
Resource Discovery and Fair Intelligent
Admission Control over Scalable

Internet

Ming Li

A Thesis presented for the degree of

Doctor of Philosophy

Department of Computer System
Faculty of Information Technology
University of Technology, Sydney

Australia

September 2004

Dedicated to
my Mum, Mrs. Ming S. Pang

CERTIFICATE OF AUTHORSHIP/ORIGINALITY

I certify that the work in this thesis has not previously been submitted for a degree nor

has it been submitted as part of requirements for a degree except as fully acknowledged

within the text.

I also certify that the thesis has been written by me. Any help that I have received in my

research work and the preparation of the thesis itself has been acknowledged. In addition,

I certify that all information sources and literature used are indicated in the thesis.

Signature of Candidate

—————————————-

Resource Discovery and Fair Intelligent Admission
Control over Scalable Internet

Abstract

The Internet currently supports a best-effort connectivity service. There has been an

increasing demand for the Internet to support Quality of Service (QoS) to satisfy strin-

gent service requirements from many emerging networking applications and yet to utilize

the network resources efficiently. However, it has been found that even with augmented

QoS architecture, the Internet cannot achieve the desired QoS and furthermore, there are

concerns about the scalability of any available QoS solutions. If the network is not pro-

visioned adequately, the Internet is not capable to handle congestion condition. This is

because the Internet is unaware of its internal network QoS states therefore it is not pos-

sible to provide QoS when the network state changes dynamically.

This thesis addresses the following question: Is it possible to deliver the applications

with QoS in the Internet fairly and efficiently while keeping scalability?

In this dissertation we answer this question affirmatively by proposing an innovative

service architecture: the Resource Discovery (RD) and Fair Intelligent Admission Control

(FIAC) over scalable Internet. The main contributions of this dissertation are as follows:

1. To detect the network QoS state, we propose the Resource Discovery (RD) frame-

work to provide network QoS state dynamically. The Resource Discovery (RD)

adopts feedback loop mechanism to collect the network QoS state and reports to

the Fair Intelligent Admission Control module, so that FIAC is capable to take re-

source control efficiently and fairly.

2. To facilitate network resource management and flow admission control, two scal-

able Fair Intelligent Admission Control architectures are designed and analyzed on

two levels: per-class level and per-flow level. Per-class FIAC handles the aggre-

gate admission control for certain pre-defined aggregate. Per-flow FIAC handles

the flow admission control in terms of fairness within the class.

3. To further improve its scalability, the Edge-Aware Resource Discovery and Fair

viii

Intelligent Admission Control is proposed which does not need the core routers

involvement.

We devise and analyze implementation of the proposed solutions and demonstrate the

effectiveness of the approach. For the Resource Discovery, two closed-loop feedback

solutions are designed and investigated. The first one is a core-aware solution which is

based on the direct QoS state information. To further improve its scalability, the edge-

aware solution is designed where only the edges (not core) are involved in the feedback

QoS state estimation. For admission control, FIAC module bridges the gap between “ex-

ternal” traffic requirements and the “internal” network ability. By utilizing the QoS state

information from RD, FIAC intelligently allocate resources via per-class admission con-

trol and per-flow fairness control.

We study the performance and robustness of RD-FIAC through extensive simulations.

Our results show that RD can obtain the internal network QoS state and FIAC can adjust

resource allocation efficiently and fairly.

Publications List

All publications resulting from this thesis are listed as followed.

Referred Journal Papers

1. M. Li, and D. B. Hoang (2004),FIAC: A Resource Discovery-Based Two-level

Admission Control for Differentiated Service Networks, In Computer Commu-

nication Journal: Special Issue on End-to-End Quality of Service Differentiation

(In press), 2004.

2. M. Li, D. B. Hoang, and A. Simmonds (2004),Fair Intelligent Admission Control

over Resource-feedback Differentiated Service Network, to appear InComputer

Communication Journal: the Special Issue of Quality of Service, early 2005.

3. M. Li, D. B. Hoang, and A. Simmonds (2003),Class-Based Fair Intelligent Ad-

mission Control over an Enhanced Differentiated Service Networks, In lecture

Notes in Computer Science (LNCS) 2662, Hyun-Kook Kahng (Ed.), Springer, 2003.

Referred Conference Papers

1. M. Li, and D. B. Hoang (2004),Edge-Aware Resource Discovery and Fair In-

telligent Admission Control over Multi-domain Differentiated Services Net-

works, In IEEE International Conference on Communications (ICC2004), Paris,

France, June 22-26, 2004.

2. M. Li, and D. B. Hoang (2003),Achieving Flow Fairness in DiffServ Class:

Per-flow Fair Admission Control over Differentiated Service Network, In Pro-

ceedings of 4th International Conference on Software Engineering, Artificial In-

telligence, Networking, and Parallel/Distributed Computing (SNPD’03), Luebeck,

Germany, October 16-18, 2003.

ix

x

3. M. Li, D. B. Hoang, and A. Simmonds (2003),Fair Intelligent Admission Control

over DiffServ Network, In Proceedings of 2003 11th IEEE International Confer-

ence on Networks (ICON2003), Sydney, Australia, September 28 - October 1, 2003.

4. M. Li, D. B. Hoang, and A. Simmonds (2003),Class-Based Fair Intelligent Ad-

mission Control over an Enhanced Differentiated Service Networks, In IEEE

International Conference on Information Networking 2003 (ICOIN2003), Jeju Is-

land, Korea, February 12-14, 2003.

5. D. B. Hoang, and M. Li (2003),Fair Intelligent Congestion Control over Diff-

Serv: A Resource Discovery and Control Scheme for DiffServ, In Proceedings

of the 2003 International Conference on Information and Communication Tech-

nologies (ICT 2003), Bangkok, Thailand, April 8-10, 2003.

6. D. B. Hoang, M. Li, and U. Szewcow (2002),RTT-Aware Resource Discovery

and Fair Share Mechanism for DiffServ, In Proceedings of the IEEE Interna-

tional Conference on Networking (ICN 2002), Atlanta, USA, August 26-29, 2002.

7. Q. Yu, M. Li, D. B. Hoang, and D. Feng (2002),Fair Intelligent Feedback Mech-

anism on TCP Based Network, In The 2002 International Conference on Internet

Computing (IC 2002), Las Vegas, California, USA, June, 2002.

8. D. B. Hoang, Q. Yu, M. Li, and D. Feng (2002),Fair Intelligent Congestion Con-

trol Resource Discovery Protocol on TCP Based Network, In Proceedings of the

IFIP 6th Interworking 2002 Symposium, Perth, Australia, October, 2002.

9. M. Li, and D. B. Hoang (2004),Resource Discovery and Fair Intelligent Admis-

sion Control over Differentiated Services Networks for Variable-Length Pack-

ets, In Proceedings of the IEEE 10th Asia-Pacific Conference on Communications

(APCC2004), Beijing, China, August, 2004.

Declaration

The work in this thesis is based on research carried out at the Advance Research in Net-

working Group (ARN), the Department of Computer System, Faculty of Information

Technology, University of Technology, Sydney, Australia. No part of this thesis has been

submitted elsewhere for any other degree or qualification and it all my own work unless

referenced to the contrary in the text.

Copyright c© 2004 by Ming Li.

“The copyright of this thesis rests with the author. No quotations from it should be pub-

lished without the author’s prior written consent and information derived from it should

be acknowledged”.

xi

Acknowledgments

I would like to acknowledge all the help and encouragement I have received in my PhD

studying. I am especially grateful to my supervisor, Professor Doan B. Hoang, for teach-

ing me how to be a independent researcher, for his continuous support and encourage-

ment, and for his guidance throughout the years. His invaluable insight comments and

ideas have greatly improved this thesis. I hope and look forward to continued collabora-

tion with him in the future.

I am grateful to the Mr. Ury Szewcow, my associate adviser, for his advice that helped

to improve my thesis.

I am indebted to Professor David Feng for his advice and inspiration when I was in

University of Sydney.

Thanks for Dr. Andrew J. Simmonds, Dr. Peter Leijdekkers, and Dr. Valerie Gay for

their comments on my work that helped to improve the overall quality of this dissertation.

I am also indebted to several people in our research group, in particular Chi Nguyen,

Bushar Yousef, Hanh Le, and Joe, for thoughtful comments. I am going to miss our Friday

night dinners that always make the hard working week on a high and enjoyable.

I would like to express my gratitude to my wife Fiona Shen for her love and under-

standing through my graduate years. She was always behind me and gave her uncondi-

tional support to make my studying smooth running. Finally, I would like to thank my

son David who used his own way to support me by joy, happiness, and noisy.

I dedicate this dissertation to my mum, who has been the main driving force behind

my research work.

xiii

Contents

Abstract vii

Publications List ix

Declaration xi

Acknowledgments xiii

1 Introduction 1

1.1 Motivation . 1

1.2 Problem Definition . 4

1.2.1 Problem Illustration by Simulation 6

1.3 Contributions . 10

1.3.1 Resource Discovery Protocol . 12

1.3.2 Fair Intelligent Admission Control 13

1.3.3 Edge-Aware Resource Discovery Protocol 13

1.3.4 Edge-Aware Fair Intelligent Admission Control 14

1.4 Thesis Organization . 14

2 Background 17

2.1 The Need for Quality of Service . 18

2.2 Traffic in the Internet . 19

2.2.1 TCP traffic in the Internet . 19

2.2.2 UDP traffic in the Internet . 22

2.3 Approaches for QoS in the Internet . 23

2.3.1 Best Effort Service . 23

xv

Contents xvi

2.3.2 Integrated Services . 24

2.3.3 Differentiated Services . 26

2.4 Service Overlay Networks . 34

2.5 The Challenge of End-to-End QoS . 36

2.6 Summary . 37

3 A Framework for Resource Discovery and Fair Intelligent Admission Control

over Scalable Internet 39

3.1 Overview of the Resource Discovery and Fair Intelligent Admission Con-

trol Architecture . 40

3.1.1 Design Goals and Assumptions 41

3.1.2 The Core-Aware Resource Discovery and Fair Intelligent Admis-

sion Control Model . 44

3.1.3 RD-FIAC Planes Interaction . 49

3.2 End-to-End QoS Framework . 51

3.3 Summary and Discussions . 52

4 Core-Aware Resource Discovery Protocol Based on Feedback Scheme 55

4.1 Introduction . 55

4.2 Core-Aware Resource Discovery Scheme: Basic Architecture 58

4.2.1 Features of the Resource Discovery Model 58

4.2.2 Background: Queue Management and Differentiated Services . . 61

4.2.3 RD Packet Format and Generation 65

4.2.4 RD Ingress node . 68

4.2.5 RD Interior node . 69

4.2.6 RD Egress node . 69

4.3 QoS states functions . 70

4.3.1 Computation of Flow Arrival Rate 70

4.3.2 Fair Available Bandwidth Control Function 71

4.3.3 Queue Control Function . 73

4.3.4 Network QoS state . 74

4.3.5 Inter-domain RD-DiffServ . 74

Contents xvii

4.4 Discussion 1: Resource Discovery over Internet 75

4.4.1 Resource Discovery Algorithm for Internet 75

4.4.2 Simulation setting . 76

4.4.3 Simulation 1: bandwidth and buffer utilization 76

4.4.4 Simulation 2: performance under TCP flows with different RTTs . 78

4.4.5 Simulation 3: performance under TCP and UDP traffic 80

4.5 Discussion 2: Resource Discovery over Differentiated Service Network . 81

4.5.1 Resource Discovery Algorithm for DiffServ 82

4.5.2 Implementation Issues . 85

4.5.3 Simulation Settings . 86

4.5.4 Simulation 1: RD-DiffServ with unresponsive CBR and TCP flows 88

4.5.5 Simulation 2: TCP flows with heterogeneous RTTs 90

4.5.6 Related Research on Resource Discovery Modeling and Parame-

ter Setting . 93

4.6 Fairness Analysis of RD-DiffServ Model 95

4.6.1 A TCP Performance Model under the Differentiated Service . . . 95

4.6.2 RD-DiffServ Model Fairness Analysis 96

4.7 Feedback Loop Analysis Background 99

4.8 Summary . 102

5 Fair Intelligent Admission Control 105

5.1 Introduction . 105

5.2 Fair Intelligent Admission Control: Basic Architecture 107

5.3 Per-class Fair Intelligent Admission Control 113

5.3.1 Per-class FIAC Algorithm . 115

5.3.2 Simulation Investigation: Per-class Fair Intelligent Admission Con-

trol . 116

5.4 Per-flow Fair Intelligent Admission Control 120

5.4.1 Per-flow Fair Intelligent Admission Control Algorithm 122

5.4.2 Simulation Investigation: Per-flow Fair Intelligent Admission Con-

trol . 123

5.5 Fair Intelligent Admission Control with Variable Packet Size 127

Contents xviii

5.5.1 Virtual Class-unit . 128

5.5.2 Evaluation: FIAC over DiffServ for Variable Packet Size 129

5.6 Conclusion . 131

6 Edge-Aware Resource Discovery and Fair Intelligent Admission Control scheme133

6.1 Introduction . 133

6.2 Edge-Aware Resource Discovery Scheme 134

6.2.1 The Ingress Router Algorithm 136

6.2.2 The Egress Router Algorithm 138

6.3 Edge-Aware Fair Intelligent Admission Control 144

6.4 Simulation Investigation . 148

6.4.1 Experiment 1: TCP traffic with different RTTs in different classes 148

6.4.2 Experiment 2: mixing TCP and UDP classes 150

6.4.3 Experiment 3: Bottleneck link efficiency 150

6.4.4 Experiment 4: Overhead vs. Performance 151

6.5 Discussion . 152

6.6 Summary . 153

7 Future and Extension Work 155

7.1 Future Work . 155

7.1.1 Resource Discovery Protocol . 155

7.1.2 Fair Intelligent Admission Control 159

7.1.3 QoS Overlay . 160

7.1.4 Programmable Router . 160

7.2 Conclusion . 161

8 Summary and Conclusions 163

8.1 Summary of the contributions . 163

8.1.1 The Design of the Resource Discovery and Fair Intelligent Ad-

mission Control Architecture . 166

8.1.2 Resource Discovery Protocol . 167

8.1.3 Fair Intelligent Admission Control 168

Contents xix

8.1.4 Edge-Aware Resource Discovery and Fair Intelligent Admission

Control . 168

8.2 Final Remarks . 169

8.3 Conclusions . 170

Bibliography 173

List of Figures

1.1 Problem Illustration by Simulation . 6

1.2 TCP flows with different RTTs . 6

1.3 UDP/TCP Interaction . 8

1.4 Network Provision State Changes . 9

1.5 Bandwidth sharing for individual flows inside aggregate 10

2.1 Simple Network . 21

2.2 RSVP message processing . 25

2.3 Overlay network framework . 35

2.4 End-to-End QoS . 36

2.5 Top-to-bottom QoS . 37

3.1 The RD-FIAC architecture–conceptual view 40

3.2 Illustration of RD-FIAC model . 45

3.3 Router Architecture . 46

3.4 Vertical Interaction: Control Plane and Data Plane 50

3.5 Horizontal Interaction: RD and FIAC 50

3.6 End-to-End QoS Framework . 51

4.1 The network model . 56

4.2 Resource Discovery: Basic Architecture 58

4.3 QoS states discovery: RD packets life cycle 59

4.4 RD packet format . 65

4.5 Building blocks of an ingress router . 68

4.6 Building blocks of an interior router . 69

xxi

List of Figures xxii

4.7 Building blocks of an egress router . 70

4.8 Queue Control Function f(Q) . 71

4.9 QoS states negotiation for inter-domain Resource Discovery 74

4.10 The RD over Internet simulation topology 78

4.11 Bandwidth and buffer utilization . 79

4.12 TCP flows with different RTTs . 80

4.13 Bandwidth and buffer utilization . 81

4.14 TCP flows and UDP flow . 82

4.15 NS2 implementation model of a RD-DiffServ Interior node 85

4.16 Admission control module in an ingress router 86

4.17 Simulated network . 87

4.18 Goodput of Classes (CBR and TCP flows) 88

4.19 DiffServ and RD-DiffServ: queue length variation and packet delay . . . 90

4.20 Goodput of Classes: TCP flows with different RTTs 91

4.21 DiffServ and RD-DiffServ: queue length variation and packet delay . . . 92

5.1 The network model . 108

5.2 FIAC Components . 110

5.3 Fair Intelligent Admission Control Module 111

5.4 buffer consideration . 112

5.5 Per-flow FIAC and Per-class FIAC . 113

5.6 Parking-lot Experiment . 118

5.7 Experiment 1 . 120

5.8 Case 2 and 4 in Experiment 1 . 121

5.9 Average Packet Delay: 1 TCP flow and 3 UDP flows 122

5.10 Parking-lot Experiment . 125

5.11 Per-flow fairness: in Gold class . 125

5.12 Per-flow fairness in Experiment 1: only Per-class FIAC without per-flow

FIAC . 126

5.13 Per-flow fairness in Experiment 2: Per-class FIAC and Per-flow FIAC

both enabled vs. DiffServ . 128

5.14 Simulation Topology . 129

List of Figures xxiii

5.15 Goodput of Classes (Gold flow with short packet size) 130

5.16 TCP flows within the class: one flow with large packet size 131

6.1 Edge-Aware Resource Discovery scheme 135

6.2 Edge-Aware Resource Discovery Components at Ingress Router 136

6.3 Edge-Aware Resource Discovery Components at Egress Router 141

6.4 Edge-Aware Fair Intelligent Admission Control Components at Ingress . 145

6.5 Simulation Topology: bottle neck is between two core routers 148

6.6 Goodput of Classes (TCP flows with different RTTs) 149

6.7 Queue Length and Packet Delay . 149

6.8 Goodput of TCP and UDP classes . 150

6.9 Bottleneck Link Efficiency . 151

6.10 Overhead vs. Performance under different packet size 151

8.1 Inter-domain Resource Discovery Negotiation Module 165

List of Tables

1.1 Committed rates for aggregated TCP flows 9

1.2 Committed rates for aggregated TCP flows 10

4.1 Committed rates for aggregated flows 87

5.1 Experiment 1 - Four Cases Description. 119

5.2 Experiment 2 - Three Cases Description 127

6.1 Difference between the normal RD algorithm and the Edge-Aware RD

algorithm at ingress . 138

6.2 Differences at Egress: normal RD vs. Edge-Aware RD 144

xxiv

Chapter 1

Introduction

1.1 Motivation

This thesis is on the subject of providing Quality of Service (QoS) guarantees and scala-

bility in the Internet.

The Internet has been enjoying great success in the last ten years or so. IP network

architecture enables Internet routers to be stateless. Routers only maintain certain highly

aggregate routing information. They do not maintain any other forwarding state infor-

mation. In particular, they do not maintain any per-flow state and do not perform any

per-flow operations. Because routers do not need to maintain any per-flow state and do

not perform any per-flow operations, the operational complexity of Internet routers does

not increase linearly with the number of flows present at the routers. Consequently, Inter-

net routers are able to handle a large number of simultaneous flows. In this sense, we say

the Internet architecture is scalable. Secondly, because routers do not maintain any per-

flow state, after a link or router failure, packets of the flows being affected by the failure

can be automatically routed around the failure point by an upstream router. Therefore,

end hosts are not even aware of such failures, and no connection re-establishments are

needed. In this sense, we say the current Internet architecture is robust.

On the other hand, the stateless Internet architecture also has some shortcomings. The

current Internet supports only a single “best-effort” class of service where traffic is pro-

cessed as quickly as possible but there is no guarantee as to timeliness or actual delivery.

Note that, because routers do not maintain any per-flow state, they cannot differentiate

1

1.1. Motivation 2

packets from different flows and provide performance-demanding applications with more

resources or better treatment. It does not make any promise regarding the successful

delivery of a packet, nor does it guarantee how long it takes for a packet to reach the

destination. The best-effort service model is perhaps an adequate service model for the

traditional Internet applications such as file transfers and E-mail. These applications are

highly adaptive, they do not require stringent performance guarantees from the Internet.

When utilizing traditional data applications, users know that at some point in time, they

wait patiently, the desired web page, file or e-mail will reach their desktops. If users can-

not wait that long, there is no solution, other than upgrading their connection with the

access provider or opting for another one.

However, since the late eighties, the Internet is increasingly become used as a com-

mercial infrastructure, thereby it demands more flexible service-based scheme for sup-

porting QoS of applications. Secondly, an increasing number of different applications,

such as interactive multimedia applications or streaming applications (radio or video),

users are subject to frequent disruptions and delays that sometimes make it impossible to

enjoy them. There is a need for differentiated services which are charged accordingly. A

best-effort service, however, will remain for those customers who only need connectivity.

To address these issues, the problem of providing Quality of Service (QoS) in the

Internet, the Internet Engineering Task Force (IETF) has recently recommended two

QoS architectures for the Internet: the Integrated Service/Resource reSerVation Proto-

col model (IntServ) [53] and the Differentiated Service (DiffServ) [59] model. The goal

of IntServ is to allow end-to-end QoS to be provided to individual flows. The resource

requirements (computational processing and memory consumption) for running per-flow

resource reservations on routers increase in direct proportion to the number of separate

reservations that need to be accommodated. The use of per-flow state and per-flow pro-

cessing is thus not cost effective, or even feasible across the high-speed core of a network.

In contrast, DiffServ architecture proposes a scalable service discrimination model with-

out requiring per-flow state management in the core network. DiffServ focuses primarily

on aggregate flows and differentiates between service classes rather than providing abso-

lute per-flow QoS guarantees. Depending on the amount of control state maintained at

Internet routers, we can classify QoS mechanisms into two categories:stateful and state-

1.1. Motivation 3

less. Stateful solutions need to maintain fine-grained per-flow state at each Internet router

and perform certain per-flow operations. In contrast, stateless solutions preserve the state-

less property of the current Internet architecture. Only coarse-grained aggregate state is

maintained at Internet routers. The Integrated Service model (IntServ) [53] is a represen-

tative of a stateful QoS solution, while the Differentiated Service (DiffServ) model [8] is

an example of a stateless QoS solution.

Stateful solutions such as IntServ provide very powerful and flexible QoS guarantees.

In particular, per-flow rate and delay service guarantees can be supported in the IntServ

framework. Compared with the stateful solutions, stateless solutions such as DiffServ can

only providecoarse-grained aggregate service guarantees. Currently, it is not clear if

such aggregate service guarantees are sufficient for supporting performance-demanding

applications such as video streaming over the Internet. On the other hand, IntServ is a very

costly solution. The operational complexity of routers in the IntServ framework increases

linearly with the number of simultaneous flows at the routers. In contrast, DiffServ is

much simpler and more scalable, given that no per-flow state is maintained by Internet

core routers.

So, we can summarize our motivation for QoS in the Internet as follows.

• Firstly, the increasing case of Voice over IP/IP telephony and other application re-

quiring QoS.

• Secondly, there are standardized QoS technologies, such as IntServ and DiffServ.

• Thirdly, DiffServ is being employed in IP network but it is not a complete solution.

• Fourthly, applying DiffServ across the Internet needs for QoS enhancement mecha-

nisms which have capability to detect network state variation, and to take admission

control based on the network state information.

Any proposed solution to QoS should consider the above issues as well as being prac-

tical to deploy.

1.2. Problem Definition 4

1.2 Problem Definition

This dissertation attempts to answer the following question: Is it possible to provide Qual-

ity of Service without compromising scalability, flexibility and bandwidth efficiency of

the current Internet in infrastructure?

We start by clarifying some important terminologies that used throughout this thesis.

• Quality of Service (QoS) is the ability of a network element (e.g. an application,

a host or a router) to provide some level of assurance for consistent network data

delivery in terms of throughput, end-to-end delay, fairness, delay jitter, packet loss,

and service reliability.

Some applications are more stringent about their QoS requirements than others, and

for this reason we have two basic types of QoS available: Resource reservation type

of QoS (e.g. integrated services) and Prioritization type of QoS (e.g. differentiated

services).

For Resource reservation type of QoS, the network resources are apportioned ac-

cording to an application’s QoS request, and subject to bandwidth management

policy.

For Prioritization type of QoS, the network traffic is classified and the network

elements give preferential treatment to classifications identified as having more de-

manding requirements.

These types of QoS can be applied to individual application “flow” or to flow ag-

gregates. A “flow” is defined as an individual, uni-directional, data stream between

two applications (senders and receiver). An aggregate is simply two or more flows.

Typically the flows will have something in common (e.g. same priority number).

Resource reservation (e.g. integrated services) type of QoS is applied on a per-

flow basis. Prioritization (e.g. differentiated services) type of QoS is applied on a

per-aggregate basis.

• Service is the treatment provided by routers and other network elements to packets

of an application as they traverse the path between source and destination domain.

1.2. Problem Definition 5

• Fairness means allocating the volume of resource of network to a flow may have

in the network in a fair manner. We call this kind of fairness as “bandwidth delay

product fairness”. Thus bandwidth delay product fairness takes into account the

transmission rate and the round trip time as an indicator for the length of the pipe.

The differentiated service (DiffServ) [57] seems more amenable to the idea of provid-

ing QoS in the Internet. DiffServ is a simple method of providing differentiated classes

of service, also known as Quality of Service, for Internet traffic. A small bit-pattern in

each IP packet is used to mark a packet to receive a particular forwarding treatment, or

per-hop behavior (PHB), at each network node. At the network border, service classes

are identified and packets are marked as belonging to a particular service. Within the net-

work, routers examine IP headers to determine which forwarding treatment is appropriate

for each packet. In DiffServ, Assured Forwarding (AF) [60] PHB divides traffic into four

classes where each AF class is guaranteed some minimum resources (capacity and buffer-

ing). Within each class, packets are further partitioned into one of three drop preference

categories. Congested routers then drop/mark based on their preference values; and the

Expedited Forwarding (EF) [62] PHB defines a service with low packet loss, low latency,

low jitter and guaranteed bandwidth.

This thesis is focus on Prioritization type of QoS, differentiated services (DiffServ).

Indeed, as long as the network is correctly provisioned, scheduling in Assured For-

warding (AF) can be realized with a first-in-first-out (FIFO) discipline. Service differ-

entiation can be enforced by marking packets as in-profile or out-of-profile, and using a

buffer management algorithm that drops out-of-profile packets more aggressively.

RED with In and Out (RIO) [16], originally proposed to implement the Allocated

Capacity framework from which the Assured Forwarding service is derived, is extension

to Random Early Drops (RED) [23] which aim at class-based service differentiation.

However, as discussed in [50, 70], DiffServ, e.g. RIO-based scheme, exposes the

unfair allocation of the network bandwidth among the Assured Forwarding service in

case of different Round Trip Time (RTT), UDP/TCP interaction, network provision state

changes, and unfair for micro flows inside the aggregate.

1.2. Problem Definition 6

node 1

DiffServ

RIO router

DropTail

router1 Mbps

100 Mbps,2ms

100 Mbps,2ms

node 2

node 3

node 4

100 Mbps 2ms

100 Mbps 2ms

node 5

node 6

node 7

node 8

10 ms

100Mbps,88ms

100 Mbps 38ms

100 Mbps 13ms

100 Mbps, 3ms

Figure 1.1: Problem Illustration by Simulation

0

0.1

0.2

0.3

0.4

0.5

0 50 100 150 200

G
oo

dp
ut

 in
 M

bp
s

Simulation time (s)

TCP flows with different RTTs

1
2
3
4

Gold
Silver

Bronze
BE

Figure 1.2: TCP flows with different RTTs

1.2.1 Problem Illustration by Simulation

The following simulations, executed with ns simulator [47], expect to demonstrate the

problems of unfairness and congestive collapse in case of different Round Trip Time

(RTT), UDP/TCP interaction, network provision state changes, and unfairness for micro

flows inside the aggregate.

Experiment 1: TCP flows with different Round Trip Time

The conditions to evaluate the effects of heterogeneous RTTs in bandwidth sharing among

TCP flows can not be easily generated, controlled and measured in a test platform. There-

1.2. Problem Definition 7

fore, simulation is a more obvious choice.

Using the well-known ns-2 Network Simulator [47], we built the layout depicted in

Figure 1.1 to study this subject. Two routers, DiffServ RIO router and Drop-tail router,

are connected through a1 Mbps link; DiffServ RIO router with three drop-precedence

levels is available at the ingress router. 4 bulk data TCP flows sent from the left to the

right over the network with RTTs that go from200 ms,100 ms,50 ms to30 ms. The TCP

traffic sent from node 1 to node 5 is marked as Gold class, the traffic sent from node 2

to node 6 is marked as Silver class, the traffic sent from node 3 to node 7 is marked as

Bronze class, and the traffic sent from node 4 to node 8 is marked as Best effort class.

The claim40%, 30%, 20%, and10% bandwidth of the bottleneck (DiffServ RIO node)

respectively. In Best Effort class, TCP flow has short RTT, 30 ms. In other classes, TCP

flows have long RTTs, 200 ms (in Gold), 100 ms (in Silver), and 50 ms (in Bronze).

DiffServ RIO parameters are set as follows: for each class queue,minth = 10,

maxth = 40, maxp = 1/50, respectively.

Figure 1.2 shows that the bandwidth share decreases as the RTT increases. The best

effort (BE) traffic achieved more bandwidth share due to its short RTT. It can be said

that Assured Forwarding (AF) does not assure an “Assured Bandwidth” service for TCP

connections with different RTTs, since throughput depends on RTT. Sessions with small

RTTs react faster to losses in the network, so that no big bursts are produced.

Experiment 2: UDP/TCP interaction

The layout depicted in Figure 1.1 was used. As in the previous layout, two routers are

connected through a1 Mbps link; the input are 3 TCP connections with same RTT that is

100 ms and they are marked as Gold (claim40%), Bronze (claim20%, and BE (claim10%

less) respectively. The UDP traffic (CBR) is marked as Silver which claim30%. The UDP

rate was1 Mbps. Figure 1.3 shows that the UDP flow (Silver) consumes nearly 40 percent

of the link-bandwidth beyond the TCP flow (Gold). Here we observe a well-known result:

TCP is considerably affected by UDP traffic, which gets all the bandwidth associated to

its rate. Nevertheless, the capacity not used by UDP, if any, is shared equally among TCP

aggregates. When there is UDP traffic in the link, the high-rate aggregate (e.g. Gold) fails

to obtain the desired rate (40%).

1.2. Problem Definition 8

0

0.1

0.2

0.3

0.4

0.5

0 50 100 150 200

G
oo

dp
ut

 in
 M

bp
s

Simulation time (s)

TCP/UDP Interaction

1
2
3
4

Gold
Silver

Bronze
BE

Figure 1.3: UDP/TCP Interaction

There are two initial conclusions of this test: the first one is that care should be taken

into account when deciding if UDP traffic is to be aggregated with TCP traffic and pro-

cessed in the AF. The second one is that bandwidth sharing can not be achieved for TCP

flows in the presence of unresponsive UDP flows.

Experiment 3: Network provision state changes

In order to evaluate the effect of network provision state changing for TCP in bandwidth

sharing, this experiment is designed to see if differentiation can be obtained.

The layout depicted in Figure 1.1 was used. As in the previous layout, two routers are

connected through a1 Mbps link. Four aggregates labeled Gold, Silver, Bronze, and BE.

The committed rate of each aggregate is shown in Table 1.2.1.

Gold and Silver TCP traffic the same RTTs of 100 ms. Bronze and BE TCP traffic

have the same RTTs of 50 ms. Figure 1.4 shows the result of the simulation when the

bottleneck link state changing from10 Mbps to 1 Mbps. It is clear that AF can not

distribute bandwidth differentially in case of provision state change. This drawback might

limit the flexibility of differentiation. Therefore, more research and experience in AF is

needed to guarantee, at least in statistical terms, that the aggregates can get proportional

1.2. Problem Definition 9

0

0.1

0.2

0.3

0.4

0.5

0 50 100 150 200

G
oo

dp
ut

 in
 M

bp
s

Simulation time (s)

Bottleneck Provision State Changes

1
2
3
4

Gold
Silver

Bronze
BE

Figure 1.4: Network Provision State Changes

Aggregate Committed rate (kB/s)

Gold 4000

Silver 3000

Bronze 2000

Best Effort less than 1000

Table 1.1: Committed rates for aggregated TCP flows

bandwidth sharing regardless of provision state change.

Experiment 4: Bandwidth sharing for individual flows inside the aggregate

The layout depicted in Figure 1.1 was used. As in the previous layout, two routers are

connected through a1Mbps link. Four aggregates labeled Gold, Silver, Bronze and BE in

Figure 1.1, each one composed of 4 individually marked flows which also have different

RTTs, chosen from200ms, 100ms, 50ms and30ms. The aggregates are marked with

different committed rates, looking for a weighted sharing of the available bandwidth. The

committed rate of each aggregate is shown in Table 1.2.1.

What happened with bandwidth distribution for micro flows inside the aggregate?

1.3. Contributions 10

0

0.05

0.1

0.15

0.2

Gold Silver Bronze BE

G
oo

dp
ut

 in
 M

bp
s

Bandwidth for micro flows inside the aggregate

Figure 1.5: Bandwidth sharing for individual flows inside aggregate

Aggregate Committed rate (kB/s)

Gold 400

Silver 300

Bronze 200

Best Effort less than 100

Table 1.2: Committed rates for aggregated TCP flows

Figure 1.5 shows the corresponding plot. It is clear that the distribution is very unfair due

to heterogeneity in RTTs.

1.3 Contributions

It has been observed from last section that DiffServ can hardly achieve the desired edge-

to-edge QoS in case of different RTTs, UDP/TCP interaction, provision state change, and

it can not achieve flow fairness for micro flows inside the aggregate. This is because the

DiffServ and the Internet are unaware of their internal network QoS states. Even if the

“inside” network is in congestion state, they still forward the overloading traffic into the

1.3. Contributions 11

network resulting in worse congestion situation.

To address the above mentioned problems, and more importantly towards providing

a complete scalable QoS solution, in this dissertation we propose and investigate aRe-

source Discovery and Fair Intelligent Admission Control over scalable Internet model

(RD-FIAC). RD-FIAC addresses the QoS provisioning problem from two complemen-

tary aspects, namely the resource discovery and the fair intelligent admission control.

The RD framework is core stateless. Internet core routers do not maintain any per-flow

state and do not perform any per-flow operations. Moreover, both aggregate and per-

flow state service guarantees can be supported within this framework. On the resource

management control plane, we design and investigate fair intelligent admission control

(FIAC). Research results obtained in this dissertation work have been or will be partially

reported in [34–36,38–41,43,44].

The fundamental contribution of this dissertation is the proposal of an architecture for

providing per-class QoS and per-flow fairness inside the class that scalable to the Internet.

To that effect, we consider the design and implementation of a two-plane architecture that

provides assured service guarantees to classes and per-flow fairness among a class, while

avoiding resource reservations.

We believe that end-to-end QoS could be obtained by analyzing end-to-edge, edge-to-

edge, and edge-to-end localization QoS solutions. RD-FIAC architecture supports end-

to-edge, edge-to-edge, and edge-to-end QoS solutions by its natural design.

RD-FIAC has several caveats:

• Service is the treatment provided by routers and other network elements to packets

of an application as they traverse the path between source and destination domain.

The RD-FIAC is able to break the limitations of the best effort service, by offering

performance guarantees according to QoS metrics.

• End-to-end means that the communicating users may access the Internet from dif-

ferent administrative domains (network), i.e., they are not restricted to use services

within their particular service provider. This distinction is important in the sense

that there is a strong trend toward providing QoS guarantees for some intradomain

services. One illustrative example is a virtual private network (VPN) for connect-

1.3. Contributions 12

ing headquarters and branch offices of the same company or creating extranets for

e-business among different companies.

• An evolutionary approach is assumed, whereby the current Internet is the basis for

a true converged network [18] (delivering data, voice and video). To put it more

simply, this proposal does not require the current Internet to be abandoned and a

brand new network to be built. The proposal aims at gradually introducing new

QoS-based services in the Internet by tackling both problems and limitations of the

best effort service and those from the interconnection of domains.

• The RD and FIAC architecture is proposed as an overlay (virtual) network over the

scalable Internet capable of resolving the main issues related to QoS from a higher

level of resource discovery, while keeping in mind practical solutions for providing

the required QoS guarantees for the applications.

