Resource Discovery and Fair Intelligent Admission Control over Scalable Internet

Ming Li

A Thesis presented for the degree of Doctor of Philosophy

Department of Computer System Faculty of Information Technology University of Technology, Sydney Australia

September 2004

Dedicated to

my Mum, Mrs. Ming S. Pang

CERTIFICATE OF AUTHORSHIP/ORIGINALITY

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Signature of Candidate

Resource Discovery and Fair Intelligent Admission Control over Scalable Internet

Abstract

The Internet currently supports a best-effort connectivity service. There has been an increasing demand for the Internet to support Quality of Service (QoS) to satisfy stringent service requirements from many emerging networking applications and yet to utilize the network resources efficiently. However, it has been found that even with augmented QoS architecture, the Internet cannot achieve the desired QoS and furthermore, there are concerns about the scalability of any available QoS solutions. If the network is not provisioned adequately, the Internet is not capable to handle congestion condition. This is because the Internet is unaware of its internal network QoS states therefore it is not possible to provide QoS when the network state changes dynamically.

This thesis addresses the following question: Is it possible to deliver the applications with QoS in the Internet fairly and efficiently while keeping scalability?

In this dissertation we answer this question affirmatively by proposing an innovative service architecture: the Resource Discovery (RD) and Fair Intelligent Admission Control (FIAC) over scalable Internet. The main contributions of this dissertation are as follows:

- To detect the network QoS state, we propose the Resource Discovery (RD) framework to provide network QoS state dynamically. The Resource Discovery (RD) adopts feedback loop mechanism to collect the network QoS state and reports to the Fair Intelligent Admission Control module, so that FIAC is capable to take resource control efficiently and fairly.
- 2. To facilitate network resource management and flow admission control, two scalable Fair Intelligent Admission Control architectures are designed and analyzed on two levels: per-class level and per-flow level. Per-class FIAC handles the aggregate admission control for certain pre-defined aggregate. Per-flow FIAC handles the flow admission control in terms of fairness within the class.
- 3. To further improve its scalability, the Edge-Aware Resource Discovery and Fair

Intelligent Admission Control is proposed which does not need the core routers involvement.

We devise and analyze implementation of the proposed solutions and demonstrate the effectiveness of the approach. For the Resource Discovery, two closed-loop feedback solutions are designed and investigated. The first one is a core-aware solution which is based on the direct QoS state information. To further improve its scalability, the edge-aware solution is designed where only the edges (not core) are involved in the feedback QoS state estimation. For admission control, FIAC module bridges the gap between "external" traffic requirements and the "internal" network ability. By utilizing the QoS state information from RD, FIAC intelligently allocate resources via per-class admission control and per-flow fairness control.

We study the performance and robustness of RD-FIAC through extensive simulations. Our results show that RD can obtain the internal network QoS state and FIAC can adjust resource allocation efficiently and fairly.

Publications List

All publications resulting from this thesis are listed as followed.

Referred Journal Papers

- 1. M. Li, and D. B. Hoang (2004), **FIAC: A Resource Discovery-Based Two-level Admission Control for Differentiated Service Networks**, In *Computer Communication Journal: Special Issue on End-to-End Quality of Service Differentiation* (In press), 2004.
- 2. M. Li, D. B. Hoang, and A. Simmonds (2004), Fair Intelligent Admission Control over Resource-feedback Differentiated Service Network, to appear In *Computer Communication Journal: the Special Issue of Quality of Service*, early 2005.
- M. Li, D. B. Hoang, and A. Simmonds (2003), Class-Based Fair Intelligent Admission Control over an Enhanced Differentiated Service Networks, In *lecture Notes in Computer Science (LNCS)* 2662, Hyun-Kook Kahng (Ed.), Springer, 2003.

Referred Conference Papers

- M. Li, and D. B. Hoang (2004), Edge-Aware Resource Discovery and Fair Intelligent Admission Control over Multi-domain Differentiated Services Networks, In *IEEE International Conference on Communications (ICC2004)*, Paris, France, June 22-26, 2004.
- M. Li, and D. B. Hoang (2003), Achieving Flow Fairness in DiffServ Class: Per-flow Fair Admission Control over Differentiated Service Network, In Proceedings of 4th International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing (SNPD'03), Luebeck, Germany, October 16-18, 2003.

