

Class and Object Modularity

Description and Measurement

Christine McClean

Doctor of Philosophy in Engineering

2006

 ii

CERTIFICATE OF AUTHORSHIP/ORIGINALITY

I certify that the work in this thesis has not previously been submitted for a degree nor

has it been submitted as part of requirements for a degree except as fully acknowledged

within the text.

I also certify that the thesis has been written by me. Any help that I have received in my

research work and the preparation of the thesis itself has been acknowledged. In

addition, I certify that all information sources and literature used are indicated in the

thesis.

Signature of Candidate

 iii

Acknowledgements

Thank you to my supervisors John Leaney and Keiko Yasukawa for their support, valuable

suggestions and comments regarding this research. In particular, I would like to express my

very special thanks and gratitude to Keiko Yasukawa for her help and support throughout the

process of revising this thesis. “I couldn’t have done it without you!”

Many thanks also to Keiko Yasukawa, Noel McClean and John Leaney for their assistance in

proof reading this thesis document and suggesting improvements.

Thank you to the anonymous assessors of this thesis for their helpful comments and insights

that have contributed to many improvements to this research work.

Thank you to Peter Petocz for suggesting the calculation of an aggregation of modularity as an

appropriate data analysis technique.

Thank you to Adrian Richards for offering insights into the process of scientific measurement.

Thank you to Scientific Toolworks Inc. for providing a copy of the Understand For C++ code

analysis application.

Finally, last but not least, thank you to my husband Noel and our girls Catie and Merryn for

their support, patience and understanding throughout this research.

 iv

Table of Contents

1. INTRODUCTION.. 1
1.1. APPROACH TAKEN TO SYSTEMATIC MEASURE DEVELOPMENT PROCESS DEFINITION 2
1.2. KEY CONCEPTS ... 3
1.3. MEASURE DEVELOPMENT PROCESS ... 6
1.4. MEASURE VALIDITY .. 11

1.4.1 Content validation.. 14
1.4.2 Construct validation... 16

1.5. MEASURE RELIABILITY ... 18
1.6. LEVEL OF MEASUREMENT ... 18
1.7. COMMENTS ... 19
1.8. STRUCTURE OF THIS THESIS... 20

2. LITERATURE REVIEW.. 22
2.1. PROCESSES OF SOFTWARE MEASURE DEVELOPMENT... 23
2.2. PROCESSES CURRENTLY USED TO DEVELOP DESCRIPTIVE SOFTWARE MEASURES 27
2.3. THEORETICAL BASIS OF DESCRIPTIVE SOFTWARE MEASURE DEVELOPMENT 33
2.4. CONCLUSION... 35

3. CONCEPTUAL DEFINITION... 37
3.1. STAGE 1 OF MEASURE DEVELOPMENT PROCESS - CONCEPTUAL DEFINITION 37

3.1.1 Prerequisites to the conceptual definition stage .. 40
3.1.2 Performance of the conceptual definition stage... 41
3.1.3 Products of the conceptual definition stage ... 42
3.1.4 Practical Considerations.. 42

3.2. CONCEPTUAL DEFINITION OF C++ CLASS AND OBJECT MODULARITY... 44
3.2.1 Prerequisites .. 44
3.2.2 Sub-characterisation of object-oriented software modularity.. 44

3.2.2.1 Direct mapping ... 46
3.2.2.2 Information Hiding ... 47
3.2.2.3 Few Interfaces... 50
3.2.2.4 Explicit Interfaces ... 52
3.2.2.5 Small Interfaces .. 54

3.2.3 Conceptual definition of modularity sub-characteristics ... 59
3.2.3.1 Interface dependence sub-characteristic ... 60
3.2.3.2 External relationships sub-characteristic .. 62
3.2.3.3 Connection obscurity sub-characteristic ... 64
3.2.3.4 Dependency sub-characteristic ... 67

3.2.4 Validation of the sub-characterisation... 69
3.3. CONCLUSION... 69

4. ENTITY MODELLING .. 71
4.1. STAGE 2 OF MEASURE DEVELOPMENT PROCESS - ENTITY MODELLING ... 71

4.1.1 Prerequisites to the entity modelling stage .. 74
4.1.2 Performance of the entity modelling stage... 74
4.1.3 Products of the entity modelling stage ... 75
4.1.4 Assessing mathematical model validity .. 76
4.1.5 Practical Considerations.. 76

4.2. ENTITY MODELLING OF C++ CLASS AND OBJECT MODULARITY ... 78
4.2.1 Prerequisites .. 79
4.2.2 Selection of the mathematical model.. 79
4.2.3 C++ class modularity .. 81

4.2.3.1 C++ class module model... 81
4.2.3.2 Interface dependence sub-characteristic of C++ class modularity .. 84
4.2.3.3 External relationships sub-characteristic of C++ class modularity ... 86
4.2.3.4 Connection obscurity sub-characteristic of C++ class modularity.. 88
4.2.3.5 Dependency sub-characteristic of C++ class modularity .. 92
4.2.3.6 Class modularity sub-characteristics sharing identical feature descriptions 95

 v

4.2.4 C++ object modularity .. 96
4.2.4.1 C++ object module model... 96
4.2.4.2 Interface dependence sub-characteristic of C++ object modularity .. 102
4.2.4.3 External relationships sub-characteristic of C++ object modularity ... 106
4.2.4.4 Connection obscurity sub-characteristic of C++ object modularity.. 109
4.2.4.5 Dependency sub-characteristic of C++ object modularity .. 116
4.2.4.6 Summary: object mathematical model completeness.. 119
4.2.4.7 Object modularity sub-characteristics sharing identical feature descriptions 121

4.3. CONCLUSION... 122
5. OPERATIONAL MEASURE DEFINITION .. 124

5.1. STAGE 3 OF MEASURE DEVELOPMENT PROCESS - OPERATIONAL DEFINITION 124
5.1.1 Prerequisites to operational definition stage ... 126
5.1.2 Performance of operational definition stage.. 126
5.1.3 Product of operational definition stage ... 126
5.1.4 Assessing measure level of measurement and validity ... 128
5.1.5 Practical Considerations.. 128

5.2. OPERATIONAL DEFINITION OF C++ CLASS AND OBJECT MODULARITY 129
5.2.1 Prerequisites .. 130
5.2.2 Mathematical measure definition notation... 130
5.2.3 Measures of C++ class modularity.. 132

5.2.3.1 Measures of C++ class interface dependence ... 133
5.2.3.2 Measures of C++ class external relationships ... 139
5.2.3.3 Measures of C++ class connection obscurity.. 141
5.2.3.4 Measures of C++ class dependency .. 145

5.2.4 Measures of C++ object modularity .. 149
5.2.4.1 Measures of C++ object interface dependence ... 149
5.2.4.2 Measures of C++ object external relationships... 154
5.2.4.3 Measures of C++ object connection obscurity.. 156
5.2.4.4 Measures of C++ object dependency .. 163

5.2.5 Level of measurement of modularity measures .. 168
5.2.6 Content validation of modularity measures ... 169

5.2.6.1 Example of a content validation ... 170
5.3. CONCLUSION... 173

6. MEASUREMENT INSTRUMENT IMPLEMENTATION ... 175
6.1. STAGE 4 OF MEASURE DEVELOPMENT PROCESS - MEASUREMENT INSTRUMENT IMPLEMENTATION
 175

6.1.1 Prerequisites to the measurement instrument implementation stage 178
6.1.2 Performance of the measurement instrument implementation stage................................ 178
6.1.3 Products of the measurement instrument implementation stage 179
6.1.4 Assessing implemented measure level of measurement and validity 179
6.1.5 Reliability of software based measurement instruments .. 180
6.1.6 Practical Considerations.. 181

6.2. IMPLEMENTATION OF C++ CLASS AND OBJECT MODULARITY MEASURES 182
6.2.1 C++ basic software model implementation ... 184

6.2.1.1 Natural language C++ basic software model .. 184
6.2.1.2 Mathematical C++ basic software model.. 185
6.2.1.3 Implementation of C++ basic software model .. 187

6.2.2 Software measurement model implementation... 189
6.2.2.1 Derivation of C++ software modularity measurement model ... 189
6.2.2.2 Implementation of C++ software modularity measurement model ... 190

6.2.3 Software modularity measures implementation ... 192
6.2.3.1 Class external relationships measure implementation... 195
6.2.3.2 Object external relationships measure implementation... 196
6.2.3.3 Object connection obscurity measure implementation.. 197
6.2.3.4 Object dependency measure implementation.. 200

6.2.4 Level of measurement and content validity of implemented measures............................. 201
6.2.4.1 Level of measurement ... 201
6.2.4.2 Content validity .. 201

6.3. CONCLUSION... 202

 vi

7. APPLICATION OF C++ CLASS AND OBJECT MODULARITY MEASURES................... 204
7.1. DATA REDUCTION TECHNIQUES.. 206

7.1.1 Calculation of an Aggregate of Modularity ... 206
7.1.1.1 Preliminary calculations ... 207
7.1.1.2 Class and object modularity aggregate calculation ... 209
7.1.1.3 Class and object modularity weighted aggregate calculation.. 213

7.1.2 Calculation of a Modularity Distance.. 215
7.2. CONTENT VALIDATION – EMULEPLUS SOFTWARE SYSTEM.. 216

7.2.1 eMulePlus object interface dependence ... 218
7.2.2 eMulePlus object external relationships .. 219
7.2.3 eMulePlus object connection obscurity.. 219
7.2.4 eMulePlus object dependency .. 222

7.3. EXAMPLE OF A CONSTRUCT VALIDATION – EMULEPLUS SOFTWARE SYSTEM 224
7.4. MODULARITY MEASUREMENT CASE STUDIES .. 236

7.4.1 Case study 1 - modularity of the eMulePlus software system .. 237
7.4.1.1 Aims.. 237
7.4.1.2 Application ... 237
7.4.1.3 Analysis and interpretation ... 238
7.4.1.4 Discussion... 245

7.4.2 Case study 2 - interface dependence of CPartFile class and object modules 247
7.4.2.1 Aims.. 247
7.4.2.2 Application ... 247
7.4.2.3 Analysis and interpretation ... 248
7.4.2.4 Discussion... 266

7.5. CONCLUSIONS ... 266
8. DISCUSSION AND SUGGESTIONS FOR FURTHER WORK... 269

8.1. RESEARCH OUTCOMES.. 269
8.1.1 Systematic process of software descriptive measure development................................... 270
8.1.2 Descriptive measures of C++ class and object modularity ... 274
8.1.3 Case study – eMulePlus software system ... 277
8.1.4 Summary – research contributions and considerations ... 278

8.1.4.1 Contributions .. 278
8.1.4.2 Considerations .. 279

8.1.5 Further work .. 280
1. APPENDIX 1 - ENTITY-RELATIONSHIP MODEL SET DEFINITIONS 283

1.1. ENTITIES ... 283
1.2. BASIC RELATIONSHIPS .. 285
1.3. DERIVED RELATIONSHIPS.. 289

2. APPENDIX 2 - BASIC MODEL TO MEASUREMENT MODEL TRANSFORMATIONS . 294
2.1. TRANSFORMATION 1 - AA AND IAA ... 294
2.2. TRANSFORMATION 2 - AM AND IAM.. 296
2.3. TRANSFORMATION 3 - AO AND IAO .. 296
2.4. TRANSFORMATION 4 - IMO... 297
2.5. TRANSFORMATION 5 - MICREADA .. 297
2.6. TRANSFORMATION 6 - MICWRITEA... 299
2.7. TRANSFORMATION 7 - MICINVM .. 299
2.8. TRANSFORMATION 8 - MIOCREADA ... 300
2.9. TRANSFORMATION 9 - MIOCWRITEA.. 300
2.10. TRANSFORMATION 10 - MIOCINVM ... 301
2.11. TRANSFORMATION 11 - CEF... 302
2.12. TRANSFORMATION 12 - IDA.. 302
2.13. TRANSFORMATION 13 - CIF .. 303
2.14. TRANSFORMATION 14 - FIF .. 303

3. APPENDIX 3 – EMULEPLUS C++ CLASS MODULARITY TO LINES OF CODE
CORRELATION DATA ... 304

 vii

4. APPENDIX 4 - EMULEPLUS SOFTWARE SYSTEM CONTENT VALIDATION.............. 308
4.1. EMULEPLUS CLASS MODULARITY ... 308
4.2. EMULEPLUS OBJECT MODULARITY ... 312
4.3. EMULEPLUS CONTENT VALIDATION MEASURED VALUES... 317

5. APPENDIX 5 – EMULEPLUS MODULARITY DATA VALUES ... 322

6. APPENDIX 6 - CPARTFILE INTERFACE DEPENDENCE DATA 334
6.1. CLASS CPARTFILE .. 334
6.2. OBJECT CPARTFILE .. 344

BIBLIOGRAPHY .. 356

 viii

List of Figures
FIGURE 1-1 RELATIONSHIPS BETWEEN ENTITIES, CHARACTERISTICS, FEATURES AND DESCRIPTIVE MEASURES

... 4
FIGURE 1-2 RELATIONSHIPS BETWEEN A SOURCE CODE ENTITY AND DESCRIPTIVE MEASURES THAT

QUANTIFY LINES OF CODE TO DESCRIBE SOURCE CODE SIZE .. 5
FIGURE 1-3 SYSTEMATIC PROCESS OF SOFTWARE DESCRIPTIVE MEASURE DEVELOPMENT 7
FIGURE 1-4 PATHS OF DESCRIPTIVE MEASURE VALIDATION .. 12
FIGURE 1-5 STEPS OF DESCRIPTIVE MEASURE CONTENT VALIDATION. ADAPTED FROM SPROULL (1995,

P.79). .. 15
FIGURE 1-6 STEPS OF DESCRIPTIVE MEASURE CONTENT VALIDATION. ADAPTED FROM SPROULL (1995,

P.79). .. 17
FIGURE 2-1 CONTRIBUTION OF SOFTWARE DESCRIPTIVE MEASURE DEVELOPMENT PROCESS TO SOFTWARE

QUALITY METRICS FRAMEWORK (IEEE COMPUTER SOCIETY 1998, P. 4). ... 24
FIGURE 2-2 CONTRIBUTION OF SOFTWARE DESCRIPTIVE MEASURE DEVELOPMENT PROCESS TO TAME GQM

PARADIGM (BASILI 1988).. 25
FIGURE 3-1 CONCEPTUAL DEFINITION STAGE OF THE MEASURE DEVELOPMENT PROCESS............................ 37
FIGURE 3-2 PROCESS OF CONCEPTUAL DEFINITION OF CHARACTERISTIC TO BE DESCRIBED BY MEASURES.. 42
FIGURE 3-3 REPRESENTATION OF AN OBJECT ORIENTED MODULE WITH A HIGH LEVEL OF INFORMATION

HIDING .. 48
FIGURE 3-4 REPRESENTATION OF OBJECT ORIENTED MODULE EXTERNAL RELATIONSHIPS 51
FIGURE 3-5 REPRESENTATION OF OBJECT ORIENTED MODULE CONNECTION OBSCURITY 53
FIGURE 3-6 REPRESENTATION OF OBJECT ORIENTED MODULE DEPENDENCY... 55
FIGURE 3-7 MODULARITY SUB-CHARACTERISATION BASED ON MEYER'S (1997) RULES OF MODULARITY .. 57
FIGURE 3-8 INTERFACE DEPENDENCE SUB-CHARACTERISATION AND CONCEPTUAL DEFINITION.................. 60
FIGURE 3-9 EXTERNAL RELATIONSHIPS SUB-CHARACTERISATION AND CONCEPTUAL DEFINITION 62
FIGURE 3-10 CONNECTION OBSCURITY SUB-CHARACTERISATION AND CONCEPTUAL DEFINITION 64
FIGURE 3-11 DEPENDENCY SUB-CHARACTERISATION AND CONCEPTUAL DEFINITION 67
FIGURE 4-1 ENTITY MODELLING STAGE OF THE MEASURE DEVELOPMENT PROCESS 71
FIGURE 4-2 NATURAL LANGUAGE AND MATHEMATICAL ENTITY MODELS EXPRESS THE THEORETICAL BASIS

OF DESCRIPTIVE MEASURES... 72
FIGURE 4-3 PROCESS OF NATURAL LANGUAGE MODELLING OF A SOFTWARE ENTITY................................... 75
FIGURE 4-4 C++ CLASS INTERFACE AND HIDDEN ELEMENTS ... 83
FIGURE 4-5 C++ CLASS MATHEMATICAL MODEL... 83
FIGURE 4-6 C++ CLASS INTERFACE DEPENDENCE MATHEMATICAL MODEL ... 86
FIGURE 4-7 C++ CLASS EXTERNAL RELATIONSHIPS MATHEMATICAL MODEL .. 88
FIGURE 4-8 C++ CLASS CONNECTION OBSCURITY MATHEMATICAL MODEL... 91
FIGURE 4-9 C++ CLASS DEPENDENCY MATHEMATICAL MODEL... 94
FIGURE 4-10 C++ OBJECT-CLASS INTERFACE AND HIDDEN ELEMENTS .. 99
FIGURE 4-11 C++ OBJECT-CLASS MATHEMATICAL MODEL.. 100
FIGURE 4-12 SOLUTION ADOPTED TO MULTIPLE ATTRIBUTES AND METHODS INHERITED FROM THE SAME

CLASS.. 101
FIGURE 4-13 C++ OBJECT INTERFACE DEPENDENCE MATHEMATICAL MODEL ... 105
FIGURE 4-14 C++ OBJECT EXTERNAL RELATIONSHIPS MATHEMATICAL MODEL .. 108
FIGURE 4-15 C++ OBJECT CONNECTION OBSCURITY MATHEMATICAL MODEL... 114
FIGURE 4-16 C++ OBJECT DEPENDENCY MATHEMATICAL MODEL... 118
FIGURE 5-1 OPERATIONAL DEFINITION STAGE OF THE MEASURE DEVELOPMENT PROCESS 124
FIGURE 5-2 CHARACTERISTIC TO MEASURE RELATIONSHIP (CHARMER) DIAGRAM 127
FIGURE 5-3 C++ CLASS INTERFACE DEPENDENCE CHARACTERISTIC TO MEASURE RELATIONSHIP

(CHARMER) DIAGRAM.. 138
FIGURE 5-4 C++ CLASS EXTERNAL RELATIONSHIPS CHARMER DIAGRAM... 141
FIGURE 5-5 C++ CLASS CONNECTION OBSCURITY CHARMER DIAGRAM ... 144
FIGURE 5-6 C++ CLASS DEPENDENCY CHARMER DIAGRAM ... 147
FIGURE 5-7 C++ OBJECT INTERFACE DEPENDENCE CHARMER DIAGRAM ... 153
FIGURE 5-8 C++ OBJECT EXTERNAL RELATIONSHIPS CHARMER DIAGRAM... 156
FIGURE 5-9 C++ OBJECT CONNECTION OBSCURITY CHARMER DIAGRAM - PART 1................................. 161
FIGURE 5-10 C++ OBJECT CONNECTION OBSCURITY CHARMER DIAGRAM - PART 2............................... 162
FIGURE 5-11 C++ OBJECT DEPENDENCY CHARMER DIAGRAM ... 166

 ix

FIGURE 5-12 EXAMPLE OF CONTENT VALIDATION OF OBJECT DEPENDENCY MEASURES USING CHARMER
DIAGRAM .. 171

FIGURE 6-1 MEASUREMENT INSTRUMENT IMPLEMENTATION STAGE OF THE MEASURE DEVELOPMENT
PROCESS.. 175

FIGURE 6-2 ELEMENTS OF A SOFTWARE BASED MEASUREMENT INSTRUMENT... 177
FIGURE 6-3 MEASUREMENT INSTRUMENT IMPLEMENTING C++ CLASS AND OBJECT MODULARITY MEASURES

... 182
FIGURE 6-4 BASIC SOFTWARE MATHEMATICAL MODEL... 186
FIGURE 6-5 IMPLEMENTATION OF BASIC SOFTWARE MODEL .. 187
FIGURE 6-6 UPDATE OF FIGURE 5-6 C++ CLASS EXTERNAL RELATIONSHIPS CHARMER DIAGRAM,

REFLECTING MEASUREMENT INSTRUMENT IMPLEMENTATION ... 195
FIGURE 6-7 UPDATE OF FIGURE 5-10 C++ OBJECT EXTERNAL RELATIONSHIPS CHARMER DIAGRAM,

REFLECTING MEASUREMENT INSTRUMENT IMPLEMENTATION ... 197
FIGURE 6-8 UPDATE OF FIGURE 5-11 C++ OBJECT CONNECTION OBSCURITY CHARMER DIAGRAM,

REFLECTING MEASUREMENT INSTRUMENT IMPLEMENTATION ... 198
FIGURE 6-9 UPDATE OF FIGURE 5-12 C++ OBJECT CONNECTION OBSCURITY CHARMER DIAGRAM,

REFLECTING MEASUREMENT INSTRUMENT IMPLEMENTATION ... 199
FIGURE 6-10 UPDATE OF FIGURE 5-13 C++ OBJECT DEPENDENCY CHARMER DIAGRAM, REFLECTING

MEASUREMENT INSTRUMENT IMPLEMENTATION ... 200
FIGURE 7-1 CHARMER DIAGRAM SHOWING CONTENT VALIDATION FOR EMULEPLUS MEASURES

DESCRIBING OBJECT CONNECTION OBSCURITY. ... 220
FIGURE 7-2 CHARMER DIAGRAM SHOWING CONTENT VALIDATION FOR EMULEPLUS MEASURES

DESCRIBING OBJECT DEPENDENCY. ... 222
FIGURE 7-3 EFFECT OF MEASURE CIS5 ON EMULEPLUS UNWEIGHTED CLASS MODULARITY AGGREGATE

VALUES ... 227
FIGURE 7-4 EFFECT OF MEASURE CIS5 ON EMULEPLUS WEIGHTED CLASS MODULARITY AGGREGATE

VALUES ... 227
FIGURE 7-5 EFFECT OF MEASURE CIS5 ON EMULEPLUS CLASS MODULARITY DISTANCE VALUES 228
FIGURE 7-6 COMPARISON OF WEIGHTED AND UNWEIGHTED MODULARITY AGGREGATE AND MODULARITY

DISTANCE INDICATORS OF EMULEPLUS CLASS MODULARITY .. 229
FIGURE 7-7 EMULEPLUS CLASS LINES OF CODE AND UNWEIGHTED MODULARITY AGGREGATE OUTLIERS 231
FIGURE 7-8 EMULEPLUS CLASS LINES OF CODE AND WEIGHTED MODULARITY AGGREGATE OUTLIERS...... 232
FIGURE 7-9 EMULEPLUS CLASS LINES OF CODE AND MODULARITY EUCLIDEAN DISTANCE OUTLIERS 232
FIGURE 7-10 FREQUENCY HISTOGRAM OF EMULEPLUS CLASS MODULARITY NORMALISED AGGREGATE

VALUES ... 240
FIGURE 7-11 FREQUENCY HISTOGRAM OF EMULEPLUS OBJECT MODULARITY AGGREGATES 243
FIGURE 7-12 REPRESENTATION OF AN OBJECT ORIENTED MODULE WITH LOW INTERFACE DEPENDENCE... 249
FIGURE 7-13 GRAPHICAL REPRESENTATION OF CPARTFILE CLASS INTERFACE DEPENDENCE 251
FIGURE 7-14 CLASS CPARTFILE INTERFACE METHODS WITH MORE THAN 32 LINES OF CODE 254
FIGURE 7-15 CLASS CPARTFILE INTERFACE METHOD INVOCATIONS AND ATTRIBUTE ACCESSES............... 255
FIGURE 7-16 CLASS CPARTFILE INTERFACE METHODS THAT POTENTIALLY INCREASE INTERFACE

DEPENDENCE... 256
FIGURE 7-17 OBJECT CPARTFILE INHERITS ELEMENTS FROM THREE ANCESTOR CLASSES......................... 258
FIGURE 7-18 GRAPHICAL REPRESENTATION OF CPARTFILE OBJECT INTERFACE DEPENDENCE 259
FIGURE 7-19 OBJECT CPARTFILE INTERFACE METHODS WITH MORE THAN28 LINES OF CODE 262
FIGURE 7-20 OBJECT CPARTFILE INTERFACE METHOD INVOCATIONS AND ATTRIBUTE ACCESSES............. 263
FIGURE 7-21 OBJECT CPARTFILE INTERFACE METHODS THAT POTENTIALLY INCREASE INTERFACE

DEPENDENCE... 264
FIGURE APPENDIX 4-1 EMULEPLUS CLASS INTERFACE DEPENDENCE CHARMER DIAGRAM CONTENT

VALIDATION .. 308
FIGURE APPENDIX 4-2 EMULEPLUS CLASS EXTERNAL RELATIONSHIPS CHARMER DIAGRAM CONTENT

VALIDATION .. 309
FIGURE APPENDIX 4-3 EMULEPLUS CLASS CONNECTION OBSCURITY CHARMER DIAGRAM CONTENT

VALIDATION .. 310
FIGURE APPENDIX 4-4 EMULEPLUS CLASS DEPENDENCY CHARMER DIAGRAM CONTENT VALIDATION.. 311
FIGURE APPENDIX 4-5 EMULEPLUS OBJECT INTERFACE DEPENDENCE CHARMER DIAGRAM CONTENT

VALIDATION .. 312
FIGURE APPENDIX 4-6 EMULEPLUS OBJECT EXTERNAL RELATIONSHIPS CHARMER DIAGRAM CONTENT

VALIDATION .. 313

 x

FIGURE APPENDIX 4-7 EMULEPLUS OBJECT CONNECTION OBSCURITY CHARMER DIAGRAM CONTENT
VALIDATION - PART 1.. 314

FIGURE APPENDIX 4-8 EMULEPLUS OBJECT CONNECTION OBSCURITY CHARMER DIAGRAM CONTENT
VALIDATION - PART 2.. 315

FIGURE APPENDIX 4-9 EMULEPLUS OBJECT DEPENDENCY CHARMER DIAGRAM CONTENT VALIDATION 316

 xi

List of Tables
TABLE 4-1 CLASS MODULARITY SUB-CHARACTERISTICS SHARING COMMON NATURAL LANGUAGE MODEL

FEATURES ... 95
TABLE 4-2 RULES FOR THE ASSIGNMENT OF C++ OBJECT-CLASS ELEMENT LEVELS OF PROTECTION 98
TABLE 4-3 SHORTCOMINGS OF C++ OBJECT MODULARITY MATHEMATICAL MODELS 120
TABLE 4-4 OBJECT MODULARITY SUB-CHARACTERISTICS SHARING COMMON NATURAL LANGUAGE MODEL

FEATURES ... 122
TABLE 5-1 MEASURES OF C++ CLASS INTERFACE ELEMENT INTERDEPENDENCE..................................... 134
TABLE 5-2 MEASURES OF C++ CLASS INTERFACE ELEMENT INTERDEPENDENCE (CONT.)........................ 135
TABLE 5-3 MEASURES OF C++ CLASS INTERFACE SIZE .. 136
TABLE 5-4 MEASURES OF C++ CLASS DATA EXPOSURE... 137
TABLE 5-5 MEASURES OF CLASS EXTERNAL RELATIONSHIPS ... 139
TABLE 5-6 MEASURES OF CLASS EXTERNAL RELATIONSHIPS (CONT.) .. 140
TABLE 5-7 MEASURES OF CLASS UNSTATED RELATIONSHIP... 142
TABLE 5-8 MEASURES OF CLASS DISTANT CONNECTION.. 142
TABLE 5-9 MEASURES OF CLASS UNEXPECTED RELATIONSHIP .. 143
TABLE 5-10 MEASURES OF CLASS CONNECTION VIA NON-STANDARD INTERFACE 143
TABLE 5-11 MEASURES OF CLASS SERVICE INVOCATION ... 145
TABLE 5-12 MEASURES OF CLASS EXTERNAL VARIABLE READING.. 145
TABLE 5-13 MEASURES OF CLASS EXTERNAL FUNCTION WRITING .. 146
TABLE 5-14 MEASURES QUANTIFYING FEATURES COMMON TO SEVERAL CLASS MODULARITY SUB-

CHARACTERISTICS... 148
TABLE 5-15 MEASURES OF OBJECT INTERFACE ELEMENT INTERDEPENDENCE... 149
TABLE 5-16 MEASURES OF OBJECT INTERFACE ELEMENT INTERDEPENDENCE (CONT.) 150
TABLE 5-17 MEASURES OF OBJECT INTERFACE SIZE .. 151
TABLE 5-18 MEASURES OF OBJECT DATA EXPOSURE... 152
TABLE 5-19 MEASURES OF OBJECT EXTERNAL RELATIONSHIPS ... 154
TABLE 5-20 MEASURES OF OBJECT EXTERNAL RELATIONSHIPS (CONT.) .. 155
TABLE 5-21 MEASURES OF OBJECT VARIABLE CONNECTION ... 157
TABLE 5-22 MEASURES OF OBJECT UNSTATED RELATIONSHIP... 157
TABLE 5-23 MEASURES OF OBJECT DISTANT CONNECTION.. 158
TABLE 5-24 MEASURES OF OBJECT UNEXPECTED RELATIONSHIP .. 158
TABLE 5-25 MEASURES OF OBJECT UNEXPECTED RELATIONSHIP (CONT.) ... 159
TABLE 5-26 MEASURES OF OBJECT CONNECTION VIA NON-STANDARD INTERFACE 159
TABLE 5-27 MEASURES OF OBJECT CONNECTION VIA NON-STANDARD INTERFACE (CONT.) 160
TABLE 5-28 MEASURES OF OBJECT SERVICE INVOCATION ... 163
TABLE 5-29 MEASURES OF OBJECT INTERFACE PROVISION.. 163
TABLE 5-30 MEASURES OF OBJECT EXTERNAL VARIABLE READING.. 164
TABLE 5-31 MEASURES OF OBJECT EXTERNAL FUNCTION WRITING .. 165
TABLE 5-32 MEASURES QUANTIFYING FEATURES COMMON TO SEVERAL OBJECT MODULARITY SUB-

CHARACTERISTICS... 167
TABLE 6-1 C++ SOFTWARE MODULARITY MEASUREMENT MODEL SETS DERIVED FROM C++ BASIC

SOFTWARE MODEL SOURCE SETS ... 190
TABLE 6-2 IMPLEMENTATION OF C++ MATHEMATICAL ENTITY MODELS AS C++ SOFTWARE MODULARITY

MEASUREMENT MODEL ... 191
TABLE 6-3 MEASURES OF C++ OBJECT MODULARITY OMITTED FROM MEASUREMENT INSTRUMENT

IMPLEMENTATION ... 194
TABLE 6-4 CHARACTERISTIC TO MEASURE RELATIONSHIP (CHARMER) DIAGRAMS DESCRIBING

IMPLEMENTED MEASURES ... 202
TABLE 7-1 RESULTS OF EMULEPLUS SYSTEM CONTENT VALIDATION ... 223
TABLE 7-2 EMULEPLUS CLASS LINES OF CODE, MODULARITY AGGREGATE AND MODULARITY DISTANCE

DISTRIBUTION STATISTICS ... 230
TABLE 7-3 STRENGTH OF RELATIONSHIPS BETWEEN EMULEPLUS CLASS LINES OF CODE, UNWEIGHTED AND

WEIGHTED MODULARITY AGGREGATES AND MODULARITY DISTANCE ... 233
TABLE 7-4 EMULEPLUS SYSTEM CLASS MODULARITY AGGREGATE STATISTICS .. 239
TABLE 7-5 EMULEPLUS MODULARITY AGGREGATES OF CLASSES WITH RELATIVELY LOW MODULARITY .. 241
TABLE 7-6 EMULEPLUS SYSTEM OBJECT MODULARITY AGGREGATE STATISTICS 242

 xii

TABLE 7-7 EMULEPLUS NORMALISED MODULARITY AGGREGATES OF OBJECT-CLASSES WITH POTENTIALLY
LOW MODULARITY .. 245

TABLE 7-8 SUMMARY OF CLASS CPARTFILE INTERFACE SIZE MEASUREMENT DATA................................. 253
TABLE 7-9 SUMMARY OF OBJECT CPARTFILE INTERFACE SIZE MEASUREMENT DATA............................... 261
TABLE APPENDIX 3-1 EMULEPLUS SOFTWARE SYSTEM CLASS MODULARITY MEASURE TO CLASS LINES OF

CODE CORRELATION.. 304
TABLE APPENDIX 4-1 EMULEPLUS SOFTWARE SYSTEM CONTENT VALIDATION MEASURED VALUES 317
TABLE APPENDIX 5-1 EMULEPLUS SOFTWARE SYSTEM CLASS LINES OF CODE, UNWEIGHTED AND WEIGHTED

MODULARITY AGGREGATE AND MODULARITY EUCLIDEAN DISTANCE VALUES 322
TABLE APPENDIX 5-2 EMULEPLUS SOFTWARE SYSTEM CLASS AND OBJECT MODULARITY AGGREGATE

VALUES ... 328

 xiii

Abstract

Software measurement has been of interest to software engineers for almost as long as software

has been developed. While the evolution of systematic processes of software development has

seen a trend away from reliance on the expertise of individual software developers alone to

ensure software quality, systematic processes of software measure development have not

evolved to a similar extent. The problem with defining software measures according to an

informal process is that the quality of measures can be highly dependent on the expertise of the

individual measure developers. If a systematic process of software measure development were

defined, that promoted transparency and objectivity in measure development, then this

systematic process could support the development of high quality measures by less expert

users.

In this thesis, a systematic process of software descriptive measure development is described

and demonstrated. The approach taken to defining this systematic process is to investigate the

various processes by which currently available software descriptive measures have been

developed. These processes are then amalgamated with an established systematic method of

measure development used in the field of social science. Applying the stages of measure

development thus identified to the task of developing measures to describe C++ class and

object modularity tests the feasibility of this measure development process. Insights gained

through this testing provide feedback to further refine the process. In this way, a systematic

process of descriptive software measure development is defined alongside the definition of a

set of measures that provide a detailed description of the complex software characteristic of

modularity. The products of each stage of this measure development process assist a user to

validate the measures with respect to an intended application, and to analyse and interpret the

measurement data obtained by applying the measures to a software system. This is

demonstrated in a case study that also provides an indirect indication of the quality of the

process by which the measures were developed.

The major contribution of this work is the systematic process of descriptive software measure

development, as it has a wide application and can be used to develop measures to describe

many software characteristics of interest. A second important contribution is made by the set of

measures of C++ class and object modularity developed to demonstrate this systematic

descriptive measure development process.

Chapter 1 - Introduction

 1

1. Introduction

Software measurement has been of interest to software engineers for almost as long as software

has been developed. While the evolution of systematic processes of software development has

seen a trend away from reliance on the expertise of individual software developers alone to

ensure software quality, systematic processes of software measure development have not

evolved to a similar extent. "Software measurement is currently in a phase in which

terminology, principles, and methods are still being defined and consolidated." (Briand,

Morasca & Basili, 2002, p. 1106) Intuition is still advocated as an acceptable guide to software

measure development because "the definition of a measure is itself a very human-intensive

activity, which cannot be described and analyzed in a fully formal way" (Briand, Morasca &

Basili 2002, p. 1107). The problem with defining software measures according to an informal

process is that the quality of measures can be highly dependent on the expertise of the

individual measure developers. If a systematic process of software measure development were

defined, that promoted transparency and objectivity in measure development, then this process

could support the development of high quality measures by less expert users.

In this thesis, a systematic process of software descriptive measure development is described

and demonstrated. The major contribution of this work is this process, as it has a wide

application and can be used to develop measures to describe many software characteristics of

interest. A second important contribution is made by the set of measures developed to

demonstrate the measure development process. These measures provide a detailed description

of C++ class and object modularity. The systematic process by which they are developed

produces not only a set of measure definitions, but also provides a direct link to the theoretical

basis from which the measures were developed. This information helps a user of the measures

analyse and interpret the measurement data to gain an understanding of the levels of modularity

present in a software system.

Measures can serve a descriptive, predictive or prescriptive role (Davis & Hersh 1986). For

example, Chidamber, Kemerer (1994) have developed a set of measures that describe object

oriented software design complexity. These descriptive measures have been used as predictors

of "variations in productivity, rework effort and design effort" (Chidamber, Darcy & Kemerer

1998, p. 633).

Chapter 1 - Introduction

 2

Establishing these predictive relationships then allows the same descriptive measures to be

used to prescribe "more informed design and resource allocation decisions" (Chidamber, Darcy

& Kemerer 1998, p. 633). Fundamental to the predictive and prescriptive roles of measurement

is the definition of measures to provide an adequate description of a characteristic of interest.

The process of measure development presented and demonstrated in this thesis is intended for

the development of software product measures that directly describe quality characteristics

related to the structure of the software. The identification of which software product

characteristics to measure and the practical application of such product measures will take

place within the wider context of the goals of a measurement program encompassing business

measures and process measures as well as product measures (Offen and Jeffery 1997, p. 49).

Within this broader context, it is important that fundamental measures, such as those taken

directly from software products, provide an accurate description of the product since this

information, suitable refined, may form part of the measured description at a process or

business context level from which business decisions are made.

1.1. Approach taken to systematic measure development process definition

The approach taken in this thesis to defining a systematic process of descriptive measure

development is to investigate the various processes by which some currently available software

descriptive measures have been developed. These processes are then amalgamated with an

established method of measure development used in the field of social science. Applying the

stages of measure development thus identified to the task of developing measures to describe

C++ class and object modularity tests the feasibility of this measure development process.

