To evaluate specific aspects of the proposed algorithm, five distinct implementations 

were distinguished (Table 7.1). The intra-modality image set was used. DE and average 

DE values over the five distortions were computed for each setting at every iteration 

level to study the effect of setting on registration. In the full implementation, 

coefficients cj used in interpolating the displacement field were determined from exact 

solutions of (7.3).  
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Implementation (i)  

TPS 
(ii) 

Unfiltered 
(iii) 

322 block  
(iv)  
Full 

(v)  
Fast 

Interpolator Thin-plate Gaussian Gaussian Gaussian Gaussian 
Support  all nodes 3×3 nodes 3×3 nodes all nodes 3×3 nodes 
Median filter  Yes no yes yes yes 
Multi-level Yes yes no yes yes 

Table 7.1: Details of five implementations. In the multi-level algorithm, blocks of size 642, 322 and 162 
pixels were used with 64, 48 and 32 bins, respectively. The interpolator support was confined to a 3×3 
neighbourhood of grid nodes except for the “full” and the TPS implementations. All implementations 
used the SCR similarity measure and image blocks were fully sampled except for (v) which used the 
subsampling default implementation described in Subsection 7.3.1. 3×3 nodes refer to the number of 
neighboring grid nodes used for interpolation. 
 

7.4.4 Effect of filter type on registration 

Three low-pass displacement field filters were examined: two averaging filters (boxcar 

and Gaussian) and a median filter. The registration of the T1-weighted MR image with 

the synthetically deformed images was carried out with the set of parameters specified 

in Section 7.3.1.  In the Gaussian filter, the width δ was set equal to the grid cell size. A 

preliminary study found that a 3×3 kernel (3×3×3 in 3D) was of optimum size for the 

filter, and this was used as the default. DE and average DE over the five distortions 

were computed for each setting at every iteration level. For each filter, implementations 

in both Cartesian and polar coordinates were carried out. In polar coordinates, the filter 

was applied separately on the vector magnitude (radial component) and orientation 

(phase angle) while, in Cartesian coordinates, the filter operated separately on each 

Cartesian component.  

 

7.4.5 Comparison of similarity measures  

To assess the performance of SCR relative to other similarity measures (MI, NMI, CR1 

and CR2) in the intra-modality non-rigid registration, the T1-weighted MR was 

registered to the five synthetically distorted T1-weighted MR. The default 

implementation was used (Section 7.3.1). Four sampling schemes were applied: [1,1,1], 

[2,2,1], [4,2,1] and [8,4,1]. SCR was also compared to the other similarity measures in 

the inter-modality non-rigid registration. The proton density MR was registered to the 

five synthetically distorted T2-weighted MR using the same implementation as for the 

intra-modality registration.  
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7.5  Results of evaluation of non-rigid registration in 2D 

Results of various subsampling schemes and evaluation of the proposed algorithm for 

local registration were given in this Section.  

 

7.5.1  Effects of downsampling  

Figure 7.7 show the robustness measured as the percentage of successful matches ( rmsε ≤ 

1.8 mm) for a number of subsampling regimes. Plot (a) shows variation of robustness 

with the subsampling factor (128 bins in all cases) and plot (b) shows variation with the 

block size for a given subsampling factor. Plots (c-h) show variation with the number of 

intensity bins in the joint histogram for specified similarity measures. The following 

conventions are used: nx and ny refers to subsampling factor in x- and y- direction, M 

refers to the number of intensity bins.  Nx×Ny denotes the size of images. In plot (h), 

CR1 and CR2 (Eq. 3.23) refer to two cases of normalizing conditional variance using 

two different images (e.g. T1 and T2 MR). The general observations of the results are: 

 

1. Registration in which the image blocks are fully sampled performs, in most 

cases, better than that with sparse sampling regardless of image block size, the number 

of intensity bins and similarity measure. An example is illustrated in Figure 7.7(a) using 

SCR. In this case 69%, 62% and 36% robustness was found using block size of 32×32 

for [1,1], [2,2] and [4,4] sample scheme was used, respectively.  This is expected as 

sparse sampling reduces the statistical power of the joint histogram. However, 

subsampling affected the performance of SCR to a lesser extent compared to other 

similarity measures. For example, subsampling a 64×64 image block by a factor of 2 

(74%) and 4 (73%) when compared to full sampling (69%) did not have a substantial 

effect on SCR robustness, irrespective of the number of intensity bins (Figure 7.7(f)-(h)).  

 
2. Robustness was found to improve with larger image blocks suggesting that more 

information content provided by the larger block improves statistical power for 

matching. However, the improvement was not uniform and depended on the similarity 

measure used for the alignment. The registration deteriorated with decreasing block size 

irrespective of the similarity measure, but SCR was least affected. As an illustration, in 

Figure 7.7(b), SCR is compared to MI for three block sizes. The results demonstrate that 

the SCR is more robust than MI for image alignment.  
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Figure 7.7: Percentage of successful matches (out of 1000 registrations) for indicated similarity measures 
is plotted against (a) downsampling factor; (b) block size Nx×Ny. The results obtained when using full 
sampling and 128 intensity bins are included as a reference in (a). (c)-(e): Percentage of successful match 
of MI, NMI and SCR is plotted versus the number of intensity bins M. (f)-(g): Percentage of successful 
match of MI, NMI and SCR is plotted versus the number of intensity bins M. (h): Percentage of 
successful match of CR1, CR2 and SCR is plotted versus the number of intensity bins M. 

 
3. Registration performance varied with the number of intensity bins but the 

variation depended on the choice of the similarity measure. Figure 7.7(c)-(e) summarize 
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the registration results for the three measures: MI, NMI and SCR. For MI and NMI, 

robustness improved with fewer bins. At [1,1] full sampling and [2,2] subsampling with 

32×32 block size, MI and NMI show a dependence of performance on number of 

intensity bins. The performance for SCR was almost unaffected by the number of bins 

regardless of block size and subsampling. The difference between the success rate for 

SCR and that for MI and NMI was more pronounced with finer quantization (128 and 

64 bins). When 64×64 was used without subsampling, MI and NMI showed slightly 

better performance than SCR (Figure 7.7(f)). However, when the 64×64 block was 

subsampled by a factor of 4 to produce 16×16 samples, SCR performed much better 

than MI or NMI (Figure 7.4(g)). 

4. Figure 7.7(h) compares the robustness of SCR to that of its two components 

(Equation. 3.23) here denoted CR1 and CR2 for the case of the 64×64 block 

subsampled by half in each dimension. In CR1, the T2 image was registered to the T2 

image, and vice versa in CR2.  The success rate of SCR shows a modest but statistically 

significant advantage over its two components and that was also the case for other block 

sizes and subsampling factors. Based on the data in (h), the average (±SD) success rate 

70±3% of SCR was better than both CR1 (57±1%) and CR2 (61±2%) at the 5% 

confidence level using two-tailed paired t-test.    

 
In the second set of experiments, registration algorithms were tested against a set of 

distortions.  The warped images are shown in Figure 7.6.  In addition, the distortion is 

expressed as a histogram of pixel displacement (Figure 7.8). Together, these distortions 

present histogram of displacement distributions. Based on the synthetic distortions, the 

effect of various parameter values and different of implementation settings on non-rigid 

registration was investigated. The dependence of the registration accuracy on the 

Gaussian kernel width, the choice of the interpolator, and the choice of the similarity 

measure were evaluated using T1-T1 and T1-proton density image pairs. The effects of 

subsampling the image blocks were also studied.   
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Figure 7.8: Histogram of pixel displacement for the indicated types of synthetic deformation. The 
deformations applied to the reference image are measured. Not included are the background pixels: 37% 
(TPS), 43% (Gaussian), 40% (sinusoidal), 37% (rotational) and 39% (bilinear). 
 

7.5.2 Effect of Gaussian kernel width  

The displacement error, averaged over the five synthetic distortions, is plotted as a 

function of Gaussian width δ (Figure 7.9). The error bars correspond to the standard 

deviation of the distribution of DE values across the five synthetic distortions. The 

result shows a decrease of ADE and gives a minimum when Gaussian width was about 

0.45 of the grid spacing, but ADE deteriorates with further increase in kernel width. 

This value was used in all subsequent simulation studies. 
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Figure 7.9: DE averaged over five synthetic deformations as a function of Gaussian width. The error bar 
indicates the standard deviation of the DE. Fast implementation (with 3×3 interpolator support) and full 
sampling of the image blocks were used for the registration. A median filter was applied to the sampled 
data before interpolating the displacement field. 
 

 

 193



7.5.3 Effect of settings on registration 

Figure 7.10 manifests a broad trend for the average displacement error (ADE) to 

decrease with increasing iterations for all implementations, as expected. One exception 

was the implementation incorporating the thin-plate spline interpolation, which showed 

gross misregistration for all five distortions after the second iteration, and ADE 

increased after the third iteration. Using the two-tailed paired t-test, ADE was found to 

be significantly smaller (P<0.05) in the fast implementation than in the thin-plate spline 

interpolation method. The fast method also showed the smallest final ADE. Since ADE 

is a global measure of misregistration error, averaged over multiple deformations, it 

may fail to detect all local misalignments. The average DE (Figure 7.10) was found to 

exceed 5 pixels after three iterations. 
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`Figure 7.10: Variation of average DE with iteration number for specified implementations. Error bars 
indicate the standard deviation of DE, expressed in pixels (of size 0.898 mm). 
 

This is probably due to unrealistically large synthetic distortions. Furthermore, the large 

error bars in Figure 7.10 reflect individual cases of significant misregistration. 

Examples are shown for the case of the bilinear distortion in Figure 7.11. Severe local 

misregistrations are observed in the absence of the median filter and where the block 

size is kept fixed. The results signify that the proposed algorithm (both the full 

implementation and the fast implementation) give superior registration. In terms of 

accuracy, the fast implementation is comparable or even slightly better than the full 

implementation. In addition, the fast strategy is more computationally efficient, 

requiring 0.63 minutes compared to about 3.62 minutes  (for the full implementation) to 
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complete the three iterations (Table 7.2).  The greatest gain occurred in the final 

iteration where the finest sampling was required.  The 6-fold reduction in the overall 

computational cost was achieved without trading off registration accuracy.  

 
     Reference image               Floating image                Thin plate spline              Unfiltered 

 
  Full implementation         Fast implementation      Fixed block size (322) 

Figure 7.11: Results of registration obtained with various implementations as indicated.  The reference 
image was distorted using the bilinear transformation. Each image is scaled independently.  
 

 1st iteration 2nd iteration 3rd iteration Total 
Full implementation (min) 0.28 0.85 2.49 3.62 
Fast implementation (min) 0.21 0.21 0.21 0.63 

Table 7.2: The computational time (in minutes) for the full and the fast implementations of the proposed 
algorithm, averaged over five synthetic studies.  See Table 7.1 for details of the implementations. 
 