Most of these aspects are incorporated into the RD and FIAC architecture that was de-

veloped to provide edge-to-edge QoS and flow fairness in the Internet. It makes it possible

to decouple QoS control from the normal data packet transmission. In order to provide

flexibility to resource discovery and control negotiation, the control plane is introduced.

The control plane generates Resource Discovery packet to detect network status and ne-

gotiation with admission control module. It plays a fundamental role in RD and FIAC.

It can be seen as an overlay plane over the data plane and its operation and implemen-

tation do not cause further change to the existing infrastructure. Its main functions are

resource discovery, negotiation with admission control, and resource management. In the

data plane domains just function as DiffServ and its main responsibility is assuring that

service is operating within the agreed quality levels.

1.3.1 Resource Discovery Protocol

We propose and develop a Resource Discovery (RD) framework to provide internal net-

work QoS state dynamically. The concept of Resource Discovery Protocol is the closed-

loop feedback mechanism. The edge routers periodically probe the network to obtain

the current network QoS state. The ingress router is responsible for generating Resource

1.3. Contributions 13

Discovery packet (RD packet) which is used to collect network QoS state information.

The RD packet is referred and/or updated by core routers in terms of the available re-

sources until it reaches the egress router. The egress router is responsible to send back

the RD packet to the ingress router. Depending on the control mechanism, the ingress

router may send RD packets to its connected interior routers on a per-flow or per-class

basis. Moreover, the Resource Discovery Protocol is built on the DiffServ and the Inter-

net architecture and it is backward compatible with existing DiffServ and the Internet for

enabling interoperability.

We design and analyze several new resource discovery mechanisms to illustrate how

both aggregate and per-flow service guarantees can be supported within this framework.

Resource Discovery over Internet (RD-Internet) is applied to collect the current QoS

state of the Internet domain. Resource Discovery over DiffServ (RD-DiffServ) is ap-

plied to collect the QoS state of the DiffServ domain. Moreover, we investigate the cost-

performance trade-offs in supporting QoS in the Internet and DiffServ by studying the

QoS provisioning power of these resources discovery algorithms.

1.3.2 Fair Intelligent Admission Control

To facilitate network resource management and flow admission control functions, two

scalable Fair Intelligent Admission Control architectures are designed and investigated.

Per-class FIAC handles the aggregate admission control for certain pre-defined aggregate.

Per-flow FIAC handles the flow admission control for the class. They interact with Re-

source Discovery module for allocating and de-allocating the network resources along the

path. In this way, the FIAC only needs to handle coarse time scale resource request from

edge routers. Consequently, its scalability is greatly improved.

1.3.3 Edge-Aware Resource Discovery Protocol

Trying to minimize the core routers involvement, we propose an architecture calledEdge-

Aware Resource Discovery. The Edge-Aware Resource Discovery (Edge-Aware RD)

measures the network QoS state indirectly at the edges, taking into account various factors

such as SLA, edge queue variation, and available bandwidth variation at edge. The basic

1.4. Thesis Organization 14

idea in Edge-Aware RD is that the available bandwidth variation at the egress shows a

decreasing trend when the congestion is happening in the network. The simulations show

that the Edge-Aware RD reports the available resources in a wide range of load conditions

and path configurations. Also, the Edge-Aware RD does not cause significant increases

in the network utilization, delays, or losses.

1.3.4 Edge-Aware Fair Intelligent Admission Control

Edge-Aware Fair Intelligent Admission Control (Edge-Aware FIAC) is based on Edge-

Aware RD and applies the fair intelligent admission control algorithms to make admission

decision.

Analytical models and approximate solutions are developed for both Edge-Aware Re-

source Discovery and Fair Intelligent Admission Control, which provide useful guidelines

on how should be provisioned to construct an end-to-end QoS architecture.

1.4 Thesis Organization

This thesis is structured for introducing the concepts and proposals in a logical fashion. In

this chapter, the problem of QoS in the Internet was introduced and the proposed solution

was outlined. The remainder of this document is organized as follows. Chapter 2 reviews

the background in the Internet QoS area. First, it analyzes the influence of the meth-

ods and structures for the interconnection of domains on the lack of QoS in the current

Internet. Then, it presents some concepts involving QoS-based services in the Internet,

including a proposal for a service life cycle. Finally, it introduces the main technologies

that are being developed for deploying QoS in the Internet.

Chapter 3 introduces the Resource Discovery (RD) and Fair Intelligent Admission

Control (FIAC) architecture, elaborating on the control and data planes and their interac-

tions. It also presents the important concept of a RD and FIAC, which represents a group

of domains willing to deploy the RD and FIAC architecture together with each other. The

resource control activities for service provisioning are also described. We divide the Re-

source Discovery mechanisms into core-aware mechanism inside the DiffServ modes and

edge-aware mechanism at the edge nodes only. Based on this network model we study

1.4. Thesis Organization 15

core-aware Resource Discovery mechanism, in Chapter 4, edge-aware Resource Discov-

ery mechanism, in Chapter 6, and using simulations, in Chapter 4 and Chapter 6, how

the division of bandwidth between elastic and non-elastic flows depends on the DiffServ

mechanisms with RD and FIAC.

Chapter 4 describes the strategy adopted the feedback loop built on the concept of the

resource discovery.

Chapter 5 describes the main ideas related to Fair Intelligent Admission Control. The

concepts developed for negotiation with Resource Discovery Protocol (RD). This chapter

first describes the admission control model, comprised of incoming traffic and negotia-

tions with RD. This chapter also gives some directions for the interaction of FIAC, which

can use for multi-domains situation.

Chapter 6 aims at evaluating the Edge-Aware Resource Discovery and Fair Intelligent

Admission Control architecture models, mostly based on a simulation study. The criteria

for comparison are efficiency, fairness, scalability, reliability, and complexity and costs.

The RD and FIAC model is found to be the best alternative, when comparing efficiency,

fairness and scalability. It is also able to provide the right financial incentives for deploy-

ing QoS and resolves some of the current problems of the interconnection of domains in

the Internet.

Chapter 7 outlines the extension and future works.

Chapter 8 concludes the thesis and discusses directions for future work.

Chapter 2

Background

Providing QoS in the Internet has been a topic of great interest for users, providers, ven-

dors and researchers in recent years. The main motivation is turning the Internet into a

true converged network, where real-time multimedia application can be deployed together

with the more traditional data applications. However, the goal of achieving end-to-end or

edge-to-edge QoS has to be fulfilled with the current Internet as the starting point, There-

fore, this chapter aims at presenting background information on the main problems and

solutions in the Internet QoS area and the challenges facing QoS deployment.

IETF has defined aguaranteed service[56] under its Integrated Services or IntServ

architecture [15, 53], where end-to-end delay and bandwidth guarantees are provided for

users on aper-flowbasis. To support the IETF IntServ architecture, a signaling proto-

col, RSVP, for setting up end-to-end QoS reservation along a flow’s path has also been

proposed and standardized [55,71].

Performing per-flow management inside the network, however, raises the important

issue of scalability. Due to the complexities of per-flow operations both in the data plane

and QoS control plane, the IntServ architecture may not scale well with the size of the

Internet and the number of applications. As an alternative to per-flow based QoS provi-

sioning, a different paradigm - the Differentiated Service or DiffServ - was later proposed

and defined by the IETF [8, 57]. Under this paradigm, services are defined and imple-

mented within individual administrative domains. To provide scalable QoS support, fine-

grain user QoS control information is only maintained at the edge routers (i.e., ingress

and egress routers) of an administrative domain.

17

2.1. The Need for Quality of Service 18

In the following section, the most important issues regarding Internet QoS is exposed.

Section 2.1 discusses the need for Quality of Service. In the Section 2.2, some concepts

related to QoS are presented. In Section 2.3, the QoS approaches that have been seriously

considered for implementing QoS in the last decade are presented. Finally, Section 2.4

summarizes the contributions of this chapter.

2.1 The Need for Quality of Service

IP QoS (Quality of Service) refers to the performance of IP packet flow through networks.

There are several different definitions of QoS. Everyone who uses the Internet knows that

it does not deploy QoS, but currently there is no comprehensive and unique definition

of QoS. The definition adopted here characterizes QoS according to performance being

measured by routers.

1. Quality of Service (QoS) is defined as the service quality that has to be guaran-

teed in terms of throughput, end-to-end delay, fairness, delay jitter, packet loss, and

service reliability. Some applications are more stringent about their QoS require-

ments than others, and for this reason we have two basic types of QoS available:

Resource reservation (e.g. integrated services) and Prioritization (e.g. differenti-

ated services). For Resource reservation type of QoS, the network resources are

apportioned according to an application’s QoS request, and subject to bandwidth

management policy. For Prioritization type of QoS, the network traffic is classified

and the network elements give preferential treatment to classifications identified as

having more demanding requirements. These types of QoS can be applied to indi-

vidual application “flow” or to flow aggregates. A “flow” is defined as an individ-

ual, uni-directional, data stream between two applications (senders and receiver).

An aggregate is simply two or more flows. Typically the flows will have something

in common (e.g. same priority number). Resource reservation (e.g. integrated ser-

vices) type of QoS is applied on a per-flow basis. Prioritization (e.g. differentiated

services) type of QoS is applied on a per-aggregate basis.

2. The set of technologies that enable a network to make performance assurances.

2.2. Traffic in the Internet 19

This characterization is particularly useful when services are to be deployed coopera-

tively by a group of networks that implement different QoS technologies.

With respect to the level of guarantees a network is able to provide, QoS can be

broadly classified into two types: resource reservation and prioritization. QoS based on

resource reservation offers guarantees for each flow individually, for instance in IntServ.

This would be ideal for end-to-end QoS, but it raises serious concerns with respect to scal-

ability. Prioritization refers to giving a differentiated treatment to some classes of service,

comprised of traffic aggregates, for example in DiffServ. With prioritization, there are no

individual guarantees, but the scalability is enhanced.

Some driving forces that are leading to the QoS deployment in the Internet are users,

ISPs, telecommunication operators and equipment vendors. Users want QoS-based ser-

vices for use by different applications, such interactive voice and video, which face per-

formance problems in the current Internet. With IP QoS, ISPs can achieve greater prof-

itability through more business and more efficient use of bandwidth, enhanced service

differentiation, better-than-best-effort service and customized solutions. Telecommuni-

cation companies that have been operating two different networks (PSTN and data net-

works) are willing to deliver both voice and data over a single converged network, in

order to save the costs of maintaining a duplicate structure. Most vendors of equipments

for the Internet have solutions for deploying QoS according to the current standards and

want QoS solutions to be disseminated in the Internet, in order to increase their profits

and market share.

2.2 Traffic in the Internet

2.2.1 TCP traffic in the Internet

The TCP mechanism is described in RFC 793 [52], dating back to 1981. The transport

protocol is a connection oriented and end-to-end reliable protocol designed to fit into a

layered hierarchy of protocols that support internetworking applications. The operative

entities include a basic data transfer, reliability, flow control, multiplexing, connections,

precedence and security.

During the connection establishment phase a TCP connection is formed with a three-

2.2. Traffic in the Internet 20

way handshake mechanism with random initial sequence numbers sent by both sender and

receiver to synchronize sequence numbers between the end-points. A TCP connection is

uniquely identified by the 4-tuple of source and destination ports and addresses. The TCP

header includes also the sequence number field for reliability, where the sequence number

of the segment corresponds to the sequence number of the first byte.

The receiver advertised window (rwnd) and the acknowledgment (ACK) fields are

needed for flow control. The sender also paces the datagram transmission according to

the acknowledgment packets sent by the receiver. This is termed acknowledgment or self

clocking.

To retransmit packets that are lost, adaptive retransmission is used. Segments are

retransmitted if an acknowledgment packet (ACK) for the segment has not been received

within a specific timeout. To this end, TCP has to have an effective and adaptive timeout as

a function of both estimated round trip-time (RTT) and its variance. The RTT is sampled

once rather than once per packet using a coarse 500 ms clock. Furthermore each time

TCP retransmits, the next timeout is set to twice the previous timeout.

Linked with the study of TCP models and the resulting steady state throughputs is the

study of how fair TCP is in dividing bandwidth between competing flows. The notion

of fairness was set to assess this question. The study of pricing schemes is also strongly

wrapped around the fairness concepts, mainly due to its economical heritage.

Fairness is a measure of the equal fulfillment of requirements of the network users in

the same way as efficiency is a measure of the fulfillment of the technical requirements.

As fairness measures the satisfaction of customer needs, it can be assessed using util-

ity functions and social optima calculations. This has been the formulation in the work

performed by Kelly et al. [31].

If a price is introduced that depends on the flow patternx, we can formulate the mea-

sure of fairness as an optimization problem. Given a utility functionUr(xr), the opti-

mization problem of maximizing overall utility results in charging and allocating network

resources according to some fairness criteria. Besides the work by Kelly et al. different

fairness concepts and TCP fairness have been studied by Massoulie et al. [46].

Ideally, assuming all customers are well behaving, the use of TCP should result in

each flow receiving the same amount of service, e.g. capacity and packet loss. A natural

2.2. Traffic in the Internet 21

flow1

flow2 flow3

bottleneck1 bottleneck2Router1 Router2

Figure 2.1: Simple Network

extension is to design a mechanism that offers the same amount of service inside a class,

while between classes the service offered differs by a given proportion.

Fairness of TCP

The fairness of TCP can be evaluated in two ways. TCP uses an Additive Increase Multi-

plicative Decrease (AIMD) algorithm [12]; the TCP sending rate is controlled by a con-

gestion window which is halved for every window of data containing a packet drop, and

increased by one packet per window of data acknowledged. Based on this assumption,

the max-min fairness principle has been proposed [51]. On the other hand the fairness of

TCP can be evaluated based on how well actual TCP implementations are able to divide

the capacity in a non-ideal network.

Kelly et al. [32] show that additive increase multiplicative decrease (AIMD) is pro-

portionally fair. Based on the ideal model of TCP, which states that TCP is an AIMD

mechanism, it can be thus deduced that best-effort TCP using congestion control is pro-

portional fair.

Max-min fairness [51] intuitively means that the smallest demands for resources are

satisfied first and whatever resources are left over are divided equally between the un-

satisfied demands. Max-min fairness can be defined more precisely via the following

procedure. Allocate each flow a rate of0. Add all flows to the set of unsatisfied flows.

Increase each unsatisfied flow’s rate allocation equally until a flow becomes bottlenecked

or all capacity in the network has been allocated. When all capacity has been allocated

for a particular link, remove all flows from the unsatisfied set and add these flows to the

set of bottlenecked flows. If the unsatisfied set is nonempty then resumes increasing the

rate allocations of the remaining unsatisfied flows. The final rate allocation is the max-

min fair rate allocation. Figure 2.1 shows a network containing two bottlenecks each with

capacityµ. For this example, letµ = 1. Flow 1 passes through two bottlenecks and sends

2.2. Traffic in the Internet 22

with rateλ1. Flows2 and3 each pass through only one bottleneck and send with ratesλ1

andλ2 respectively. In this example, max-min fairness leads to the allocationλ1 = 1/2,

λ2 = 1/2, andλ3 = 1/2. Max-min fairness does not consider the possibility that reducing

one flow might allow multiple other flows to increase their rates.

Ben Fredj et al. [26] have studied the statistics of the realized bandwidth share for

elastic document transfers, including short lived flows. They conclude that with similar

RTTs and one bottleneck link TCP tends to share bandwidth equally among all flows.

Furthermore, they demonstrate that if the bandwidth allocated to a flowr on a link j is

given by the TCP equation, whereK is a constant, e.g.
√

3
2
,

xr =
K

RTTr

√∑
j∈r p

(2.1)

Several factors affect the ideal TCP model based on AIMD and affect thus the model-

ing of its fairness. The main factor is the bias of TCP against connections with long round

trip times, which results from the linear increase of one unit per RTT.

There is a bias in the relationship of the throughput to the RTT, the current mechanisms

have not done to remove the unwanted bias of the bandwidth share as a function of RTT.

2.2.2 UDP traffic in the Internet

TCP congestion control was designed as a response to the congestion collapse observed

in the Internet in the late 1980s. However, not all forms of traffic want to use TCP as the

transport mechanism. Namely, TCP together with its congestion control mechanism is

suited for traffic that can not tolerate packet losses, i.e. one where a lost packet is always

retransmitted. Therefore real time traffic rather use the other popular transport protocol

of the Internet: UDP, where no flow control or congestion control is employed.

User Datagram Protocol (UDP) is a transport protocol that adds demultiplexing func-

tionality allowing multiple application processes on each host to share the network. Pro-

cesses indirectly identify each other using an abstract locater, e.g. the port. The UDP

header includes the source and the destination ports. The UDP thus provides a connec-

tionless datagram service, as opposed to TCP, which is connection oriented. UDP is also

unreliable, as it does not use flow control, i.e. acknowledgments to clock its sending rate.

2.3. Approaches for QoS in the Internet 23

The effect of UDP flows is twofold. They can starve the bandwidth from the TCP

flows, resulting in unfair division of capacity. The UDP flows may also, due to their un-

responsive nature, bring to congestion collapse, where the network is in a state of trans-

mitting packets that will be discarded before reaching the destination.

2.3 Approaches for QoS in the Internet

The need for service differentiation and QoS for the Internet became a topic of interest

in the late 1980s and early 1990s, with the advent of networked multimedia applica-

tions. The discussion in this section focuses on most popular service architectures, and

the mechanisms required to implement them.

The remainder of this section is organized as follows. In Section 2.3.1, we discuss the

Best Effort service which has been using in the Internet. Then, in Section 2.3.2, we discuss

the Integrated Service architecture briefly. In Section 2.3.3, we discuss in great details the

Differentiated Service architecture which has been the starting point of our work. Last,

in Section 2.3.4, we discuss Overlay network which has been proposed recently as future

research area.

2.3.1 Best Effort Service

There is no formal service model definition for the default best effort service provided

by the IP protocol. RFC 1812 [54] states that the IP protocol provides a connectionless

service with no end-to-end delivery guarantees. Packets may arrive at the destination

host damaged, duplicated, out of order or not arrive at all. Data delivery in IP has been

designed to be undemanding, so that any underlying physical network can provide the

service. The delivery is done through a connectionless datagram mode.

In the current Internet, the network resource allocation scheme is built on a set of con-

gestion control mechanisms in both routers and end hosts. In routers, there are drop-tail

queues that drop packets when the buffers are full. Lost packets in network are detected

by TCP in the end hosts, and are taken as congestion signals. TCP slows down its sending

rate upon detecting congestion.

At the network level, all packets are subjected to the same treatment from the network,

2.3. Approaches for QoS in the Internet 24

i.e., forwarded according to the destination IP address and dropped if the routers are

congested. The best-effort service model is simple and allows a great deal of statistical

multiplexing, which leads to efficient use of the network resources. The pitfall of this

approach is that without explicit support from the network, it is difficult to provide any

kind of service assurance or guarantees to end host traffic.

2.3.2 Integrated Services

The Integrated Service (IntServ) model [53] aims at providing end-to-end QoS guarantees

for individual traffic flows by means of reserving resource in every router all the way from

source to destination. In addition to the basic best effort service, IntServ adds two new

service bounds on delay and throughput for intolerant applications (that cannot adapt by

any means to the network conditions). It was developed for providing a behavior similar

to leased lines for IP users, but it has not have been deployed due to its high complexity.

The controlled load service is a sort of predictive service that provides QoS guarantees

similar to those experienced by a flow in a lightly loaded network. The idea behind the

IntServ model is that there are no QoS guarantees without resource reservation.

RFC 1633 [53] gives an overview of Integrated Services (IntServ) as seen in 1994.

The objective of IntServ, as given in [53], is to offer guaranteed and predictive services in

addition to best-effort service and thus implicitly change the Internet best-effort service

model. The new model uses controlled link sharing, implemented by resource reserva-

tions and admission control. The QoS requirements of the admitted flows are met through

an explicit resource reservation setup mechanism, per flow state in the routers and ad-

vanced packet scheduling mechanisms. The measures used are latency and fidelity, a

measure of loss, reordering or delay of packets.

IntServ proposes an implementation framework with four components: the signal-

ing protocol, the admission control, the classifier and the packet scheduler. Applications

requiring guaranteed service or controlled load service must set up paths and reserve re-

sources before transmitting their data. The admission control component is responsible

for deciding whether there are sufficient resources for granting the request. Whenever

an IntServ packet arrives at a router, the classifier identifies that packet and put it on a

specific queue to be forwarded. Finally, the packet scheduler will schedule the packet in

2.3. Approaches for QoS in the Internet 25

RESV

PATH

DATA TRANSMISSION

RESV RESV

PATH PATH

Figure 2.2: RSVP message processing

order to achieve its QoS target.

Although any signaling protocol may be used with IntServ, Resource ReSerVation

Protocol (RSVP) [55] is the de facto standard. RSVP is a receiver oriented soft-state

protocol, developed for applications to reserve resources in one direction in an integrated

services network. It is based on the exchange of two messages by sender and receiver:

the PATH message to the next hop, determined by the routing protocol. Upon receiving a

PATH message, the receiver answers with a RESV message to actually request resources,

if it is willing to accept the service request. Every router along the path can accept or

reject the RESV message, according to the admission control routine. When a request

is rejected, an error message is sent back to the sender. Otherwise, the amount of re-

quested resources is reserved and the RESV message is passed to the next hop. Reserving

resource implies installing state information for identifying every flow in their require-

ments. In order to cope with the routing instability of the Internet, RSVP is a soft-state

protocol, that is, the reservations are only valid for a time period. Therefore, receivers

must continuously send new PATH messages for keeping the reservations active.

The IntServ/RSVP architecture represented a major advance in the Internet, which

was based on the concept that only end systems should maintain flow-related information.

However, this model comes at some cost. Basically, two problems have been identified:

1. It generates too much state information for keeping the reservations active.

2. Too many signaling messages are exchanged for providing flow-level guarantees.

These two problems have a negative effect. It is believed that in the Internet core there

are hundreds of thousands of simultaneous flows, which would impose a huge processing

2.3. Approaches for QoS in the Internet 26

and storage burden on the routers. Therefore, although IntServ has not been implemented

in the Internet core, it is widely accepted that it is not scalable enough for it.

The IntServ architecture requires per-flow classification in routers. Additionally, IntServ

implementations require packet scheduling primitives, e.g., [10,49], which run a dynamic

priority sorting algorithm. The scheduling overhead can become significant when the

routers have to process a large number of packets within a short period of time. Also, the

IntServ architecture relies on a signaling protocol (e.g., RSVP [55]) for reserving network

resources, and on admission control for determining which flows can be admitted with the

assurance that no service violation with will occur. Both of these mechanisms require that

each router keep per-flow state information. Furthermore, it has been shown that using

admission control mechanisms such as peak-rate

2.3.3 Differentiated Services

The Differentiated Service (DiffServ) architecture was developed within the IETF in the

late nineties [57], and in several aspects it is still work-in-progress. The initial objective

in DiffServ was a more scalable, manageable, and easily deployable architecture for ser-

vice differentiation in IP networks. The major DiffServ premise is that individual flows,

or microflows, with similar QoS requirements can be aggregated in larger traffic sets,

called macroflows. All packets in a macroflow receive the same “forwarding behavior”

in routers. So, a macroflow is the minimum level of granularity in a DiffServ network in

terms of service differentiation. Each macroflow enters the network through an ingress

edge router where it is conditioned and forwarded using a Per-Hop Behavior (PHB) which

provides the service intended for the flow. A PHB is identified by a short label (currently

six bits) in the IPv4 or IPv6 header, which is called Differentiated Service Code Point

(DSCP).

Microflows are aggregated into macroflows at the edges of a DiffServ network. The

edge can be a router that connects a microflow-aware network to a DiffServ network.

The mapping from microflows to macroflows requires flow classification. This is a rela-

tively expensive operation, but since it is only performed at the network edges, where the

number of microflows is much smaller, it is expected to not cause scalability problems.

Microflows are aggregated in macroflows based on rules set by the network operator. For

2.3. Approaches for QoS in the Internet 27

instance, a macroflow can be all the traffic origination or destined to a certain organiza-

tion, the traffic that is sent by a certain host, or all the traffic of a certain application.

The main elements of DiffServ are traffic classification and conditioning at the edge

nodes and traffic forwarding through scheduling and discarding at the DiffServ interior

nodes. The traffic classification and conditioning, i.e. the division of flows into per hop

behaviors (PHB) and drop precedence inside PHBs, is done at the edge nodes. After

the packets of the flows have been classified, the traffic is conditioned, more specifically,

traffic is metered and packets marked into drop precedence levels.

Inside a DiffServ node all traffic functions are performed on aggregates based on the

given PHB. Inside each PHB, a number of precedence levels exist based on the marking

done at the edge node. In the scheduling unit two main elements affect the service expe-

rienced by the PHBs, the scheduling policy of the buffers and realization and relationship

between the discarding thresholds of the buffers.

The DiffServ proposals considered here are Expedited Forwarding (EF) and Assured

Forwarding (AF). We can categorize EF and AF to be of type assured service and relative

service. Relative services are easier to realize, in the sense that in overload situations

the capacity has to be divided in shares without having to give the contracted rates to the

flows. With assured services and conditioning only at the edge of the network, it may

happen that at a core link the total capacity is less than the sum of assured rates, and then

without relative differentiation, no differentiation may result.

EF and AF have the status of an IETF RFC and give a conceptual service model of

the PHB groups that could be implemented. Expedited Forwarding (EF), as explained in

RFC 2598 [59], aims at providing a low loss, low latency, low jitter and assured bandwidth

end-to-end service. Implementing EF requires that the nodes forward packets by at least

a contracted rate. This can for example be implemented using priority queues, where EF

traffic preempts other traffic. On the other hand, the EF traffic must be conditioned or

policed so that the aggregate arrival rate of packets is not more than the contracted rate

and so that the EF traffic does not starve the low priority traffic. Scheduling could also be

implemented using Weighted Fair Queuing (WFQ) [7] with weights for EF in accordance

with the contracted rate.

EF is a very strict service, in the sense that anything above the contracted rate is

2.3. Approaches for QoS in the Internet 28

normally not admitted into the network. Therefore traffic of EF type do not have flexibility

of sending more traffic at lower priority in times of low load. However, this is not the main

aim of EF, as the use of EF is designed for a small set of flows requiring stringent delay

bounds.

Assured Forwarding (AF) outlined in RFC 2597 [60] is designed to provide assured

service to the traffic that is in profile, i.e. does not exceed the subscribed rate. It does not

concern quantifiable delay or jitter requirements, but instead requires that a certain amount

of forwarding resources are allocated to AF classes. AF is a per hop behavior (PHB) group

with four forwarding classes and three drop precedence levels. Traffic may be conditioned

to in profile or out of profile using a token bucket or leaky bucket mechanism. AF also

requires that packets belonging to the same class are not reordered, for example, according

to precedence level.

Different AF classes are used to offer different levels of assurance and each class is

allocated a certain amount of buffer space and bandwidth. Inside an AF class packets are

assigned a drop precedence, with the packets with the highest drop precedence discarded

before the packets with lower drop precedence. Each AF class should be serviced so

that at worst it achieves its contracted rate. An AF class may receive more forwarding

resources if excess resources are available from other AF classes of PHBs.

Results of performance evaluation in the area of DiffServ are sometimes contradictory

and several open questions remain to be answered. For instance, which end-to-end ser-

vices can be implemented defining only per-hop behaviors, how to parameterize DiffServ

mechanisms in order to optimize link utilization and service differentiation, how to bal-

ance the granularity of service/signalling-overhead trade-off, how to extend the DiffServ

architecture for multicast support?

In addition to supporting the traditional best-effort service, the Differentiated Services

architecture supports two per-hop behaviors: Expedited Forwarding (EF), and Assured

Forwarding (AF).

Expedited Forwarding

The Expedited Forwarding (EF) was initially proposed by Jacobson et al. [61], and was

refined in [59], as a service that provides a guaranteed peak rate service with negligible

2.3. Approaches for QoS in the Internet 29

queuing delays or losses. While EF only provides local, per-hop guarantees, the objective

is to use EF as a building block for network-wide services such as the Virtual Wire per-

domain behavior. The goal of the Virtual Wire services is to provide each EF macroflow

with a service equivalent to a virtual leased line, or a virtual circuit in ATM networks.

The authors of [59] envision that EF requires shaping at the network edge, so that

EF traffic does not enter the network at a rate exceeding a peak rateR. A capacity ofR

is reserved in the entire network for EF traffic, so that EF macroflows do not experience

delay or losses. The bandwidth reservationR is statically configured in a bandwidth

broker. The bandwidth broker is a centralized agent configured with a set of policies,

which determine the level of service different classes should receive. The bandwidth

broker keeps track of the current allocation of traffic to different classes, and handles

new requests to mark new traffic subject to the configured policy and current allocation.

Routers in turn query the bandwidth broker to determine how much link capacity shall be

reserved for EF traffic.

Subsequent research [9] showed that even with peak rate allocation for EF macroflows,

an EF service cannot guarantee negligible losses and delays. Indeed, multiplexing EF traf-

fic from several input ports in routers can result in bursty traffic, which, in turn, may cause

delay and losses. This finding led to a change to the original definition of the Expedited

Forwarding PHB. Instead of guaranteeing no losses and negligible delays, the authors of

[62] propose to guarantee bounded delay variations to EF macroflows.

Assured Forwarding

The Assured Forwarding service is based on a proposal that was originally called the

“Allocated Capacity framework”, introduced by Clark and Fang in [16]. In the Allocated

Capacity framework, a class of traffic is provided with a certain bandwidth profile, defined

by a rateR. As long as the aggregate amount of traffic from that class has a rate lower

thanR, traffic is marked as in-profile; otherwise it is marked as out-of-profile. In times of

congestion, out-of-profile traffic is dropped more aggressively than in-profile traffic. In

other words, a class is allowed to exceed its profileR when there is no congestion and the

network load is low, but is restricted to sending traffic within its profile when the network

is congested. The rateR is statically reserved, or provisioned, at network design time.

2.3. Approaches for QoS in the Internet 30

The AF service of the DiffServ architecture supports qualitative guarantees, but no

classes are provided absolute service guarantees, and the difference in the service received

by different classes is not quantified. While some have argued that Assured Forwarding

provides absolute differentiation, because the profileR can be viewed as a throughput

guarantee, we point out that in-profile traffic is not guaranteed a lossless service. Hence,

traffic sending at rateRl < R, thereby remaining in-profile, can still experience traffic

losses, and obtain a service rateRll < Rl < R, which contradicts the notion thatR

is a throughput guarantee. The absence of throughput guarantee is clearly exhibited in

the case of TCP traffic, as discussed in [70]: regardless of how well provisioned the

network is, it may be impossible to provide throughput guarantees to TCP flows with the

AF service. In fact, the only assurance that in-profile traffic gets in that, should congestion

occur, it will not be dropped as aggressively as out-of-profile traffic. In other words, AF

only provides isolation between different AF classes, and qualitative loss differentiation

between the drop precedence levels within each class. We refer to the discussion in [20]

to summarize concerns raised about the actual differentiation offered between different

classes of traffic.

DiffServ Research

The AF and EF proposals having an IETF RFC status have been studied both analytically

and through simulations. In reviewing the previous work, we emphasize the difference

between providing assured and relative services. In the analytical work, attention is paid

to the loss process characterization, especially in the studies where TCP modeling is en-

hanced to include differentiated services.

The papers by Sahu et al. [64] and Yeom [70] are analytical studies on the relationship

between the contracted rate and the transmission rate of TCP flows. The work by Sahu et

al. [64] models how the token bucket marking of flows based on their assured rate affects

the received rate. As this is a DiffServ study, the marking of the flows is performed at the

edge of the network while aggregates are forwarded inside the DiffServ node. The main

result of the paper is that assured rate may not be achieved. If the assured rates are low,

the link may be in under subscription state and the received rate is larger than the assured

rate. Similarly, if the assured rates are too high, the link may be in over subscription state

2.3. Approaches for QoS in the Internet 31

and less than the assured rate is received. The system model does not provide insight into

how the ratio of received rates depends on the share of assured rates of different types of

TCP flows. The model and the results are therefore applicable only in determining how

assured differentiated services are achieved.

More specifically, the TCP process under consideration is of type Reno and is modeled

as a renewal process, where the window is either reduced to half upon a triple duplicate

ACK or to one upon a timeout. The sending rate of this TCP flow is then determined for

two cases: under subscription and over subscription. In the under subscription case, only

the lower priority traffic is discarded. In the over subscription case, the lower priority

traffic is discarded with probability one, and the higher priority traffic with a positive

probability.

The result for the over subscribed case illustrates the problem of dividing capacity

according to assured rate. The received rater in terms of assured rateA, bucket sizeB,

round trip timeT and loss probabilityp1 is

r = min(A,
3(A +

√
2B
T

4
,

1

T

√
3

2p1

) (2.2)

The result shows that under an assured services discipline a TCP flow never receives

more than its assured rate. Furthermore, when the received rate is below the assured rate,

the received rate can be that of a TCP flow under no differentiation mechanism.

In the under subscription case, the result is not so easy to interpret, but if the assured

rate is small enough, the extra capacity of the link is divided equally according to the TCP

equations. Thus the TCP flow receives its assured rate plus an equal share of the link

capacity.

The reason for this kind of division is in the token bucket marking scheme and in

using two priorities. More priorities give the possibility of having many assured rates,

thus introducing more leverage into the differentiation.

The paper by Yeom and Reddy [70] gives a better model for assured services. They

model the interaction of many TCP flows and have two or three priority levels in their

model, but do not study the effect of the token bucket size on the bandwidth share.

The system model is again one with token bucket marking and given loss rates for the

different priorities assuming that RED is used. The division of the model into under and

2.3. Approaches for QoS in the Internet 32

over subscription cases was first proposed by these authors. In cases of over subscription,

the assured rate may not be reached and the capacity is divided equally, with the received

rate being the rate for a TCP flow when no differentiation is present. Even in the under

subscription case, those flows with small assured rates may have a received rate almost

equal to a flow with a higher assured rate.

Under subscription case is defined as the case when only out of profile packets are

dropped from the network. However, in the case of many TCP flows with different assured

rate, the network would be over subscribed if all flows had the highest assured rate. Then

those flows with the highest assured rate are only able to receive their assured rate up to

the thresholdA = 3
T

√
2

pout
, corresponding to

√
3 times the best-effort share, when no

reservations are used. Below this assured rate, the TCP flows receive their assured rate

and some excess rate.

Some previous simulation studies have studied the effect of having both TCP and UDP

flows in the network. Goyal et al. [28] study different factors related to differentiation,

namely related to AF. These include: number of priority levels, percentage of highest

priority traffic, buffer management and traffic types. The simulations assume many TCP

flows, but a fixed number of flows. The system model is similar to the ones of assured

services presented in the analytical studies. Based on assured rates, two cascaded token

bucket markers mark the packets to three priorities: green, yellow or red.

As a result they show the importance of three priority levels in distinguishing between

congestion sensitive and insensitive flows. The marking into priorities is done so that in

the case of over subscription of the network the priorities are redundant, and thus the case

of over subscription is not studied. This is always the case when assured services are used,

as highest priority is given to a flow conforming to assured rate. Differentiation would

occur in the over subscription case if middle priority would be given to a flow conforming

to its assured rate. Then a flow would reach higher priorities by dropping the rate below

the assured rate.

An interesting conclusion of the paper is to mark excess insensitive flows, e.g. UDP

traffic to lowest priority, while excess congestion sensitive flows, e.g. TCP traffic receives

middle priority. Thus UDP traffic is given less priority levels than TCP traffic.

Pieda et al. [50] study the claim made by Goyal et al. that TCP flows can be pro-

2.3. Approaches for QoS in the Internet 33

tected from UDP flows by marking out of profile UDP flows to lowest priority, but out

of profile TCP flows to middle priority. They divide the study of priority levels into six

scenarios. In each scenario three priority levels are used, but packets of a flow are only

marked in or out of profile. They also compare the effect of using RED with overlapping

discarding thresholds and different dropping probabilities compared to using RED with

non-overlapping thresholds and different dropping probabilities.