Insights gained through this testing provide feedback to further refine the process. In this way, a

systematic process of descriptive software measure development is defined alongside the

definition of a set of measures that provide a detailed description of a complex software

characteristic. The quality of the description of the software that can be obtained from these

measures provides an indirect indication of the quality of the process by which the measures

were developed. While beyond the scope of this thesis, the usefulness of the measure

development process could be further demonstrated by the development of measures to

describe other complex software characteristics. Insights gained from this activity could be

used to further improve the measure development process.

Chapter 1 - Introduction

 3

In the current literature, several different terminologies have been used to describe software

measure development. To understand the remainder of this thesis, it is essential that several key

concepts be clearly defined and understood. The following section defines the terms that will

be used to refer to these key concepts and describes important relationships between these

concepts.

1.2. Key concepts

The following points define the terms 'entity', 'characteristic', 'feature' and ‘theory’, as they will

be used in this thesis.

• Entity - Different authors have used several different terms to identify "the thing that is

going to be measured". In this thesis, in a manner similar to Fenton (1995, p. 2) and

Kitchenham (1996, p. 63), the term "entity" will be used to mean the thing that is being

measured.

• Characteristic - In this thesis, it is a "characteristic" of the entity that will be described by

the measures. Others to use this term in the same way are Henderson-Sellers (1996) and

Abreu & Melo (1996). Fenton (1995) and Chidamber and Kemerer (1994) are amongst

those to use the term "attribute" to mean this, however the term attribute will later be used

to refer to the data elements of an object and class.

• Feature - The term "feature" will be used to describe the structural aspects of the entity that

affect the level of a characteristic present.

• Theory – “supposition or system of ideas explaining something, esp. one based on general

principles independent of the particular things to be explained” (The Australian Pocket

Oxford Dictionary 2002)

Chapter 1 - Introduction

 4

Figure 1-1 illustrates the relationships between entities, characteristics, features and descriptive

measures.

Figure 1-1 Relationships between entities, characteristics, features and descriptive measures

The software entity possesses features that are understood to affect the levels of characteristics

exhibited by the software. By quantifying these features, the software measures are able to

describe the levels of characteristic present in the software. The explicit relationships between

the measures and the features they quantify, and between the features and the characteristic of

interest, establish the implicit relationship between the measures and the characteristic they

describe.

Software Entity

Characteristic Features

quantify

Descriptive Measures

describe

features understood
 to affect level of
characteristic exhibited
by the software entity

exhibits possesses

implicit relationship
explicit relationship

Chapter 1 - Introduction

 5

Figure 1-2 shows an example of a source code entity and the way in which the lines of code

feature can be quantified by a measure to provide a description of the size of the source code.

Figure 1-2 Relationships between a source code entity and descriptive measures that quantify
lines of code to describe source code size

The first step in establishing the measurement relationships shown in Figure 1-2 is to identify

the entity to be measured (source code) and the characteristic to be described by the measures

(size). Next, the features of the source code that affect its size must be identified. In this case,

lines of code are identified as affecting the size of the source code. The theoretical basis for this

selection must be specified so that the descriptive measures can be correctly defined and later

interpreted. In this case, the theoretical basis is the accepted wisdom of the software

engineering field that says that lines of code affect the size of the source code and that

increasing lines of code increases source code size. Once this theoretical basis is established,

measures can be defined to quantify the lines of code feature of the source code. When

interpreted with respect to the stated theoretical basis from which they were developed, these

measures provide a description of the size of source code.

A systematic process of descriptive measure development must support the identification and

documentation of the explicit relationships between entities, characteristics, features and

descriptive measures. In this way, the implicit descriptive relationship between measures and

characteristics is established. The example illustrated in Figure 1-2 describes the development

source code

size lines of code

quantify

Descriptive Measures

describe

according to
accepted wisdom
affects

exhibits possesses

implicit relationship
explicit relationship

Chapter 1 - Introduction

 6

of a single measure to describe a relatively simple software characteristic with a widely

recognised theoretical basis. This thesis describes and demonstrates a process suitable for the

development of measures to provide a detailed description of a complex software characteristic

that may not be widely understood. This process supports the identification and documentation

of the descriptive measure elements and relationships illustrated in Figure 1-1. It also supports

the implementation of the defined measures within a measurement instrument, the validation of

these implemented measures and the analysis and interpretation of measurement data obtained

by applying the measures to a software system.

1.3. Measure development process

The staring point for the development of this systematic software descriptive measure

development process is a measure development process commonly used in the social science

field (Diamantopoulos & Schlegelmilch 1997) combined with elements of the processes used to

develop some of the currently available descriptive software measures. The social science

measure development process is applicable to software measure development because it is

intended to support the definition and validation of measures describing complex

characteristics that are not always well understood. To support the development of such

measures, in both fields there is a recognised need to clearly define the characteristic to be

described by the measures, to operationally define the measures in an unambiguous way, and to

validate the measures to show they provide an adequate description of the characteristics of

interest. In this study, through the development of measures to describe C++ class and object

modularity, the initial measure development process evolved into a process tailored to the

specific needs of software descriptive measure development. Figure 1-3 illustrates the process

obtained in this way. This measure development process will be described and demonstrated in

this thesis.

Chapter 1 - Introduction

 7

Figure 1-3 Systematic process of software descriptive measure development

Stage 1 is the conceptual definition stage in which the characteristic to be described by the

measure is defined "in terms of other concepts, the meaning of which is assumed to be more

familiar to the reader." (Diamantopoulos & Schlegelmilch 1997, p. 21). The conceptual

Stage 4
Measurement Instrument
Implementation

Described and
demonstrated in
Chapter 6

Stage 3
Operational Definition

Described and
demonstrated in
Chapter 5

Stage 2
Entity Modelling

Described and
demonstrated in
Chapter 4

validity

Sub-Characteristic
Identification

Natural Language Entity
Model

Mathematical Entity
Model

Characteristic
Operational Definition

Measurement Instrument
Implementation

validity
level of measurement

validity
reliability
level of measurement

Stage 1
Conceptual Definition

Described and
demonstrated in
Chapter 3

Characteristic
Conceptual Definition

Sub-Characteristic
Conceptual Definition

Chapter 1 - Introduction

 8

definitions "guide the development" (Diamantopoulos & Schlegelmilch 1997, p. 22) of the

operational measure definitions. If the characteristic is complex, it may not be possible to

conceptually define it in simple, familiar terms. In this case, the characteristic must be initially

defined in terms of the sub-characteristics that contribute to its manifestation in the software.

These sub-characteristics can then be conceptually defined. The idea of sub-characterising

complex software characteristics before measuring them is not new. Kitchenham, Pfleeger and

Fenton (1995, p. 942) recommend that "If you are concerned about a multi-dimensional

attribute such as complexity or quality, use different measures for different aspects of the

attribute." Meyer recognises that modularity is a complex characteristic of software, stating that

"a single definition of modularity would be insufficient; as with software quality, we must look

at modularity from more than one viewpoint." (Meyer 1997, p. 39). Each viewpoint could

identify a modularity sub-characteristic, which could be conceptually defined and separately

measured to provide a description of software modularity. The inability to sub-characterise and

precisely define a complex characteristic may indicate that it is not sufficiently well understood

and that a better understanding is needed before measures can be developed to describe it.

Stage 2 is the entity modelling stage. This stage is not explicitly included in the social science

measure development process; however it is recognised as an important component of software

measure development. Pfleeger, Jeffery, Curtis and Kitchenham (1997, p. 36) recommend that

software measure developers should "develop more accurate models on which to base better

measures". As Figure 1-3 shows, two types of entity models; natural language and

mathematical, are defined in this measure development process. The natural language model is

fundamental to the development of detailed descriptive measures. Its definition is based on an

understanding of the characteristic to be described by the measures, and the ways in which it is

manifest in the software. "The most common form of theory within software metrics is that

which is required to link direct measurement with phenomenon." (Shepperd & Ince 1993, p.

63). The natural language model expresses the theoretical basis from which the descriptive

measures are developed by describing the link between the characteristic (phenomenon) of

interest and the software features quantified by direct measurement to describe the levels of

characteristic present in the software. Where a software phenomenon is sufficiently well

understood, the real-world "experience", "belief", "invention", "hearsay", "practice",

"development" and "modelling" (Jeffery & Scott 2002, p. 543) regarding the phenomenon can

be transformed into a tentative theory. This tentative theory can then form the basis from which

the software features affecting the levels of characteristic present are identified and described

in the natural language entity model. The depth of understanding inherent in the selected

Chapter 1 - Introduction

 9

theoretical basis of measure development will prescribe the level of detail within the associated

natural language model of the software. The detail of the natural language model description of

the software will in turn limit the detail of description obtained from measures developed from

this natural language model.

The mathematical entity model is optional, as indicated in Figure 1-3 by the broken line

connecting it to the other elements of the measure development process. This model describes

the features of the software identified in the natural language model as affecting the levels of

characteristic present in the software. Mathematical entity models have been widely used to

support software measure definition. Churcher and Shepperd (1995b) define an entity-

relationship type model to support the definition of object oriented software measures. Briand,

Daly and Wust (1999) define a set based model of object oriented software to describe software

features of class and object coupling. Mathematical models can provide a precise description of

the software and where the type of model is suitable, software measures can be mathematically

defined in terms of the model elements. A disadvantage of mathematical entity modelling is

that it may not be possible to describe within a particular type of mathematical model, all the

software features affecting a characteristic. This means that measures to quantify the missing

features cannot be defined in terms of the selected mathematical model. Care must be taken to

"choose the model that most clearly emphasises the attribute(s) in question" (Fenton & Melton

1990, p. 178). Stage 2 entity modelling is described and demonstrated in Chapter 4 of this

thesis.

Stage 3 of the systematic descriptive measure development process is operational definition.

The operational definition defines a characteristic in the way it is to be measured. In social

science measurement, conceptual definitions guide the development of the operational

definitions and a single characteristic may be operationally defined in several different ways

(Diamantopoulos & Schlegelmilch 1997, p. 22). It is recommended that the operational

definition "Define the variables so precisely that anyone reading the operational definition

could measure the variables in exactly the same way you measured them." (Sproull 1995, p.

34). In the systematic process of software measure development illustrated in Figure 1-3, a

characteristic is operationally defined by the measures that quantify the features of the software

identified in the natural language model as affecting the level of characteristic present in the

software. Ideally, each identified software feature is quantified by at least one measure. The

measures can be defined in natural language terms and, where a suitable mathematical model

has been defined, the measures can be defined in terms of this model. As Figure 1-3 shows, the

Chapter 1 - Introduction

 10

level of measurement achieved by each measure should be determined and stated for each

measure. Figure 1-3 also shows that validation is part of the operational definition stage of

measure development. This particular validation assesses the degree to which the defined

measures provide an adequate description of the features identified in the natural language

characteristic model. Stage 3 operational measure definition and validation is described and

demonstrated in Chapter 5 of this thesis.

Stage 4 of the systematic descriptive measure development process is measurement instrument

implementation. In this stage, the measures operationally defined in the previous stage are

implemented within a measurement instrument. It is uncommon to specifically discuss

measurement instrument implementation as part of the measure development process. Many

measure development "approaches stop at the point at which measurement concepts or specific

metrics are identified. They do not define how such measures can be collected and stored, nor

(in general) do they define how they can be analysed." (Kitchenham, Hughes & Linkman 2001,

p. 788). Measurement instrument implementation is included as part of this measure

development process because implementing measures that provide a detailed description of a

complex software characteristic can be problematic. The large amounts of data required to

formulate a detailed measured description of a software characteristic can be difficult to extract

from a software document and may require large amounts of storage and complex

manipulations. Addressing some of these issues explicitly in the measure development process

will help a future user of the defined measures implement them within their own selected

measurement instrument. Stage 4 measurement instrument implementation is described and

demonstrated in Chapter 6 of this thesis.

Although Figure 1-3 shows the systematic measure development process as being linear, like

many development processes, it may be necessary to return to previous stages to clarify or

improve on the work conducted at that stage. These reiterations are not shown specifically on

Figure 1-3 however they can occur from any stage back to any previous stage. Once changes

have been made to a stage, it is necessary to update all the following stages to take into account

the changes made.

Having developed a process by which a set of measures can be defined to provide a detailed

description of a complex software characteristic, the worth of this process should be examined.

Two indicators of the value of the systematic measure development process are the extent to

which the process is able to support the development of measures to describe complex software

Chapter 1 - Introduction

 11

characteristics and the usefulness of the measures developed in this way. The worth of the

measure development process has been partly demonstrated by developing a set of measures to

describe the complex software characteristic of modularity. The ability to demonstrate measure

validity with respect to a software system, apply the measures to that software system and

analyse the resulting data and present "a 'big picture' of what the software is like" (Pfleeger,

Jeffery, Curtis & Kitchenham 1997, p. 41) is an indication of the quality of the set of measures

and an indirect indication of the value of the process by which the measures were developed.

Chapter 7 of this thesis presents a case study application of the descriptive measures of C++

class and object modularity developed in this thesis according to the systematic process of

measure development illustrated in Figure 1-3.

Having defined a set of measures to describe a particular software characteristic, the extent to

which these measures represent the characteristic of interest should be determined. Validity and

reliability are two properties of measures that provide this information (Carmines & Zeller

1979, p. 11). The following sections briefly describe validity and reliability assessment of

measures of complex characteristics. For a more detailed description of this subject,

‘Reliability and Validity Assessment’ by Carmines and Zeller (1979) is recommended reading.

1.4. Measure validity

Validity is “the extent to which any measuring instrument measures what it is intended to

measure.” (Carmines & Zeller 1979, p. 17). Three main types of measure validity are content

validity, criterion validity and construct validity. Content validity is an estimate of the degree to

which a measure or set of measures capture the characteristic of interest (Diamantopoulos &

Schlegelmilch 1997, p. 34). Criterion validity is an estimate of “the extent to which a measure

can be used to predict an individual’s score on some other characteristic” (Diamantopoulos &

Schlegelmilch 1997, p. 35). Finally, construct validity is an estimate of the degree to which a

measure conforms to theoretically expected behaviour (Sproull 1995, p. 81) (Diamantopoulos

& Schlegelmilch 1997, p. 35).

Figure 1-4 is an elaboration of the Figure 1-1 representation of the relationships between

entities, characteristics, features and descriptive measures. It shows that the description of a

characteristic provided by a set of measures represents an implicit relationship established by

the explicit relationships between descriptive measures and features and between features and

the characteristic. Validation aims to establish the adequacy of the implicit relationship

Chapter 1 - Introduction

 12

between descriptive measures and the characteristic they describe. As Figure 1-4 shows, there

are two possible paths to follow to establish this relationship: via the implicit path from

measures to characteristic, or via the explicit path from descriptive measures to features and

then on to the characteristic.

Figure 1-4 Paths of descriptive measure validation

Chidamber and Kemerer (1994) provide an example of a measure validation via the implicit

path from descriptive measure to characteristic. Their measures of object oriented software

complexity are validated with respect to Weyuker's (1988) set of mathematical properties of

complexity measures. Briand, Morasca and Basili (1996) propose a similar set of properties of

software size, complexity, cohesion and coupling to "identify and clarify the essential

properties behind these concepts" (Briand, Morasca & Basili 1996, p. 69) and use them to

"theoretically validate … a family of measures for cohesion and coupling of high-level object-

based software designs." (Briand, Morasca & Basili 1999, p. 722). Recently, Arisholm, Briand

and Foyen (2004) use some of these same properties to define and validate a set of measures of

object oriented software dynamic coupling. These properties establish a direct link between

descriptive measures and the characteristic they describe. The strength of this link is dependent

on the precision with which the properties are able to "characterize" (Briand, Morasca & Basili

1999, p. 724) the characteristic. They recommend that their "properties are to be interpreted as

necessary, but not sufficient." (Briand, Morasca & Basili 1999, p. 724), indicating that the link

Entity

Characteristic Features

quantify

Descriptive Measures

describe

features understood
to affect level

of characteristic
exhibited by the
software entity

exhibits possesses

descriptive measure to
characteristic
validation paths

implicit relationship
explicit relationship
validation path

Chapter 1 - Introduction

 13

from measures to characteristic that they establish may be incomplete. They make the point that

the mathematical properties can be used to overcome the lack of conceptual definitions of

software characteristics.

The introduction of appropriate measures is facilitated by the availability of precise
definitions for the attributes of interest. Unfortunately, such attributes, e.g., size,
complexity, cohesion, coupling, are hardly ever defined in a precise and unambiguous way,
if they are defined at all. However, approaches have appeared in the recent literature to
provide these attributes with less fuzzy and ambiguous definitions, using mathematical
properties to characterize them (Briand, Morasca and Basili 1999, p. 724).

The use of this type of property based validation in the software measurement field has been

criticised, identifying the difficulties of adequately defining abstract characteristics with such

properties. This in turn could lead to an incorrect, property based validation of such an abstract

characteristic. (Kitchenham & Stell 1997). Ideally, measure validity could be established

through more widely accepted and conventional methods such as content, criterion and

construct validation.

As Figure 1-4 indicates, there is a second path of validation from descriptive measures, through

features to the software characteristic of interest. Validation along this path involves firstly

examining the link between the characteristic of interest and the features identified as affecting

this characteristic to determine whether or not these features have been correctly identified.

Next, the link between these features and the measures that quantify them is examined to

determine whether or not sufficient measures have been defined. This is the subjective process

of content validation.

Chapter 1 - Introduction

 14

1.4.1 Content validation

Figure 1-4 shows that content validation via the explicit path from descriptive measures to

features to the characteristic of interest requires a statement of the theoretical basis of the

measures describing the software features that affect the levels of characteristic present. The

systematic process of measure development presented in this thesis expresses this theoretical

basis in the conceptual definitions and natural language entity models. This theoretical basis

facilitates a content type validation of the measures developed according to this systematic

process.

Unlike the other forms of validation, the level of content validity is not determined using a

statistical test but by the "logical process of comparing the components of a variable to items of

a measure." (Sproull 1995, p. 79). Since content validity is closely related to the purpose in

using the measures, it should be assessed individually for each intended application. Sproull

(1995, p. 79) describes the process of estimating the content validity of a social science

measurement instrument. Modifying this process to the task of software measure content

validity estimation results in the process described in Figure 1-5. Sproull's (1995, p. 79)

original description of each step in the content validation process is given in italic script after

the description of the corresponding software measure content validation step. Step 5 of

Sproull's process has been omitted because it is not relevant to software measure content

validation.

Chapter 1 - Introduction

 15

Figure 1-5 Steps of descriptive measure content validation. Adapted from Sproull (1995, p.79).

Performing steps 1, 2 and 3 of the content validation process described in Figure 5-4 involves

evaluating the quality of the theoretical basis of the measures. A potential user of the measures

must examine the conceptual definition of the characteristic and the natural language entity

model of the software, as these constitute the specific expression of the theoretical basis of the

measures. If this examination reveals the theoretical basis to be acceptable, then the validity of

Software Descriptive Measure Content Validation

1. Examine the characteristics to be described by the measures and list the software

features that affect the level of characteristics present. (Examine the variables of

interest and list the tasks or skills or other characteristics involved).

2. Add to the list the importance and frequency of occurrence of each of the

characteristics and associated features. Importance can mean the relevance of the

characteristic to the particular study or the influence the feature has on the overall level

of characteristic present or some other criteria. Frequency means the frequency with

which the software features occur within the software system to be measured. (Add to

the list the importance (criticality) and frequency of occurrence of each of the tasks or

skills.)

3. Re-examine the list to make sure all the features that are crucial to the characteristic of

interest are included, even if they occur infrequently. (Re-examine the list and make

sure that all skills or tasks which are crucial to the variable are included even if they

occur infrequently. Add any which may have been omitted.)

4. Compare each of the characteristics and features on the list to the individual measures

within the measure suite to ensure that each crucial characteristic and frequently

occurring feature is measured by at least one measure. Usually more measures are

included to assess those characteristics that are more important and those features that

occur more frequently. (Compare each of the tasks or skills on the list to the items of

the measure to ensure that each crucial and frequently occurring task or skill is

measured by at least one item. Usually more items are included to assess those skills

which are more important and those which occur frequently, an additional aspect of

the representativeness of the measure to the variable being measured.)

Chapter 1 - Introduction

 16

the Figure 1-4 link between a characteristic and the features that affect it has been established.

If this is the case, then step 4 of the content validation can proceed. Otherwise, if the theoretical

basis is judged unacceptable, the measures developed from it must be judged invalid for the

user's particular proposed application. Step 4 of the content validation process involves a user

comparing the set of measures to the features identified as affecting the characteristic. Ideally,

each feature is adequately described by one or more measures, in which case the measures can

be judged to provide a sufficiently valid description of the characteristic of interest. Only if a

set of measures is judged to be sufficiently valid should software measurement proceed.

1.4.2 Construct validation

While content validation is important, and should be assessed for any proposed application of

measures, it is not fully sufficient for assessing the validity of measures. Construct validity is a

type of validity applicable to software descriptive measures such as those developed in this

thesis. “Fundamentally, construct validity is concerned with the extent to which a particular

measure relates to other measures consistent with theoretically derived hypotheses concerning

the concepts (or constructs) that are being measured.” (Carmines & Zeller 1979, p. 23). As an

example, consider a new measure of the height of a person. A construct validation of this new

measure could be performed based on a theoretical understanding of the relationship between

the height and weight of adults. This theory would state that taller people would tend to weigh

more than smaller people. The relationship between the height and weight characteristics of an

adult would not correlate perfectly because exceptions to this rule, such a very tall, thin people,

do occur however, for a large sample of the population, a reasonably strong correlation between

height and weight data would be expected if the new height measure was indeed a valid

description of height. This does not mean that a weight measure may be substituted for a height

measure as they are describing different, though related characteristics of a person.

Sproull (1995, p. 82) describes the process of estimating the construct validity of a social

science measurement instrument. Figure 1-6 describes the steps of software descriptive

measure construct validation, modified by the process described by Sproull (1995, p. 82).

Where the step is different to that of Sproull, Sproull's (1995, p. 82) original description of each

step in the construct validation process is given in italic script after the description of the

corresponding software measure construct validation step.

Chapter 1 - Introduction

 17

Figure 1-6 Steps of descriptive measure content validation. Adapted from Sproull (1995, p.79).

The data analysis described in Chapter 7 includes a construct type validation of the modularity

measures defined in this thesis.

Software Descriptive Measure Construct Validation

1. Examine the theory associated with the characteristic of interest described by the

measures. (Examine the theory associated with the variable of interest).

2. Select several other characteristics that theory indicates would differentiate entities

with differing amounts of the measured characteristic of interest. (Select several

behaviours which the theory indicates would differentiate subjects with differing

amounts of the variable.)

3. Measure the characteristic of interest for a selected validation software system.

(Administer the instrument measuring the variable of interest to the validity sample and

record the scores)

4. Measure the other characteristics associated with the characteristic of interest for a

selected validation software system. (Gather scores for the validity sample on each of

the behaviours selected in step #2.)

5. Analyse the data using appropriate statistical tests to ascertain if subjects scoring high

on the major variable and those scoring low are statistically differentiated on each of

the selected criterion variable.

6. Accept evidence of construct validity if each of the statistical tests indicates a

significant difference or a significant relationship between high and low scorers on the

major variable and the criterion variables. If even one of the hypothesised relationships

is not supported statistically, then the instrument cannot be said to evidence construct

validity.

7. Examine reasons if construct validity is not supported. Possible reasons include: (1) the

theory is incorrect, (2) the instrument was not a valid measure of the variable of

interest, or (3) there may have been errors in the administration of the instrument,

scoring or analysis of the data.

Chapter 1 - Introduction

 18

1.5. Measure Reliability

Reliability “concerns the extent to which an experiment, test, or any measuring procedure

yields the same results on repeated trials” (Carmines & Zeller 1979, p. 11). It is “the degree to

which an instrument measures the same way each time it is used under the same conditions

with the same subjects.” (Sproull 1995, p. 74). The measures developed in this thesis are

intended to be implemented within a, software based measurement instrument that will

automatically scan the software document, collect the required data and generate the measures.

By its nature, this instrument will be perfectly reliable and thus reliability estimated will not be

performed in this thesis. Where a measurement instrument, such as one based on people

collecting data from software documents, introduces random measurement errors, then

reliability should be estimated.

1.6. Level of measurement

Measures can be classified according to the level of measurement they achieve (Stevens 1946).

The level of measurement achieved by a measure dictates the mathematical manipulations and

statistical analysis that can be performed on the collected measure data. The four major levels

of measurement, ranked in order from lowest to highest level are nominal, ordinal, interval and

ratio (Stevens 1946, p. 678). The maximum level of measurement achieved by a measure

should be stated so that the appropriate data analysis techniques can be employed. Many data

analysis and measurement texts discuss level of measurement. For example, Sproull (1995, pp.

67-74) gives a detailed discussion of each level of measurement including the arithmetic and

statistical operations permitted.

Chapter 1 - Introduction

 19

1.7. Comments

The process of measure development illustrated in Figure 1-1 represents the end product of this

study rather than the starting point. The development of the measures to describe C++ class and

object modularity began with the idea that a detailed sub-characterisation and conceptual

definition of object oriented class and object modularity would provide a foundation from

which measures to provide a detailed description of modularity could be developed. As

measure development proceeded, it became clear that a large number of measures would need

to be defined to quantify all the software features identified as affecting the levels of

modularity present in the C++ software. The decision was made to continue to develop

measures to provide this very detailed description even though implementing such a large set of

measures could present problems. Problems were also anticipated when attempting to analyse

the large data set resulting from applying the measures to even a small software system. The

reason for deciding to carry on with the development of a detailed measure set was that this

represents an extreme case that would be most likely to test the measurement development

process and highlight any deficiencies. In fact, difficulties were encountered at all the stages of

measure development and these are discussed in the relevant chapters of this thesis. The

example of how to develop a set of detailed descriptive measures presented in this thesis serves

as a guide for anyone deciding to develop a similar set of measures to provide a detailed

description of a different complex software characteristic.

The process of measure development illustrated in Figure 1-1 and described and demonstrated

in this thesis provides a guide to the development of descriptive software measures. Avenues

for future work identified in the final chapter of this thesis, will further test and refine this

process.

Chapter 1 - Introduction

 20

1.8. Structure of this thesis

This thesis document is organised in the following way.

Chapter 1 - Introduction

Chapter 2 - Literature Review

Chapter 3 - Conceptual Definition stage of measure development

 Section 3.1 - description of conceptual definition stage

 Section 3.2 - demonstration of conceptual definition stage

Chapter 4 - Entity Modelling stage of measure development

 Section 4.1 - description of entity modelling stage

 Section 4.2 - demonstration of entity modelling stage

Chapter 5 - Operational Measure Definition stage of measure development

 Section 5.1 - description of operational definition stage

 Section 5.2 - demonstration of operational measure definition stage

Chapter 6 - Measurement Instrument Implementation stage of measure development

 Section 6.1 - description of instrument implementation stage

 Section 6.2 - demonstration of instrument implementation stage

Chapter 7 - Application of C++ Class and Object Modularity Measures

 Section 7.1 Data analysis - techniques for modularity data reduction

Section 7.1 Content validation – eMulePlus software system

 Section 7.2 Example of a construct validation – eMulePlus software system

Section 7.3 - Case Study 1 - modularity of the eMulePlus software system

Section 7.4 - Case Study 2 - interface dependence of the CPartFile class module

Chapter 8 - Discussion and Conclusion

Appendices 1 to 6

Bibliography

Chapter 1 - Introduction

 21

Several appendices are included with this thesis document. The following lists these appendices

and the chapters they are associated with.

Appendix 1 - Entity-Relationship Model Set Definitions

 Associated with Chapter 4, Chapter 5 and Chapter 6

Appendix 2 - Basic Model to Measurement Model Transformations

 Associated with Chapter 6

Appendix 3 – eMulePlus C++ Class Modularity to Lines of Code Correlation Data

 Associated with Chapter 7

Appendix 4 - eMulePlus Content Validation

 Associated with Chapter 7

Appendix 5 - eMulePlus Modularity Data

 Associated with Chapter 7

Appendix 6 - CPartFile Interface Dependence Data

 Associated with Chapter 7

Chapter 2 - Literature Review

 22

2. Literature Review

This chapter reviews literature related to systematic processes of object oriented software

descriptive measure development dating from 1988 to 2004. The literature reviewed is selected

on the basis of its contributions to the understanding of how descriptive measures can be

systematically developed to provide a detailed description of a complex software characteristic.

Literature that is focussed more on software process measurement and on the development of

measures for function oriented software is not reviewed.

The chapter is organised as follows. The first section surveys some existing processes of

software measure development. The next section discusses the processes used to develop some

of the currently available object oriented software descriptive measures. Following this is a

discussion of the importance of clearly expressing the theoretical basis from which the

measures are developed. Finally, the conclusion section restates the research objectives of this

thesis and briefly presents the approach to software measure development that will be described

and demonstrated in this thesis.

This thesis addresses the issue of how to develop measures to provide a detailed description of

a complex software characteristic. This issue needs to be addressed because currently,

descriptive software measures are often developed according to various informal processes.

These processes are not documented and explained by the measure developers in ways that

allow other people to reuse them to develop new measures. They are also directed more to the

development of measures that provide a high level, rather than detailed description of software

characteristics. This thesis evaluates and builds on these informal processes to define a

systematic process of detailed descriptive software measure development.

Briand, Morasca and Basili advocate a disciplined approach to software measure development,

believing that this will allow practitioners and researchers to:

1. build upon a solid theoretical basis,
2. link the measure to the application at hand,
3. provide a clearer rationale of the underlying definition of a measure and its
applications,
4. judge whether it is necessary to define a new measure or instead reuse an existing
one for a specific application, and
5. interpret the results of an experiment or a case study, especially when one does not
obtain the expected results. (Briand, Morasca & Basili 2002, pp. 1106-1107)

Chapter 2 - Literature Review

 23

These same benefits are expected from the software descriptive measure development process

presented in this thesis. Two widely recognised and accepted systematic software measure

development process are the IEEE Standard for a Software Quality Metrics Methodology

(IEEE Computer Society 1992; IEEE Computer Society 1998) and the Goal/Question/Metric

(GQM) paradigm for formalising aspects of the software engineering process model of the

TAME (Tailoring a Measurement Environment) project (Basili 1988). The process of measure

development described in this thesis is compatible with, and extends these two processes. In

general terms, the IEEE and GQM processes provide a high-level description of what must be

done, while the measure development process of this thesis provides a detailed description of

how to accomplish the transition from identified software characteristic of interest to defined

measures that describe the characteristic. The following sections discuss these compatibilities.

2.1. Processes of software measure development

The IEEE Standard for a Software Quality Metrics Methodology (IEEE Computer Society

1992; IEEE Computer Society 1998) describes the steps that should be taken to identify the

attributes of an entity that need to be measured to describe high level quality factors. With

respect to the IEEE Software Quality Metrics Framework (IEEE Computer Society 1998, p. 4),

the process described in this thesis complements the IEEE framework by describing in detail

how to accomplish the transition from quality sub-factor to valid and reliable measures that

describe the sub-factor. Figure 2-1 illustrates this relationship.

Chapter 2 - Literature Review

 24

Figure 2-1 Contribution of software descriptive measure development process to software
quality metrics framework (IEEE Computer Society 1998, p. 4).

The Goal/Question/Metric (GQM) paradigm (Basili 1988) provides guidelines for the

determination of the types of measures that should be made to satisfy the stated goals of a

software development process. Figure 2-2 illustrates the way the software descriptive measure

development process described and demonstrated in this thesis fits into the GQM paradigm.

 Software descriptive
measure development

process defined in
this thesis

Software quality of system X

Quality factor

Direct metric(s)

Quality factor

Direct metric(s)

Quality factor

Direct metric(s)

Quality sub-factor Quality sub-factor Quality sub-factor

Metric Metric Metric

Chapter 2 - Literature Review

 25

Figure 2-2 Contribution of software descriptive measure development process to TAME GQM
Paradigm (Basili 1988).

The results of using the GQM paradigm are a set of software project goals that are "refined into

a set of quantifiable questions that specify metrics." (Basili 1988, p. 761). The software

measure development process described in this thesis complements the GQM paradigm by

providing a guide to the definition, implementation and interpretation of the required product

definition metrics.

Recently, Briand, Morasca and Basili (2002) describe a systematic method of software measure

development designed to enhance the GQM paradigm (Basili 1988). This method, called the

GQM/MEtric DEfinition Approach (GQM/MEDEA), supports the development of predictive

software measurement systems. It complements the GQM process by describing a method of

defining and validating measures that describe an independent software characteristic so that

these measures can then be then used to predict a future characteristic of interest. The main

Software descriptive
 measure development
process defined in
this thesis

Goal

Product related
questions

Process related
questions

Metrics, Data Collection
and Interpretation

Quality
perspectives
of interest

Definition of
the product

Feedback

Definition of
the process

Chapter 2 - Literature Review

 26

focus of the GQM/MEDEA process is establishing the prediction relationship between the

dependent descriptive measures and the independent characteristic of interest. The measure

developer's intuitive understanding of the characteristic of interest provides a theoretical basis

from which the independent descriptive measures are developed. This intuitive understanding,

along with a proposed set of mathematical properties possessed by measures of a particular

characteristic, also provides the basis of descriptive measure validation.

The measures for the independent attributes may not satisfy the refined properties for
the independent attributes. The measure definition process - like any human-intensive
activity- is subject to errors and cannot provide 100 percent certainty that correct
results are always delivered. It is useful to make sure that the measures for the
independent attributes comply with one's formalized intuition. (Briand, Morasca and
Basili 2002, p. 1118)

The GQM/MEDEA process of software measure development does not require the explicit

expression of the intuitive understanding of the characteristic of interest that provided the

theoretical basis of descriptive measure development. This means that a potential user of these

measures must rely on their own intuitive understanding to decide whether or not the measures

are sufficiently valid for their potential application. A less expert user may not have sufficient

knowledge to make this determination. Were the theoretical basis of the measures clearly

expressed, a potential user could use this information to determine measure validity and to

analyse and interpret the measurement data. Briand, Morasca and Basili (2002, p. 1107) believe

that "… the definition of a measure is itself a very human-intensive activity, which cannot be

described and analysed in a fully formal way". As will be shown in this thesis, where a

software characteristic is sufficiently well understood, it is possible to apply a formal process to

the task of developing measures to describe the characteristic of interest.

Kitchenham (1996) recognises the importance of developing software descriptive measures

according to specific guidelines and identifies the following principles of measure definition:

• We need to specify the entities to which the measures apply. This is essential to
ensure measures are comparable.

• We need to define the attribute we are measuring. This is essential to ensure that
we can interpret and use our results.

• We need to define the unit we are using. This is essential to ensure that we
understand the values we obtain.

• We need to specify the measurement instrument we are using.
In addition, we may also need to define a measurement protocol. (Kitchenham 1996,
pp. 63-64)

Chapter 2 - Literature Review

 27

While it is necessary to observe all these principles when developing software measures,

defining the attribute described by the measures is particularly important. As Kitchenham

indicates, without the understanding of the attribute conveyed by its definition, a potential user

is unable to interpret and use the measured results. In this thesis, as illustrated in Figure 1-3, the

definition of the attribute (characteristic) to be described by the measures is the first stage of

measure development and guides the remaining measure development stages. Specifying the

measurement instrument and protocol used to implement the measures is another important

stage of measure development advocated within the previously listed principles of Kitchenham.

It is the measures, as they are implemented in measurement instruments, which ultimately

provide the description of a particular software characteristic of interest. It is important that one

of the products of the measure development process is a description of how the measures

should be implemented in a measurement instrument. It is also important to describe the way

that a set of measures are actually implemented within a selected measurement instrument so

the theoretical and actual implementations can be compared and any shortcomings noted. In

this thesis, measurement instrument implementation is the final stage of descriptive measure

development process illustrated in Figure 1-3.

Many measures to describe object oriented software are currently available and several are

widely recognised within the software development community. The following section

discusses the processes by with several of these measures have been developed.

2.2. Processes currently used to develop descriptive software measures

Many of the descriptive software measures that are currently available have been developed

according to informal processes that comply with some of Kitchenham's (1996) measure

development principles. Elements found in these processes include:

• definition of the attribute to be described by the measures

• natural language modelling of the entity to be measured

• mathematical modelling of the entity to be measured

• natural language measure definition

• mathematical measure definition

• measure validation

• measure implementation

Chapter 2 - Literature Review

 28

Different groups of software measure researchers have developed measures by performing,

with varying degrees of rigour, some or all of these process elements. The following discusses

the processes used to develop some of the existing descriptive measures of object oriented

software.

The suite of measures defined by Chidamber and Kemerer (1994) are intended to describe the

"complexity in the design of classes" (Chidamber & Kemerer 1994, p. 477). Coupling,

cohesion, 'complexity of an object' and 'scope of properties' are identified as sub-characteristics

of 'complexity in design of classes', although this choice is not justified by reference to an

established understanding of this software characteristic. Coupling, cohesion and 'scope of

properties' are conceptually defined; 'complexity of an object' is not. Bunge's (1977; 1979)

theory of ontology provides the theoretical basis for the identification of software features that

affect the levels of these sub-characteristics present in the software. This theoretical basis is

expressed as discussions throughout this paper, as 'viewpoints' accompanying each measure

definition and as a footnote. Chidamber and Kemerer's Weighted Methods Per Class (WMC),

Response For a Class (RFC) and Lack of Cohesion in Methods (LCOM) measures are defined

in terms of a simple mathematical model of the software. Their Depth of Inheritance Tree

(DIT), Number of Children (NOC) and Coupling Between Object Classes (CBO) measures are

defined in natural language terms. These measure definitions have been shown to be ambiguous

(Churcher & Shepperd 1995a), motivating Henderson-Sellers (1996) and Hitz and Montazeri

(1995) to redefine some of them more precisely. The properties proposed by Weyuker (1988)

as necessary for a measure of software complexity to possess are used to demonstrate measure

validity. The measures are implemented in two separate measurement instruments, although

details of these implementations are not provided. The importance of this study is that it

recognised the need to develop measures from a "theoretical base" (Chidamber & Kemerer

1994, p. 476).

