Potential for Phytoremediation of a Metalliferous Mine Site at Mt. Costigan, NSW

Hylton B. Hobday (B.Sc.)

Submitted February, 2003

In fulfillment of requirement for the Degree of Master of Science by Research at the University of Technology, Sydney

CERTIFICATE OF AUTHORSHIP / ORIGINALITY

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of the requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

> Production Note: Signature removed prior to publication.

8/10/02

Hylton B. Hobday

Date

Acknowledgments

Many people offered their guidance and advice during the course of this study. In particular, my thanks go to Mr. David Johnson of the NSW Department of Mineral Resources (DMR) for his advice on derelict mines and his initial recommendation of the Mt. Costigan area as a suitable study site; to Narelle Richardson who spent many hours guiding me on the preparation and execution of sample analyses; to Kerry Brooks of the DMR laboratories who performed additional analyses for this project; to Omar Seychell and Paul Watt for their willingness to participate in field trips and collection of samples; to the staff of the Royal Botanical Gardens, Sydney, who identified some of the site and for editorial advice, and my mother Eugenia Hobday for her editing, encouragement and faith in me; Professor Greg Skilbeck for his recommendation of phytoremediation studies and U.T.S.; and, most importantly, Prof. Margaret Burchett and Dr. Alex Pulkownik, my supervisors, for their patience, ideas, motivation and ongoing support during my studies. Without their unfailing encouragement, this thesis would never have been completed.

Table of Contents

			page
Cert	ificate c	of Authorship/Originality	i
Acknowledgments			
Table of Contents			
List of Tables			
List of Figures			vii
List	of Abbr	reviations	viii
Abst	ract		ix
Cha	pter 1.	Overview	1
1.1		Project aims	1
1.2		Project rationale: remediation of contaminated sites	1
	1.2.1	1 5	3
	1.2.2	Contaminated soils	4
	1.2.3		4
	1.2.4		5
	1.2.5		6
1.3		Phytoremediation	7
	1.3.1	Definition	7
	1.3.2	Origins of phytoremediation	9
	1.3.3	Application of phytoremediation to metal-contaminated sites	9
	1.3.4	Advantages of phytoremediation	11
	1.3.5	Practical limitations of phytoremediation	11
1.4		Metals in soils and plants	11
	1.4.1	Factors influencing metal availability	11
	1.4.2	Metals in plants	17
	1.4.3	Metal tolerance in plants	20
	1.4.4	Metal uptake and tolerance mechanisms	22
	1.4.5	Characteristics of toxic response	28
1.5		Ecotoxicological methods	31
	1.5.1		31
1.(1.5.2	The triad approach	32
1.6	1 (1	This study	33
	1.6.1	The problem	33
	1.6.2		33
	1.6.3	Experimental objectives	34
		Field Studies	
	pter 2.	Field studies: Introduction	35
2.1		Background	35
2.2		Study-site region	36
	2.2.1	Geology	36
		Landscape of the area	39
~ ~	2.2.3		39
2.3	0.0.1	Mt. Costigan site	39
	2.3.1	Site description	39
	2.3.2	Metal ores at Mt. Costigan	41
2.4	2.3.3	Mining at Mt. Costigan The need for remediation of about days during sites	44
2.4	2 4 1	The need for remediation of abandoned mine sites	46
	2.4.1	Ecological and environmental concerns	46
	2.4.2	Remediation objectives	47
	2.4.3	Regional remediation case studies	48