As a result they show that when TCP and UDP are marked to the same AF class, three

priorities are not enough to achieve the three targets: that in an over provisioned network

both TCP and UDP target rates are achieved, that UDP and TCP out of profile packets

should have a reasonable share of excess bandwidth, and that in an under provisioned

network TCP and UDP flows experience degradation in proportion to the assured rate.

The scenario where TCP in profile packets have highest priority, UDP in profile pack-

ets have middle priority, and all out of profile packets have lowest priority is able to guar-

antee assured rates, and the relative deviation from assured rate is the smallest. However

none of the scenarios is able to meet all three differentiation targets.

The simulation and analytical studies on AF showed that when assured services are

used, it is difficult, even impossible, to guarantee division of excess or division of limited

capacity in ratio of assured rate or weight. Furthermore, Pieda et al. concluded that

the best way of protecting UDP and TCP traffic from each other is separating them into

different AF classes.

The DiffServ, AF and EF specifications given in [57, 60] do not impose a particular

scheduling or buffer management algorithm. EF can for instance be implemented using

well-known fixed-priority scheduling algorithms, or rate-based algorithms, e.g., Class-

Based Queuing (CBQ).

The Assured Forwarding service, on the other hand, can be enforced with buffer man-

agement algorithms. Indeed, as long as the network is correctly provisioned, i.e., enough

link capacity has been reserved in advance for each class of traffic, scheduling in Assured

Forwarding can be realized with a first-in-first-out (FIFO) discipline. Service differentia-

tion can be enforced by marking packets as in-profile or out-of-profile, and using a buffer

management algorithm that drops out-of-profile packets more aggressively.

2.4. Service Overlay Networks 34

2.4 Service Overlay Networks

An overlay network is a “virtual” network created on top of an existing network. The

overlay network creates architecture of a higher level of abstraction, so that it can resolve

a variety of problems that are very difficult to be dealt with at the router-level [1]. The

nodes of an overlay network are usually responsible for a certain aspect of an entire net-

work or part of it. Examples of overlay networks include application-layer multicast [13],

Web content distribution networks, congestion management, peer-to-peer networks, con-

tent delivery networks, QoS, and resilient overlay networks [1]. Some overlay networks

have been proposed in the past years for providing QoS in the Internet. Most of them con-

sider DiffServ as the basic underlying QoS technology. Motivated in part by the positive

results of these approaches for specific network services, some researchers are seeking to

investigate if an overlay network can do for the Internet QoS.

Overlays permit designers to implement their own routing and packet management

algorithms on top of the Internet. The Internet itself began as an overlay network on top

of the telephone network, using long-distance telephone links (that consist of multiple

physical links) to connect Internet routers. Modern overlays operate similarly, using the

Internet paths between end-hosts as “links” upon which the overlay routes data, build-

ing a network on top of the network. As a result, overlays can be used to deploy new

functionality instead of requiring years of upgrades to Internet routers; they also present

developers with a flexible and powerful platform on which to create new services.

benefit of overlays is that they avoid burdening the underlying network with features

better performed at higher layers.

The Bandwidth Broker (BB) [61] was the first attempt for building an overlay network

for resource management in DiffServ network. It can be carried out manually, or semi-

automatically. A BB is a logical entity playing two main roles in a DiffServ domain:

1. Intradomain resource management: related to provisioning resources for specific

PHBs and configuration of traffic conditioning mechanisms, according to organiza-

tional policies.

2. Interdomain resource negotiation: BBs responsible for different DS domains ne-

gotiate with each other in order to discover and provision resources for end-to-end

2.4. Service Overlay Networks 35

underlying network

underlying network

underlying network

underlying network

AS 2

AS 3

AS 4

AS 1

overlay router

overlay router

overlay router

overlay router

virtual link

virtual link

virtual link

virtual link

virtual linke

Figure 2.3: Overlay network framework

advanced services.

The SON architecture [19] studied the bandwidth provisioning problem for the service

overlay networks. They took into account various factors such as service QoS, traffic

demand distributions, and bandwidth costs to tackle bandwidth provisioning problem.

The OverQoS [67] proposed an architecture for providing Internet QoS using overlay

networks. OverQoS empowers third-party providers to offer enhanced network services

to their customers using the notion of a controlled loss virtual link (CLVL). The CLVL

abstraction bounds the loss-rate experienced by the overlay traffic and is used to provide

differential rate allocations, statistical bandwidth, loss assurance, and enables explicit-rate

congestion control algorithms. When QoS is provided at the IP layer, an IP router has total

control over its packet buffers and the output link bandwidth, and can directly schedule

these resources. In contrast, an OverQoS node controls neither the bandwidth nor the

losses on the underlying IP path. They show that the OverQoS can provide approximate

statistical assurances when used in conjunction with adaptive admission control schemes.

Figure 2.3 describes the overlay network architecture. A virtual link is the underlying

IP path connecting two overlay nodes. A virtual link is unidirectional and carries traffic

from an entry overlay node to an exit overlay node. A bundle is the stream of application

data packets carried across the virtual link; it typically includes packets from multiple

transport-layer flows across different sources and destinations.

2.5. The Challenge of End-to-End QoS 36

Core routerhost Edge Edge host

End−to−Edge Edge−to−Edge Edge−to−Edge Edge−to−End

End−to−End

Figure 2.4: End-to-End QoS

2.5 The Challenge of End-to-End QoS

The major challenge in the Internet is to provide end-to-end QoS guarantees, as opposed

to only covering part of the path packets have to follow from one communicating host to

the another. As end-users see QoS through applications, the notion of QoS guarantees

needs to encompass the path from one application all the way to the other application. In

other words, both the end-to-end network path between communicating hosts and the top-

to-bottom and bottom-to-top paths must be considered in order to guarantee end-to-end

QoS.

Figure 2.4 depicts the scenario of end-to-end QoS. By the end-to-end perspective, ser-

vice may be also classified according to their geographic scope. An intra-domain service

is to be used only within the boundaries of a domain, which is called as edge-to-edge

QoS. An end-to-end service may be used when data source and destinations are located in

distinct domains, possibly with several other domains along the path between them which

can be analyzed as end-to-edge QoS, edge-to-edge QoS, and edge-to-end QoS

Figure 2.5 depicts the top-to-bottom QoS. From the top-to-bottom perspective, QoS

can be analyzed into application layer QoS, network layer QoS, datalink layer QoS and

physical layer QoS. Each OSI layer from the application down must also support QoS to

assure that high-priority send and receive requests can get high priority treatment from the

host’s network system. The important point is that the application itself should be QoS-

enabled, in order to make use of the available guarantees. In other words, the application

should be written with QoS in mind, by means of a QoS API provided by a specific QoS

2.6. Summary 37

Application

Presentation

Session

Transport

Network

Data link

Physical

T
op−

to−
B

ottom
 Q

oS

QoS−enable Application

RSVP

DiffServ

Figure 2.5: Top-to-bottom QoS

middleware. ReSerVation Protocol (RSVP) [55] provides the signaling to enable network

resource reservation. Although typically used on a per-flow basis and provides feedback

to application. Differentiated Service (DiffServ) [57] provides a coarse and simple way to

categorize and prioritize network traffic aggregates. DiffServ can be applied at network

core ingress level. Subnet Bandwidth Management (SBM) [69] is a signaling protocol

that allows communication and coordination between network nodes and switches in the

SBM framework and enables mapping to higher-layer QoS protocol. The problem of

top-to-bottom QoS is typically tackled by QoS architectures [2].

This thesis only deals with the part of the problem of end-to-end QoS and even so,

within a limited scope.

2.6 Summary

We surveyed major QoS approaches for the Internet. It is evident that Internet users are

seeking QoS to be deployed in the Internet, it is not a reality today. The IntServ architec-

ture does not scale well with the size of the Internet and the number of applications. On

the other hand, the DiffServ architecture aims to provide scalable QoS support. The fine-

grain user QoS control information is only maintained at the edge routers (i.e., ingress and

2.6. Summary 38

egress routers) of an administrative domain. The user traffic is appropriately conditioned

or shaped before injected into the network core. At core routers, no per-flow QoS state

is maintained. It remains to be seen whether such a service model would be sufficient to

meet the user QoS requirements fairly and efficiently.

Indeed, the exact QoS provisioning power that can be provided by DiffServ is still

under great debate. For example, in the DiffServ framework, how to allocate the unused

network resources fairly and efficiently? how to allocate the network resources fairly in

case of congestion state?

We believe that one missing characteristic of the Internet with DiffServ is internal-

unaware.

Service Overlay Network can be used to facilitate the creation and deployment of

value-added Internet services such as VoIP, Video-on-Demand, and other emerging QoS-

sensitive services. In addition to its ability to deliver QoS sensitive services, the Service

Overlay Network can decouple application services from network management service,

thereby reducing the complexity of network management and control.

The research community seems to have reached a consensus that per-class architec-

tures will be a viable solution for providing service guarantees in the Internet, because

class-based architectures have the advantage that they work with simpler algorithms for

enforcing QoS guarantees than per-flow architectures, and can be deployed with only

minor changes to the network architecture.

The next chapter presents the Resource Discovery and Fair Intelligent Admission Con-

trol Architecture, which aims at the adding some contributions to improve QoS in the

Internet, based on the afore-mentioned findings of this chapter.

Chapter 3

A Framework for Resource Discovery

and Fair Intelligent Admission Control

over Scalable Internet

In this chapter, an architecture for enabling the deployment of QoS-based edge-to-edge

services for scalable Internet is proposed and it is called the Resource Discovery and Fair

Intelligent Admission Control architecture (RD-FIAC). As stated in Chapter 2, obtaining

end-to-end QoS is a complex task, due to limitations of the technology, and topology. We

believe that end-to-edge QoS, edge-to-edge QoS, and edge-to-end QoS are all necessary

stages to obtain end-to-end QoS.

Our aim through the RD-FIAC architecture is to provide Prioritization type of QoS

(refer to Section 1.2, Chapter 1) on each of the above stages. We will use the framework

described in this chapter as a basis throughout this dissertation. Most work in this thesis

was devoted to the resource discovery and admission control, described in more details in

Chapter 4 and Chapter 5, respectively. The high level design of the RD-FIAC architec-

ture is presented in this chapter. This dissertation will show that using algorithms based

on RD-FIAC enables us to enhance QoS of class-based service differentiation without

sacrificing scalability.

In the sequence of this chapter, Section 3.1 presents an overview of the RD-FIAC

architecture, which puts the above-mentioned functions into two logical planes. Section

3.2 presents a more in-depth view of Resource Discovery and Fair Intelligent Admission

39

3.1. Overview of the Resource Discovery and Fair Intelligent Admission Control
Architecture 40

Control in terms of End-to-End QoS. Section 3.3 draws some comments on the main

topics discussed in this chapter.

3.1 Overview of the Resource Discovery and Fair Intelli-

gent Admission Control Architecture

RD packets

Data

Core Router Core router

QoS state
reports

Figure 3.1: The RD-FIAC architecture–conceptual view

The basic building block of our solution is called Resource Discovery and Fair Intelli-

gent Admission Control (RD-FIAC) over Internet while core routers maintain no per-flow

state.

We will use the DiffServ architecture as the underlying scalable network. Since the

normal DiffServ can hardly achieve the desired edge-to-edge QoS under traffic overloaded

and network state changes, RD-FIAC architecture is designed to address these drawbacks.

The Resource Discovery protocol (RD) is a closed-loop feedback mechanism working

between ingress edge router and egress edge router. On the forward path, ingress edge

routers perform two functions. They (a) initiate the RD packet, mark the Differentiated

Services Code Point (DSCP) (e.g. EF class) in the DSCP-field of RD packet, and (b)

generate RD packet in a constant rate (or proportional to the incoming traffic rate). In

turn, the core routers forward RD packets to collect the network QoS state information.

On the backward path, egress edge routers terminate the RD packet and send them back

to ingress edge router with updated network QoS state information along the path. Upon

3.1. Overview of the Resource Discovery and Fair Intelligent Admission Control
Architecture 41

receiving backward RD packets, ingress edge routers report the network capability to the

Admission Control Module.

Fair Intelligent Admission Control (FIAC) is a predictive control scheme which per-

forms two functions: (a) it estimates the amount of class traffic expected to flow into the

domain based on history of the traffic, and (b) it makes admission decision based on the

incoming traffic and network QoS states report from the Resource Discovery mechanism.

A natural question is why use the RD-FIAC over DiffServ that offers relative band-

width differentiation instead of the service that uses a fixed bandwidth profile such as

Service Level Agreement (SLA)? After all, the Assured Service arguably provides a more

powerful and useful abstraction; ideally, a user is guaranteed a fixed bandwidth irrespec-

tive of where or when it sends traffic. In contrast, with RD-FIAC, the amount of traffic

that can be controlled varies as a result of the congestion along the paths to the destina-

tion. The simple answer is that, while the fixed bandwidth profile such as SLA is arguably

more powerful, it is unclear whether it can be efficiently implemented. The main problem

follows directly from the service definition, as a fixed bandwidth profile service such as

SLA does not put any restriction on where or when a user can send traffic. This results

in a fundamental conflict between maximizing resource utilization and achieving a high

service assurance. In particular, the network needs to provide enough resources to all

possible destinations, but the network has no idea about the current network state. In the

worst case, when the traffic traverses the congested link in the network, this will result in

severe resource underutilization, which is unacceptable in practice.

In contrast, RD-FIAC can achieve better performance in terms of resource utilization.

The fixed bandwidth profile such as SLA and the incoming traffic rate are considered as

parameters of the “external” traffic QoS requirements. The traffic can obtain the network

resources depends on the network QoS states: the more congested the network, the lower

the resources the traffic can obtain.

3.1.1 Design Goals and Assumptions

In this chapter, we propose a Resource Discovery and Fair Intelligent Admission Control

architecture, which we call RD-FIAC, to detect network state and then to make appropri-

ate admission control. The RD-FIAC enhances the QoS and performance of the DiffServ

3.1. Overview of the Resource Discovery and Fair Intelligent Admission Control
Architecture 42

network by adding some functionalities to the network routers (mainly on edge routers)

and leveraging information from traffic monitoring devices.

The main goals that drive our design of the RD-FIAC architecture are:

• QoS provisioning: The RD-FIAC attempts to provide edge-to-edge Prioritization

type of QoS (e.g. differentiated service) by detecting network state. The admission

control, FIAC, is performed only at the edge routers, but it should take into consid-

eration the “internal” network state, RD information, and “external” requirement,

incoming traffic SLA.

• Scalability: The RD-FIAC is on the overlay control plane that can scale to support

a large underlying network (i.e., large geographic regions and large volume of si-

multaneous calls), which might be DiffServ domain or the Internet. It inherits the

scalability from DiffServ. We strive to minimize the number of states maintained in

each node of the RD-FIAC and the backbone routers.

• Dynamic Network State: The RD-FIAC attempts to detect current network QoS

state by performing Resource Discovery Mechanism and passes the network QoS

state information to admission control module.

• Fair Intelligent Admission Control: In RD-FIAC architecture, the ingress router

takes admission decision based on “internal”, the network QoS states, and “exter-

nal”, the incoming traffic QoS requirements. In this way, the RD-FIAC is able to

provide fair intelligent resource control by coordinating the communications be-

tween “internal” and “external”.

• Support for end-to-end QoS:The RD-FIAC infrastructure could be extended to

support end-to-edge, and edge-to-end stages by coordinating each domain RD-

FIAC at different level. This is part of future work.

We address mainly the above four design goals in our thesis work. Specifically, we

design Resource Discovery mechanisms within RD-FIAC to probe the network state.

RD framework has three key components: RD packet, edge router mechanism, and

core router mechanism. In the following we briefly discuss each of them one by one.

3.1. Overview of the Resource Discovery and Fair Intelligent Admission Control
Architecture 43

• RD Packet:

The key role of RD packet is to detect current router state. The RD packet is ini-

tialized and released at the network edge router. Depending on the type of services

supported by the network, some additional classification information may be car-

ried in the packet header, such as the class identification that the packet belong to.

As we will see shortly, core routers rely on its state to update RD packets.

• Edge Router Mechanism:

We classify the edge routers into the ingress router and the egress router.

At the ingress router, it generates the RD packets to collect the “internal” network

QoS states, negotiates the network QoS states with the incoming traffic QoS re-

quirements. When receiving the backward RD packet, the ingress router extracts

the network QoS state information from the RD packet and inform the admission

control module.

At the egress router, it terminates the RD packets and send them back to the ingress

router with updated network QoS state information. Upon receiving backward RD

packets, the ingress nodes report the network capability to the Admission Control

Module. By this way, the admission control module keeps the latest the QoS states.

Another important role of an edge router is to shape the traffic to satisfy the “exter-

nal” traffic requirements and “internal” network QoS states.

• Core Router Mechanism:

Depending on the specific packet algorithm implemented in network, core routers

may update the network state carried in the RD packets.

• Bandwidth and queue control functions:

The bandwidth and queue control functions are designed to calculate the fairshare

of available bandwidth and the degree of network congestion it can tolerate.

For further details, please refer to Chapter 4.

In designing the RD-FIAC architecture, we make the following assumptions:

3.1. Overview of the Resource Discovery and Fair Intelligent Admission Control
Architecture 44

1. The networks are capable of providing different service levels through a com-

bination of packet marking, scheduling and queue management mechanisms.

We assume network edge routers can verify whether the QoS assurance agree-

ment is met by measuring the packet loss, throughput, average queuing delay,

delay variance, etc.

2. Every routing domain has the capability to monitor and collect statistics of

the incoming and outgoing traffic. We assume this information is trustable,

and will be used by RD-FIAC to negotiate or exchange resource discovery

information with neighboring domains.

3. Control plane (e.g., RD packet and FIAC) and data plane (underlying normal

DiffServ) are separated. We decouple RD-FIAC and normal DiffServ proce-

dures to reduce the overall response time and to be transparent for underlying

network.

3.1.2 The Core-Aware Resource Discovery and Fair Intelligent Ad-

mission Control Model

The RD-FIAC architecture is an overlay network aimed at providing QoS in the Internet.

It is divided up into two logical planes to discover available resources, and control of

proper operation of the contracted traffic. This design is inspired by the dual view of QoS

as being both the resource allocation for applications and the underlying technologies for

enabling the network to provide such services.

The basic centralized RD-FIAC model for the resource discovery and fair intelligent

admission control of a network domain is schematically depicted in Figure 3.2. In this

architectural model, the RD mechanisms detect the network state regarding the network

domain. The Resource Discovery and Fair Intelligent Admission Control together provide

a logical representation, the QoS control plane, of the network domain and its entire

state. With this QoS control plane, the RD-FIAC performs resource discovery and QoS

control functions. In this sense, the QoS control plane is decoupled from the data plane

that is normal DiffServ or Internet domain. The core routers are removed from the QoS

control plane: core routers do not maintain any QoS state information, whether per-flow

3.1. Overview of the Resource Discovery and Fair Intelligent Admission Control
Architecture 45

Edge node Core node

Edge node Core node

Edge node

Edge node

Resource Discovery
−available buffer
−available bandwidth

FIAC
−Per−class FIAC
−Per−flow FIAC

Data Plane: DiffServ domain

RD−FIACControl Plane:

RD−FIAC

Figure 3.2: Illustration of RD-FIAC model

or aggregate, and do not perform any QoS control functions such as admission control.

We consider an individual router in the network. For the presentation of this frame-

work, we consider that all traffic backlogged in the router is queued in the transmission

queues at the output links. In other words, we assume that the router under considera-

tion uses output queuing architecture. In Figure 3.3, we give a simplified representation

of the router architecture we consider. The router consists ofN input and output links,

connected by a fabric interconnect. Demultiplexers are used to direct packets from the

input links to the proper output links. Each output link is governed by a transmission

queue. In the figure, packets flow from left to right. The packets, marked as gold, silver,

bronze or BE, are in contention for the same output link. The output queuing architecture

implies that the router interconnect is fast enough to move packets from all input ports to

the output ports and completely avoid any contention at the input links or in the switch

fabric.

By avoiding traffic backlogs at the input links or in the fabric, the output queuing

assumption enables us to solely focus on the operations performed at the output links.

In addition to assuming output queuing router architecture, we take a fluid-flow in-

3.1. Overview of the Resource Discovery and Fair Intelligent Admission Control
Architecture 46

Input link Output link

Transmission queues

Fabric interconnect

Arriving traffic Demultiplexers

gold queue

Silver queue

Bronze queue

BE queue

Network Router

Figure 3.3: Router Architecture

terpretation of traffic. That is, the output link is viewed as simultaneously serving traffic

from several classes. Since the actual traffic is sent in discrete packets, a fluid-flow inter-

pretation of traffic is idealistic.

In our RD-FIAC model, the network QoS states and management are represented at

control plane. The RD module maintains the network QoS states information regarding

the QoS states of each ingress-egress pair in the network domain, such as the explicit

feedback rate. The FIAC module makes the appropriate admission decision based on the

network QoS state and traffic requirement (e.g., SLA). As will be demonstrated in this

chapter, this two-plane representation of the network is also the key feature that leads

to scalable design for dynamic QoS provisioning. Lastly, we note that the QoS states

are aggregate QoS states regarding the ingress-egress pair. No per-flow QoS states are

maintained in the core router. The QoS and other control state information regarding each

flow is maintained by the FIAC module at edge router.

We now briefly describe the operations of RD-FIAC scheme to illustrate how dynamic

QoS provisioning can be performed under the basic RD-FIAC architecture. We consider

the Resource Discovery (RD) packet generation first.

For each traffic class, the ingress router introduces a Resource Discovery (RD) packet

at a rate proportional to the traffic rate for that traffic class (or assign a special class, Ex-

3.1. Overview of the Resource Discovery and Fair Intelligent Admission Control
Architecture 47

pedited Forwarding, EF) destined for the destination egress edge router. The RD packets

contain a vector of QoS parameters as well as traffic parameters for the ingress-egress

pair.

The first core router exercises an intelligent bandwidth allocation algorithm to esti-

mate the bandwidth fair share for this class based on the traffic parameters contained in

the RD packets, and to determine the explicit QoS parameters it can support. The core

router then consults its QoS state for that Differentiated Service Code Point (DSCP) class

and modifies the parameters of the RD packets it can support accordingly. The router then

forwards the RD packets to the next router along the path to the destination edge router.

When a RD packet arrives at the egress edge router, the egress router consults its QoS

state and modifies the parameters accordingly. The egress router returns the RD packet

containing the maximum QoS capability that can be supported from the ingress to egress.

By doing so for each of the DSCP class, the ingress discovers QoS capabilities of the

path.

Armed with this feedback mechanism for QoS state discovery, the Fair Intelligent Ad-

mission Control (FIAC) module will be able to perform several QoS-related functions. It

is able to perform local admission control function to map per-class QoS to be appropriate

to aggregate QoS in the DiffServ network region; it is able to report the QoS information

to higher traffic management authority for overall traffic engineering, or it may interwork

with the emerging Multi Protocol Label Switching (MPLS) technologies for building La-

bel Switch Path (LSP) with adequate QoS attributes.

The crucial task is to invent a feasible feedback loop on network to discover available

resources, and to devise an effective fair intelligent admission control with adequate QoS

state information. From previous works in the area of TCP congestion control and ATM

network we believe that a feasible feedback loop between edge routers can be applied.

The second task is then to devise a fair intelligent admission control algorithm at the edge

routers. For this task we rely partly on the FIAC we recently developed. However, the

FIAC is designed for the connectionless DiffServ environment so that we need the routers

that can identify the particular aggregate for RD packets.

The aim of RD-FIAC is to employ a feedback resource discovery mechanism, taking

into account various constraints related to congestion bottleneck, available buffer, and

3.1. Overview of the Resource Discovery and Fair Intelligent Admission Control
Architecture 48

available bandwidth, to inform FIAC module so that it could make appropriate admission

decision.

The essential ideas of the RD-FIAC are as follows:

• The algorithm has to guarantee a minimum rate to all connections that are admitted

to the network by the network admission control procedure.

• It has to keep track of the amount of bandwidth available for allocation.

• It has to keep a running average account of current share allocation for each class.

• If some classes are restricted by their peak rate and cannot take up their allocated

fair share, the unused bandwidth is allocated fairly among the rest of the classes.

• It has to observe the current transmission rate of each class and make appropriate

adjustment to bring the current share allocation of each class to the target fair share

for that class.

• In case where a connection is throttled by a switch along its path to the destination,

the RD algorithm has to monitor the situation and inform FIAC module.

• In case where congestion is a problem, the FIAC algorithm exercises its admission

control mechanism to stabilize the network around a target operating point.

This architecture in two planes provides an integrated view of the network, although

the actual deployment of an end-to-end service may need the cooperation of many net-

works that possibly implement distinct QoS technologies. Figure3.4 shows the relation-

ship between two planes.

The greatest advantage of RD-FIAC architecture is that it is compatible with current

Internet and DiffServ domain without any effect on actual data transmission. All the

resource discovery and admission control functions are within the control plane.

The RD-FIAC architecture can be seen as an overlay network that extends the Internet

architecture in order to deploy QoS service and available resource allocation. It follows

the model of network architectures based on layers, and protocols (e.g. agents). To a

large extent, the description of the architecture is dedicated to explain these aspects, their

3.1. Overview of the Resource Discovery and Fair Intelligent Admission Control
Architecture 49

relationships and the internal components and to present suggestions for future imple-

mentations.

• Control Plane: creates an overlay model of the network, through this plane the

Resource Discovery (RD) agents can discover the available resources among the

whole network and negotiate the available resources with Fair Intelligent Admission

Control (FIAC) module by means of given service contract, e.g. Service Level

Agreement (SLA).

• Data Plane: that is normal Internet which is used to transmit the actual data.

The control plane plays a fundamental role in the RD-FIAC architecture, mainly be-

cause it is involved with available resource discovery, and management of QoS in order to

support service guarantees when combining multiple domains in an edge-to-edge scope.

This plane implements the horizontal interaction of the RD-FIAC.

The control plane creates an overlay network over the data plane, which is basically

represented by the current Internet infrastructure or DiffServ domain, made of routers,

hosts, links, and other network components. The main outcome of this feature is that the

control plane can be implemented in any domain without changes to the existing network,

except for introduction of QoS technologies used for providing service guarantees.

We now briefly describe the interactions between the two planes.

3.1.3 RD-FIAC Planes Interaction

In the RD-FIAC architecture, the communication among planes is done through interac-

tions with well-defined functions. The usual notion of network architectures is extended

to a broader concept that, for instance, allows the direct communication between each

pair of planes. The RD-FIAC interactions can be grouped into two types, horizontal and

vertical interactions, as depicted in Figure 3.4 and Figure 3.5.

Horizontal interactions refer to interaction between RD and FIAC modules. The com-

mon understanding in network architectures is that horizontal interactions are comprised

of protocols. The horizontal interaction has been defined (Figure 3.5):

3.1. Overview of the Resource Discovery and Fair Intelligent Admission Control
Architecture 50

Control Plane

Data Plane

RD−FIAC

Edge Core Core Core Edge

router router router router router

Figure 3.4: Vertical Interaction: Control Plane and Data Plane

Ingress Router
Egress RouterCore router

Fair Intelligent Admission Contro Module

SLA Capability
Resource Discovery Feedback Loop

Figure 3.5: Horizontal Interaction: RD and FIAC

• horizontal interaction: communications on control plane of FIAC and RD, and

available resources report. Elements of interaction is presented in more details in

Chapter 4.

Vertical interactions always involve two distinct planes of a given domain. In a given

interaction, the functions can be activated only by control plane. Similarly, to the hori-

zontal interaction, the definition is as follows.

• Vertical interaction: interaction whereby the control plane offers service or admis-

sion control to data plane. The functions belonging to the vertical interaction refer

to the queries from the control plane to the data plane in order to get information

for available resources and admission control functions from control plane to data

plane.

In the control plane, admission control is related to the decisions involving the amount

of resources to be allocated to each class in the data plane, independently of the QoS

3.2. End-to-End QoS Framework 51

implementation strategies. It is responsible for controlling the provisioning in the data

plane through the interface between data plane and control plane. After the confirmation

of the RD-RD negotiation, each domain RD-FIAC must perform its internal management

in order for end-to-end QoS to be achieved.

3.2 End-to-End QoS Framework

Per−flow
FIAC

Per−class
FIAC

Per−class

FIAC
Per−flow
FIAC

Per−class
FIAC

DiffServ domain nDiffServ domain 2DiffServ domain 1

RD−loop RD−loop RD−loop

Edge routerEnd host Core Edge router Core Core Edge router End host

Figure 3.6: End-to-End QoS Framework

The RD-FIAC architecture is not only able to provides edge-to-edge QoS, but also

could support End-to-End QoS through the concatenation of RD-FIAC of the intermediate

domains the traffic can cross. From the ISP administrator point of view, the service is

actually the user service, and he/she should not be aware of the existence of control plane.

Figure 3.6 illustrates the user’s view of an End-to-End QoS, through the combination of

the intermediate domains’ RD-FIAC by using negotiation mechanism in the control plane.

In this framework the RD-FIAC modules are connected through the routers and com-

municated on the control plane. User data is transported in the data plane. The QoS

state of the domain can be passed to its previous neighboring domain until to the first

domain. So, the RD-FIAC in the first domain obtains the End-to-End QoS state through

the concatenation of such bilateral negotiation. After receiving the QoS state information

from RD, the FIAC module compares the “external” traffic requirement (e.g., Service

Level Agreement) and the “internal” network capability (QoS state from RD) and then

applies Fair Intelligent Admission Control algorithms to make admission decision so that

the End-to-End QoS could be approached.

3.3. Summary and Discussions 52

3.3 Summary and Discussions

We have designed a Resource Discovery and Fair Intelligent Admission Control architec-

ture that coordinates control plane and data plane. The scalability of the architecture is

attributed to its overlay structure that is based on DiffServ infrastructure. We use the RD

mechanisms to estimate available resources and pass the information to the Fair Intelli-

gent Admission Control (FIAC) module. The FIAC module makes a decision to allow or

reject the application based on the “internal” network QoS states, and “external”, require-

ment of the application. The details of the Resource Discovery scheme and evaluation of

its effectiveness is presented in the next chapter. Further analysis on how the throughput

can be improved using queue control algorithm and bandwidth control algorithm is also

reported.

In summary, the basic strengths of the RD-FIAC approach are:

• It improves the QoS of DiffServ without sacrificing scalability. The network state

information that needs to be maintained by RD mechanism is class-based. Since

every edge router maintains only the state for its own domain, this allows the entire

RD-FIAC to scale better to a larger user base. If a particular router gets overloaded

due to the growth of user-base, it is possible to be detected by RD mechanisms and

be informed to the FIAC module to take admission control properly.

• It can be treated as overlay network based on DiffServ infrastructure. The control

plane where RD-FIAC functioning on has ability to discover available resources,

allocate available resources efficiently, and provide QoS among DiffServ domain.

It also pointed out a way to deliver end-to-end QoS sensitive services. It decouples

control plane from the underlying scalable Internet, data plane, thereby reducing

the complexity of QoS management and control, especially in terms of QoS man-

agement and control. The data plane, underlying DiffServ infrastructure, is focused

on normal DiffServ functions.

Although we present the RD-FIAC as general architecture, one specific example where

RD-FIAC will be useful is for IT managers to manage a WAN that interconnects corpo-

rate offices, remote and mobile employees. Corporations have turned to Internet VPNs to

3.3. Summary and Discussions 53

deliver performance, security and manageability to their various sites scattered across the

country. However, existing SLAs between ISPs and customers have focused on backbone

performance guarantees, and do not reflect the end-to-end performance of individual ap-

plications. In addition, some fraction of the traffic may traverse multiple routing domains

that belong to different ISPs. IT managers still face the challenging of provisioning the to-

tal capacity efficiently among the various types of traffic to meet application requirements

such as latency and reliability characteristics. A RD-FIAC architecture can be deployed in

this case to handle intra- and inter- domain resource allocation. For example, IT managers

can treat each corporate site as a basic domain, and introduce a edge router to monitor the

traffic flow, adapt resource allocation, and re-negotiate SLAs with the corresponding ISPs

when necessary.

In the next two chapters, we will present several specific implementations within this

framework to illustrate its components and properties in detail. More specifically, in

Chapter 4, we study Resource Discovery mechanisms. In Chapter 5, we design a novel

fair intelligent admission control algorithms to support per-class and per-flow service

guarantees. In Chapter 6, we study edge-aware resource discovery and fair intelligent ad-

mission control. By studying these mechanisms, we illustrate the fundamental trade-offs

in supporting QoS in the scalable Internet. Moreover, we demonstrate that both aggregate

and per-flow service guarantees can be supported in the same framework.

Chapter 4

Core-Aware Resource Discovery

Protocol Based on Feedback Scheme

4.1 Introduction

In this chapter, we illustrate how Resource Discovery (RD) protocol works. We attempt

to address the fundamental trade-offs in the design of Resource Discovery protocol and

its overhead. In particular, we study the interaction and relationships between the control

plane (RD works on) and data plane (underlying Internet or DiffServ).

The key point of RD system is to obtain the accurate knowledge of current network

QoS state and this can be described as a closed-loop problem, which enables us to use

feedback control theory to analyze the properties of the RD algorithm. For instance, we

will use feedback control analysis to derive the available bandwidth and available buffer.

By Resource Discovery (RD) mechanism, the routers inside networks are equipped with

the RD mechanism to detect congestion and to explicitly signal control module before

congestion actually occurs. A router with RD mechanism measures the available band-

width and available buffer as QoS state indicator, and judiciously feedback to the edge

router with the objective of reducing packet loss ratio and improving link utilization. As

one of the most important components in Differentiated Services architecture is the queue

management mechanism used at core routers, we then explore the use of RD-DiffServ in

the context of assured services architecture. We will show analytically that the widely ref-

erenced queue management mechanism,RED with in and out (RIO)[16], cannot achieve

55

4.1. Introduction 56

core router

core core

core

coreedge

edge

edge

edge

network core

Figure 4.1: The network model

throughput assurance and proportional bandwidth sharing. We then propose the RD-

DiffServ architecture to improve the assurance for assured service. Finally we validate

the design of RD-DiffServ and RIO by comparing their performance.

The proposed RD protocol has three significant objectives.

• First, as a resource discovery mechanism, it must not mandate any specific schedul-

ing algorithms or queue management to be employed in a network in order to

provide quality of service. In other words, it must allow for diverse scheduling

algorithms or queue managements as long as they are capable of providing QoS

guarantees. In fact, we will show that our RD protocol can accommodate the tra-

ditional FIFO or Round Robin with drop-tail or RED, which is the most widely

implemented and deployed mechanism in router today.

• Second, the RD protocol is transparent to the data plane where the underlying net-

work being unaware RD protocol.

• Third, the QoS states information obtained from RD protocol is stored at ingress

edge.

• Fourth, our first scheme, Core-Aware Resource Discovery mechanism, collects the

QoS states of the en route routers, such as available bandwidth and available buffer.

4.1. Introduction 57

Admittedly, it is not perfect for the connectionless Internet because the en route core

routers have to be involved. In this case the solution is not optimum, however, our

scheme still performs well as the Internet with its shortest path routing protocol will

almost always choose the same path from a source to a destination. We believe our

second scheme, Edge-Aware Resource Discovery, fits precisely into connectionless

IP delivery. First, Edge-Aware Resource Discovery only needs the edge routers

rather than the core routers. Second, flows can be routed throughout the network

rather than going through the particular path. As a result, the second scheme can

fit into the dynamically and more complicated network topologies. The RD flows

going through a network is likely to be connectionless delivery so that the Edge-

Aware Resource Discovery is a feasible and practical solution for the Internet.

We believe that these three objectives are important in implementing quality of ser-

vice in practice. For example, the ability to employ diverse scheduling algorithms not

only encourages choice and competition among equipment vendors and Internet service

providers (ISPs), but also, perhaps more importantly, allows a network and its services to

evolve. Similarly, by maintaining QoS states only at edge router, core routers are relieved

of QoS control functions making them potentially more efficient. Furthermore, a QoS

control plane which is decoupled from the data plane allows an ISP to deploy sophisti-

cated provisioning and admission control algorithms to optimize network utilization.