7.5.4 Effect of the filter type on registration 

Performance of various filters and different implementation strategies was compared at 

each iteration. When a filter was applied in polar coordinates (for radial magnitude and 

phase angle), the median filter was superior to boxcar and Gaussian filters. Using 

boxcar filter and Gaussian filters in polar coordinates, misregistration deteriorated after 

the first iteration. The filter applied in Cartesian coordinates was more effective than 

applied using the polar coordinates, (Figure 7.12). The median filter operated separately 

on Cartesian components, in particular, showed a significantly better performance (two-

tailed paired t-test, P<0.05) than filters operated on polar coordinates that works 

separately on radial magnitude and phase angle.  In the Cartesian case, all filters showed 

a decrease of average DE with iteration. The median filter gave a smaller average DE 

than boxcar filter and Gaussian filter after three iterations. 
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Figure 7.12: DE averaged over five synthetic deformations for different filters. The error bar indicates 
standard deviation of the DE. Fast implementation but with full sampling of the image blocks were used 
for the registration. Various filters were applied to the sampled data prior to interpolation of the 
displacement field. In polar coordinates, the filter was applied separately to the vector magnitude and 
orientation while, in Cartesian coordinates, the filter operated separately on each Cartesian component. 
 

7.5.5 Comparison of similarity measures in intra-modality registration 

In order to compare the performance of SCR to other local similarity measures, DE 

values were obtained for various Subsampling schemes (Figure 7.13).  

 

 
Figure 7.13: Dependence of intra-modality DE on the choice of the subsampling scheme shown for the 
specified similarity measures: mutual information MI, normalized mutual information NMI, correlation 
ratio CR1, CR2 and symmetric correlation ratio SCR.  
 

The performance of the registration was statistically indifferent to the choice of the 

Subsampling scheme up to [2,2,1]. In [4,2,1] SCR shows a significantly better 
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registration (two-tailed paired t-test, P<0.05) than MI. This further confirmed the results 

in Subsection 7.5.1 (Figure 7.7) that SCR was more robust than MI for image block 

alignment with decreasing block size, irrespective of the subsampling factors and the 

number of intensity bins. The subsampling scheme [4,2,1] offers computational gain of 

about 19 per cent over [1,1,1] (Table 7.3). In order to compare SCR and MI in more 

detail, DE values were tabulated for [1,1,1], [4,2,1] and [8,4,1] sampling schemes over 

the various distortions (Table 7.4).  

 [1,1,1] [2,2,1] [4,2,1] [8,4,1] 
Average time (min) 2.41 2.04 1.96 1.85 
Relative time  100% 84% 81% 76% 

Table 7.3: Mean processing time for registration with SCR and the specified sampling schemes, as 
measured on 333 MHz Pentium PC.  
 
 DE before  SCR   MI  
Distortion registration [1,1,1] [4,2,1] [8,4,1] [1,1,1] [4,2,1] [8,4,1] 
bilinear 11.0 2.0 1.6 2.4 1.7 1.8 2.7 
rotational 6.1 0.8 0.8 3.0 1.7 3.0 4.7 
thin plate 5.6 0.8 1.3 2.1 0.6 1.6 5.0 
sinusoidal 3.0 1.0 0.7 2.2 0.7 1.6 3.0 
Gaussian 3.4 0.7 0.7 0.7 0.5 2.1 5.0 
Average±SD 5.8±3.2 1.0±0.5 1.0±0.41 2.1±0.8 1.0±0.6 2.0±0.6 4.1±1.2

Table 7.4: Comparison of DE values for intra-modality registration with SCR and MI under indicated 
sampling schemes.  DE values are given in pixels (of size 0.937 mm). 
 

 
Reference image               SCR [1,1,1]                  SCR [4,2,1]                         SCR [8,4,1] 

 
Floating image                  MI [1,1,1]                      MI [4,2,1]                          MI [8,4,1] 

Figure 7.14: Simulation of intra-modality registration. The reference image was deformed by Gaussian 
distortion. Shown are the effects of the sampling scheme for two similarity measures, SCR and MI. 
 

In addition, by way of an example, images registered to a reference image distorted by 

an analytical function (e.g. Gaussian) are shown in Figure 7.14. The examples illustrate 

the difference in performance between SCR and MI with the three Subsampling 
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schemes. With the sparsest [8,4,1] sampling, MI gives rise to a severe local 

misregistration whereas misregistration with SCR is less obvious. The discrepancy 

between MI and SCR persists with denser sampling [4,2,1] (see also Table 7.4). SCR 

clearly demonstrated superior performance to MI, in this particular case of the Gaussian 

distortion. The most aggressive Subsampling [8,4,1] led to a degradation of 

performance for all the similarity measures. However, the degradation was not uniform. 

MI and CR2 suffered most while CR1, NMI and SCR were least affected. The results 

illustrate that registration accuracy depends on the similarity measure when sparse 

sampling is implemented. Based on the average DE, registration deteriorated less with 

SCR when compared to the other methods under sparse sampling. 

 

7.5.6 Comparison of similarity measures in inter-modality registration 

Using the inter-modality data set, the performance of SCR was compared to that of 

other local similarity measures by measuring the pixel displacement error for various 

Subsampling schemes (Figure 7.15).  

 

 
Figure 7.15: Comparison of similarity measures in inter-modality simulation experiments. DE is shown 
for several subsampling schemes.  
 

The results reveal that registration performance depends on the choice of the similarity 

measure. CR1 had a larger DE than the other similarity measures under [1,1,1] and 

[2,2,1]. Degradation in registration was observed, as expected, in [4,2,1] and [8,4,1] 

sampling schemes but was not uniform for all the similarity measures.  SCR yielded a 

significantly better (two-tailed paired t-test, P<0.05) registration than MI and CR1 in 
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[4,2,1]. Under the most aggressive sampling of [8,4,1], MI, NMI and CR1 deteriorated 

more than SCR, and their differences between ADE were statistically significant at 5% 

level (two-tailed paired t-test). Examples of registration results are shown in Figure 7.16. 

Here, the registration process attempts to correct for the rotational distortion. Under 

[4,2,1] and [8,4,1] sampling, local misregistration is less obvious for SCR than for MI, 

indicating that SCR is more robust under sparse sampling.   A comparison of DE values 

between SCR and MI for each of the synthetic distortions is presented in Table 7.5. The 

registration accuracy is, on average, reduced with the sparser sampling scheme but the 

increase in DE is less marked with SCR (12%) than with MI (61%).  In fact, sparser 

sampling improves accuracy in 3 out of 5 cases with SCR, but in none of the cases with 

MI.  

 DE before SCR MI 
Distortion Registration [1,1,1] [4,2,1] [1,1,1] [4,2,1] 
bilinear 11.0 2.1 2.0 1.8 2.0 
rotational 6.1 3.0 2.4 3.3 4.2 
thin plate 5.6 0.7 1.6 0.9 2.4 
sinusoidal 3.0 2.5 3.7 2.1 4.0 
Gaussian 3.4 1.7 1.4 1.3 2.4 
Average±SD 5.8±3.2 2.0±0.9 2.2±0.9 1.9±0.9 3.0±1.0 

Table 7.5: Comparison of SCR and MI for inter-modality registration [1,1,1] and [4,2,1] sampling 
schemes. DE, in pixels (of size 0.898 mm) was computed between the registered T2-weighted MR image 
and the corresponding transformed T2-weighted MR image for a range of synthetic distortions. 

 

 
Reference image                SCR [1,1,1]                    SCR [4,2,1]                       SCR [8,4,1] 

 
Floating image                 MI [1,1,1]                      MI [4,2,1]                            MI [8,4,1] 

Figure 7.16: Simulation of inter-modality registration. The reference image was globally rotated. Shown 
are the effects of changing the sampling scheme. Two similarity measures, SCR and MI, are compared. 
Images are scaled independently.  
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7.6 Discussion  

The proposed algorithm (both the full implementation and the fast implementation) 

gave better registration than the thin-plate spline implementation when a fine sampling 

grid was used. The thin-plate spline interpolation gave an optimal registration at a large 

grid spacing of 32 pixels, and registration deteriorated with finer grids. A similar 

finding by Kostelec et al. [377] reported the optimal spacing of 16 pixels. When 

compared to global registration, the use of image blocks to define local matching is 

likely to increase noise in the similarity measure and possibly introduce local minima. It 

is therefore to be expected that the misregistration will increase.  One could take the 

view that whenever DE is not zero, there is a misregistration, giving misregistration rate 

of 100%.   As such, it will be sensible to define a success rate (robustness), which is 

based on a predetermined misregistration, to compare performance of registration over 

various parameters or settings. In this case, 1.8 mm misregistration (Subsection 7.3.3) 

was used as the threshold to compute robustness of registration. 
 
The proposed non-rigid registration uses a multi-level approach where image block size 

is progressively reduced to capture coarse-to-fine residual displacement vector field. 

The image block is downsampled successively with the same sampling interval. So 

while displacement field interval is the same in image pixels, it increases in mm, and the 

residual displacement vector fields are combined with downsampling the blocks except 

that no blurred version of image block was created for each level before registration.   In 

this case, image blocks are matched directly without blurring. The general strategy of 

the proposed registration, strictly speaking, is not a multi-resolution match because the 

image is not scaled, and it's probably not resolution of displacement field that changes 

as registration progresses between levels. Only block size varies, the effect of which is 

subtler and harder to describe. This can be described as follows: Suppose v0 gives a true 

displacement for each point in the image space. Replacing a point with a voxel-sized 

block substitutes an average intensity value in the voxel for the delta-sample. Because 

of its finite size, the voxel can be rotated and warped, not just translated.  Therefore, the 

measured displacement v~  is only an approximation of the true transformation at that 

point. Suppose now the block contains multiple voxels. Each voxel has its v so the result 

will be some compromise among competing displacements, which is not necessarily an 

average; it will depend on the similarity measure. The bigger the block the poorer the 

approximation to the true displacement v0 at its centre (or any other point in the block). 
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But, if the true transformation is a translation uniform over the block, the similarity 

measure will deliver a "strong" peak at registration, with good accuracy. However, if 

other transformations (e.g. rotation about block centre) dominate, approximation will be 

so poor that the similarity measure may not register a significant peak anywhere. So 

long as the underlying field is uniform translation, increasing the block size increases 

the "power" and accuracy of registration. If the assumption is not valid, reducing the 

block size will improve accuracy.  Pluim et al. [275] compared direct (without blurring) 

and multi-resolution matching for rigid body MR-CT and MR-PET registration using 

MI and NMI, and found that the results for the two approaches were similar. In this 

particular case, the assertion that multi-resolution will improve registration is unfounded. 

This is due to the fact that any change towards a more uniform joint intensity histogram 

will increase the entropy (Subsection 3.4.2). Such changes may results from smoothing, 

and subsequently image blurring reduces the statistical power of joint intensity 

histogram for registration. Thus further experiments are needed to investigate the non-

rigid registration using multi-level approaches with and without blurring for image 

block matching.  