2.5		Outline of field studies at Mt. Costigan	52
	2.5.1	Rationale	52
	2.5.2	Experimental design	52
	2.5.3	Experimental objectives	53
Cha	pter 3.	Field studies: materials and methods	54
3.1		Field measurements	54
	3.1.1	Sampling design	54
	3.1.2	Soil sampling	56
	3.1.3	Vegetation sampling and analysis	57
3.2		Soil analysis	59
	3.2.1	Procedures for analysis	59
	3.2.2	Determination of soil pH	60
	3.2.3	Determination of soil salinity	60
	3.2.4	Determination of soil organic content	61
	3.2.5	Determination of soil metal content	61
3.3		Materials	62
3.4		Data analysis	62
Cha	pter 4.	Field studies: results and discussion	63
4.1		Soil characteristics prior to site remediation	63
	4.1.1	Soil quality	63
	4.1.2	Soil metal content	64
4.2		Vegetation at the site	68
		Woodland vegetation	68
	4.2.2	Barren-site vegetation	74
	4.2.3		74
4.3		Evaluation of site remediation	77
	4.3.1		78
		Barren-site vegetation after remediation	78
	4.3.3	Biosolid amelioration	82
Secti	on B: C	Glasshouse/Laboratory Studies	
Chaj	pter 5.	Laboratory studies: introduction	84
5.1		Aims and rationale	84
5.2		The role of toxicity tests (bioassays) in pollution assessment	85
5.3		Phytotoxicity testing	87
	5.3.1	OECD Guideline	88
	5.3.2	Species selection	89
5.4		The use of Australian plants for phytotoxicity testing	90
	5.4.1	Treatments to improve germination success	90
5.5		Rationale for the experimental design	91
	5.5.1	Modification of the OECD Guideline	91
	5.5.2		92
- /	5.5.3	Selection of suitable plant species	92
5.6		Experimental objectives	93
	pter 6.	Laboratory studies: materials & methods	
6.1		Materials	95
	6.1.1	Seed sources	95
	6.1.2		95
	6.1.3		95
6.2		Methods	98
	6.2.1	Screening of Australian native seeds for germination	98
		potential	20
	6.2.2	Testing the effect of seed pre-treatment on germination success in <i>Acacia</i> spp.	99

	6.2.3	Preparation of soils for bioassays	99
	6.2.4	Setting up bioassays	101
	6.2.5	Soil and plant analyses	104
Cha	pter 7.	Laboratory studies: results & discussion	105
7.1		Germination and growth of eucalypt and acacia species	105
	7.1.1	Eucalypts	105
	7.1.2	Acacias	108
	7.1.3	Selection of test species for bioassays	113
7.2		Bioassay of site soils: soil characteristics	113
7.3		Bioassay of site soils: germination and growth	113
	7.3.1	Eucalypts	113
	7.3.2		121
	7.3.3	\$1 E	123
	7.3.4	Avena sativa (oats)	128
7.4		Bioassay of site soils: Metal accumulation and partitioning in	
		native plants and in oats	129
	7.4.1	Copper in native species	129
	7.4.2	Zinc in native species	129
	7.4.3	Iron in native species	131
	7.4.4	Lead in native species	131
	7.4.5	Manganese in native species	131
	7.4.6	Cadmium in native species	132
75	7.4.7	Metal uptake in oats	132
7.5	7.5.1	Bioassay of site soils: influence of biosolid addition Soil characteristics	132 132
	7.5.2		132
	1.J.2	with biosolid	134
	7.5.3	Metal accumulation in plants	134
7.6	1.3.5	Evaluation of soil toxicity	140
7.7		Outcomes	141
	ion C · E	Project Outcomes	
		Outcomes and future directions	143
	pter o.		
8.1	8.1.1	Overall significance of the results	143 143
	8.1.2	The mine site assessment of soils and vegetation Australian native plants at phytotoxicity test species	145
	8.1.3	Phytotoxicity testing as a measure of bioavailability of metals	145
	8 .1.3	Advantages and disadvantages of biosolid use	140
8.2	0.1.4	Possible measures to improve the efficiency of plant-based	
0.2		remediation	148
8.3		Recommendations for further work	150
0.5	8.3.1	Improved site characterization and monitoring	151
	8.3.2	Assessing the broader impact	151
	8.3.3	Improved species selection and phytotechnology	152
	8.3.4	Soil microbiology	152
	8.3.5	Physical conditions at the site	154
	8.3.6	Soil geochemistry	155
	8.3.7	Hydrogeological studies	157
	8.3.8	Engineering methods	158
8.4		Conclusions: recommended measures	159
Арр	endix		
la		Pre-remediation assessment, September 1999	160
lb		Post-remediation assessment, May 2000	161
Refe	rences	· · ·	162