The process by which Chidamber and Kemerer's measures were developed could be improved

by conceptually defining all the sub-characteristics described by the measures and by more

clearly expressing the theoretical basis from which the measures were developed. For example,

the theoretical basis of the Weighted Methods per Class (WMC) (Chidamber & Kemerer 1994,

p. 482) measure is expressed through the combination of a discussion of Bunge's (1977) view

of complexity of an object (Chidamber & Kemerer 1994, p. 479), a statement of the theoretical

basis accompanying the WMC measure definition (Chidamber & Kemerer 1994, p. 482) and a

footnote to this statement (Chidamber & Kemerer 1994, p. 482). A potential user is only able to

Chapter 2 - Literature Review

 29

fully understand the theoretical basis of the WMC measure by examining all three of these

expressions of theory. If the connection between the measure, the features of the software it

quantifies and the aspects of the characteristic described by the measure were more clearly

expressed, a user of the measure would be more easily able to apply the measure and interpret

the resulting data. A systematic process of descriptive software measure development should

incorporate a precise expression of these connections.

Bieman and Kang (1995) define measures to describe object oriented class cohesion. The

motivation for their work is to define measures to provide a more detailed description of

cohesion than that provided by the LCOM measure (Chidamber & Kemerer 1994, p. 488).

Bieman and Kang conceptually define cohesion in general terms as the "relatedness of module

components" (Bieman & Kang 1995, p. 259), but it is not further sub-characterised. This means

that the conceptual definition does not convey a detailed understanding of cohesion from which

to base the development of detailed measures. The theoretical basis of the measures is

expressed as a detailed discussion of the authors' understanding of the ways in which relations

between class components affect the levels of cohesion present in a class. A simple set based

mathematical model is defined to support the natural language model. The measures to describe

class cohesion are defined in terms of functions that count the number of elements in the

mathematical model sets. The measures are not validated to determine whether or not they

adequately describe class cohesion. The type of measurement instrument within which the

measures are implemented is specified but no details are provided regarding the degree to

which this instrument is able to implement the defined measures. The strengths of Bieman and

Kang's study are that the authors recognise the need to define the attribute to be measured,

describe the theory behind the measure development, mathematically model the software and

define the measures in terms of this mathematical model. This measure development process

could be improved by providing a more detailed description of the aspect of cohesion described

by each measure and expressing the theoretical basis of the measures more specifically.

Abreu and Carapuca (1994) define a set of Metrics for Object Oriented Design (MOOD)

measures to describe internal quality of object oriented design. The stated theoretical basis for

the measures is that use of object oriented abstractions increases software internal quality

(Abreu & Carapuca 1994, p. 2). Encapsulation and information hiding, inheritance, coupling

and clustering, polymorphism, and reuse are identified as sub-characteristics of software

quality and are conceptually defined. The theoretical basis, identifying the software features

affecting the levels of these sub-characteristics present in the software, is not stated. A

Chapter 2 - Literature Review

 30

mathematical model of the software is defined to describe these features, and measures are

defined in terms of the mathematical model. A subsequent study (Abreu, Goulao & Esteves

1995) provides examples of software code to further explain the measure definitions. These

authors have followed the general measure development process in that they express the

general theoretical basis for sub-characterisation and provide conceptual definitions of these

sub-characteristics. Identification of the software features affecting the levels of sub-

characteristics present appears to be based on the authors' own understanding of the software

rather than on an established theory. Potential users of these measures must decide, based on

their own understanding of these sub-characteristics, whether this feature identification is

sufficient and whether or not the measures adequately describe these features.

Briand, Morasca and Basili define a set of measures of object oriented software coupling and

cohesion "related to declaration links among data and subroutines appearing in high-level

design module interfaces." (Briand, Morasca & Basili 1999, p. 723). A "property-based

approach" (Briand, Morasca & Basili 1999, p. 724) is used to characterise an understanding

and knowledge of coupling and cohesion. This in turn provides "theoretical support" (Briand,

Morasca & Basili 1999, p. 724) for the definition of measures of coupling and cohesion. These

same properties are then used to "provide supporting evidence that the measures are

theoretically valid" (Briand, Morasca & Basili 1999, p. 724). These properties are intended to

compensate for a lack of conceptual definition of coupling and cohesion by providing "these

attributes with less fuzzy and ambiguous definitions using mathematical properties to

characterize them." (Briand, Morasca & Basili 1996, p. 724). Briand, Morasca and Basili

(1999) develop a natural language model of the software, supported by a mathematical model.

Measures are defined in terms of this mathematical model. Later, Briand, Daly and Wust (1997;

1999) define a more detailed mathematical software model and define several existing

measures of coupling and cohesion more clearly in terms of this model. This general

mathematical model clarifies the operational definition of the selected measures and is a

strength of this study. A similarly detailed mathematical model would support the definition of

the many measures required to provide a detailed description of a complex software

characteristic. Where appropriate, the definition of a similar mathematical model should be

incorporated into a systematic process of software measure development.

Recently, Arisholm, Briand and Foyen (2004) have developed a set of measures to describe the

dynamic coupling of object oriented software as it executes. Coupling is not specifically

conceptually defined in this study however, the properties of coupling measures proposed by

Chapter 2 - Literature Review

 31

Briand, Morasca and Basili (1996) are used to validate the developed measures. This implies

that the general definition of coupling as "the amount of relationship between elements

belonging to different modules of a system" (Briand, Morasca & Basili 1996, p. 78) associated

with these coupling properties is applicable to the developed measures of dynamic coupling.

The coupling framework of Briand, Daly and Wust (1999) provides the basis of the

identification of the software features to quantify. Measures are defined to describe the strength

of both import and export dynamic coupling of object oriented classes and objects by

quantifying the dynamic messages, distinct method invocations and distinct classes features of

the software (Arisholm, Briand & Foyen 2004, p. 496). These measures "are defined in an

informal, intuitive manner but also using a formal framework based on set theory and first-

order logic." (Arisholm, Briand & Foyen 2004, p. 492). Defining the measures in terms of a

formal framework ensures "that the definitions are precise and unambiguous" (Arisholm,

Briand & Foyen 2004, p. 492). This formal framework is a set based mathematical software

model. Although similar to the mathematical software model defined by Briand, Daly and Wust

(1999), this new model is based on a class diagram specifically describing dynamic coupling

(Arisholm, Briand & Foyen 2004, p. 494) rather than on a general model of object oriented

software. The measures of dynamic coupling are defined in terms of the set based software

model using a form of relational calculus. To determine the degree to which the measures

provide an adequate description of coupling, the measures are validated with respect to a set of

mathematical properties of coupling measures proposed by Briand, Morasca & Basili (1996,

pp. 78-79). The measures are implemented within a software based measurement instrument. A

significant strength of the process used to develop these measures is the mathematical software

model used to support the definition of the measures. The measures are defined as sets of tuples

that satisfy a tuple expression. A similar style of relational calculus measure definition,

developed independently of Arisholm, Briand and Foyen (2004), is used to define measures of

C++ class and object modularity in this thesis.

The process of measure development employed by Arisholm, Briand and Foyen (2004) could

be improved by more clearly presenting the theoretical basis from which the measures were

developed. These measures provide a high level description of dynamic coupling and so, are

developed based on a high level understanding of coupling. This theoretical basis is presented

in an informal way as part of the discussion associated with the measure definitions (Arisholm,

Briand & Foyen 2004, pp. 495-497). When developing measures to provide a detailed

description of the software, such an informal presentation of theory could be difficult to

understand and link to each developed measure. A specific expression of the theory regarding a

Chapter 2 - Literature Review

 32

software characteristic of interest, linked specifically to the measures describing each aspect of

the characteristic will help a potential user validate, apply and interpret the measures that

together provide a detailed description of a software characteristic.

From the previously reviewed measure development processes, it can be seen that in general,

the theoretical basis of the developed measures is generally not specified in detail. Also, the

characteristic to be described by the developed measures is conceptually defined in general

rather than specific terms. Natural language modelling of the software to describe the ways in

which the characteristic of interest is manifest in the software is often expressed as part of the

general discussion of the measures rather than as a specific and identified product of the

measure development process. Mathematical modelling of the software entity to be measured is

an area of software measure development that has improved from early software measurement

projects to become a strength of the most recent measure development project (Arisholm,

Briand & Foyen 2004). This in turn has resulted in an improvement of the ways in which

software measures are defined. A mathematical software model supports the unambiguous

definition of software measures and so, the development of a better mathematical model has in

turn resulted in the more precise definition of software measures. One aspect of software

mathematical modelling not addressed by currently used software measure development

processes is the degree to which the mathematical model is able to describe all the software

features that are understood to affect the levels of characteristic of interest present in the

software. Pfleeger, Jeffery, Curtis and Kitchenham (1997, p. 36), when discussing the "state of

the gap" in software measurement, suggest that software measurement researchers should

"consider model validity separate from measure validity, and develop more accurate models on

which to base better measures". Validation of the mathematical software model demonstrates

the accuracy of the model from which measures are defined. While many of the previously

reviewed measure development processes include measurement instrument implementation, the

degree to which the selected measurement instrument is able to implement the defined

measures with sufficient validity, and reliably collect the measurement data, is not discussed.

Measurement instrument validity should be assessed and judged adequate before the instrument

is applied to describe a software system. "The notion of validity is not specific to software

engineering, and general concepts that we rarely consider - such as construct validity and

predictive validity - should be part of any discussion of software engineering measurement."

(Pfleeger, Jeffery, Curtis & Kitchenham 1997, p. 36) Different types of validity and styles of

validation may be appropriate to software measurement and research is needed to investigate

Chapter 2 - Literature Review

 33

this possibility. In this thesis, the applicability of content and construct validities

(Diamantopoulos & Schlegelmilch 1997; Sproull 1995) to the estimation of descriptive

measure validity is investigated.

The process of descriptive software measure development illustrated in Figure 1-3 and

described and demonstrated in Chapters 3 to 7 of this thesis supports the development of

descriptive measures to provide a detailed description of a complex software characteristic.

This process encompasses the explicit statement of the theoretical basis of the measures,

mathematical modelling of the software, precise measure definition and measurement

instrument implementation. The products of this process support the validation of the measures,

as they are implemented in a selected measurement instrument, to determine the degree to

which they provide an adequate description of the characteristic of interest.

2.3. Theoretical basis of descriptive software measure development

A detailed understanding of the software characteristic of interest, and the ways in which it is

manifest in the software, is essential to the development of descriptive measures of the

characteristic. "The most common form of theory within software metrics is that which is

required to link direct measurement with phenomenon." (Shepperd & Ince 1993, p. 63). To

develop measures that provide a detailed description of a complex software characteristic (or

phenomenon), a theory or understanding is required regarding the ways in which the features of

the software, quantified by direct measurement, affect the levels of characteristic present in the

software. The theoretical basis for the development of descriptive software measures may be

"one's own intuitive understanding of the studied phenomena and needs to be explicit so it can

be discussed, questioned, and refined." (Briand, Morasca & Basili 2002, p. 1114) Where a

"rich discussion of the ideas, and the development of general understandings of the meaning of

concepts" (Leaney, Rowe & O'Neill 2002) has occurred, this too can form a basis for measure

development. Alternatively, when the "experience", "belief", "invention", "hearsay", "practice",

"development" and "modelling" (Jeffery & Scott 2002, p. 543) regarding a software

phenomenon has been formulated into a "tentative theory" (Jeffery & Scott 2002, p. 542), and

this tentative theory has been evaluated by the software engineering community, it may provide

a good basis for software measure development.

Chapter 2 - Literature Review

 34

To demonstrate the systematic process of software descriptive measure development, a set of

measures describing object oriented C++ class and object modularity will be developed in this

thesis. Modularity is selected as the characteristic of interest because it is a relatively complex

software characteristic that is relatively well understood by the software engineering

community. This detailed understanding supports the development of detailed descriptive

measures. The development of a theoretical understanding of software modularity can be seen

in the work of Stevens, Myers and Constantine (1974) who proposed coupling and cohesion as

important sub-characteristics of function oriented software modularity. Coupling and cohesion

continue to be regarded as important sub-characteristics of modularity and Briand, Daly and

Wust (1997; 1999) list many measures defined by several authors to describe object oriented

software coupling and cohesion. The degree to which measures of coupling and cohesion

provide an adequate description of object oriented software modularity is examined by Abreu

and Goulao (2001). They conclude that in practice, "coupling and cohesion do not seem to be

the dominant driving forces when it comes to modularization" (Abreu & Goulao 2001, p. 47). It

is possible that "modularization driving forces" other than coupling and cohesion exist in object

oriented software systems.

In this thesis, Meyer's (1997, pp. 39-64) theory of object oriented software modularity forms

the theoretical basis of the development of descriptive measures of modularity that

demonstrates the systematic process of measure development. Meyer's rules of modularity

(1988; 1997, pp.46-53) have been previously used as the basis for software measure

interpretation. Abreu, Goulao and Esteves (1995, p53) refer to Meyer's (1988) rule of

information hiding when discussing the interpretation of their Attribute Hiding Factor (AHF)

and Method Hiding Factor (MHF) measures. They also reference Meyer's (1988) rule of small

interfaces to support the interpretation of their Coupling Factor (COF) measure (Abreu, Goulao

& Esteves 1995, p. 54). In a similar way, Ammann and Cameron (1994 p. 144) refer to Meyer's

(1988) rule of weak coupling, which is the same as the later small interfaces rule (Meyer 1997,

p. 48), to support the interpretation of their measured results. Briand, Morasca and Basili

(1999, p 734) recognise Meyer's (1988) rule of weak coupling as work related to their

development of measures of object-oriented software coupling.

Meyer's (1997, pp. 46-53) rules of modularity identify major modularity sub-characteristics and

indicate the features of object oriented software that affect the levels of these sub-

characteristics present in the software, making them suitable for use as a basis for descriptive

measure development. This suitability combined with the long-standing acceptance of these

Chapter 2 - Literature Review

 35

rules by the software engineering community, supports their selection as the theoretical basis

for the measures developed in this thesis. Selecting the object oriented software modularity

theory of Meyer (1997) as a starting point for measure development does not imply that this is

the only possible choice or that the theory itself is entirely correct and comprehensive. What

this choice does say is that Meyer's (1997) theory appears to offer a reasonable basis from

which to develop a set of descriptive measures of object oriented software modularity. Only by

developing, validating and using these measures can the original choice of theory be supported

or disputed. If the theory should prove inadequate it can then be modified or discarded and the

measures developed from it similarly treated. From a detailed understanding of object oriented

software modularity (Meyer 1997), a set of measures can be developed to provide a detailed

description of C++ class and object modularity.

2.4. Conclusion

It has been recognised that a formal process of software measure development should improve

the ability of users to appropriately apply and interpret software descriptive measures (Briand,

Morasca & Basili 2002, pp.1106-1107). The sets of software measures by Chidamber and

Kemerer (1994), Abreu and Carapuca (1994), Bieman and Kang (1995), Briand, Morasca, and

Basili (1999) and Arisholm, Briand and Foyen (2004) have been developed according to

informal processes of measure development. To adapt these informal processes to the

development of measures to provide a detailed description of a complex software characteristic,

it is necessary to precisely specify how each stage of the measure development process should

be executed and how the information produced at each stage should be presented. In this way,

the design decisions of the measure developer are communicated to a potential user, allowing

the user to determine whether or not the measures are appropriate to their proposed application.

This thesis describes a systematic process of descriptive measure development that specifies

how each stage of measure development should be performed and how the products of these

stages can be presented. Developing measures to provide a detailed description presents special

challenges due to the large amount of information that must be communicated to a potential

user. This process is demonstrated through the development of measures to provide a detailed

description of C++ class and object modularity. Meyer's (1997, pp. 46-53) rules of modularity

form the theoretical basis from which these measures are developed. This theoretical basis is

presented as a sub-characterisation of modularity with associated conceptual definitions, and as

a set of natural language models of C++ software that describe features of the software that

Chapter 2 - Literature Review

 36

affect the levels of each modularity sub-characteristic present. Mathematical entity-relationship

models of the software describe the software features identified in the natural language models.

The descriptive software measures are unambiguously defined in terms of the mathematical

model elements. The mathematical entity models and measures defined upon them are

implemented within a software based measurement instrument. The outcome of the measure

development process is a measurement instrument implementing a set of measures that describe

the levels of modularity present in C++ class and object modules.

This thesis contributes to the field of software measurement by defining a process that supports

the development of measures to provide a detailed description of a complex software

characteristic. It also contributes to the field of software measurement by defining a set of

measures that provide a detailed description of C++ class and object modularity. The

systematic process of measure development illustrated in Figure 1-3 and described and

demonstrated in Chapter 3 to 6 of this thesis facilitates the development of these measures of

C++ class and object modularity. The Chapter 7 case study demonstrates validation of these

measures with respect to a small software system, and presents the analysis and interpretation

of the measurement data obtained by applying the measures to this software system.

The following Chapter 3 describes the conceptual definition stage of descriptive measure

development. This stage is demonstrated by the sub-characterisation and conceptual definition

of object oriented software modularity.

Chapter 3 - Conceptual Definition

 37

3. Conceptual Definition

This chapter describes the sub-

characterisation and conceptual definition

stage of software descriptive measure

development. This stage corresponds to the

shaded boxes in the Figure 3-1

diagrammatic representation of the measure

development process. Section 3.1 of this

chapter describes the conceptual definition

stage in terms of its prerequisites, how it is

performed and its products. Following this,

section 3.2 demonstrates the steps of this

stage by sub-characterising and

conceptually defining object oriented class

and object modularity based on the theory

of Meyer's (1997, pp. 46-53) five rules of

modularity.

Figure 3-1 Conceptual definition stage of
the measure development process

3.1. Stage 1 of measure development process - conceptual definition

In the conceptual definition stage, characteristic and sub-characteristic conceptual definitions

are derived. "A conceptual definition defines a concept in terms of other concepts, the meaning

of which is assumed to be more familiar to the reader." (Diamantopoulos & Schlegelmilch

1997, p.21) The conceptual definition is intended to "(a) capture the essence or key idea of the

concept, and (b) distinguish it from other similar but, nevertheless, distinct concepts."

(Diamantopoulos & Schlegelmilch 1997, pp.21-22). These conceptual definitions, together with

the natural language model defined in the entity modelling stage, express the theoretical basis

from which to develop descriptive software measures. It is important to ensure that the

characteristics and sub-characteristics to be described by the measures are clearly identified and

well defined since "a conceptual definition logically precedes an operational [measure]

definition and, thus, it should be used to guide the development of the latter." (Diamantopoulos

& Schlegelmilch 1997, p.22). The quality of the conceptual definitions will influence the

Characteristic
Conceptual Definition

Sub-characteristic
Identification

Sub-characteristic
Conceptual Definition

Entity Modelling

Operational Definition

Conceptual Definition

Measurement
Instrument
Implementation

Chapter 3 - Conceptual Definition

 38

quality of the description of the software obtained from the measures subsequently developed

based on these conceptual definitions. Conceptual definitions communicate the aspects of the

software described by a set of measures and thus facilitate the analysis and interpretation of

data obtained from applying these measures (Kitchenham 1996, p64).

It is uncommon to find software measures developed without some explicitly stated conceptual

definition of the characteristic to be measured; however, Ferrett and Offutt (2002) provide one

such example. They propose measures of modularity without first conceptually defining the

particular aspects of modularity that each of these measures describe. This lack of explicit

conceptual definition of modularity makes it difficult for a potential user of these measures to

determine whether or not they are relevant to their own potential application. If the measures

are applied, it then becomes difficult to interpret the measured data since the precise aspects of

modularity described are not explicitly stated.

More usually, the characteristic to be described by the measures is defined in general terms that

do not fully convey the theoretical basis from which the measures were developed. For

example, Chidamber and Kemerer define object oriented class cohesion in general terms as

"the internal consistency within parts of the design" (Chidamber & Kemerer 1994, p479). By

contrast, their Lack of Cohesion in Methods (LCOM) measure (Chidamber & Kemerer 1994,

p488) describes a particular aspect of cohesion related to the use of a common set of data by

methods within a class. It would be easier for a potential user to apply and interpret this

measure if the conceptual definition from which it was developed defined, in precise rather

than general terms, the particular aspect of cohesion described.

The inability to precisely define a characteristic may indicate that it is not sufficiently well

understood and that a better understanding is needed before descriptive measures can be

developed. In the case of complex characteristics, it may not be possible to provide a single

conceptual definition since the characteristic may be a cluster (Gasking 1960; Ellis 1966).

Regarding such clusters, "The most important feature of a cluster is that it may be identified by

any one of a large number of characteristics. But it has no definition in any commonly accepted

sense of this word. For no one characteristic belongs essentially to a cluster. Our concept is

formed by a continuing association of characteristics - an association which is relatively

stable." (Ellis 1966, p34). When conceptually defining complex characteristics of software,

such cluster characteristics must be initially defined in terms of the sub-characteristics that

contribute to their manifestation in the software. The need to sub-characterise complex

Chapter 3 - Conceptual Definition

 39

software characteristics before measuring them has been recognised for many years. For

example, Stevens, Myers and Constantine (1974) identify interface complexity, type of

connection and type of communication as important sub-characteristics of software coupling.

Fenton (1994, p199) also recognises sub-characterisation as a promising approach to the

measurement of software complexity, stating that "…the most promising approach is to identify

specific attributes of complexity and measure these separately". Meyer recognises that

modularity is a complex characteristic of software, stating that "a single definition of

modularity would be insufficient; as with software quality, we must look at modularity from

more than one viewpoint." (Meyer 1997, p. 39).

Selection of the particular aspects of a characteristic to be measured should be made on the

basis that they describe the characteristic in sufficient detail while at the same time excluding

any unnecessary refinement to the description. The theoretical basis from which the measures

are to be developed should include the identification of important sub-characteristics of the

main characteristic to be measured. Difficulty in identifying a satisfactory set of sub-

characteristics may indicate that the chosen theoretical basis is not sufficiently detailed. In this

case, the theory may need to be further enhanced or perhaps discarded and a different

theoretical basis used. Different theoretical bases may identify different sub-characteristics of

the same major characteristic. Selection of the sub-characteristics to include and those to omit

will also be guided by the degree of descriptive detail required from the measures developed.

The greater the degree of descriptive detail inherent in the sub-characterisation, the more

detailed the description that can be obtained from measures developed from this sub-

characterisation.

Software engineering is a relatively new area of investigation and measure development may be

hindered by a lack of theoretical understanding of characteristics for which it is desired to

develop descriptive measures. Using as a basis for measure development a tentative or

incomplete theory may result in measures being developed to describe aspects of a software

characteristic that are unimportant or unrelated or may result in important aspects of a

characteristics being overlooked, with no measured defined to describe them. The only way to

overcome the problem of lack of theoretical understanding of software development is to

perform research. One area of research could be the definition, validation and application of

measures developed according to the current theoretical understanding of software. Through

this, greater understanding of software could be achieved, further enhancing the available

theory and allowing for the definition of better measures. The systematic process of measure

Chapter 3 - Conceptual Definition

 40

development described in this thesis supports the development of descriptive software

measures regardless of the sophistication of their theoretical basis. This theoretical basis is

described in the conceptual definition and natural language models of the software.

The following sections 3.1.1, 3.1.2 and 3.1.3 describe the conceptual definition stage of

measure development in terms of its prerequisites, performance and products.

3.1.1 Prerequisites to the conceptual definition stage

The theory elements required as inputs to the systematic descriptive measure development

process are the conceptual definition of the characteristic of interest and the identification of

software features that affect the levels of this characteristic present in the software. A software

expert's intuitive understanding of the characteristic, and an established theory regarding the

manifestation of the characteristic within the software are both examples of theoretical bases

from which descriptive measures can be developed. Where the characteristic to be described by

the measures is a complex concept, the theoretical basis for measure development may need to

identify and define some important sub-characteristics of the characteristic to be measured.

Since measures are developed based on the expression of this theory, the quality of this theory

will affect the quality of the measured description obtained. An incomplete theory will produce

a conceptual definition and natural language model of a software characteristic that is similarly

incomplete. Models are intended to capture only the relatively important features of an entity

while omitting less important features. They will always provide an incomplete description and

this is desirable, as irrelevant details will confuse the person analysing the modelled

information. Thus, it is not the incompleteness of the theory used to form the basis of measure

definition that is a problem, but rather the possibility that important features have been omitted

from the model and unimportant features included. A similar problem can arise when a

speculative theory is used to derive the characteristic conceptual definitions and natural

language model because again there is the possibility that important features have been omitted

from the model and unimportant ones included. The systematic measure development process

is sensitive to these problems because they may lead to measures being developed for

unimportant features and none being developed for important ones.

Measure validation provides a means to evaluate the sufficiency or otherwise of the theoretical

basis from which a set of measures was developed. Within the measure development process,

Chapter 3 - Conceptual Definition

 41

provision is made for a content type validation. This is a subjective assessment of the "extent to

which a measure appears to measure the characteristic it is supposed to measure."

(Diamantopoulos and Schlegelmilch 1997, p.34). This type of validation is included in the

measure development process because all the information needed to perform it can be found in

the products of the process itself. Once a set of measures have been defined to describe a

software characteristic, and have been shown to have a sufficient level of content validity for a

proposed application, a construct type validation can be performed to determine the extent to

which the measures “relate to other measures consistent with theoretically derived hypotheses

concerning the concepts (or constructs) that are being measured.” (Carmines and Zeller 1979,

p. 23) For example, if software theory suggested that software systems comprised of modules

with low modularity were more difficult to maintain, then modularity and maintainability

measurement data collected from a software system could be analysed to determine whether or

not this relationship was upheld. If it was upheld then this could be used as evidence of the

validity of the modularity measures. If it was not upheld, then it could be used as evidence that

the modularity measures provided a poor description of the software. As it could also be used

as evidence of poor measures of maintainability or poor theory regarding the relationship

between modularity and maintainability, this type of validation is more about accumulating

evidence of validity rather than proving it conclusively.

At the current state of software development understanding, the question may arise as to

whether the prevailing theoretical understanding of a software characteristic is sufficient to

form the basis of descriptive measure development. To answer this question, a measure

developer should gather as much information regarding the characteristic of interest as possible

and then make a subjective assessment as to whether this information provides a sufficiently

detailed description of the characteristic. If it has sufficient detail, then measure development

should proceed. If it has insufficient detail, then measures should not be defined based on this

theory. Any measures defined to describe a software characteristic should be validated before

they are widely accepted.

3.1.2 Performance of the conceptual definition stage

Once the prerequisites have been met, the conceptual definition of the characteristic to be

measured can take place. Figure 3-2 describes the process of conceptual definition. The first

step is to identify and state the characteristic that will be described by the measures. If this is a

simple characteristic, then it can be immediately conceptually defined. If it is a cluster

Chapter 3 - Conceptual Definition

 42

characteristic then the major sub-characteristics that identify it will need to be stated and each

of these conceptually defined. As with any development process, it may take several sub-

characterisation and conceptual definition iterations to achieve a satisfactory result.

Figure 3-2 Process of conceptual definition of characteristic to be described by measures

3.1.3 Products of the conceptual definition stage

The products of the conceptual definition stage will vary depending on the complexity of the

characteristic to be described by the measures. For a simple characteristic that most people

understand well, the conceptual definition stage will result in a single dictionary like definition

of the characteristic. For a more complex cluster characteristic that is not as well understood or

does not have a single, widely accepted definition, it will be necessary to identify its most

important sub-characteristics and conceptually define these. The product of the conceptual

definition stage for a cluster characteristic is a sub-characterisation with an associated set of

conceptual definitions for each of the most refined sub-characteristics.

3.1.4 Practical Considerations

Of all the stages of the systematic process of descriptive measure development, the conceptual

definition stage is the most subjective in that the quality of the final product is dependent on the

skill of the measure developer. This is particularly the case when descriptive measures of a

NO

YES

Identify the characteristic to
be described by the measures.

Is this a
cluster

characteristic?

Identify the set of
important

sub-characteristics

Conceptually define identified
characteristic or

sub-characteristics

Chapter 3 - Conceptual Definition

 43

cluster type characteristic are developed. The measure developer is responsible for identifying

those sub-characteristics that are the most important to measure. They are guided in this

decision by their understanding of theoretical basis selected for measure development, the

ultimate use to which the measures will be put and their own levels of experience and intuitive

understanding of the characteristic to be measured. The measure developer is also responsible

for recognising at what stage the sub-characterisation has resulted in sufficiently simple

conceptual definitions. What may be a simple concept to one person may be beyond the

comprehension of a less expert person. These issues can make the conceptual definition stage

difficult to execute.

The systematic process of measure development advocated in this thesis is not intended to

change the subjective nature of sub-characterisation and conceptual definition, and may not

even make it easier. What it is intended to do is to communicate the decisions made by the

measure developer to potential users of the measures. The sub-characterisation and conceptual

definitions describe the particular aspects of the characteristic chosen to be included in the

measured description. A future user is able to examine these and decide whether or not the

measures will be sufficient for their purposes. If the sub-characterisation is too detailed, then

they can choose to omit some measures. If it lacks detail, then they can choose to abandon their

use of the measures, or further refine the sub-characterisation and develop new measures that

provide a more detailed description of the software.

Performing a specific conceptual definition stage is important because it enables a measure

developer to communicate the precise aspects of a characteristic that will be described by the

set of measures subsequently developed. Without explicitly stated conceptual definitions, a

potential user of software measures must rely on their own intuitive understanding of the

described characteristic in order to validate the measures and later interpret the measured data.

If this understanding is different from that of the person who developed the measures, then the

measures may be incorrectly applied and interpreted. An explicit statement of sub-

characterisation and conceptual definitions enables a user to understand exactly what the

measures describe and from this understanding, correctly apply and interpret the set of

descriptive measures. Together with the natural language entity model, the conceptual

definitions describe the theoretical basis from which a set of descriptive measures is developed.

The remainder of this chapter demonstrates the conceptual definition stage for the development

of descriptive measures of C++ class and object modularity.

Chapter 3 - Conceptual Definition

 44

3.2. Conceptual definition of C++ class and object modularity

The conceptual definition of C++ class and object modularity is the first stage of the

development of measures to describe this software characteristic. All subsequent stages of the

measure development process are dependent on these definitions. In conceptually defining C++

class and object modularity, the final measurement instrument implementation stage is

considered in that, only measures that can be successfully implemented in the intended manner

will be developed. The measures of C++ class and object modularity that will be developed and

implemented here and in subsequent chapters of this thesis are intended to be implemented in a

software based measurement instrument that analyses the structure of C++ code and from this

extracts the measurement data. This means that only measures describing aspects of software

structure can be implemented and hence, in this thesis only sub-characteristics of modularity

related to software structure are conceptually defined.

3.2.1 Prerequisites

The theoretical basis of measure development selected as the prerequisite to conceptual

definition is Meyer's (1997, pp.46-53) five rules of object oriented software modularity. From

these rules of modularity, four major modularity sub-characteristics related to software

structure are identified, further sub-characterised and conceptually defined. This results in a set

of modularity sub-characteristics for which descriptive measures can be defined. A potential

user of the measures developed based on this theory, as expressed in the modularity conceptual

definitions, should satisfy themselves that the aspects of modularity they are interested in

describing are the same as those covered by the conceptual definitions.

3.2.2 Sub-characterisation of object-oriented software modularity

Modularity is considered a cluster type characteristic (Gasking 1960; Ellis 1966) for which a

single definition is insufficient (Meyer 1997, p.39) and so it must be sub-characterised before it

is conceptually defined. Meyer (1997) defines five rules of modularity. These five rules form

the basis of the modularity sub-characterisation and conceptual definition described in this

chapter. This is fundamental to the modularity descriptive measure development process as, in

combination with the natural language model, the modularity conceptual definition describes

the theoretical basis from which the measures are derived.

Chapter 3 - Conceptual Definition

 45

Meyers (1997 pp. 46-53) five rules of modularity state that a module with a high level of

modularity exhibits:

1. Direct mapping

2. Few interfaces

3. Small interfaces

4. Explicit interfaces

5. Information hiding

Before discussing Meyer’s (1997) descriptions of these modularity sub-characteristics, it is

important to note that, except for very simple characteristics, no sub-characterisation is going to

include all possible sub-characteristics that define a characteristic. The most important point in

identifying relevant sub-characteristics is to choose those that provide an adequate description

of a characteristic. The distinction between define and describe is an important one. It takes all

possible sub-characteristics associated with a particular characteristic to completely define it,

but only a selected sub-set of these to describe it (Ellis 1966). Meyer (1997) has selected the

direct mapping, few interfaces, small interfaces, explicit interfaces and information hiding sub-

characteristics of modularity to describe object oriented software modularity. In a similar

manner, Meyer (1997), in describing each of these modularity sub-characteristics, has

identified certain software features that he believes affect each sub-characteristic. Again, these

may not represent all the possible features affecting the sub-characteristic however they are the

ones Meyer (1997) believes to have a significant effect and so, these are the ones that measures,

developed according to Meyer’s (1997) modularity theory, should quantify.

Meyer’s rules of modularity can be divided into three distinct categories. The direct mapping

rule concerns the relationship between the software structure and the structure of the problem

domain. The information hiding rule concerns the internal structure of an individual module.

The few interfaces, explicit interfaces and small interfaces rules concern the connections from

individual modules to software elements external to themselves. In general terms, these last

three rules describe module external coupling.

The following sections examine each of Meyer’s modularity rules in detail.

Chapter 3 - Conceptual Definition

 46

3.2.2.1 Direct mapping

Meyer’s rule of Direct mapping states that:

“The modular structure devised in the process of building a software system should

remain compatible with any modular structure devised in the process of modelling the

problem domain” (Meyer 1997, p. 47)

To describe the extent to which a software system is structured in accordance with the rule of

direct mapping, both the modular structure of the problem domain and of the software system

itself needs to be measured and the two compared. In this thesis, the decision has been made to

exclude direct mapping from the measured description of class and object modularity to be

developed. There are two main reasons for this exclusion. Firstly, the modular structure of the

problem domain would be most likely to map to a high level view of the software with modules

comprised of several classes and objects. The aim in the thesis is to derive measures of

modularity for individual classes and objects rather than groups of them. Thus the direct

mapping rule is not directly applicable to the description of modularity to be developed in this

thesis. Secondly, to determine the extent to which a module complies with the direct mapping

rule, it is necessary to measure the modular structure of the problem domain document and the

software document. The aim in this thesis is to develop measures only for the description of

modularity that can be obtained from the software document alone. The implication of

excluding direct mapping from the modularity description obtained from the measures

developed in this thesis is that this description is incomplete according to Meyer’s (1997)

definition of modularity. A potential user of the measures should decide whether or not the

incomplete description is sufficient for their needs. Depending on the particular measurement

situation, the analysis and interpretation of the measured data may need to take into account the

fact that direct mapping is not described by the measures.

Chapter 3 - Conceptual Definition

 47

3.2.2.2 Information Hiding

Meyer’s rule of Information Hiding states that:

“The designer of every module must select a subset of the module’s properties as the

official information about the module, to be made available to authors of client

modules” (Meyer 1997, p. 51)

The rule of information hiding is important to the measurement of class and object modularity

as it is the only one of Meyer’s rules that can be applied to modules as individuals rather than

to groups of connected modules. According to Meyer (1997, p 51-53), a module with a high

level of information hiding, and thus high modularity, exhibits the following.

1. That “every module is known to the rest of the world … through some official

description, or public properties” … “The public properties of a module are also

known as the interface of the module” (Meyer 1997, p. 51).

2. This “description should only include some of the module’s properties. The rest should

remain non-public, or secret. (Meyer 1997, p. 51).

3. “We may picture a module supporting Information Hiding as an iceberg; only the tip –

the interface – is visible to the clients.” (Meyer 1997, p. 51).

4. “As a general guideline, the public part should include the specification of the

module’s functionality; anything that relates to the implementation of that functionality

should be kept secret, so as to preserve other modules from later reversals of

implementation decisions” (Meyer 1997, p. 52)

5. “Assume a module changes, but the changes apply only to its secret elements, leaving

the public ones untouched; then other modules who use it, called its clients, will not be

affected. The smaller the public part, the higher the chances that changes to the module

will indeed be in the secret part” (Meyer 1997, p51).

6. “Information hiding emphasizes the separation of function from implementation.”

(Meyer 1997, p. 52).

7. “the use of abstract data types as the source of our modules gives us a practical,

unambiguous guideline for applying information hiding in our designs” (Meyer 1997,

p145)

Chapter 3 - Conceptual Definition

 48

Points 1, 2 and 3 refer to the general structure of the module and the size of the public module

interface relative to the hidden part of the module. Points 4, 6 and 7 refer to what should be

included in each of the interface and hidden parts of the module. Point 5 refers to the size of the

module interface and also to the requirement that changes to the module should not affect the

operation of the interface.

At this stage, it is helpful to interpret these points to obtain a representation of a module with a

high level of information hiding. Figure 3-3 shows such an object oriented module.

Figure 3-3 Representation of an object oriented module with a high level of information hiding

In accordance with points 1, 2 and 3, the module consists of public interface and private hidden

parts where the interface is smaller than the hidden part. In accordance with points 4, 6 and 7,

the interface only contains methods while the hidden part contains data attributes and

implementation specific methods. Point 5 requires that the interface of a module be as stable as

Interface Methods

Hidden Attributes
Hidden Implementation
Methods

Chapter 3 - Conceptual Definition

 49

possible. Ideally, changes to the implementation of the module do not affect the operation of

the interface. In accordance with this, Figure 3-3 shows that interface methods do not directly

access the module data. Should it be necessary to alter the operation of the interface, then

ideally, changes are restricted to as few interface elements as possible. To this end, the arrows

on Figure 3-3 indicate that the separate interface methods only invoke hidden methods. This

means that changes to an interface method do not flow on to affect any other interface methods

that may directly, or indirectly via hidden methods, invoke the changed interface method.