We describe how the available network resources of a router (edge or core) can be

characterized via the queue control function and available bandwidth function. Further-

more, we show that the notion of network state leads to the design of fair intelligent

admission control algorithms. In addition, our framework does not exclude the use of

existing scheduling algorithms such as stateful fair queuing algorithms to support guaran-

teed services.

The remainder of this chapter is organized as follows. In the next section we will

briefly outline the basic architecture of the RD system. In Section 4.3 and 4.4 we describe

in more details the feedback loops that are used to collect network state information in

terms of available bandwidth and available buffer. In Section 4.5, we present simula-

tion results to quantify the performance of the algorithm. We summarize this chapter in

Section 4.6.

4.2. Core-Aware Resource Discovery Scheme: Basic Architecture 58

4.2 Core-Aware Resource Discovery Scheme: Basic Ar-

chitecture

Data

RD packet

Core Core
Ingress node Egress node

QoS state QoS state

Figure 4.2: Resource Discovery: Basic Architecture

The modules described in Chapter 2 constitute the basic elements upon which an IP

network with RD capabilities may by built. In this section we present the Resource Dis-

covery (RD) model that is being defined at the control plane, as well as being transparent

to the underlying network infrastructure.

A central of the current Internet architecture is that congestion control is performed

mainly by TCP transport protocols at end hosts. However, as continuous media multicast

applications (which usually do not deploy TCP for congestion control) become widely

deployed on the Internet, it becomes difficult to perform end-to-end congestion control.

It has been agreed upon that the router itself must now participate in QoS states and re-

source management. By Resource Discovery, we mean the routers inside the network are

equipped with the capability to detect QoS states and to explicitly feedback the edge router

before congestion actually occurs. If a router signals QoS states prematurely, packet loss

can be avoided and at the expense of low link utilization. As high link utilization usually

leads to high throughput, maintaining high link utilization while reducing packet loss is

an important objective for Resource Discovery module.

4.2.1 Features of the Resource Discovery Model

The basic RD protocol model for the resource discovery of the QoS provisioning of a

network domain is schematically depicted in Figure 4.2. In this architectural model, the

RD protocol centrally manages and maintains a number of management information re-

4.2. Core-Aware Resource Discovery Scheme: Basic Architecture 59

Ingress Core Core Egress

RD RD RD RD

RD feedback

Collecting QoS states

Figure 4.3: QoS states discovery: RD packets life cycle

garding the network domain. Among them, the network QoS state are most relevant to

the study of this chapter. The available bandwidth and available buffer together provide a

logical representation (i.e., a QoS state abstraction) of the network QoS state. With this

QoS abstraction of the network domain, the RD protocol performs QoS control functions

by managing and updating these databases. In this sense, the QoS control plane of the

network domain is decoupled from its data plane. The core routers of the network domain

are removed from the QoS control plane: core routers do not maintain any QoS state,

whether per-flow or aggregate, and do not perform any QoS control functions such as

admission control.

In our RD model, the network QoS states are combined with two states: available

bandwidth states and available buffer state. The available bandwidth state maintains in-

formation regarding the available bandwidth of the link. The available buffer maintains

the QoS state information regarding the queue state of the router.

For completing the QoS states discovery, the RD protocol requires three stages. Fig-

ure 4.3 shows the RD packets life cycle.

• Stage 1:It is a RD packet generation stage, whereby the ingress edge generates RD

packet and send it to the egress routers along the path, updating the QoS states.

During the generation stage, the ingress edge is responsible for negotiating with the

admission control module.

Generally speaking, RD packets should receive special service better than data

packets as a delayed or lost RD packets could impact on admission control. The

4.2. Core-Aware Resource Discovery Scheme: Basic Architecture 60

Expedited Forwarding (EF) PHB [59] defines a particular level of assured band-

width, low loss, low latency, or low jitter end-to-end service by providing higher

priority. Other packets on the network are preempted to make room for EF packets

when congestion arises. The EF service appears suitable for the RD packets. We

find that the throughput of TCP flows is affected and the loss in TCP throughput

is higher in the presence of EF traffic at short time-scale. However, the aggregate

throughput of TCP flows remains roughly unaffected by the EF traffic. Further,

the classification of RD packets as EF service improves the fairness of bandwidth

allocation among TCP flows.

• Stage 2:It is a collecting QoS states stage, whereby the routers en route to the egress

router (core routers) check their QoS states and update the fields of RD packet.

• Stage 3:It is a feedback state, whereby the egress edge feedback the RD packets

with updating QoS states to the ingress edge.

RD module implements edge-to-edge resource discovery in terms of the available

bandwidth and the available buffer states. RD protocol generates the resource discovery

packet, RD packet, from the ingress to detect the network QoS states along the path to the

egress router.

It is commonly believed that different network vendors may prefer to deploy their

proprietary control mechanism according to their policy requirements. Our proposed Re-

source Discovery framework, therefore, should be generic and flexible enough for this

purpose. Moreover, it is desirable that it is backward compatible with existing mecha-

nisms for enabling interoperability.

In considering these requirements, we define a general RD in a way that a variety

of control mechanisms can be derived from it. The concept of RD framework is that

the ingress routers periodically probe the core of the network to obtain the current QoS

states information. This network QoS states information is used by the Fair Intelligent

Admission Control (FIAC) module which resides at ingress or egress routers such that a

more precise control on the incoming traffic can be achieved.

The RD module can be built based on the Internet with or without DiffServ. We define

the additional functions required to construct a closed-loop feedback resource discovery

4.2. Core-Aware Resource Discovery Scheme: Basic Architecture 61

mechanism working between the ingress router and the egress router.

On the forward path, ingress routers perform two functions.

1. Initiate the RD packet, mark the DSCP (e.g. EF class) or flow identification in the

DSCP-field of RD packet.

2. Generate RD packet at a constant rate (or proportional to the incoming traffic rate);

In turn, the core routers forward RD packets to collect the network QoS states infor-

mation.

On the backward path, the egress routers terminate the RD packet and send them back

to the ingress router with updated network QoS states information along the path. Upon

receiving backward RD packets, the ingress routers report the network QoS states to the

Fair Intelligent Admission Control (FIAC) module.

As a result, the RD mechanism can provide “inside” network QoS states or capability

information dynamically.

It is possible that the resource discovery mechanism spans across multiple domains or

within only one domain. In this Section, we consider only the intra-domain control mech-

anism while a brief discussion on inter-domain resource discovery is given in Section

4.5.

4.2.2 Background: Queue Management and Differentiated Services

Congestion occurs when the aggregate traffic volume at an input link is higher than the

capacity of the corresponding output link. One obvious approach to congestion control is

to dedicate a separate queue for each flow at a router and employ certain rate-based fair

queuing algorithm to regulate packet flows. However, this approach does not scale well,

because queue management on a per-flow basis usually incurs high control overhead.

Among all the queue management mechanisms that do not require per-flow buffer

management, drop tail queue is the most widely deployed and simplest one. Since a drop

tail queue drops packets and conveys congestion signals only at the time of congestion,

there is a significantly long time period between the instant when congestion occurs and

the instant when end hosts reduce their sending rates. During this time period, packets

4.2. Core-Aware Resource Discovery Scheme: Basic Architecture 62

may be sent and eventually dropped. Also, because TCP connections exhibit bursty be-

havior, a drop tail queue is prone to drop multiple packets of one connection. This may

undesirably shut down the TCP congestion control window of the connection. Moreover,

drop tail may result in global synchronization (that results from signaling all TCP con-

nections to reduce their congestion windows at the same time), which is usually followed

by a sustained period of low link utilization.

To remedy the aforementioned drawbacks, several feedback or active queue manage-

ment algorithms have been introduced, e.g., RED and its variation FRED. By “feedback”,

we mean that a router that employs such a mechanism is responsible for detecting conges-

tion and notifying end hosts of congestion so that the latter can adapt their sending rates

before congestion actually occur. These algorithms differ in the following aspects:

• the parameter used as an indicator of traffic load (and congestion);

• the policy used to detect congestion (or the likelihood of congestion); and

• the policy used to adjust the packet dropping probability in response to (an increased

likelihood of) congestion.

Random Early Detection (RED)

RED starts to drop packets long before the buffer is full, providing early congestion in-

dications before the buffer overflows. RED operates by calculating the average queue

length,avg-queue, upon packet arrival using a low-pass filter with an exponentially weighted

moving average. The parameteravg-queueis used to measure traffic load. The policy

used to detect likelihood of congestion is characterized by two thresholds,minth and

maxth. If avg-queueis less thanminth, the router is considered congestion free and no

arriving packets will be dropped. Whenavg-queueis greater thanmaxth, the router is

likely to incur congestion, and all arriving packets will be dropped. Whenavg-queueis

between the two thresholds, the probability of dropping a packet linearly increases with

avg-queuefrom 0 to pmax is maximum packet dropping probability. As one of the first

active queue management algorithms proposed, RED was shown to prevent global syn-

chronization, accommodates bursty traffic, incurs little overheads, and coordinates well

with TCP under serious congestion conditions.

4.2. Core-Aware Resource Discovery Scheme: Basic Architecture 63

The performance of RED, however, heavily depends on whether or not the two thresh-

olds are properly selected. If the thresholds are set too small, buffer overflow is avoided

but at the expense of low link utilization. On the other hand, if the thresholds are set

too large, congestion occurs before end-hosts are notified to reduce their sending rates,

and a large amount of bandwidth is wasted on transporting packets that will be eventually

dropped. On heavily congested links, it may be difficult to keep both high link utilization

and low packet loss ratio simultaneously.

Another problem associated with RED is that with the reason of accommodating

bursty traffic, RED uses the average queue length as an index of traffic load, and uses

the buffer space between theminth andmaxth thresholds to accommodate the delay be-

tween early congestion characteristics of network traffic, the instantaneous queue length

varies rapidly and may be very different from the value ofavg-queue. As a result, buffer

overflow may occur whenavg-queueis still less thanmaxth, especially when the buffer

size is not large enough.

Overview of Differentiated Service

The Differentiated Services architecture relies on packet tagging and lightweight router

support to provide premium/assured services that extend beyond best effort. In particular,

the class of assured services is intended to give the customer the assurance of a minimum

throughput (called the target rate), even during periods of congestion, while allowing it to

consume, in some fair manner, the remaining bandwidth when the network load is low.

More specifically, the two major requirements of assured services are:

• Throughput assurance: Each flow should receive its subscribed target rate on aver-

age;

• Fairness: The surplus bandwidth is proportionally shared among assured service

connections by “proportional bandwidth sharing”.

The basic idea behind the differentiated service architecture is to tag packets based

on the Service Level Agreement (SLA) at the edge routers, indicating the preferential

treatment that the packets expect. Core routers inside a network make packet forwarding

4.2. Core-Aware Resource Discovery Scheme: Basic Architecture 64

or dropping decisions according to the tags. In the assured service architecture, there are

thus two major components:

• the packet marking mechanism at edge routers to classify packets as in-profile pack-

ets (IN packets) or out-of-profile packets (OUT packets) prior to their entering the

network.

• the queue management mechanism used at core routers to differentiate and forward

packets based on their service class and the marking made by the edge router.

Succinctly, RIO [16] can be viewed as example of assured service architecture. The

basic idea in the RIO is quite simple. In the RIO, a class of traffic is provided with a

certain bandwidth profile, defined by a rateR. As long as the aggregate amount of traffic

from that class has a rate lower thanR, traffic is marked as “IN-profile”; otherwise, it is

marked as “OUT-of-profile”. In times of congestion, out-of-profile traffic is dropped more

aggressively than in-profile traffic. In other words, a class is allowed to exceed its profile

R when there is no congestion and the network load is low, but is restricted to sending

traffic within its profile when the network is congested. The rateR is statically reserved,

or provisioned, at network design time.

As reported in [29], the throughput assurance and fairness requirements of assured

services cannot be met under many cases. In particular, RIO tends to favor connections

with small target rates and small round trip times (RTTs). This is because TCP reacts to

packet loss by halving its congestion window of a connection with a large target rate (or

RTT) is usually larger than that of a connection with a small target rate (RTT), it takes

more time for a large RTT connection to regain its original rate after packet loss. More-

over, since a TCP connection always attempts to utilize surplus bandwidth, the connection

with small RTT will continue to increase its congestion window after its congestion win-

dow restores, and hence in the case that multiple TCP connections experience packet loss,

the small RTT connection may capture the bandwidth that is originally subscribed by the

other large RTT connections. The absence of throughput guarantee is clearly exhibited

in the case of TCP traffic, as discussed in [70]: regardless of how well provisioned the

network is, it may be impossible to provide throughput guarantees to TCP flows with the

AF service. In fact, the only assurance that in-profile traffic gets is that, should congestion

4.2. Core-Aware Resource Discovery Scheme: Basic Architecture 65

0

Direction field DSCP field Mean Explicit Rate field

RD Packet

101617

Figure 4.4: RD packet format

occur, it will not be dropped as aggressively as out-of-profile traffic.

4.2.3 RD Packet Format and Generation

RD Packet Format

In order to collect the QoS states of network along the path, our RD mechanisms require

packets to carry state in their headers. The main challenge to implementing these algo-

rithms is to use minimum space for storing QoS states variables and at the same time

remain fully compatible with current standards and protocols. In particular, we want the

network domain to be transparent to end-to-end protocols, i.e., the egress router should

feedback the RD packet to the ingress router. As described in Chapter 3, there are three

pieces of state that need to be encoded in a RD packet:

1. the direction of RD packet which specifies the RD packet in forward or backward

path,

2. the DSCP field contains the aggregate classification assigned by the ingress edge

router,

3. the Mean Explicit Rate (MER) field provides Mean Explicit Rate per class-unit.

Figure 4.4 shows the RD packet format. The bits of the RD packet are allocated to the

following fields:

• a 1-bit flag, calledDIRECTION, that specifies the RD packet in forward or back-

ward path

4.2. Core-Aware Resource Discovery Scheme: Basic Architecture 66

• a 6-bit fieldDSCPthat contains the aggregate classification assigned by the ingress

router

• a 12-bit fieldMERthat encodes QoS states.

RD Packet Generation

The RD packet is generated by an ingress router upon receiving the incoming traffic. The

ingress forwards the RD packet to the corresponding egress router in order to collect the

QoS states along the path. Upon receiving this packet, the en route router checks its QoS

states, and updates the states carried by the RD packet accordingly. When an egress router

receives a RD packet, it checks its QoS states, updates the states of the RD packet, and

sends it back to the ingress. Upon receiving this packet, the ingress router reports the QoS

states carried by the RD packet to the admission control module, FIAC.

Basically, the RD packet generation is determined by two parameters: generating

period and granularity.

Generating period refers to how frequently a RD packet is generated or the temporal

resolution of the RD protocol. It can be specified in term of a time interval or packet

count. The choice of a generating period is related to the dynamics of the DiffServ domain

under control as well as the variation of the incoming traffic. To obtain a higher control

precision, the ingress router may choose a shorter detecting period, i.e. generate RD

packets more frequently. However, this generating frequency should be balanced with the

amount of bandwidth cost which can be tolerated by the network routers. It’s natural to

generate RD packets in a constant rate or proportional to the incoming traffic rate. For

example, the domain administrator can control the overhead within the tolerable range

(e.g. 5%). Please refer to Section 6.4.4 in details.

Generating granularity, however, refers to the resolution of the RD mechanism in

spatial domain. The following lists some possible examples:

• Per-flow or per-microflow basis, in which one RD packet is generated per contracted

incoming flow. It implies a flow based control mechanism, which can generally give

the finest grain control precision.

4.2. Core-Aware Resource Discovery Scheme: Basic Architecture 67

• Per-BA basis, in which one probe is generated per behavioral aggregate (PHB). If

an ingress node has access to more than one PHBs, multiple probe packets will be

generated in each probing interval.

• Per-egress-node or per-boundary-node basis, in which one RD packet is generated

per boundary node. Notice that the notion of ingress-egress- pair is defined only

when there is a flow. Therefore, this generating scheme can be regarded as a topol-

ogy based mechanism in which each boundary (ingress) node keeps the statistics of

all possible paths having other boundary nodes as egress points.

A combination of above, depending on their control algorithm and, particularly, their

required control precision, network providers may choose to have a variant or a combina-

tion of the above mentioned schemes.

In general, in choosing a generating granularity, one may consider (1) the required

control precision, (2) the processing capability of the routers, and (3) the amount of toler-

able control overhead.

Since RD packets are sent from the ingress edge to the egress edge router, an inte-

rior/egress node needs a mechanism to distinguish the RD packets from other data pack-

ets. RD mechanism creates a new packet with a special DSCP or flow id, in which QoS

state information is carried in the data area of the packet.

After identifying a RD packet, a node can handle it using same level of forwarding

treatment as other data packets, thereby it is subjected to being delayed or even dropped

when the node is congested. This approach simplifies the design of the interior node.

By examining the arrival of the RD packets, one can also obtain a sample of the current

congestion level of the forwarding path.

Another approach is to offer the RD packets a special service, usually better than data

packets, such as EF [59] class, at an interior node. It requires a special arrangement within

the forwarding module of an interior node.

RD Packet Overhead

We express the overhead calculationO as in (4.1).

4.2. Core-Aware Resource Discovery Scheme: Basic Architecture 68

O =
Rrd

Rrd +
∑n

i=1 Ri

(4.1)

WhereRrd is the RD traffic rate,Ri is for other traffic rate, andn is the number of

classes except RD traffic.

As we can see, Resource Discovery mechanism introduces overheads at the routers.

However, the RD traffic configuration can be adjusted according to the network states to

minimize the overheads. For example, the RD packets could be assigned as low priority

class (e.g. Bronze service) and low sending rate when the traffic behaves well; the RD

packets could be assigned as high priority (e.g. Gold or Premium Service) and high

sending rate when the network states vary dramatically. Resource Discovery mechanism

is designed in a manner that allows RD traffic configuration accordingly.

4.2.4 RD Ingress node

Resource Discovery

Module

DiffServ Classification
policing
shaping

Per−class FIAC

Per−flow FIAC

labelling

Admission Control QoS states
Monitoringaction: allow or

 reject

Data plane

control plane

Figure 4.5: Building blocks of an ingress router

In the Resource Discovery mechanism, the ingress router is responsible for generat-

ing the Resource Discovery (RD) packets destined for the egress router and assigns RD

packets a special class (e.g. EF class). The RD packets are used to collect network QoS

states information which containing a vector of QoS parameters for all classes along the

path. Upon receiving a RD packet, the core router consults its QoS states in terms of class

and modifies the fields of the RD packets accordingly and then forwards to other routers

4.2. Core-Aware Resource Discovery Scheme: Basic Architecture 69

Data plane
DiffServ Per−Hop
Behaviour

QoS states
monitoing
updates RD fields

Figure 4.6: Building blocks of an interior router

along the path to the egress router. The egress router is responsible for sending back the

RD packet to the ingress edge router.

The structure of an ingress router can be decomposed into two blocks, as illustrated in

Figure 4.5. Most of the complexity of the RD-Internet or RD-DiffServ is concentrated in

this kind of equipment. Ingress routers must perform normal DiffServ functions, such as

classification, policing, and labeling. Besides the normal Internet/DiffServ router func-

tions, ingress router performs some additional RD functions, generating an RD traffic for

per TCP or UDP connection, negotiation with RD module and FIAC module, QoS states

monitoring, and admission control action.

4.2.5 RD Interior node

In addition to the basic packet forwarding function, an interior node is extended to include

a QoS states monitoring function. Upon receiving a RD packet, it updates the information

carried in the RD packet with its current state information and then forwards the RD

packet to other connected node(s). Figure 4.6 illustrates the structure of an interior node.

4.2.6 RD Egress node

For the case of intra-domain resource discovery, a RD egress router is where the RD

packets are terminated. The egress router is responsible to return the RD packet to the

ingress node.

For the case of inter-domain resource discovery, the RD egress router negotiates with

the next domain’s ingress router to decide inter-domain’s QoS states that will be feedback

4.3. QoS states functions 70

Data plane
DiffServ Per−hop
Behaviour

Send RD packet
back to Ingress

Resource Discovery
Modulecontrol plane

Ingress routerEgress router

Resource Discovery
Module

DiffServ Edge

Inter−domain communication

Domain_1 Domain_2

Figure 4.7: Building blocks of an egress router

to the ingress router. Figure 4.7 illustrates the components of an egress node.

4.3 QoS states functions

We have described a general framework to model RD-DiffServ architecture from re-

sources in a network, and the edge router react to the dynamic resource discovery. In

the following sections, we will explain the functions in the Resource Discovery to cal-

culate QoS states information and conduct numerical studies to illustrate the analytical

results we obtained from this section.

4.3.1 Computation of Flow Arrival Rate

Recall that in our architecture, the ratesri(t) are estimated at the edge routers. At each

edge router, we use exponential averaging formula as in Core-Stateless Fair Queuing

(CSFQ) [66] to estimate rate of a flow. Using an exponential weight gives more reliable

estimation for the burst traffic, even when the packet inter-arrival time of the aggregate

has significant variance.

Let tki andlki be the arrival time and length of thekth packet of flowi. The estimated

rate of flowi, ri, is updated every time a new packet is received:

4.3. QoS states functions 71

0 Q0 Queue Length

1

a

f(Q)=
Buffer_Size−Q

Buffer_Size−Q0

f(Q)=
(a−1)(Q0−Q)

Q0
+ 1

Figure 4.8: Queue Control Function f(Q)

rnew
i = (1− e−T k

i /K)
lki
T k

i

+ e−T k
i /Krold

i (4.2)

whereT k
i represents thekth sample of the inter-arrival time of traffici, i.e., T k

i =

tki − tk−1
i andK is a constant.

The choice ofK in the above expression with several tradeoffs. First, while a smaller

K increases the system responsiveness to rapid rate fluctuations, a largerK better filters

the noise and avoids potential system instability. Second,K should be large enough

such that the estimated rate, calculated at the edge of the network, remains reasonably

accurate after a packet traverses multiple links. This is because the delay-jitter changes

the packetsinter-arrival pattern, which may result in an increased discrepancy between

the estimated rate (received in the packetslabels) and the real rate. To counteract this

effect, as a rule of thumb,K should be one order of magnitude larger that the delay-jitter

experienced by a flow over a time interval of the same size,K. Third, K should be no

larger than the average duration of a flow. Based on this constraints, an appropriate value

for K would be between 100 and 500 ms.

4.3.2 Fair Available Bandwidth Control Function

The Available Bandwidth Fair Control Function is designed to calculate the fairshare of

available bandwidth. It needs two components: one is to estimate the incoming traffic rate

4.3. QoS states functions 72

(refer to Equation 6.1) and another one is to calculate Mean Available Rate (MAR).

It should be noted that the RD mechanism uses the linear functionf(Q) to calculate

the available bandwidth (see the Figure 4.8). The idea behind the queue control function

is that it differentiates the congestion status into two phases at the threshold,Q0. Suppose

we start with a queue length at the router less thanQ0, which means that the router is

not congested, and as long as the router does not detect congestion, the evolution of the

available bandwidth corresponds to Phase 1. If congestion is detected, which means the

queue length exceedsQ0, Phase 2 is entered, the available bandwidth is decreased until

the queue length drops belowQ0 and Phase 2 terminates. The next period starts again

from Phase 1.

The queue control function,f(Q), is a linear function with values between1 and0 for

queue length in the range of[Q0, Buffersize] and over1 for queue length in the range of

[0, Q0]. The two lines intersect atQ0, where the value off(Q) is 1. Various exponential

forms for f(Q) have been explored, but it is simplest to use this linear function with

negligible performance penalty. The function can be defined as:

f(Q) =
BufferSize −Q

BufferSize −Q0

, if Q0 ≤ Q (4.3)

and

f(Q) =
(α− 1) ∗ (Q0 −Q)

Q0

+ 1, if Q ≤ Q0 (4.4)

To calculate Mean Available Rate (MAR), we designed the function as follows.

MARnew =

if (Q ≤ Q0) or

(Q > Q0 andRi ≤ MARold)

MARold + β ∗ (Ri −MARold)

else

MARold

(4.5)

whereβ is the exponential average factor andRi is the traffic arriving rate. In available

bandwidth control function,the value ofMAR is a running average of the current load

when the network operates below the target operating point. When the queue length

4.3. QoS states functions 73

exceeds the target operating point, the MAR function does not allowMAR to increase

further.

Instead of using queue occupancy as a congestion index, RD uses the average packet

enqueue rate as the index. Since

d(ql)

dt
= enqueuerate − dequeuerate (4.6)

whereql is the queue length, and the packet dequeue rate is the link capacity. RD

controls therate of queue occupancy changeand intends to keep the queue stabilized at

an target point at which the aggregate packet enqueue rate is approximately equal to or

slightly below the packet dequeue rate (link capacity).

4.3.3 Queue Control Function

The queue control function expresses the degree of network congestion it can tolerate.

Since the queue builds up and drains out continuously, the queue control function can

regulate the queue fluctuation smoothly. The target point,Q0, represents the optimal

buffer utilization point we expected. The linear function is defined as in the following

equation.

f(Q) =

Buffer size−Q
Buffer size−Q0

, if Q0 ≤ Q

1 + (α−1)∗(Q0−Q)
Q0

, if 0 ≤ Q ≤ Q0

1 , if Q = 0

(4.7)

The parameter,α, was chosen within the range of1.01 to 1.9 can be considered as an

oversell the network when it is in under-utilized.Q0 is configured as in-profile threshold.

TheQ0 is the target point at which the queue control function expects to maintain. When

the queue length is beyond the target (Q ≥ Q0), that means the network becomes highly

loaded, risking long delay and buffer overflow. The queue control function will discourage

the incoming traffic accordingly (f(Q) ≤ 1). When the queue length is below the target,

it is an indication of network being underutilized. The queue control function is designed

to encourage to take more incoming traffic (f(Q) ≥ 1). When the queue length is close

to 0, that means the congestion does not occur at the egress node, the congestion might

4.3. QoS states functions 74

Domain_1 Domain_2

Ingress Egress Ingress Egress

core

core

core

core

core

core

QoS states
Negotiation

Figure 4.9: QoS states negotiation for inter-domain Resource Discovery

occur at core node. In this case, congestion happens at core, the Edge-Aware Resource

Discovery Protocol will estimate the congestion degree based on the measurement of

available bandwidth without considering the queue state (f(Q) = 1).

4.3.4 Network QoS state

The Resource Discovery Protocol determines the network QoS states, Explicit Rate (ER),

by calculating the product of Queue Control Functionf(Q) and Mean Available Rate,

MAR.

ER = f(Q) ∗MAR (4.8)

When the network operates above the target operating point, Explicit Rate (ER) is

reduced due tof(Q) ≤ 1 (refers to equation (5.1)) and throttling is performed fairly.

However, when the network operates below the target operating point, Explicit Rate (ER)

is allowed to increase its rate by a factor greater than1, which enables the incoming traffic

capable of using the available bandwidth to take advantage of it.

4.3.5 Inter-domain RD-DiffServ

To obtain inter-domain QoS states, RD module was designed to be compatible among

multiple domains. It needs domain-to-domain negotiation module to pass the individual

domain’s QoS states. Figure 4.9 illustrates the inter-domain QoS framework. In Fig-

ure 4.9, the egress node of domain1, Egress1, negotiates with the ingress node of domain

2 via the negotiation module. Therefore, Domain2 QoS states can be passed to Domain

1 via Egress2→ Ingress2→ Egress1→ Ingress1.

4.4. Discussion 1: Resource Discovery over Internet 75

Generally, in order to obtain a consistent domain QoS states, all boundary nodes

(ingress and egress) must be upgraded to RD feedback capable nodes. The operational

procedures of inter-domain QoS states passing are as follow:

1. At the domain boundary, the ingress node generates and delivers a RD packet along

with the data packets per aggregated flow. This RD packet carries the QoS states

information along the path, but it is marked with special DSCP.

2. At any node inside a RD-DiffServ or RD-Internet domain, upon receiving a RD

packet, the core router first calculates its QoS states using the available bandwidth

control function and available queue control function. If its QoS states, explicit rate,

is smaller than the one carried at the fields of the received RD packet, the explicit

rate field, MER, of the RD packet will be replaced. The updated RD packet is then

forwarded to the next node.

3. When a RD packet is received by an egress router, the RD packet is terminated and

returned to the ingress router. The RD packet contains the domain’s QoS states

accordingly.

4. When the RD packet reaches the ingress router, the ingress router will negotiate

with the former domain egress router to pass its QoS states to the former domain

egress router.

5. Finally, when the preceding domain egress router receives the QoS states from its

following domain ingress router, it will replace the explicit rate field of its RD

packet if the QoS states is smaller than the one carried at the fields of the RD

packet.

4.4 Discussion 1: Resource Discovery over Internet

4.4.1 Resource Discovery Algorithm for Internet

The Resource Discovery Protocol determines the domain capability or QoS states, Ex-

plicit Rate (ER), by calculating the product of Queue Control Functionf(Q) and Mean

Available Rate,MAR.

4.4. Discussion 1: Resource Discovery over Internet 76

ER = f(Q) ∗MAR (4.9)

When the network operates above the target operating point, Explicit Rate (ER) is

reduced due tof(Q) ≤ 1 (refers to equation (5.1)) and throttling is performed fairly.

However, when the network operates below the target operating point, Explicit Rate (ER)

is allowed to increase its rate by a factor greater than1, which enables the incoming traffic

capable of using the available bandwidth to take advantage of it.

Pseudo code reflecting this algorithm is described in the Algorithm (1).

whereQ0 specifies the queue length to which the RD queue asymptotically converges

and henceBuffer size−Q0 is the maximum burst an RD router can accommodate. We

useQ0 to separate two stages: no congestion and congestion alert. When the queue length

is larger thanQ0, we treat it as congestion alert stage. When queue length is less thanQ0,

we treat it as no congestion stage. When an RD router is under the congestion alert

stage, it attempts to keep the packet enqueue rate around an operating point by decreasing

β ∗ (R −MACR). When an RD router is under the no congestion stage, it attempts to

keep the packet enqueue rate around an operating point by increasingβ ∗ (R−MACR).

4.4.2 Simulation setting

In this section, we evaluate Resource Discovery module over Internet (RD-Internet) by

comparing it against drop-tail, and RED under a wide range of traffic conditions. Drop-

tail serves as a baseline case in which no active queue management mechanism is em-

ployed. All the simulations were performed in ns-2 which provides accurate packet-level

implementation for various network protocols, such as TCP/UDP, and various buffer man-

agement and scheduling algorithms, such as drop-tail and RED. All algorithms used in

the simulation were part of the standard ns-2 distribution.

4.4.3 Simulation 1: bandwidth and buffer utilization

In the first experiment, we consider a simple topology (shown in Figure 4.10) with two

TCP connections connecting to the same destination. Each TCP connection has a window

size of 200 packets that is roughly equal to the delay bandwidth product. The buffer size

4.4. Discussion 1: Resource Discovery over Internet 77

Algorithm 1 Resource Discovery Algorithm
Ensure: ER: The Explicit Rate

Require: The incoming traffic rateR

β : {The average ratio}
α : {Congestion function parameter}

Require: Per-class Variable

MACR : {Mean Allowed Class Rate}
Q0 : {Target Class Queue Length}
ER : {Explicit Rate}
DPF : {Queue Control Factor}
Q0 ⇐ 0.3 * BufferSize

MACR ⇐ 100Mb{Assign a large value}
β ⇐ 0.08

α ⇐ 1.23

Bandwidth Fair Control Function {on forward path at Ingress/core/Egress}
if QueueLength≥ Q0 then

if R ≤ MACR then

MACRnew = MACR + β ∗ (R−MACR)

else

MACRnew = MACR

end if

else

MACRnew = MACR + β ∗ (R−MACR)

end if

Queue Control Function{on the backward path}
if QueueLength≥ Q0 then

DPF = (Buffer Size−QueueLength)/(Buffer Size−Q0)

else

DPF = 1 + (α− 1) ∗ (Q0 −QueueLength)/Q0

end if

The Explicit Rate

if QueueLengththen

ER = MACRnew ∗DPF

else

ER = MACRnew

end if

4.4. Discussion 1: Resource Discovery over Internet 78

s0

 s1

Ingress Egress

sink

1ms 100Mb

1ms 100 Mb

ftp source

ftp source

20 ms 1 Mb

Figure 4.10: The RD over Internet simulation topology

is fixed at 100 packets in both RED and drop-tail. The thresholdminth ranges from 3

to 40 packets and the thresholdmaxth is set to 3 times of theminth value in RED. The

parameterQ0 is set to 30 packets.

As shown in Figure 4.11, RD-Internet outperforms RED and drop-tail in terms of

bandwidth utilization and buffer utilization, while drop-tail performs worst among all

the mechanisms. This suggests that from the perspective of network management, RD-

Internet achieves high throughput with efficient buffer utilization. RD-Internet managed

the buffer utilization around the operating point which had been set to40%.

4.4.4 Simulation 2: performance under TCP flows with different RTTs

In the second experiment, we consider a single bottleneck topology (shown in Figure 4.12)

with 16 TCP connections to their respective destinations via a common bottleneck (with

link capacity set to 1 Mb). The buffer size is set to 100 packets at each router. All TCP

connections are bulk data transfer (FTP). The round trip time (RTT) varies from 70 ms to

670 ms, and are different for the 16 TCP connections. The target point,Q0, is set to1/3

of the buffer size.

Figure 4.13(a) gives the average throughput of each connection over a 200 seconds

simulation. RD-Internet is more effective in evenly sharing link bandwidth. RED in-

curs the bad performance in terms of bandwidth sharing, while DropTail incurs the worst

performance.

To further investigate why RD-Internet outperform the RED and DropTail, we study

the Figure 4.13(b) of queue occupancy under the various mechanisms. As shown in Fig-

ure 4.13(b), the RD-Internet keeps the queue length approximately at its desired operating

4.4. Discussion 1: Resource Discovery over Internet 79

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5

0 50 100 150 200

G
oo

dp
ut

 in
 M

bp
s

Simulation time (s)

Bandwidth utilization

DropTail
RED

RD

(a) Bandwidth utilization

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200

B
uf

fe
r

ut
ili

za
tio

n
%

Simulation time (s)

Buffer utilization

DropTail
RED

RD

(b) Buffer utilization

Figure 4.11: Bandwidth and buffer utilization

point,Q0, so that the RD-Internet keeps the enqueue rate more stable than RED and Drop-

Tail.

Based on this set of plots, we can make following observation. The Internet can not

allocate bandwidth fairly for the TCP flows that have different round trip time. The In-

ternet allocates more bandwidth to the TCP flows that have short round trip time. It is

observed that some TCP applications do not achieve their fair-share bandwidths, while

others grossly exceed their bandwidth shares. The main reason is that the Internet routers

don’t know the current states of the network, which leads to less than fair resource al-

location. With the Resource Discovery feedback control mechanism, this effect can be

removed. Our proposed model allocates TCP flows quite fairly regardless of different

4.4. Discussion 1: Resource Discovery over Internet 80

s1

s2

s3

s4

s16

d1

d2

d3

d4

d16

Ingress Egress

1 Mb 20 ms

10 ms

30 ms

50 ms

70 ms

310 ms

100 Mb 100 Mb 5 ms

Figure 4.12: TCP flows with different RTTs

round trip time.

4.4.5 Simulation 3: performance under TCP and UDP traffic

In the third experiment, we study how the various mechanisms accommodate TCP traffic

and UDP traffic. In the simulation, there are 4 TCP connections and one UDP connection

competing for the bandwidth of a single bottleneck link. We use the experiment 1 topol-

ogy (see the Figure 4.10). The bandwidth of the bottleneck link is set to 1 Mbps. The

round trip time of all TCP connections is set to 30 ms. The UDP traffic is set as Constant

Bit Rate (CBR) with constant rate as 1 Mbps. The thresholdminth ranges is set to 10

packets, the thresholdmaxth is set to 3 times of theminth value, and the buffer size is

set to 4 times of theminth value in RED. The parameter,Q0, is set to 40 packets. The

simulation is run for 200 seconds, and the throughput of connection is calculated in each

0.5 second period.