 

In these experiments, the multi-level sampling technique with a displacement median 

filter followed by Gaussian interpolation produced the best results. It outperformed the 

implementation that lacked a displacement field filter and one that maintained a fixed 

block size, as well as one that used a thin-plate spline interpolator. ADE decreased as 

the registration proceeded from coarse to fine level. With the Gaussian interpolator, the 

fast implementation produced similar results to the full implementation. It accelerated 

the processing by a factor of 6 without trading off registration accuracy, as measured by 

the average DE. In the experiments, 5 analytic forms of deformations were assumed as 

outcomes of a random process with an identifiable mean and PDF. One alternative 

approach to construct random distortions is by a suitably defined set of random 

parameter values for a single deformation, with a mean that corresponds to the case of 

no distortion, but it’s harder to construct this for analytically independent deformations.  

It follows that the Gaussian δ width obtained in the Subsection 7.5.2 of a particular 

support may not necessarily be able to handle different analytical distortions.  The 

choice of δ may have more to do with the extent (e.g. average displacement due to 

deformation) than the type of distortions and warrants further investigation.  
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Without subsampling, all similarity measures have comparable registration accuracy for 

both the intra- and inter-modality registration. When sparse sampling was used in 

registration, SCR produced superior results to MI in both the intra- and inter-modality 

simulations. A similar finding in global rigid registration was reported by Roche et al. 

[181]; they found that CR performed better than MI.  The processing speed can be 

increased further with sparse sampling, particularly with [8,4,1] sampling as shown in 

Table 7.3. All similarity measures produced degradation in registration accuracy when 

sparse sampling was employed. However, SCR was consistently least affected and 

produced the lowest average DE. To understand better the discrepancy between MI and 

SCR, each similarity measure was computed as a function of translation for a 64×64 

block in the proton density image with respect to the corresponding block in the T2-

weighted MR image (Figure 7.17).  

 

 

Figure 7.17: A comparison of SCR and MI as functions of translation (in pixels) along one axis. In this 
example, two MR image blocks (proton density and T2-weighted) of size 64×64 were matched.  The 
position of zero corresponds to correct registration. Notation [1,1] denotes full sampling, [4,4] denotes 
subsampling by a factor of 4 in each dimension together with 64-bin quantization. 
 

The subsampling [4,4] was performed on the 64×64 image blocks without blurring. A 

surprising result was that, unlike SCR, MI manifested substantial “ripple” when sparse 

sampling was used. The ripple increases the likelihood that registration based on MI 
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will be trapped by a local maximum [219]. It helps to explain why SCR gave better 

performance than MI in Figure 7.13 when subsampling was used. It is worth noting that 

image block smoothing before subsampling does not necessarily improve performance. 

Any change towards a more uniform intensity distribution may perturb the joint 

intensity histogram, and hence affect the registration performance. A comparison of 3D 

non-rigid MR registration using multi-level subsampling of image block with and 

without smoothing is in Subsection 8.2.1. 

 

In the current implementation, the regularization of the displacement vector field was 

performed after block alignment rather than by imposing an explicit constraint during 

local optimization. The median filter was more effective than the averaging filters in 

removing outliers in the sampled displacement vector field.  The separate operation on 

the Cartesian components is a fast and efficient implementation of a median operator. In 

polar coordinates, due to the periodicity of orientation (phase angle), boxcar, Gaussian 

(not shown) and median filter (not shown) failed when operated separately on vector 

magnitude and orientation (Figure 7.18). On the other hand, the median filter, operating 

on Cartesian components, showed recovery of the displacement vector field better than 

the boxcar filter. 

 

Figure 7.18: The displacement vector field obtained before and after filtering.  The reference image was 
globally rotated.  Measured displacement (left), displacement vectors after boxcar filter applied in polar 
coordinates (middle) and displacement vectors after median filter applied in Cartesian coordinates (right) 
are shown. 
 

Cachier et al. [378] and Guimond et al. [379] also suggested the use of a Gaussian 

function to regularize the displacement field which, in their method, was derived from 

optical flow concepts. They employed a multi-resolution approach where coarse 

sampling of the displacement vector field was based on a pixel-to-pixel intensity 

difference. A fixed width Gaussian smoothing was applied to regularise the 
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displacement vector field obtained from image intensity gradient. In the proposed 

algorithm, a multi-level approach was also adopted. Unlike the method of Cachier and 

Guimond, the proposed coarse-to-fine implementation works directly on the 

displacement vector field which is derived from a block matching algorithm. In addition, 

the regularisation involves two processes: filtering and interpolation. A median filter is 

used to regularize the displacement vector field. It removes outliers in the vector field 

obtained from block matching. No explicit constraint is used in the local match. The 

Gaussian function, in this case, is a convolving kernel used to interpolate the 

displacement vector field from sparsely sampled vector data and the Gaussian width is 

adaptive to the sampling density. 

 

7.7  Conclusion 

A fully automatic non-rigid registration algorithm that uses a symmetric version of the 

correlation ratio as a matching criterion in a multi-level strategy has been developed and 

evaluated. The algorithm achieved improved registration for simulated intra- and inter-

modality intra-subject examples. In each case, the average error between the recovered 

and the applied displacement decreased progressively with iteration using finer grid 

spacing. The symmetric correlation ratio in combination with regularization constraints 

imposed by a median filter and a Gaussian interpolator in the spatial domain appears to 

provide a flexible and robust automatic algorithm for non-rigid registration. The use of 

sparse sampling and the nearest neighbour Gaussian interpolation accelerate non-rigid 

registration towards clinically acceptable times.  
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Chapter 8 
 

Validation of 3D non-rigid registration in multi-modality image 
 

As described in the preceding chapter, studies were performed to optimize various 

strategies for 2D implementation. The results from these experiments show that the 

multi-level technique using a median filter followed by a Gaussian interpolation 

produces the best results. As an extension of the algorithm described in Chapter 7 into 

3D, the aim of this chapter is to further evaluate the proposed algorithm for use in intra- 

and inter-modality non-rigid registration, for example, MR-MR, SPET-MR and SPET-

CT in 3D. The image is divided into a set of overlapping 3D blocks positioned on a 3D 

grid. After the optimum transformation was found for each 3D image block, a 3D 

translational transformation was determined.  The resulting displacement vector field, 

following interpolation using a Gaussian interpolator, fully defines the optimum 

transformation and provides non-rigid registration between a reference and a floating 

image. Accuracy of the technique was assessed using simulated and clinical data. In the 

rest of this chapter, the proposed algorithm is denoted as multi-level SCR (MSCR)  

 

8.1  Method 

The non-rigid registration problem is to determine a transformation Tu that deforms a 

floating image A to match the reference image B. The transformation Tu is 

parameterized by a displacement vector field u such that . A detailed 

description of the algorithm, its formulation and implementation can be found in 

Chapter 7 (Section 7.2). Briefly, it can be described as follows:  

ATA' u=

 divide the reference and the floating images into overlapping image blocks, 

 translate each floating image block with respect to the corresponding reference 

image block;  

 find the translation that maximizes a similarity measure (SCR),  

 from the displacement field form the optimum translation vectors,  

 remove outliers  

 interpolate the sparse sampled displacement vector field u(x) to obtain the final 

transformation.  
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8.1.1 Image data  

To evaluate the performance of the MSCR in 3D, four image data sets for intra- and 

inter-modality registration were used for the experiments. Three image data sets were 

used for the brain while one image data set was used for the thoracic-abdominal region. 

For the brain region, the data sets involved were: three intra-subject intra-modality T1 

MR image pairs for registration experiments plus ten inter-subject MR images for 

realistic distortions extraction, ten intra-subject inter-modality PD and T2 MR image 

pairs and ten intra-subject inter-modality MR and SPET image pairs. For the non-brain 

region, an intra-subject inter-modality CT and SPET image pair was used.  

 

The brain  

The first (intra-modality) image set (Figure 8.1) consisted of three subjects. Two T1-

weighted MR images were acquired consecutively, with a few minutes pause for each 

of the three subjects. The original images comprised 256 slices of 0.976mm thickness 

measured center-to-center. Each slice consisted of 256×256 pixels of size 0.976×0.976 

mm2. No specific procedure was employed to ensure alignment between consecutive 

acquisitions. Each slice was reduced to 128×128 pixels (1.882 mm2) and each data set 

was resampled to 128 slices with a slice thickness of 1.88 mm. From each data set, 99 

slices were extracted for the intra-modality image registration experiments. 

 

 
Figure 8.1: One of the three intra-modality T1-weighted MR raw image pairs (128×128×99) is depicted 
in three orthogonal planes, from left: transverse, sagittal and coronal. The top and bottom images are of 
the same subject. Note that the two images are clearly misaligned.  
 

In general, inter-subject registration accuracy in clinical data cannot be determined 

because the ground truth is not known. To circumvent this problem, inter-subject 
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deformation was used to simulate clinically realistic distortion between subjects. With 

this approach, it is assumed that inter-subject deformation encompasses intra-subject 

deformation in the sense that intra-subject deformations are expected to be smaller.  

Thus non-rigid registration between subjects will be a more difficult problem than the 

intra-subjects cases and a successful inter-subject algorithm is likely to succeed also in 

intra-subject registration.  

 
Figure 8.2: Illustration of the method used for validation. (a) Realistic displacement fields uo are first 
determined by registering different subjects (i and j). (b) Of the two independently acquired images 1 and 
2 for a subject k, one serves as the floating image whereas the other is deformed using the displacement 
field uo to provide the reference image. Determining the displacement field u that best matches the 
floating image to the reference image tests the registration algorithm. Comparison is then made between 
the actual and derived displacement fields. 
 

To simulate inter-subject distortions, realistic deformations were determined by 

matching T1-weighted MR images between subjects. A version of the non-rigid 

algorithm (the only difference was the similarity measure) based on NMI, rather than 

SCR, was employed to reduce the possibility of bias. There were ten subjects (one 

image per subject) giving 45 possible pairings. Of these, ten pairs were selected 

randomly to provide a set of ten realistic displacement fields uo. Then, image pairs were 

chosen from one of the image data sets. All image pairs were first registered using 

global rigid registration. One of the two images was then deformed using each of the ten 

displacement fields uo obtained previously.  The deformed image provided the reference 

image B, the second image acting as the floating image A (Figure 8.2). The MSCR non-

rigid registration algorithm was then applied to determine the displacement field u that 

best aligns the floating image to the reference image. Finally, the recovered 

displacement field u was directly compared with the applied deformation uo to compute 

registration accuracy as outlined in Subsection 8.1.3. Two further experiments were also 

conducted to study the effect of fixed block size and effect of image blurring to a lower 
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scale on registration accuracy, with default implementation. In the first case, the results 

of registration accuracy using fixed block size [323,323,323] were compared with the 

adaptive image block size implementation. In the second case, the reference and 

floating MR images were smoothed prior to registration. After smoothing, each image 

was subsampled to generate coarse images in resolution for registration, and the results 

were compared with the registration without blurring. Since value 5 was closest to the 

subsampling factor 4, a 5×5×5 boxcar filter was used for blurring the images to a lower 

scale.  