List of Tables

		page
Table 1.1	Benefits and limitations of phytoremediation	12
Table 1.2	Major problems associated with mine sites and their treatments	13
Table 1.3	Principal functions of selected metals in plants	18
Table 1.4	Metal concentrations in shoots of hyperaccumulating plants	29
Table 1.5	Metal levels in plants and their effects on plant functions	30
Table 2.1	Composition and relative abundance of minerals in the Mt. Costigan-	
	Peelwood district of NSW	43
Table 2.2	Ore extracted from Mt. Costigan	46
Table 3.1	Nested quadrat dimensions, in metres	56
Table 4.1	Soil characteristics of the study sites	63
Table 4.2	Metal levels in woodland and pre- and post-remediation barren-site	
	soils	65
Table 4.3	A comparison of metal levels in natural and impacted soils	66
Table 4.4	Woodland vegetation: tree species	70
Table 4.5	Ground cover in the woodland, Mt Costigan	72
Table 4.6	Woodland vegetation: variation among locations	73
Table 4.7	Characteristics of barren-site and woodland soils from Peelwood	
	mine site	73
Table 6.1	Species used in glasshouse trials and their natural distribution	96
Table 7.1	Eucalyptus and Acacia spp. seedling characteristics	107
Table 7.2	Bioassay of site soils: copper	114
Table 7.3	Bioassay of site soils: zinc	115
Table 7.4	Bioassay of site soils: iron	116
Table 7.5	Bioassay of site soils: lead	117
Table 7.6	Bioassay of site soils: manganese	118
Table 7.7	Bioassay of site soils: cadmium	119
Table 7.8	Maximum germination and seedling survival of E. sideroxylon in a	
	bioassay of site soils	120
Table 7.9	Maximum germination and seedling survival of A. salicina in a	
	bioassay of site soils, and A. hakeoides in woodland soil	122
Table 7.10	Bioassay of site soils	124
Table 7.11	Bioassay of site soils: growth characteristics of Avena sativa	128
Table 7.12	Bioassay of site soils: metal levels in roots and leaves of Avena sativa	130
Table 7.13	Bioassay of site soils: soil characteristics after addition of biosolid	133
Table 7.14	Effect of biosolid on plant growth	135
Table 7.15	Bioassay of site soils: influence of biosolid addition: acacias	137
Table 7.16	Bioassay of site soils: influence of biosolid addition: eucalypts	138

List of Figures

		page
Figure 1.1	Location of the Mt. Costigan study area	2
Figure 1.2	Processes involved in phytoextraction of contaminants from soils	8
Figure 1.3	Factors affecting bioavailability of metals in soils to plants	15
Figure 1.4	Plant response to nutrient uptake	21
Figure 1.5	Different patterns of metal uptake by plants	23
Figure 2.1	Palaeogeographic map (top) and reconstructed E-W cross section	
	(bottom) for NSW during the Mid-Late Silurian	37
Figure 2.2	Geological sketch map of the Mt. Costigan area	38
Figure 2.3	Topography and vegetation in the Mt. Costigan region	40
Figure 2.4	Rich pastureland in the Crookwell/Mt. Costigan district	40
Figure 2.5	View of the barren site with surrounding woodland at Mt. Costigan	42
Figure 2.6	View of the eastern woodland at Mt. Costigan	42
Figure 2.7	Sparse vegetation on the barren slope	45
Figure 2.8	Secondary minerals on the surface of the barren slope	45
Figure 2.9	Barren slope viewed towards the edge of the eastern woodland	51
Figure 2.10	Erosion at the mine site	51
Figure 3.1	Location of the sampling sites at Mt. Costigan	55
Figure 3.2	Nested quadrats (10m ²) used to estimate vegetation cover on the	
	barren slope	58
Figure 3.3	Sampling quadrat (0.5 x 0.5 m) used to estimate ground cover	58
Figure 4.1	Cross section of the barren site showing probable ground-water	. –
	migration path.	67
Figure 4.2	Incipient soil zonation exposed in an eroded section in the woodland	69
Figure 4.3	Mobilization and subsurface concentration of copper and zinc in	60
Figure 1 1	mine tailings Barren slope species diversity	69 75
Figure 4.4 Figure 4.5	Barren-slope species diversity	75
0	Barren-slope vegetation cover Remediation at Mt. Costigan: soil terraces and berms	73 79
Figure 4.6	÷	79
Figure 4.7	Remediation at Mt. Costigan: concrete culvert	
Figure 4.8	Runoff collection dam at base of barren slope, after remediation	80 80
Figure 4.9	The barren slope after the second remediation attempt	80 97
Figure 6.1	Visual comparison of seed sizes and shapes	
Figure 6.2	The setup of pots for the bioassay experiment	103
Figure 7.1	Germination trials of <i>Eucalyptus</i> species	106
Figure 7.2	Germination trials of <i>Acacia</i> species	109
Figure 7.3	Setup of acacia germination trials	111
Figure 7.4	Glasshouse bioassay showing extent of growth of test species	111
Figure 7.5	A comparison of <i>Acacia salicina</i> germination and survival results	112
Figure 7.6	Root and shoot biomass of eucalypts grown under bioassay	100
Figure 77	conditions Root and shoot biomass of quality to grown under bioassay	126
Figure 7.7	Root and shoot biomass of eucalypts grown under bioassay conditions	127
	çonariona	14/