Figure 4.14 gives the average throughput of each connection. X-axis is time, and y-

axis is the ratio of the throughput of connection to the bottleneck bandwidth. A DropTail

mechanism is highly biased against TCP connection. This is because DropTail drops the

packets regardless of the traffic. The RED mechanism performs better than DropTail but

still is biased against TCP connections. RD-Internet is not biased against bursty TCP

connection and performs better that of DropTail and RED, because it calculates the fair

share dynamically.

4.5. Discussion 2: Resource Discovery over Differentiated Service Network 81

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.1

0.11
0.12
0.13
0.14
0.15

DropTail RED RD

T
hr

ou
gp

ut
 in

 M
bp

s

(a) Bandwidth utilization

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200

B
uf

fe
r

ut
ili

za
tio

n
%

Simulation time (s)

Buffer utilization

DropTail
RED

RD

(b) Buffer utilization

Figure 4.13: Bandwidth and buffer utilization

4.5 Discussion 2: Resource Discovery over Differentiated

Service Network

We have shown in last section that RD-Internet outperforms RED and DropTail in

1. providing better service discrimination and fair bandwidth sharing;

2. achieving high link utilization

We now explore the use of RD mechanism in the context of Assured Service of Differen-

tiated Service architecture, RD-DiffServ. In the following subsections, the pseudo codes

of the RD-DiffServ with In and Out mechanism and several sets of simulations will be

4.5. Discussion 2: Resource Discovery over Differentiated Service Network 82

0

0.2

0.4

0.6

0.8

1

1.2

1.4

DropTail RED RD

T
hr

ou
gp

ut
 in

 M
bp

s

Figure 4.14: TCP flows and UDP flow

presented.

4.5.1 Resource Discovery Algorithm for DiffServ

Succinctly, RD-DiffServ can be considered as a combination of two RD-Internet in-

stances, one forin-profile (IN) packets, and the other one for all the packets. RD-DiffServ

differs from RIO in the following aspects. First, RD-DiffServ detects the available band-

width and the available buffer as the control variables. This control variable is directly re-

lated to the bandwidth requirement of assured service, and more importantly, it expresses

the “internal” network QoS states. Second, RD-DiffServ takes into account of both “ex-

ternal” requirement, Service Level Agreement (SLA), and “internal” state, Explicit Rate,

to determine the admission of the arrival packet.

The Resource Discovery Protocol determines the domain capability or QoS states,

Explicit Rate (ER), by calculating the product of Queue Control Functionf(Q) and Mean

Available Rate,MAR.

ER = f(Q) ∗MAR (4.10)

When the network operates above the target operating point, Explicit Rate (ER) is

reduced due tof(Q) ≤ 1 (refers to equation (5.1)) and throttling is performed fairly.

However, when the network operates below the target operating point, Explicit Rate (ER)

is allowed to increase its rate by a factor greater than1, which enables the incoming traffic

capable of using the available bandwidth to take advantage of it.

4.5. Discussion 2: Resource Discovery over Differentiated Service Network 83

Pseudo code reflecting this algorithm is described in the Algorithm (3).

Algorithm 2 RD-DiffServ Parameter Settings
Ensure: ERi: The ith class Explicit Rate

Require: The incoming traffic rateR

β : {The average ratio}
α : {Congestion function parameter}

Require: Per-class Variable

MACR : {Mean Allowed Class Rate}
Q0 : {Target Class Queue Length}
Q0in : {Target point for IN packet queue}
qlenin : {Length of IN packet queue}
qlen : {Packet queue length}
ER : {Explicit Rate}
DPF : {Queue Control Factor}
weighti : {The ith class weight}
Q0 ⇐ 0.3 * BufferSize

Q0in ⇐ 0.3 * IN BufferSize

MACR ⇐ 100Mb{Assign a large value}
β ⇐ 0.08

α ⇐ 1.23

whereQ0 specifies the queue length to which the RD queue asymptotically converges

(in our experiments, we set it to1/3 of the buffer size), and henceBuffer size−Q0 is

the maximum burst an RD router can accommodate. We useQ0 to separate two stages:

no congestion and congestion alert. When the queue length is larger thanQ0, we treat it

as congestion alert stage. When queue length is less thanQ0, we treat it as no congestion

stage. When an RD router is under the congestion alert stage, it attempts to keep the

packet enqueue rate around an operating point by decreasingβ ∗ (R/weighti−MACR).

When an RD router is under the no congestion stage, it attempts to keep the packet en-

queue rate around an operating point by increasingβ ∗ (R/weighti −MACR)

4.5. Discussion 2: Resource Discovery over Differentiated Service Network 84

Algorithm 3 Resource Discovery Algorithm for DiffServ
Bandwidth Fair Control Function {on forward path at Ingress/core/Egress}
if RD.tag ==INthen

if qlenin ≥ Q0in then

if R/weighti ≤ MACR then

MACRnew = MACR + β ∗ (R/weighti −MACR)

else

MACRnew = MACR

end if

else

MACRnew = MACR + β ∗ (R/weighti −MACR)

end if

else

if qlen ≥ Q0 then

if R/weighti ≤ MACR then

MACRnew = MACR + β ∗ (R/weighti −MACR)

else

MACRnew = MACR

end if

else

MACRnew = MACR + β ∗ (R/weighti −MACR)

end if

end if

Queue Control Function{on the backward path}
if qlen≥ Q0 then

DPF = (Buffer Size− qlen)/(Buffer Size−Q0)

else

DPF = 1 + (α− 1) ∗ (Q0 − qlen)/Q0

end if

The ith class Explicit Rate

if qlenthen

ERi = MACRnew ∗DPF ∗ weighti

else

ERi = MACRnew

end if

4.5. Discussion 2: Resource Discovery over Differentiated Service Network 85

RD−Diff
node

node entry

PHB
classifier

EF queue

QoS measurement
module

Silver queue

Gold queue

Bronze queue

BE queue

queue
scheduler

DelayLink

Figure 4.15: NS2 implementation model of a RD-DiffServ Interior node

4.5.2 Implementation Issues

Figure 4.15 depicts an implementation of a RD-DiffServ capable interior node. Note that

the components of PHB Classifier, packet queues with various types of queue manage-

ment schemes and output scheduler are commonly found in most DiffServ nodes. For a

RD-DiffServ enabled node, a QoS states module, which is tightly coupled with a incom-

ing traffic estimator and a per-queue measurement modules, is included. In our design of

a packet queue, theQueue/RIOimplements an AF PHB class with drop preferences. The

four queues can be ranked according to their weight as Gold class (e.g., claim 40%), Silver

class (e.g., claim 30%), Bronze class (e.g., claim 20%), and Best Effort class (e.g., claim

less than 10%). In addition, the outputs of packet queues are controlled by Round Robin

scheduler. Furthermore, for the edge routers, an additional admission control module is

included in an ingress router and egress router, respectively.

All output queues in the RD-DiffServ architecture have the same architecture, which

is outlined in Figure 4.15. Each class of traffic is associated with a FIFO per-class queue.

When a packet is passed to a network interface a classifier looks up which class the packet

belongs to, and places the packet in the appropriate per-class FIFO buffer. The per-class

buffers have a finite size configured by the domain operators. After the incoming packet

has been placed in a per-class buffer, the QoS states measurement module measure the

QoS states in terms of the available bandwidth and available buffer. Our implementation is

4.5. Discussion 2: Resource Discovery over Differentiated Service Network 86

Ingress Router

Fair Intelligent Admission Contro Module

SLA Capability

Core Core EgressCore Data Plane

Control Plane
Resource Discovery feedback Module

Data Packet

RD Packet

Negotiation

Figure 4.16: Admission control module in an ingress router

modular in the sense that it requires few changes to the current Internet router. The major

change is to replace the queue manipulations. In other words, we first check whether the

router is configured as a RD-DiffServ router or not, and if yes, we callRDEnqueueto

enqueue the packet in a special data structure maintained by RD mechanism. If not, we

simply use the default queue mechanism.

Figure 4.16 illustrates an admission control module. The admission control module

can be considered as a token bucket model. The token bucket generation rate is deter-

mined by the explicit rate from Resource Discovery mechanism. The buffer at ingress

router is used to store the packets that cannot be delivered right away until enough tokens

get accumulated in the bucket.

4.5.3 Simulation Settings

We have implemented the Resource Discovery algorithm in the ns simulator, version 2.

Simulations include scenarios investigating different parameter settings, topologies, mul-

tiple congested gateways and different mixes of TCP, CBR and ON/OFF flows. Addi-

tionally, scenarios with different bottleneck link capacities, different RTTs and number of

TCP flows are investigated. Further simulations show that the max-min fair share is ap-

proximated sufficiently accurately if the maximum number of iterations of the algorithm

computing the fair share is set.

Figure 4.17 shows the network simulated in this chapter.

Access links between sources to the ingress router have a capacity of 100 Mbps. Also

the links between the egress router to the sinks have a capacity of 100 Mbps. The link

delay varies with the simulations. For simulations in this section the RD-DiffServ with

4.5. Discussion 2: Resource Discovery over Differentiated Service Network 87

source 1 sink 1

RD−DiffServ
Ingress

RD−DiffServ
Egress

1 Mbps
bottleneck

100 Mbps 100 Mbps

source 2

source 3

source 4

sink 2

sink 3

sink 4

100 Mbps

100 Mbps

100 Mbps

100 Mbps

100 Mbps100 Mbps

Figure 4.17: Simulated network

Aggregate Committed rate (kB/s)

Gold 400

Silver 300

Bronze 200

Best Effort less than 100

Table 4.1: Committed rates for aggregated flows

adoption of operating point has been implemented. We have set the operating point factor

equal70% in all simulations. The aggregates are marked with different committed rates,

looking for a weighted sharing of the available bandwidth. The committed rate of each

aggregate is shown in Table 4.5.3.

Common preferences for all simulations, except otherwise noted:

• All output-ports are capable of storing 500 packets.

• The simulation-time equals 100 seconds

• All output-ports except the output-port at the ingress/egress router served by the

bottleneck link use RIO queue management.

• RIO parameters: ECN is disabled,mean-pktsize=500 bytes.

The simulation results are illustrated in several different kind of figures. Figures enti-

tled

• “per-class throughput over time” show the per-class traffic bandwidth consumption

of the bottleneck link as a percentage of the link capacity at the bottleneck link.

4.5. Discussion 2: Resource Discovery over Differentiated Service Network 88

0

0.1

0.2

0.3

0.4

0.5

0 50 100 150 200

G
oo

dp
ut

 in
 M

bp
s

Simulation time (s)

TCP/UDP Interaction

1
2
3
4

Gold
Silver

Bronze
BE

(a) DiffServ: CBR and TCP flows

0

0.1

0.2

0.3

0.4

0.5

0 50 100 150 200

G
oo

dp
ut

 in
 M

bp
s

Simulation time (s)

Per-class RD-FIAC-DiffServ

1

2

3

4

1
2
3
4

Gold
Silver

Bronze
BE

(b) RD-DiffServ: CBR and TCP flows

Figure 4.18: Goodput of Classes (CBR and TCP flows)

• “queue-size over time” show the instantaneous and average queue size at the output

port of the ingress/egress router. Unit for the x axis is seconds.

• “end-to-end delay” show the per-flow packet average delay from the source to the

sink in seconds.

4.5.4 Simulation 1: RD-DiffServ with unresponsive CBR and TCP

flows

RD-DiffServ ingress/egress router parameters:wq = 0.002, minl = 20, maxl = 40,

minh = 50, maxh = 150 packets,maxph = 0.1.

4.5. Discussion 2: Resource Discovery over Differentiated Service Network 89

The bottleneck link is1 Mbps, and delay is 5 ms.

The layout depicted in Figure 4.17 was used. As in the previous layout, two routers

are connected through a1 Mbps link; the input are 3 TCP connections with same RTT

that is 100 ms and they are marked as Gold (claim40%), Bronze (claim20%, and BE

(claim 10% less) respectively. The UDP traffic (CBR) is marked as Silver which claim

30%. The UDP rate was1 Mbps. Figure 4.18(a) shows that under DiffServ the UDP flow

(Silver) consumes nearly 40 percent of the link-bandwidth beyond the TCP flow (Gold).

Packet sizes of TCP flows are uniformly distributed with a mean of 500 bytes. None of

the flows terminates prior to the simulation. Here we observe a well-known result: TCP is

considerably affected by UDP traffic, which gets all the bandwidth associated to its rate,

see Figure 4.18(a). CBR flows consume a significant portion of the bandwidth between

the ingress and the egress routers even they are marked as lower classes compared to the

TCP flows which are marked as Gold class. This behavior causes the unfairness for the

TCP flows. When there is UDP traffic in the link, the high-rate aggregate (e.g. Gold) fails

to obtain the desired rate (40%).

There are two initial conclusions of this test: the first one is that care should be taken

into account when deciding if UDP traffic is to be aggregated with TCP traffic and pro-

cessed in the AF. The second one is that bandwidth sharing can not be achieved for TCP

flows in the presence of unresponsive UDP flows.

The simulation, Figure 4.18(b), shows that RD-DiffServ is able to penalize the ag-

gressive flows (e.g., CBR flows) in case their bandwidth consumption is larger than their

fair share. As soon as CBR flow being penalized its share closes to its fair share rate,

300Kbps.

Figure 4.19(a) and Figure 4.19(b) show the reason why CBR flows being penalized:

the average queue size from CBR flow are detected as too much aggressive and more

than its fair share. Due to their unresponsiveness some of their packets are dropped by

admission control module to keep the fair share state. This causes shorter end-to-end

packet delay over time curves for RD-DiffServ, see Figure 4.19(b). This simulation lets

us conclude that using RD-DiffServ for unfriendly flows, CBR flow, seems attractive, as

it detects the available resources dynamically and the admission control module makes

admission for flows based on the discovery from RD-DiffServ thereby keeps the queue

4.5. Discussion 2: Resource Discovery over Differentiated Service Network 90

0

20

40

60

80

100

120

140

0 50 100 150 200

Q
ue

ue
 le

ng
th

 in
 p

ac
ke

ts

Simulation time (s)

Queue Length Variation under RD+FIAC and DiffServ

FIAC
DiffServ

(a) queue length variation

0

1

2

3

4

0 50 100 150 200

pa
ck

et
 d

el
ay

 in
 s

ec
on

ds

Simulation time (s)

End to end packet delay under RD+FIAC and DiffServ

FIAC
DiffServ

(b) end-to-end packet delay

Figure 4.19: DiffServ and RD-DiffServ: queue length variation and packet delay

length around the target point and reduces the end-to-end packet delay.

4.5.5 Simulation 2: TCP flows with heterogeneous RTTs

We used the layout depicted in Figure 4.17 to study this subject. Two routers, DiffServ

RIO router and Drop-tail router, are connected through a1 Mbps link; DiffServ RIO router

with three drop-precedence levels is available at the ingress router. 4 bulk data TCP flows

send from the left to the right over the network with RTTs that go from200 ms,100 ms,

50 ms to30 ms. The TCP traffic sent from node 1 to node 5 is marked as Gold class, the

traffic sent from node 2 to node 6 is marked as Silver class, the traffic sent from node 3

to node 7 is marked as Bronze class, and the traffic sent from node 4 to node 8 is marked

4.5. Discussion 2: Resource Discovery over Differentiated Service Network 91

0

0.1

0.2

0.3

0.4

0.5

0 50 100 150 200

G
oo

dp
ut

 in
 M

bp
s

Simulation time (s)

TCP flows with different RTTs

1
2
3
4

Gold
Silver

Bronze
BE

(a) DiffServ: TCP flows with different RTTs

0

0.1

0.2

0.3

0.4

0.5

0 50 100 150 200

G
oo

dp
ut

 in
 M

bp
s

Simulation time (s)

RD-FIAC-DiffServ Class Traffic Performance

1

2

3

4

1
2
3
4

Gold
Silver

Bronze
BE

(b) RD-DiffServ: TCP flows with different RTTs

Figure 4.20: Goodput of Classes: TCP flows with different RTTs

as Best effort class. The claim40%, 30%, 20%, and10% bandwidth of the bottleneck

(DiffServ RIO node) respectively. In Best Effort class, TCP flow has short RTT, 30 ms.

In other classes, TCP flows have long RTTs, 200 ms (in Gold), 100 ms (in Silver), and 50

ms (in Bronze).

DiffServ RIO parameters are set as follows: for each class queue,minth = 10,

maxth = 40, maxp = 1/50, respectively.

Figure 4.20(a) shows that the bandwidth share decreases as the RTT increases. The

best effort (BE) traffic achieved more bandwidth share due to its short RTT. It can be said

that Assured Forwarding (AF) does not assure an “Assured Bandwidth” service for TCP

connections with different RTTs, since throughput depends on RTT. Sessions with small

4.5. Discussion 2: Resource Discovery over Differentiated Service Network 92

0

20

40

60

80

100

120

140

0 50 100 150 200

Q
ue

ue
 le

ng
th

 in
 p

ac
ke

ts

Simulation time (s)

Queue Length Variation

RD-FIAC-DiffServ
DiffServ

(a) queue length variation

0

1

2

3

4

5

0 50 100 150 200

pa
ck

et
 d

el
ay

 in
 s

ec
on

ds

Simulation time (s)

End to end packet delay

RD-FIAC-DiffServ
DiffServ

(b) end-to-end packet delay

Figure 4.21: DiffServ and RD-DiffServ: queue length variation and packet delay

RTTs react faster to losses in the network, so that no big bursts are produced.

Based on this set of plots, we can make following observation. The DiffServ can

not allocate bandwidth fairly for the classes which have different round trip time. The

traditional DiffServ allocates the Silver class (short RTT) more bandwidth, around 300

Kbps, which is beyond the Gold class. Our proposed model allocates each class quite

fairly according to their service level agreement.

The end to end packet delay (flow 1 in Gold) and queue length of bottle neck router are

shown in Figure 4.21. From the results, the proposed model achieves better performance

compared to DiffServ in terms of packet delay and queue length. The average queue

size stays around the target point,40, as on the ratio of short TCP flows arrival rate to

4.5. Discussion 2: Resource Discovery over Differentiated Service Network 93

the link capacity, RD-DiffServ determines its fair share and thereby takes the admission

control early. If a TCP flow with short RTT is detected too aggressive in terms of buffer

and bandwidth, RD-DiffServ scheme work with admission control module will drop its

packets and causes significant reduction of its incoming rate. Consequently, it will reduce

the queue length and end-to-end packet delay.

4.5.6 Related Research on Resource Discovery Modeling and Param-

eter Setting

As a rule of thumb, it recommends to set target point from ten packets to 40 packets.

The exact value of target point has to depend on the burstiness of the arrival process,

link capacity, propagation delay and maximum buffer size. Additionally, it is remarked

that the optimum setting of target point balances a trade-off between high queuing delay

and poor link utilization. Without giving quantitative guidelines, the latter two statements

imply that the target point setting should be directly proportional to the bandwidth*delay

product of the scenario.

In measurements of TCP with RED have shown that link utilization decreases in case

of DiffServ. Some researchers recommend to set the buffer size greater or equal to the

bandwidth*RTT product of the path, which seems impossible for very high speed WANs.

Although the buffering requirements of RED are significant, setting the buffer size equal

to the bandwidth*RTT product would be overly conservative in case of TCP flows in

steady state.

Based on the investigation of DiffServ RIO behavior in the presence of a small num-

ber of TCP flows, we proposes simple some guidelines for Resource Discovery (RD)

parameter setting. The results can be summarized as follows.

• target point: As a rule of thumb, it is recommended to set the target point,Q0, to

1/3 of the buffer size. This recommendation is not supported by a model or perfor-

mance analysis. It determines when to start restricting/encouraging the incoming

traffic rate, it also determines the slope of the queue control function, or in other

words, the rate at whichf(Q) increases/decreases as a function of queue length.

Large target point allows the queue to build up to a large value before control is

4.5. Discussion 2: Resource Discovery over Differentiated Service Network 94

activated, and reduces the buffer capacity allocated to drain the queue. Hence tight

queue control is required to make the drain capacity sufficient. Setting target point

to a large value allows more packets to be injected into the network therefore avoids

link underutilization. It must be set to allow the drain of the queue before the buffer

limit is reached, and not to take the risk of buffer overflow when overloaded. A

small value of target point is desired for smooth operation and shorten the packet

delay time. Meanwhile fully link utilization must be guaranteed to achieve high

throughput.

• Parameterα: Parameterα is used to for the queue control function during no con-

gested period. It determines how much excess capacity would be allocated when

the queue length is zero. It also determines the slope of the line, or how quickly

f(Q) increases as a function of queue length when the router is non-congested. A

large value ofα increases the amount of over-allocation. High value ofα can poten-

tially result in long queues thus prolong the packet delay time. The abrupt variation

makes the scheme sensitive to both the queue length and the value ofα. Small

variation in delay may cause large change in queue length and the control module

hence leads to instability. In the RD scheme, the incoming traffic is controlled to

be around the optimalMACR during all time. Network remains at a stable status

around target operating point. A mild control by the linear function is sufficient

to bring the network back to the target point. Therefore small value forα is more

desirable by the queue control function. Specially,α should be a little larger than

1 to allow a small over-allocation above100% and bring the network back to the

target point. Note that the factor must be larger than1 to encourage load increase

and avoid link under-utilization.

• Parameter insensitivity to the traffic control:

Resource Discovery control mechanisms take the buffer utilization and available

bandwidth into account as a measure of the severity of congestion. But the parame-

ters setting is also affected by the traffic characteristics. It is hard to find the general

parameters setting for the all of the traffic. It needs more investigation in future.

• Impact of parameter settings: In the RD scheme, linear queue control functions

4.6. Fairness Analysis of RD-DiffServ Model 95

are employed. The two curves of linear functions intersects in target point and

change smoothly with queue change. The bandwidth allocation is consistent and

resulting admission rate fluctuates consistently and smoothly around the optimal

point. Minor change on target point orα has minor impact on the curves. Therefore

minor parameter mistuning won’t degrade the control effect and the network per-

formance. The RD scheme is robust and relatively insensitive to parameter setting.

4.6 Fairness Analysis of RD-DiffServ Model

In this section, we analyze the stationary behavior of a bulk data transfer TCP connection

under the RIO architecture and show that RIO cannot achieve throughput assurance and

proportional fairness. Based on the derived analytic results, we analyze RD-DiffServ and

compared to RIO.

4.6.1 A TCP Performance Model under the Differentiated Service

Several analytic models have been proposed to characterize the stationary behavior of a

bulk data transfer TCP flow as a function of packet loss ratio, round trip time, and other

parameters. The most well-known result (refer to [25]) is that the steady state throughput

of a long-lived TCP connection is upper bounded by

throughput . MSS

tr
∗ C√

p
(4.11)

whereMSS is the segment size,tr is the round trip time,C is a constant, andp is the

packet loss probability. Padhye [48] proposed a model that captures the impact of not only

TCP’s fast retransmit mechanism but also TCP’s timeout mechanism on the throughput.

These models are usually derived under the following assumptions:

• The sender always has data to send if it is permitted by the congestion window;

• The lifetime of the connection under consideration is at least in the order of several

round trip times;

4.6. Fairness Analysis of RD-DiffServ Model 96

• The receiver advertisement window is always large enough so that the congestion

window is not constrained by the advertisement window;

• Packet losses are independent events with the same, small probability.

The only last assumption that hinders the results from being directly applied to the

RIO, because the packet loss probability becomes dependent on the buffer occupancy in

RED.

4.6.2 RD-DiffServ Model Fairness Analysis

We follow the stochastic model of TCP congestion control model, and focus on TCP’s

congestion avoidance mechanism in which the congestion window size,W , is increased

by 1/W each time an ACK is received, and is halved each time packet loss is detected.

Since we do not intend to derive an accurate throughput formula, we do not consider

timeout effects.

We model the TCP congestion avoidance behavior in terms of “round”. A round be-

gins with the back off transmission ofW packets, whereW is the current TCP congestion

window size. Letb be the number of packets acknowledged by an ACK. Many TCP im-

plementations send one cumulative ACK for two consecutive packets received, andb is

usually equal to 2. IfW packets are sent in the first round and are all correctly received

and acknowledged, thenW/b ACKs will be received. Since each ACK increase the win-

dow size by1/W , the window size isW + 1/b. That is, under the congestion avoidance

mechanism and in the absence of packet loss, the window size increases linearly in time,

with a slope of1/b packets per round trip time. Once all packets in a congestion window

have been sent in back off manner, no other packets are sent until the first ACK is re-

ceived for theseW packets. The duration of a round is equal to the round trip time and is

assumed to be independent to the congestion window size. We assume that if a packet is

lost in a round, all remaining packets transmitted until the end of the round are also lost.

We define a “cycle” to be a period between two packets losses. Suppose a TCP sender

starts to send data at timet = 0. For any given timet > 0, we defineNt to be the number

of packets transmitted and acknowledged in the interval[0, t], andBt = Nt/t to be the

goodput on that interval. We define the long term steady-state TCP goodput,B, as

4.6. Fairness Analysis of RD-DiffServ Model 97

B = lim
t→∞

Bt = lim
t→∞

Nt

t
(4.12)

To facilitate the analysis, we also define the following terms:

• Ni: the number of packets sent in theith cycle and eventually received.

• Di: the duration of theith cycle.

• Wi: the congestion window size at the end of theith cycle.

• Wr: the ideal window size of IN packets for a flow with target rater.

• pi
d: the average packet dropping probability for IN packets.

• po
d: the average packet dropping probability for OUT packets.

• pd: the average packet dropping probability for IN and OUT packets.

We are interested in establishing the relationship between the goodput,B(r), of a TCP

connection with target rater, and the average packet dropping probability of OUT packets

po
d. We modelWi as a Markov regenerative process with rewardsNi, and define the long

term goodputB as

B =
E(N)

E(D)
(4.13)

In the ith cycle, the durationDi =
∑

tij. Under the assumption that the round trip

time tij is a random variable that is independent of the congestion window size, we have

E(D) = (E(X) + 1) ∗ E(tr) (4.14)

whereE(tr) is the average round trip time. We first observe the following relationship

betweenWi andXi:

Wi =
Wi−1

2
+

Xi

b
(4.15)

4.6. Fairness Analysis of RD-DiffServ Model 98

It then follows that:

E(X) =
b ∗ E(W)

2
(4.16)

From above, we have

E(N) =
E(X)

2
∗ (

3 ∗ E(W)

2
− 1) +

E(W)

2
(4.17)

Assumepi
d
∼= 0 (which holds if the network is well-provisioned), we then have

E(W) =

√
8

3b
∗ 1

po
d

+ o(
1√
po

d

) (4.18)

In theith cycle, there areXi round (approximately). Suppose the target rate isr. The

window size designated for IN packets is thenWr = r ∗ tr, and the ratio of IN packets to

all packets in a cycle can then be expressed asWr ∗Xi/Ni, whereNi can be expressed as

Ni =

Xi/b−1∑

k=0

(
Wi−1

2
+ k) ∗ b + βi (4.19)

=
Wi−1

Xi

+
Xi

2
∗ (

Xi

b
− 1) + βi (4.20)

=
Xi

2
∗ (

Wi−1

2
+ Wi − 1) + βi (4.21)

Hereβi is the number of packets sent in the last round, and is assumed to be uniformly

distributed between 1 andWi, i.e.,E(β) = E(W)/2, and hence,

WrXi

Ni

=
Wr

Wi−1

4
+ Wi

2
+ βi

Xi
− 1

2

∼= Wr

Wi−1

4
+ Wi

2

(4.22)

Consider two TCP connections with target rater1 andr2 in the under-subscribed case

(in which Wr << E(W)). The ratio of the long term goodputs of the two connections

can be approximated as

B1

B2

≈ E(tr2)
√

po
2

E(tr1)
√

po
1

(4.23)

4.7. Feedback Loop Analysis Background 99

The implication of Equation 4.23 is two-fold: first, the current Differentiated Service

architecture, RIO, cannot provide throughput assurance and proportional share of surplus

bandwidth, if the TCP connections are of different target rates and RTTs. Second, if we

set the packet dropping probability for packets as

po
1

po
2

=
r2
2E(tr2)

2

r2
1E(tr1)2

(4.24)

then the ratio of the long-term goodput is approximately

B1

B2

≈ r1

r2

(4.25)

so by adjusting the packet dropping for packets according to the target rate and RTT,

it is possible to achieve throughput assurance and proportional bandwidth sharing. Our

admission control module based on RD-DiffServ model calculates the packet dropping

probability in terms of target rates and explicit rate which relates to RTTs accordingly.

4.7 Feedback Loop Analysis Background

The RD framework enables a resource discovery approach which leads to distributed

resource sharing to QoS through the feedback signals. We now explain how the feedback

signals can be derived, and how they link to the notions of “fairness”, which is based of

the work on Kelly and co-workers [32].

A network is a set of linked resources, and a path through the network will use some

subset of these resources in a specific order. The description is general, but it may help

to think of the current Internet where typical resources are bandwidth or buffer capacity

in a router output port. We shall assume fixed routing, so a route determines a specific

subset of the resources. LetJ be a finite set of resource indexed byj, andR a finite of

traffic (aggregate flow or individual flow), indexed byr, where the0− 1 incidence matrix

A = Ajr indicates whether trafficr uses resourcej or not. Suppose further that we

can characterize a flow’s preference for bandwidth by a concave, non-decreasing utility

function,Ur(x), which is appropriate for ‘elastic’ traffic. For convenience assumeUr is

4.7. Feedback Loop Analysis Background 100

everywhere differentiable. It is natural for traffic to attempt to pursue their own ends, and

seek to maximizeUr(xr) overxr ≥ 0. But resources are finite, so this behavior will tend

to overload certain resources. To counteract this, suppose that when the load on resource

j is yj, the resource incurs a cost at rateCj(yj). The a social planner would seek to

maximize

∑
r

Ur(xr)−
∑

j

Cj(
∑

r

Ajrxr) (4.26)

At the optimum,

U ′
r(xr) =

∑
j∈r

pj(yj) (4.27)

wherepj is the derivative or shadow pricepj(yj) = C ′
j(yj) with a corresponding load

on resourcej given by

yj =
∑

r

Ajrxr (4.28)

Suppose now we send feedback closed-loop to the edge router whereas we do admis-

sion control. We want RD packets to be additive, which means RD packets need to be

proportional to the traffic loading, suggesting a feedback RD packet of the formtrxr. If

these reflect a ‘charge’ to the traffic, the traffic wants to maximize the net return, which is

to maximize

Ur(xr)− trxr (4.29)

hence if these ‘price’ are set correctly, that is if

tr =
∑
j∈r

pj(yj) (4.30)

the traffic acting independently will drive the system toward the social optimum. Note

that the congestion pricetr internalizes the congestion costs, and is sum of the resource

prices along the route.

4.7. Feedback Loop Analysis Background 101

We now show that is it possible for the network to mandate all traffic to use Fair Intel-

ligent Admission Control (FIAC) which will impose a particular form of fairness in terms

of class. Suppose that each traffic (aggregate flow or flow) has to use the ‘willingness-to-

pay’ after FIAC adjusting

d

dt
xr(t) = κr(wr − xr(t)

∑
j∈r

pj(yj(t))) (4.31)

This is equivalent to using a utility function of the form

Ur(x) = wr log xr (4.32)

and hence the Network is implicitly maximizing
∑

r wr log xr −
∑

j Cj(yj). It can be

shown that such an allocation is weighted Proportionally Fair [32]. At the optimum,

wr = prxr (4.33)

hencewr is the amount of the trafficr is prepared to pay per unit time. If the edge

router adapts the parameterwr over time according to

wr = xrU
′
r(xr) (4.34)

then the traffic optimum and social optimum again coincide, based upon an under-

lying proportional fairness model. Updatingwr according to the resource discovery is

equivalent to the traffic seeking to maximize

Ur(
wr

pr

)− wr (4.35)

Much of the literature has concentrated on the ‘willingness to pay’ algorithm, which

is equivalent toFr(xr) = wr log xr. This is appealing since firstly,wr has a ready inter-

pretation, secondly the behavior of aggregates is linear with respect towr and thirdly the

underlying fairness model, weighted proportional fairness.

4.8. Summary 102

Suppose FIAC module at edge routers adjust the traffic rate according to the Gibbens

and Kelly ‘willingness-to-pay’ strategy [27],

d

dt
xr(t) = κr(wr − pr(t)xr(t)) (4.36)

wherepr(t) is the feedback RD packets along the route, the sum of the resource prices

pr(t) =
∑

j∈r pj(t). Thenwr is the amount the trafficr is prepared to pay per unit time,

andκr is a gain parameter. If the traffic increase rate at ratexr, it is prepared to pay

wr and the network feedback chargeprxr. In the steady state, traffic has a throughput

proportional towr, i.e. xr = K ∗ wr

pr
. Recall that this algorithm is equivalent to us-

ing a logarithmic utility function,Ur(xr) = wr log xr, hence the resulting allocations are

weighted proportionally fair. The parameterκr affects the rate of convergence. Equa-

tion 4.36 always converges to the equilibrium point, however this assumes instantaneous

feedback. Note that the multiplier only depends on quantities along route. The larger the

κr, the faster the convergence, but ifκ exceeds the bound the system may be unstable.

When a connection first enters, it can take some time to reach this point.

4.8 Summary

In this chapter we investigated the Resource Discovery (RD) module for collecting the

QoS states. Based on a novel feedback approach that focuses on network-wide perfor-

mance issues, we studied the relationships between the RD module and the normal router

infrastructure. Using the RD algorithm as well as the simple scheduling algorithms, FIFO

or Round Robin, we demonstrated that with additional QoS states information carried in

the RD packet header and added reasonable complexity at network edge, both the network

link utilization level and the fairness can be significantly improved. We further investi-

gated the Internet router equipped with RD module (RD-Internet) and DiffServ router

equipped with RD module (RD-DiffServ) on the performance trade-offs as well as the

provisioning of the algorithms. In particular, we showed that with relatively RD over-

head, the RD algorithms can attain fairly good performance. These results illustrate the

fundamental trade-offs in the design of Resource Discovery algorithm, and shed light on

the provisioning in support of edge-to-edge quality of service.

4.8. Summary 103

However, it is worth noting that Resource Discovery control mechanism may not work

well over all circumstances. In case of TCP connections with same round trip times, Drop-

tail or RED mechanisms have achieved better performance than RD control mechanism

in terms of throughput. This is primarily because our Resource Discovery mechanism

needs Resource Discovery traffic to feedback the current network QoS states that results

in bandwidth and processing. Actually, Resource Discovery control mechanism is an

edge-to-edge control mechanism that can be combined with the Internet and DiffServ

infrastructures. This new approach improves fairness in TCP/UDP interactions, and RTTs

disparities.

Chapter 5

Fair Intelligent Admission Control

In this chapter we discuss Fair Intelligent Admission Control at the per-class level (Per-

class FIAC) and per-flow level (Per-flow FIAC) that are used to solve per-class service

guarantee and per-flow fairness within a class. We also discuss the interaction between

Resource Discovery (RD) and Fair Intelligent Admission Control (FIAC).

1. Per-class FIAC is designed to ensure per-class edge-to-edge Prioritization type of

QoS. It incorporates at edge router to admit the application based on “internal”

network QoS states.

2. Per-flow FIAC is designed to ensure individual flow fairness within DiffServ class.

It does not operate at congested output ports of routers, but uses per-flow fairness

algorithm at edge router to achieve per-flow fairness.

We use the FIAC scheme in all simulations in this chapter. We have made a compari-

son with DiffServ scheme and the results are comparable. Before showing some compu-

tational results, we discuss linear stability solution for the problem. Details are explained

in subsequent sections.

5.1 Introduction

Traditionally, best-effort service has been the main type of service available over net-

works. While this type of service has contributed much toward the rapid growth of the

105

5.1. Introduction 106

Internet, it cannot support applications that have real-time requirements. One way to pro-

vide such a service is to strictly control input traffic by admission control and schedule

packets based on the requirements of the connection they belong to.

In this chapter we propose and develop a novel Fair Intelligent Admission Control

(FIAC) as a unifying admission control framework to provide scalable support for guaran-

teed services. More specifically, this FIAC provides a unifying framework to characterize,

in terms of their abilities to provide per-class edge-to-edge QoS, per-flow fairness within

a class, and the end-to-end QoS by their concatenation. The key construct in the pro-

posed FIAC is the interaction between FIAC and Resource Discovery which references

and updates the “internal” QoS states as RD packet traverse each core router. A crucial

property of the FIAC algorithm is that they can be incorporated just at edge router. In this

sense, the FIAC scheme is core stateless, as no per-flow state is needed at core routers for

computing fairness states.