 

The second (inter-modality inter-subject) data set comprised pairs of T2-weighted and 

proton density (PD) MR images, one pair for each of the ten subjects. These image pairs 

were used to evaluate the accuracy of registration of high resolution inter-modality 

images using the MSCR. The T2-weighted MR image was acquired immediately after 

acquisition of the PD MR and was, therefore, in near-perfect registration with the PD 

MR. This alignment was verified to some extent by the rigid registration, which found 

the optimum transformation parameters in the vicinity of zero translations and rotations 

for each pair of images.  Each image consisted of 19 slices of 128×128 matrix with a 

pixel size of 1.80×1.80 mm2 and a slice thickness of 7 mm. All MR images were resized 

to give a cubic voxel of side 1.80 mm and data were padded with zeros to give a total of 

99 slices (Figure 8.3).  

 

 
Figure 8.3: One of the ten inter-modality images pairs, comprising a proton density image (top) and T2-
weighted image (bottom) of the same subject, is shown in three orthogonal planes. The images consisted 
of 19 slices, each with 128×128 pixels (1.80×1.80×7.0 mm3 voxels) when acquired but downsampled to 
128×128×99 matrix with cubic voxel size of 1.80 mm. Note that the images extend nearly, but not quite, 
to the top of the skull.  
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The third image data set was used for inter-modality registration. It consisted of pairs of 

MR and SPET images from Subsection 4.6.1 (Figure 8.4), one pair for each of the ten 

subjects. By contrast to the second data set of high spatial resolution MR images, these 

image pairs assess the performance of the MSCR for images of very different spatial 

resolution. The matrix sizes were 128×128 pixels (1.88×1.88 mm2) of 124 slices (1.5 

mm) in MR, and 64×64×48 (3.59×3.59×3.59 mm3) in SPET images. The MR and SPET 

images were resampled to give cubic voxels (1.883 mm3) and of matrix dimension 

128×128×99. Global rigid registration was performed on each pair of SPET and MR 

images before the non-rigid registration experiments. 

 

 
Figure 8.4: An image pair from the third data set. An MR image (top) and a corresponding SPET image  
(bottom), resampled to a common matrix comprising 128×128×99 cubic voxels of size 1.875 mm3, are 
shown (left to right) in transverse, sagittal and coronal planes. The images are shown following a global 
rigid pre-registration. 
 

The torso 

To investigate the feasibility of the MSCR to register SPET and CT in the non-brain 

region, Zubal CT and simulated SPET were used. The CT image comprised 

128×128×112 cubic voxels of size 4mm. A SPET image was simulated based on the 

segmented Zubal CT image (Chapter 6, Section 6.2).  The source distribution assigned 

to the Zubal phantom mimicked the 67Ga-citrate distribution. It was forward projected in 

a 64×64 grid of 8×8 mm2 pixels with 64 views over 360 degrees. The resulting 

projections incorporated non-uniform attenuation, depth dependent resolution and 

Poisson noise. In order to avoid streak artifacts in FBP and its poorer noise 

characteristics (Chapter 5, Subsection 5.4.7), the 3D projection data were reconstructed 

with OSEM (one iteration of four subsets 1OS4) to produce a 64×64 array with 8 mm 
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slice thickness. The entire SPET volume was distorted non-linearly  (Figure 8.5). A 

three dimensional global thin-plate spline [55,198,379] with 46 control points was used 

to warp the thoracic-abdominal region. Of these, 29 control points were placed around 

the thoracic region and body boundaries to maintain spatial continuity and topology of 

body tissues. The remaining 17 control points were placed at the outer surface of the 

liver. Displacements selected at random from a uniform distribution ranging from zero 

to ±5 voxels were applied independently along the x-, y- and z-axes. Five independent 

data sets were created. To assist in the selection of control points, a split window 

display showed intersecting axial, coronal and sagittal slices.  A mouse-controlled 

cursor in the form of crosshairs indicated the position of the intersection point. The 

coordinates of every voxel in the entire CT volume were transformed with the aid of 

trilinear interpolation. The transformed CT image was taken as the reference image. 

Before registration, the SPET (floating image) was resized from 64×64×56 array to the 

128×128×112 format of the CT volume to facilitate the non-rigid registration.  

 

 
Figure 8.5: Selected transverse slices of the Zubal CT image before (top) and after (bottom) 3D thin-plate 
warping.  Note the different appearance of image after the non-linearly and spatially varied distortion. 
 

8.1.2 Implementation 

The algorithm of chapter 7 (section 7.3) was employed, incorporating a multi-level 

approach, to determine the displacement vector field. The non-rigid registration 

procedure started with local block matching using individual image blocks. The 

registration was performed using translation in 3D and the quality of the fit was 

determined by a similarity measure. Interpolation of the displacement vectors between 

grid nodes was implemented as a convolution (see Equation 7.7) of the sampled 

 210



displacement vector field with a Gaussian kernel. The displacement vector field u(κ)(xi) 

at position vector xi at level κ was obtained by interpolation,  
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⎩
⎨
⎧ >∗φ+

=
κ−κ

κ

otherwise 0
0κ )()κ()1(

)(

,
,xv~xxuxu iii

i , 
 
 

where the Gaussian kernel at iteration κ is denoted by ( )i
κ x)(φ , and ( )jxv~  represents a 

residual displacement vector sampled at a grid node voxel j. It is important to state that 

every image block was registered using its own voxel-based information content. The 

sampled displacement vectors were median filtered over a 3×3×3 neighbourhood in a 

postprocessing step. Median filtering suppressed outliers and smoothed the 

displacement field. The displacement was updated by adding the current residual 

displacement field to the previous estimate u(κ-1)(xi). The only restriction imposed on the 

magnitude of the displacement was that no displacement greater or smaller than the 

median of the neighbourhood was allowed.  That is, all displacements were replaced by 

local medians.  

 

At each iteration, the optimizer (the standard simplex algorithm [127]) minimised a 

negated joint-intensity based similarity measure (SCR, MI or NMI). To determine the 

best spatial correspondence between a pair of image blocks, iterations of the 

optimization algorithm are repeated until either a maximum number of iterations were 

reached or the similarity measure changes by less than a chosen criterion. The 

registration is progressively refined using the strategy described in Subsection 7.3.1. To 

speed up the registration process, a downsampling scheme [4,2,1] was employed. 

Experiments in [258] showed that this downsampling scheme worked best with 

intensity rebinning [64,48,32]. For example, the 643 image block was rebinned from 

256 intensity bins to 64 bins, and sampled every fourth voxel along the x-, y- and z-axes, 

thus generating 163 samples for the computation of the similarity measure. The 

computed displacement vector field was used to map the floating image onto the 

reference frame with the aid of the trilinear interpolation. Unless stated otherwise, the 

use of the simplex optimisation, median filter, downsampling schemes [4,2,1], intensity 

rebinning [64,48,32] and the trilinear intensity interpolation is referred to as the default 

implementation in the rest of this chapter.  
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8.1.3 Evaluation of 3D non-rigid registration 

To assess the registration accuracy of the MSCR in registering intra- and inter-modality 

images, voxel error was computed using iii uu ~−=ε for each voxel (see Subsection 

7.3.4).  It measures the discrepancy between the recovered displacement iu~ with respect 

to the ground truth (i.e. applied distortion ) by the registration process at each voxel.  

Summed over all voxels in the image, ε gives the RMS displacement error (DE) by 

iu

∑
−

=

=
1

0

21DE
N

i
iN

ε , where N is the image size. Average DE over all images was also 

computed for each intra- and inter-modality registration using the default 

implementation (Subsection 8.1.2). Three downsampling schemes were used: [1,1,1], 

[4,2,1], [8,4,1] and [16,8,2]. In the PD-T2 registration experiment, volume padded above 

and below image volume data (see Figure 8.3) was excluded from the DE computation 

because of the lack of tissue content and N was correspondingly reduced. For SPET-CT 

registration in the thoracic-abdominal region, N was taken over all non-background 

voxels in the CT volume. Since in the 2D study, SCR showed a consistent performance 

with slightly better registration than CR1 and CR2 (Subsection 7.5.4 and 7.5.5), all 

results reported in this chapter were compiled for SCR, MI and NMI.  The difference 

between two registrations was assessed statistically by a paired comparison of DE over 

all image pairs using the two-tailed paired t test. Histograms of voxel error ε  before 

registration and after the first, second and third iteration for each intra- and inter-

modality registration was also computed over all corresponding studies. Thus, for each 

registration, four histograms of ε are combined, showing the distribution of voxel error 

with respect to the ground truth using MI, NMI and SCR.  

 

8.2  Results  

 
8.2.1  Intra-modality registration 

The results presented here were obtained from ten randomly selected volume pairs. A 

typical frequency distribution of the voxel error using SCR, NMI and MI for the T1-

weighted MR intra-modality registration is illustrated in Figure 8.6. The result was 

pooled over all the ten studies to produce histograms of voxel error before registration 

and after the first, second and third iteration. The histogram shows voxel error 

distribution for the misregistration with respect to the applied distortion (i.e. ground 
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truth) using SCR and NMI, with [4,2,1] sampling scheme and the default 

implementation.  To further illustrate the difference of performance between SCR and 

MI, histograms of voxel error using [16,8,2] sampling scheme were also given. 

 

 
Figure 8.6: Histogram of voxel errors over all image voxels pooled over ten studies, before registration 
and after one, two and three iterations. Default implementation was used for the registration. 
Downsampling scheme [4,2,1] with SCR (top left) and NMI (top right), and [16,8,2] with SCR (bottom 
left) and MI (bottom right) are shown.  
 

The histograms show a gradual improvement of registration with iteration number: the 

voxel error diminishes and more image voxels are registered within an accuracy ±1 

voxel. The proportion of registrations with accuracy ≤ 2 voxels increases from 59% 

after the first, 77% after the second, and 92% after the third iteration. Similar behaviour 

was observed in the voxel error histogram for MI and NMI. Since deformations were 

obtained with NMI, its voxel error histogram provides a consistency test and, in this 

sense, acts as a reference (see Figure 8.6 top right). However, a difference in 

performance was observed between SCR and MI when sparse sampling [16,8,2] was 

used. For MI, the proportion of voxels with 0-2 voxel accuracy was steady until the 

final iteration (50.3%, 49.2%, 52.3% and 69.7%) but SCR showed consistent increase 

with iterations: 50.3%, 56.1%, 71.6% and 90.2%. With the sparse sampling, MI and 

SCR produced a 92% of registration with accuracy ≤ 2 voxels over all non-background 

voxels with [4,2,1] but SCR started to incur progressively greater success rate than MI 
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and NMI in [8,4,1] and [16,8,2]. The proportion (i.e. proportion of registrations with 

accuracy ≤ 2 voxels) for SCR was independent of the sampling scheme. For MI, the 

proportion dropped by about 20% in the sparsest sampling scheme. For NMI, the 

proportion also dropped from 92% with [4,2,1] and [8,4,1] to 80% with [16,8,2]. The 

results suggest that SCR is more robust than MI and NMI for non-rigid registration 

when sparse sampling is employed. The computational cost advantage of sparse 

sampling is substantial. In completing three consecutive levels of block matching, the 

most aggressive downsampling [16,8,2] demonstrated a fivefold increase in speed over 

[1,1,1], whereas [4,2,1] and [8,4,1] showed threefold increase (Table 8.1). Examples of 

images before and after registration are shown in the checkerboard pattern (Figure 8.7). 