To measure the degree of information hiding exhibited by a module, it is necessary to identify

the characteristics of the module that provide an adequate description of information hiding.

This is a subjective judgement on the part of the measure developer. Ideally, sufficient

characteristics are selected to provide a sufficiently detailed description without introducing

unnecessary information.

Looking a the points describing Meyer’s view of information hiding, it can be seen that points

1, 2, 3, 4, 5, 6 and 7 are all concerned with the independence of the interface from the

implementation details of the module. This can be characterised as the interface independence

of a module. The greater the interface independence of a module, the greater its level of

information hiding and hence, the greater its modularity. To simplify the analysis of the

measurement data, the decision has been made to define measures such that a value of zero

indicates high modularity and increasing values indicate decreasing modularity. To have this

property, it is the dependence rather than independence of the module interface that will be

described by the measures.

From the previous discussion, it can be inferred that there are two types of interface

dependence. The first is interface implementation dependence which describes the

dependence of the interface on implementation specific elements of the module. This can be

further sub-characterised as the size of the interface (Points 1, 2, 3 and 5) and as the presence

of implementation specific data elements exposed in the interface or data exposure (Points 4, 6

and 7). The second type of interface dependence is due to the interface element

interdependence (Point 5). The sub-characteristics written in bold, in accordance with Meyer’s

description of module information hiding, together describe the levels of interface dependence

of an object oriented module. At this stage of measure development, validation of this sub-

characterisation is by subjective assessment of the sub-characterisation against the theory from

which it was derived.

Chapter 3 - Conceptual Definition

 50

3.2.2.3 Few Interfaces

Meyer’s rule of few interfaces states that:

“The few interfaces rule restricts the overall number of communication channels between

modules in a software architecture: Every module should communicate with as few others as

possible.” (Meyer 1997, p. 47)

According to Meyer (1997, p 47- 48), a module with few interfaces, and thus high modularity,

exhibits the following.

1. “The few interfaces rule restricts the overall number of communication channels

between modules in a software architecture: Every module should communicate with as

few others as possible.”

2. “Communication may occur between modules in a variety of ways. Modules may call

each other (if they are procedures), share data structures etc. The Few Interfaces rule

limits the number of such connections.” (Meyer 1997, p. 47)

3. “… if a system is composed of n modules, then the number of intermodule connections

should remain much closer to the minimum, n-1 … than to the maximum n(n-1).”

(Meyer 1997, p. 47)

Point 1 identifies the communication channels between modules as establishing intermodule

interfaces. Point 2 provides an open ended example of types of communication between

modules that establishes these interfaces and further describes them as connections. These

connections can be direct, such as procedure calls, or indirect, such as shared data structures.

The few interfaces rule is not concerned with the degree of connection between modules

established by a communication channel, but rather the existence of a communication channel

or connection between modules. The explicit interfaces (Meyer 1997, p50) and small interfaces

(Meyer 1997, pp. 48-50) rules describe the degree of connection between modules whereas the

few interfaces rule is concerned only with the existence of the communication channel. Point 3

states that a module with high modularity has few connections with other modules.

In developing measures of modularity in the thesis, the few interfaces rule will be interpreted as

meaning that a module with high modularity has few connections or relationships with other

modules along which communication can occur. This describes the potential for

Chapter 3 - Conceptual Definition

 51

communication rather than the degree communication between modules. It provides a high

level description of module connections. Adherence to the few interfaces rule will be described

by measures quantifying the number of external relationships a module has. The fewer the

number of such external relationships, the greater the modularity of a module. The term

relationship has been selected rather than the term communication used by Meyer (Meyer 1997,

p. 47) because communication implies some form of information exchange where as the term

relationship only implies some sort of connection.

Extending the graphical representation of a module with high modularity, Figure 3-4 represents

external relationships from module A to module B. These relationships are like roads between

the modules. The external relationship sub-characteristic of modularity describes only the

existence of such roads and the general form they take. It does not describe whether or not

these roads are used, how difficult it is to travel along them or where their start or end points

are.

Figure 3-4 Representation of object oriented module external relationships

Module A Module B

Chapter 3 - Conceptual Definition

 52

3.2.2.4 Explicit Interfaces

Meyer’s rule of explicit interfaces states that:

“Whenever two modules A and B communicate, this must be obvious from the text of A or B or

both.” (Meyer 1997, p. 50)

According to Meyer (1997, p 50), a module with few interfaces, and thus high modularity,

exhibits the following.

1. “Whenever two modules A and B communicate, this must be obvious from the text of

A or B or both.” (Meyer 1997, p. 50)

2. “… if you need to decompose a module into several sub modules or compose it with

other modules, any outside connection should be clearly visible” (Meyer 1997, p. 50)

3. “… it should be easy to find out what elements a potential change may affect” (Meyer

1997, p. 50)

4. “… how can you understand A by itself if B can influence its behaviour in some

devious way?” (Meyer 1997, p. 50)

5. “… there is more to intermodule coupling than procedure call; data sharing, in

particular, is a source of indirect coupling.” (Meyer 1997, p. 50)

In the previous discussion of the few interfaces rule, interfaces between modules were

determined to exist when relationships were established that created a communication channel

between the modules. The explicit interfaces rule further refines on the information provided

by the few interfaces rule by describing the type of interface through which these connections

should take place. From Point 1, the explicit interfaces rule requires that the existence of these

relationships be able to be discerned from the text of the modules. The measures in this thesis

are intended to describe aspects of modularity that can be automatically measured from C++

source code. This means that the text referred to in the definition of the explicit interfaces rule

is interpreted to mean the C++ source code that declares and implements the class and object

modules. Any accompanying comments text will not be measured. Points 2, 3, 4 and 5 refer to

the type of connections between modules that affect modularity. Outside connections should be

clearly visible (Point 2), easy to discern (Point 3), not devious (Point 4) and not indirect (Point

5). For a high level of modularity, the connections between modules should have a minimum

level of obscurity.

Chapter 3 - Conceptual Definition

 53

From Points 1 and 2, modularity is reduced when the connections between modules are due to

unstated relationships. From Point 4, modularity is reduced when the connections between

modules are devious or non-standard connections. Devious connections may be ones that are

due to an unexpected relationship between modules, or may take place via non-standard

interfaces. From Point 5, indirect or distant connections between modules will increase

connection obscurity. From Point 3, the connection between modules should be stable, and not

vary thus modularity is maximised when the number of variable connections are minimised.

Extending the graphical representation of module external relationships, Figure 3-5 represents

connection obscurity from module A to module B. Connection obscurity describes the type of

roads between modules. They may be straight or curved, direct or indirect via a software

element such as a shared global variable. They may start or end at any point within the modules

and it may be difficult to see where they go at all. The connection obscurity sub-characteristic

of modularity does not describe whether or not these roads are used.

Figure 3-5 Representation of object oriented module connection obscurity

Global Variable

Module A Module B

Chapter 3 - Conceptual Definition

 54

3.2.2.5 Small Interfaces

According to Meyer’s rule of small interfaces

1. “If two modules communicate, they should exchange as little information as possible.”

(Meyer 1997, p. 48)

2. “The Small Interfaces or “Weak Coupling” rule relates to the size of intermodule

connections rather than to their number.” (Meyer 1997, p. 48)

3. “… the channels of communication between modules must be of limited bandwidth.”

(Meyer 1997, p. 48)

4. Shared data between modules is identified as a way in which the size of the interface

between modules is increased. (Meyer 1997, pp 48-49)

Modularity is maximised when the size of a module’s interface is minimised by restricting the

amount of information flowing across the interface. As discussed in the Few Interfaces rule,

communication between modules takes place via communication channels. As Point 1 above

states, the small interfaces rule is not concerned with the capacity of these communication

channels but rather with the amount of information passed along them. Modules communicate

by sharing data and services with each other. The modularity of a module is reduced when it

depends on another module for some of the services or data it needs to perform its own tasks

correctly. Thus, one way that interface size can be characterised is as the degree to which a

module is dependent on other modules for services or data. In object oriented software, the

operation of a module may depend on services invoked from other modules or on interface

elements inherited from other modules. The state of a module, stored in the data elements it

reads, may also depend on external variables read by the module or on external functions

writing values to these data elements.

Extending the graphical representation of module connection obscurity, Figure 3-6 represents

dependency of module A on module B. in simple terms, dependency describes the extent to

which a module makes use of and is dependent on the road connections to other modules in

order that it can correctly accomplish its own operations. A module with high modularity is a

complete unit, able to perform its required tasks with no reference to external software

elements. In practice, such a module does not exist as modules need to connect to other

modules to form a functioning software system. These connections can create dependencies

between modules. Not all connections increase a module’s dependency. For example, a module

may write a value to a global variable but never read from it. The correct functioning of the

Chapter 3 - Conceptual Definition

 55

module is not dependent on the value stored in the global variable. Another module may read

from this same global variable but never write to it. This second module is dependent on the

first module for the correct maintenance of the global variable. The second module is thus

dependent on the first. It may also be the case that a connection exists between modules that

has the potential to reduce the modularity of one or both modules however doesn’t because

neither module uses this connection. For example, in Figure 3-6, a communication channel is

shown from the hidden methods of Module A to the hidden attributes of Module B. The

diagram indicates that neither module uses this channel and so, it does not produce a

dependency between them.

Figure 3-6 Representation of object oriented module dependency

Figures 3-3, 3-4, 3-5 and 3-6 are simplified representations of object oriented modularity that

describe rather than define the modularity of class and object modules. Interpreting Meyer’s

(1997) rules of modularity leads to the identification of modularity sub-characteristics that

together provide a description of the levels of modularity present in an object oriented class or

Global Variable

Module A Module B

Intermodule
communication
increasing interface
size

Chapter 3 - Conceptual Definition

 56

object module. Figure 3-7 summarises the characterisation and sub-characterisation of

modularity according to Meyer’s five rules (Meyer 1997, pp. 46-53). Following this, these

characteristics and sub-characteristics are conceptually defined.

Chapter 3 - Conceptual Definition

 57

Figure 3-7 Modularity sub-characterisation based on Meyer's (1997) rules of modularity

Meyer's Rules

MODULARITY ↑↑↑↑

information hiding ↑↑↑↑

few interfaces ↑↑↑↑

explicit interfaces ↑↑↑↑

small interfaces ↑↑↑↑

Modularity
Sub-characterisation

direct mapping ↑↑↑↑

interface dependence ↓↓↓↓ external relationships ↓↓↓↓ connection obscurity ↓↓↓↓

no
n-

st
an

da
rd

co

nn
ec

tio
n

 ↓↓ ↓↓

va
ri

ab
le

 c
on

ne
ct

io
n

↓↓ ↓↓

un
st

at
ed

 re
la

tio
ns

hi
p

 ↓↓ ↓↓

di
st

an
t c

on
ne

ct
io

n
 ↓↓ ↓↓

un
ex

pe
ct

ed
 re

la
tio

ns
hi

p
 ↓↓ ↓↓

co
nn

ec
tio

n
vi

a
no

n-
st

an
da

rd
 in

te
rf

ac
e

 ↓↓ ↓↓

dependency ↓↓↓↓

in
te

rf
ac

e

im
pl

em
en

ta
tio

n
de

pe
nd

en
ce

 ↓↓ ↓↓

in
te

rf
ac

e
 e

le
m

en
t i

nt
er

de
pe

nd
en

ce
 ↓↓ ↓↓

in
te

rf
ac

e
 s

iz
e

 ↓↓ ↓↓

da
ta

 e
xp

os
ur

e
↓↓ ↓↓

w
ith

in
 s

ys
te

m
 ↓↓ ↓↓

ou
ts

id
e

sy
st

em
 ↓↓ ↓↓

st

at
e

de
pe

nd
en

cy
 ↓↓ ↓↓

se
rv

ic
e

in
vo

ca
tio

n
 ↓↓ ↓↓

in
te

rf
ac

e
pr

ov
is

io
n

 ↓↓ ↓↓

ex
te

rn
al

 v
ar

ia
bl

e
re

ad
in

g
 ↓↓ ↓↓

ex
te

rn
al

 fu
nc

tio
n

w
ri

tin
g

 ↓↓ ↓↓

Chapter 3 - Conceptual Definition

 58

Figure 3-7 illustrates Meyer's (1997) rules of modularity and the associated modularity sub-

characteristics selected to describe them. The extent to which a module complies with the

• information hiding rule is described by the interface dependence sub-characteristic of

modularity.

• few interfaces rule is described by the external relationships sub-characteristic of

modularity.

• explicit interfaces rule is described by the connection obscurity sub-characteristic of

modularity.

• small interfaces rule is described by the dependency sub-characteristic of modularity.

The direct mapping rule is not included in the sub-characterisation and so will not be described

by the measures developed in this thesis. The reason for this omission is that, while the

information required to describe compliance with the few interfaces, small interfaces, explicit

interfaces and information hiding rules can be collected from the software system alone,

evaluating direct mapping requires information from the software system and the problem

domain. The measures developed within this thesis are intended to be collected from the

software system source code alone and so, compliance with the direct mapping rule cannot be

measured. Omitting the direct mapping rule from the sub-characterisation reduces the detail of

the description that is obtained from measures developed from it. This reduction of detail

should be considered before the measures are applied to a task. If it is important to describe

direct mapping then new measures will need to be defined to supplement the existing set.

The arrows in Figure 3-7 indicate that increasing (↑↑↑↑) levels of direct mapping, few interfaces,

small interfaces, explicit interfaces and information hiding increase modularity while

decreasing (↓↓↓↓) levels of the selected modularity sub-characteristics result in increased

modularity. For example, to increase modularity, Meyer advocates that a software system have

increasing levels of modules with few interfaces (Meyer 1997, p. 47), indicated by the up arrow

(↑↑↑↑) in the few interfaces box in Figure 3-7. To achieve this increase in modules with few

interfaces, individual modules should have minimal levels of external relationships, indicated

by a down arrow (↓↓↓↓) in the external relationships box in Figure 3-7. Interface dependence,

external relationships, connection obscurity and dependency sub-characteristics were

specifically selected to describe modularity because they have the property that a value of zero

indicates maximum modularity and values above zero indicate decreasing modularity. This

property will ultimately simplify the data analysis and interpretation phases of measurement.

Chapter 3 - Conceptual Definition

 59

The lowest level of sub-characteristics in Figure 3-7 represents the most refined level of sub-

characterisation. These sub-characteristics are conceptually defined and measures will be

developed to directly describe them. Descriptions of the intermediate sub-characteristics of

state dependency, non-standard connection and interface implementation dependence are

derived from the analysis of their associated immediate sub-characteristics. Description of the

highest level sub-characteristic of external relationships, dependency, connection obscurity and

interface dependence sub-characteristics must be similarly derived from their associated

immediate low level and intermediate level sub-characteristics.

The following section describes the conceptual definitions associated with the modularity sub-

characterisation illustrated in Figure 3-7.

3.2.3 Conceptual definition of modularity sub-characteristics

An important point to note before discussing the conceptual definition of modularity is that

high levels of modularity sub-characteristics do not necessarily equate to high levels of

software quality. For example, a module with no interface elements at all is considered to have

a very high level of the information hiding sub-characteristic of modularity since all of its

elements are hidden. Such high modularity does not equate to high quality because such a

module cannot normally be accessed by other elements within a software system and so is not

very useful. When reading the conceptual definitions of the modularity sub-characteristics, it is

important to bear in mind that they are only intended to describe modularity, and not other

aspects of software quality.

As a cluster type characteristic (Gasking 1960; Ellis 1966), object oriented software modularity

is conceptually defined by sub-characteristics.

Modularity -

The degree to which a module exhibits direct mapping, few interfaces, small interfaces,

explicit interfaces and information hiding. (Meyer 1997, p.46)

The following conceptual definitions define the modularity sub-characteristics illustrated in

Figure 3-7 in relatively simple terms that a potential user can understand. These conceptual

definitions are derived from Meyer's (1997, pp.46-53) explanation of his rules of object

oriented software modularity.

Chapter 3 - Conceptual Definition

 60

3.2.3.1 Interface dependence sub-characteristic

The interface dependence sub-characteristic of modularity describes the degree to which an

object oriented class or object module complies with the rule of information hiding.

Interface Dependence

The degree to which the module interface elements are

dependent on each other and on the implementation specific

details of the module.

Interface dependence is sub-characterised as interface element

interdependence and interface implementation dependence.

• Interface Element Interdependence

The dependency producing connections between interface

elements within the same module.

• Interface Implementation Dependence

The dependence of the interface elements of a module on

the implementation specific elements of the same module.

Interface implementation dependence is further sub-

characterised as interface size and data exposure.

• Interface size

The degree to which implementation specific code is

included in the module's interface.

• Data exposure -

The degree to which the module data is revealed to the

module interface.

Figure 3-8 Interface dependence sub-characterisation and conceptual definition

Meyer's (1997, pp.51-53) rule of information hiding dictates that to optimise information

hiding, a module should have a small, implementation independent interface through which a

client may access the services of the module. These services should be implemented within the

larger, hidden, implementation dependent part of the module. A module is likened to an iceberg

where the tip is the implementation independent interface and the majority of the iceberg,

in
te

rf
ac

e

im
pl

em
en

ta
tio

n
de

pe
nd

en
ce

 ↓↓ ↓↓

in
te

rf
ac

e
 e

le
m

en
t i

nt
er

de
pe

nd
en

ce
 ↓↓ ↓↓

in
te

rf
ac

e
 s

iz
e

 ↓↓ ↓↓

da
ta

 e
xp

os
ur

e
↓↓ ↓↓

interface dependence ↓↓↓↓

Chapter 3 - Conceptual Definition

 61

containing the implementation dependent details, is hidden below the water (Meyer 1997,

p.51). A primary rationale of information hiding is that changes to the implementation of a

module should not affect the operation of the module's interface since changes here may impact

on the clients of the module (Meyer 1997, p.51). This can be supported by ensuring that the

module interface elements operate as independently as possible from the implementation

details of the module, and from each other. This last requirement is needed to ensure that

should a change to an interface element be necessary, this change does not flow on to other

interface elements that directly or indirectly depend on it. From this view of information hiding,

the following interface dependence sub-characteristics are derived.

Interface element interdependence refers to the connections between the interface elements of

the module. If one interface element accesses another, then a change to the accessed element

could affect the accessing element and hence have a greater impact on the module's interface

and possibly on clients that use it. If the interface elements are not directly or indirectly

dependent on each other, then any changes made directly to one interface element will not

cause changes to propagate to any other interface elements that depend on it.

Interface implementation dependence describes the extent to which the interface elements of a

module are dependent on the implementation specific details of the module. Where the

interface elements are strongly dependent on the implementation details, changes to these

details may cause more than minimal changes to the interface elements that rely on them.

Interface implementation dependence is further sub-characterised as interface size and data

exposure.

Interface size describes an aspect of interface implementation dependence in that the larger the

interface, the greater the chance that it contains implementation dependent details. This idea

comes from the previously described analogy of a module as an iceberg (Meyer 1997, p.51).

Data exposure is another way that the module interface can be dependent on the

implementation details. Data elements are considered to be highly implementation specific. As

such, they should be contained within the hidden section of the module rather that appearing in

the interface (Meyer 1997, p.18). Data exposure is also increased when the interface elements

directly access data elements. The implementation dependence of the interface is increased

when module data is revealed to the interface.

Chapter 3 - Conceptual Definition

 62

3.2.3.2 External relationships sub-characteristic

The external relationships sub-characteristic of modularity describes the degree to which an

object oriented class or object module complies with the rule of few interfaces.

External Relationships

The degree to which a module has relationships with

elements external to itself.

External Relationships is sub-characterised as relationships within

the system and relationships outside the system.

• Within the system

The relationships between a module and elements external

to the module but still within the given software system.

• Outside the system

The relationships between a module and elements external

to the module and outside the given software system.

Figure 3-9 External relationships sub-characterisation and conceptual definition

The few interfaces rule dictates that a module with optimal modularity communicates with as

few external elements as possible (Meyer 1997, p.47). Meyer uses the term communicate to

mean a type of connection between modules that establishes a relationship between them. This

need not be a direct connection since he gives an example of two modules related to each other

via a shared data structure (Meyer 1997, p.47). In this thesis, adherence to the few interfaces

rule will be determined by describing the relationships between a module and elements

external to that module. The term relationship has been selected rather than the term

communication because communication implies some form of information exchange where as

the term relationship only implies some sort of connection. From this view of the few interfaces

rule, the following external relationships sub-characteristics are derived.

external relationships ↓↓↓↓
w

ith
in

 s
ys

te
m

 ↓↓ ↓↓

ou
ts

id
e

sy
st

em
 ↓↓ ↓↓

Chapter 3 - Conceptual Definition

 63

External relationships within the system occur between a module and an external element that

is within the measured software system. The relationship can be determined from examination

of the module and any system elements that participate in the relationship. For example, the

ancestor classes of a child class can be determined when all these classes are within the

measured software system.

External relationships outside the system occur between a module and an external element that

is outside the measured software system. Often the full relationship cannot be determined from

examination of the module and any system elements that participate in the relationship. For

example, the full set of ancestor classes of a child class cannot be determined when one or more

of these ancestor classes lie outside the measured software system. The measures developed in

this thesis are intended to be collected from the source code within an identified software

system. The relationships between a system module and elements outside the system cannot be

completely measured. For this reason, measures will not be developed to describe external

relationships outside the system sub-characteristic of modularity. A user of the measures should

ensure that the measured software system contains all the elements they consider important.

Chapter 3 - Conceptual Definition

 64

3.2.3.3 Connection obscurity sub-characteristic

The connection obscurity sub-characteristic of modularity describes the degree to which an

object oriented class or object module complies with the rule of explicit interfaces.

Connection Obscurity

The degree to which the connection from a module to an

external element is unclear after examination of the module

or the external element or both.

Connection obscurity is sub-characterised as variable connection,

unstated relationship, distant connection and non-standard

connection.

• Variable connection

The nature of the connection from a module to external

elements is not fixed.

• Unstated relationship

The connection from a module to an external element is not

explicitly stated within the module or the external element

or both.

• Distant connection

The connection is between a module and an external

element with a distant, indirect relationship.

• Non-standard connection

The connection from a module to an external element is

unexpected and/or takes place via non-standard interfaces.

Non-standard connection is further sub-characterised as unexpected

relationship and connection via non-standard interface.

• Unexpected relationship

The relationship from a module to an external element is an

unexpected one that users would not commonly look for and

recognise.

• Connection via non-standard interface

Connection between a module and an external element

takes place outside the standard module interface.

Figure 3-10 Connection Obscurity sub-characterisation and conceptual definition

connection obscurity ↓↓↓↓

no
n-

st
an

da
rd

co

nn
ec

tio
n

 ↓↓ ↓↓

va
ri

ab
le

 c
on

ne
ct

io
n

↓↓ ↓↓

un
st

at
ed

 re
la

tio
ns

hi
p

 ↓↓ ↓↓

di
st

an
t c

on
ne

ct
io

n
 ↓↓ ↓↓

un
ex

pe
ct

ed
 re

la
tio

ns
hi

p
 ↓↓ ↓↓

co
nn

ec
tio

n
vi

a
no

n-
st

an
da

rd
 in

te
rf

ac
e

 ↓↓ ↓↓

Chapter 3 - Conceptual Definition

 65

The explicit interface rule of modularity states that "Whenever two modules A and B

communicate, this must be obvious from the text of A or B or both." (Meyer 1997, p.50). The

term explicit implies that the connection between the modules must be clearly stated in the text

of the modules. The situation where two modules share a global variable is a case of a

connection or interface between modules that is not explicitly stated (Meyer 1997, p.50).

Another example of a non-explicit interface is a child class accessing a distant ancestor through

its immediate parents. In this case, the interface between the child and the distant ancestor is

not explicitly stated in either the child or distant ancestor class modules. The sub-characteristic

derived from the explicit interfaces rule is connection obscurity. Connection obscurity

describes the degree to which the connections of a module are via obscure rather than explicit

interfaces. From this view of the explicit interfaces rule, the following connection obscurity

sub-characteristics are derived.

Variable connection describes the degree to which the connection between a module and

external elements varies. The nature of the connection may not be resolved until the module is

used within a software system, or until run-time, or it may vary during run-time. For example,

in C++, a class can have an associated pointer to an object rather than an object instance

declared as a member element. Depending on the software implementation, the number of

objects that this pointer can refer to may vary during program execution from none to an

unlimited number, thus obscuring the precise nature of the connection.

Unstated relationship refers to relationships of a module that are not explicitly defined. A

connection between modules can be clearly discerned where a statement of the relationship

between them is part of one module, or the other or both (Meyer 1997, p. 50). An example of a

stated relationship is an object declared within a class. It is clear from the class declaration that

it will be able to access the object's public interface elements. An example of an unstated

relationship between modules is where two or more classes share access to a common global

variable. Although the classes are connected via the global variable, the connection is not stated

within either the class or global variable declarations.

Distant connection refers to non-immediate connections between modules. For example, if an

object declared to be an immediate associated member of a class itself has a second associated

object appearing in its interface, then the class is able to directly access the second object even

though it does not have an immediate relationship with it. This represents a distant type of

connection and contributes to connection obscurity.

Chapter 3 - Conceptual Definition

 66

Non-standard connection described the degree to which the connection from a module to

external elements is of an unexpected, uncommon or unusual type rather than of the standard,

expected type. The non-standard connection sub-characteristic is further sub-characterised as

unexpected relationship and connection via non-standard interface.

Unexpected relationship describes whether or not module relationships are of an unexpected

non-standard nature. For example, an inheritance relationship between object oriented classes

is a standard expected one however, the friend type relationship between classes of objects is

not standard even though it is a feature of the C++ language.

Connection via non-standard interface is concerned with whether or not the connections of a

module are via standard module interfaces. The module interfaces should be designed to protect

their module and to provide a stable point of access to external elements. Connection via non-

standard interface increases connection obscurity by creating a relationship between modules

that is different to what would normally be expected. For example, in C++, a client object can

normally only access the public and protected elements of a supplier object. If however the

class from which the client object is instantiated is a friend to the supplier's class, the client

object can access the normally inaccessible protected and private supplier elements.

Chapter 3 - Conceptual Definition

 67

3.2.3.4 Dependency sub-characteristic

The dependency sub-characteristic of modularity describes the degree to which an object

oriented class or object module complies with the rule of small interfaces.

Dependency

The degree to which a module depends on external elements

in order that it can perform its own functions correctly.

Dependency is sub-characterised as service invocation, interface

provision and state dependency.

• Service invocation

The dependence of a module on services provided by

elements external to itself.

• Interface provision

The dependency of a module on external modules to provide

some or all of it's interface elements.

• State dependency

The degree to which the correct preservation of a module's

state is dependent on external elements.

State dependency is further sub-characterised as external variable

reading and external function writing.

• External variable reading

The degree to which the module's state is dependent on

values contained in external variables.

• External function writing

The degree to which the module's state is dependent on

values written, by external functions, to attributes or

external variables from which the module directly reads.

Figure 3-11 Dependency sub-characterisation and conceptual definition

dependency ↓↓↓↓

st
at

e
de

pe
nd

en
cy

 ↓↓ ↓↓

se
rv

ic
e

in
vo

ca
tio

n
 ↓↓ ↓↓

in
te

rf
ac

e
pr

ov
is

io
n

 ↓↓ ↓↓

ex
te

rn
al

 v
ar

ia
bl

e
re

ad
in

g
 ↓↓ ↓↓

ex
te

rn
al

 fu
nc

tio
n

w
ri

tin
g

 ↓↓ ↓↓

Chapter 3 - Conceptual Definition

 68

The small interfaces rule of modularity states that "If two modules communicate, they should

exchange as little information as possible." (Meyer 1997, p.48). This means that a module with

high modularity operates as independently as possible of information coming from external

elements. The small interfaces rule is described by the degree to which a module is dependent

on information from external elements.

Service invocation describes the dependency of a module on services provided by elements

external to the module. The module accesses these services by invoking class or object

methods, or by invoking global functions. While a degree of service invocation is necessary to

connect software modules into a functioning system, higher levels of modularity are achieved

when module dependence on external service invocations is minimised.

Interface provision refers to a module's dependence on other modules to provide some or all of

its interface elements. While such dependence may be necessary to promote other desirable

software characteristics such as compatibility, it leads to reduced modularity in the dependent

module because it requires the presence of another module or modules. An example of interface

dependency is a child class with some inherited elements appearing directly in its public

interface. The child class is dependent on the parent to provide interface elements to objects

instantiated from the child.

State dependency describes the dependency of a module on external elements to ensure that the

attributes and variables it reads from are maintained within a valid range. A module with high

modularity reads values only from its own attributes and it is fully responsible for maintaining

these values within a valid range. A module with reduced modularity directly reads values from

attributes or global variables that are written to by other modules. It no longer has direct control

over the validity of these values. The state dependency sub-characteristic is further sub-

characterised as external variable reading and external function writing.

External variable reading describes the case of a module directly reading a value from an

external variable. This could be a global variable or an attribute of another module. In this

situation, the module is depending on the external attribute to be set at a value compatible with

the modules operation.

External function writing describes the case of a function external to the module directly

writing

Chapter 3 - Conceptual Definition

 69

a value to one of the module's internal attributes or writing a value to an external attribute or

variable that the module directly reads from. In this situation, the module is dependent on the

external function to ensure that one of the attributes it depends on is set to a valid value.

3.2.4 Validation of the sub-characterisation

The issue that validation of the sub-characterisation seeks to address is whether or not the

selected sub-characteristics combine to provide an adequate description of modularity. Since

the final modularity description obtained is based on this sub-characterisation, it is important to

be satisfied that the sub-characterisation is adequate. At this stage of measure development, the

validation of the sub-characterisation is by examination of the selected theory regarding the

main characteristic of interest and the sub-characterisation and conceptual definitions arising

from it. A subjective decision is then made regarding the extent to which the sub-

characterisation identifies the aspects of the characteristic highlighted in the theory as having a

significant effect on the levels of characteristic present in the software. In performing this

assessment, both the sub-characteristic name and conceptual definition should be considered.

Any ambiguities in the conceptual definitions should be corrected so that it is clear which

particular aspects of the software are to be described by the developed measures.

3.3. Conclusion

Conceptual definition of the characteristic to be described by the measures is the first stage of

the systematic measure development process. For a cluster type characteristic, the conceptual

definition stage includes sub-characterisation of the main characteristic and the conceptual

definition of each selected sub-characteristic. Prerequisite to sub-characterisation and

conceptual definition is a theoretical understanding of the ways in which the characteristic to be

described by the measures is manifest in the entity to be measured. The sub-characteristic and

conceptual definition products of the conceptual definition stage are prerequisites to the entity

modelling stage of descriptive measure development.

The aim of the systematic measure development process is to produce a set of measures that

adequately describe the characteristic of interest. The conceptual definitions are an important

stage of the measure development process because they communicate precisely the aspects of

the software that these measures are intended to describe. The degree of detail with which a

characteristic is conceptually defined will influence the degree of detail obtained from the

description provided by the measures subsequently developed based on these conceptual

Chapter 3 - Conceptual Definition

 70

definitions. The conceptual definitions are also important to the eventual user of the measures

because they convey the aspects of the software described by the set of measures, allowing the

user to judge whether or not the measures are appropriate to their intended application. Should

the user decide to proceed with measurement, the conceptual definitions also guide the analysis

and interpretation of the measured data.

In this chapter, the process of software characteristic conceptual definition has been

demonstrated for the characteristic of modularity of C++ class and object entities. Meyer's

(1997) rules of object oriented software modularity provided the prerequisite theoretical basis

of C++ class and object modularity conceptual definition. Modularity is a cluster characteristic

(Gasking 1960; Ellis 1966) and so, the products of the demonstrated conceptual definition stage

are a set of object oriented software modularity sub-characteristic with associated conceptual

definitions. These are themselves prerequisite to the entity modelling stage of descriptive

measure development presented in Chapter 4.

Chapter 4 - Entity Modelling

 71

4. Entity Modelling

This chapter describes the entity modelling

stage of software descriptive measure

development. This stage corresponds to the

shaded boxes in the Figure 4-1

diagrammatic representation of the measure

development process. Section 4.1 of this

chapter describes the natural language and

mathematical entity modelling steps of

entity modelling and section 4.2

demonstrates modelling of C++ class and

object modularity, based on the sub-

characterisation and conceptual definitions

developed in section 3.2 of Chapter 3.

Figure 4-1 Entity modelling stage of the
measure development process

4.1. Stage 2 of measure development process - entity modelling

The entity modelling stage of the systematic measure development process defines natural

language and mathematical models of the software entity to be measured. Entity models

together with conceptual definitions describe the theoretical basis from which descriptive

measures are developed. Definition of the natural language entity model is an essential part of

the measure development process while definition of an associated mathematical model is

optional. Entity modelling aims to communicate an understanding of the characteristic to be

described by the measures (Fenton 1994, p199). This understanding is intended to "reflect the

specific viewpoint" (Fenton 1994, p199) from which the measures were developed. To

effectively communicate an understanding, the natural language and mathematical entity

models defined in this stage of the measure development process should contain sufficient

detail to adequately describe the software while at the same time excluding unnecessary

information.

Mathematical
Entity Model

Natural Language
Entity Model

Entity Modelling

Operational Definition

Conceptual Definition

Measurement
Instrument
Implementation

Chapter 4 - Entity Modelling

 72

Figure 4-2 Natural language and mathematical entity models express the theoretical basis of
descriptive measures

Figure 4-2 is an elaboration of the Figure 1-1 representation of the relationships between

entities, characteristics, features and descriptive measures. Figure 4-2 shows that the natural

language entity model expresses the theory that relates software features to software

characteristics by identifying and describing the ways in which features of the software affect

the level of characteristic present. When the characteristic of interest is a cluster (Gasking

1960; Ellis 1966, p34) that has been sub-characterised in the conceptual definition stage of

measure development, the natural language model directly identifies software features affecting

the levels of only the most refined sub-characteristics. The natural language entity model is

important because it links the tangible features of the entity, quantified by the descriptive

measures, to the entity characteristic of interest. This information facilitates the appropriate

application of the measures as well as the subsequent analysis and interpretation of measured

data. The identification of the features that affect the characteristic or sub-characteristics is

guided by the selected theoretical basis of the measure development process. An inability to

identify such features may indicate that a greater theoretical understanding of the characteristic

or sub-characteristic is needed, in which case, further investigation may need to be undertaken

to improve the theoretical basis of the measure development. Another possibility is that the

characteristic or sub-characteristic is too broadly defined to allow the identification of the

exhibits possesses

Entity

Characteristic Features

quantify

Descriptive Measures

describe

theory suggests
affects level of

Natural Language
entity model

Mathematical
entity model

Chapter 4 - Entity Modelling

 73

particular features that affect it. In this case, the conceptual definition stage may need to be

reiterated and the characteristic or sub-characteristic either more precisely defined or further

sub-characterised and redefined.

The mathematical entity model is developed from the natural language entity model and

supplements it by describing precisely the software features included in the natural language

model. As Figure 4-2 shows, the mathematical model does not link these features to the

characteristic and sub-characteristics of interest and so cannot be used as an entity model on its

own. The advantage of having a mathematical model is that it provides an unambiguous

description of the software and, if the type of model selected is suitable, the descriptive

measures of the characteristic of interest can be similarly unambiguously defined in terms of

the mathematical model. When selecting the type of mathematical model to use, it is important

"to choose the model that most clearly emphasises the attribute(s) in question." (Fenton 1990,

p178) Ideally, the mathematical model is able to describe all the features of the natural

language model software description. If the mathematical model is unable to describe all the

natural language model features, then the measures defined in terms of the mathematical model

will also be unable to describe these features. In this situation it may be necessary to describe

these omitted features with another type of mathematical model and define measures in terms

of this new model. Alternatively, measures of the omitted features can be defined in natural

language terms, taking care that their definition is unambiguous. A final alternative is to define

no measures of the omitted features, recognising that this aspect of the natural language model

will not be included in the software description obtained from the final set of measures.

Mathematical entity models have been used by several software measure development projects

to provide a basis for measure definition. Briand, Daly and Wust (1999a) define a mathematical

model to provide "a standardized terminology and formalism for expressing measures … which

ensures that all measures using it are expressed in a fully consistent and operational manner."

This model is then used to define measures of object oriented software coupling. (Briand, Daly

& Wust 1999a, p 91). Bieman and Kang (1995) define a mathematical model of object oriented

software and use it to define measures of cohesion. Abreu and Carapuca (1994) define a

mathematical model of object oriented software with which to define measures of software

quality. These mathematical models provide a formal expression of associated natural language

models of the software and are intended to support the unambiguous definition of software

measures.

Chapter 4 - Entity Modelling

 74

The following sections 4.1.1, 4.1.2 and 4.1.3 describe the entity modelling stage of measure

development in terms of its prerequisites, performance and products.

4.1.1 Prerequisites to the entity modelling stage

Prerequisites to the entity modelling stage are the conceptual definition of the characteristic to

be described by the developed measures and an associated theoretical basis describing the

features of the software that affect the level of characteristic present in the software. If the

characteristic is a cluster (Gasking 1960; Ellis 1966, p34), then the conceptual definition stage

will have produced a sub-characterisation and a set of conceptual definitions of these sub-

characteristics. In this case, the most refined sub-characteristics with their associated

conceptual definitions are prerequisite to the entity modelling stage. The entity modelling stage

prerequisite theoretical basis must describe, for each of these sub-characteristics, features of the

software that affect the level of sub-characteristic present.