In this chapter we lay the theoretical foundation for the definition and construction of

the FIAC scheme. We describe how interact with Resource Discovery module, and based

on “internal” QoS states, establish edge-to-edge per-class service and per-flow fairness

guarantee. Consequently, we demonstrate that in terms of support for assured services,

the proposed FIAC scheme preserves the scalability of the DiffServ model. Furthermore,

we show that the notion of FIAC with RD leads to the design of the new state-less QoS

router.

The objectives of the proposed FIAC are two-fold. First, as a admission control

mechanism, it must not mandate any specific scheduling algorithms to be employed in

a network in order to provide guaranteed services. In other words, it must allow for di-

verse scheduling algorithms as long as they are capable of providing QoS guarantees.

In fact, our FIAC can accommodate both core stateless scheduling algorithms and state-

ful scheduling algorithms. Second, the FIAC provides a QoS abstraction for admission

control mechanisms that decouples that data plane from the QoS control plane. This ab-

straction facilitates the design of a resource control architecture, where QoS states are

maintained only at edge router, while still being capable of providing QoS guarantees

with similar granularity and flexibility of the DiffServ architecture. We believe that these

two objectives are important in implementing quality of service in practice. For example,

5.2. Fair Intelligent Admission Control: Basic Architecture 107

the ability to employ diverse scheduling algorithms not only encourages choice and com-

petition among equipment vendors and ISPs, but also, perhaps more importantly, allows

a network and its services to evolve. Similarly, by maintaining QoS states only at edge

router, core routers are relieved of QoS control functions making them potentially more

scalable, reliable, and efficient. Furthermore, a QoS control plane which is decoupled

from the data plane allows an ISP to deploy sophisticated provisioning and admission

control algorithms to optimize network utilization without incurring software upgrades at

core routers.

The rest of this chapter is organized as follows. In the next section we will briefly

outline the basic architecture of FIAC. In Section 5.2 we outline a FIAC architecture in

the context of an ideal edge-to-edge operational region. This FIAC is extended in Section

5.3 to account for the per-class quality of service. In Section 5.4 we introduce per-flow

FIAC to address flow fairness within a class. In Section 5.5, we apply the FIAC to address

the fairness problem of DiffServ under variable packet size situation. In Section 5.6, we

summarize the contributions of the chapter.

5.2 Fair Intelligent Admission Control: Basic Architec-

ture

In this section we outline the basic architecture of the proposed unifying admission con-

trol framework- the Fair Intelligent Admission Control (FIAC). The FIAC algorithm is

based on the incoming traffic measurements and the QoS states report from the Resource

Discovery module to make admission decision.

Conceptually, FIAC has the following characteristics:

• Scalability: The admission control schemes are scalable regardless of the number

of flows in the system. This means that the overhead of admission control is inde-

pendent of the number of flows in the system.

• Effectiveness: The admission control schemes try to maximize the bandwidth uti-

lization to the extent possible. The result is a system with high probability of ad-

mitting a new flow if resources are available.

5.2. Fair Intelligent Admission Control: Basic Architecture 108

Edge

Edge

Edge

Edge

Edge

core

Core

Core

Core

Figure 5.1: The network model

• Compatibility: The admission control methods presented are compatible with cur-

rent industrial practice. Minor modifications to communication infrastructure of

routers, signaling protocols, or packet format, etc are required.

Now we describe the model and define the terminology (network, link, path, flow and

service classes) that will be used in the following sections.

Network

A network consists of a number of nodes (e.g., routers and hosts). Nodes are con-

nected by physical links on which packets are forwarded. We assume that the network

can be partitioned into multiple domains. Each domain can have many routers. Figure 5.1

illustrates an example of one domain. The network resources are controlled by the FIAC

module at edge router.

Routers and Links

There are two kinds of routers in a domain: edge router and core router as shown

in Figure 5.1. As the name implies, the edge router is at the edge of domain, and the

core router is in the interior of the domain. A router has multiple input and output links.

We assume that there are N input links at a router. For the incoming packet, the router

5.2. Fair Intelligent Admission Control: Basic Architecture 109

determines the output link by looking up its routing table, and transports the packet to the

proper output link, which, in turn, connects to the next hop. It is possible that a packet may

have to be queued at the output link because of the limitation of output link capacity. We

denoteC as the output link capacity, in bits per second. Packets may exceed the capacity

at the output link, and thus the packet may suffer some queuing delay at the output link.

Paths

A packet is transmitted along a path. In a network, a path is a route between any two

nodes.

Flows and Classes of Service

An IP traffic flow is defined as a set of packets being sent from the application in the

network during a certain time interval. All packets belonging to a particular flow have

a set of common properties. A flow can be constrained by a leaky bucket at the edge

router when it enters the domain. This edge router is called the ingress router to this

flow. Following the domain, flows are aggregated into classes. QoS requirement and

specifications of the traffic carried by the flows are defined on a class-by-class basis.

Fair Intelligent Admission Control (FIAC) was designed to solve two problems of the

Internet and traditional DiffServ: (a) per-class (under DiffServ) or flow (under the Inter-

net) QoS under the traffic overloading or internal network provisioning changes situation;

(b) per-flow fairness within a class (under DiffServ) or flow fairness (under the Internet).

We believe the cause of the first problem is due to the domain (DiffServ domain or

Internet domain) being unaware of “internal” network capability or QoS states and hence

it is unable to ensure traffic conditions at which Per-Hop-Behavior can operate satisfac-

torily. Regardless of the “internal” network QoS states, the domain (DiffServ domain or

the Internet domain) still admits overloading traffic into the network and this creates a

situation similar to that of a “under-provisioned” network, over which the domain does

not perform well. It needs a responsive admission scheme.

The second problem is caused by the fact that DiffServ is not interested in the compo-

sition of a DiffServ class. Packets labeled with the same code point are treated exactly the

same according to the class’ PHB. The amount of bandwidth received by a flow within a

class depends heavily on the way the flow is controlled externally. For example, a UDP

flow can always grab more than its fair share of the bandwidth available to the class com-

5.2. Fair Intelligent Admission Control: Basic Architecture 110

Egress router

Core router

Ingress router

FIAC module

Data Path

Resource Discovery feedback

per−flow FIAC

per−class FIAC

FIAC−RD interaction
module

Figure 5.2: FIAC Components

pared to a TCP flow with the same DiffServ class. In the same way, a short round trip

time TCP flows can gain more bandwidth share than a long round trip time TCP flow. We

address this problem using a per-flow level admission control which resolves flow’s fair-

ness before they are aggregated into a DiffServ class. The similar situation can be found

under the Internet domain.

The philosophy of FIAC is to prevent overloading traffic as early as possible (at edge

node) so that it will alleviate network congestion situation and guarantee per-class service.

Furthermore, FIAC per-flow mechanism can guarantee per-flow fairness among flows

which belong to the same class.

The idea behind FIAC is to setup a communication channel between “internal” (net-

work capability report) and “external” (QoS requirements) and to make admission de-

cision based on “internal” state (network capability report) and “external” requirement

(QoS requirements).

To achieve the above two goals, we designed three modules in FIAC: (a) per-class

FIAC; (b) per-flow FIAC; and (c) FIAC-RD interaction module with the Resource Dis-

covery. Figure 5.2 illustrates the relationship between the three components.

Traffic arriving at the ingress router of the domain is differentiated by its QoS require-

ments. All arriving traffic with the same QoS requirements are treated as the same aggre-

gate class. In DiffServ, a typical arrangement would be to categorize traffic into premium

(EF), gold, silver, bronze, and best-effort classes [60]. We also follow this arrangement to

design five physical queues to map above categories in DiffServ domain.

FIAC is a predictive control scheme which performs two functions: (a) it estimates the

5.2. Fair Intelligent Admission Control: Basic Architecture 111

host 1

host 2

host 3

host 4

host 5

host 6

per−class FIAC
Class 1

Class 2

per−flow FIAC

FIAC−RD Interaction
Module

 QoS state report

Figure 5.3: Fair Intelligent Admission Control Module

amount of aggregated traffic of a DiffServ domain based on history of the traffic, and (b)

it makes admission decision based on the feedback QoS states information from Resource

Discovery module.

Figure 5.3 illustrates the relationship between FIAC module and Resource Discovery

feedback module.

The Fair Intelligent Admission Control module (FIAC) is an entity that implements

the admission control. The FIAC is comprised of the following components:

1. FIAC-RD interaction module: In the FIAC-RD interaction module, it takes the

network QoS state information from the Resource Discovery module to the FIAC

and passes the admission rate to the RD module.

2. Per-class FIAC: Based on feedback DiffServ QoS state report, it adjusts the in-

coming traffic rate to satisfy per-class requirement.

3. Per-flow FIAC: it is responsible for ensuring fairness among flows within a class.

‘

FIAC works on edge router and considers the buffer’s status and internal network

capability to make admission decision. Figure 5.4 illustrates the buffer consideration in

FIAC module. The key steps of FIAC are as follows:

• First, FIAC tries to maintain the queue length close to a target valueQ0 so that the

queue does not go empty and the output link is always keeping busy.

• Second, FIAC adjusts the per-class incoming traffic rate to minimize variations in

buffer queue length and in packet delay.

5.2. Fair Intelligent Admission Control: Basic Architecture 112

Q0

Buffer

target queue
length

queue length

Figure 5.4: buffer consideration

• Third, FIAC tries to allocate bandwidth proportional to the class service require-

ments and to distribute the unused bandwidth proportional fairly for per-class traffic

that can use an additional share. To achieve this objective, FIAC oversells band-

width when the network operates below the target point.

• Finally, FIAC is able to prevent congestion as early as possible so that it can provide

stronger service compared to DiffServ even in traffic overload or internal network

capacity shrinking conditions.

Figure 5.2 illustrates the per-class and per-flow framework in FIAC module. The

FIAC provides a unifying framework to formalize the per-hop behavior of a core router

and to quantify its ability to provide quality of service. This formalism is independent of

the current mechanism employed by the core routers, be it stateful or stateless.

In summary, while based on the Internet or DiffServ paradigm, the FIAC renders the

same expressive power and generality, in terms of the ability to provide relative assured

service. Furthermore, FIAC architecture provides a unifying framework upon which a

scalable QoS provisioning and admission control framework can be built, where all QoS

reservation states for guaranteed services are eliminated from the network core.

The remainder of this chapter is devoted to laying formal foundation for FIAC system.

5.3. Per-class Fair Intelligent Admission Control 113

per−flow buffer

per−flow

per−flow FIAC

per−class buffer

per−class FIAC

edge output link

Figure 5.5: Per-flow FIAC and Per-class FIAC

We also illustrate how per-class FIAC and per-flow FIAC algorithms fit into the unifying

framework. Issues of implementation and admission control will also be briefly discussed.

5.3 Per-class Fair Intelligent Admission Control

Per-class FIAC determines the Explicit Admission Rate (EAR) of a class based on the

internal network capability rate (reported by the Resource Discovery Mechanism), the

current available router resources (e.g. available buffer, available bandwidth). To cal-

culate EAR, FIAC performs two functions, queue control function and bandwidth fair

control function which are explained in the following sections.

Queue Control Function

FIAC employs “queue control function” to express the degree of network congestion it

can tolerate. Since the queue builds up and drains out continuously, the queue control

function can regulate the queue fluctuation smoothly. The target point,Q0, represents the

optimal buffer utilization point we want to maintain. The linear function is defined as in

following equation.

5.3. Per-class Fair Intelligent Admission Control 114

f(Q) =

Buffer Size−Q
Buffer Size−Q0

, if Q > Q0

1 + (α−1)∗(Q0−Q)
Q0

, if Q ≤ Q0

(5.1)

The parameter,α, can be considered as an oversell factor of FIAC when the network

in under-utilized.

Bandwidth fair control function

To calculate the available bandwidth for per-class traffic, it needs two components: one

is the estimation of the incoming per-class traffic rate and another one is the feedback

internal network capability rate.

We use exponential averaging formula as in Core-Stateless Fair Queuing (CSFQ) [66]

to estimate the incoming per-class traffic rate. Using an exponential weight gives more re-

liable estimation for burst traffic, even when the packet inter-arrival time of the aggregate

has significant variance.

If we indicate the arrival time of thekth packet of classi asT k
i and its length aslki (t),

the new estimation of arriving rateRi(t) can be computed as follows:

Rnew
i (t) = (1− e−T k

i /K) ∗ lki
T k

i

+ e−T k
i /K ∗Rold

i (5.2)

WhereT k
i represents thekth sample of the inter-arrival time of class traffici, i.e.,

T k
i = tki − tk−1

i andk is a constant, 400 ms.

Upon receiving the feedback explicit rate (ER) from the Resource Discovery mech-

anism, the FIAC bandwidth fair control function will calculate the Mean Available Rate,

MARi, for per-class traffic. This function is defined as follows:

MARi =

if (Q ≤ Q0) or (Q > Q0 andRi ≤ ER)

ER + β ∗ (Ri − ER)

else

ER

(5.3)

whereβ is the exponential average factor. In FIAC bandwidth fair control function the

value ofMARi is an exponential running average of the current load from all connections

5.3. Per-class Fair Intelligent Admission Control 115

only when the network operates below the target operating point. When the network

exceeds the target operating point, FIAC bandwidth fair control function does not allow

MARi to increase further. That means that newMARi does not track the arriving rate

Ri value larger than the current internal network capability rate,ER, when the queue is

congested. This rule prevents all incoming per-class traffic whoseRi is equal or larger

than the currentER to increase further, thereby preventing further overloading of the

network and helping prevent excessive congestion.

Explicit Admission Rate Control Function

Edge router determines Explicit Admission Rate for per-class traffic (EARi) by con-

sidering its available buffer resource and available bandwidth resource, the product of

function (5.1) and function (5.3). Explicit Admission Rate Control function is defined as

follows:

EARi = f(Q) ∗MARi (5.4)

When the network operates above the target operating point, Explicit Admission Rate

(EAR) is reduced due tof(Q) ≤ 1 (refer to function (5.1)) and the throttling is performed

fairly. However, when the network operates below the target operating point, Explicit

Admission Rate is allowed to increase its rate by a factor greater than1, which enables

the per-class incoming traffic capable of using the available bandwidth to take advantage

of it.

5.3.1 Per-class FIAC Algorithm

Pseudo code reflecting this algorithm is described in the Algorithm (5).

whereQ0 specifies the queue length to which the queue asymptotically converges

and henceBuffer size − Q0 is the maximum burst an edge router can accommodate.

We useQ0 to separate two stages: tolerable stage and intolerable alert stage. When the

queue length is larger thanQ0, we treat it as intolerable alert stage. When queue length

is less thanQ0, we treat it as non-congestion stage. When an edge router is under the

intolerable alert stage, it attempts to keep the packet enqueue rate around an operating

5.3. Per-class Fair Intelligent Admission Control 116

Algorithm 4 Per-class-FIAC Parameter Settings
Ensure: Per-class AF Service

Require: Per-class ER

ER : {Explicit Rate, from Resource Discovery Mechanism}
Require: Parameters

β : {The average ratio}
α : {Congestion function parameter}
weight : {The traffic priority constant}

Require: Per-class Variable

MAR : {Mean Available Class Rate}
Q0 : {Target Class Queue Length}
Qin

0 : {Target point for IN packet queue}
qlenin : {Length of IN packet queue}
EAR : {Explicit Admission Rate}
DPF : {Queue Control Factor}

Initialization

Q0 ⇐ k * BufferSize

Qin
0 ⇐ k * IN-profile BufferSize

MAR ⇐ {Assign a large value}

point by decreasingβ∗(R/weighti−MACR). When an RD router is under the tolerable

stage, it attempts to keep the packet enqueue rate around an operating point by increasing

β ∗ (R/weighti −MACR)

5.3.2 Simulation Investigation: Per-class Fair Intelligent Admission

Control

We have implemented the Per-class FIAC algorithm into the ns simulator [47]. Simu-

lations are performed on a network topology, the parking-lot topology, as illustrated in

Figure 5.6.

Some traffic traverses Ingress1→B→C→Egress1, and other traffic traverses Ingress2→B→
C→Egress2. The inter-router link (B→C) is the bottleneck link which is1Mbps. All

5.3. Per-class Fair Intelligent Admission Control 117

Algorithm 5 Per-Class FIAC Algorithm at Edge Router
At Edge Router

Bandwidth Fair Control Function

if RD.tag ==INthen

if qlenin ≥ Qin
0 then

if R/weight ≤ MAR then

MARnew = ER + β ∗ (R/weight− ER)

else

MARnew = ER

end if

else

MARnew = ER + β ∗ (R/weight−ER)

end if

else

if qlen ≥ Q0 then

if R/weight ≤ MAR then

MARnew = ER + β ∗ (R/weight− ER)

else

MARnew = ER

end if

else

MARnew = ER + β ∗ (R/weight−ER)

end if

end if

Queue Control Function

if QueueLength≥ Q0 then

DPF = (Buffer Size−QueueLength)/(Buffer Size−Q0)

else

DPF = 1 + (α− 1) ∗ (Q0 −QueueLength)/Q0

end if

Per-class Explicit Admission Rate

EAR = MARnew ∗DPF

5.3. Per-class Fair Intelligent Admission Control 118

Ingress_1 core_B core_C

Egress_2

Egress_1

Ingress_2

flows

flows

flows

flows

Figure 5.6: Parking-lot Experiment

other links are configured as100Mbps.

Experiment 1 : per-class traffic behavior under Per-class FIAC

In Experiment 1, we focus on relative service differentiation and compare the performance

of the following four cases. In case 1, we consider four classes TCP traffic with different

round trip time (RTT). In case 2, we study the performance of the four classes of TCP

traffic with the same round trip time. In case 3, we study the performance of the four

classes of UDP traffic. In case 4, we study the performance of the one class of TCP traffic

and the three classes of UDP traffic. The Table 5.3.2 describes the four cases in terms of

RTT, traffic type, and class policy.

For services, we define the relative QoS guarantees as Gold service (40%), Silver

service (30%), Bronze service (20%), and Best Effort (10%). In experiment 1, each class

has multiple flows (on Ingress1→Egress1, and Ingress2→Egress2). The results are shown

in Figure 5.7.

In Case 1, refer to Figure 5.7, we plot the goodput for all classes. Based on this set of

plots, we can make following observations. The DiffServ can not properly differentiate

among Gold traffic, Silver traffic, Bronze traffic, and Best Effort traffic under the different

round trip time situation. Even the BE traffic with low priority (10%) also gains more

bandwidth due to having short round trip time. The Per-class FIAC behaves quite well

after the start interval [0s, 5s]. Gold traffic gained around0.38Mbps, Silver traffic gained

about0.27Mbps, Bronze traffic gained about0.19Mbps, and BE traffic gained about

0.1Mbps regardless of they have different round trip time.

Another observation is in Case 2, refer to Figure 5.8, all TCP having the same round

trip time, the DiffServ and Per-class FIAC all are able to provide relative differentiated

service according to the policy. A similar observation was found in Case 3, all UDP

5.3. Per-class Fair Intelligent Admission Control 119

Table 5.1:Experiment 1 - Four Cases Description

Case 1 Gold Silver Bronze BE

Traffic TCP TCP TCP TCP

RTT 140ms 80ms 50ms 32ms

CBR – – – –

Case 2 Gold Silver Bronze BE

Traffic TCP TCP TCP TCP

RTT 50ms 50ms 50ms 50ms

CBR - – – –

Case 3 Gold Silver Bronze BE

Traffic UDP UDP UDP UDP

RTT – – – –

CBR 1Mbps 1Mbps 1Mbps 1Mbps

Case 4 Gold Silver Bronze BE

Traffic TCP UDP UDP UDP

RTT 50ms – – –

CBR – 1Mbps 1Mbps 1Mbps

traffic, DiffServ and Per-class FIAC all provide proper differentiated service.

When the Gold traffic is TCP and others are UDP traffic, Case 4 (Figure 5.8), the

DiffServ failed to provide the Gold traffic (TCP flow) the best service. In DiffServ, Gold

traffic takes up around 31% bandwidth (310 Kbps) but Silver traffic takes up around 35%

bandwidth (350 Kbps). Per-class FIAC differentiates traffic classes fairly by allocating

43% bandwidth (430 Kbps) to Gold traffic, 28% bandwidth (28 Kbps) to Silver traffic,

and 19% bandwidth (19 Kbps) to Bronze traffic, and 10% bandwidth (10 Kbps) to BE

traffic.

The average packet delay behavior is shown in Figure 5.9. In mixed traffic type case

(TCP and UDP), Per-class FIAC maintains its operation around the threshold with little

variations, resulting in lower packet delay compared to DiffServ.

5.4. Per-flow Fair Intelligent Admission Control 120

0

0.1

0.2

0.3

0.4

0.5

0 50 100 150 200

G
oo

dp
ut

 in
 M

bp
s

Simulation time (s)

DiffServ in Case 1

1

2,3,4

1
2
3
4

Gold
Silver

Bronze
BE

(a) DiffServ in Case 1

0

0.1

0.2

0.3

0.4

0.5

0 50 100 150 200

G
oo

dp
ut

 in
 M

bp
s

Simulation time (s)

Per-class FIAC in Case 1

1

2

3

4

1
2
3
4

Gold
Silver

Bronze
BE

(b) Per-Class FIAC in Case 1

Figure 5.7: Experiment 1

5.4 Per-flow Fair Intelligent Admission Control

The aim of Per-flow FIAC is to guarantee per-flow fairness within a class. It determines

the per-flow Explicit Admission Rate (EARf), based on the per-flow available buffer,

and per-flow available bandwidth. Per-flow FIAC also has two functions, queue control

function and bandwidth control function, to calculate per-flow Explicit Admission Rate.

In the following sections, we will explain the two functions in details.

Per-flow queue control function

The per-flow Queue Control Function is similar to the per-class and defined as follows.

5.4. Per-flow Fair Intelligent Admission Control 121

0

0.1

0.2

0.3

0.4

0.5

0 50 100 150 200

G
oo

dp
ut

 in
 M

bp
s

Simulation time (s)

DiffServ in Case 2

1

2

3

4

1
2
3
4

Gold
Silver

Bronze
BE

0

0.1

0.2

0.3

0.4

0.5

0 50 100 150 200

G
oo

dp
ut

 in
 M

bp
s

Simulation time (s)

Per-class FIAC in Case 2

1

2

3

4

1
2
3
4

Gold
Silver

Bronze
BE

0

0.1

0.2

0.3

0.4

0.5

0 50 100 150 200

G
oo

dp
ut

 in
 M

bp
s

Simulation time (s)

DiffServ in Case 4

1
2

3

4

1
2
3
4

Gold
Silver

Bronze
BE

0

0.1

0.2

0.3

0.4

0.5

0 50 100 150 200

G
oo

dp
ut

 in
 M

bp
s

Simulation time (s)

Per-class FIAC in Case 4

1

2

3

4

1
2
3
4

Gold
Silver

Bronze
BE

Figure 5.8: Case 2 and 4 in Experiment 1

f(Qf) =

Buffer Sizef−Qf

Buffer Sizef−Q0
if Qf > Q0

1 +
(α−1)∗(Q0−Qf)

Q0
if Qf ≤ Q0

(5.5)

Per-flow bandwidth control function

The per-flow Bandwidth Control Function is designed to calculate the fair share of avail-

able bandwidth for per-flow. To estimate the incoming per-flow rate, we also use func-

tion (6.1) but to measure per-flow traffic. To calculate Flow Mean Available Rate (FMAR),

we designed the similar function to formula (5.3).

FMAR =

If Qf ≤ Q0,

If Qf > Q0 andR ≤ FMARold

FMARold + β(R− FMARold)

Otherwise

FMARold

(5.6)

Where the value ofFMAR is a running average of the current load from all flows

5.4. Per-flow Fair Intelligent Admission Control 122

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

DiffServ Per-class FIAC

D
el

ay
 in

 s
ec

on
ds

DiffServ
Per-class FIAC

Figure 5.9: Average Packet Delay: 1 TCP flow and 3 UDP flows

for the same class andR is the flow arriving rate. When the queue length,Qf , exceeds

the target operating point (Q0), the per-flow FIAC Bandwidth Control Function does not

allow FMAR to increase further. This mechanism aims to allocate available bandwidth

fairly among all flows within a class.

Per-flow explicit admission rate

The per-flow FIAC determines the Per-flow Explicit Admission Rate (FEAR) by calcu-

lating the product of per-flow Queue Control Functionf(Qf) and per-flow Bandwidth

Control FunctionFMAR. The per-flow Explicit Admission Rate Function is defined as

follows.

EARi
f = f(Qf) ∗ FMAR (5.7)

It is not surprised that the per-flow and per-class admission controls are similar in

structure. They both try to estimates bandwidth fair share for a class or flow taking into

account network conditions, buffer available, and bandwidth usage in their decisions to

allocate bandwidth accordingly.

5.4.1 Per-flow Fair Intelligent Admission Control Algorithm

After receiving the QoS report (Explicit Rate,ER) from the Resource Discovery Mech-

anism, FIAC applies FIAC algorithm to calculate per-class Explicit Admission Rate and

5.4. Per-flow Fair Intelligent Admission Control 123

Algorithm 6 Per-flow-FIAC Parameter Settings
Ensure: EARi

f : per-flow Explicit Admission Rate within the class i

Require: EARi: Explicit Admission Rate of class i

Require: Parameters

β : {The average ratio}
α : {Congestion function parameter}

Require: Per-flow Variable

FMAR : {Flow Mean Available Rate}
Q0 : {Target Class Queue Length}
EARi

f : {Explicit Admission Rate flow of class i}
DPF : {Queue Control Factor}
Ri

f : {the incoming rate of flow which belongs to class i}

Initialization

Q0 ⇐ k * BufferSize

FMAR ⇐ EARi from per-class FIAC

per-flow Explicit Admission Rate. The Per-flow FIAC algorithm is described in Algo-

rithm 7.

5.4.2 Simulation Investigation: Per-flow Fair Intelligent Admission

Control

We use the parking-lot network topology, as illustrated in Figure 5.10, to investigate the

per-flow fair intelligent admission control.

Figure 5.11 shows the fairness among flows within a class. It is clearly shown that

DiffServ is not concerned about fairness among flows within the same class.

Figure 5.12 shows the fairness among flows within a class. It is clearly shown that

conventional DiffServ is not concerned about fairness among flows within the same class

(Figure 5.12(a) and Figure 5.12(c)).

The situation is not much different when the per-flow FIAC is disabled. As discussed

before, the unfairness between flows is caused by factors outside DiffServ domain and

hence does not fall within DiffServ’s handling capability. It is clear from Figure 5.12(b)

5.4. Per-flow Fair Intelligent Admission Control 124

Algorithm 7 Per-flow FIAC Algorithm at Edge
At Edge Router

Bandwidth Fair Control Function

if QueueLength≥ Q0 then

if Ri
f ≤ FMAR then

FMARnew = FMAR + β ∗ (Ri
f − FMAR)

else

FMARnew = FMAR

end if

else

FMARnew = FMAR + β ∗ (Ri
f − FMAR)

end if

Queue Control Function

if QueueLength≥ Q0 then

DPF = (Buffer Size−QueueLength)/(Buffer Size−Q0)

else

DPF = 1 + (α− 1) ∗ (Q0 −QueueLength)/Q0

end if

Per-flow Explicit Admission Rate

EARi
f = FMARnew ∗DPF

and Figure 5.12(d) that FIAC handles fairness among DiffServ classes when its per-class

level is enabled, but it does not affect the composition of the flows within a class. Unfair-

ness among flows is caused by their own flow control schemes.

The next experiment demonstrates the capability of per-flow level FIAC.

Experiment 2: Per-flow FIAC and Per-class FIAC both enabled vs. DiffServ

Experiment 2 was designed to study per-flow fairness among flows within a class, the

Gold service. We have designed three cases: Case 1 is used to study per-flow fairness

among 4 TCP flows which have different round trip time; Case 2 is designed to study

per-flow fairness among 4 TCP flows which have the same round trip time; Case 3 is

5.4. Per-flow Fair Intelligent Admission Control 125

Ingress_1 core_B core_C

Egress_2

Egress_1

Ingress_2

flows

flows

flows

flows

Figure 5.10: Parking-lot Experiment

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 50 100 150 200

G
oo

dp
ut

 in
 M

bp
s

Simulation time (s)

1

2

3

4

1
2
3
4

flow1
flow2
flow3
flow4

Figure 5.11: Per-flow fairness: in Gold class

used to study per-flow fairness among 1 TCP flow and 3 UDP flows. The Experiment 2

configuration is described in Table 5.2.

In Experiment 2, Gold traffic (which has 4 flows) traverses from Ingress1→Egress1

and others (Silver, Bronze, and BE) traverse Ingress2→Egress2 which are all TCP traffic

(with RTT 50ms).

DiffServ and FIAC enabled results are shown in Figure 5.13. Case 1 demonstrates

that the normal DiffServ is not fair for the flows which have different round trip time.

The fair share for each flow is around 100 Kbps of the available bandwidth. The normal

DiffServ allocates the flow4 (shortest RTT) 180Kbps bandwidth and allocates the flow1

(longest RTT) 80 Kbps bandwidth. The FIAC (Per-class and Per-flow enabled) allocates

each flow 93 Kbps bandwidth compared to the ideal fair share bandwidth, 100 Kbps.

5.4. Per-flow Fair Intelligent Admission Control 126

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 50 100 150 200

G
oo

dp
ut

 in
 M

bp
s

Simulation time (s)

1

2

3

4

1
2
3
4

flow1
flow2
flow3
flow4

(a) Per-flow fairness in DiffServ Gold ser-

vice

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 50 100 150 200

G
oo

dp
ut

 in
 M

bp
s

Simulation time (s)

1

2

3

4

1
2
3
4

flow1
flow2
flow3
flow4

(b) Per-flow fairness in Per-class FIAC

Gold service

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 50 100 150 200

G
oo

dp
ut

 in
 M

bp
s

Simulation time (s)

1
2

3
4

1
2
3
4

flow1
flow2
flow3
flow4

(c) Per-flow fairness in DiffServ BE

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 50 100 150 200

G
oo

dp
ut

 in
 M

bp
s

Simulation time (s)

1

2

3

4

1
2
3
4

flow1
flow2
flow3
flow4

(d) Per-flow fairness in Per-class FIAC

BE

Figure 5.12: Per-flow fairness in Experiment 1: only Per-class FIAC without per-flow

FIAC

The normal DiffServ and FIAC show the similar behavior when the all flows have the

same round trip time. They all guarantee per-flow fairness.

In Case 3, the normal DiffServ allocates less bandwidth to TCP flow (only 8 Kbps)

compared to other UDP flow (105 Kbps) despite they have same priority (they are in same

class). FIAC (per-flow and per-class enabled) demonstrates it can allocate bandwidth

fairly (95 Kbps) among the flows which are in same class.

5.5. Fair Intelligent Admission Control with Variable Packet Size 127

Table 5.2: Experiment 2 - Three Cases Description

Case 1 flow1 flow2 flow3 flow4

Traffic TCP TCP TCP TCP

RTT 230ms 140ms 50ms 32ms

CBR – – – –

Case 2 flow1 flow2 flow3 flow4

Traffic TCP TCP TCP TCP

RTT 50ms 50ms 50ms 50ms

CBR – – – –

Case 3 flow1 flow2 flow3 flow4

Traffic TCP UDP UDP UDP

RTT 50ms – – –

CBR – 1Mbps 1Mbps 1Mbps

5.5 Fair Intelligent Admission Control with Variable Packet

Size

Differentiated Service Network (DiffServ) provides an architecture that is scalable and

capable of differentiating applications’ quality of service (QoS). However, if the flows

use packets of different sizes, resource sharing is no longer fair. One problem with the

basic DiffServ algorithm, such as RIO [16], is that it treats all packets the same regardless

of their size. As a result, flows with larger packet sizes get more bandwidth than flows

with smaller packet sizes, and hence basic DiffServ cannot ensure fairness among classes

with variable-length packets.

In this section we study the impact of variations in packet size on DiffServ and apply

FIAC mechanism to remove the throughput bias resulting from the use of different packet

sizes. We suggest a solution that involves Fair Intelligent Admission Control (FIAC)

scheme for each DiffServ domain. We evaluate these designs through simulation and

conclude with some concrete findings that FIAC scheme is robust enough independent of

packet size and also can be used to improve fairness among flows within the class.

5.5. Fair Intelligent Admission Control with Variable Packet Size 128

0

0.05

0.1

0.15

0.2

0 50 100 150 200

G
oo

dp
ut

 in
 M

bp
s

Simulation time (s)

DiffServ Gold class: 4 TCP flows Different RTT

1

2

3

4

1
2
3

4

flow1
flow2
flow3
flow4

0

0.05

0.1

0.15

0.2

0 50 100 150 200

G
oo

dp
ut

 in
 M

bp
s

Simulation time (s)

FIAC in Gold class: 4 TCP flows different RTT

1

2,3

4

1
2
3
4

flow1
flow2
flow3
flow4

0

0.05

0.1

0.15

0.2

0 50 100 150 200

G
oo

dp
ut

 in
 M

bp
s

Simulation time (s)

DiffServ Gold class: 4 TCP flows same RTT

1

2,3

4

1
2
3
4

flow1
flow2
flow3
flow4

0

0.05

0.1

0.15

0.2

0 50 100 150 200

G
oo

dp
ut

 in
 M

bp
s

Simulation time (s)

FIAC in Gold class: 4 TCP flows same RTT

1,3,4

2

1
2
3
4

flow1
flow2
flow3
flow4

0

0.05

0.1

0.15

0.2

0 50 100 150 200

G
oo

dp
ut

 in
 M

bp
s

Simulation time (s)

DiffServ in Gold class: 1 TCP and 3 UDPs

1

2,3,4

1
2
3
4

tcp1
udp1
udp2
udp3

0

0.05

0.1

0.15

0.2

0 50 100 150 200

G
oo

dp
ut

 in
 M

bp
s

Simulation time (s)

FIAC in Gold class: 1 TCP and 3 UDPs

1

2,3,4

1
2
3
4

tcp1
udp1
udp2
udp3

Figure 5.13: Per-flow fairness in Experiment 2: Per-class FIAC and Per-flow FIAC both

enabled vs. DiffServ

5.5.1 Virtual Class-unit

The FIAC mechanism introduces the class-unit concept to represent basic weight unit to

measure. The idea behind virtual class-unit is the fact that individual class traffic with dif-

ferent weight (or priority) can be subdivided into smaller unit, which can be manipulated

effectively. The smaller the class-unit is, the more sensitive the RD mechanism responses

to the network fairness state variation. So if the class traffic with large packet size, it

would take more bandwidth under normal DiffServ mechanism. But with RD-FIAC-

DiffServ, RD mechanisms feedback the fairness state to FIAC module dynamically, so

5.5. Fair Intelligent Admission Control with Variable Packet Size 129

Bottleneck Link

Bronze

BE

Gold

Silver

Bronze

BE

Gold

Silver

Ingress Egress

senders receivers

Figure 5.14: Simulation Topology

that the FIAC module will take admission control to achieve fairness for classes dynam-

ically. In other words, FIAC will limit the class traffic with large packet size to maintain

the fairness state. In our experiment, we choose10% of the total bandwidth as a class-unit.

5.5.2 Evaluation: FIAC over DiffServ for Variable Packet Size

Evaluation Setting

In order to evaluate our solutions, we implemented them in the ns-2 network simula-

tor [47] and measured their performance under various conditions. This allows us to

check the feasibility and investigate the behavior under more realistic settings.

For the simulation topology, we use the well-known dumbbell topology, with senders

and receivers on either side of a single bottleneck link, as depicted in Figure 5.14. The

access links to the routers are provisioned with 100 Mbps, while the bottleneck link be-

tween the routers has a lower capacity so that the total bandwidth consumed by all flows

is well below 100 Mbps, we configured as 1 Mbps. When discussing the scenarios, we

will denote TCP flows with a different packet size. The standard ns-2 implementation of

TCP Reno is used. We set up four classes: Gold, Silver, Bronze, and Best Effort.