Following registration, the two images appeared to be significantly well aligned. There 

is a reduction of visible mismatch following registration. The good alignment of the 

brain surface and other features demonstrates qualitatively the accuracy of the 

registration method. It’s interesting to note that the reference image appears 

anatomically impossible.  It indicates that although inter-subject transformations are 

“realistic”, application of these transformations to a real image does not necessarily 

produce “realistic” images. 

 [1,1,1] [4,2,1] [8,4,1] [16,8,2] 
Average time (min) 29.1 10.8 10.1 5.86 
Relative time  100% 37% 34% 20% 

Table 8.1: Average processing time for 3D registration with SCR for different sampling schemes, as 
measured on 1.7 GHz Pentium PC. Note that a sampling factor of two was used at the third level in the 
[16,8,2] sampling scheme but not in the other three sampling schemes, which may partly account for the 
80% reduction in time. 
 

To further compare the performance of SCR to MI and NMI for T1-weighted MR intra-

modality registration, displacement error (mm) over all image voxels of ten studies for 

various down-sampling schemes are shown (Figure 8.8). All three measures gave a 

similar error distribution and demonstrated comparable accuracy in the mean DE at 

[1,1,1] and [4,2,1]. For example, with [1,1,1] sampling scheme, the mean (±SD mm) DE 

for MI, NMI and SCR are 1.6±0.4, 1.6±0.4 and 1.7±0.3 respectively. Similar mean 

(±SD mm) DE was found for MI, NMI and SCR using [4,2,1] sampling scheme. The 

performances of the SCR and MI became statistically differentiable when the sparsest 

sampling scheme [16,8,2] was used.  In the 2D registration study performed in Chapter 

7 (Figure 7.13), differentiation emerged after [4,2,1], possibly reflecting fewer samples 

available in 2D to compute the joint intensity histogram. In the 3D scheme [8,4,1], the 
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mean (±SD mm) DE were gradually reduced from 1.8±0.4, 1.6±0.3 and 1.7±0.3 

corresponding to MI, NMI and SCR respectively. In the most aggressive down-

sampling scheme of [16,8,2], degradation is observed although it is not uniform across 

the similarity measures. MI suffered most (P<0.05) and NMI and SCR were least 

affected. In this case, the mean (±SD mm) DE for MI, NMI and SCR were 3.2±0.6, 

2.4±0.6 and 1.8±0.3, respectively. 

Figure 8.7: The results of intra-modality 3D registration shown using the checkerboard display. The 
columns, from left to right, correspond to the transverse, coronal and sagittal sections. Shown are the 
reference image (top row), the reference image interlaced with the floating image prior to (middle row) 
and after the registration (bottom row). 
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Figure 8.8: Comparison of MI, NMI and SCR in 3D intra-modality simulation experiments. Scatter plots 
of DE is shown for several downsampling schemes. Note that the scale is the same for all plots. 
 

 
Figure 8.9: Mean displacement error (mm) for intra-modality T1 MR registration before registration and 
after various iterations, using default implementation and SCR. DE were pooled over  voxel error over all 
image voxels of 10 independent image pairs. Error bar refers to the standard deviation over ten studies. 
‘Fixed size’ denotes registration using [323,323,323], ‘adaptive + boxcar’ denotes registration using 
[643,323,163] with blurring and ‘adaptive’ refers to default implementation.  
 

The mean displacement error against iterations for default implementation (adaptive 

block size) with and without boxcar filtering, and fixed block size [323,323,323] is given 

in Figure 8.9. The results show that registration accuracy was improved irrespectively to 

the three implementations but the improvement was not uniform across all 

implementations. The adaptive block sizes improved registration accuracy progressively 

with iterations. For fixed block size, the improvement flattened out at the second and 

third iteration although a relatively large improvement comparing to the adaptive block 

sizes was produced after the first iteration. The results shows that adaptive block size 
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was more effective than fixed block size for registration. This was confirmed by 

statistical tests (two-tailed paired t-test, p<0.05) that there was a significant difference 

of mean DE between fixed size and adaptive sizes. However, there was no statistical 

difference between mean DE with and without boxcar filtering for default 

implementation. The mean (±SD mm) DE for fixed size iterations, adaptive size 

iterations with and without blurring to a lower scale were 2.1±0.2, 1.7±0.3 and 1.7±0.3 

respectively.   

 

8.2.2 Inter-modality registration  

The purpose of this study was to assess the MSCR for 3D inter-modality non-rigid 

image registration.  Brain images of comparable high resolution (proton density and T2-

weighted MR) were registered as well as images of different resolution for MR-SPET 

registration.  Torso images obtained with CT and simulated SPET were also registered.  

 

 

 
Figure 8.10: The results of inter-modality for proton density and T2-weighted MR 3D non-rigid 
registration using SCR and default implementation. The columns, from top to bottom, correspond to the 
transverse, coronal and sagittal sections. The checkerboard display fuses the reference image and the 
floating image before (left) and after (right) registration. 
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Proton-density and T2-weighted MR images of the brain 

Ten independent image pairs of proton-density and T2-weighted MR images were used. 

A typical image pair is shown before and after non-rigid registration in Figure 8.10. The 

fused images are illustrated using checkerboard display. This enables visual 

determination of the accuracy of boundary alignment in various regions. Even a subtle 

shift of an edge can be seen clearly. Before registration, mismatches between the two 

images can be seen, for example, in the forehead region and eyeballs. After registration, 

matching of anatomical structures is apparent between the images. In the registered 

floating image, the alignment of the skull (both inner and outer surface) is excellent and 

there is a good alignment of the brain surface throughout the image volume. To evaluate 

quantitatively the performance of the MSCR in inter-modality registration, a histogram 

of voxel errors was computed before registration, and after each iteration. Figure 

8.11(top left) shows the histogram of voxel error pooled from the results of all ten PD-

T2 MR volume pair registrations using SCR and the default setting before and after each 

iteration.  

 

 
Figure 8.11: Histograms of voxel error pooled over all studies, before registration and after each iteration 
of the inter-modality registration algorithm. Default implementation, with sampling scheme [4,2,1] and 
SCR were used.  Histograms are constructed from results of registration of (top left) proton density (PD) 
and T2-weighted MR images of the brain, (top right) T1-weighted MR and SPET images of the brain, and 
(bottom left) CT and simulated SPET images of the torso. The error is expressed in units of MR or CT 
voxel size, as appropriate. The histograms are aggregated from ten image pairs in brain studies and 5 
image pairs in the torso.  Voxels outside the body were excluded.  
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The proportion of registrations with accuracy ≤ 2 voxels improved progressively from 

63% (before registration) to 68%, 81% and 92% after each successive iteration of the 

default implementation with the SCR similarity measure. The other measures (MI and 

NMI) showed similar results. To further illustrate the results, summary statistics was 

also computed for all the registrations. For example, the mean (±SD mm) displacement 

error for MI, NMI and SCR were 2.1±0.3, 1.9±0.3 and 2.0±0.3 respectively, with the 

default sampling scheme. No statistical difference (p<0.05) was found among the three 

measures. Uniformity of performance is also demonstrated by the proportion of 

registrations with accuracy ≤ 2 voxels; (92±4)% for each measure and confirmed by 

visual inspection. The performance of MI, NMI and SCR was virtually identical, and a 

paired two-tailed t test indicated no significant difference at p<0.05 level. Again, the 

statistical measures reflect the change in visual quality of registration demonstrated in 

the checkerboard display (Figure 8.10). As expected, registration reduces the voxel 

error.  

 

MR and SPET images of the brain 

In the MR-SPET non-rigid registration experiment, a total of 10 independent image 

pairs were employed.  All image pairs were first globally registered with NMI.  

Distortions were applied to each reference (SPET) image.  The distorted reference 

image and the floating (MR) image were registered with the default settings (Subsection 

8.1.2). Based on the recovered displacement field, voxel error and displacement error 

were computed with respect to the ground true (i.e. the applied displacement field)  as 

described in Subsection 8.1.3.  The results show that there was little, if any, 

improvement of mean DE with the default implementation regardless of the three 

similarity measures: MI, NMI and SCR, and was confirmed statistically (paired two-

tailed t-test, p = 0.05). The mean (±SD mm) DE before registration was 5.0±1.1 and 

after registration was 5.0±1.6, 4.7±1.4 and 4.5±1.1 for MI, NMI and SCR respectively. 

The results suggest that non-rigid registration of the MR and SPET images was not 

effective. The MSCR appeared to produce little effect on improving the mean DE and 

registration accuracy (≤ 2 MR voxels) regardless of the choice of the similarity measure.  
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Figure 8.12: The results of SPET-MR 3D registration using default implementation. Shown from left to 
right, are the transverse, coronal and sagittal sections. The SPET and the MR images are first globally 
registered using a rigid-body transformation and the transformation applied to the SPET image. Reference 
image (SPET), rendered in ‘red temperature’ scale, overlays a grey scale image representing (top) the 
floating MR image before registration, (middle) the non-rigidly registered floating image, and (bottom) 
the correctly transformed floating image. Note that it is difficult to distinguish between these two cases. 
 

A typical histogram of displacement errors (Figure 8.11 top right) shows that 

registration improved marginally after three iterations and in all three cases (MI, NMI 

and SCR) only a 10% improvement was found. The plot also reveals that large voxel 

misregistrations (error ≥ 4 MR voxels) persisted unlike the PD-T2 MR registration. To 

account for the poorer resolution in SPET, it is more appropriate to express the 

histogram in units of the SPET voxel size of 3.59 mm. Again, the improvement of 

image alignment was weak, only 8%, compared to 42% in intra-modality MR 

registration, and 30% in inter-modality PD-T2 MR registration. The proportion of 
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voxels with registration error ≤ 1 voxel of SPET was 50.3% (before registration), 54% 

(1 iteration), 56.9% (2 iterations) and 58.5% (3 iterations). Similar results were found 

for MI and NMI, and no significant (p < 0.05) difference was found among the three 

measures. A typical SPET-MR brain images before (top) and after (middle) registration 

is shown in Figure 8.12. In order to evaluate the registration visually, a colour overlay 

display is used. The reference image (SPET) is rendered in the “red temperature scale” 

and it overlays the registered floating image (MR) in gray scale. To visualize 

differences of the recovered distortion and the applied distortion, an overlay of the 

reference image over the correctly transformed floating image is also shown (bottom, 

Figure 8.12). Because of the low resolution in SPET and the absence of many 

anatomical structures in the SPET image, it is difficult to distinguish between these two 

cases.  

 

CT and SPET images in non-brain region 

In this experiment, the Zubal CT image was distorted using a non-linear transformation 

(thin-plate spline) and taken as the reference image while simulated 67Ga SPET was the 

floating image. The thin-plate spline produces a spatially varying non-affine distortion 

in the entire volume. The MSCR was applied to the image pair to recover the applied 

distortion.  An overlay display of volumetric image pairs for SPET and CT in the 

transverse direction is shown in Figure 8.13. The registration algorithm did not 

substantially improve visual alignment. The overlay images show misalignment of liver 

despite a good registration visually in other parts of the body. For example, the surface 

of the liver is aligned erroneously with the boundary of the body (right image of Figure 

8.13) but the spine appears well aligned.  