4.1.2 Performance of the entity modelling stage

Once the prerequisite requirements have been met, the software entity models can be defined.

Figure 4-3 describes the process of natural language entity modelling for a cluster (Ellis 1966,

p34) type characteristic for which a set of sub-characteristics have been identified in the

conceptual definition stage. The same process is applicable to natural language entity

modelling of a non-cluster characteristic by considering the characteristic to be its own sub-

characteristic. Each point of the natural language model should identify a specific feature of the

software and describes how this feature affects the level of characteristic or sub-characteristic

present. If the characteristic of interest is a cluster, then it may be practical to define separate

natural language and mathematical models for each identified sub-characteristic.

A mathematical model can be defined based on the information contained within the natural

language model. Firstly, the various features identified in the natural language model must be

identified. These features may be components of the software or relationships between

components. The mathematical model type should be selected on the basis that it is able to

describe these features. More than one type of model may be needed to describe different

software features, and some features may not be able to be described by any mathematical

model.

Chapter 4 - Entity Modelling

 75

Figure 4-3 Process of natural language modelling of a software entity

4.1.3 Products of the entity modelling stage

The products of the entity modelling stage are a natural language model and an optional

mathematical model of the software, describing the features of the software affecting the levels

of characteristic present. If a mathematical model has been defined to describe the features

identified in the natural language model then the validity of the description of the natural

language model that it provides should be assessed.

Select a sub-characteristic from the set of
most refined sub-characteristics identified

in the conceptual definition stage

Identify a software feature that affects the
level of sub-characteristic present

Describe how the feature affects the level
of sub-characteristic present

YES

Have all
sub-characteristic's

features been
 identified?

NO

YES

Have all
sub-characteristics

been
 modelled?

NO

Natural language entity model is complete

Chapter 4 - Entity Modelling

 76

4.1.4 Assessing mathematical model validity

As Figure 1-3 shows, where a mathematical model has been defined, the validity of the

description it provides of the natural language model should be assessed. A fully valid

mathematical model is able to completely describe all the software features identified in the

natural language model. The validity of the mathematical model description of the natural

language model is reduced by its inability to describe natural language model software features.

Determining the completeness of the mathematical model description of the natural language

model involves examining the natural language model and comparing the software features

identified in this model with the software features described by the mathematical model. Any

omissions of the mathematical model should be corrected where possible. Where the

mathematical model is unable to describe certain features of the software, then either

• the existing mathematical model can be discarded and a completely different type of

mathematical model defined that is able describe all the important features of the software

• the existing mathematical model can be retained and supplemented by another type of

model defined to describe the missing features or

• the shortcomings of the existing mathematical model can be explicitly identified,

documented and accepted with the proviso that the measure application, analysis and

interpretation phases of measurement may need to take into account the fact that some

aspects of the characteristic of interest are not described by the measures developed based

on this model. This option is most appropriate when the features of the software not

described by the mathematical model occur infrequently in the software to be measured or

when the user of the measures is not interested in obtaining a measured description of the

software characteristic or sub-characteristic affected by these features.

4.1.5 Practical Considerations

The entity modelling stage of descriptive measure development aims to precisely identify the

features of the software that the selected theoretical basis for measure development identifies as

affecting the levels of characteristic of interest present in the software. When the theoretical

basis from which the measures are being developed lacks sufficient detail, the measure

developer may need to enhance the available theory in some way.

Chapter 4 - Entity Modelling

 77

Abreu, Goulao and Esteves (1995) provide an example of extending a theoretical basis to

accommodate more precise measure definition. The set of generic Metrics for Object Oriented

Design (MOOD) measures of software quality developed by Abreu and Carapuca (1994) are

tailored to the description of C++ quality by the definition of a set of "MOOD/C++ bindings"

(Abreu, Goulao and Esteves 1995, pp. 47-51). These bindings extend the theoretical basis of

the MOOD (Abreu and Carapuca 1994) measures by specifically identifying the features of

C++ software that affect software quality. In a similar manner, an insufficiently detailed

theoretical basis for measure development could be enhanced with reference to a new, more

detailed software theory, with reference to an expert's understanding of the software, or with

reference to the measure developers own understanding of the software. All these methods of

theory enhancement are acceptable, as long as the natural language model of the software

describes precisely the full theoretical basis used to develop the measures. Such a complete

description allows a future user of the measures to examine the theoretical basis from which the

measures were developed and determine whether or not this basis is appropriate for their own

intended use.

The need to express, in the natural language software model, a detailed and precise

understanding of the ways in which the characteristic of interest can lead to a large and

complex entity model being developed. While the production of a large, detailed entity model

may be a difficult and time consuming task requiring several iterations to achieve a satisfactory

result, the quality of the description obtained from a set of measures is highly dependent on the

quality of the entity model from which they were developed. A significant problem can arise

when a natural language entity model cannot be fully described by a mathematical entity model.

The advantage of the precise software description provided by a mathematical model may be

offset by the disadvantage of the incomplete description obtained when the mathematical model

cannot fully describe the natural language model. In a situation such as this, the decision to use

a mathematical model must be based on the advantages of precision outweighing the

disadvantages of missing information.

The following section 4.2 demonstrates the entity modelling stage of the development of

descriptive measures of C++ class and object modularity.

Chapter 4 - Entity Modelling

 78

4.2. Entity modelling of C++ class and object modularity

The entity modelling of C++ software is the second stage in the development of descriptive

measures of class and object modularity. Entity model development is based on the modularity

sub-characterisation and conceptual definitions developed in the previous stage, as well as on

the selected measure development theoretical basis. The first step is to model the C++ class and

C++ object entities. Once the C++ class and object entities have been modelled, the models

describing class and object modularity sub-characteristics of interface dependence, external

relationships, connection obscurity and dependency are defined.

The elements selected to be part of these initial base models influence the form of the

subsequently defined modularity sub-characteristic models and hence, the form of the measure

definitions. A study by Churcher and Shepperd (1995b, p. 71) provides an example of

alternative entity models. Here, two different models of a class are described. One model

includes inherited methods as part of the class model while the other considers them to be

external to the class. The particular class model chosen affects the way that messages between

class methods are assessed. The effect that the selected class model has on the final measure

definitions can also be seen in the measures developed by Bieman and Kang (1995, p. 26).

Here, the tight class cohesion (TCC) and loose class cohesion (LCC) measures have two

different definitions depending on whether the abstracted class (AC) or local abstracted class

(LAC) model is used as the foundation for the software model from which the measures are

derived.

Section 4.2.3 describes the development of C++ class modularity entity models. Entity

modelling of C++ class modularity is relatively straightforward as the entity-relationship type

of mathematical models are able to fully describe their associated natural language models.

This is not the case for the C++ object entity models described in section 4.2.4 because the

entity-relationship mathematical models are unable to completely describe associated natural

language models. The shortcomings of each object sub-characteristic mathematical model are

discussed individually.

The entity models of class and object modularity include features directly related to classes and

object-classes and features that are indirectly related to classes and object-classes through a

direct relationship with class and object-class member methods and attributes. This is a

Chapter 4 - Entity Modelling

 79

measure design decision made to allow greater flexibility in data analysis than would be

provided by only identifying features at the direct class and object-class level. For example, in

Section 4.2.3.2.1, feature 1.1.1 of the C++ class interface dependence natural language model is

described with respect to individual class interface methods. To obtain a class level description,

techniques such as calculating the mean, median or sum can be used. The individual method

measures can also be analysed to produce a representation of a class similar to that of Figure 3-

3. The measurement data collected at the method and attribute level can be analysed in different

ways to provide varying descriptions of class or object-class level modularity.

4.2.1 Prerequisites

The prerequisites to the entity modelling stage of C++ class and object modularity measure

development are a modularity sub-characterisation with associated conceptual definitions and a

theoretical basis identifying the features of C++ software that affect the levels of modularity

sub-characteristics present in the software. At the conceptual definition stage of measure

development presented in Chapter 3, Meyer's (1997, pp. 46-53) rules of object oriented

software modularity provided the theoretical basis of modularity sub-characterisation and

conceptual definition. Meyer's (1997, pp. 46-53) rules of modularity will also provide part of

the theoretical basis for the entity modelling stage. As discussed previously, the theoretical

basis of entity modelling must identify features of the software that affect the levels of

modularity present in the software. While Meyer's (1997, pp. 46-53) rules and their

accompanying discussion indicate general software features that affect modularity, they do not

identify particular C++ software features. To provide a sufficiently detailed theoretical basis

for entity modelling, Meyer's (1997, pp. 46-53) rules must be interpreted with respect to C++

software features. This interpretation is documented within the natural language modularity

entity models and is available for examination by a potential user of the measures. As

mentioned in section 3.2.1 of Chapter 3, if the theoretical basis from which measures are

developed is judged to be inadequate, a user is free to modify or discard it and similarly treat

the measures developed from it.

4.2.2 Selection of the mathematical model

Entity-relation type mathematical models have been selected to describe the C++ software

modularity features identified in the natural language models. The reasons for choosing this

Chapter 4 - Entity Modelling

 80

type of model are that

• entity-relationship models are well understood by many people in the software

development field and so provide a good means of communicating information.

• set based entity-relationship type models have been previously used to model object

oriented software (Churcher and Shepperd 1995b) and to define object-oriented software

measures (Briand, Daly and Wust 1997b; Briand, Daly and Wust 1999a).

• measures can be directly defined in terms of the sets of entity-relationship models and these

definitions readily converted to relational database queries (Grassmann & Tremblay 1996,

pp. 620-624).

• relational database packages are relatively inexpensive and readily available to run on a

number of different platforms. For the prototype measurement instrument developed in this

thesis, the Microsoft Access (Microsoft 1997) relational database application running on a

PC is sufficient to implement and apply the measures.

• the Understand for C++ (Scientific Toolworks Inc. 2004) code parsing and data extraction

application, identified as providing sufficient information to implement the majority of

defined modularity measures, is based on a relational database model of object oriented

software. Again, suitability, cost and availability, as well as compatibility with the selected

database application influenced the choice of data collecting application and hence dictated

the choice of mathematical model.

The style of entity-relationship diagram used in this thesis differs slightly from standard

diagrams such as those described by Hawryszkiewycz (1990), in that relationships are shown as

rectangles rather than diamonds. To distinguish between entities and relationships, entities are

shown as large rectangles with the entity name written in uppercase and relationships are

shown in smaller rectangles with the relationship name written in mainly lowercase. Entity-

relationship models are not the only types of model that could be used. In particular, the unified

modelling language (UML) defines several different types of object oriented software models

(Eriksson and Penker 1998) which may be appropriate to software measure development. One

direction for possible further research arising from this thesis is the investigation of different

types of mathematical entity models and their suitability as a basis for measure development

and collection. For instance, Tang and Chen (2002) describe the collection of Chidamber and

Kemerer's (1994) measures from UML class, collaboration and activity diagrams and Arisholm,

Briand and Foyen (2004) use UML class and sequence diagram to model object oriented

software dynamic coupling.

Chapter 4 - Entity Modelling

 81

In this thesis, the mathematical entity-relationship model is defined as an implementation rather

than as a conceptual model. This is a result of the research method used to formulate the

systematic process of measure development which was to develop measures in a practical way

and from this experience define the process. One effect of this is that mathematical model

design and implementation decisions have been made that in some cases mean that some of the

measures defined in natural language terms cannot also be defined in mathematical terms due

to limitations of the mathematical model implementation. In the tables defining the modularity

measures, comments are included to indicate where this situation arises. The limitations of the

mathematical models flow on to the implementation of the measurement instrument, restricting

the measures that are included in the measurement instrument. Were a different mathematical

model defined, then it is possible that more natural language measures could also be defined in

mathematical terms and implemented in a measurement instrument. A possible approach would

be to define the mathematical model at the entity modelling stage in conceptual terms, define

the measures in these terms, and then redefine the mathematical models and measure

definitions in implementation specific terms in the measurement instrument stage where they

could be tailored to the particular strengths and limitations of the selected measurement

instrument. An area for possible future research would be to take the example of the

implementation specific mathematical model defined in this thesis and from it develop a more

general, conceptual model. This conceptual model could then form the basis of revised

mathematical measure definitions.

4.2.3 C++ class modularity

With the necessary prerequisites identified and mathematical model selected, entity modelling

of C++ class and object modularity can proceed. In Chapter 3, the conceptual definition of C++

class modularity identified interface dependence, external relationships, connection obscurity

and dependency as important modularity sub-characteristics. In this entity modelling chapter,

section 4.2.3.1 defines preliminary natural language and mathematical models of the C++ class

module. Based on this class model, sections 4.2.3.2, 4.2.3.3, 4.2.3.4 and 4.2.3.5 define entity

models for each of the identified modularity sub-characteristics.

4.2.3.1 C++ class module model

The C++ class interface dependence, external relationships, connection obscurity and

dependency entity models describe the modularity of a C++ class module. As discussed in

Chapter 4 - Entity Modelling

 82

section 4.2, before defining these models it is first necessary to model a C++ class entity.

4.2.3.1.1 Natural language model of C++ class module

The following points define a natural language model of a C++ class describing the elements

that constitute a C++ class module. The C++ class mathematical model defined in section

4.2.3.1.2 describes the features identified in this natural language model. Included with each

natural language model point are the names of the associated mathematical model sets

describing each feature. A one to one correspondence between natural language feature and

mathematical model set indicates that the mathematical model is able to describe the associated

feature.

• A class (C) has member method (MM, M) and member attribute (MA, A) elements.

Methods and attributes that a class can directly access through inheritance are not

considered to be members of the class. Object instances of other classes are not members of

a class. Others to exclude object instances from the class model include Abreu and Melo

(1996, p.92) and Bieman and Kang (1995, p.206).

• Member attributes (MA, A) are instances of, or pointers to, a C++ primitive data types,

declared within the class (C) definition. A primitive data type is one of char, double, float,

int, long, short, signed or unsigned.

• Member methods (MM, M) are the functions and procedures declared within the class (C)

definition.

• A class (C) is divided into interface and hidden regions. Interface elements have a public or

protected level of protection (MM, M, MA, A) and hidden elements have a private level of

protection (MM, M, MA, A).

Chapter 4 - Entity Modelling

 83

Figure 4-4 illustrates a C++ class module.

Figure 4-4 C++ class interface and hidden elements

4.2.3.1.2 Mathematical model of C++ class module

The entity-relationship model describing the member elements of a C++ class is illustrated in

Figure 4-5. The set definitions of the entities and relationships of this class model are detailed

in Appendix 1. As indicated in the class natural language model definition, the C++ class

mathematical model is able to describe all the features of the C++ class natural language model.

Figure 4-5 C++ class mathematical model

This model of a C++ class module forms the core of the following models describing class

interface dependence, external relationships, connection obscurity and dependency.

CLASS

C

ATTRIBUTE

A

METHOD

M

Has Member
MM

Has Member
MA

1

N

1

N

Hidden member
methods and attributes
with a private level of
protection.

Interface member methods
and attributes with a
protected or public level of
protection.

Chapter 4 - Entity Modelling

 84

4.2.3.2 Interface dependence sub-characteristic of C++ class modularity

In section 3.2.3.1, interface dependence is conceptually defined as the degree to which the

module interface elements are dependent on each other and on the implementation specific

details of the module. Interface element interdependence, interface size and data exposure are

identified as the most refined interface dependence sub-characteristics. The following natural

language and mathematical models describe features of C++ software that increase the levels of

interface element interdependence, interface size and data exposure present in a class module,

thereby reducing its modularity. Natural language model features are followed by their

associated mathematical model set name, shown in brackets. A one to one correspondence

between natural language feature and mathematical model set indicates that the mathematical

model is able to describe the associated feature.

4.2.3.2.1 Natural language model of C++ class interface dependence

1. Interface Dependence : C++ class module

1.1 Interface Element Interdependence - The dependency producing connections between

interface elements within the same module.

1.1.1 Class (C) interface methods (MM, M) directly read (MCReadA) and/or write

(MCWriteA) same class (C) interface attributes (MA, A).

Interface methods are directly dependent on interface attributes. Should an

interface attribute be modified, there is a chance that interface methods dependent

on it will need to be modified too.

1.1.2 Class (C) interface methods (MM, M) indirectly read (MICReadA) and/or write

(MICWriteA) same class (C) interface attributes (MA, A).

Interface methods are indirectly dependent on interface attributes. Should an

interface attribute be modified, there is a chance that interface methods dependent

on it will need to be modified too.

1.1.3 Same class (C) interface methods (MM, M) directly invoke (MCInvM) each other.

Interface methods are directly dependent on other interface methods. Should a

method be modified, there is a chance that other interface methods dependent on it

will need to be modified too.

1.1.4 Same class (C) interface methods (MM, M) indirectly invoke (MICInvM) each

other.

Interface methods are indirectly dependent on other interface methods. Should a

method be modified, there is a chance that other interface methods dependent on it

will need to be modified too.

Chapter 4 - Entity Modelling

 85

1.2 Interface Size - The size of a module's interface.

1.2.1 Class (C) has a relatively high proportion of total member attributes (MA, A) in the

interface.

Implementation specific details of the class are included in the interface in the form

of class attributes.

1.2.2 Class (C) has a relatively high proportion of total member methods (MM, M) in the

interface.

Methods that are likely to contain implementation specific details of the class are

included in the interface.

1.2.3 Class (C) interface methods (MM, M) are relatively large having:

1.2.3.1 many lines of code (M)

Code that implements the class services is likely to be contained within the

interface methods.

1.2.3.2 many same class (C) method (MM, M) invocations (MCInvM).

Implementation specific multiple method invocations are contained within the

interface methods.

1.2.3.3 many same class (C) direct attribute (MA, A) accesses (MCReadA,

MCWriteA).

Implementation specific direct attribute accesses are contained within the

interface methods.

1.3 Data Exposure - The degree to which the module data is revealed to the module

interface.

1.3.1 Class (C) has attributes (MA, A) in the interface.

Class attributes, highly implementation specific elements of the class, occur in the

class interface.

1.3.2 Class (C) individual interface methods (MM, M) directly read (MCReadA) and/or

write (MCWriteA) same class (C) attributes (MA, A).

The more attributes an interface methods accesses, the greater the chance that it

will be affected by an attribute change.

1.3.3 Class (C) individual member attributes (MA, A) directly read (MCReadA) and/or

written (MCWriteA) by same class (C) interface methods (MM, M).

The more interface methods directly access a class attribute, the greater that

chance that a change to that attribute will affected interface methods operation.

Chapter 4 - Entity Modelling

 86

4.2.3.2.2 Mathematical model of C++ class interface dependence

The entity-relationship model of C++ class interface dependence is illustrated in Figure 4-6.

Methods within a class module are able to directly invoke other same class methods and

directly read and write same class attributes. Class-read, class-write and class-invoke describe

these relationships in the mathematical model. The set definitions of the entities and

relationships of this interface dependence model are detailed in Appendix 1. As indicated in the

interface dependence natural language model definition, this mathematical model is able to

describe all the features of the natural language model.

Figure 4-6 C++ class interface dependence mathematical model

4.2.3.3 External relationships sub-characteristic of C++ class modularity

In section 3.2.3.2, external relationships is conceptually defined as the degree to which a

module has relationships with elements external to itself. External relationships within the

system is identified as the most refined external relationships sub-characteristic. The following

natural language and mathematical models describe features of C++ software that increase the

levels of external relationships of a class module, thereby reducing its modularity. Natural

Class-Invokes
MCInvM

N M

CLASS

C

ATTRIBUTE

A

METHOD

M

Has Member
MM

Has Member
MA

1

N

1

N Class-Reads
MCReadA

Class-Writes
MCWriteA

N M

N M

Indirectly Same
Class-Reads
MICReadA

Indirectly Same
Class-Writes
MICWriteA

N M

N M

Indirectly Same
Class-Invokes

MICInvM

N M

Chapter 4 - Entity Modelling

 87

language model features are followed by their associated mathematical model set name, shown

in brackets. A one to one correspondence between natural language feature and mathematical

model set indicates that the mathematical model is able to describe the associated feature.

4.2.3.3.1 Natural language model of C++ class external relationships

2. External Relationships : C++ class module

2.1 Within the System - The relationships between a module and elements external to the

module but still within the given software system.

2.1.1 Class (C) has one or more immediate parent (IP) classes (C).

The class has an inheritance relationship with one or more immediate parent

classes.

2.1.2 Class (C) has one or more distant ancestor (IDA) classes (C).

The class has an inheritance relationship with one or more distant ancestor classes.

2.1.3 Class (C) has one or more immediate child (IP) classes (C).

The class has an inheritance relationship with one or more immediate child classes.

2.1.4 Class (C) has one or more distant descendent (IDA) classes (C).

The class has an inheritance relationship with one or more distant descendent

classes.

2.1.5 Class (C) has one or more immediate friend (CEF) classes (C).

One or more other classes have friend privileges of access to the class.

2.1.6 Class (C) has one or more immediate friend (FF) global functions (F).

One or more global functions have friend privileges of access to the class.

2.1.7 Class (C) is friend (CEF) to one or more other classes (C).

The class has friend privileges of access to one or more other classes.

2.1.8 Class (C) has one or more global functions (F) within its scope (SF)

Within the measured software system there are global functions that the class can

directly access.

2.1.9 Class (C) has one or more global variables (V) within its scope (SV)

Within the measured software system there are global variables that the class can

directly access.

Chapter 4 - Entity Modelling

 88

4.2.3.3.2 Mathematical model of C++ class external relationships

The entity-relationship model of C++ class external relationships is illustrated in Figure 4-7.

The set definitions of the entities and relationships of this external relationship model are

detailed in Appendix 1. This mathematical model is able to describe all the features of the class

module natural language model.

Figure 4-7 C++ class external relationships mathematical model

4.2.3.4 Connection obscurity sub-characteristic of C++ class modularity

In section 3.2.3.3, connection obscurity is conceptually defined as the degree to which the

connection from a module to an external element is unclear after examination of the module or

the external element or both. Variable connection, unstated relationship, distant connection,

unexpected relationship and connection via non-standard interface are identified as the most

refined connection obscurity sub-characteristics. The following natural language and

mathematical models describe features of C++ software that increase the levels of variable

connection, unstated relationship, distant connection, unexpected relationship and connection

via non-standard interface of a class module, thereby reducing its modularity. Natural language

model features are followed by their associated mathematical model set name, shown in

brackets. A one to one correspondence between natural language feature and mathematical

model set indicates that the mathematical model is able to describe the associated feature.

GLOBAL FUNCTION

F

GLOBAL VARIABLE

V

CLASS

C

Class Element
Immediate Friend

CEF

M

N

Function
Immediate Friend

FF

M N

Inherits Parent
IP

M

N

Inherits Distant
Ancestor

IDA

M

N

Function Within
Scope

SF

M

N

Variable Within
Scope

SV

M

N

Chapter 4 - Entity Modelling

 89

4.2.3.4.1 Natural language model of C++ class connection obscurity

3. Connection Obscurity : C++ class module

3.1 Variable Connection - The nature of the connection from a module to external elements

is not fixed.

This sub-characteristic is not applicable to C++ classes.

3.2 Unstated Relationship - The connection from a module to an external element is not

explicitly stated within the module or the external element or both.

3.2.1 Class (C) member methods (MM, M) directly accesses (MGReadV, MGWriteV)

one or more global variables (V).

The relationship between a class and a global variable can only be discerned from

examination of the class member methods that directly read or write the global

variable. This relationship cannot be discerned from examination of the class

declaration or the global variable declaration.

3.2.2 Class (C) member methods (MM, M) directly invoke (MGInvF) one or more global

functions (F).

The relationship between a class and a global function can only be discerned from

examination of the class member methods that directly invoke the global function.

This relationship cannot be discerned from examination of the class declaration or

the global function declaration.

3.3 Distant Connection - The connection is between a module and an external element with a

distant, indirect relationship.

3.3.1 Class (C) member methods (MM, M) directly access (MGReadV, MGWriteV) a

global variable (V) that is also directly accessed (MGReadV, MGWriteV) by

member methods (MM, M) of another class (C).

A class is indirectly connected to another class if they share access to a common

global variable by reading from it or writing to it or both.

3.3.2 Class (C) member methods (MM, M) directly access (MCReadA, MCWriteA,

MCInvM) the member methods and/or attributes (MM, M, MA, A) of a distant

ancestor (IDA) class (C).

A class can access the visible elements of its own distant ancestors. The origin and

nature of distant ancestor member elements is more difficult to determine than that

of immediate parent elements and hence the nature of the connection is obscured.

Chapter 4 - Entity Modelling

 90

3.4 Unexpected Relationship - The relationship from a module to an external element is an

unexpected one that users would not commonly look for and recognise.

3.4.1 Class (C) member methods (MM, M) directly access (MGReadV, MGWriteV) a

global variable (V) that is also directly accessed (MGReadV, MGWriteV) by

member methods (MM, M) of another class (C).

A connection between classes due to a common global variable is an unexpected

relationship that is not specified in the class declaration.

3.4.2 Class (C) has one or more immediate friend (CEF) classes (C).

Friendship is not the standard relationship between classes.

3.4.3 Class (C) is friend (CEF) to other classes (C).

Friendship is not the standard relationship between classes.

3.4.4 Class (C) has one or more friend (FF) global functions (F).

Friendship is not the standard relationship between classes and global functions.

3.5 Connection via Non-standard Interface - Connection between a module and an external

element takes place outside the standard module interface.

3.5.1 Class (C) member methods (MM, M) directly access (MGReadV, MGWriteV) a

global variable (V) that is also directly accessed (MGReadV, MGWriteV) by

member methods (MM, M) of another class (C).

A global variable is not part of the standard interface of a class and yet it forms a

connection between the classes that access it.

3.5.2 Class (C) member methods (MM, M) directly access (MCReadA, MCWriteA) the

member attributes (MA, A) of another class (C).

A standard class interface does not contain attributes.

3.5.3 Class (C) member attributes (MA, A) directly accessed (MCReadA, MCWriteA) by

member methods (MM, M) of other classes (C).

A standard class interface does not contain attributes.

Chapter 4 - Entity Modelling

 91

4.2.3.4.2 Mathematical model of C++ class connection obscurity

The entity-relationship model of C++ class connection obscurity is illustrated in Figure 4-8.

The set definitions of the entities and relationships of this connection obscurity model are

detailed in Appendix 1. This mathematical model is able to describe all the features of the class

connection obscurity natural language model.

Figure 4-8 C++ class connection obscurity mathematical model

GLOBAL FUNCTION

F

GLOBAL VARIABLE

V

CLASS

C

ATTRIBUTE

A

METHOD

M

Has Member
MM

Has Member
MA

1

N

1

N

Function
Immediate Friend

FF

Class Element
Immediate Friend

CEF

Global Invokes
MGInvF

Global Reads
MGReadV

N

M

Global Writes
MGWriteV

N

M M

N

Inherits Distant
Ancestor

IDA

M

N

Class-Invokes
MCInvM

N M

Class-Reads
MCReadA

Class-Writes
MCWriteA

N M

N M

N

M

M

N

Chapter 4 - Entity Modelling

 92

4.2.3.5 Dependency sub-characteristic of C++ class modularity

In section 3.2.3.4, dependency is conceptually defined as the degree to which a module depends

on external elements in order that it can perform its own functions correctly. Service

invocation, interface provision, external variable reading and external function writing are

identified as the most refined dependency sub-characteristics. The following natural language

and mathematical models describe features of C++ software that increase the levels of service

invocation, interface provision, external variable reading and external function writing present

in a class module, thereby reducing its modularity. Natural language model features are

followed by their associated mathematical model set name, shown in brackets. A one to one

correspondence between natural language feature and mathematical model set indicates that the

mathematical model is able to describe the associated feature.

4.2.3.5.1 Natural language model of C++ class dependency

4. Dependency : C++ class module

4.1 Service Invocation - The dependence of a module on services provided by elements

external to itself.

4.1.1 Class (C) member methods (MM, M) directly invoke (MGInvF) one or more global

functions (F).

To perform its own tasks, a class is dependent on the services provided by a global

function.

4.1.2 Class (C) member methods (MM, M) directly invoke (MCInvM) member methods

(MM, M) of other classes (C).

To perform its own tasks, a class is dependent on the services provided by another

class.

4.2 Interface Provision - The dependency of a module on external modules to provide some

or all of its interface elements.

This sub-characteristic is not applicable to C++ classes.

4.3 External Variable Reading - The degree to which the module's state is dependent on

values contained in external variables.

4.3.1 Class (C) member methods (MM, M) directly read (MGReadV) one or more global

variables (V).

To perform its own tasks, a class is dependent on state information provided by a

global variable.

Chapter 4 - Entity Modelling

 93

4.3.2 Class (C) member methods (MM, M) directly read (MCReadA) from one or more

member attributes (MA, A) of another class (C).

To perform its own tasks, a class is dependent on state information provided by an

attribute of another class.

4.4 External Function Writing - The degree to which the module's state is dependent on

values written, by external functions, to attributes or external variables from which the

module directly reads.

4.4.1 Class (C) member methods (MM, M) directly read (MGReadV) from a global

variable (V) directly written to (MGWriteV) by the member methods (MM, M) of

another class (C).

The class relies on other classes to maintain a global variable in a state compatible

with its own correct operation.

4.4.2 Class (C) member methods (MM, M) directly read (MGReadV) from a global

variable (V) directly written to (FWriteV) by a global function (F).

The class relies on a global function to maintain a global variable in a state

compatible with the class's own correct operation

4.4.3 Class (C) member methods (MM, M) directly read (MCReadA) from a static

attribute (A) that is directly written to (MCWriteA) by the member methods (MM,

M) of another class (C).

The class relies on other classes to maintain a static attribute with a value

compatible with its own correct operation.

4.4.4 Class (C) member attribute (MA, A) is directly written to (MCWriteA) by a

member method (MM, M) of another class (C).

The class relies on another class to maintain one of its own attributes with a value

compatible with its own correct operation.

Chapter 4 - Entity Modelling

 94

4.2.3.5.2 Mathematical model of C++ class dependency

The entity-relationship model of C++ class dependency is illustrated in Figure 4-9. The set

definitions of the entities and relationships of this dependency model are detailed in Appendix

1. This mathematical model is able to describe all the features of the class dependency natural

language model.

Figure 4-9 C++ class dependency mathematical model

GLOBAL FUNCTION

F

GLOBAL VARIABLE

V

CLASS

C

ATTRIBUTE

A

METHOD

M

Has Member
MM

Has Member
MA

1

N

1

N

Global Invokes
MGInvF

Global Writes
FGWriteV

N M

Global Reads
MGReadV

N

M

Global Writes
MGWriteV

N

M

Class-Invokes
MCInvM

N M

Class-Reads
MCReadA

Class-Writes
MCWriteA

N M

N M

N

M

Chapter 4 - Entity Modelling

 95

4.2.3.6 Class modularity sub-characteristics sharing identical feature descriptions

Several modularity sub-characteristics are listed in the natural language model of C++ class

modularity with the same features affecting their presence in the software. Table 4-1 lists these

sub-characteristics with their associated common features.

Class Modularity Sub-characteristics

Feature

Interface Dependence : Interface Implementation Dependence: Interface Size
Interface Dependence : Interface Implementation Dependence: Data Exposure

1.2.1
1.3.1

Interface Dependence : Interface Implementation Dependence: Interface Size
Interface Dependence : Interface Implementation Dependence: Data Exposure

1.2.3.3
1.3.2

External Relationships
Connection Obscurity : Non-standard Connection : Unexpected Relationship

2.1.5
3.4.1

External Relationships
Connection Obscurity : Non-standard Connection : Unexpected Relationship

2.1.6
3.4.4

External Relationships
Connection Obscurity : Non-standard Connection : Unexpected Relationship

2.1.7
3.4.3

Connection Obscurity : Unstated Relationship
Dependency : Service Invocation

3.2.2
4.1.1

Connection Obscurity : Distant Connection
Connection Obscurity : Non-standard Connection : Unexpected relationship
Connection Obscurity : Non-standard Connection : Connection via Non-standard
 Interface

3.3.1
3.4.1
3.5.1

Table 4-1 Class modularity sub-characteristics sharing common natural language model
features

The fact that several modularity sub-characteristics share common features implies that these

features influence different aspects of modularity and have a stronger overall impact on general

class modularity than features that only affect a single characteristic of modularity. Having

some features occur more than once in the modularity sub-characterisation provides a natural

weighting of these features, meaning that they have a greater influence over the final measured

level of modularity determined for each class. On the other hand, it could be argued that some

characteristics sharing several features in common should be combined into a single

characteristic with only a single occurrence of the common features. For example, in Table 4-1,

the interface size and data exposure sub-characteristics of interface dependence share several

features in common and could be combined into a single interface implementation dependence

Chapter 4 - Entity Modelling

 96

sub-characteristic. In this thesis, it has been decided to keep these sub-characteristics separate

as they still have several exclusive features however future work may indicate that they are best

combined.

Where high level sub-characteristics have features in common, dependencies are introduced

that may affect the types of data analysis that can be performed on the measurement data. For

example, Table 4-1 shows that the external relationships and connection obscurity sub-

characteristics of class modularity have three different features in common. Were a factor

analysis performed on the measurement data of the four high level modularity sub-

characteristics, these features in common would reduce the discriminating power of the

external relationships and connection obscurity sub-characteristics. One strategy to overcome

this problem would be to remove all measures describing software features in common between

modularity sub-characteristics. In this way, the remaining measures would describe the

different sub-characteristics in dissimilar terms by quantifying dissimilar features. To identify

measures describing common features so that they can be removed from the measured

description for some analysis procedures, Table 5-14 lists the measures quantifying common

software features of C++ class modularity.

4.2.4 C++ object modularity

As for class modularity, the Chapter 3 conceptual definition of C++ object modularity

identified interface dependence, external relationships, connection obscurity and dependency as

important modularity sub-characteristics. In this entity modelling chapter, section 4.2.4.1

defines preliminary natural language and mathematical models of the C++ object module.

Based on this object model, sections 4.2.4.2, 4.2.4.3, 4.2.4.4 and 4.2.4.5 then define object

entity models for each object modularity sub-characteristic. The differences between objects

and classes, as they are modelled in this thesis, are due to the different elements from which

they are considered to be composed and the different type of relationships in which they

participate.

4.2.4.1 C++ object module model

The C++ object interface dependence, external relationships, connection obscurity and

dependency entity models describe the modularity of a C++ object module. As discussed in

section 4.2, before defining these models it is first necessary to model a C++ object module

Chapter 4 - Entity Modelling

 97

entity. The object model differs from the class model in that an object's elements are comprised

of the member methods and attributes of the class from which it is instantiated, plus all the

member methods and attributes of all the ancestors to this class. Also, when compared to a

class module, different levels of protection identify object hidden and interface regions. The

following natural language and mathematical models describe the structure of an object

module. Each object instantiated from a single class has the same module structure and so,

rather than describe the modularity of each object in a software system, the object type

modularity of each class is described. The term object-class is used to refer to the object type

modularity associated with a class.

4.2.4.1.1 Natural language model of C++ object module

The following points define a natural language model of a C++ object describing the elements

that constitute a C++ object module. The C++ object mathematical model defined in section

4.2.4.1.2 describes the features identified in this natural language model. Natural language

model features are followed by their associated mathematical model set name, shown in

brackets. A one to one correspondence between natural language feature and mathematical

model set indicates that the mathematical model is able to describe the associated feature.

• An object-class (C) has member methods and attributes (MM, M, MA, A), accessible

methods and attributes (AM, M, AM, A) and inaccessible methods and attributes (IAM,

M, IAA, A). The member methods and attributes of the object-class (C) are the member

methods and attributes of the same class (C). The accessible methods and attributes (AM,

M, AA, A) are the member methods and attributes (MM, M, MA, A) of ancestor classes

(IP, IDA) to the class (C) that object-class (C) can directly access. The inaccessible

methods and attributes (IAM, M, IAA, A) are the member methods and attributes (MM,

M, MA, A) of ancestor classes (IP, IDA) to the class (C) that object-class (C) cannot

directly access. In a similar manner, the unified modelling language (UML) description of

the class generalisation-specialisation relationship recognises that some object elements

are inherited but are inaccessible to the object (Eriksson and Penker 1998, p. 94).

• Object-class (C) member attributes (MA, A) are instances of, or pointers to, a C++

primitive data types, declared within the class (C) definition where class (C) is the same as

object-class (C).

Chapter 4 - Entity Modelling

 98

• Object-class (C) member methods (MM, M) are the functions and procedures declared

within the class (C) definition where class (C) is the same as object-class (C).

• Object-class (C) accessible and inaccessible attributes (AA, IAA, A) and accessible and

inaccessible methods (AM, IAM, M) are member elements of immediate parent (IP) and

distant ancestor (IDA) classes (C) to the object-class (C).

• An object-class (C) is divided into interface and hidden regions. Interface elements have a

public level of protection (MM, AM, IAM, M, MA, AA, IAA, A) and hidden elements

have a private, protected or inaccessible level of protection (MM, AM, IAM, M, MA, AA,

IAA, A).

• The levels of protection assigned to the elements of a C++ object-class are determined

according to the following rules.

• Object-class elements that are member elements of the same class as the object-class

have the same level of protection within the object-class as they had within the class.

• The levels of protection of inherited elements within an object-class are determined by

the levels of protection of the elements within the immediate parent class and the level

of protection assigned to the inheritance. Table 4-2 summarises the rules of level of

protection assignment within the C++ object-class model.