List of Abbreviations

CERCLA	Comprehensive Environmental Response Compensation and
	Liability Act
CF	Concentration factor
DLWC	Department of Land and Water Conservation (NSW)
DMR	Department of Mineral Resources (NSW)
dwt	Dry weight
EC	Electrical conductivity
EPA	Environmental Protection Authority (NSW)
ER	Enrichment ratio
g	Gram
GBH	Tree girth at breast height
ha	Hectare
LOI	Loss on ignition
N.P.K.	Nitrogen:phosphorus:potassium ratio
NSW EPA	New South Wales Environmental Protection Authority
OECD	Organization for Economic Cooperation and Development
OM	Organic matter
RG	Reagent grade
SO ₄	Sulphate
t	Tonne
USDA	United States Department of Agriculture
USEPA	United States Environmental Protection Agency
USBM	United States Bureau of Mines
± se:	Standard error of the mean
μS	microSiemen

Abstract

Mt. Costigan mine, on the Western Slopes of the Great Dividing Range, NSW, was worked intermittently (1887 – 1928) for copper, lead, zinc, silver and gold. The entire mine site was originally cleared and contaminated with mining wastes, but had naturally revegetated with eucalypt woodland in parts. However, a barren section remains despite recent remediation efforts by the NSW Department of Mineral Resources (DMR), and problems of metal contamination, acid saline seepage, erosion and the threat of contaminated runoff into the catchment persist.

This study utilized the triad approach of field ecological and chemical-impact assessment at the barren site, using revegetated woodland as a reference site, and glasshouse toxicity trials of soils from both the barren and reference sites. Copper, lead, zinc and cadmium levels in barren site soils all exceed NSW Environmental Protection Agency (residential) limits in soil. Remediation by the DMR of the barren site using biosolid amelioration while this project was being carried out resulted in decreased metal contamination at the site, without significant changes in salinity. Vegetation analysis of the barren site before and after remediation did not indicate significant changes, though this may have been due to seasonal variation in plant growth.

A glasshouse bioassay using neat site soils and several dilutions with river sand was designed to determine the dose-response relationships in native plants *Eucalyptus sideroxylon, Acacia hakeoides* and *A. salicina*, endemic to Mt. Costigan. The objective was to evaluate soil toxicity and the potential of native species for phytoremediation at Mt. Costigan. *Avena sativa* (oats) was included as a standard test species for phytoxicity studies, and was the only species to survive in all soils. *A. salicina* proved well suited to much of the barren site, but *E. sideroxylon* did not grow well, and was better adapted to woodland soils. Acacias and eucalypts both showed strong accumulator tendencies for copper, zinc and manganese in diluted site soils. The reverse was true for cadmium, however, with plant-tissue concentrations of this metal increasing in proportion to soil content. Most metals were selectively concentrated in root tissue, but acacias leaves showed high copper and manganese content.

Phytoremediation is likely to prove effective in a multifaceted program of physical, chemical and biological characterization and remediation. It is suggested that phytostabilization of the severely contaminated parts of the barren site be initiated by planting adaptable species such as *A. sativa*, and that less-contaminated areas be planted with *A. salicina*. This could be followed by amelioration with biosolid, mixed into top layers, before further planting with the less-tolerant *E. sideroxylon*. The resulting humic buildup and reduction in soil toxicity would allow other indigenous plant communities to return and restore ecological balance at Mt. Costigan site.