 
Figure 8.13: The floating image (SPET) in “STD Gamma-II” colour scale overlays the reference image 
(CT) in gray after non-rigid registration. The mismatch of the liver image between SPET and CT in three 
axial slices from upper (left), middle and lower (right) abdominal region is not improved after registration. 
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Since the global spline deformed the entire image domain, it would also deform the 

parts of the image occupied by background voxels. Background distortion is 

meaningless except near the body boundary where the displacement of background 

voxels represents expansion of the body boundary.  Background voxels are also likely 

to produce spurious registration errors.  For these reasons, background voxels that are 

not adjacent (in the sense of belonging to the same image block) to the body boundary 

are excluded from the computation of the displacement error. A quantitative assessment 

of registration performance is given in Figure 8.11 (bottom left), which plots the 

histogram of the voxel error computed over five independent distortions applied to a CT 

and a simulated 67Ga SPET image pair. The histogram shows that the proportion of 

voxels with registration accuracy ≤ 1 voxel of SPET is progressively deteriorated from 

86.5% (before registration) to 84.7%, 72.8% and 68.1% corresponding to each 

successive iteration. The result indicates clearly that registration did nothing to improve 

misalignment between the CT and SPET image pair. The results also reveal that the 

relative prevalence of displacement error ≥ 2 voxels increased as the registration 

progressed from second iteration to the third iteration. The incidence of large errors (≥ 4 

CT voxels), which is more likely to be recovered using a smaller image block, rises 

from 5% after the first iteration, 7.9% after the second iteration and finally 14% after 

the third iteration. Poor performance was also found with MI and NMI similarity 

measures. No significant difference (p<0.05) was found among the similarity measures. 

 

8.3  Discussion 

In this chapter, an automatic method for non-rigid registration has been described and a 

3D implementation has been demonstrated. Validation is an important step to 

demonstrate the quality of the MSCR registration technique in terms of accuracy, 

precision, robustness and reliability. A more detailed discussion of the issues of 

validation for image registration is found in Section 2.5. The main issue in measuring 

accuracy is that ground truth is not available for clinical data.  Therefore, simulations of 

clinical images and deformations were used. Simulated data permit controlled 

evaluation over a wide range of conditions (e.g., image modality, distortion, or noise 

levels). The performance of the proposed registration was evaluated with 3D images 

simulating inter-subject distortions for intra-modality (T1-weighted MR) and inter-

modality studies (PD-T2 MR images and MR-SPET images) in the brain region. Based 
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on the same approach, performance in the non-brain region was also assessed by 

comparing the known and the measured displacement following 3D inter-modality 

(SPET-CT) image registration. Comparison of registration was also performed to test 

the effectiveness of SCR, MI and NMI. The assessment of performance of the non-rigid 

registration is, in general, an open issue. A number of approaches were used to assess 

the algorithm, providing insight into the performance and the properties of the different 

similarity measures. First, for visual assessment, a checkerboard or a colour overlay 

display was used. It is simple, fast, and intuitive. For registration involving high-

resolution image pairs, subtle differences along edges and small shifts at organ surfaces 

were easily detected, as shown in Figure 8.7 and Figure 8.10. Even for images of 

different resolution, the fused display offers a quick evaluation of any visible mismatch 

(Figure 8.12 and Figure 8.13). Second, registration accuracy was quantitatively assessed 

by computing the displacement error DE, relative to known distortions, over all voxels 

in a 3D image and the averaged values of DE over multiple images. For a better 

understanding of the effectiveness of the registration, a histogram of the voxel error was 

obtained to determine how the distribution of accuracy changes as registration 

progresses with successive iterations. Finally, the statistical significance of the 

difference between the means of DE distribution over similarity measures was 

determined using standard statistical tests.  

 

In the present study, it is also noticed that 92% of voxels have a voxel error (≤ 2 voxels 

of MR) over all image voxels of the ten multiple studies for the intra-modality MR 

registration. This may not be good enough for clinical practice as a reliability level of at 

least 99% may be required. This may be due to the fact that the applied distortion 

deformed the entire image domain, including background and non-background voxels. 

Background distortion is meaningless and likely to produce erroneous registration errors. 

A statistical test was applied to determine whether there was a significant difference 

between mean DE with and without background. A significant difference of about 5% 

DE was found (paired two-tailed t-test, p<0.05) when DE was confined to within the 

body boundary and background voxels adjacent to the body boundary. In the case of 

non-rigid registration, the displacement error comprises uncorrected globally linear and 

non-linear distortions. The local algorithm should readily pick up any globally linear 

component of misalignment. However, it is common practice to first perform affine 

registration.  The motivation is to bring the images into sufficiently close alignment to 
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allow local misalignments to be captured without too many spurious results. Scaling 

distortions between images can be accounted for by incorporating image voxel sizes in  

transformations, and shear deformation is unlikely to occur in the medical image, 

therefore rigid body registration is often used to remove global misregistration. As a 

first order improvement in the image registration, the global linear misregistration is 

accounted by a global rigid registration.  The local misalignment is a second order 

misregistration that is removed by local translation.  In aggregate, this amounts to 

globally nonlinear transformation.  In this chapter, non-rigid registration is the main 

focus. Validation of the global rigid registration for images of the brain and torso can be 

found in Chapter 4 and Chapter 6, respectively.  

 

Based on the experiments with MR images, results indicate that the MSCR non-rigid 

matching is capable of reducing local misregistration, irrespective of the choice of the 

similarity measure (SCR, NMI or MI). The improvement of registration with adaptive 

block sizes is probably due to the fact that registering larger blocks can reduce larger 

scale distortions and thus reduce errors which vary slowly across the image [373]. 

Smaller blocks have the capability to capture small-scale misalignment, perhaps those 

associated with smaller image structures, allowing a smaller displacement error (i.e. 

higher spatial frequency error) and thus a more accurate alignment. An application of 

particular interest for the MSCR approach is inter-modality registration. The MSCR 

was applied to MR-SPET, CT-MR and MR-MR (T2-PD) non-rigid registration. In the 

present implementation, the images, including the adaptive block size, were used on the 

same scale. If the same scale was maintained throughout the three levels of block sizes, 

the larger block may help prevent spurious large displacements because it has more data 

to guide the algorithm.  The downside is that a large block may do a poor job of 

capturing distortions that are not uniform over the block. To reduce this problem, one 

popular approach is to used multi-scale images (e.g. Gaussian pyramid), each level 

being twice as coarse in resolution as the previous, which has been shown effective in 

reducing computation time [225,232]. However, no comparison was made to study the 

difference of registration accuracy with and without subsampling after Gaussian 

filtering in [225,232]. In the present study little, if any, difference was found between 

default implementation with and without filtered subsampling. This may due to the fact 

that the boxcar filter is not as effective as a Gaussian filter to avoid local maxima or the 

effect of image blurring to a lower scale, together with MSCR, has little effect on 
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registration accuracy. Further experiments are needed to study the effectiveness of 

filtered subsampling strategy and any possible effect of scale values of a Gaussian 

kernel on MSCR. The scale parameters may tie to the surrounding voxels so that they 

vary spatially [100]. 

 

 
Figure 8.14: MI (top) and SCR (bottom) as a function of translation along the x-axis, for the registration 
of  the CT-CT image blocks of size: 16×16, 32×32 and 64×64.  Data with and without (w/o) smoothing 
(accomplished by filtering one of the CT images with a boxcar filter) are plotted separately.  The zero 
position corresponds to the correct registration. In all cases, full sampling and 256 intensity bins were 
used. 
 

A qualitative examination of the registration in the brain region demonstrates that 

MSCR is robust and accurate for high resolution image volume pairs. For example, 91% 

of image voxels were registered within an accuracy of 2 voxels in both T1-T1 and PD-T2 

MR image registration, which represents 42% and 30% displacement error 

improvement, respectively (Figure 8.6 and 8.11). However, a significant difference in 

resolution and intensity distribution between the two images (e.g. CT-SPET, MR-SPET), 

or images of low resolution, profoundly deteriorates the registration accuracy and 

robustness. The improvement for SPET-MR registration is marginal (about 10%). The 

results suggest that common anatomical information, high spatial resolution and low 

noise level may have a significant effect on the performance of registration. The poor 

performance of the non-rigid algorithm in brain SPET-MR registration and torso SPET-

CT registration may be attributed to poor resolution and counting statistics of SPET 
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compared to CT and MR. Examples of the MI and SCR are illustrated in Figure 8.14 

when a CT image block was translating with respect to another CT image block along 

x-axis. The image block, showed in Figure 8.15 (top row), is registered as a function of 

translation to a second image block derived from the identical CT with and without 

blurring. With smoothing, a 5×5 pixels boxcar-smoothing filter was applied to the CT 

image to mimic resolution difference between images for registration.  

 

 
Figure 8.15:  Image blocks (enclosed by windows), with (bottom) and without (top) smoothing, 
correspond to sizes (from left to right): 16×16, 32×32 and 64×64. These sub-images are used  to compute  
MI and SCR as a function of translation along x-axis for two cases: CT-CT and CT-blurred-version-CT.  
 

The results in Figure 8.14 show that MI, NMI (not shown here) and SCR gave correct 

registration at zero position when high resolution CT image blocks were registered 

regardless the size of the block. This further supports, with MSCR algorithm, that 

overlapping image blocks are able to give optimum local alignment at correct registered 

positions for high resolution images registration using local translation. When reducing 

the sizes of the image blocks progressively from 642 to 162, MI appeared not 

symmetrical about the zero translation, and 162 suffered the most. Similar observations 

were found for NMI. Based on these results, the size of image block had no effect on 

SCR. When a smoothing filter was applied to one of the CTs prior to registration, peaks 

of MI and SCR at registered positions, to some extent, were suppressed and broadened 

with respect to the corresponding maxima without blurring.  Surprisingly, with block 

sizes at 322 and 162, the optimal registration at zero position disappeared for MI but not 

for SCR. This demonstrates that, with image blurring, reducing image block size affects 

MI and NMI (not shown) by concealing the function peaks and, therefore, deteriorates 

local registration. However, the sensitivity and severity of this effect is not uniform 
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across similarity measures. MI and NMI did suffer most while SCR was unaffected 

although local maxima are observed at the smallest block size 162 for SCR. This 

observation helps to explain the poor results obtained for local registration between 

image pairs with a large difference in resolution (e.g. SPET-MR and SPET-CT) 

comparing to high resolution image pairs (e.g. MR-MR) local alignment.  

 

Furthermore, reducing the sub-image volume for progressively overlapping smaller 

image blocks also implies less image information content for registration. The low 

resolution, difference in the context of information (i.e. functional versus structural), 

absence of anatomical detail and paucity of compatible corresponding structures 

between SPET and CT/MR images compounds deterioration towards similarity 

measures on maxima, resulting in misregistration. Thus similarity measures derived 

from these image blocks tend to be poor and there is no “true” global optimum to drive 

the match and so the registration is prone to be trapped at a “false” local optimum. 

Another contributory factor in the poor registration may be that sharp edges at some 

boundaries produce a profound effect on the joint intensity histogram for registration. 