Immediate parent class
inheritance level of protection

Element level of protection
within immediate parent class

Resultant level of protection
within object-class

public public
protected protected
private inaccessible

public

inaccessible inaccessible
public protected
protected protected
private inaccessible

protected

inaccessible inaccessible
public private
protected private
private inaccessible

private

inaccessible inaccessible

Table 4-2 Rules for the assignment of C++ object-class element levels of protection

Chapter 4 - Entity Modelling

 99

Figure 4-10 illustrates a C++ object-class module.

Figure 4-10 C++ object-class interface and hidden elements

4.2.4.1.2 Mathematical model of C++ object module

The entity-relationship model describing the member elements of a C++ object is illustrated in

Figure 4-11. The set definitions of the entities and relationships of this object model are

detailed in Appendix 1. As discussed in section 4.2.4.1.3, situations exist in which this

mathematical model is unable to fully describe all the features of the object module natural

language model.

Hidden member and
inherited methods and
attributes with a
protected or private
level of protection.

Interface member and
inherited methods and
attributes with a public
level of protection.

Hidden inherited
methods and attributes
with an inaccessible
level of protection.

Chapter 4 - Entity Modelling

 100

Figure 4-11 C++ object-class mathematical model

4.2.4.1.3 C++ object module mathematical model completeness

The entity-relationship model of a C++ object-class represents a simplification of the real-

world object-class described in the natural language model. The AM, IAM, AA and IAA

relations of the Figure 4-11 entity-relationship model of an object-class are unable to describe

all the object-class's methods and attributes when the object-class inherits more than once from

the same ancestor class. An ancestor class that is inherited more than once contributes multiple

occurrences of its methods and attributes to the resulting object-class however, the AM, IAM,

AA and IAA relations are only able to record a single occurrence of these inherited attributes

and methods.

Multiple inheritance of a class is not a common occurrence in object oriented software so for

the majority of object-classes, the entity-relationship model of Figure 4.11 provides a

CLASS

C

METHOD

M

Has Accessible
AM

M

N
Has Inaccessible

IAM

M

N

OBJECT

O

Instance Of
OIC

N

1

Has Member
MM

1

N

ATTRIBUTE

A

Has Member
MA

1

N
Has Inaccessible

IAA

M

N

Has Accessible
AA

M

N

Chapter 4 - Entity Modelling

 101

description of all inherited attributes and methods and therefore provides a complete

description of the natural language object model. In the situation where the mathematical model

is unable to completely describe a C++ object-class due to its inheritance of duplicate elements

from an ancestor class, only a single inheritance of the elements will be described by the

mathematical model. Measures of affected object-classes using the AM, IAM, AA and IAA sets

as part of their definition will have reduced validity. The full implication of this for the

measured description of modularity of an affected object-class is discussed in detail in section

5.2.4. Figure 4-12 illustrates the problems associated with multiple inheritance of a class and

the modelling compromise adopted.

Problem : Class A inherits methods Solution : Record only the methods and

and attributes from two versions of attributes inherited from a single version of

Class E Class E.

Figure 4-12 Solution adopted to multiple attributes and methods inherited from the same class

Class A inherits twice from class E. In the C++ language, the methods and attributes of each

occurrence of class E are distinguished by the class scope operator. For example, from object

class A, the separate occurrences of a class E method are identified by B::D::E::method_name()

and C::E::method_name() respectively. In the Figure 4-11 entity-relationship model of an

object-class, the class scope of inherited elements is not described and so the two occurrences

of method_name () are not distinguished. An object-class inheriting from multiple instances of

Class A

Class B Class C

Class D Class E

Class E

Class A

Class B Class C

Class D

Class E

Class E

Chapter 4 - Entity Modelling

 102

a single class will be modelled with fewer inherited methods and attributes than it actually has.

The mathematical model of the C++ object-class module represents a simplification of the

actual, real world object described in the natural language model.

The C++ object-class natural language and mathematical models defined in this section form

the core of the following models describing C++ object-class interface dependence, external

relationships, connection obscurity and dependency.

4.2.4.2 Interface dependence sub-characteristic of C++ object modularity

In section 3.2.3.1, interface dependence is conceptually defined as the degree to which the

module interface elements are dependent on each other and on the implementation specific

details of the module. Interface element interdependence, interface size and data exposure are

identified as the most refined interface dependence sub-characteristics. The following natural

language and mathematical models describe features of C++ software that increase the levels of

interface element interdependence, interface size and data exposure present in an object

module, thereby reducing its modularity. Natural language model features are followed by their

associated mathematical model set name, shown in brackets. A one to one correspondence

between natural language feature and mathematical model set indicates that the mathematical

model is able to describe the associated feature.

4.2.4.2.1 Natural language model of C++ object interface dependence

5. Interface Dependence : C++ object module

5.1 Interface Element Interdependence - The dependency producing connections between

interface elements within the same module.

5.1.1 Object-class (C) interface methods (MM, AM, M) directly read (MCReadA) and/or

write (MCWriteA) same object-class (C) interface attributes (MA, AA, A).

Interface methods are directly dependent on interface attributes. Should an

interface attribute be modified, there is a chance that interface methods dependent

on it will need to be modified too.

5.1.2 Object-class (C) interface methods (MM, AM, M) indirectly read (MICReadA)

and/or write (MICWriteA) same object-class (C) interface attributes (MA, AA, A)

Interface methods are indirectly dependent on interface attributes. Should an

interface attribute be modified, there is a chance that interface methods dependent

on it will need to be modified too.

Chapter 4 - Entity Modelling

 103

5.1.3 Same object-class (C) interface methods (MM, AM, M) directly invoke (MCInvM)

each other.

Interface methods are directly dependent on other interface methods. Should an

interface method be modified, there is a chance that other interface methods

dependent on it will need to be modified too.

5.1.4 Same object-class (C) interface methods (MM, AM, M) indirectly invoke

(MICInvM) each other.

Interface methods are indirectly dependent on other interface methods. Should an

interface method be modified, there is a chance that other interface methods

dependent on it will need to be modified too.

5.2 Interface Size - The size of a module's interface.

5.2.1 Object-class (C) interface contains attributes (MA, AA, A).

Implementation specific details of the object-class are included in the interface in

the form of object-class attributes.

5.2.2 Object-class (C) has a relatively high proportion of total member methods (MM,

AM, IAM, M) in the interface.

Methods that are likely to contain implementation specific details of the object-

class are included in the interface.

5.2.3 Object-class (C) interface methods (MM, AM, M) are relatively large having:

5.2.3.1 many lines of code (M)

Code that implements the object-class services is likely to be contained within

the interface methods.

5.2.3.2 many same object-class (C) method (MM, AM, IAM, M) invocations

(MCInvM).

Implementation specific multiple method invocations are contained within the

interface methods.

5.2.3.3 many same object-class (C) direct attribute (MA, AA, IAA, A) accesses

(MCReadA, MCWriteA).

Implementation specific direct attribute accesses are contained within the

interface methods.

Chapter 4 - Entity Modelling

 104

5.3 Data Exposure - The degree to which the module data is revealed to the module

interface.

5.3.1 Object-class (C) has attributes (MA, AA, A) in the interface.

Object-class attributes, highly implementation specific elements of the object-class,

occur in the interface.

5.3.2 Object-class (C) individual interface methods (MM, AM, M) directly read

(MCReadA) and/or write (MCWriteA) same object-class (C) attributes (MA, AA,

A).

The more attributes an interface methods accesses, the greater the chance that it

will be affected by an attribute change.

5.3.3 Object-class (C) individual member attributes (MA, AA, IAA, A) directly read

(MCReadA) and/or written (MCWriteA) by same object-class (C) interface

methods (MM, AM, M).

The more interface methods directly access an object-class attribute, the greater

that chance that a change to that attribute will affected interface method operation.

Chapter 4 - Entity Modelling

 105

4.2.4.2.2 Mathematical model of C++ object interface dependence

The entity-relationship model of C++ object interface dependence is illustrated in Figure 4-13.

The set definitions of the entities and relationships of this interface dependence model are

detailed in Appendix 1. As discussed in section 4.2.4.2.3, situations exist in which this

mathematical model is unable to fully describe all the features of the object interface

dependence natural language model.

Figure 4-13 C++ object interface dependence mathematical model

Has Accessible
AM

M

N
Has Inaccessible

IAM

M

N

Has Member
MM

1

N

Has Member
MA

1

N
Has Inaccessible

IAA

M

N

Has Accessible
AA

M

N

Class-Invokes
MCInvM

N M

ATTRIBUTE

A

METHOD

M

 Class-Reads
MCReadA

Class-Writes
MCWriteA

N M

N M

 Indirectly
Same Object
Class-Reads
MIOCReadA

Indirectly Same
Object

Class-Writes
MIOCWriteA

N M

N M

Indirectly Same
Object

Class-Invokes
MIOCInvM

N M

CLASS

C

Chapter 4 - Entity Modelling

 106

4.2.4.2.3 C++ object interface dependence mathematical model completeness

The entity-relationship model of C++ object-class interface dependence captures the natural

language model except when the object-class inherits elements from more than one version of

an ancestor class. This situation has been previously discussed in the C++ object model

description section 4.2.4.1.3. This shortcoming affects all points of the object interface

dependence natural language model. Measures of object interface dependence using sets AM,

IAM, AA and IAA may have reduced validity for object-classes inheriting multiple times from

the same ancestor class.

4.2.4.3 External relationships sub-characteristic of C++ object modularity

In section 3.2.3.2, external relationships is conceptually defined as the degree to which a

module has relationships with elements external to itself. External relationships within the

system is identified as the most refined external relationships sub-characteristic. The following

natural language and mathematical models describe features of C++ software that increase the

levels of external relationships of an object module, thereby reducing its modularity.

4.2.4.3.1 Natural language model of C++ object external relationships

6. External Relationships : C++ object module

6.1 Within the System - The relationships between a module and elements external to the

module but still within the given software system.

6.1.1 Object-class (C) has one or more immediate supplier objects (MO, AO, IAO, O).

The object has an association relationship with one or more immediate supplier

objects.

6.1.2 Object-class (C) has one or more global supplier objects (O) within its scope (SO).

The object has an informal association relationship with global supplier objects

within its scope.

6.1.3 Object-class (C) instantiates (OIC) one or more objects (O) that are immediate

supplier objects (MO, AO, IAO) to a class (C).

The object has an association relationship with an immediate client class.

6.1.4 Object-class (C) instantiates (OIC) one or more objects (O) that are immediate

supplier objects (FIMO) to a global function (F).

The object has an association relationship with an immediate client global function.

Chapter 4 - Entity Modelling

 107

6.1.5 Object-class (C) has a member (MA, AA, IAA) static attribute (A).

A static attribute member of a class forms a connection between all objects

instantiated from that class including objects instantiated from classes inheriting

from the class with the static member attribute.

6.1.6 Object-class (C) has one or more friend (CEF, CIF) classes (C).

Objects instantiated from a class that has immediate or inherited friend classes can

have both hidden and interface elements directly accessed by objects instantiated

from the friend classes.

6.1.7 Object-class (C) has one or more friend (FF, IF) global functions (F).

Objects instantiated from a class that has immediate or inherited friend global

functions can have both hidden and interface elements directly accessed by the

friend global functions.

6.1.8 Object-class (C) is friend (CEF, CIF) to one or more classes (C).

Objects instantiated from a class that is an immediate or inherited friend of another

class can directly access both interface and hidden elements of objects instantiated

from the other class.

4.2.4.3.2 Mathematical model of C++ object external relationships

The entity-relationship model of C++ object external relationships is illustrated in Figure 4-14.

The set definitions of the entities and relationships of this external relationships model are

detailed in Appendix 1. As discussed in section 4.2.4.3.3, situations exist in which this

mathematical model is unable to fully describe all the features of the object external

relationships natural language model.

Chapter 4 - Entity Modelling

 108

Figure 4-14 C++ object external relationships mathematical model

4.2.4.3.3 C++ object external relationships mathematical model completeness

The entity-relationship model of C++ object-class external relationships captures the natural

language model except when the object-class inherits elements from more than one version of

an ancestor class. This situation has been previously discussed in the C++ object model

description section 4.2.4.1.3. This shortcoming affects points 6.1.1 and 6.1.5 of the object

external relationships natural language model. Measures of object external relationships using

OBJECT

O

M

GLOBAL FUNCTION

F

N M

Instance Of
OIC

 1 Class Element
Immediate Friend

CEF

M

N

Function
Immediate

Friend

M

N

Has Immediate
FIMO

Class Element
Inherited Friend

CIF

M

N

Function
Inherited

Friend

M

N

ATTRIBUTE

A

Has Member
MA

1

N
Has Inaccessible

IAA

M

N

Has Accessible
AA

M

N

Has Accessible
AO

N
Has Inaccessible

IAO

M

N

Has Member
MO

M

1

M

Global Object
Within Scope

SO

M

N

CLASS

C

Chapter 4 - Entity Modelling

 109

sets AM, IAM, AA, IAA, AO and IAO may have reduced validity for object-classes inheriting

multiple times from the same ancestor class.

4.2.4.4 Connection obscurity sub-characteristic of C++ object modularity

In section 3.2.3.3, connection obscurity is conceptually defined as the degree to which the

connection from a module to an external element is unclear after examination of the module or

the external element or both. Variable connection, unstated relationship, distant connection,

unexpected relationship and connection via non-standard interface are identified as the most

refined connection obscurity sub-characteristics. The following natural language and

mathematical models describe features of C++ software that increase the levels of variable

connection, unstated relationship, distant connection, unexpected relationship and connection

via non-standard interface of an object module, thereby reducing its modularity.

4.2.4.4.1 Natural language model of C++ object connection obscurity

7. Connection Obscurity : C++ object module

7.1 Variable Connection - The nature of the connection from a module to external elements

is not fixed.

7.1.1 Object-class (C) has member (MO, AO, IAO) objects (O) declared as a pointer

rather than a specific object instance.

An object declared as a pointer can be referencing none, one or multiple instances

of the object. The number of objects referenced by the pointer may change

dynamically as the program executes.

7.1.2 Object-class (C) has global objects (O) are declared as a pointer rather than an

actual instance within its scope (SO).

An object declared as a pointer can be referencing none, one or multiple instances

of the object. The number of objects referenced by the pointer may change

dynamically as the program executes.

Chapter 4 - Entity Modelling

 110

7.2 Unstated Relationships - The connection from a module to an external element is not

explicitly stated within the module or the external element or both.

7.2.1 Object-class (C) member methods (MM, AM, IAM, M) directly access

(MGWriteV, MGReadV) global variables (V).

The relationship between an object whose member, accessible or inaccessible

methods directly read or write a global variable can only be discerned from

examination of the code that implements the instantiating class and the code of any

ancestor classes it may have. This relationship cannot be discerned from

examination of the instantiating class declaration or the global variable

declaration.

7.2.2 Object-class (C) member methods (MM, AM, IAM, M) directly invoke (MGInvF)

global functions (F).

In a similar manner to global variable access, this relationship cannot be discerned

from examination of the instantiating class declaration or the global function

definition.

7.2.3 Object-class (C) member methods (MM, AM, IAM, M) directly access

(MOAccessO) global objects (O).

The informal association relationship between an object whose member, accessible

or inaccessible methods directly access a global object can only be discerned from

examination of the code that implements the accessing object's instantiating class

and the code of any ancestor classes it may have. This relationship cannot be

discerned from examination of the instantiating class declaration or the global

object's instantiating class declaration.

7.2.4 Object-class (C) has accessible or inaccessible (AA, IAA) static attributes (A).

The inheritance of a static attribute provides an unstated relationship between the

set of objects comprised of all objects instantiated from the parent class within

which the static attribute is declared and all objects instantiated from descendent

classes of this parent.

7.2.5 Object-class (C) has inherited (IP, IDA) friend (CEF) classes (C).

A friend type relationship is inherited. A friend class can directly access all the

elements a class inherits from an ancestor with that friend class. The friend class

may be able to directly access some or all of the accessible and inaccessible

elements of objects instantiated from the descendent class. This results in an

unstated relationship between the descendent classes and the friend class.

Chapter 4 - Entity Modelling

 111

7.2.6 Object-class (C) has inherited (IP, IDA) friend (FF) global functions (F).

An immediate or distant inheritance relationship with a class having a declared

friend global function results in an unstated relationship between the descendent

classes and the friend global function. This is because the friend global function

may be able to directly access some or all of the accessible and inaccessible

elements of the descendent class.

7.3 Distant Connection - The connection is between a module and an external element with a

distant, indirect relationship.

7.3.1 Object-class (C) member methods (MM, AM, IAM, M) directly access (MGReadV,

MGWriteV) a global variable (V) that is also directly accessed (MGReadV,

MGWriteV) by member methods (MM, AM, IAM, M) of another object-class (C).

An object has an indirect, distant connection to another object when they share

access to a common global variable.

7.3.2 Object-class (C) member methods (MM, AM, IAM, M) directly access a non-global

object (O) to which the object-class is not directly associated (no model set

defined).

An object has an indirect, distant connection to another non-global object when it

accesses elements of the object even thought it does not have a direct association

relationship with the object. This situation occurs when an object associated with

an object-class has another object visible in its interface. The object-class can

directly access this distant interface object.

7.4 Unexpected Relationship - The relationship from a module to an external element is an

unexpected one that users would not commonly look for and recognise.

7.4.1 Object-class (C) member methods (MM, AM, IAM, M) directly access

(MGWriteV, MGReadV) one or more global variables (V).

Connection between objects of the same class type via a shared global variable is

not a standard relationship between objects.

7.4.2 Object-class (C) member methods (MM, AM, IAM, M) directly access (MGReadV,

MGWriteV) a global variable (V) that is also directly accessed (MGReadV,

MGWriteV) by member methods (MM, AM, IAM, M) of another object-class (C).

Connection between objects of different class type via a shared global variable is

not a standard relationship between objects.

7.4.3 Object-class (C) has one or more friend (CEF, CIF) classes (C).

Friendship is not the standard relationship between objects.

Chapter 4 - Entity Modelling

 112

7.4.4 Object-class (C) has one or more friend (FF, FIF) global functions (F).

Friendship is not the standard relationship between global functions and objects.

7.4.5 Object-class (C) is friend (CEF, CIF) to one or more classes (C).

Friendship is not the standard relationship between objects.

7.4.6 Object-class (C) has one or more member (MA, AA, IAA) static attributes (A).

Connection between objects via a shared static attribute is not a standard

relationship between objects.

7.5 Connection via Non-standard Interface - Connection between a module and an external

element takes place outside the standard module interface.

7.5.1 Object-class (C) member methods (MM, AM, IAM, M) directly access (MGReadV,

MGWriteV) a global variable (V) that is also directly accessed (MGReadV,

MGWriteV) by member methods (MM, AM, IAM, M) of another object-class (C).

A global variable is not part of the standard interface of an object.

7.5.2 Object-class (C) member methods (MM, AM, IAM, M) directly access the

attributes (MOAccessO) of an object (O).

A standard object interface does not contain attributes.

7.5.3 Object-class (C) member methods (MM, AM, IAM, M) directly access the hidden

elements (no model set defined) of an object (O).

An object's hidden elements are not part of its standard interface.

7.5.4 Object-class (C) member methods (MM, AM, IAM) directly access the inaccessible

elements (no model set defined) of an object (O).

An object's inaccessible elements are not part of its standard interface.

7.5.5 Object-class (C) attributes directly accessed (MOAccessO, OIC) by the member

methods (MM, AM, IAM, M) of another object-class (C).

A standard object interface does not contain data elements.

7.5.6 Object-class (C) attributes directly accessed (FOAccessO, OIC) by a global function

(F).

A standard object interface does not contain data elements.

7.5.7 Object-class (C) hidden elements directly accessed (no model set defined) by

member methods (MM, AM, IAM, M) of another object-class (C).

Hidden elements are not part of an object's interface.

Chapter 4 - Entity Modelling

 113

7.5.8 Object-class (C) inaccessible elements directly accessed (no model set defined) by

member methods (MM, AM, IAM, M) of another object-class (C).

Inaccessible elements are not part of an object's interface and are in fact

inaccessible to their own object's member elements thus for an external object to be

able to access them is a highly non-standard form of connection.

7.5.9 Object-class (C) hidden elements directly accessed (no model set defined) by a

global function (F).

Hidden elements are not part of an object's interface.

7.5.10 Object-class (C) inaccessible elements directly accessed (no model set defined) by

a global function (F).

Inaccessible elements are not part of an object's interface and are in fact

inaccessible to their own object's member elements thus for a global function to be

able to access them is a highly non-standard form of connection.

4.2.4.4.2 Mathematical model of C++ object connection obscurity

The entity-relationship model of C++ object connection obscurity is illustrated in Figure 4-15.

The set definitions of the entities and relationships of this connection obscurity model are

detailed in Appendix 1. As discussed in section 4.2.4.4.3, situations exist in which this

mathematical model is unable to fully describe all the features of the object connection

obscurity natural language model.

Chapter 4 - Entity Modelling

 114

Figure 4-15 C++ object connection obscurity mathematical model

M N

CLASS
C

OBJECT

O
Object

Accesses
FOAccessO

N

M

Object
Accesses

MOAccessO

N

M

Class Element
Immediate Friend

CEF
M

N

Function
Immediate Friend

FF

M N

M

N
Inherits Parent

IP

Inherits Distant
Ancestor

IDA
N

METHOD

M

Has Accessible
AM

M

N
Has Inaccessible

IAM

M

N

Has Member
MM

1

N

ATTRIBUTE

A

Has Member
MA

1

N
Has Inaccessible

IAA

M

N

Has Accessible
AA

M

N

GLOBAL FUNCTION

F

GLOBAL VARIABLE

V

Global Invokes
MGInvF

Global Reads
MGReadV

N

M

Global Writes
MGWriteV

N

M

N

M

Has Accessible
AO

M

N
Has Inaccessible

IAO

M

N

Has Member
MO

M

1 M

Instance Of
OIC

1
Class Element

Inherited Friend
CIF

M

Function
Inherited Friend

FIF

N M

Global Object
Within Scope

SO

M

N

Chapter 4 - Entity Modelling

 115

4.2.4.4.3 C++ object connection obscurity mathematical model completeness

The entity-relationship model of C++ object-class connection obscurity is unable to completely

describe all the elements of an object-class when it inherits elements from more than one

version of an ancestor class. This situation has been previously discussed in the C++ object

model description section 4.2.4.1.3. This shortcoming affects points 7.1.1, 7.2.4, 7.2.5, 7.2.6

and 7.4.6 of the object connection obscurity natural language model. Measure of object

connection obscurity using sets AM, IAM, AA, IAA, AO and IAO may have reduced validity

for object-classes inheriting multiple times from the same ancestor class.

Another shortcoming of the object connection obscurity mathematical model is that it is unable

to describe the particular object methods or attributes accessed by a method or global function.

This is because each object entity in the model is not assigned its own instances of methods and

attributes. The mathematical model is only able to describe, in relations MOAccessO and

FOAccessO, the more general information that an object is accessed by a method or global

function and that this access is either an attribute read, attribute write or method invocation.

MOAccessO = {(mi, oi, action)} = {(m.mi, o.oi, action) | m ∈ M ∧ o ∈ O ∧ action ∈

{read, write, invoke) ∧ (method m directly object-accesses object o)}

FOAccessO = {(fi, oi, action)} = {(f.fi, o.oi, action) | f ∈ F ∧ o ∈ O ∧ action ∈ {read,

write, invoke) ∧ (global function f directly object-accesses object o)}

The implication of this is that object connection obscurity natural language model points 7.5.3,

7.5.4, 7.5.7, 7.5.8, 7.5.9 and 7.5.10 cannot be described by measures defined in terms of the

object connection obscurity mathematical model. The aspects of object connection obscurity

described by points 7.5.3, 7.5.4, 7.5.7, 7.5.8, 7.5.9 and 7.5.10 only arise when an object has a

friend relationship with a class or global function. The connection obscurity measurement data

obtained from objects in a friend relationship should be interpreted in the knowledge that the

measured values possibly underestimate the level of connection obscurity present in these

objects.

Chapter 4 - Entity Modelling

 116

4.2.4.5 Dependency sub-characteristic of C++ object modularity

In section 3.2.3.4, dependency is conceptually defined as the degree to which a module depends

on external elements in order that it can perform its own functions correctly. Service

invocation, interface provision, external variable reading and external function writing are

identified as the most refined dependency sub-characteristics. The following natural language

and mathematical models describe features of C++ software that increase the levels of service

invocation, interface provision, external variable reading and external function writing of an

object module, thereby reducing its modularity.

4.2.4.5.1 Natural language model of C++ object dependency

8. Dependency : C++ object module

8.1 Service Invocation - The dependence of a module on services provided by elements

external to itself.

8.1.1 Object-class (C) member methods (MM, AM, IAM, M) directly invoke (MGInvF)

one or more global functions (F).

To perform its own tasks, an object needs to invoke the services of a global

function.

8.1.2 Object-class (C) member methods (MM, AM, IAM, M) directly invoke methods

(MOAccessO) of other objects (O).

To perform its own tasks, an object needs to invoke the services of another object.

8.2 Interface Provision - The dependency of a module on external modules to provide some

or all of its interface elements.

8.2.1 Object-class (C) interface elements (AM, M, AA, A) provided by ancestor classes.

The class from which it is instantiated does not directly provide all the interface

elements of an object. Inherited elements appear within the object's interface.

8.3 External Variable Reading - The degree to which the module's state is dependent on

values contained in external variables.

8.3.1 Object-class (C) member methods (MM, AM, IAM, M) directly read (MGReadV)

global variables (V).

The object relies on state information held in a global variable that is external to

itself.

8.3.2 Object-class (C) member methods (MM, AM, IAM, M) directly read an attribute

(MOAccessO) of another object (O).

The object relies on state information held within an object external to itself.

Chapter 4 - Entity Modelling

 117

8.4 External Function Writing - The degree to which the module's state is dependent on

values written, by external functions, to attributes or external variables from which the

module directly reads.

8.4.1 Object-class (C) member methods (MM, AM, IAM, M) directly read (MGReadV)

from a global variable (V) directly written (MGWriteV) by member methods (MM,

AM, IAM, M) of another object-class (C).

The object relies on another object to maintain a global variable with a value

compatible with its own correct operation.

8.4.2 Object-class (C) member methods (MM, AM, IAM, M) directly read (MGReadV)

from a global variable (V) directly written (FGWriteV) by a global function (F).

The object relies on a global function to maintain a global variable with a value

compatible with its own correct operation.

8.4.3 Object-class (C) attribute directly written (FOAccessO) by a global function (F).

The object relies on a global function to maintain one of its own attributes with a

value compatible with its correct operation.

8.4.4 Object-class (C) member methods (MM, AM, IAM, M) directly class-read

(MCReadA) from a static attribute (A) that is directly class-written (MCWriteA) by

a member method (MM, AM, IAM, M) of another object class (M).

The object relies on another object to maintain a static attribute with a value

compatible with its own correct operation.

8.4.5 Object-class (C) member methods (MM, AM, IAM, M) directly object-read a static

attribute (not described by model) directly object-written to (no model set

defined) by another object-class (C).

The object relies on another object to maintain a static attribute with a value

compatible with its own correct operation.

8.4.6 Object-class (C) member attributes (MA, AA, IAA, A) directly object-written to

(MOAccessO) by the member methods (MM, AM, IAM, M) of another object-class

(C).

The object relies on another object to maintain an attribute with a value compatible

with its own correct operation.

4.2.4.5.2 Mathematical model of C++ object dependency

The entity-relationship model of C++ object dependency is illustrated in Figure 4-16. The set

definitions of the entities and relationships of this connection obscurity model are detailed in

Chapter 4 - Entity Modelling

 118

Appendix 1. As discussed in section 4.2.4.5.3, situations exist in which this mathematical

model is unable to fully describe all the features of the object dependency natural language

model.

Figure 4-16 C++ object dependency mathematical model

CLASS

C

OBJECT

O
Object

Accesses
FOAccessO

N

M

Object
Accesses

MOAccessO

N

M

METHOD

M

Has Accessible
AM

M

N
Has Inaccessible

IAM

M

N

Has Member
MM

1

N

ATTRIBUTE

A

Has Member
MA

1

N
Has Inaccessible

IAA

M

N

Has Accessible
AA

M

N

GLOBAL FUNCTION

F

GLOBAL VARIABLE

V

Global Invokes
MGInvF

Global Reads
MGReadV

N

M

Global Writes
MGWriteV

N

M

N

M

M

1

Instance Of
OIC

Global-Writes
FGWriteV N M

 Class-Reads
MCReadA

Class-Writes
MCWriteA

N M

N M

Chapter 4 - Entity Modelling

 119

4.2.4.5.3 C++ object dependency mathematical model completeness

The entity-relationship model of C++ object-class dependency is unable to completely describe

all the elements of an object-class when it inherits elements from more than one version of an

ancestor class. This situation has been previously discussed in the C++ object model

description section 4.2.4.1.3. This shortcoming affects point 8.2.1 of the object external

relationships natural language model. Measure of object dependency using sets AM, IAM, AA

and IAA may have reduced validity for object-classes inheriting multiple times from the same

ancestor class.

Another shortcoming of the object dependency mathematical model is that it is unable to

describe the particular object methods or attributes accessed by a method or global function.

This situation has been previously discussed in the C++ object connection obscurity

mathematical model completeness section 4.2.4.4.3. The implication of this is that object

dependency natural language model point 8.4.5 cannot be described by measures defined in

terms of the object connection obscurity mathematical model. This aspect of object dependency

only arises when one or more object-classes have static attributes. The dependency

measurement data obtained from software systems containing static attributes should be

interpreted in the knowledge that the measured values possibly underestimate the level of

dependency present in some objects.

4.2.4.6 Summary: object mathematical model completeness

In certain situations, the C++ object mathematical entity-relationship models are unable to fully

describe the object modularity natural language models. These shortcomings have been

discussed in sections 4.2.4.1.3, 4.2.4.2.3, 4.2.4.3.3, 4.2.4.4.3 and 4.2.4.5.3. If a software system

contains features that cannot be modelled by the object mathematical models, then the system

description obtained from these models will be incomplete.

Table 4-3 summarises the shortcomings of the C++ object modularity entity-relationship

mathematical models. Each shortcoming is assigned an identification number, described, and

the situation in which the mathematical model is unable to fully describe the software

identified.

The final column of Table 4-3 indicates measures that can be used to identify object-classes

that are possibly incompletely described by object mathematical models. Object-classes

Chapter 4 - Entity Modelling

 120

identified in this way should be further examined to determine whether this is the case.

Measures CER2, OER5:OCM4, OER6:OCM5, OER7:OCM6 and OER8:OCM7 are defined in

Chapter 5.

Id. Mathematical model shortcoming Situation in which it occurs Indicative measure

1 Unable to describe all object
inherited attributes and methods.

Inheritance of more than
one copy of the same class.

Only possible in
classes with one or
more distant ancestor
classes.

CER2.total > 0

2 Unable to record that object
hidden or inaccessible elements
are directly accessed by an
external method or global
function.

When an object-class with
hidden or inaccessible
elements has immediate or
inherited friend classes or
global functions.

Only possible when
class or global
function are friend to
the accessed object-
class.

OER6:OCM5.total >
0
OER7:OCM6.total >
0

3 Unable to record that object-class
directly accesses the hidden or
inaccessible elements of another
object.

Where an object-class is an
immediate or inherited
friend to objects with
hidden or inaccessible
elements.

Only possible when
object-class is friend
to another object-
class.

OER8:OCM7.total >
0

4 Unable to record that an object
directly reads or writes another
object's static attribute.

Where an object-class
accesses an object with a
static attribute.

Only possible in a
software system with
static attributes.

OER5:OCM4.total >
0

Table 4-3 Shortcomings of C++ object modularity mathematical models

The following points indicate the particular mathematical model shortcomings that affect each

object modularity model.

• Object entity model has shortcoming 1.

• Interface dependence object model has

• shortcoming 1 affecting all points of the natural language model.

• External relationships object model has

• shortcoming 1 affecting points 6.1.1 and 6.1.5 of the natural language model.

Chapter 4 - Entity Modelling

 121

• Connection obscurity object model has

• shortcoming 1 affecting points 7.1.1, 7.2.4, 7.2.5, 7.2.6 and 7.4.6 of the natural

language model.

• shortcoming 2 affecting points 7.5.7, 7.5.8, 7.5.9 and 7.5.10 of the natural language

model.

• shortcoming 3 affecting points 7.5.3 and 7.5.4 of the natural language model.

• Dependency object model has

• shortcoming 1 affecting point 8.2.1 of the natural language model.

• shortcoming 4 affecting point 8.4.5 of the natural language model.

Once those object-classes possibly affected by the described situation are identified using the

indicative measures, they can be examined using code analysis software such as Understand for

C++ (Scientific Toolworks Inc. 2004) to determine whether or not the identified shortcoming

applies. If it does, then the object-class will not be completely described by the mathematical

model. This in turn means that some measures describing the modularity of this object cannot

be fully implemented. In this situation, a potential user must decide whether or not to proceed

with measuring the software system given that the modularity of some objects will not be fully

described by the measures. If the user does proceed with the measurement, data analysis may

need to take into account the fact that the modularity of the affected object classes may be less

than the measured values would indicate. The issue of measure validity is discussed in greater

detail in Chapter 5.

4.2.4.7 Object modularity sub-characteristics sharing identical feature descriptions

Similarly to class modularity, several modularity sub-characteristics are listed in the natural

language model of C++ object modularity with the same features affecting their presence in the

software. The implications of this are the same as those for class modularity measurement, as

discussed in Section 4.2.3.6. Table 4-4 lists these sub-characteristics with their associated

common features. Table 5-32 in Chapter 5 lists the measures quantifying common software

features of C++ object modularity.

Chapter 4 - Entity Modelling

 122

Object Modularity Sub-characteristics

Feature

Interface Dependence : Interface Implementation Dependence: Interface Size
Interface Dependence : Interface Implementation Dependence: Data Exposure

5.2.1
5.3.1

Interface Dependence : Interface Implementation Dependence: Interface Size
Interface Dependence : Interface Implementation Dependence: Data Exposure

5.2.3.3
5.3.2

External Relationships
Connection Obscurity : Non-standard Connection : Unexpected Relationship

6.1.5
7.4.6

External Relationships
Connection Obscurity : Non-standard Connection : Unexpected Relationship

6.1.6
7.4.3

External Relationships
Connection Obscurity : Non-standard Connection : Unexpected Relationship

6.1.7
7.4.4

External Relationships
Connection Obscurity : Non-standard Connection : Unexpected Relationship

6.1.8
7.4.5

Connection Obscurity : Unstated Relationship
Connection Obscurity : Non-standard Connection : Unexpected Relationship

7.2.1
7.4.1

Connection Obscurity : Unstated Relationship
Dependency : Service Invocation

7.2.2
8.1.1

Connection Obscurity : Distant Connection
Connection Obscurity : Non-standard Connection : Unexpected relationship
Connection Obscurity : Non-standard Connection : Connection via Non-standard
 Interface

7.3.1
7.4.2
7.5.1

Table 4-4 Object modularity sub-characteristics sharing common natural language model
features

4.3. Conclusion

Entity modelling to describe the features that affect the levels of a characteristic present in an

entity is the second stage of the systematic measure development process. A natural language

entity model is an essential product of this stage. An accompanying mathematical model is

optional but advantageous when precise, unambiguous measure definitions can be made in

terms of this mathematical model. Prerequisite to entity modelling is the conceptual definition

of the characteristic to be described by the developed measures, and a theoretical basis

describing the ways in which the features of the entity to be measured affect the levels of

characteristic present. Together, the conceptual definitions and natural language entity models

express the theoretical basis from which the descriptive measures are developed. The natural

language entity model is an essential, and the mathematical model an optional prerequisite to

the subsequent measure operational definition stage of descriptive measure development.

Chapter 4 - Entity Modelling

 123

The natural language entity model is important because it specifically describes the links from

the tangible features of the entity, quantified by the descriptive measures, to the entity

characteristic of interest. This information facilitates the appropriate application of the

measures as well as the subsequent analysis and interpretation of measured data. The

mathematical model is important because it precisely and unambiguously describes the

software and provides a framework within which measures can be concisely and

unambiguously defined in terms of the mathematical model components. It is important that the

mathematical model be used in conjunction with a natural language model because only the

natural language model describes how the software features described by the mathematical

model affect the levels of characteristic of interest present in the software. When deciding to

use a mathematical entity model, consideration should be given to the validity of its description

of the software. Ideally, the selected type of mathematical model is able to describe all the

software features of the natural language model. In practice, this may not be the case and the

measure development process may need to accommodate some model shortcomings or use

alternative mathematical models.

In this chapter, the process of entity modelling of C++ software has been demonstrated. The

conceptual definitions of modularity, described in section 3.2, along with Meyer's (1997) rules

of object oriented software modularity, provided the basis for this entity modelling. Entity-

relationship type mathematical models describe the software features identified in the natural

language model as affecting the levels of class and object modularity present in the C++

software. Some features of this natural language model are only partially described by their

associated mathematical model and some features are not described at all. These shortcomings

are documented and should be considered at the operational definition and measurement

instrument implementation stages of measure development. They will also need to be

considered whenever the developed measures are applied, analysed and interpreted.

The operational measure definition stage of measure development, as presented in Chapter 5,

can proceed once the prerequisite natural language and optionally, mathematical models, have

been defined to describe the features of the software that affect the levels of characteristic

present.

Chapter 5 - Operational Measure Definition

 124

5. Operational Measure Definition

This chapter describes the operational

definition stage of software descriptive

measure development. This stage

corresponds to the shaded box in the Figure

5-1 diagrammatic representation of the

measure development process. Section 5.1

of this chapter discusses the development

of measures to operationally define a

characteristic. Section 5.2 demonstrates

operational definition by developing

operational measure definitions of C++

class and object modularity, based on the

C++ class and object modularity natural

language and mathematical entity models

developed in section 4.2 of Chapter 4.