- 3. M. Li, D. B. Hoang, and A. Simmonds (2003), Fair Intelligent Admission Control over DiffServ Network, In *Proceedings of 2003 11th IEEE International Conference on Networks (ICON2003)*, Sydney, Australia, September 28 October 1, 2003.
- M. Li, D. B. Hoang, and A. Simmonds (2003), Class-Based Fair Intelligent Admission Control over an Enhanced Differentiated Service Networks, In *IEEE International Conference on Information Networking 2003 (ICOIN2003)*, Jeju Island, Korea, February 12-14, 2003.
- D. B. Hoang, and M. Li (2003), Fair Intelligent Congestion Control over Diff-Serv: A Resource Discovery and Control Scheme for DiffServ, In Proceedings of the 2003 International Conference on Information and Communication Technologies (ICT 2003), Bangkok, Thailand, April 8-10, 2003.
- 6. D. B. Hoang, M. Li, and U. Szewcow (2002), RTT-Aware Resource Discovery and Fair Share Mechanism for DiffServ, In *Proceedings of the IEEE International Conference on Networking (ICN 2002)*, Atlanta, USA, August 26-29, 2002.
- 7. Q. Yu, M. Li, D. B. Hoang, and D. Feng (2002), **Fair Intelligent Feedback Mechanism on TCP Based Network**, In *The 2002 International Conference on Internet Computing (IC 2002)*, Las Vegas, California, USA, June, 2002.
- 8. D. B. Hoang, Q. Yu, M. Li, and D. Feng (2002), Fair Intelligent Congestion Control Resource Discovery Protocol on TCP Based Network, In *Proceedings of the IFIP 6th Interworking 2002 Symposium*, Perth, Australia, October, 2002.
- 9. M. Li, and D. B. Hoang (2004), Resource Discovery and Fair Intelligent Admission Control over Differentiated Services Networks for Variable-Length Packets, In *Proceedings of the IEEE 10th Asia-Pacific Conference on Communications* (APCC2004), Beijing, China, August, 2004.

Declaration

The work in this thesis is based on research carried out at the Advance Research in Networking Group (ARN), the Department of Computer System, Faculty of Information Technology, University of Technology, Sydney, Australia. No part of this thesis has been submitted elsewhere for any other degree or qualification and it all my own work unless referenced to the contrary in the text.

Copyright © 2004 by Ming Li.

"The copyright of this thesis rests with the author. No quotations from it should be published without the author's prior written consent and information derived from it should be acknowledged".

Acknowledgments

I would like to acknowledge all the help and encouragement I have received in my PhD studying. I am especially grateful to my supervisor, Professor Doan B. Hoang, for teaching me how to be a independent researcher, for his continuous support and encouragement, and for his guidance throughout the years. His invaluable insight comments and ideas have greatly improved this thesis. I hope and look forward to continued collaboration with him in the future.

I am grateful to the Mr. Ury Szewcow, my associate adviser, for his advice that helped to improve my thesis.

I am indebted to Professor David Feng for his advice and inspiration when I was in University of Sydney.

Thanks for Dr. Andrew J. Simmonds, Dr. Peter Leijdekkers, and Dr. Valerie Gay for their comments on my work that helped to improve the overall quality of this dissertation.

I am also indebted to several people in our research group, in particular Chi Nguyen, Bushar Yousef, Hanh Le, and Joe, for thoughtful comments. I am going to miss our Friday night dinners that always make the hard working week on a high and enjoyable.

I would like to express my gratitude to my wife Fiona Shen for her love and understanding through my graduate years. She was always behind me and gave her unconditional support to make my studying smooth running. Finally, I would like to thank my son David who used his own way to support me by joy, happiness, and noisy.

I dedicate this dissertation to my mum, who has been the main driving force behind my research work.

Contents

	Abs	Abstract					
	Pub	lication	s List	ix			
	Declaration						
	Ack	nowled	gments	xiii			
1	Intr	oductio	n	1			
	1.1	Motiva	ation	. 1			
	1.2	Proble	m Definition	. 4			
		1.2.1	Problem Illustration by Simulation	. 6			
	1.3	butions	. 10				
		1.3.1	Resource Discovery Protocol	. 12			
		1.3.2	Fair Intelligent Admission Control	. 13			
		1.3.3	Edge-Aware Resource Discovery Protocol	. 13			
		1.3.4	Edge-Aware Fair Intelligent Admission Control	. 14			
	1.4	Thesis	Organization	. 14			
2	Bacl	kground	d	17			
	2.1	The No	eed for Quality of Service	. 18			
	2.2	Traffic	in the Internet	. 19			
		2.2.1	TCP traffic in the Internet	. 19			
		2.2.2	UDP traffic in the Internet	. 22			
	2.3	Appro	aches for QoS in the Internet	. 23			
		2.3.1	Best Effort Service	. 23			