For example, sharp edges on the surface of the liver in SPET may overshoot the 

corresponding surface in the CT image and instead align with the body surface (Figure 

8.13). Such results indicate that the edges of more global structures in SPET (e.g. image 

boundary) may provide sufficiently strong influence on the joint histogram to drive the 

non-rigid registration. To verify this, a CT sub-image is translated along the x-axis with 

respect to an identical CT sub-image blurred with a boxcar filter, and MI was computed 

as a function of translation (Figure 8.16).  

 

 

Figure 8.16:  Variation of MI as a function of translation of a CT image block to an identical CT blurred 
with a 52 pixels boxcar filter (left). The zero translation corresponds to the registration position. The 
windows in the CTs enclose sub-images of sizes at 162 (middle) and 642 (right) pixels. In both cases, 
image boundary is deliberately included for the registration. 
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The image boundary is deliberately included as a global anatomical structure in the sub-

image for registration using full sampling and 256 intensity bins. For SCR, correct 

registration at zero translation was obtained for all three sub-image blocks. In contrast 

to Figure 8.14 (top right), optimal peaks are clearly apparent irrespective of the image 

block sizes although the peaks of 162 and 322 are slightly shifted to the positive x-

direction. This signifies that the body boundary plays an important role to constrain 

image registration and drives global alignment in image block registration.  
 

The visual assessment of colour overlay display for SPET-CT/MR registration is 

intuitive and direct; it is sensitive enough to detect a small mismatch along edges of 

anatomical structures. However, it is difficult to quantify the degree of mismatch. The 

unsatisfactory results for SPET-CT registration in the thoracic-abdominal region may 

suggest a shortfall of the non-rigid registration in low-resolution images where only 

limited information is available within most image blocks. Therefore, use of the full 3D 

image content is a possible alternative approach for non-rigid registration on low-

resolution images. Based on the mutual information as a global similarity measure, Kim 

et al. [380] demonstrated an automated thin-plate spline warping to register FDG 

images of a rat brain with its video reference images. In this method, an arbitrary set of 

landmarks is supplied initially and then the landmarks are iteratively repositioned until 

the resulting warp optimises the global mutual information. Meyer et al. [186,381] 

presented a thin-plate spline warped registration of thoracic PET-CT and volumetric 

ultrasound scans where control points changed iteratively to maximize mutual 

information. In these studies, the full image volumetric data were used to compute a 

global similarity measure to register low-resolution image non-rigidly.  

 

The MSCR algorithm is based on the warping described by the displacement of regular 

grid nodes. It relies on the sampling of a displacement field at a set of nodes, each node 

anchored at the center of an image block. Gaussian interpolation is then used to give 

displacements at inter-nodal locations.  In order to recover the distortion exactly, the 

grid spacing (i.e. reciprocal of spatial sampling rate) must be no greater than one-half 

the period of the finest variation (corresponding to the maximum spatial frequency) 

within the displacement field [262]. In this case, the displacement field is said to be 

sampled at its Nyquist rate, according to the sampling theorem. If the inter-nodal 

spacing is greater than required by the Nyquist criterion, aliasing will result. Further 
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work is needed to assess the influence of the rate at which the displacement vector field 

is sampled on the displacement error. Although sampling theorem provides for 

maximum sampling interval but not minimum, it may be argued that each sample 

represents a finite portion of the displacement field. Thus smaller grid spacing may be 

necessary to capture mismatches at a finer level.  Again this is a good subject for further 

work. 

 

The symmetric correlation ratio gives comparable registration to mutual information in 

3D intra-modality and inter-modality tasks at full sampling but it is superior to MI in 

registering sparsely sampled high resolution MR images. The sparse sampling refers to 

the coarse to fine strategy used to sample the displacement field. SCR performed 

virtually identically to normalised mutual information (NMI). For the non-rigid 

registration of SPET-MR in the brain and SPET-CT in torso, none of the similarity 

measures (SCR, MI and NMI) led to an effective registration. One possible reason for 

the failure may be due to the very different intensity distributions in SPET and CT/MR. 

In fact, the image block approach together with very poor resolution of one of the 

images often reduces information content. This substantially increases the dispersion of 

joint intensity histogram. One way to circumvent this problem is to register the 

transmission (TR) image with the CT image and apply the optimum transformation to 

the SPET image. In this case, both TR and CT images represent an attenuation map and 

therefore have comparable intensity distributions although TR has an inferior spatial 

resolution [382]. Intensity transformation between two images prior to registration is 

also suggested in [370, 372] to improve the performance of inter-modality registration. 

 

The MSCR algorithm performed poorly with respect to all studies with the low-

resolution image because of the physical limitation and constraints in clinical imaging 

conditions. Non-rigid registration techniques developed for the high-resolution image 

pair does not extend effectively to the characteristically low-quality and noisy SPET 

images of deformable organs. In the case of a pathological reduction or absence of 

radiotracer uptake, the correspondence between organs visualized in functional and 

anatomical images may be impaired. As body organs are not rigid and are closely 

packed in the thoracic or abdominal space, a phantom or a simulated local distortion 

may not be representative of the complex distortion in the abdominal-thoracic region in 

clinical setting. Physical or numerical phantoms studies provide insight in the 
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performance of the algorithm but little is known in terms of the performance for real 

clinical data. The models also do not allow the exploration of the algorithms under a 

variety of conditions anticipated in diagnostic and therapeutic applications, nor is it 

possible to discriminate between intensity artefacts, geometric distortion, patient-

specific abnormalities, and normal variations, such as different liver positions (high/low) 

and bladder content (from full to empty).  

 

8.4  Conclusion  

This chapter assesses the feasibility of using a symmetric correlation ratio and sub-

image block matching technique to spatially register 3D intra- and inter-modality 

images. For the high-resolution image, rich in information content, the MSCR algorithm 

performs satisfactorily. The accuracy of the technique was evaluated on digital 

phantoms and on patient data. In both studies, registration was successful for 92% of 

image voxels with an accuracy of ≤2 voxels. A high success rate shows that the MSCR 

method is reliable and robust. With the default implementation, the mean displacement 

error was less than the MR voxel for intra-modality MR registration. In the current 

implementation, the registration process takes about 10 minutes to complete a 3D 

alignment for image pairs of 128×128×99 voxels on a stand alone Pentium IV PC with 

1.7 GHz CPU and 256 Mbytes random access memory on board. Further investigation 

is warranted to examine aspects of non-rigid registration between low resolution image 

(e.g. SPET) and high resolution image (e.g. CT, MR). 
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Chapter 9 
 

Conclusions and further work 

The ability to register medical images from different modalities is critically important in 

clinical applications [47,49,50,51,52,56], such as radiological diagnosis [53,54], 

treatment planning prior to surgery [60,67,68,69,71] and radiotherapy [70,72,73,74], 

and monitoring response to treatment [58,65,66]. Differences in positioning, image 

quality and scanning protocol, as well as patient motion combine to make registration 

nontrivial. The registration problem is especially difficult if one image represents 

functional information while the other represents anatomical information. This 

challenge has spurred the development of many registration algorithms in the last two 

decades [383]. In mid 1990s, new intensity-based similarity measures based on entropy 

[176,178,180] and local variance [172,131,181] received much attention especially in 

multimodality image registration. These intensity-based measures proved to be quite 

robust across a range of 3D image registration problems. They have been successfully 

applied to a variety of problems and have been shown, using a brain dataset with known 

ground truth, to be superior compared to feature-based algorithms [122,123]. In this 

thesis, multi-level rigid and non-rigid registration is introduced and discussed. Their 

implementation, validation and clinical applications are also demonstrated for rigid-

body registration. Similarity measures based on the joint intensity histogram (MI, NMI 

and SCR) have been used in fully automated image registration algorithms without the 

need for pre-registration processing. At the outset of this project, many aspects of these 

measures were not fully understood. How do they differ in performance? What is the 

best way of implementing these measures? What is the best strategy to accelerate the 

registration process? Is pre-processing of images beneficial? For what type of image are 

they successful and for which images do they fail? Can the registration process be 

extended to non-rigid registration? How can these measures be applied to register 

images outside the brain? In this thesis, intensity-based strategies have been examined 

in detail and refinements introduced to further improve registration performance. 

Emphasis has been given to methods of evaluating and validating these registration 

strategies with particular attention paid to the registration of low resolution emission 

tomographic data. The development of realistic simulations based on incorporating 

clinical data in a thoracic-abdominal phantom was central to the validation. The 
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techniques were further incorporated in the development of non-rigid registration 

algorithms.  

 

9.1  Rigid body registration 

In the rigid-body registration, the question of whether the choice of the similarity 

measure has a bearing on registration accuracy was investigated with clinical data 

(Chapter 4) and with simulation of a thoracic-abdominal SPET (Chapter 6). The 

comparison was carried out over a wide range of image conditions, acquisition regimes, 

reconstruction and registration strategies. Three intensity-based similarity measures 

(SCR, NMI and MI) were compared in rigid-body SPET-MR/CT registration using a 

multi-level strategy. In clinical images, external fiducial markers were used as a 

reference for the evaluation of registration accuracy. For simulated SPET, registration 

accuracy was computed from the discrepancy between simulated and applied 

transformations averaged over the eight corners of a cuboid bounding box. In some 

cases, the mean registration error and its standard deviation were strongly biased by 

outliers as a result of the registration algorithm terminating at a spurious local optimum.  

The size of the error for an outlier is not very interesting from the point of view of 

registration performance; the registration can be considered a failure whether the error 

is, say, 150 mm or 175 mm. To assess the performance of registration from residual 

errors, a registration with an error exceeding 100 mm was considered a failure and was 

not included in the computation of the summary statistics. This value was set 

empirically because errors greater than 100 mm were found in some cases. A measure 

of the robustness of the algorithm was provided by the success rate (proportion of 

registrations with the mean error below a set threshold). A difficulty with this measure 

is the need to set the threshold, which ultimately should be related to the accuracy 

required by each clinical application. In the present studies, 20 mm was used as the 

threshold to compute the success rate. 

 

Overall, the results demonstrate that the performance of registration depends on the type 

of SPET image and implementation strategy. The results were not the same for the three 

similarity measures; MI was more susceptible to outliers than SCR and NMI when 

sparse sampling was used for registration. In registering SPET 99mTc-HMPAO studies 

to MR at full sampling (Chapter 4), the registration performance of all three similarity 

measures was statistically indistinguishable. Registration at full sampling would take 
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too long for clinical use.  Acceleration was accomplished with a multi-level sampling 

strategy and adaptive intensity rebinning. Substantial acceleration was achieved without 

adversely affecting accuracy. With SCR and NMI, but not MI, introducing multi-level 

sampling did not significantly change the registration accuracy.  In terms of the mean 

registration error measured relative to the fiducial marks, SCR performed better 

(3.9±1.1 mm) than MI (5.6±2.3 mm), as confirmed by statistical testing at the 5% 

confidence level. However, the mean errors for MI (5.6±2.3 mm) and NMI (4.4±1.1 

mm) were not significantly different. In the present implementation, an acceleration 

factor of about 20 was achieved for 3D images. The mean error for SCR and the multi-

level sampling (3.9±1.1 mm) is comparable to results of Collignon (3.6 mm) and Hill 

(3.2 mm) reported for PET-MR registration [122].  