In Experiment 1, we evaluate TCP traffic (in Gold, Silver, Bronze, and Best effort

classes) performance with variable packet sizes in terms of goodput.

In Experiment 2, we study performance of TCP flows in the same class with variable

packet sizes in terms of throughput.

5.5. Fair Intelligent Admission Control with Variable Packet Size 130

 0

 0.1

 0.2

 0.3

 0.4

 0.5

Gold: 100 bytes Silver Bronze BE

G
oo

dp
ut

 in
 M

bp
s

Simulation time (s)

DiffServ: TCP flows with variable packet size

 0

 0.1

 0.2

 0.3

 0.4

 0.5

Gold: 100 bytes Silver Bronze BE

G
oo

dp
ut

 in
 M

bp
s

Simulation time (s)

RD-FIAC-DiffServ: TCP flows with variable packet size

Figure 5.15: Goodput of Classes (Gold flow with short packet size)

Experiment 1: TCP traffic with variable packet sizes in different classes

In Experiment 1, we consider four classes, which are Gold, Silver, Bronze, and Best

effort classes. They claim40%, 30%, 20%, and10% respectively. Each class has four

TCP flows with same round trip time (RTT). In Gold class, TCP flow has short packet

size, 100 bytes. In other classes, TCP flows have large packet size, 1024 bytes.

In Figure 5.15, we plot the goodput results for all classes under FIAC-DiffServ.

Based on this set of plots, we can make following observation. The DiffServ can not

allocate bandwidth fairly for the classes which have variable packet sizes. The DiffServ

allocates the Gold class, (short packet size) less bandwidth, around 90 Kbps, which is

lower than other classes. A TCP flow that chooses a large packet size, can have an advan-

tage over other TCP flows. Our proposed model allocates each class quite fairly according

to their service level agreement.

Experiment 2: TCP flows in same class with variable packet sizes

Experiment 2 was designed to study the performance of TCP flows within the same class

with variable packet sizes. In the simulation, one TCP flow whose packet size is 1000

bytes and other TCP traffic flows have same packet size, 100 bytes.

We investigate the simulation results in terms of bandwidth. The result is shown in

Figure 5.16. From the results, the TCP flows with short packet size suffer acute degrada-

tion compared to TCP flow with large packet size, 1000 bytes.

However, in Figure 5.16(b), the distribution of bandwidth is more fair than traditional

DiffServ. Our proposed model is to preferentially drop the packets from the TCP flow

5.6. Conclusion 131

 0

 0.02

 0.04

 0.06

 0.08

 0.1

100bytes 100bytes 100bytes 1000byte

G
oo

dp
ut

 in
 M

bp
s

DiffServ: micro flows inside the aggregate

 0

 0.02

 0.04

 0.06

 0.08

 0.1

100bytes 100bytes 100bytes 1000byte

G
oo

dp
ut

 in
 M

bp
s

RD-FIAC-DiffServ: micro flows inside the aggregate

Figure 5.16: TCP flows within the class: one flow with large packet size

which has large packet size and its incoming rate is beyond the fair share rate.

5.6 Conclusion

In this section we described the Fair Intelligent Admission Control mechanisms in which

the admission control is used to control the incoming traffic between the edges based on

“internal” network QoS states and “external” traffic requirements, Service Level Agree-

ments. We then introduced two Fair Intelligent Admission Control mechanisms: per-class

FIAC and per-flow FIAC.

At per-class level, FIAC admits traffic classes according their fair share and usage

while preventing possible congestion within the DiffServ core.

At per-flow level, FIAC estimates and allocates the fair share for each flow relying

only on the interaction with its per-class admission control.

Last we demonstrated that it is also applicable for variable packet size traffic, we can

cause the admission control mechanism to adjust its control according to dynamic QoS

states report from Resource Discovery module so that to achieve fairness objective.

We recognize that our work only touches the surface. Future work will have to ad-

dress outstanding issues such as performing a complete sensitivity analysis of all of the

parameters in the system, better studying the optimal target point of the scheme, and

extending the network domain to larger and multiple domains with multiple admission

control mechanisms involved.

Together our advances lay the ground work for developing new, scalable, practical

5.6. Conclusion 132

control plane architectures to achieve the Internet QoS.

Chapter 6

Edge-Aware Resource Discovery and

Fair Intelligent Admission Control

scheme

6.1 Introduction

Basically, Edge-Aware Resource Discovery Mechanism is used to generate Resource Dis-

covery (RD) packets for collecting QoS states of the network domain. It involves the

ingress node and egress node only. The RD packets are generated and marked (e.g. EF

class) at the ingress node. Upon receiving a RD packet, the egress node consults its QoS

states and estimates “internal” domain QoS state (congestion state) and send back to the

ingress node.

The philosophy behind the “Edge-Aware” feature is that the egress router can feel the

“pain” of internal congestion without knowing where the accurate congestion node is. It

is based on the following observations. First, the egress router is the only exit gateway to

other domains. Second, the traffic rate at egress router can be seen dramatically decreased

if the congestion occurring at the internal core router. Therefore, the egress router is

able to feel the congestion state when it found the traffic rate dramatically low compared

to its flushing rate at the ingress router. The edge routers learn the network QoS state

from indirect information, such as the traffic flushing rate variation, the traffic arriving

rate variation, and estimate the network congestion intelligently by using the Edge-Aware

133

6.2. Edge-Aware Resource Discovery Scheme 134

Resource Discovery algorithms.

We propose and advocate the notion of Edge-Aware Resource Discovery and Fair

Intelligent Admission Control as an effective means for improving QoS without involv-

ing core router mechanisms. The Edge-Aware Resource Discovery architecture relies on

well-defined Edge-Aware bandwidth control algorithm. The Edge-Aware Fair Intelligent

Admission Control mechanism makes admission or rejection decision based on the net-

work QoS states reported from the Edge-Aware Resource Discovery mechanism and the

incoming traffic rate.

In addition to its ability to deliver edge-to-edge QoS states, the Edge-Aware Resource

Discovery and admission control architecture has a number of other important advantages.

• It decouples control plane from data plane, thereby reducing the complexity of net-

work management and control. The edge routers of the network domain are now

concerned primarily with associated edge-aware resource discovery and edge-aware

admission control mechanism on a much coarser granularity.

• Because of its edge awareness, Edge-Aware Resource Discovery and admission

control (Edge-Aware RD-FIAC) can deploy resource management and QoS control

mechanisms just at edge routers. Hence the Edge-Aware RD-FIAC architecture not

only simplifies the network QoS management, but also makes it more scalable.

We study the Edge-Aware RD-FIAC mechanisms in terms of various factors on band-

width variation, queue length variation, Service Level Agreement, and variation between

the flushing rate at the Ingress and the arriving rate at the Egress router. In Section 6.2 we

outline the Edge-Aware Resource Discovery architecture. In Section 6.3 , we present the

Edge-Aware Fair Intelligent Admission Control mechanism. We also demonstrated the

simulation results in the Section 6.4. We summarize the Edge-Aware Resource Discovery

and Edge-Aware Fair Intelligent Admission Control schemes in the Section 6.5.

6.2 Edge-Aware Resource Discovery Scheme

The Figure 6.1 illustrates the Edge-Aware Resource Discovery structure and relationship

with other DiffServ components.

6.2. Edge-Aware Resource Discovery Scheme 135

Data

Core Core Egress Ingress

QoS state

RD packet

Figure 6.1: Edge-Aware Resource Discovery scheme

The Edge-Aware Resource Discovery mechanism is a closed-loop feedback mecha-

nism working between the ingress router and the egress router.

On the forward path, the ingress nodes perform three functions. They (a) initiate the

RD packet, mark the DSCP (e.g. EF class) in the DSCP-field of RD packet, (b) generate

RD packet in a constant rate (or proportional to the incoming traffic rate). and (c) calculate

the ingress explicit rate which is the flushing rate into the network domain.

On the backward path, egress routers terminate the RD packet and send them back

to ingress node with updated network QoS state information which is measured at the

egress node. The egress nodes perform three functions to measure the QoS states of the

domain. They (a) measure the available bandwidth state of the egress router, (b) measure

the available buffer state of the egress router, and (c) compare with the ingress explicit

rate and calculate the QoS states of the domain.

As a result, the Edge-Aware Resource Discovery mechanism can provide “inside”

network QoS states dynamically.

To achieve the above the functions, we designed the three components to measure the

available bandwidth, available buffer, and QoS states calculation.

Figure 6.1 illustrates the Edge-Aware Resource Discovery architecture. The Edge-

Aware Resource Discovery mechanism is pieced together via the edge routers which per-

6.2. Edge-Aware Resource Discovery Scheme 136

Edge−Aware Resource Discovery

Components at Ingress Router

Admission rate
from FIAC

Negotiation module

Fair Intelligent
Admission Contro
Module

FIAC:

Available bandwidth
state

Available buffer
state

QoS states modules

Explicit rate from the Egress

Explicit Rate out of the Ingress

Figure 6.2: Edge-Aware Resource Discovery Components at Ingress Router

form RD generation, data forwarding and QoS states measurement functions. The logical

connection of RD feedback loop between the ingress and egress routers is provided by

the underlying network domain.

At the egress router, the Edge-Aware Resource Discovery mechanism measures the

available bandwidth variation, the available queue length variation, and calculates the

QoS states by comparing with the admitted rate.

6.2.1 The Ingress Router Algorithm

The Edge-Aware Resource Discovery mechanism at the Ingress router has three compo-

nents:

• Negotiation module: It’s used to negotiate with admission control module. When

the ingress router generates the RD packet, it gets the admission rate from admission

control module. When the ingress router receives the backward RD packets, it

reports the explicit rate to the admission control module to update the latest QoS

states of the domain.

• The incoming traffic rate measurement module:It’s used to estimate the incom-

ing traffic rate by using the equation 6.1.

• The flushing rate measurement module:It’s used to calculate the flushing rate

out of the ingress router.

6.2. Edge-Aware Resource Discovery Scheme 137

The Edge-Aware Resource Discovery mechanism at the Ingress focuses on the flush-

ing rate measurement rather than the local QoS state. It negotiates with the admission

control module. When the RD packet being generated, the Edge-Aware Resource Discov-

ery mechanism gets the admission rate from the admission module, estimates the traffic

incoming rate, and chooses the smaller one as the flushing rate to put into the field of RD

packet which destines to the egress router. When receiving the backward RD packet, the

Edge-Aware Resource Discovery mechanism at the ingress router extracts the network

QoS state (calculated at the egress router) from the RD packet and informs to the admis-

sion control module. By this way, the admission control module keeps the latest the QoS

states of the domain.

The Edge-Aware Resource Discovery algorithm at the Ingress router is described in

the Algorithm (9).

Upon arrival of a packet, the Edge-Aware Resource Discovery at ingress still use 6.1

equation to estimate the incoming traffic rate.

rnew
i = (1− e−T k

i /K)
lki
T k

i

+ e−T k
i /Krold

i (6.1)

whereT is the packet interarrival time,K is a constant (that is usually set to a large

value), andl is the current packet length.

In Edge-Aware Resource Discovery algorithm, the optimal point,Q0, is set to1/3 of

the buffer size which specifies the queue length to which the queue asymptotically con-

verges, and henceBuffersize − Q0 is the maximum burst the router can accommodate.

When the instantaneous queue length is larger than theQ0, it attempts to slow down the

packet enqueue rate.

The pseudo code, Algorithm(9), that highlights the modification made in Chapter 4

to give the Edge-Aware Resource Discovery algorithm at the ingress router. The basic

modification behind the Edge-Aware RD algorithms at ingress is to measure the exact

flushing rate out of the ingress router. The flushing rate is obtained by the following four

distinct steps:

1. The ingress router estimates the incoming traffic rate by using the equation 6.1.

2. The ingress router calculates the local QoS states in terms of the available

bandwidth and the available buffer.

6.2. Edge-Aware Resource Discovery Scheme 138

RD at ingress Edge-Aware RD at ingress

Outcome flushing rate local QoS state

RD packet Generate RD packet Generate RD packet

the incoming traffic Need to measure need to measure

the queue state Need to measure not necessary

the available bandwidth Need to measure not necessary

the admission rate Not necessary Obtained from FIAC

Table 6.1: Difference between the normal RD algorithm and the Edge-Aware RD algo-

rithm at ingress

3. The ingress router obtains the admission rate from the Fair Intelligent Admis-

sion Control module.

4. At the end, the ingress router chooses the smaller one as the traffic flushing

rate for the network .

The implication of the Algorithm 9 is two fold: first, the Edge-Aware RD algorithm

at ingress is designed to measure the traffic flushing rate rather than the local QoS state

and which will be carried by RD packet for the egress router. Second, the incoming traffic

rate might not be the flushing rate if it is larger than the admission rate. The decision for

choosing the flushing rate depends on the comparison between the admission rate and the

traffic incoming rate. Table 6.2.1 summarizes the difference between the Edge-Aware RD

algorithm at ingress and the normal RD algorithm at ingress. Table 1.2.1.

6.2.2 The Egress Router Algorithm

The Edge-Aware Resource Discovery algorithm at egress (Edge-Aware RD at egress)

differs from the Resource Discovery algorithm at egress (RD at egress) in the following

aspects.

1. Unlike the normal RD at egress, which needs to consult all QoS states of the local

routers, the Edge-Aware RD at egress is not tied to the all the local QoS states.

Edge-Aware RD at egress uses the indirect information to detect the network QoS

6.2. Edge-Aware Resource Discovery Scheme 139

Algorithm 8 Edge-Aware Resource Discovery Algorithm Parameter Settings
Ensure: Ringress: The flushing rate at ingress

Ensure: ER: The local Explicit Rate

Require: The incoming traffic rateRin

Require: The admitted rate from admission control moduleRadmit

β : {The average ratio}
α : {Congestion function parameter}

Require: Per-class Variable

MACR : {Mean Allowed Class Rate}
Q0 : {Target Class Queue Length}
Q0in : {Target point for IN packet queue}
qlenin : {Length of IN packet queue}
qlen : {Packet queue length}
ERi

ingress : {ingress Explicit Rate}
DPF : {Queue Control Factor}
wi : {The ith class weight}
Q0 ⇐ 0.3 * BufferSize

Q0in ⇐ 0.3 * IN BufferSize

MACR ⇐ 100Mb{Assign a large value}
β ⇐ 0.08

α ⇐ 1.23

6.2. Edge-Aware Resource Discovery Scheme 140

Algorithm 9 Edge-Aware Resource Discovery Algorithm (for DiffServ) at Ingress
Upon receiving packet p

Estimate the incoming traffic rate

Rin = estimate(p)

Bandwidth Fair Control Function

* The parts are the same as in Algorithm 2, Chapter 4

Queue Control Function

* The parts are the same as in Algorithm 2, Chapter 4

The ith class ingress Explicit Rate

* The parts are the same as in Algorithm 2, Chapter 4

if Radmit ≥ Rin then

Ringress = Rin

end if

if Ringress ≥ ER then

Ringress = ER

end if

Put theRingress into the RD field

6.2. Edge-Aware Resource Discovery Scheme 141

Edge−Aware Resource Discovery

Available bandwidth

QoS states modules

Components at Egress Router

forward RD packet RD termination module

explicit rate
from ingress

egress explicit
rate

ingress explicit
rate

backward RD packet
monitor

congestion
measurement module

Figure 6.3: Edge-Aware Resource Discovery Components at Egress Router

states. On the other hand, the normal RD at egress uses the direct and complete

local router state information to obtain the network QoS states.

2. Information carried by RD packet is different: for the Edge-Aware Resource Dis-

covery, the RD packet carries the flushing rate out of the ingress. On the con-

trary, the RD packets in the normal Resource Discovery mechanism collect the

local router QoS states along the path.

3. QoS states Measurement: The Edge-Aware RD at egress measures the network QoS

states by using the difference between the flushing rate out of the ingress and the

arriving rate at the egress to detect the network QoS states. On the contrary, the

normal RD at egress only needs to consult the RD packet which carries the QoS

state along the path to update the latest network QoS states.

The Edge-Aware Resource Discovery mechanism at Egress router has three compo-

nents:

6.2. Edge-Aware Resource Discovery Scheme 142

• RD termination module: It’s used to terminate the RD packet and extract the

ingress explicit rate from RD packet.

• Arriving traffic rate monitor: It’s used to calculate the arriving traffic rate at the

egress router.

• Internal congestion measurement:It’s used to calculate the internal congestion

and calculate the egress explicit rate.

Once the egress router receives the RD packet, the Edge-Aware Resource Discovery

starts to calculate the network QoS states. The calculation is composed of four distinct

steps:

1. Step 1: the Edge-Aware Resource Discovery mechanism terminates the RD packet,

extract the flushing rate from the RD packet.

2. Step 2: the Edge-Aware Resource Discovery mechanism measures the packet ar-

riving rate at egress.

3. Step 3:calculates the network QoS states by comparing the difference between the

flushing rate out of the ingress router and the arriving rate at egress router.

4. Step 4: puts the Network QoS states into the backward RD packet which destines

to the ingress router.

The Edge-Aware Resource Discovery algorithm at the Egress router is described in

the Algorithm (10).

The Edge-Aware Resource Discovery at the egress router adds the functionality of

estimating the network QoS states with indirect information: the difference between the

flushing rate out of the ingress router and the arriving rate at the egress router. The sub-

sequent paragraphs discuss the new features of the Edge-Aware Resource Discovery in

terms of parameter settings:

1. We illustrate the significance of thedifferencebetween the flushing rate out of the

ingress and the arriving rate at the egress router.

6.2. Edge-Aware Resource Discovery Scheme 143

Algorithm 10 Edge-Aware Resource Discovery Algorithm (for DiffServ) at Egress
Ensure: ERi

egress: The ith class Explicit Rate of Egress

Require: The ith class traffic admission explicit rate at IngressERi
ingress

α : {Congestion function parameter}
Require: Per-class Variable

ERi
egress : {Explicit Rate of Egress}

Ri : {The ith class traffic arriving rate at Egress}
weighti : {The ith class weight}
α ⇐ 1.2 {congestion parameter}
Bandwidth Fair Control Function

if Ri ≤ 1/α ∗ ERi
ingress then

ERi
egress = ERi

ingress + (α ∗Ri −ERi
ingress)

else

ERi
egress = ERingress + (α ∗Ri −ERi

ingress)

end if

2. The distinction between the Resource Discovery and Edge-Aware Resource Dis-

covery algorithm is that the interior routers have involvement or not. The Edge-

Aware Resource Discovery algorithm estimates the network QoS states without the

interior routers QoS states information.

3. As the class traffic rate at egress router can be seen dramatically decreased if the

congestion occurring at the internal core router. This simple observation has impor-

tant consequences on the design of the Edge-Aware Resource Discovery algorithms:

First, the parameters needed for computation of the network QoS state (ER) are the

flushing rates at the ingress router (ERingress), the arriving rate at the egress router

(R), and the congestion function parameter (α). The congestion function parameter,

α, represents the congestion threshold. We assume that there is no congestion when

holding the condition,Regress ≥ 1
α
∗ ERingress. We assume that the congestion

happened whenRegress ≤ 1
α
∗ ERingress is true. The second consequence of our

observation is that recent occurrences should not have a stronger influence on the

estimation of the network QoS state,ERegress, than occurrences further in the past,

and not for instance as an exponentially weighted giving recent occurrences more

6.3. Edge-Aware Fair Intelligent Admission Control 144

Normal RD Edge-Aware RD

RD packet collects the en route QoS

states

carries the flushing rate out of

Ingress

measurement need to measure local QoS

state

measure the arriving rate

information direct and complete indirect and incomplete. Only

has knowledge of flushing

rate out of Ingress and arriv-

ing rate at Egress

core router involvement Yes No need.

Table 6.2: Differences at Egress: normal RD vs. Edge-Aware RD

weight.

4. There are two considerations in Algorithm (10). First, Edge-Aware Resource Dis-

covery mechanism tries to increase the egress explicit rate when there is no con-

gestion. Second, Edge-Aware Resource Discovery mechanism tries to decrease the

egress explicit rate when congestion happened.

We summarize the difference between the normal Resource Discovery algorithm at

egress and the Edge-Aware Resource Discovery algorithm at egress in Table 6.2.2.

6.3 Edge-Aware Fair Intelligent Admission Control

After receiving QoS report from Edge-Aware Resource Discovery mechanism via the ne-

gotiation module at Ingress router, the Admission Control Module compares the incoming

class traffic rate and applies the fair intelligent admission control algorithm to make ad-

mission decision. The Edge-Aware FIAC components are illustrated in Figure 6.4.

In this model, the Edge-Aware FIAC has three components:

• Traffic rate estimator: It’s used to estimate the incoming traffic rate from “exter-

nal”.

6.3. Edge-Aware Fair Intelligent Admission Control 145

Available bandwidth

Edge−Aware Fair Intelligent

Admission Control Components

egress explicit
rate

admission rate
traffic rate
estimator

availabe buffer
control module

control module

incoming traffic

Edge−Aware
Resource Discovery
mechanism

Ingress node

Figure 6.4: Edge-Aware Fair Intelligent Admission Control Components at Ingress

• Available bandwidth control module: It’s used to measure the available band-

width variation state.

• Available buffer control module: It’s used to measure the available buffer state.

The traffic rate estimator module interacts with “external” to estimate the incoming

traffic rate. The bandwidth control function and buffer control function take into account

the available bandwidth variation, available buffer variation, and “internal” network ca-

pability (from Edge-Aware Resource Discovery) to calculate the explicit admission rate.

The Edge-Aware FIAC makes negotiation with “external” states (incoming traffic rate,

and service level agreement) and “internal” states (the egress explicit rate from Edge-

Aware Resource Discovery mechanism). This leads to a optimum target point for both

“external” requirement and “internal” capability.

The philosophy behind Edge-Aware FIAC is to prevent overloading traffic as early as

possible (at edge node) so that it will alleviate network congestion situation and guarantee

per-class level of service.

The Edge-Aware FIAC determines Explicit Admission Rate (EAR) based on the do-

main capability rate, Explicit Rate (reported by Edge-Aware Resource Discovery Mech-

anism), and the incoming ith class traffic rate,Ri. The Edge-Aware Fair Intelligent Ad-

mission Control algorithm is described as in Algorithm (12).

6.3. Edge-Aware Fair Intelligent Admission Control 146

Algorithm 11 Edge-Aware Fair Intelligent Admission Control Algorithm Parameter Set-

tings
Ensure: EARi: The ith class Explicit Admission Rate at Ingress

Require: The incoming traffic rateR

Require: The admitted rate from admission control moduleRadmit

β : {The average ratio}
α : {Congestion function parameter}

Require: Per-class Variable

Q0 : {Target Class Queue Length}
Q0in : {Target point for IN packet queue}
qlenin : {Length of IN packet queue}
qlen : {Packet queue length}
ER : {Explicit Rate}
DPF : {Queue Control Factor}
weighti : {The ith class weight}
Q0 ⇐ 0.3 * BufferSize

Q0in ⇐ 0.3 * IN BufferSize

MACR ⇐ 100Mb{Assign a large value}
β ⇐ 0.08

α ⇐ 1.23

6.3. Edge-Aware Fair Intelligent Admission Control 147

Algorithm 12 Edge-Aware FIAC Algorithm (for DiffServ) at Ingress
Bandwidth Fair Control Function

if RD.tag ==INthen

if qlenin ≥ Q0in then

if Ri ≤ ERi
egress then

EARi = ERi
egress + β ∗ (Ri −ERi

egress)

else

EARi = ERi
egress

end if

else

EARi = ERi
egress + β ∗ (ERi

egress −Ri)

end if

else

if qlen ≥ Q0 then

if Ri ≤ ERi
egress then

EARi = ERi
egress + β ∗ (Ri −ERi

egress)

else

EARi = ERi
egress

end if

else

EARi = ERi
egress + β ∗ (ERi

egress −Ri)

end if

end if

Queue Control Function

if qlen≥ Q0 then

DPF = (Buffer Size− qlen)/(Buffer Size−Q0)

else

DPF = 1 + (α− 1) ∗ (Q0 − qlen)/Q0

end if

The ith class Explicit Admission Rate

if qlenthen

EARi = EARi ∗DPF

else

EARi = EARi

end if

6.4. Simulation Investigation 148

core router core router

EgressIngress

bottleneck link

Figure 6.5: Simulation Topology: bottle neck is between two core routers

There are two considerations in Algorithm (12). First, The Edge-Aware FIAC tries to

decrease the Explicit Admission Rate when the incoming traffic rate is greater than the

network capability rate,ERegress, and queue length is beyond the target point. Second,

Edge-Aware FIAC tries to increase Explicit Admission Rate when the incoming traffic

rate is less than the network capability rate and queue length is far from the target point.

6.4 Simulation Investigation

We evaluate and study the results of our Edge-Aware Resource Discovery DiffServ with

Network Simulator version 2 (NS-2) [47].

The simulation topology is shown in Figure 6.5 with two DiffServ domains in tandem.

Bandwidth of bottle neck link is 1 Mbps and others link is 100 Mbps. Multiple flows are

aggregated to the class. Link delay is varied in order to aggregate TCP flows with different

RTTs. We set up four classes: Gold, Silver, Bronze, and Best Effort.

In Experiment 1, we evaluate TCP traffic (in Gold, Silver, Bronze, and Best effort

classes) performance in terms of goodput, end to end packet delay, and queue length.

In Experiment 2, we study performance of mixing TCP and UDP traffic of classes in

the point of throughput, end to end packet delay, and queue length.

In Experiment 3, we evaluate the bottleneck link efficiency when TCP flows traverse

or TCP and UDP mixed flows traverse.

In Experiment 4, we study the impact of overhead on the performance.

6.4.1 Experiment 1: TCP traffic with different RTTs in different

classes

In Experiment 1, we consider four classes, which are Gold, Silver, Bronze, and Best effort

classes. They claim40%, 30%, 20%, and10% respectively. Each class has four TCP flows

6.4. Simulation Investigation 149

0

0.1

0.2

0.3

0.4

0.5

0 50 100 150 200

G
oo

dp
ut

 in
 M

bp
s

Simulation time (s)

DiffServ Class Performance in Experment 1

1
2
3
4

2

1

3

4

Gold
Silver

Bronze
BE

0

0.1

0.2

0.3

0.4

0.5

0 50 100 150 200

G
oo

dp
ut

 in
 M

bp
s

Simulation time (s)

Edge-Aware RD and FIAC Class Performance in Experiment 1

1

2

3

4

1
2
3
4

Gold
Silver

Bronze
BE

Figure 6.6: Goodput of Classes (TCP flows with different RTTs)

0

20

40

60

80

100

120

140

0 50 100 150 200

Q
ue

ue
 le

ng
th

 in
 p

ac
ke

ts

Simulation time (s)

Queue Length Variation under FIAC and DiffServ

FIAC
DiffServ

0

1

2

3

4

5

0 50 100 150 200

pa
ck

et
 d

el
ay

 in
 s

ec
on

ds

Simulation time (s)

End to end packet delay under FIAC and DiffServ

FIAC
DiffServ

Figure 6.7: Queue Length and Packet Delay

with same round trip time (RTT). In Silver class, TCP flow has short RTT, 32 ms. In other

classes, TCP flows have long RTTs, 150 ms (in Gold), 120 ms (in Bronze), and 50 ms (in

Best effort).

In Figure 6.6, we plot the goodput results for all classes under traditional DiffServ and

under our Edge Aware Resource Discovery and FIAC over DiffServ.

Based on this set of plots, we can make following observation. The DiffServ can not

allocate bandwidth fairly for the classes which have different round trip time TCP flows.

The traditional DiffServ allocates the Silver class (short RTT) more bandwidth, around

300 Kbps, which is beyond the Gold class. Our proposed model allocates each class quite

fairly according to their service level agreement.

The end to end packet delay (flow 1 in Gold) and queue length of bottle neck router are

shown in Figure 6.7. From the results, the proposed model achieves better performance

compared to DiffServ in terms of packet delay and queue length.

6.4. Simulation Investigation 150

6.4.2 Experiment 2: mixing TCP and UDP classes

0

0.1

0.2

0.3

0.4

0.5

0 50 100 150 200

G
oo

dp
ut

 in
 M

bp
s

Simulation time (s)

DiffServ in mixed traffic

1
2
3
4

1
4

2

3

Gold
Silver

Bronze
BE (UDP traffic)

0

0.1

0.2

0.3

0.4

0.5

0 50 100 150 200

G
oo

dp
ut

 in
 M

bp
s

Simulation time (s)

TCP and UDP mixed Classes Performance under RD+FIAC

1

2

3

4

1
2
3
4

Gold
Silver

Bronze
BE (UDP)

Figure 6.8: Goodput of TCP and UDP classes

Experiment 2 was designed to study the performance of mixing TCP and UDP classes

in which one class has UDP traffic (in Best Effort) and other three classes only have TCP

traffic (in Gold, Silver, and Bronze). In the simulation, UDP traffic whose constant bit

rate is 1 Mbps so that the bottleneck is oversubscribed. The other TCP traffic flows (in

Gold, Silver, and Bronze) have same RTT, 50 ms.

We investigate the simulation results in terms of bandwidth. The result is shown

in Figure 6.8. From the results, the TCP flows in Gold class suffer acute degradation

compared to UDP flow which is in Best effort class.

However, in Figure 6.8(b), the distribution of bandwidth is more fair than traditional

DiffServ. That is our proposed model is to preferentially drop UDP packets because it has

higher incoming rate, 1 Mbps, more than Explicit Admission Rate.

6.4.3 Experiment 3: Bottleneck link efficiency

Firstly we show the performance of Edge-Aware RD-FIAC when TCP flows traverse the

bottleneck. We use the same topology with congested link depicted in Figure 6.9. The

TCP flows are configured as same as Experiment 1. The bottleneck efficiency for Edge-

Aware RD-FIAC is more than 90% as shown in Figure 6.9(a), comparable to DiffServ

performance in the Figure 6.9(b). From this simulation, we see that without Edge-Aware

RD-FIAC, DiffServ shows a degraded behavior under TCP flows traverse, which is around

60% bottleneck link efficiency. This result is derived from TCP behavior. If a packet loss

6.4. Simulation Investigation 151

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200

ra
tio

 o
f

bo
ttl

en
ec

k
lin

k
ef

fi
ci

en
cy

Simulation time (s)

Bottleneck Link Efficiency

DiffServ
Edge-Aware FIAC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200

ra
tio

 o
f

bo
ttl

en
ec

k
lin

k
ef

fi
ci

en
cy

Simulation time (s)

Bottleneck Link Efficiency

DiffServ
Edge-Aware FIAC

Figure 6.9: Bottleneck Link Efficiency

happens, a TCP data-sender halves its congestion window. So, TCP flows with DiffServ

are not able to use the bottleneck link efficiently. For such the TCP flows, DiffServ won’t

work efficiently and high packet loss at the bottleneck node will cause more Slowstart.

However, Edge-Aware RD-FIAC over DiffServ considers the available network resource

and control TCP flows admission according to the network status. This causes less packet

loss and thereby high bottleneck link efficiency.

In the second simulation, Figure 6.9(b) shows a scenario with one CBR flow and TCP

flows which are configure as same as in Experiment 2. Although less admission control,

performance of DiffServ is similar to Edge-Aware RD-FIAC over DiffServ. This is due

to the CBR flow grabs the major part of the bottleneck link capacity.

6.4.4 Experiment 4: Overhead vs. Performance

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 5 10 15 20 25 30 35 40 45 50

G
oo

dp
ut

 in
 M

bp
s

The transmission overhead (%)

Edge-Aware FIAC: overhead vs performance

pkt size 1024 bytes
pkt size 128 bytes
pkt size 256 bytes
pkt size 512 bytes

pkt size 2048 bytes

Figure 6.10: Overhead vs. Performance under different packet size

This experiment investigates the behavior of the Edge-Aware RD-FIAC if the scenario-

parameters (overhead and packet size) are varied. Simulations in this experiment use the

6.5. Discussion 152

topology shown in Figure 6.10.

Figure 6.10 illustrates that overhead is an important parameter to be set properly. The

overhead (RD packet) should be sufficiently high to discover the network status variation

so that FIAC is able to response as soon as possible. However, increasing overhead may

degrade the performance. We are aware of the fact that it is difficult to determine the opti-

mal operating point for low overhead and high performance. Due to the lack of a tractable

and sufficiently accurate analytical model we use an empirical approach to determine the

setting of overhead as a function of the bottleneck bandwidth, packet size, RTT and num-

ber of classes. For the moment, we only consider the case of TCP flows with different

packet size. The idea behind this empirical model is that we may find out the proper

setting of overhead for a specific scenario by trial. By performing many simulations, ex-

ploiting different packet size, varied overhead, we get some rough optimal points which

are around 10%.

6.5 Discussion

The proposed Edge-Aware Resource Discovery scheme intelligently resolves the over-

loading problem of DiffServ and preserves scalability. We have tested the Edge-Aware

Resource Discovery scheme under a wide range of conditions; conditions purposely de-

signed to stress its ability to achieve fair allocation without core router involvement. Cer-

tainly Edge-Aware Resource Discovery scheme is far superior in this regard to the nor-

mal DiffServ. Moreover, in all situations the Edge-Aware Resource Discovery scheme

is roughly comparable with the Resource Discovery scheme. Recall that the normal Re-

source Discovery scheme requires core router to calculate its QoS states while the Edge-

Aware Resource Discovery does not, so we are achieving these levels of fairness in a more

scalable manner. However, there is clearly room for improvement in the Edge-Aware Re-

source Discovery scheme.

6.6. Summary 153

6.6 Summary

In this chapter, we studied the Edge-Aware Resource Discovery scheme. The key tech-

nique used in the Edge-Aware Resource Discovery scheme is Egress explicit rate calcu-

lation which detects the internal congestion. We considered the admission rate at Ingress

router and the QoS states at Egress router to calculate the Egress explicit rate. By present-

ing a design and the simulation of the proposed algorithms, we have demonstrated that it

is indeed to apply the Edge-Aware Resource Discovery scheme with existing routers.

Chapter 7

Future and Extension Work

There are a few interesting future research directions that are either direct extension of

our work, or are motivated by more general problem of designing next-generation Internet

capable of supporting QoS.

In the sequence of this chapter, Section 7.1 present directions for future work. Finally,

Section 7.2 concludes our works.

7.1 Future Work

In the following we briefly discuss possible future research directions that we plan to

explore.

7.1.1 Resource Discovery Protocol

So far, we have primarily focused on providing Edge-to-Edge QoS guarantees in the do-

main. The QoS states reported in this dissertation are the considerations of the available

bandwidth and the available buffer states. On the other hands, many real-time multimedia

applications may be more interested in average delay metrics. Therefore, it is of great

interests and importance to study and provide QoS states in terms of the end-to-end delay

and queue delay guarantees in the Internet. Consequently, an end-to-end delay scheme

may be desirable, be it on a per-flow basis or on a per organization basis.

155

7.1. Future Work 156

QoS states representation

The QoS states were studied in this dissertation. However, many issues regarding the

QoS states representation of the Resource Discovery architecture remain unanswered.

For example, how many local QoS states are needed to construct the exact local available

resources, while still being able to provide certain degrees of QoS guarantees? What’s the

necessary QoS-state presentation in terms of the bandwidth requirement or delay bound

or loss bound? We have found that it is difficult to find the general solution to satisfy

the bandwidth assurance and delay bound. All of these questions are important for the

Resource Discovery mechanism to express the exact QoS states. We plan to investigate

these issues in the future work.

Multicast traffic

In the Resource Discovery scheme we have studied, the RD packets need to traverse all

paths to collect the QoS states information. So, in order to control multicast traffic in

the context of RD-DiffServ, one fundamental requirement is to duplicate the RD packet

at the point of divergence. At the ingress router, when multiple QoS states reports are

returned from the leaf nodes of the multicast tree, an algorithm is required to consolidate

the reports and derive a suitable set of the QoS states parameters. Details of these issues

regarding to multicast traffic need further study.