Figure 5-1 Operational definition stage of
the measure development process

5.1. Stage 3 of measure development process - operational definition

In general terms, "An operational definition … describes the meaning of a concept through

specifying the procedures or operations necessary to measure it." (Diamantopoulos &

Schlegelmilch 1997, p. 22). When developing descriptive measures of software characteristics,

the operational definition stage describes the software characteristic of interest in terms of

natural language measure definitions and optional mathematical measure definitions. These

measures quantify the features of the software identified in the natural language entity models

as affecting the levels of characteristic of interest present in the software. The natural language

entity models identify these features and describe the ways in which they affect the levels of

characteristics and sub-characteristics present in the software. At least one measure should be

defined to describe each feature of the natural language entity model. If a natural language

model feature is not described by any measures, then the final description obtained from the full

set of measure will be lacking in that particular detail.

Characteristic
Operational Definition

Entity Modelling

Operational Definition

Conceptual Definition

Measurement
Instrument
Implementation

Chapter 5 - Operational Measure Definition

 125

Natural language measure definitions are initially more easily understood by a user; however it

can be difficult to precisely define a complex measure in this way. A mathematical measure

definition can supplement the natural language definition by providing a precise, unambiguous

measure definition. Ideally, natural language and mathematical measure definitions are

developed to impart both readability and precision to the operational definition stage of

measure development. Both natural language and mathematical measure definitions have been

used by previous software measure development projects to describe software characteristics.

Chidamber and Kemerer (1994) define measures of object oriented class design complexity

using a combination of natural language and some mathematical measure definitions. Briand,

Daly and Wust (1997b; 1999a) redefine some of these measures less ambiguously in terms of a

more precise mathematical model of the software. Abreu and Carapuca (1994) mathematically

define measures of object oriented software quality based on a mathematical software model. Li

(1998) defines measures only in natural language terms. These measure development projects

show that both natural language and mathematical measure definitions are appropriate for the

development of measures that quantify software structural features.

Specifying the particular aspect of the characteristic of interest described by each measure is as

important as clearly and unambiguously defining the measure because this information is

needed to select appropriate measures for a particular application and to interpret the measured

data. The operational measure definition stage of the systematic process of measure

development described in this thesis directly links each measure definition to the particular

aspect of the characteristic of interest it describes. These links are established via the natural

language entity model. The clear and explicit statement of the links from measures to natural

language model features to characteristics differentiates the measures developed in this thesis

from other previously developed sets of object oriented software measures. For example,

Chidamber and Kemerer (1994, p. 483) define a measure of depth of inheritance tree (DIT).

This measure quantifies an inheritance feature of object oriented software, and the "viewpoints"

(Chidamber and Kemerer 1994, p.483) that accompany this measure definition directly relate

DIT to class complexity. What is missing is a description of the particular aspect of class

complexity affected by the depth of the class in the inheritance tree. An entity model of class

complexity, similar to that developed in Chapter 4 could have provided this information. As it

is, a user of the DIT measure must interpret measured data based on the general statement that

"The deeper a class is in the [inheritance] hierarchy, the greater the number of methods it is

likely to inherit, making it more complex to predict its behaviour." (Chidamber & Kemerer

1994, p. 483).

Chapter 5 - Operational Measure Definition

 126

The process of measure development described and demonstrated in this thesis supports the

development of measures based on explicit descriptions of the ways in which each measured

software feature affects the levels of characteristics and sub-characteristics of interest present in

the software. In this thesis, the operational definition stage results in measure definitions with

accompanying information identifying the particular aspect of a characteristic that each

measure describes. The following sections describe the operational definition stage of measure

development in terms of its prerequisites, performance and products.

5.1.1 Prerequisites to operational definition stage

The essential prerequisites to the operational definition stage are the conceptual definition of

the characteristic to be described by the measures and a natural language entity model

describing software features that affect the level of this characteristic present in software. An

optional but useful prerequisite is a mathematical model of the software describing these

identified software features.

5.1.2 Performance of operational definition stage

Once the prerequisite requirements have been met, the operational measures can be defined.

One or more measures should be defined to quantify each feature identified in the software

characteristic natural language model. Measures should be defined in natural language terms

and, where a suitable mathematical model has been developed, the measure may also be more

precisely defined in terms of this mathematical model.

5.1.3 Product of operational definition stage

The product of the operational definition stage is a set of measures. These measures quantify

the software features that are identified in the natural language entity model and which affect

the level of characteristic of interest present in the software. Each measure should be directly

associated with a feature of the natural language model so that it can be traced through this

model to the particular aspect of the characteristic of interest it describes. This traceability will

facilitate measure content validation and support a user as they analyse and interpret the data

obtained from applying the measures to a software system. The characteristic to measure

relationship (CHARMER) diagram of Figure 5-2 describes the relationships between measures,

the natural language entity model features they quantify and the software characteristics thus

described.

Chapter 5 - Operational Measure Definition

 127

Using the CHARMER diagram, a measure can be traced to the sub-characteristics and

characteristics it describes, and conversely, a characteristic can be traced to the measures that

describe it.

 software characteristic

 sub-characteristic 2

sub-characteristic 1 sub-characteristic 2.1 sub-characteristic 2.2

 feature 1.2.3

 feature
1.1.1

 feature
1.2.1

 feature
1.2.3.1

 feature
1.2.3.2

 feature
1.3.2

 feature
1.1.2

 feature
1.2.2

 feature
1.3.1

 condition 1

 measure
1.1

measure
2.1.1

measure
2.1.2

 measure
2.1.3

measure
2.1.4

measure
2.1.5

measure
2.2.2

measure
2.2.3

 measure
1.2

 measure
2.2.1

Figure 5-2 Characteristic to measure relationship (CHARMER) diagram

The boxes of the Figure 5-2 CHARMER diagram represent products of the measure

development process. Figure 5-2 shows that the conceptual definition stage of measure

development can produce a sub-characterisation of the characteristic of interest. The entity

modelling stage follows from conceptual definition by identifying software features affecting

the levels of characteristic and sub-characteristics present in the software. This in turn leads to

the definition of a set of measures to quantify the identified features. The lines connecting the

boxes in Figure 5-2 indicate development links between these products. These lines may be

Entity Modelling

Conceptual Definition

Operational Definition

Chapter 5 - Operational Measure Definition

 128

annotated to indicate conditional links between products. For example, in Figure 5-2, measure

2.1.3 provides a description of software feature 1.2.3.1 only if condition 1 is met. A product

that does not proceed to the next stage indicates a problem encountered in the measure

development process.

The result of any failure to proceed is that an aspect of the characteristic of interest will not be

described by a measure. For example, in Figure 5-2, software feature 1.2.2 is not described by a

measure. This means that an aspect of sub-characteristic 2.1 is not described and from this, an

aspect of sub-characteristic 2 is not described and finally, an aspect of the main software

characteristic is not described by a measure. The practical application of CHARMER diagrams

to describe the operational definition of a characteristic is demonstrated in the section 5-2

operational definition of C++ class and object modularity measures.

5.1.4 Assessing measure level of measurement and validity

The Figure 1-3 illustration of the systematic descriptive measure development process shows

that operational measure definition validity and level of measurement should be assessed. The

level of measurement is an individual trait of each measure and describes in general terms the

amount of information conveyed by the measure, and the type of "mathematical/statistical

operations that can be applied to the resulting data." (Diamantopoulos & Schlegelmilch 1997,

p. 24).

Validation demonstrates the degree to which the measures provide an adequate description of

the characteristic of interest. While there are several different types of validity, content validity

is most appropriate for the operational definition stage of measure development as it is designed

to demonstrate the degree to which the defined measures quantify the software features

identified in the natural language entity model.

5.1.5 Practical Considerations

If the conceptual definition and entity modelling stage of measure development have been

executed with sufficient care and attention to detail, the operational definition stage should

proceed smoothly with measures being defined to quantify the software features that have

already been identified in the natural language models. If problems are encountered in

Chapter 5 - Operational Measure Definition

 129

identifying the features to quantify or if the measures appear to provide an insufficiently

detailed description of the software, then the measure developer may need to repeat the

conceptual definition and/or entity modelling stages.

Assuming sufficiently detailed conceptual definitions and entity models, the main operational

definition challenges are ensuring that the measure definitions are unambiguous and that they

can be understood. A mathematical measure definition aims to reduce the ambiguity of a

measure definition, while an accompanying natural language definition will help a potential

user understand this definition.

Once the set of measures has been defined, their level of measurement and the validity should

be assessed. While determining the level of measurement achieved by a measure is

straightforward, assessment of the validity of the set of measures is a more complex task. For

the measures developed using the process described in this thesis, demonstration of content

validity is appropriate. This does not mean that other forms of validation are not important or

relevant. Once content validity has been established, demonstration of other types of validity

will mean that the measures can be used for tasks such as predicting future software

characteristics or validating other measures describing the same characteristic. Such further

validation is beyond the scope of this study but could form the basis of future work.

The following section 5.2 demonstrates the operational definition of C++ class and object

modularity by defining descriptive measures to quantify the software features identified in the

Chapter 4, section 4.2 natural language models of C++ class and object modularity.

5.2. Operational definition of C++ class and object modularity

This section describes the operational definition of C++ class and object modularity. Features

identified in the natural language models of class and object modularity will be quantified by

the defined measures. Both natural language and mathematical measure definitions are

developed. The natural language definitions are intended to be used only as a guide to reading

the mathematical definitions. For this reason, the natural language definitions, while relatively

easy to understand, are too general to be used on their own The mathematical definitions offer

sufficient precision to operationally define the characteristic but are somewhat more difficult to

understand.

Chapter 5 - Operational Measure Definition

 130

The first part of this section discusses the notation used to mathematically define the measures.

Following this, the measures describing C++ class and object modularity are fully defined. The

links between these measures and the modularity sub-characteristics they describe are detailed

in CHARMER diagrams. The final part of this section discusses content validation of the

modularity measures. The sub-characteristics to measure relationship (CHARMER) diagrams

facilitate this content validation.

The measures are named according to the sub-characteristic they describe. All class modularity

measures start with a C and all object modularity measures start with an O. Multiple measures

describing the same sub-characteristic are distinguished by number.

5.2.1 Prerequisites

The prerequisite to the measure operational definition stage is an entity model describing the

features of the software that affect the levels of characteristic present. The entity models

developed in section 4.2 of the previous chapter form the basis of the work performed in this

section. A mathematical entity model has been defined and so, measures are mathematically

defined in terms of this model. The following section discusses the notation used to define

these measures.

5.2.2 Mathematical measure definition notation

The relational calculus notation described by Grassmann and Tremblay (1996, pp. 620-624) is

used to mathematically define the modularity measures. This style of mathematical measure

definition is based on the style of measure definition employed by Briand, Daly and Wust

(1997, 1999) and is similar to that of Arisholm, Briand and Foyen, (2004) although developed

independently of these researchers. The advantage of using relational calculus notation is that it

readily converts to relational database queries (Grassmann & Tremblay 1996, p. 620), which

facilitates the implementation of the measures in a relational database application. The

following symbols are used in the measure definitions.

Chapter 5 - Operational Measure Definition

 131

∃ there exists ∧ and
¬∃ there does not exist ∨ or
| where ∪ union
∈ is an element of ∩ intersection
∉ is not an element of ∀ for all
≠ logical inequality # number of elements in the set
= can mean either logical equality or assignment equality depending on the context

(a, total) the element pair of 'a' and 'total'
{(a, total)} the set of all element pairs of 'a' and 'total'

when y ∈ {(a, total)}, y.a refers to the 'a' part of element y and y.total refers to the 'total' part of
element y.

The following example defines measure CIS1 in natural language and mathematical terms using

relational calculus notation and demonstrates how the relational calculus notation can be

interpreted.

Measure definition CIS1 quantifies, for each class, the number of member interface

attributes.

CIS1 = {(ci, total)} = {(x.ci, total) | x ∈ C ∧ total = #{y.ai | y ∈ A ∧ y.ci = x.ci ∧

y.protection ∈ {public, protected}}}

where

'C' denotes the set of classes {(ci, name)} where 'ci' is a unique integer

identifier and 'name' is a valid C++ class name.

'A' denotes the set of attributes {(ai, ci, protection, name)} where ('ai' is a

unique integer identifier) and 'ci' is the identifier of the class of which attribute

'ai' is a member and 'protection' is either "public", "protected" or "private" and

'name' is a valid C++ attribute name.

The CSI1 mathematical relational calculus notation measure definition is interpreted as:

Measure CIS1 is the set of element pairs (ci, total) which is the set of element pairs

(x.ci, total) where 'x' is an element of the set of classes C, and 'total' is the number of

elements in the set of all y.ai where 'y' is an element of the set of attributes A, and y.ci

equals x.ci and y.protection is either 'public' or 'protected'.

Chapter 5 - Operational Measure Definition

 132

The example below shows the correspondence between relational calculus notation measure

definition CIS1 and a database SQL query. The join between relations C and A is highlighted in

bold in the measure definition and implemented in the WHERE statement of the SQL query.

CIS1 = {(ci, total)} = {(x.ci, total) | x ∈ C ∧ total = #{y.ai | y ∈ A ∧ y.ci = x.ci ∧ y.protection ∈

{public, protected}}}

SELECT C.ci, Count(SELECT A.ai FROM A GROUP BY A.ai HAVING

((A.protection)="public" Or (A.protection)="protected")) AS total

WHERE C.ci = A.ci

GROUP BY C.ci;

Using relational calculus notation (Grassmann and Tremblay 1996, pp. 620-624), and the

mathematical entity models developed in section 4-2 of Chapter 4, descriptive measures of C++

class and object modularity are defined.

5.2.3 Measures of C++ class modularity

In Chapter 3, interface dependence, external relationships, connection obscurity and

dependency are identified as important sub-characteristics of object-oriented software

modularity. In Chapter 4, natural language and mathematical entity models are defined to

describe ways in which these modularity sub-characteristics are manifest in C++ classes and

objects. In this chapter, measures are defined to describe the degree to which C++ class and

object modules posses these modularity sub-characteristics. Each measure can be directly

traced to the sub-characteristic it describes.

These links are described in two ways. Firstly, each measure definition is named by an acronym

to reflect the sub-characteristic it describes. Also, point number of the natural language feature

each measure quantifies is included with its definition. For example, measure CSI1 defined in

the previous example describes feature 1.2.1 of the C++ class interface dependence natural

language model. This feature directly describes Class Interface Size, hence the measure is

named CSI. The numbers used to distinguish between the different CSI measures have no

special meaning. The second way in which the links between measures and sub-characteristics

are described is through the CHARMER diagram. This diagram traces each measure, through

the feature it quantifies, to the sub-characteristic it describes. This is useful when selecting

Chapter 5 - Operational Measure Definition

 133

measures for a particular application and analysing the interpreting the resulting measured data.

Alternatively, by traversing the diagram from characteristic to measure, it is possible to see

which sub-characteristics are described by measures and which are not. This is useful when

performing a content validation of the measure set.

Some measures, although describing separate sub-characteristics of modularity, are quantifying

the same features. This issue was discussed in section 4.2.3.6 of Chapter 4. To identify

measures quantifying the same features, the measure names are extended. For example,

measures CIS1 and CDE1 quantify the same feature. This is indicated by extending their names

to CIS1:CCM1 and CDE1:CCM1 to indicate they belong to the group of Class Common

Measure 1. Measures describing common features are identified this way in the tables where

they are defined. Tables 5-14 and 5-32 list the sets of measures describing common features.

5.2.3.1 Measures of C++ class interface dependence

Figure 3-3 shows that the interface dependence sub-characteristic of object oriented software

modularity is sub-characterised, at the lowest level, as interface element interdependence,

interface size and data exposure. The natural language and mathematical entity models of C++

class interface dependence are defined in section 4.2.3.2. These models describe software

features that increase the levels of C++ class interface element interdependence, interface size

and data exposure present in the software.

The following tables define measures that quantify the software features identified in the

natural language entity models of class interface dependence. These measures describe the

levels of interface element interdependence, interface size and data exposure present in a C++

class. The first row of each table indicates the particular sub-characteristic described by the

measures. The left-hand column of the table states the measure name and identifies the natural

language feature it quantifies. The right hand column defines the measure in natural language

and mathematical terms.

Chapter 5 - Operational Measure Definition

 134

Class Interface Dependence :
Interface Element Interdependence
CIEI1

Feature 1.1.1

For each class non-constructor or non-destructor interface method, the
number of same class interface attributes it directly reads.

CIEI1 = {(ci, mi, total)} = {(x.ci, x.mi, total) | x ∈ M ∧ x.protection ∈
{public, protected} ∧ x.purpose ∉ {constructor, destructor} ∧ total = #{y.ai
| y ∈ A ∧ y.protection ∈ {public, protected} ∧ x.ci = y.ci ∧ (x.mi, y.ai) ∈
MCReadA}}

CIEI2

Feature 1.1.1

For each class non-constructor or non-destructor interface method, the
number of same class interface attributes it directly writes.

CIEI2 = {(ci, mi, total)} = {(x.ci, x.mi, total) | x ∈ M ∧ x.protection ∈
{public, protected} ∧ x.purpose ∉ {constructor, destructor} ∧ total = #{y.ai
| y ∈ A ∧ y.protection ∈ {public, protected} ∧ x.ci = y.ci ∧ (x.mi, y.ai) ∈
MCWriteA}}

CIEI3

Feature 1.1.1

For each class non-constructor or non-destructor interface method, the
number of same class interface attributes it directly both reads and writes.

CIEI3 = {(ci, mi, total)} = {(x.ci, x.mi, total) | x ∈ M ∧ x.protection ∈
{public, protected} ∧ x.purpose ∉ {constructor, destructor} ∧ total = #{y.ai
| y ∈ A ∧ y.protection ∈ {public, protected} ∧ x.ci = y.ci ∧ (x.mi, y.ai) ∈
MCWriteA ∧ (x.mi, y.ai) ∈ MCReadA}}

CIEI4

Feature 1.1.2

For each class non-constructor or non-destructor interface method, the
number of same class interface attributes it indirectly reads.

CIEI4 = {(ci, mi, total)} = {(x.ci, x.mi, total) | x ∈ M ∧ x.protection ∈
{public, protected} ∧ x.purpose ∉ {constructor, destructor} ∧ total = #{y.ai
| y ∈ A ∧ y.protection ∈ {public, protected} ∧ x.ci = y.ci ∧ (x.mi, y.ai) ∈
MICReadA}}

CIEI5

Feature 1.1.2

For each class non-constructor or non-destructor interface method, the
number of same class interface attributes it indirectly writes.

CIEI5 = {(ci, mi, total)} = {(x.ci, x.mi, total) | x ∈ M ∧ x.protection ∈
{public, protected} ∧ x.purpose ∉ {constructor, destructor} ∧ total = #{y.ai
| y ∈ A ∧ y.protection ∈ {public, protected} ∧ x.ci = y.ci ∧ (x.mi, y.ai) ∈
MICWriteA}}

Table 5-1 Measures of C++ Class Interface Element Interdependence

Chapter 5 - Operational Measure Definition

 135

Class Interface Dependence :
Interface Element Interdependence (cont.)
CIEI6

Feature 1.1.2

For each class non-constructor or non-destructor interface method, the
number of same class interface attributes it indirectly both reads and writes.

CIEI6 = {(ci, mi, total)} = {(x.ci, x.mi, total) | x ∈ M ∧ x.protection ∈
{public, protected} ∧ x.purpose ∉ {constructor, destructor} ∧ total = #{y.ai
| y ∈ A ∧ y.protection ∈ {public, protected} ∧ x.ci = y.ci ∧ (x.mi, y.ai) ∈
MICWriteA ∧ (x.mi, y.ai) ∈ MICReadA}}

CIEI7

Feature 1.1.3

For each class non-constructor or non-destructor interface method, the
number of same class interface methods it directly invokes.

CIEI7 = {(ci, mi, total)} = {(x.ci, x.mi, total) | x ∈ M ∧ x.protection ∈
{public, protected} ∧ x.purpose ∉ {constructor, destructor} ∧ total = #{y.ai
| y ∈ M ∧ y.protection ∈ {public, protected} ∧ x.ci = y.ci ∧ (x.mi, y.mi) ∈
MCInvM}}

CIEI8

Feature 1.1.4

For each class non-constructor or non-destructor interface method, the
number of same class interface methods it indirectly invokes.

CIEI8 = {(ci, mi, total)} = {(x.ci, x.mi, total) | x ∈ M ∧ x.protection ∈
{public, protected} ∧ x.purpose ∉ {constructor, destructor} ∧ total = #{y.ai
| y ∈ M ∧ y.protection ∈ {public, protected} ∧ x.ci = y.ci ∧ (x.mi, y.mi) ∈
MICInvM}}

Table 5-2 Measures of C++ Class Interface Element Interdependence (cont.)

Chapter 5 - Operational Measure Definition

 136

Class Interface Dependence : Interface Implementation Dependence :
Interface Size
CIS1:CCM1

Feature 1.2.1

For each class, the number of interface attributes.

CIS1:CCM1 = {(ci, total)} = {(x.ci, total) | x ∈ C ∧ total = #{y.ai | y ∈ A ∧
y.ci = x.ci ∧ y.protection ∈ {public, protected}}}

CIS2

Feature 1.2.1

For each class, the number of hidden attributes.

CIS2 = {(ci, total)} = {(x.ci, total) | x ∈ C ∧ total = #{y.ai | y ∈ A ∧ y.ci =
x.ci ∧ y.protection = private}}

CIS3

Feature 1.2.2

For each class, the number of non-constructor or non-destructor interface
methods.

CIS3 = {(ci, total)} = {(x.ci, total) | x ∈ C ∧ total = #{y.mi | y ∈ M ∧ y.ci =
x.ci ∧ y.protection ∈ {public, protected} ∧ y.purpose ∉ {constructor,
destructor}}}

CIS4

Feature 1.2.2

For each class, the number of hidden methods.

CIS4 = {(ci, total)} = {(x.ci, total) | x ∈ C ∧ total = #{y.mi | y ∈ M ∧ y.ci =
x.ci ∧ (y.protection = private)}}

CIS5

Feature 1.2.3.1

For each class non-constructor or non-destructor interface method, the total
number of lines of code within the method.

CIS5 = {(ci, mi, total)} = {(x.ci, x.mi, y.lines) | x ∈ M ∧ x.protection ∈
{public, protected} ∧ x.purpose ∉ {constructor, destructor}}

CIS6

Feature 1.2.3.2

For each class non-constructor or non-destructor interface method, the total
number of same class, other methods directly invoked.

CIS6 = {(ci, mi, total)} = {(x.ci, x.mi, total) | x ∈ M ∧ x.protection ∈
{public, protected} ∧ x.purpose ∉ {constructor, destructor} ∧ total =
#{z.mi | z ∈ M ∧ z.ci = x.ci ∧ z.mi ≠ x.mi ∧ (x.mi, z.mi) ∈ MCInvM}}

CIS7:CCM2

Feature 1.2.3.3

For each class non-constructor or non-destructor interface method, the total
number of same class attributes directly read.

CIS7:CCM2 = {(ci, mi, total)} = {(x.ci, x.mi, total) | x ∈ M ∧ x.protection
∈ {public, protected} ∧ x.purpose ∉ {constructor, destructor} ∧ total =
#{z.ai | z ∈ A ∧ z.ci = x.ci ∧ (x.mi, z.ai) ∈ MCReadA}}

CIS8:CCM3

Feature 1.2.3.3

For each class non-constructor or non-destructor interface method, the total
number of same class attributes directly written.

CIS8:CCM3 = {(ci, mi, total)} = {(x.ci, x.mi, total) | x ∈ M ∧ x.protection
∈ {public, protected} ∧ x.purpose ∉ {constructor, destructor} ∧ total =
#{z.ai | z ∈ A ∧ z.ci = x.ci ∧ (x.mi, z.ai) ∈ MCWriteA}}

Table 5-3 Measures of C++ Class Interface Size

Chapter 5 - Operational Measure Definition

 137

Class Interface Dependence : Interface Implementation Dependence :
Data Exposure
CDE1:CCM1

Feature 1.3.1

For each class, the number of interface attributes.

CDE1:CCM1 = {(ci, total)} = {(x.ci, total) | x ∈ C ∧ total = #{y.ai | y ∈ A
∧ y.ci = x.ci ∧ y.protection ∈ {public, protected}}}

CDE2:CCM2

Feature 1.3.2

For each class non-constructor or non-destructor interface method, the total
number of same class attributes directly read.

CDE2:CCM2 = {(ci, mi, total)} = {(x.ci, x.mi, total) | x ∈ M ∧ x.protection
∈ {public, protected} ∧ x.purpose ∉ {constructor, destructor} ∧ total =
#{z.ai | z ∈ A ∧ z.ci = x.ci ∧ (x.mi, z.ai) ∈ MCReadA}}

CDE3:CCM3

Feature 1.3.2

For each class non-constructor or non-destructor interface method, the total
number of same class attributes directly written.

CDE3:CCM3 = {(ci, mi, total)} = {(x.ci, x.mi, total) | x ∈ M ∧ x.protection
∈ {public, protected} ∧ x.purpose ∉ {constructor, destructor} ∧ total =
#{z.ai | z ∈ A ∧ z.ci = x.ci ∧ (x.mi, z.ai) ∈ MCWriteA}}

CDE4

Feature 1.3.3

For each class attribute, its level of protection and the number of same
class, interface, non-constructor or non-destructor methods directly writing
to it.

CDE4 = {(ci, ai, protection, total)} = {(x.ci, x.ai, x.protection, total) | x ∈ A
∧ total = #{y.mi | y ∈ M ∧ x.ci = y.ci ∧ y.protection ∈ {public, protected}
∧ y.purpose ∉ {constructor, destructor} ∧ (y.mi, x.ai) ∈ MCWriteA}}

CDE5

Feature 1.3.3

For each class attribute, its level of protection and the number of same
class, interface, non-constructor or non-destructor methods directly reading
from it.

CDE5 = {(ci, ai, protection, total)} = {(x.ci, x.ai, x.protection, total) | x ∈ A
∧ total = #{y.mi | y ∈ M ∧ x.ci = y.ci ∧ y.protection ∈ {public, protected}
∧ y.purpose ∉ {constructor, destructor} ∧ (y.mi, x.ai) ∈ MCReadA}}

Table 5-4 Measures of C++ Class Data Exposure

The previous Tables 5-1 to 5-6 unambiguously define each measure of class interface

dependence and, by specifying a natural language entity model feature number, identify the

particular aspect of modularity described by each measure. The CHARMER diagram

supplements these tables by presenting the relationships between characteristics, features and

measures in a way that can be more readily understood. Figure 5-3 illustrates the C++ class

interface dependence sub-characteristic to measure relationships. In this CHARMER diagram,

the sub-characteristics are identified by name, the natural language model features by point

number and the descriptive measures by their acronym name. This diagram shows that all the

identified C++ class interface dependence sub-characteristics have associated features that are

Chapter 5 - Operational Measure Definition

 138

identified in the natural language model. It shows that all these identified features are described

by at least one measure. This means that all the identified C++ class interface dependence sub-

characteristics are described by their associated measures.

 C++ class interface dependence

 interface implementation dependence

interface element interdependence interface size data exposure

 1.2.3

1.1.1 1.1.3 1.2.1 1.2.3.1 1.2.3.3 1.3.2

 1.1.2 1.1.4 1.2.2 1.2.3.2 1.3.1 1.3.3

 CIEI7 CIS5

CIS1

CIS2

CIS7

CIS8

CDE2

CDE3

CIEI1

CIEI2

CIEI3

 CIEI8 CIS6 CDE1

CIS3

CIS4

CDE4

CDE5

CIEI4

CIEI5

CIEI6

Figure 5-3 C++ class interface dependence characteristic to measure relationship (CHARMER)
diagram

The following sections of this chapter present the operational definition of C++ class external

relationships, connection obscurity and dependency modularity sub-characteristics, and C++

object interface dependence, external relationships, connection obscurity and dependency

modularity sub-characteristics.

Chapter 5 - Operational Measure Definition

 139

5.2.3.2 Measures of C++ class external relationships

Figure 3-3 shows that the external relationships sub-characteristic of object oriented software

modularity is sub-characterised, at the lowest level, as external relationships within the

measured software system and external relationships outside the measured software system. As

previously discussed in section 3.2.3.3 of Chapter 3, measures will not be developed to describe

external relationships outside the measured software system. The natural language and

mathematical entity models of C++ class external relationships are defined in section 4.2.3.3.

These models describe software features that increase the levels of C++ class external

relationships present in the software.

The following table defines measures that quantify the software features identified in the

natural language entity models of class external relationships.

Class External Relationships :
External Relationships
CER1

Feature 2.1.1

For each class, the number of immediate parent classes it has. This is the
same for all hierarchies within which the class occurs.

CER1 = {(ci, total)} = {(x.ci, total) | x ∈ C ∧ total = #{y.parent_ci | y ∈ IP
∧ x.ci = y.ci}}

CER2

Feature 2.1.2

For each class, the number of distant ancestor classes it has. This is the
same for all hierarchies within which the class occurs.

CER2 = {(ci, total)} = {(x.ci, total) | x ∈ C ∧ total = #{y.ancestor_ci | y ∈
IDA ∧ x.ci = y.ci}}

CER3

Feature 2.1.3

For each class, the number of immediate child classes it has.

CER3 = {(ci, total)} = {(x.ci, total) | x ∈ C ∧ total = #{y. ci | y ∈ IP ∧ x.ci
= y.parent_ci}}

CER4

Feature 2.1.4

For each class, the number of distant descendent classes it has.

CER4 = {(ci, total)} = {(x.ci, total) | x ∈ C ∧ total = #{y.ci | y ∈ IDA ∧
x.ci = y.ancestor_ci}}

CER5:CCM4

Feature 2.1.5

For each class, the number of other classes that are immediate full or partial
friends to the class.

CER5:CCM4 = {(ci, total)} = {(x.ci, total) | x ∈ C ∧ total = #{y.friend_ci |
y ∈ CEF ∧ x.ci = y.ci}}

Table 5-5 Measures of Class External Relationships

Chapter 5 - Operational Measure Definition

 140

Class External Relationships :
External Relationships (cont.)
CER6:CCM5

Feature 2.1.6

For each class, the number of global functions that are immediate friends to
the class.

CER6:CCM5 = {(ci, total)} = {(x.ci, total) | x ∈ C ∧ total = #{y.friend_fi |
y ∈ FF ∧ x.ci = y.ci}}

CER7:CCM6

Feature 2.1.7

For each class, the number of other classes to which it is an immediate full
or partial friend.

CER7:CCM6 = {(ci, total)} = {(x.ci, total) | x ∈ C ∧ total = #{y.ci | y ∈
CEF ∧ x.ci = y.friend_ci}}

CER8

Feature 2.1.8

For each class, the number of global functions within its scope.

CER8 = {(ci, total)} = {(x.ci, total) | x ∈ C ∧ total = #{y.fi | y ∈ F ∧ ∃z{z |
z ∈ SF ∧ z.ci = x.ci ∧ z.fi = y.fi}}}

CER9

Feature 2.1.9

For each class, the number of global variables within its scope.

CER9 = {(ci, total)} = {(x.ci, total) | x ∈ C ∧ total = #{y.vi | y ∈ V ∧ ∃z{z |
z ∈ SV ∧ z.ci = x.ci ∧ z.vi = y.vi}}}

Table 5-6 Measures of Class External Relationships (cont.)

Figure 5-4 illustrates the C++ class external relationships sub-characteristic to measure

relationships. As previously discussed in section 3.2.3.3 of Chapter 3, measures will not be

developed to describe external relationships outside the measured software system. This is

reflected in the Figure 5-4 CHARMER diagram by the fact that no software features and

measures are linked to this sub-characteristic. Features are identified for the remaining class

external relationships sub-characteristic and Figure 5-4 shows that each of these software

features is quantified by a class external relationships (CER) measure.

Chapter 5 - Operational Measure Definition

 141

 C++ class external relationships

outside the system

 within the system

 2.1.1 2.1.3 2.1.5 2.1.7 2.1.9

 2.1.2 2.1.4 2.1.6 2.1.8

 CER1 CER3 CER5 CER7 CER9

 CER2 CER4 CER6 CER8

Figure 5-4 C++ class external relationships CHARMER diagram

5.2.3.3 Measures of C++ class connection obscurity

Figure 3-3 shows that the connection obscurity sub-characteristic of object oriented software

modularity is sub-characterised at the lowest level as variable connection, unstated relationship,

distant connection, unexpected relationship and connection via non-standard interface. The

Chapter 4, section 4.2.3.4 natural language model of C++ class connection obscurity shows that

the variable connection sub-characteristic of connection obscurity is not applicable to C++ class

modularity.

The following tables define measures that quantify the software features identified in the

natural language entity models of class connection obscurity.

Chapter 5 - Operational Measure Definition

 142

Class Connection Obscurity :
Unstated Relationship
CUR1

Feature 3.2.1

For each class, the number of global variables its methods directly read
from or write to.

CUR1 = {(ci, total)} = {(x.ci, total) | x ∈ C ∧ total = #{y.vi | y ∈
(MGReadV ∪ MGWriteV) ∧ ∃z{z | z ∈ M ∧ x.ci = z.ci ∧ z.mi = y.mi}}}

CUR2:CCM7

Feature 3.2.2

For each class, the number of global functions its methods directly invoke.

CUR2:CCM7 = {(ci, total)} = {(x.ci, total) | x ∈ C ∧ total = #{y.fi | y ∈
MGInvF ∧ ∃z{z | z ∈ M ∧ x.ci = z.ci ∧ z.mi = y.mi}}}

Table 5-7 Measures of Class Unstated Relationship

Class Connection Obscurity :
Distant Connection
CDC1:CCM8

Feature 3.3.1

For each class, the number of other classes it is connected to via direct
access to at least one shared global variable.

CDC1:CCM8 = {(ci, total)} = {(x.ci, total) | x ∈ C ∧ total = #{y.ci | y ∈ M
∧ y.ci ≠ x.ci ∧ ∃z{z | z ∈ (MGReadV ∪ MGWriteV) ∧ z.mi = y.mi} ∧
∃w{w | w ∈ M ∧ w.ci = x.ci ∧ (w.mi, z.vi) ∈ (MGReadV ∪ MGWriteV)}}

CDC2

Feature 3.3.2

For each class, the number of distant ancestor classes whose elements it
directly accesses.

CDC2 = {(ci, total)} = {(x.ci, total) | x ∈ C ∧ total = #{y.ancestor_ci | y ∈
IDA ∧ y.ci = x.ci ∧ ∃z{z ∈ M ∧ x.ci = z.ci} ∧ (∃m{m | m ∈ M ∧ m.ci =
y.ancestor_ci} ∧ (z.mi, m.mi) ∈ MCInvM} ∨ ∃a{a| a ∈ A ∧ a.ci =
y.ancestor_ci} ∧ (z.mi, a.ai) ∈ (MCReadA ∪ MCWriteA)})}}

Table 5-8 Measures of Class Distant Connection

Chapter 5 - Operational Measure Definition

 143

Class Connection Obscurity : Non-standard Connection :
Unexpected Relationship
CUER1:CCM8

Feature 3.4.1

For each class, the number of other classes it is connected to via direct
access to at least one shared global variable.

CUER1:CCM8 = {(ci, total)} = {(x.ci, total) | x ∈ C ∧ total = #{y.ci | y ∈
M ∧ y.ci ≠ x.ci ∧ ∃z{z | z ∈ (MGReadV ∪ MGWriteV) ∧ z.mi = y.mi} ∧
∃w{w | w ∈ M ∧ w.ci = x.ci ∧ (w.mi, z.vi) ∈ (MGReadV ∪
MGWriteV)}}

CUER2:CCM4

Feature 3.4.2

For each class, the number of other classes that are immediate full or
partial friends to the class.

CUER2:CCM4 = {(ci, total)} = {(x.ci, total) | x ∈ C ∧ total =
#{y.friend_ci | y ∈ CEF ∧ x.ci = y.ci}}

CUER3:CCM6

Feature 3.4.3

For each class, the number of other classes to which it is an immediate
full or partial friend.

CUER3:CCM6 = {(ci, total)} = {(x.ci, total) | x ∈ C ∧ total = #{y.ci | y ∈
CEF ∧ x.ci = y.friend_ci}}

CUER4:CCM5

Feature 3.4.4

For each class, the number of global functions that are immediate friends
to the class.

CUER4:CCM5 = {(ci, total)} = {(x.ci, total) | x ∈ C ∧ total =
#{y.friend_fi | y ∈ FF ∧ x.ci = y.ci}}

Table 5-9 Measures of Class Unexpected Relationship

Class Connection Obscurity : Non-standard Connection :
Connection via Non-standard Interface
CNI1:CCM8

Feature 3.5.1

For each class, the number of other classes it is connected to via direct
access to at least one shared global variable.

CNI1:CCM8 = {(ci, total)} = {(x.ci, total) | x ∈ C ∧ total = #{y.ci | y ∈ M
∧ y.ci ≠ x.ci ∧ ∃z{z | z ∈ (MGReadV ∪ MGWriteV) ∧ z.mi = y.mi} ∧
∃w{w | w ∈ M ∧ w.ci = x.ci ∧ (w.mi, z.vi) ∈ (MGReadV ∪ MGWriteV)}}

CNI2

Feature 3.5.2

For each class, the number of other classes it is connected to via direct
access a member attribute of the other class.