 

With simulated thoracic-abdominal SPET (Chapter 6), SCR also performed better than 

MI and NMI in the registration of MDP FBP-reconstructed SPET and CT. However, 

registration accuracy was found to be similar for simulated 67Ga SPET-CT registration 

using NMI, MI and SCR irrespective of which reconstruction algorithm (OSEM and 

FBP) was used, with and without attenuation compensation. Since image quality is 

different for FBP and OSEM, the assessment of registration performance was based on 

noise-equivalent reconstructions. When noise-equivalent reconstructions were selected, 

registration accuracy did, to some extent, depend on the choice of the reconstruction 

algorithm as well as on the use of AC. Registration of FBP-reconstructed SPET was 

more likely to be affected by AC than the OSEM-reconstructed SPET.  With AC, 

OSEM-reconstructed SPET gave better performance than a noise-equivalent FBP 

reconstruction. Without AC, the effect was less apparent. Registration deteriorated for 
67Ga SPET reconstructed by FBP with AC (Subsection 6.4.1). However, no significant 

difference was found for OSEM-reconstructed SPET with and without AC. A 

proposition that registration accuracy depends on the reconstruction noise was not 

supported by the experiments. Within reasonable limits, changing the cutoff frequency 

in FBP and the number of iterations in OSEM had little, if any, effect on registration. 

This signifies that variance and entropy based algorithms are insensitive to image 

reconstruction noise. It was postulated that a number of practical factors, namely 

matching CT resolution to that of SPET, introducing a distinct body boundary in SPET, 

matching the field of view between modalities and using a large image volume could 
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improve registration performance but extensive experimentation failed to demonstrate 

such effects. One exception was the registration of OSEM-reconstructed 67Ga SPET, 

where the resolution adjustment was associated with a substantial increase in the 

number of failures (mean error ≥ 20 mm). For OSEM-reconstructed 67Ga SPET, the 

failure increased from 0 to 12% (SCR), 0 to 32% (NMI) and 4% to 28% (MI), when 

resolution matching was applied to CT. Experiments also suggested that CT intensity 

windowing can improve the performance of registration for OSEM 67Ga SPET but little 

effect was found for MDP SPET. This means that its effect on registration depends on 

the SPET image. Furthermore, results suggest that using a very small image volume for 

registration reduces performance. Registration accuracy of about 11.0 mm for thoracic-

abdominal region was obtained using SCR. It is worth to note that this error is similar to 

the result for PET-CT registration (10.6 mm) reported by Skalski et al. [351]. This size 

of error was comparable to the registration error obtained when the CT image was 

registered to a low-resolution version of itself (about 11.0 mm) but was much larger 

than the error (about 2.0 mm) arising when the CT image was registered to itself at its 

original resolution. This indicates that one of the major factors limiting the registration 

accuracy may be image resolution (Subsection 6.5.6).  

 

9.2  Non-rigid body registration 

A non-rigid image registration method has been examined for inter-subject intra-

modality brain image (Subsection 8.2.1-8.2.2) and intra-subject inter-modality thoracic-

abdominal regions (Subsection 8.2.3).  The method constructs a displacement vector 

field by finding a translation vector that maximizes SCR (or NMI, MI) for each of a set 

of overlapping image blocks. The method employs a multi-level strategy to provide 

consecutive refinements in block size. A median filter is used to remove outliers in the 

displacement field and a Gaussian function smoothly interpolates the measured 

displacement field. The question of whether the choice of the similarity measure affects 

the registration performance was investigated using 3D clinical data for MR-MR and 

MR-SPET registration of the brain region, and simulated SPET for CT-SPET 

registration of thoracic-abdominal region. Known non-rigid misalignments were applied 

to the clinical images and the simulated images. For intra-modality and “inter-modality” 

registration of MR brain images, SCR gave 92% mean success rate over ten 

independent measurements, where the success threshold was set to the error of 2 voxels. 

The results also demonstrated that SCR gave a comparable performance to MI and NMI, 
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but, as in the case of rigid registration, SCR performed better for sparsely sampled data. 

However, in the MR-SPET and CT-SPET non-rigid registration of the non-brain region, 

none of the three measures was able to recover local distortions.  

 

9.3 Further work 

Although intermodality registration of images has been largely successful in the brain, 

the thoracic-abdominal region presents a greater challenge because changes in patient 

pose between procedures can induce greater variation in the volume, shape and position 

of constituent organs. To evaluate rigid registration, image pairs were arbitrarily 

misaligned by 6 parameters. These transformations might not be clinically realistic. 

Further work is needed to validate the algorithm with real distortions. Indeed, only 

clinical studies can determine usefulness of a registration and required registration 

accuracy for specific clinical applications. In order to ensure the relevance of the 

registration results to a particular clinical situation, prospective studies must first be 

performed to determine the nature and extent of distortion appearing in each clinical 

procedure. These distortions should represent a typical range of misalignment 

encountered in clinical applications. The residual RMS distance between corresponding 

points of interest (i.e. the target registration error, TRE) appears more relevant to 

clinical application than distances derived from the corner points of the bounding box. 

TRE depends very much on the ability to accurately localize abnormal activity uptake in 

SPET to an anatomical structure in CT/MR. Ambiguities concerning final interpretation 

may be resolved by a visual assessment of fused SPET and CT/MR images.  Thus, 

further studies should include visual verification by clinical specialists to provide 

additional assessment of the registration performance. Local misalignment arises not 

only from changes in patient pose and movement during acquisition but also from the 

involuntary motion of internal organs. In addition, local misalignment can occur 

between image acquisitions due to pathological changes or therapeutic intervention (e.g. 

surgery).  In intersubject applications, morphological differences between subjects can 

also be represented as local misalignments. The multi-level algorithm was successful in 

high resolution MR-MR non-rigid registration but not in SPET-MR and SPET-CT 

registrations. This failure may be due to image block becoming too small. Moreover, 

failure may arise from the differences in implementation between MR-MR and SPET-

CT/MR registration. Extension to intra-subject non-rigid registration between high 

resolution images, such as CT or MR images, and low resolution images, such as 
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SPECT or PET images, or low resolution to low resolution images, requires further 

investigation. Improvements in the multi-level non-rigid algorithm may involve 

accommodating block size and other implementation parameters to image resolution. 

The inter-modality registration may be improved further by the use of a priori training 

models [208,384] where prior knowledge of the joint intensity histogram from a similar 

pair of registered images is used to constrain registration. Another approach is to 

register the transmission image (TR), acquired immediately before or after the SPET 

scan, with the CT image, and apply the resulting displacement vector field to the SPET 

image. The TR scan and the emission image are assumed to be registered. The TR and 

the CT image are both based on the same physical attenuation process but differ in the 

energy spectrum of the radiation and the type of detector used [382]. The TR-CT 

registration can be regarded as an intra-modality registration problem, which could be 

less difficult than the inter-modality registration. Non-rigid registration is difficult to 

validate without a gold standard. Therefore, one possible approach to validation is to 

use an image pair from a dual-modality system (e.g. dedicated PET/CT scanner 

[385,386,387]) as registered images. Clinically realistic misalignment could then 

applied to one of the images and the other image would be registered to the misaligned 

image. The registration accuracy could be computed from the difference between the 

recovered and the applied misalignment. It may be supposed that the advent of dual-

modality systems obviates the need for software based solutions to registration. 

However, such systems are costly and still uncommon.  Moreover, software solutions 

are still required to account for a range of misalignments  (e.g. those arising from the 

differences in acquisition time in SPET/PET and CT/MR) [76,388] Incidentally, the 

mere fact that manufacturers introduced dual modality systems is testament to the 

recognition of the need for clinical registration. 

 

Investigation is also required to optimize further the performance of the proposed 

algorithm. For example, a strict scale space representation of images may improve 

convergence properties. Furthermore, the focus should be on additional investigation of 

the application of intensity-based measures to non-brain multimodality registration. The 

research in non-rigid registration still has many difficult challenges ahead, both in terms 

of addressing the practical needs of clinical applications as well as developing 

appropriate validation and evaluation approaches across different image modalities. A 

key challenge here is to understand what possible local deformations are feasible for 
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various organs, such as the lungs and the spine. This knowledge could form the basis of 

a deformation model for particular organs. Such models may serve to constrain the set 

of possible transformations. Many of these problems require the analysis of not only the 

normal structure and function, but also of different abnormal states. Further attention 

needs to be given to the anatomical structures in functional images that critically 

influence registration accuracy at a global or local level. For example, the spine and the 

kidneys are well visualized on some functional scans, but the external body outline and 

the lungs are not, although they are well visualized on the anatomical scans. Where the 

information present in the functional image is insufficient to support registration with an 

anatomical image, additional information is required. Some research groups have 

already made progress in this direction by incorporating a second radionuclide [81], 

transmission scans [260,389,390] or scatter window data [254] in image registration. 

More effort is needed to investigate how this extra information can be combined 

globally or locally across different data sets for better alignment. 
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Appendix  

Anatomical labels of the Zubal phantom are shown below: 
  label(0)='outside_phantom'     
  label(1)='skin'       
  label(2)='brain'      
  label(3)='spinal_cord'     
  label(4)='skull'      
  label(5)='spine'      
  label(6)='dens of axis'     
 label(7)='jaw bone'     

label(8)='skeletal_muscle'     
  label(9)= 'lacrimal glands'    
  label(10)= 'spinal canal'    
  label(11)= 'hard palate'    
  label(12)= 'cerebellum'    
  label(13)= 'tongue'     
  label(14)= 'pharynx'      
  label(15)= 'esophagus'     
  label(16)= 'medulla oblongota'   

label(17)= 'fat'      
  label(18)= 'blood pool'    
  label(19)= 'bone marrow'    
  label(20)= 'pons'     
  label(21)= 'trachea'     
  label(22)= 'cartilage'     
  label(23)= 'uncus(ear bones)'   
  label(24)= 'sinuses/mouth cavity'   
  label(25)= 'optic nerve'    
  label(26)= 'cerebral falx'    
  label(27)= 'eye'      
  label(28)= 'lens'     
  label(29)= 'cerebral aquaduct'   
  label(30)= 'teeth'     
  label(31)='rib cage & sternum'    
  label(32)='pelvis'     
  label(33)='long bones'     
  label(34)='lungs'     
  label(35)='heart'     
  label(36)='liver'     
  label(37)='gall bladder'    
  label(38)='kidney'     
  label(39)='stomach'     
  label(40)='small bowel'     
  label(41)='colon'     
  label(42)='pancreas'     
  label(43)='adrenals'      
  label(44)='gas (bowel)'    
  label(45)='fluid (bowel)'    
  label(46)='lymph nodes'    
  label(47)='thyroid'     
  label(48)='spleen'     
  label(49)='urine'     
  label(50)='feces'     
  label(51)='testes'     
  label(52)='prostate'     
  label(53)='rectum'     
  label(54)='diaphragm'     
  label(55)='bladder'     
  label(56)='lesion'     
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