Granularity

The RD granularity refers to the resolution of the resource discovery mechanism in spatial

domain. The following lists some possible examples:

• Per-aggregated flow or per-microflow basis,in which one RD packet is generated

per contracted incoming flow. It implies a flow based resource discovery mecha-

nism, which can generally give the finest grain precision.

• Per-BA basis,in which one RD packet is generated per behavioral aggregate (PHA).

If an ingress node has access to more than one PHAs, multiple RD packets will be

generated in each resource discovery interval.

7.1. Future Work 157

• Per-ingress-egress pair basis,in which one RD packet is generated per ingress-

egress-pair. Notice that the notion of ingress-egress-pair is defined only when there

is a flow.

• A combination of above. Depending on their required control precision, network

providers may choose to have a variant or a combination of the above mentioned

schemes.

Details of these strategies need further study.

Overhead

The RD packet overhead is determined by two parameters: resource discovery period and

packet size. The resource discovery period refers to how frequently a RD packet is gener-

ated. Typically, it can be specified in term of a time interval or packet count. The choice of

a resource discovery period is related to the dynamics of the domain under control as well

as the variation of the incoming traffic. To obtain a higher control precision, the ingress

router may choose a shorter probing period, i.e. generate RD packets more frequently.

However, this resource discovery frequency should be balanced with the cost required at

the domain routers. The RD packet size should be designed to have enough space to ac-

commodate the enough QoS states information can be carried in the RD packet. However,

how frequently a RD packet should be generated is still a further research topic in terms

of the variation of the traffic.

The main challenge is to balance the freshness of the QoS states information main-

tained at ingress routers with the overhead of the feedback mechanism. This is hard be-

cause the precision of the QoS states depends directly on the complexity of the resource

discovery mechanism and high overhead.

The RD packet marking

Since the RD packets are sent on the same link, an interior/egress node needs a mechanism

to distinguish the RD packets from other data packets. The RD packet can be created with

a special DSCP (e.g. EF class) or normal DSCP (e.g. AF class), in which the QoS states

information is carried in the fields of the RD packet.

7.1. Future Work 158

For the normal DSCP, such as AF class, The RD packet clings together with data pack-

ets and receives the same level of forwarding treatment as other data packets, thereby it is

subjected to being delayed or even dropped when the router is congested. This approach

simplifies the design of the interior routers. By examining the arrival of the RD packets,

the domain administrator can also obtain a sample of the current congestion level of the

forwarding path.

For the special DSCP, such as EF class, the RD packets receive special service, usually

better than data packets, at an interior node. It requires a special arrangement within the

forwarding module of an interior node.

We will study different the RD marking schemes in the future..

Inter-Domain Resource Discovery Negotiation

So far, we have focused on the intra-domain resource discovery mechanism. In some

cases, an inter-domain resource discovery negotiation is needed. Usually, domains are

operated by different network providers. To enforce a global control mechanism across

multiple domains, several problems need to be resolved.

• SLA conflicts: different providers usually maintain their own SLA policies in terms

of management objectives. To resolve inter-domain resource discovery negotiation,

it needs additional mechanism to resolve the SLA conflicts between two domains.

• Compatibility: the RD packet and information models used in different domains

need to be compatible. Otherwise, a domain-to-domain resource discovery negoti-

ation is not possible.

• Overall adaptation: since the RD packets need to traverse more than one domain, a

longer round-trip control delay is unavoidable. The overall adaptation mechanism

may be needed to consider.

• Negotiation model: hierarchical negotiation model needs to be investigated in the

future.

Specifically, we plan to investigate the characteristics of RD packets observed at mul-

tiple vantage points, and understand the causes of and relationships among the domains.

7.1. Future Work 159

We should also like to study the optimal approximation of the RD packets overhead asso-

ciated with the network efficiency, or more generally, to optimize the network utilization

and stability.

7.1.2 Fair Intelligent Admission Control

In the current admission control architecture design, we focused on the bandwidth alloca-

tion and management problem within a single network domain. However, the bandwidth

allocation problem can be different in a multiple domain environment, where different

network domains may belong to different administrations. Consequently, an end-to-end

bandwidth negotiation scheme may be desirable, be it on a per-flow basis or on a per-

aggregate basis.

Delay control

Another question that can be worth pursuing regards the delay control. Note that the end-

to-end packet delay is highly dependent on the per-hop queuing delay, which requires

cooperation between the different domains, so that different network domains agree on

some common semantics for the service offered.

Inter-domain Fair Intelligent Admission Control Negotiation

We note that the techniques used in this dissertation can be further improved to achieve

end-to-end QoS by devising appropriate inter-domain FIAC negotiation model. To find

global solution, it may need inter-domain negotiation model to determine the local domain

admission control.

Relationship between admission control and traffic characteristic

Our current approach assumes TCP Reno; extending it to other flavors of TCP such as

SACK or Vegas [3] or other UDP traffic could be interest. Other applications such as

video streaming would prefer a more flexible service in which they can opportunistically

take advantage of the unused bandwidth to achieve better quality. In this context, it would

be interesting to explore admission control scheme in terms of traffic characteristics.

7.1. Future Work 160

Decoupling Bandwidth Allocation and Delay Allocation

Our solution can provide guaranteed services associates a single parameter to the traffic

flow: the admission rate. While we can provide both the delay and bandwidth guaran-

tees by appropriately setting the parameters, the fact that we are restricted to only one

parameter may lead to inefficient resource utilization.

A future direction would be to decouple bandwidth allocation and delay allocations

and uses at least two parameters to specify the traffic requirements. This significantly

complicates the control plane implementations. The challenge is doing this without com-

promising the flexibility offered by decoupling the bandwidth allocation and delay allo-

cation.

7.1.3 QoS Overlay

Overlay network is regarded as a promising solution for providing high-level network

services over today’s Internet. An overlay network is a virtual network built over an

existing network as substrate. It brings more flexibility to add higher layer functionalities

for today’s Internet to support QoS. Our solutions described in this dissertation require

changes to routers within a network domain. This is serious limitation that may delay

or even preclude the deployment in the Internet. It would be much natural to apply our

solution on the Overlay network.

7.1.4 Programmable Router

The programmable router architecture is capable to provide service accommodation with

secure user separation in an extensible control plane and user based verified access to

the real time forwarding plane. We envisage, with this architecture, a new class of net-

work elements enriched with programmable functionality to be deployed as fundamental

building blocks for a service infrastructure whereby end-to-end services can be intro-

duced on-demand, composed across network domains, technologies, and administration

boundaries.

The programmable router provides differentiated per-class resource allocation and fair

allocation for users within each class. Due to the unpredictable nature of service re-

7.2. Conclusion 161

source consumption, the differentiated allocation is dynamic- allocating resource from

lower classes to an upper class at its load increase.

7.2 Conclusion

In this dissertation, we have demonstrated by examples that it is possible to provide net-

work service with resource discovery and admission control mechanisms in a scalable

manner. To illustrate the power and the generality of our solution, we have applied the

resource discovery mechanism and admission control mechanism on the DiffServ and the

Internet infrastructure. While it is hard to predict the exact course of research in this area,

we believe that many new and challenging problems of great practical importance and

theoretical interest.

Chapter 8

Summary and Conclusions

From our design experience and the evaluation results discussed throughout this disser-

tation, we conclude that the resource discovery and fair intelligent admission control can

be employed to utilize the network resources efficiently, through building the communi-

cation channel between the “internal” network QoS states capability and the “external”

traffic requirements, without per-flow management at every router. We illustrate how

these techniques work within a scalable architecture. The main strengths of our approach

are scalability, fairness, support for different traffic, and robustness against the QoS states

fluctuations.

Our work establishes a foundation for further studies on inter-domain resource and

control negotiation issues. For example, some of our findings provide insights into making

better resource negotiation and control negotiation.

In the sequence of this chapter, Section 8.1 summarizes the contributions of this thesis.

Section 8.2 present directions for future work. Finally, Section 8.3 presents the final

thoughts and conclusions.

8.1 Summary of the contributions

This thesis contributes with some steps toward a scenario where the Internet is able to

deploy QoS in a scalable way.

This dissertation addressed the scalability issues in supporting Prioritization type of

QoS from two complementary aspects, namely the resource discovery and the admission

163

8.1. Summary of the contributions 164

control. In the Resource Discovery framework, the core routers do not need to maintain

any per-flow state and do not perform any per-flow operations. Consequently, they are

able to handle a large number of simultaneous flows. The key notion in the resource

discovery framework is to measure the available bandwidth state and the available buffer

state by using the RD packet which traverses the en route path. The RD packet is ini-

tialized at network edge routers and referred and/or updated by network core routers,

depending on the QoS states supported by the network. Several new resource discovery

algorithms were designed and analyzed to illustrate how both the available bandwidth

state and the available buffer state can be measured within this same framework. More-

over, we investigated the cost-performance trade-offs in supporting QoS in the Internet by

studying the resource discovery mechanism.

On the admission control scheme, two scalable admission control schemes were de-

signed and investigated. The first one was a per-class admission control scheme, which is

built upon the fair intelligent admission control algorithms we designed. By conducting

admission controls on a ingress-to-egress basis instead of on “hop-by-hop” basis, this ad-

mission control architecture significantly reduces the complexity; therefore, it improves

the scalability of existing architectures. To further improve its scalability, a overlay ad-

mission control architecture was proposed for future direction. In this architecture, mul-

tiple admission control mechanisms are deployed at edge router in a overlay network,

along with the conventional underlying network infrastructure. Edge routers handle the

the admission control and interact with the other domain’s edge router for allocating and

de-allocating resources control along the paths. In this way, the overlay admission control

only needs to handle coarser time scale the resources control at the edge. Consequently,

its scalability is greatly improved. The second scheme was a per-flow fairness control

scheme, which was designed to achieve the flow fairness within a class.

Finally, to provide QoS support with more scalability and to facilitate the creation and

deployment of value-added services over the Internet, an architecture called Edge-Aware

Resource Discovery and Fair Intelligent Admission Control scheme was proposed which

didn’t involve the core routers at all. The resource discovery mechanisms are deployed

at the edge router to estimate the QoS states of the network. The Edge-Aware admission

control was investigated, taking into account various factors such as SLA, QoS states,

8.1. Summary of the contributions 165

core router core router

DiffServ domain 2DiffServ domain 1

Ingress_2
Egress_1

RD negotiation

Figure 8.1: Inter-domain Resource Discovery Negotiation Module

bandwidth costs, and local buffer tolerable range.

In this dissertation we describe complete solutions including architecture, algorithms

and implementations which address some of the important issues in today’s Internet:

• Providing QoS. The RD-FIAC is able to provide per-class Prioritization type of

QoS and per-flow flow fairness among a class.

• Scalability. RD-FIAC architecture eliminates the most complex operations on both

data and control planes in the network in which the core routers do not maintain

any per flow state.

• Edge-to-Edge resource control. By combining the Resource Discovery with Fair

Intelligent Admission Control, we demonstrated that the RD-FIAC is possible to

differentiate service among the aggregate traffic. It requires the network QoS states

which is reported from the Resource Discovery mechanism and takes admission

control at the edge routers based on the network QoS states.

• Edge-Aware Resource Discovery and Fair Intelligent Admission Control. We demon-

strated that by modifying the Resource Discovery algorithms and Fair Intelligent

Admission Control algorithms employed by the edge routers, we can make the Re-

source Discovery mechanism to estimate the “internal” network QoS states. We

then introduced new fair intelligent admission control mechanisms to make admis-

sion decision based on the edge-aware resource discovery.

• Inter-domain Resource Discovery. Inter-domain resource discovery negotiation

refers to the process whereby domains communicate with each other in order to

8.1. Summary of the contributions 166

make admission control on the right place. This negotiation is performed in a dy-

namic manner, to ensure the contracted QoS is sustained when traffic traverse multi-

ple domains. Each Domain measures its resource availability by using the Resource

Discovery mechanism and exchanges its resource availability with its neighboring

domains. Upon receiving the next domain’s state information, the egress router

compares its available resource with the next domain’s available resource and up-

dates with the smaller one, then the QoS states information is feedback to the last

domain. In other words, the ingress router of the first domain keeps the available

resource which is the edge-to-edge path (multiple domains) can support. Figure 8.1

shows how the resource discovery works on multiple domains.

• QoS mapping. The RD-FIAC architecture layouts a helpful framework for imple-

menting QoS mapping for different local QoS control.

• End-to-End QoS. The end-to-end QoS could be approached by concatenating the

multiple domains edge-to-edge QoS with bilateral resource negotiation agreements

and admission control.

8.1.1 The Design of the Resource Discovery and Fair Intelligent Ad-

mission Control Architecture

The high level design of the RD-FIAC architecture was presented in Chapter 3. RD-

FIAC gives a step forward from the current proposal by clearly separating the functions

particular to abstract services to their implementation with QoS technologies. The control

and data planes are logically isolated from each other, and the communication between

them happens through well-defined interfaces, following the usual approach of isolating

layers in network architectures. This separation makes it possible to a domain to choose

any approach for obtaining QoS, as long as it is able to provide services with the required

performance guarantees.

In this dissertation, we presented a novel architecture for the Internet, which control

the network resources efficiently based on the dynamic network QoS states report with

the need for low computational overhead in network routers. We devised and analyzed

8.1. Summary of the contributions 167

mechanisms that implement the architecture, and demonstrated the effectiveness of the

approach through analysis, simulation and measurement experiments in the simulations.

8.1.2 Resource Discovery Protocol

Chapter 4 presented the Resource Discovery Protocol, which is based on feedback mech-

anism. The RD architecture combines some very useful features that are only partially

covered (or not at all) by other approaches found in the literature:

• The RD feedback mechanism is not tied to a particular QoS technology. Packets can

be easily identified as belonging to a particular class and given the right treatment

in order to preserve the semantics.

• It supports communication between “internal” network capability and “external”

traffic requirements.

• It is aimed at finding the network QoS states which take into account the available

bandwidth state and the available buffer states.

• The RD mechanism provides scalability and flexibility in collecting QoS states

without per-flow information maintained at routers.

In the RD feedback loop for collecting the network QoS states, we used linear control

techniques in the design of the algorithm, and derive stability around the operating point.

While the stability condition derived does not ensure that the non-linear control converges,

the stability condition gives useful guidelines for selecting the the control parameters.

Simulation results indicate that the proposed closed-loop resource discovery algorithm

is an effective approximation of the optimization-based algorithm, and that the feedback

QoS states can be updated dynamically.

To reduce the computational overhead of the RD feedback mechanism, we described

the overhead analysis and algorithm that can be applied to implement our proposed mech-

anism at higher link speeds.

8.1. Summary of the contributions 168

8.1.3 Fair Intelligent Admission Control

The Fair Intelligent Admission Control mechanism has enough information about the

network capability and traffic requirements. Therefore, it is able to perform near opti-

mal choices and use optimized algorithms for resource control. The model has therefore

the potential scalability for dealing with resource and service negotiation in the whole

Internet, as the DNS system does for the current Internet.

Based on the network QoS states report, we first presented the Fair Intelligent Admis-

sion Control (FIAC) algorithm that dynamically solves the network resources allocation

efficiently and fairly which requires collaboration between the “internal” network QoS

states and “external” traffic requirements. Using this admission control architecture, we

demonstrated how admission control can be done on an entire path basis, instead of on

a “hop-by-hop” basis. Such an approach may significantly reduce the complexity of the

admission control algorithms without involving core router.

In designing per-class admission control algorithms, we investigated the problem of

dynamic flow aggregation in allocating services and resources efficiently and fairly.

In designing per-flow fairness admission control algorithms, we illustrated how flow-

level fairness can be achieved within a class at the ingress router. We consider the average

flow fair share. When a new flow arrives at an ingress router, the average flow fair share

will be recalculated and per-flow admission control applies the admissibility to deter-

mine admission decision which leads to the fairness. Clearly, using per-class or per-flow

admission control schemes presented above, processing either the class-based resources

allocation or per-flow fair share allocation requires the network QoS states information.

The issue of scalability is an important consideration in the design of the Fair Intel-

ligent Admission Control scheme. To achieve scalability we push the complexity all the

way to the edge routers.

8.1.4 Edge-Aware Resource Discovery and Fair Intelligent Admis-

sion Control

This dissertation suggests an Edge-Aware Resource Discovery (RD) feedback loop and

Fair Intelligent Admission Control (FIAC) scheme for improving scalability. The scheme

8.2. Final Remarks 169

is characterized by two fundamental features. First, the RD loop infers the availability

of network resources, yet for scalability, it does not involve core routers. Second, the

admission control module understands incoming traffic’s requirements, reconciles with

available resources via the RD loop, and admits traffic intelligently according to the FIAC

algorithm. Multiple-domain control is obtained by concatenation of the RD loop and

FIAC admission for each domain along the path from a source to a destination.

An evaluation of the Edge-Aware Resource Discovery and Fair Intelligent Admission

Control models was carried out and the results were reported in Chapter 6. The effi-

ciency and fairness criteria were evaluated by a simulation study. The scalability criterion

considered multiple domains, number of core routers, and multiple edge routers. The

negotiation model was compared according to a simple analytical modeling and to the

simulation results. Some findings of the comparisons are:

• The Edge-Aware Resource Discovery and Admission Control model is by far the

best alternative, when comparing efficiency, fairness and scalability. It is also able

to provide the right financial incentives for deploying QoS and to resolve some of

the current problems of the interconnection of domains in the Internet. On the other

hand, the Edge-Aware RD-FIAC model is simple due to the implementation and

maintenance of the existing Internet and DiffServ infrastructure.

• They are robust in the presence of network losses and partial failures.

• Unlike existing reservation protocols, this Edge-Aware Resource Discovery and

Admission Control is implemented without core routers involving at all.

8.2 Final Remarks

In this dissertation, we have presented the solution that can discover the network QoS

states and take resources control in efficient and fair way. To illustrate the power and

generality of our solution, we have implemented the Resource Discovery mechanism and

Fair Intelligent Admission Control mechanism proposed in the context of the Internet and

the DiffServ infrastructure. We believe that the door has been opened to many new and

challenging problems of great practical importance and theoretical interest.

8.3. Conclusions 170

8.3 Conclusions

As shown in the first two parts of this thesis, it is feasible to implement mechanisms in

the Internet that are able to discover the QoS states dynamically and admission control

algorithms.

The resource discovery can be considered as a foundation to allocate resources effi-

ciently and fairly to approximate end-to-end QoS. We propose two different mechanisms

for resource discovery: core router involved resource discovery mechanism and edge-

aware resource discovery mechanism. In Chapter 5, we investigate the Resource Discov-

ery algorithm (RD). The RD implements functionality of detecting the network QoS states

which is a function of the available bandwidth and the available buffer state. As a result,

the RD mechanism can provide “inside” network QoS states or capability information

dynamically.

We examine the design and functionality of the Resource Discovery mechanism in

detail and present plausibility explanations how the RD packet detects and calculates

the network QoS states. Additionally, we show that the Resource Discovery has low

computational overhead and is scalable as it does not require storing per flow-information

when the RD packet traverses the routers.

The second part of this thesis proposes the Fair Intelligent Admission Control algo-

rithm (FIAC). The operational principle of FIAC is to take appropriate traffic admission

control at the ingress router based on the network QoS states report from the Resource

Discovery mechanism. If the incoming traffic rate is beyond the admission rate, its packet

will be rejected or reshaped. In order to calculate the admission rate, the Fair Intelligent

Admission Control needs to communicate the “internal” network QoS states and “exter-

nal” traffic QoS requirements.

The RD-FIAC algorithm fits into the Differentiated Service Architecture and the In-

ternet and can be considered scalable as it only requires per-flow state at ingress and

egress routers. We show by simulation that RD-FIAC is able to detect the network QoS

states dynamically and control the resources effectively and fairly. Additionally, param-

eter settings are discussed and the RD overhead caused by the information exchange be-

tween edge routers is analyzed. As outlined in Section 6.4, right parameters setting of the

RD-FIAC algorithm can significantly reduce this overhead without significant sacrificing

8.3. Conclusions 171

performance.

The third part of this thesis aims at investigating the Edge-Aware Resource Discovery

and admission control mechanisms without the core routers involving. It depends on

the observation that the difference between the admission rate out of the ingress and the

arriving rate at the egress can be used to measure the network QoS states.

For the assumed traffic-pattern, stability can be achieved assuming the exact QoS

states obtained. We show that the queue oscillates around the target point if it is set

correctly. This model is suitable for heterogeneous RTTs, and mixed traffic. Finally, this

system of equation is solved numerically and we may obtain the total model how to set

the RD parameters as a function of the available bandwidth, the available buffer state, and

target point settings. The model is evaluated by measurements and simulations with TCP

traffic and UDP traffic.

However, it is still questionable whether appropriate setting of RD-FIAC parameters

is possible in a realistic Internet environment. Although the quantitative models proposed

in this thesis make an important step ahead, it is questionable whether ISPs will be able to

retrieve sufficiently accurate QoS states information of the routers. The complexity of the

model for TCP and UDP traffic suggest that the resource discovery and admission control

algorithms need different parameters to accommodate the different situations.

Although the simplicity of the IP protocol is the main reason for the scalability and

robustness of the Internet, some extensions to the Internet infrastructure are needed in

order to make it possible to resolve both challenges of deploying QoS and giving the right

incentives to users and domains. Sometimes over-provisioning is presented as the solu-

tion, but this approach has not been successful in solving the afore-mentioned problems.

At most, over-provisioning provides a means for large domains having a network nearly

free of packet loss.

Bibliography

[1] D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris (2001),Resilient Over-

lay Networks, 18th ACM Symposium on Operating Systems Principles, October,

2001.

[2] C. Aurrecoechea, A. T. Campbell, and L. Hauw (1998),A Survey of QoS Archi-

tectures, ACM Multimedia Systems Journal, Special Issue on QoS Architectures,

May 1998.

[3] L. Brakmo, and L. Peterson (1995),TCP Vegas: End to End Congestion Avoid-

ance on a global Internet, IEEE Journal on Selected Areas in Communications,

13(8):1465-1480, October 1995.

[4] J. W. Barrett and J. F. Blowey (1995),An error bound for the finite element approx-

imation of the Cahn-Hilliard equation with logarithmic free energy, Numerische

Mathematics,72, pp 1–20.

[5] J. W. Barrett and J. F. Blowey (1997),Finite element approximation of a model

for phase separation of a multi-component alloy with non-smooth free energy, Nu-

merische Mathematics,77, pp 1–34.

[6] J. W. Barrett and J. F. Blowey (1999a),An improve error bound for finite element

approximation of a model for phase separation of a multi-component alloy, IMA

J. Numer. Anal.19, pp 147-168.

[7] J. Bennett, and H. Zhang (1997),Hierarchical packet fair queueing algorithms,

In IEEE/ACM Transactions on Networking, Volume 5(5), pages 675-689, Oct

1997.

173

Bibliography 174

[8] Y. Bernet, J. Binder, S. Blake, M. Carlson, B. E. Carpenter, S. Keshav, E. Davies,

B. Ohlman, D. Verma, Z. Wang, and W. Weiss (1999),A framework for differen-

tiated service, Internet Draft, February, 1999.

[9] J. Bennett, K. Benson, A. Charny, W. Courtney, and J. -Y. Le Boudec (2001),

Delay jitter bounds and packet scale rate guarantee for expedited forwarding,

In Proceedings of IEEE INFOCOM 2001, volume 3, pages 1502-1509, Anchorage,

AK, April 2001.

[10] J. Bernett, H. Zhang (1996),WF 2Q: worst-case weighted fair queueing, In Pro-

ceedings of IEEE INFOCOM 1996, volume 1, pages 120-128, San Franscisco, CA,

March 1996.

[11] R. Callon, P. Doolan, N. Feldman, A. Fredette, G. Swallow, and A.

Viswanathan (1999),A framework for multiprotocol label switching , Internet

Draft, September 1999.

[12] D. M. Chiu, and R. Jain (1989),Analysis of Increase and Decrease Algorithms

for Congestion Avoidance in Computer Networks, Computer Networks and

ISDN System 17, pp 1-14, 1989.

[13] Y. Chu, S. G. Rao, S. Seshan, and H. Zhang (2001),Enabling Conferencing ap-

plications on the Internet using an Overlay Multicast Architecture, In Pro-

ceedings of ACM SIGCOMM 2001, San Diego, CA, USA, August 2001.

[14] P. G. Ciarlet (1978),The Finite Element Method for Elliptic Problems, North-

Holland.

[15] D. Clark, S. Shenker, and L. Zhang (1992),Supporting real-time applications in

an integrated services packet network: architecture and mechanism, In Pro-

ceedings ACM SIGCOMM, August 1992.

[16] D. Clark, and W. Fang (1998),Explicit allocation of best-effort packet delivery

service, In IEEE/ACM Transactions on Networking, 6(4):362-373, August 1998.

[17] R. Cruz (1991),A calculus for netowrk delay, Part I: Network elements in iso-

lation, IEEE Transactions on Information Theory, 37(1):114-131, January 1991.

Bibliography 175

[18] Y. De Serres, L. Hegarty (2001),Value-Added Services in the Converged Net-

work , IEEE Communications Magazine, September 2001.

[19] Z. Duan, Z. L. Zhang, and Y. T. Hou (2002),Service overlay networks: SLAs,

QoS and bandwidth provisioning, In Proceedings of IEEE International Confer-

ence on Network Protocols (ICNP), Paris, France, November, 2002.

[20] V. Firoiu, and A. Casati (1998),Amendments to the Assured Forwarding PHB

group, IETF Internet Draft, November 1998.

[21] V. Firoiu, X. Zhang, and E. Gunduzhan (1998),Feedback output queueing: a

novel architecture for efficient switching systems, In Proceedings of Hot Inter-

connects X, Stanford, CA, August 2002.

[22] S. Floyd, M. Handley, J. Padhye, and J. Widmer (2000),Equation-based con-

gestion control for unicast applications, In Proc. ACM SIGCOMM, pp 43-56,

Stockholm, Sweden, August 2000.

[23] S. Floyd, and V. Jacobson (1993),Random early detection gateways for conges-

tion avoidance, IEEE/ACM Transactions on Networking, 1(4): 397-413, August

1993.

[24] S. Floyd, and K. Fall (1998),Promoting the Use of End-to-End Congestion Con-

trol , IEEE/ACM Transactions on Networking, February 1998.

[25] S. Floyd, and K. Fall (1998),Promoting the Use of End-to-End Congestion Con-

trol in the Internet , IEEE/ACM Transactions on Networking, August 1999.

[26] S. Ben Fredj, T. Bonald, G. Regnie A Proutiere, and J. W. Roberts (2001),Statis-

tical bandwidth sharing: A study of congestion at flow level, In Proceedings of

ACM SIGCOMM, pp 111-122, August 2001.

[27] R. J. Gibbens, and F. P. Kelly (1999),Resource pricing and the evolution of

congestion control, Automatica, 35: 1969-1985, 1999.

[28] M. Goyal, A. Durresi, R. Jain, and C. Liu (1999),Performance analysis of As-

sured Forwarding, IETF Draft, October 1999.

Bibliography 176

[29] J. Ibanez, and K. Nichols (1998),Preliminary simulation evaluation of an as-

sured service, IETF Draft, August 1998.

[30] V. Jacobson (1988),Congestion Avoidance and Control, In Proceedings of ACM

SIGCOMM, August 1988.

[31] F. Kelly (1997),Charging and Rate Control for Elastic Traffic , Europe Trans.

Telecommun, 8:33-37, 1997.

[32] F. Kelly, A. Maulloo, and D. Tan (1998),Rate control in communication net-

works: Shadow prices, proportional fairness and stability, Journal of the Oper-

ational Research Society, 15(49): 237-255, 1998.

[33] J. L. Lions (1969),Quelques Móthodes de Ŕesolution des Probĺemes aux Lim-

ites, Dunod.

[34] M. Li, and D. B. Hoang (2004),Edge-Aware Resource Discovery and Fair In-

telligent Admission Control over Multi-domain Differentiated Services Net-

works, In IEEE International Conference on Commmunications (ICC2004), Paris,

France, June 22-26, 2004.

[35] M. Li, and D. B. Hoang (2004),FIAC: A Resource Discovery-Based Two-level

Admission Control for Differentiated Service Networks, In Computer Com-

munication Journal: Special Issue on End-to-End Quality of Service Differenti-

ation(In press), 2004.

[36] M. Li, D. B. Hoang, and A. Simmonds (2004),Fair Intelligent Admission Con-

trol over Resource-feedback Differentiated Service Network, to appear InCom-

puter Communication Journal: the Special Issue of Quality of Service, early 2005.

[37] M. Li, and D. B. Hoang (2003),Achieving Flow Fairness in DiffServ Class:

Per-flow Fair Admission Control over Differentiated Service Network, In Pro-

ceedings of 4th International Conference on Software Engineering, Artificial In-

telligence, Networking, and Parallel/Distributed Computing (SNPD’03), Luebeck,

Germany, October 16-18, 2003.

Bibliography 177

[38] M. Li, D. B. Hoang, and A. Simmonds (2003),Fair Intelligent Admission Con-

trol over DiffServ Network , In Proceedings of 2003 11th IEEE International Con-

ference on Networks (ICON2003), Sydney, Australia, September 28 - October 1,

2003.

[39] M. Li, D. B. Hoang, and A. Simmonds (2003),Class-Based Fair Intelligent Ad-

mission Control over an Enhanced Differentiated Service Networks, In IEEE

International Conference on Information Networking 2003 (ICOIN2003), Jeju Is-

land, Korea, February 12-14, 2003.

[40] M. Li, D. B. Hoang, and A. Simmonds (2003),Class-Based Fair Intelligent Ad-

mission Control over an Enhanced Differentiated Service Networks, In lec-

ture Notes in Computer Science (LNCS) 2662, Hyun-Kook Kahng (Ed.), Springer,

2003.

[41] D. B. Hoang, and M. Li (2003),Fair Intelligent Congestion Control over Diff-

Serv: A Resource Discovery and Control Scheme for DiffServ, In Proceedings

of the 2003 International Conference on Information and Communication Tech-

nologies (ICT 2003), Bangkok, Thailand, April 8-10, 2003.

[42] D. B. Hoang, M. Li, and U. Szewcow (2002),RTT-Aware Resource Discovery

and Fair Share Mechanism for DiffServ, In Proceedings of the IEEE Interna-

tional Conference on Networking (ICN 2002), Atlanta, USA, August 26-29, 2002.

[43] Q. Yu, M. Li, D. B. Hoang, and D. Feng (2002),Fair Intelligent Feedback Mech-

anism on TCP Based Network, In The 2002 International Conference on Internet

Computing (IC 2002), Las Vegas, California, USA, June, 2002.

[44] D. B. Hoang, Q. Yu, M. Li, and D. Feng (2002),Fair Intelligent Congestion

Control Resource Discovery Protocol on TCP Based Network, In Proceedings

of the IFIP 6th Interworking 2002 Symposium, Perth, Australia, October, 2002.

[45] M. Li, and D. Feng (2004),Resource Discovery and Fair Intelligent Admis-

sion Control over Differentiated Services Networks for Variable-Length Pack-

ets, In Proceedings of the IEEE 10th Asia-Pacific Conference on Communications

(APCC2004), Beijing, China, August, 2004.

Bibliography 178

[46] L. Massoulie, and J. Roberts (1999),Objectives and algorithms, In Proceedings

of IEEE INFOCOM, pp 1395-1403, 1999.

[47] NS (2000), NS Simulator Homepage, http://www-mash.cs.berkeley.edu/ns/,

2000.

[48] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose (1998),Modeling TCP through-

put: a simple model and its empirical validation, In Proceedings of ACM SIG-

COMM’98, September 1998.

[49] A. K. Parekh, and R. G. Gallagher (1993),A gereralized processor sharing ap-

proach to flow control in Integrated Service networks: The single-node case,

IEEE/ACM Transactions on Networking, 1(3): 344-357, June 1993.

[50] P. Pieda, N. Seddigh, and B. Nandy (1999),The dynamics of TCP and UDP inter-

action in IP-QoS Differentiation Service networks, In 3rd Canadian Conference

on Broadband Research (CCBR), November 1999.

[51] , K. K. Ramakrishnan, R. Jain, and D. M. Chiu (1987),Congestion avoidance in

computer networks with a connectionless network layer. Part iv: A selective

binary feedback scheme for general topologies methodology, Technical Report

DEC-TR-510, Digital Equipment Corporation, 1987.

[52] J. Postel (1981),Transmission Control Protocol, IETF RFC 793, September

1981.

[53] R. Braden, D. Clark, and S. Shenker (1994),Integrated Service in the Internet

Architecture: an overview, IETF RFC1633.

[54] F. Baker (1995),Requirements for IP Version 4 Routers, IETF RFC 1812, June

1995.

[55] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin (1997),Resource reser-

vation protocol (RSVP) - version 1 functional specification, IETF RFC 2205,

September 1997.

Bibliography 179

[56] S. Shenker, C. Partridge, and R. Guerin (1997),Specification of guaranteed qual-

ity of service, IETF RFC 2212, September 1997.

[57] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss (1998),An

Architecutre for Differentiated Service, IETF RFC2475.

[58] G. Huston (2000),Analysis of Existing QoS Solutions, IETF RFC2990.

[59] V. Jacobson, K. Nichols, and K. Poduri (1999),An Expedited Forwarding PHB

group, IETF RFC2598.

[60] J. Heinanen, F. Baker, W. Weiss, and J. Wroclawski (1999),Assured Forwarding

PHB group, IETF RFC2597.

[61] K. Nichols, V. Jacobson, and L. Zhang (1999),A Two-bit Differentiated Services

Architecture for the Internet , IETF RFC 2638, July, 1999.

[62] B. Davie, A. Charny, J. Bennett, K. Benson, J.-Y. Le Boudec, W. Courtney, S.

Davari, V. Firoiu, and D. Stiliadis (2002),An expedited forwarding PHB, IETF

RFC 3246, March 1999.

[63] E. C. Rosen, A. Viswanathan, and R. Callon (1999),Multiprotocol label switch-

ing architecture, Internet Draft, August 1999.

[64] S. Sahu, P. Nain, D. Towsley, C. Diot, and V. Firoiu (2000),On achievableser-

vice differentiation with token bucket marking for TCP , In Proceedings ACM

SIGMETRICS’00, pp 23-33, June 2000.

[65] V. Srinivasan, S. Suri, and G. Varghese (2001),Packet classification using tu-

ple space serach, In Proceedings of ACM SIGCOMM’99, pages 135-146, Boston,

MA, August 2001.

[66] I. Stocia, and H. Zhang (1999),Providing guaranteed services without per flow

management, In Proceeding ACM SIGCOMM, Boston, MA, USA, September

1999.

Bibliography 180

[67] L. Subramanian, I. Stocia, H. Balakrishnan, and H. Katz (2002),OverQoS: Offer-

ing Internet QoS Using Overlays, In Proceedings of HotNet-I Workshop 2002,

Princeton, NJ, USA, October 2002.

[68] B. Teitelbaum, and T. Hanss (1998),QoS Requirements for Internet2, Internet2

QoS Working Group Draft, April 1998.

[69] R. Yavatkar, D. Hoffman, Y. Bernet, and F. Baker (1999),SBM (Subnet Band-

width Manager): A Protocol for RSVP-based Admission Control over IEEE

802-style networks, IETF draft ¡draft-ietf-issll-is802-sbm-08.txt¿, May 1999.

[70] Ikjun Yeom, and A. L. Narasimha Reddy (2001),Modeling TCP behaviour in a

differentiated services network, IEEE/ACM Transactions on Networking, 9(1):

31-46, 2001.

[71] L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zappala (1993),A new re-

source reservation protocol, IEEE Network, pages 8-18, September 1993.

	Title Page
	Dedication
	Abstract
	Publications List
	Declaration
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Chapter 1 Introduction
	Chapter 2 Background
	Chapter 3 A Framework for Resource Discovery and Fair Intelligent Admission Control over Scalable Internet
	Chapter 4 Core-Aware Resource Discovery Protocol Based on Feedback Scheme
	Chapter 5 Fair Intelligent Admission Control
	Chapter 6 Edge-Aware Resource Discovery and Fair Intelligent Admission Control scheme
	Chapter 7 Future and ExtensionWork
	Chapter 8 Summary and Conclusions
	Bibliography