		2.3.2	Integrated Services	24		
		2.3.3	Differentiated Services	26		
	2.4	Servic	e Overlay Networks	34		
	2.5	The Cl	hallenge of End-to-End QoS	36		
	2.6	Summ	ary	37		
3	A Fı	amewo	ork for Resource Discovery and Fair Intelligent Admission Control			
	over	Scalab	le Internet	39		
	3.1	Overv	iew of the Resource Discovery and Fair Intelligent Admission Con-			
		trol Ar	chitecture	40		
		3.1.1	Design Goals and Assumptions	41		
		3.1.2	The Core-Aware Resource Discovery and Fair Intelligent Admis-			
			sion Control Model	44		
		3.1.3	RD-FIAC Planes Interaction	49		
	3.2	End-to	-End QoS Framework	51		
	3.3	Summ	ary and Discussions	52		
4	Core	e-Aware	e Resource Discovery Protocol Based on Feedback Scheme	55		
	4.1	Introdu	uction	55		
	4.2	Core-Aware Resource Discovery Scheme: Basic Architecture				
		4.2.1	Features of the Resource Discovery Model	58		
		4.2.2	Background: Queue Management and Differentiated Services	61		
		4.2.3	RD Packet Format and Generation	65		
		4.2.4	RD Ingress node	68		
		4.2.5	RD Interior node	69		
		4.2.6	RD Egress node	69		
	4.3	QoS st	tates functions	70		
		4.3.1	Computation of Flow Arrival Rate	70		
		4.3.2	Fair Available Bandwidth Control Function	71		
		4.3.3	Queue Control Function	73		
		4.3.4	Network QoS state	74		
		4.3.5	Inter-domain RD-DiffServ	74		

Contents xvii

	4.4	Discus	sion 1: Resource Discovery over Internet	75
		4.4.1	Resource Discovery Algorithm for Internet	75
		4.4.2	Simulation setting	76
		4.4.3	Simulation 1: bandwidth and buffer utilization	76
		4.4.4	Simulation 2: performance under TCP flows with different RTTs .	78
		4.4.5	Simulation 3: performance under TCP and UDP traffic	80
	4.5	Discus	sion 2: Resource Discovery over Differentiated Service Network .	81
		4.5.1	Resource Discovery Algorithm for DiffServ	82
		4.5.2	Implementation Issues	85
		4.5.3	Simulation Settings	86
		4.5.4	Simulation 1: RD-DiffServ with unresponsive CBR and TCP flows	88
		4.5.5	Simulation 2: TCP flows with heterogeneous RTTs	90
		4.5.6	Related Research on Resource Discovery Modeling and Parame-	
			ter Setting	93
	4.6	Fairne	ss Analysis of RD-DiffServ Model	95
		4.6.1	A TCP Performance Model under the Differentiated Service	95
		4.6.2	RD-DiffServ Model Fairness Analysis	96
	4.7	Feedba	ack Loop Analysis Background	99
	4.8	Summ	ary	102
5	Fair	Intellig	gent Admission Control	105
	5.1	Introdu	action	105
	5.2	Fair In	telligent Admission Control: Basic Architecture	107
	5.3	Per-cla	ass Fair Intelligent Admission Control	113
		5.3.1	Per-class FIAC Algorithm	115
		5.3.2	Simulation Investigation: Per-class Fair Intelligent Admission Con-	
			trol	116
	5.4	Per-flo	w Fair Intelligent Admission Control	120
		5.4.1	Per-flow Fair Intelligent Admission Control Algorithm	122
		5.4.2	Simulation Investigation: Per-flow Fair Intelligent Admission Con-	
			trol	123
	5.5	Fair In	telligent Admission Control with Variable Packet Size	127

Contents

		5.5.1	Virtual Class-unit	128	
		5.5.2	Evaluation: FIAC over DiffServ for Variable Packet Size	129	
	5.6	Conclu	usion	131	
6	Edge	e-Awar	e Resource Discovery and Fair Intelligent Admission Control sche	me133	
	6.1	Introdu	uction	133	
	6.2	Edge-A	Aware Resource Discovery Scheme	134	
		6.2.1	The Ingress Router Algorithm	136	
		6.2.2	The Egress Router Algorithm	138	
	6.3	Edge-A	Aware Fair Intelligent Admission Control	144	
	6.4	Simula	ation Investigation	148	
		6.4.1	Experiment 1: TCP traffic with different RTTs in different classes	148	
		6.4.2	Experiment 2: mixing TCP and UDP classes	150	
		6.4.3	Experiment 3: Bottleneck link efficiency	150	
		6.4.4	Experiment 4: Overhead vs. Performance	151	
	6.5	Discus	ssion	152	
	6.6	Summ	ary	153	
7	Futu	ire and	Extension Work	155	
	7.1	Future Work			
		7.1.1	Resource Discovery Protocol	155	
		7.1.2	Fair Intelligent Admission Control	159	
		7.1.3	QoS Overlay	160	
		7.1.4	Programmable Router	160	
	7.2	Conclu	usion	161	
8	Sum	mary a	and Conclusions	163	
	8.1	Summ	ary of the contributions	163	
		8.1.1	The Design of the Resource Discovery and Fair Intelligent Ad-		
			mission Control Architecture	166	
		8.1.2	Resource Discovery Protocol	167	
		8.1.3	Fair Intelligent Admission Control	168	

	8.1.4	Edge-Aware Resource Discovery and Fair Intelligent Admission	
		Control	. 168
8.2	Final R	Remarks	. 169
8.3	Conclu	isions	. 170
Bibliography			173

List of Figures

1.1	Problem Illustration by Simulation	6
1.2	TCP flows with different RTTs	6
1.3	UDP/TCP Interaction	8
1.4	Network Provision State Changes	9
1.5	Bandwidth sharing for individual flows inside aggregate	10
2.1	Simple Network	21
2.2	RSVP message processing	25
2.3	Overlay network framework	35
2.4	End-to-End QoS	36
2.5	Top-to-bottom QoS	37
3.1	The RD-FIAC architecture–conceptual view	40
3.2	Illustration of RD-FIAC model	45
3.3	Router Architecture	46
3.4	Vertical Interaction: Control Plane and Data Plane	50
3.5	Horizontal Interaction: RD and FIAC	50
3.6	End-to-End QoS Framework	51
4.1	The network model	56
4.2	Resource Discovery: Basic Architecture	58
4.3	QoS states discovery: RD packets life cycle	59
4.4	RD packet format	65
4.5	Building blocks of an ingress router	68
4.6	Building blocks of an interior router	69

List of Figures	xxii
-----------------	------

4.7	Building blocks of an egress router	70
4.8	Queue Control Function $f(Q)$	71
4.9	QoS states negotiation for inter-domain Resource Discovery	74
4.10	The RD over Internet simulation topology	78
4.11	Bandwidth and buffer utilization	79
4.12	TCP flows with different RTTs	80
4.13	Bandwidth and buffer utilization	81
4.14	TCP flows and UDP flow	82
4.15	NS2 implementation model of a RD-DiffServ Interior node	85
4.16	Admission control module in an ingress router	86
4.17	Simulated network	87
4.18	Goodput of Classes (CBR and TCP flows)	88
4.19	DiffServ and RD-DiffServ: queue length variation and packet delay	90
4.20	Goodput of Classes: TCP flows with different RTTs	91
4.21	DiffServ and RD-DiffServ: queue length variation and packet delay	92
5.1	The network model	108
5.2	FIAC Components	
5.3	Fair Intelligent Admission Control Module	
5.4	buffer consideration	
5.5	Per-flow FIAC and Per-class FIAC	
5.6	Parking-lot Experiment	
5.7	Experiment 1	
5.8	Case 2 and 4 in Experiment 1	
5.9	Average Packet Delay: 1 TCP flow and 3 UDP flows	
	Parking-lot Experiment	
	Per-flow fairness: in Gold class	
	Per-flow fairness in Experiment 1: only Per-class FIAC without per-flow	
	FIAC	126
5.13	Per-flow fairness in Experiment 2: Per-class FIAC and Per-flow FIAC	
	both enabled vs. DiffServ	128
5.14	Simulation Topology	
	1 	

xxiii

5.15	Goodput of Classes (Gold flow with short packet size)
5.16	TCP flows within the class: one flow with large packet size
6.1	Edge-Aware Resource Discovery scheme
6.2	Edge-Aware Resource Discovery Components at Ingress Router 136
6.3	Edge-Aware Resource Discovery Components at Egress Router 141
6.4	Edge-Aware Fair Intelligent Admission Control Components at Ingress . 145
6.5	Simulation Topology: bottle neck is between two core routers
6.6	Goodput of Classes (TCP flows with different RTTs)
6.7	Queue Length and Packet Delay
6.8	Goodput of TCP and UDP classes
6.9	Bottleneck Link Efficiency
6.10	Overhead vs. Performance under different packet size
8.1	Inter-domain Resource Discovery Negotiation Module

List of Tables

1.1	Committed rates for aggregated TCP flows
1.2	Committed rates for aggregated TCP flows
4.1	Committed rates for aggregated flows
5.1	Experiment 1 - Four Cases Description
5.2	Experiment 2 - Three Cases Description
6.1	Difference between the normal RD algorithm and the Edge-Aware RD
	algorithm at ingress
6.2	Differences at Egress: normal RD vs. Edge-Aware RD 144