CNI2 = {(ci, total)} = {(x.ci, total) | x ∈ C ∧ total = #{y.ci | y ∈ A ∧ y.ci ≠
x.ci ∧ ∃z{z | z ∈ (MCReadA ∪ MCWriteA) ∧ z.ai = y.ai} ∧ ∃w{w | w ∈ M
∧ w.ci = x.ci ∧ w.mi = z.mi}}}

CNI3

Feature 3.5.3

For each class, the number of other classes it is connected to via direct
access of its own member attribute by the other class.

CNI3 = {(ci, total)} = {(x.ci, total) | x ∈ C ∧ total = #{y.ci | y ∈ M ∧ y.ci ≠
x.ci ∧ ∃z{z | z ∈ (MCReadA ∪ MCWriteA) ∧ z.mi = y.mi} ∧ ∃w{w | w ∈
A ∧ w.ci = x.ci ∧ w.ai = z.ai}}}

Table 5-10 Measures of Class Connection via Non-standard Interface

Chapter 5 - Operational Measure Definition

 144

Figure 5-5 illustrates the C++ class connection obscurity sub-characteristic to measure

relationships. The Chapter 4, section 4.2.3.4 natural language model of C++ class connection

obscurity shows that the variable connection sub-characteristic of connection obscurity is not

applicable to C++ class modularity. This is reflected in the Figure 5-5 CHARMER diagram by

the fact that no software features and measures are linked to this sub-characteristic. Features are

identified for all the other class connection obscurity sub-characteristics and Figure 5-5 shows

that each of these software features is quantified by a measure.

 C++ class connection obscurity

variable connection non-standard connection

(not applicable)

 unexpected relationship

unstated relationship

 distant connection

connection via

non-standard interface

3.2.1 3.3.1 3.4.1 3.4.3 3.5.1 3.5.3

 3.2.2 3.3.2 3.4.2 3.4.4 3.5.2

CUR1 CDC1 CUER1 CUER3 CNI1 CNI3

 CUR2 CDC2 CUER2 CUER4 CNI2

Figure 5-5 C++ class connection obscurity CHARMER diagram

Chapter 5 - Operational Measure Definition

 145

5.2.3.4 Measures of C++ class dependency

Figure 3-3 shows that the dependency sub-characteristic of object oriented software modularity

is sub-characterised at the lowest level as service invocation, interface provision, external

variable reading and external function writing. The Chapter 4, section 4.2.3.5 natural language

model of C++ class dependency shows that the interface provision sub-characteristic of

dependency is not applicable to C++ class modularity.

The following tables define measures that quantify the software features identified in the

natural language entity models of class dependency.

Class Dependency :
Service Invocation
CSI1:CCM7

Feature 4.1.1

For each class, the number of global functions its methods directly invoke.

CSI1:CCM7 = {(ci, total)} = {(x.ci, total) | x ∈ C ∧ total = #{y.fi | y ∈
MGInvF ∧ ∃z{z | z ∈ M ∧ z.ci = x.ci ∧ z.mi = y.mi}}}

CSI2

Feature 4.1.2

For each class, the number of other classes whose methods are directly
invoked.

CSI2 = {(ci, total)} = {(x.ci, total) | x ∈ C ∧ total = #{y.ci | y ∈ M ∧ y.ci ≠
x.ci ∧ ∃z{z | z ∈ M ∧ z.ci = x.ci ∧ (z.mi, y.mi) ∈ MCInvM}}}

Table 5-11 Measures of Class Service Invocation

Class Dependency : State Dependency :
External Variable Reading
CEVR1

Feature 4.3.1

For each class, the number of global variables its methods directly read
from.

CEVR1 = {(ci, total)} = {(x.ci, total) | x ∈ C ∧ total = #{y.vi | y ∈
MGReadV ∧ ∃z{z | z ∈ M ∧ z.ci = x.ci ∧ z.mi = y.mi}}}

CEVR2

Feature 4.3.2

For each class, the number of other classes whose attributes its methods
directly read from.

CEVR2 = {(ci, total)} = {(x.ci, total) | x ∈ C ∧ total = #{y.ci | y ∈ A ∧ x.ci
≠ y.ci ∧ ∃z{z | z ∈ M ∧ z.ci = x.ci} ∧ ∃w{w | w ∈ MCReadA ∧ w.mi = z.mi
∧ w.ai = y.ai}}}

Table 5-12 Measures of Class External Variable Reading

Chapter 5 - Operational Measure Definition

 146

Class Dependency : State Dependency :
External Function Writing
CEFW1

Feature 4.4.1

For each class, the number of other classes writing to a global variable it
directly reads from.

CEFW1 = {(ci, total)} = {(x.ci, total) | x ∈ C ∧ total = #{y.ci | y ∈ M ∧ x.ci
≠ y.ci ∧ ∃z{z | z ∈ MGWriteV ∧ y.mi = z.mi} ∧ ∃m{m | m ∈ M ∧ x.ci =
m.ci} ∧ ∃w{w | w ∈ MGReadV ∧ w.mi = m.mi ∧ z.vi = w.vi}}}

CEFW2

Feature 4.4.2

For each class, the number of global functions writing to a global variable it
directly reads from.

CEFW2 = {(ci, total)} = {(x.ci, total) | x ∈ C ∧ total = #{y.fi | y ∈
FGWriteV ∧ ∃z{z | z ∈ M ∧ x.ci = z.ci} ∧ ∃w{w | w ∈ MGReadV ∧ w.mi
= z.mi ∧ y.vi = w.vi}}}

CEFW3

Feature 4.4.3

For each class, the number of other classes writing to a static attribute it
directly reads from.

CEFW3 = {(ci, total)} = {(x.ci, total) | x ∈ C ∧ total = #{y.ci | y ∈ M ∧ x.ci
≠ y.ci ∧ ∃z{z | z ∈ MCWriteA ∧ y.mi = z.mi} ∧ ∃m{m | m ∈ M ∧ x.ci =
m.ci} ∧ ∃w{w | w ∈ MCReadA ∧ w.mi = m.mi ∧ z.ai = w.ai} ∧ ∃a{a | a ∈
A ∧ a.ai = z.ai ∧ a.static = true}}}

CEFW4

Feature 4.4.4

For each class, the number of other classes directly writing to one of its
member attributes.

CEFW4 = {(ci, total)} = {(x.ci, total) | x ∈ C ∧ total = #{y.ci | y ∈ M ∧ y.ci
≠ x.ci ∧ ∃z{z | z ∈ MCWriteA ∧ z.mi = y.mi} ∧ ∃w{w | w ∈ A ∧ w.ci =
x.ci ∧ w.ai = z.ai}}}

Table 5-13 Measures of Class External Function Writing

Chapter 5 - Operational Measure Definition

 147

Figure 5-6 illustrates the C++ class dependency sub-characteristic to measure relationships.

 C++ class dependency

interface provision state dependency

(not applicable)

 external variable reading

service invocation external function writing

 4.1.1 4.3.1 4.4.2 4.4.4

 4.1.2 4.3.2 4.4.1 4.4.3

 CSI1 CEVR1 CEFW2 CEFW4

 CSI2 CEVR2 CEFW1 CEFW3

Figure 5-6 C++ class dependency CHARMER diagram

The Chapter 4, section 4.2.3.5 natural language model of C++ class dependency shows that the

interface provision sub-characteristic of dependency is not applicable to C++ class modularity.

This is reflected in the Figure 5-6 CHARMER diagram by the fact that no software features and

measures are linked to this sub-characteristic. Features are identified for all the other class

dependency sub-characteristics and Figure 5-6 shows that each of these software features is

quantified by a measure.

Chapter 5 - Operational Measure Definition

 148

Class Modularity Sub-characteristics

Common Feature

Measure

Interface Dependence : Interface Implementation
Dependence: Interface Size
Interface Dependence : Interface Implementation
Dependence: Data Exposure

1.2.1

1.3.1

CIS1:CCM1

CDE1:CCM1

Interface Dependence : Interface Implementation
Dependence: Interface Size
Interface Dependence : Interface Implementation
Dependence: Data Exposure

1.2.3.3

1.3.2

CIS7:CCM2

CDE2:CCM2

Interface Dependence : Interface Implementation
Dependence: Interface Size
Interface Dependence : Interface Implementation
Dependence: Data Exposure

1.2.3.3

1.3.2

CIS8:CCM3

CDE3:CCM3

External Relationships
Connection Obscurity : Non-standard Connection :
Unexpected Relationship

2.1.5

3.4.1

CER5:CCM4

CUER2:CCM4

External Relationships
Connection Obscurity : Non-standard Connection :
Unexpected Relationship

2.1.6

3.4.4

CER6:CCM5

CUER4:CCM5

External Relationships
Connection Obscurity : Non-standard Connection :
Unexpected Relationship

2.1.7

3.4.3

CER7:CCM6

CUER3:CCM6

Connection Obscurity : Unstated Relationship
Dependency : Service Invocation

3.2.2
4.1.1

CUR2:CCM7
CSI1:CCM7

Connection Obscurity : Distant Connection
Connection Obscurity : Non-standard Connection :
Unexpected relationship
Connection Obscurity : Non-standard Connection :
Connection via Non-standard Interface

3.3.1

3.4.1

3.5.1

CDC1:CCM8

CUER1:CCM8

CNI1:CCM8

Table 5-14 Measures quantifying features common to several class modularity sub-
characteristics

As discussed in Section 4.2.3.6 of Chapter 4, some features of the class modularity natural

language model are common to several modularity sub-characteristics. Table 5-15 identifies the

measures quantifying these common features. Including separate instances of common

measured features in an analysis of measurement data provides a natural weighting of features

having multiple effects on overall modularity. Where such multiple effects introduce unwanted

dependencies between sub-characteristic descriptions, the information in Table 5-15 can be

used to remove the measures that cause these dependencies.

Chapter 5 - Operational Measure Definition

 149

5.2.4 Measures of C++ object modularity

The following section describe the operational definition of the C++ object modularity sub-

characteristics based on the conceptual definitions of section 3.2.3 of Chapter 3 and the object

entity models of section 4.2.4 of Chapter 4. For each major object modularity sub-

characteristic, CHARMER diagrams describe the measures defined to quantify the software

features that reduce the levels of modularity of a C++ object module. Some of the sub-

characteristics, software features and measures in the object CHARMER diagrams are

highlighted in grey, indicating an operational definition problem. Sub-characteristics and

features that are highlighted are not described by any measures. Measures that are highlighted

are unable, in some situations, to fully quantify their associated software features. Measure

shortcomings are discussed individually for each of the object interface dependence, external

relationships, connection obscurity and dependency sub-characteristics.

5.2.4.1 Measures of C++ object interface dependence

Figure 3-3 shows that the interface dependence sub-characteristic of object oriented software

modularity is sub-characterised at the lowest level as service invocation, interface provision,

external variable reading and external function writing. The natural language and mathematical

entity models of C++ object interface dependence are defined in section 4.2.4.2. These models

describe software features that increase the levels of C++ object interface dependence present

in the software. The following tables define measures that quantify the software features

identified in the natural language entity models of object interface dependence.

Object Interface Dependence :
Interface Element Interdependence
OIEI1

Feature 5.1.1

For each object-class non-constructor or non-destructor interface method,
the number of same object-class interface attributes it directly reads.

OIEI1 = {(ci, mi, total)} = {(x.ci, y.mi, total) | x ∈ OM ∧ y ∈ M ∧ x.mi =
y.mi ∧ x.protection = public ∧ y.purpose ∉ {constructor, destructor} ∧ total
= #{z.ai | z ∈ OA ∧ z.protection = public ∧ x.ci = z.ci ∧ (x.mi, z.ai) ∈
MCReadA}}

OIEI2

Feature 5.1.1

For each object-class non-constructor or non-destructor interface method,
the number of same object-class interface attributes it directly writes.

OIEI2 = {(ci, mi, total)} = {(x.ci, y.mi, total) | x ∈ OM ∧ y ∈ M ∧ x.mi =
y.mi ∧ x.protection = public ∧ y.purpose ∉ {constructor, destructor} ∧ total
= #{z.ai | z ∈ OA ∧ z.protection = public ∧ x.ci = z.ci ∧ (x.mi, z.ai) ∈
MCWriteA}}

Table 5-15 Measures of Object Interface Element Interdependence

Chapter 5 - Operational Measure Definition

 150

Object Interface Dependence :
Interface Element Interdependence (cont.)
OIEI3

Feature 5.1.1

For each object-class non-constructor or non-destructor interface method,
the number of same object-class interface attributes it directly both reads
and writes.

OIEI3 = {(ci, mi, total)} = {(x.ci, y.mi, total) | x ∈ OM ∧ y ∈ M ∧ x.mi =
y.mi ∧ x.protection = public ∧ y.purpose ∉ {constructor, destructor} ∧ total
= #{z.ai | z ∈ OA ∧ z.protection = public ∧ x.ci = z.ci ∧ (x.mi, z.ai) ∈
MCWriteA ∧ (x.mi, z.ai) ∈ MCReadA}}

OIEI4

Feature 5.1.2

For each object-class non-constructor or non-destructor interface method,
the number of same object-class interface attributes it indirectly reads.

OIEI4 = {(ci, mi, total)} = {(x.ci, y.mi, total) | x ∈ OM ∧ y ∈ M ∧ x.mi =
y.mi ∧ x.protection = public ∧ y.purpose ∉ {constructor, destructor} ∧ total
= #{z.ai | z ∈ OA ∧ z.protection = public ∧ x.ci = z.ci ∧ (x.mi, z.ai) ∈
MIOCReadA}}

OIEI5

Feature 5.1.2

For each object-class non-constructor or non-destructor interface method,
the number of same object-class interface attributes it indirectly writes.

OIEI5 = {(ci, mi, total)} = {(x.ci, y.mi, total) | x ∈ OM ∧ y ∈ M ∧ x.mi =
y.mi ∧ x.protection = public ∧ y.purpose ∉ {constructor, destructor} ∧ total
= #{z.ai | z ∈ OA ∧ z.protection = public ∧ x.ci = z.ci ∧ (x.mi, z.ai) ∈
MIOCWriteA}}

OIEI6

Feature 5.1.2

For each object-class non-constructor or non-destructor interface method,
the number of same object-class interface attributes it indirectly both reads
and writes.

OIEI6 = {(ci, mi, total)} = {(x.ci, y.mi, total) | x ∈ OM ∧ y ∈ M ∧ x.mi =
y.mi ∧ x.protection = public ∧ y.purpose ∉ {constructor, destructor} ∧ total
= #{z.ai | z ∈ OA ∧ z.protection = public ∧ x.ci = z.ci ∧ (x.mi, z.ai) ∈
MIOCWriteA ∧ (x.mi, z.ai) ∈ MIOCReadA}}

OIEI7

Feature 5.1.3

For each object-class non-constructor or non-destructor interface method,
the number of same object-class interface methods it directly invokes.

OIEI7 = {(ci, mi, total)} = {(x.ci, y.mi, total) | x ∈ OM ∧ y ∈ M ∧ x.mi =
y.mi ∧ x.protection = public ∧ y.purpose ∉ {constructor, destructor} ∧ total
= #{z.ai | z ∈ OM ∧ w ∈ M ∧ z.mi = w.mi ∧ z.protection = public ∧
w.purpose ∉ {constructor, destructor} ∧ x.ci = z.ci ∧ (x.mi, z.mi) ∈
MCInvM}}

OIEI8

Feature 5.1.4

For each object-class non-constructor or non-destructor interface method,
the number of same object-class interface methods it indirectly invokes.

OIEI8 = {(ci, mi, total)} = {(x.ci, y.mi, total) | x ∈ OM ∧ y ∈ M ∧ x.mi =
y.mi ∧ x.protection = public ∧ y.purpose ∉ {constructor, destructor} ∧ total
= #{z.ai | z ∈ OM ∧ w ∈ M ∧ z.mi = w.mi ∧ z.protection = public ∧
w.purpose ∉ {constructor, destructor} ∧ x.ci = z.ci ∧ (x.mi, z.mi) ∈
MIOCInvM}}

Table 5-16 Measures of Object Interface Element Interdependence (cont.)

Chapter 5 - Operational Measure Definition

 151

Object Interface Dependence : Interface Implementation Dependence :
Interface Size
OIS1:OCM1

Feature 5.2.1

For each object-class, the number of interface attributes.

OIS1:OCM1 = {(ci, total)} = {(x.ci, total) | x ∈ C ∧ total = #{y.ai | y ∈ OA
∧ y.ci = x.ci ∧ y.protection = public}}

OIS2

Feature 5.2.1

For each object-class, the number of hidden attributes.

OIS2 = {(ci, total)} = {(x.ci, total) | x ∈ C ∧ total = #{y.ai | y ∈ OA ∧ y.ci =
x.ci ∧ y.protection ∈ (protected, private, inaccessible)}}

OIS3

Feature 5.2.2

For each object-class, the number of non-constructor or non-destructor
interface methods.

OIS3 = {(ci, total)} = {(x.ci, total) | x ∈ C ∧ total = #{y.mi | y ∈ OM ∧ y.ci
= x.ci ∧ y.protection = public ∧ ∃z{z | z ∈ M ∧ z.mi = y.mi ∧ z.purpose ∉
{constructor, destructor}}}}

OIS4

Feature 5.2.2

For each object-class, the number of hidden methods.

OIS4 = {(ci, total)} = {(x.ci, total) | x ∈ C ∧ total = #{y.mi | y ∈ OM ∧ y.ci
= x.ci ∧ y.protection ∈ {protected, private, inaccessible}}}

OIS5

Feature 5.2.3.1

For each object-class non-constructor or non-destructor interface method,
the total number of lines of code within the method.

OIS5 = {(ci, mi, total)} = {(x.ci, x.mi, z.lines) | x ∈ OM ∧ z ∈ M ∧
x.protection = public ∧ x.mi = z.mi ∧ z.purpose ∉ {constructor,
destructor}}

OIS6

Feature 5.2.3.2

For each object-class non-constructor or non-destructor interface method,
the total number of same object-class, other methods directly invoked.

OIS6 = {(ci, mi, total)} = {(x.ci, x.mi, total) | x ∈ OM ∧ x.protection =
public ∧ ∃z{z | z ∈ M ∧ z.mi = x.mi ∧ z.purpose ∉ {constructor,
destructor}} ∧ total = #{m.mi | m ∈ OM ∧ m.ci = x.ci ∧ m.mi ≠ x.mi ∧
(x.mi, m.mi) ∈ MCInvM}}

OIS7:OCM2

Feature 5.2.3.3

For each object-class non-constructor or non-destructor interface method,
the total number of same object-class attributes directly read.

OIS7:OCM2 = {(ci, mi, total)} = {(x.ci, x.mi, total) | x ∈ OM ∧
x.protection = public ∧ ∃z{z | z ∈ M ∧ z.mi = x.mi ∧ z.purpose ∉
{constructor, destructor}} ∧ total = #{a.ai | a ∈ OA ∧ a.ci = x.ci ∧ (x.mi,
a.ai) ∈ MCReadA}}

OIS8:OCM3

Feature 5.2.3.3

For each object-class non-constructor or non-destructor interface method,
the total number of same object-class attributes directly written.

OIS8:OCM3 = {(ci, mi, total)} = {(x.ci, x.mi, total) | x ∈ OM ∧
x.protection = public ∧ ∃z{z | z ∈ M ∧ z.mi = x.mi ∧ z.purpose ∉
{constructor, destructor}} ∧ total = #{a.ai | a ∈ OA ∧ a.ci = x.ci ∧ (x.mi,
a.ai) ∈ MCWriteA}}

Table 5-17 Measures of Object Interface Size

Chapter 5 - Operational Measure Definition

 152

Object Interface Dependence : Interface Implementation Dependence :
Data Exposure
ODE1:OCM1

Feature 5.3.1

For each object-class, the number of interface attributes.

ODE1:OCM1 = {(ci, total)} = {(x.ci, total) | x ∈ C ∧ total = #{y.ai | y ∈
OA ∧ y.ci = x.ci ∧ y.protection = public}}

ODE2:OCM2

Feature 5.3.2

For each object-class non-constructor or non-destructor interface method,
the total number of same object-class attributes directly read.

ODE2:OCM2 = {(ci, mi, total)} = {(x.ci, y.mi, total) | x ∈ OM ∧
x.protection = public ∧ y ∈ M ∧ x.mi = y.mi ∧ y.purpose ∉ {constructor,
destructor}} ∧ total = #{a.ai | a ∈ OA ∧ a.ci = x.ci ∧ (x.mi, a.ai) ∈
MCReadA}}

ODE3:OCM3

Feature 5.3.2

For each object-class non-constructor or non-destructor interface method,
the total number of same object-class attributes directly written.

ODE3:OCM3 = {(ci, mi, total)} = {(x.ci, y.mi, total) | x ∈ OM ∧
x.protection = public ∧ y ∈ M ∧ x.mi = y.mi ∧ y.purpose ∉ {constructor,
destructor}} ∧ total = #{a.ai | a ∈ OA ∧ a.ci = x.ci ∧ (x.mi, a.ai) ∈
MCWriteA}}

ODE4

Feature 5.3.3

For each object-class attribute, its level of protection and the number of
same class, interface, non-constructor or non-destructor methods directly
writing to it.

ODE4 = {(ci, ai, protection, total)} = {(x.ci, x.ai, x.protection, total) | x ∈
OA ∧ total = #{y.mi | y ∈ OM ∧ x.ci = y.ci ∧ y.protection = public ∧ ∃z{z |
z ∈ M ∧ z.mi = y.mi ∧ z.purpose ∉ {constructor, destructor}} ∧ (y.mi, x.ai)
∈ MCWriteA}}

ODE5

Feature 5.3.3

For each object-class attribute, its level of protection and the number of
same class, interface, non-constructor or non-destructor methods directly
reading from it.

ODE5 = {(ci, ai, protection, total)} = {(x.ci, x.ai, x.protection, total) | x ∈
OA ∧ total = #{y.mi | y ∈ OM ∧ x.ci = y.ci ∧ y.protection = public ∧ ∃z{z |
z ∈ M ∧ z.mi = y.mi ∧ z.purpose ∉ {constructor, destructor}} ∧ (y.mi, x.ai)
∈ MCReadA}}

Table 5-18 Measures of Object Data Exposure

Figure 5-7 illustrates the C++ object interface dependence sub-characteristic to measure

relationships. As previously discussed in Chapter 4, section 4.2.4.6, the mathematical entity

model of object interface dependence is unable to describe the member elements of all possible

C++ objects. Figure 5-9 shows that all the interface dependence measures are affected by this

modelling shortcoming and that measure CER2 can be used to identify objects that are

potentially only partially described by these measures. Table 4-3 of Chapter 4 describes how to

further examine these identified objects to determine whether or not the measures of object

interface dependence are able to fully describe them.

Chapter 5 - Operational Measure Definition

 153

 C++ object interface dependence

 interface implementation dependence

interface element interdependence interface size data exposure

 5.2.3

5.1.1 5.1.3 5.2.1 5.2.3.1 5.2.3.3 5.3.2

 5.1.2 5.1.4 5.2.2 5.2.3.2 5.3.1 5.3.3

CER2 CER2 CER2 CER2 CER2 CER2

 CER2 CER2 CER2 CER2 CER2 CER2

 OIEI7 OIS5

OIS1

OIS2

OIS7

OIS8

ODE2

ODE3

OIEI1

OIEI2

OIEI3

 OIEI8 OIS6 ODE1

OIS3

OIS4

ODE4

ODE5

OIEI4

OIEI5

OIEI6

Figure 5-7 C++ object interface dependence CHARMER diagram

Chapter 5 - Operational Measure Definition

 154

5.2.4.2 Measures of C++ object external relationships

Figure 3-3 shows that the external relationships sub-characteristic of object oriented software

modularity is sub-characterised, at the lowest level, as external relationships within the

measured software system and external relationships outside the measured software system. As

previously discussed in section 3.2.3.3 of Chapter 3, measures will not be developed to describe

external relationships outside the measured software system. The natural language and

mathematical entity models of C++ object external relationships are defined in section 4.2.4.3.

These models describe software features that increase the levels of C++ object external

relationships present in the software.

The following table defines measures that quantify the software features identified in the

natural language entity models of object external relationships.

Object External Relationships :
External Relationships
OER1

Feature 6.1.1

For each object-class, the number of immediate supplier object
declarations.

OER1 = {(ci, total)} = {(x.ci, total) | x ∈ C ∧ total = #{y.oi | y ∈ IMO ∧
x.ci = y.ci}}

OER2

Feature 6.1.2

For each object-class, the number of global supplier objects within its
scope.

OER2 = {(ci, total)} = {(x.ci, total) | x ∈ C ∧ total = #{y.oi | y ∈ O ∧
(y.global = true) ∧ ∃z{z | z ∈ SO ∧ z.ci = x.ci ∧ z.oi = y.oi}}}

OER3

Feature 6.1.3

For each object-class, the number of other classes to which it has an
immediate supplier type association relationship.

OER3 = {(ci, total)} = {(x.ci, total) | x ∈ C ∧ total = #{y.ci | y ∈ IMO ∧
∃z{z | z ∈ O ∧ x.ci = z.ci ∧ y.oi = z.oi}}}

OER4

Feature 6.1.4

For each object-class, the number of global functions to which it has an
immediate supplier type association relationship.

OER4 = {(ci, total)} = {(x.ci, total) | x ∈ C ∧ total = #{y.fi | y ∈ FIMO ∧
∃z{z | z ∈ O ∧ x.ci = z.ci ∧ y.oi = z.oi}}}

Table 5-19 Measures of Object External Relationships

Chapter 5 - Operational Measure Definition

 155

Object External Relationships :
External Relationships (cont.)
OER5:OCM4

Feature 6.1.5

For each object-class, the number of static attributes it has.

OER5:OCM4 = {(ci, total)} = {(x.ci, total) | x ∈ C ∧ total = #{y.ai | y ∈
OA ∧ y.ci = x.ci ∧ ∃z{z | z ∈ A ∧ z.ai = y.ai ∧ z.static = true}}}

OER6:OCM5

Feature 6.1.6

For each object-class, the number of other object-classes that are full or
partial friends.

OER6:OCM5 = {(ci, total)} = {(x.ci, total) | x ∈ C ∧ total = #{y.friend_ci |
y ∈ (CEF ∪ CIF) ∧ x.ci = y.ci}}

OER7:OCM6

Feature 6.1.7

For each object-class, the number of global functions that are full or partial
friends.

OER7:OCM6 = {(ci, total)} = {(x.ci, total) | x ∈ C ∧ total = #{y.friend_fi |
y ∈ (FF ∪ FIF) ∧ x.ci = y.ci}}

OER8:OCM7

Feature 6.1.8

For each object-class, the number of other object-classes to which it is a
full or partial friend.

OER8:OCM7 = {(ci, total)} = {(x.ci, total) | x ∈ C ∧ total = #{y.ci | y ∈
(CEF ∪ CIF) ∧ x.ci = y.friend_ci}}

Table 5-20 Measures of Object External Relationships (cont.)

Figure 5-8 illustrates the C++ object external relationships sub-characteristic to measure

relationships. As previously discussed in section 3.2.3.2 of Chapter 3, measures will not be

developed to describe external relationships outside the measured software system. This is

reflected in the Figure 5.8 CHARMER diagram by the fact that no software features and

measures are linked to this sub-characteristic. As previously discussed in Chapter 4, section

4.2.4.6, the mathematical entity model of object external relationships is unable to describe the

member elements of all possible C++ objects. Figure 5-8 shows that external relationships

measures OER1 and OER5:OCM4 are affected by this modelling shortcoming and that measure

CER2 can be used to identify objects that are potentially only partially described by these

measures. Table 4-3 of Chapter 4 describes how to further examine these identified objects to

determine whether or not the OER1 and OER5:OCM4 measures of object external relationships

are able to fully describe them.

Chapter 5 - Operational Measure Definition

 156

 C++ object external relationships

outside the system

 within the system

 6.1.1 6.1.3 6.1.5 6.1.7

 6.1.2 6.1.4 6.1.6 6.1.8

 CER2 CER2

 OER1 OER3 OER5 OER7

 OER2 OER4 OER6 OER8

Figure 5-8 C++ object external relationships CHARMER diagram

5.2.4.3 Measures of C++ object connection obscurity

Figure 3-3 shows that the connection obscurity sub-characteristic of object oriented software

modularity is sub-characterised at the lowest level as variable connection, unstated relationship,

distant connection, unexpected relationship and connection via non-standard interface. The

natural language and mathematical entity models of C++ object connection obscurity are

defined in section 4.2.4.4. These models describe software features that increase the levels of

C++ object connection obscurity present in the software.

The following tables define measures that quantify the software features identified in the

natural language entity models of object connection obscurity.

Chapter 5 - Operational Measure Definition

 157

Object Connection Obscurity :
Variable Connection
OVC1

Feature 7.1.1

For each object-class, the number of supplier objects declared as a pointer.

OVC1 = {(ci, total)} = {(x.ci, total) | x ∈ C ∧ total = #{y.oi | y ∈ IMO ∧
∃z{z | z ∈ O ∧ z.oi = y.oi ∧ z.pointer = true}}}

OVC2

Feature 7.1.2

For each object-class, the number of pointer type global supplier objects
within its scope.

OVC2 = {(ci, total)} = {(x.ci, total) | x ∈ C ∧ total = #{y.oi | y ∈ O ∧
y.global = true ∧ y.pointer = true ∧ ∃z{z ∈ SO ∧ z.ci = x.ci ∧ z.oi = y.oi}}}

Table 5-21 Measures of Object Variable Connection

Object Connection Obscurity :
Unstated Relationship
OUR1:OCM8

Feature 7.2.1

For each object-class, the number of global variables its methods directly
read from or write to.

OUR1:OCM8 = {(ci, total)} = {(x.ci, total) | x ∈ C ∧ total = #{y.vi | y ∈
(MGReadV ∪ MGWriteV) ∧ ∃z{z | z ∈ OM ∧ z.ci = x.ci ∧ z.mi = y.mi}}}

OUR2:OCM9

Feature 7.2.2

For each object-class, the number of global functions its methods directly
invoke.

OUR2:OCM9 = {(ci, total)} = {(x.ci, total) | x ∈ C ∧ total = #{y.fi | y ∈
MGInvF ∧ ∃z{z | z ∈ OM ∧ z.ci = x.ci ∧ z.mi = y.mi}}}

OUR3

Feature 7.2.3

For each object-class, the number of global objects its methods directly
access.

OUR3 = {(ci, total)} = {(x.ci, total) | x ∈ C ∧ total = #{y.oi | y ∈
MOAccessO ∧ ∃z{z | z ∈ OM ∧ z.ci = x.ci ∧ z.mi = y.mi} ∧ ∃w{w | w ∈ O
∧ w.oi = y.oi ∧ w.global = true}}}

OUR4

Feature 7.2.4

For each object-class, the number of inherited static attributes it has.

OUR4 = {(ci, total)} = {(x.ci, total) | x ∈ C ∧ total = #{y.ai | y ∈ (AA ∪
IAA) ∧ y.ci = x.ci ∧ ∃z{z | z ∈ A ∧ z.ai = y.ai ∧ z.static = true}}}

OUR5

Feature 7.2.5

For each object-class, the number of immediate parent or distant ancestor
classes with immediate friend classes.

OUR5 = {(ci, total)} = {(x.ci, total) | x ∈ C ∧ total = #({y.parent_ci | y ∈ IP
∧ y.ci = x.ci ∧ ∃z{z | z ∈ CEF ∧ z.ci = y.parent_ci}} ∪ {y.ancestor_ci | y ∈
IDA ∧ y.ci = x.ci ∧ ∃z{z | z ∈ CEF ∧ z.ci = y.ancestor_ci}})}

OUR6

Feature 7.2.6

For each object-class, the number of immediate parent or distant ancestor
classes with immediate friend global functions.
OUR6 = {(ci, total)} = {(x.ci, total) | x ∈ C ∧ total = #({y.parent_ci | y ∈ IP
∧ y.ci = x.ci ∧ ∃z{z | z ∈ FF ∧ z.ci = y.parent_ci}} ∪ {y.ancestor_ci | y ∈
IDA ∧ y.ci = x.ci ∧ ∃z{z | z ∈ FF ∧ z.ci = y.ancestor_ci}})}

Table 5-22 Measures of Object Unstated Relationship

Chapter 5 - Operational Measure Definition

 158

Object Connection Obscurity :
Distant Connection
ODC1:OCM10

Feature 7.3.1

For each object-class, the number of other object-classes it is connected to
via direct access to at least one shared global variable.

ODC1:OCM10 = {(ci, total)} = {(x.ci, total) | x ∈ C ∧ total = #{y.ci | y ∈
OM ∧ x.ci ≠ y.ci ∧ ∃z{z | z ∈ OM ∧ z.ci = x.ci} ∧ ∃v{v | v ∈ V ∧ (y.mi,
v.vi) ∈ (MGReadV ∪ MGWriteV) ∧ (z.mi, v.vi) ∈ (MGReadV ∪
MGWriteV)}}}

ODC2

Feature 7.3.2

For each object-class, the number of non-global objects it directly
accesses where it does not have a direct member or inherited association
relationship with the objects.

Unable to define ODC2 in terms of previously defined mathematical
model of object connection obscurity as mathematical model does not
support the relationship “object member methods directly access non-
global, non-directly associated object methods or attributes”.

Table 5-23 Measures of Object Distant Connection

Object Connection Obscurity : Non-standard Connection :
Unexpected Relationship
OUER1:OCM8

Feature 7.4.1

For each object-class, the number of global variables its methods
directly access.

OUER1:OCM8 = {(ci, total)} = {(x.ci, total) | x ∈ C ∧ total = #{y.vi | y
∈ (MGReadV ∪ MGWriteV) ∧ ∃z{z | z ∈ OM ∧ z.ci = x.ci ∧ z.mi =
y.mi}}}

OUER2:OCM10

Feature 7.4.2

For each object-class, the number of other object-classes it is connected
to via direct access to at least one shared global variable.
OUER2:OCM10 = {(ci, total)} = {(x.ci, total) | x ∈ C ∧ total = #{y.ci | y
∈ OM ∧ x.ci ≠ y.ci ∧ ∃z{z | z ∈ OM ∧ z.ci = x.ci} ∧ ∃v{v | v ∈ V ∧
(y.mi, v.vi) ∈ (MGReadV ∪ MGWriteV) ∧ (z.mi, v.vi) ∈ (MGReadV ∪
MGWriteV)}}}

OUER3:OCM5

Feature 7.4.3

For each object-class, the number of other object-classes that are full or
partial friends.

OUER3:OCM5 = {(ci, total)} = {(x.ci, total) | x ∈ C ∧ total =
#{y.friend_ci | y ∈ (CEF ∪ CIF) ∧ x.ci = y.ci}}

OUER4:OCM6

Feature 7.4.4

For each object-class, the number of global functions that are full or
partial friends.

OUER4:OCM6 = {(ci, total)} = {(x.ci, total) | x ∈ C ∧ total =
#{y.friend_fi | y ∈ (FF ∪ FIF) ∧ x.ci = y.ci}}

OUER5:OCM7

Feature 7.4.5

For each object-class, the number of other object-classes to which it is a
full or partial friend.
OUER5:OCM7 = {(ci, total)} = {(x.ci, total) | x ∈ C ∧ total = #{y.ci | y
∈ (CEF ∪ CIF) ∧ x.ci = y.friend_ci}}

Table 5-24 Measures of Object Unexpected Relationship

Chapter 5 - Operational Measure Definition

 159

Object Connection Obscurity : Non-standard Connection :
Unexpected Relationship (cont.)
OUER6:OCM4

Feature 7.4.6

For each object-class, the number of static attributes it has.

OUER6:OCM4 = {(ci, total)} = {(x.ci, total) | x ∈ C ∧ total = #{y.ai | y ∈
OA ∧ y.ci = x.ci ∧ ∃z{z | z ∈ A ∧ z.ai = y.ai ∧ z.static = true}}}

OUER7

Feature 7.4.6

For each object-class, the number of other object-classes it shares one or
more static attributes with.

OUER7 = {(ci, total)} = {(x.ci, total) | x ∈ C ∧ total = #{y.ci | y ∈ OA ∧
x.ci ≠ y.ci ∧ ∃z{z | z ∈ A ∧ y.ai = z.ai ∧ z.static = true} ∧ ∃a{a | a ∈ OA ∧
a.ci = x.ci ∧ a.ai = y.ai}}}

Table 5-25 Measures of Object Unexpected Relationship (cont.)

Object Connection Obscurity : Non-standard Connection :
Connection via Non-standard Interface
ONI1:OCM10

Feature 7.5.1

For each object-class, the number of other object-classes it is connected to
via direct access to at least one shared global variable.
ONI1:OCM10 = {(ci, total)} = {(x.ci, total) | x ∈ C ∧ total = #{y.ci | y ∈
OM ∧ x.ci ≠ y.ci ∧ ∃z{z | z ∈ OM ∧ z.ci = x.ci} ∧ ∃v{v | v ∈ V ∧ (y.mi,
v.vi) ∈ (MGReadV ∪ MGWriteV) ∧ (z.mi, v.vi) ∈ (MGReadV ∪
MGWriteV)}}}

ONI2

Feature 7.5.2

For each object-class, the number of objects it is connected to via direct
access to at least one of the object's attributes.

ONI2 = {(ci, total)} = {(x.ci, total) | x ∈ C ∧ total = #{y.oi | y ∈
MOAccessO ∧ y.action ∈ {read, write} ∧ ∃z{z | z ∈ OM ∧ z.ci = x.ci ∧
z.mi = y.mi}}}

ONI3

Feature 7.5.5

For each object-class, the number of objects instantiated from the object-
class, whose attributes are directly accessed by another object-class.

ONI3 = {(ci, total)} = {(x.ci, total) | x ∈ C ∧ total = #{y.oi | y ∈
MOAccessO ∧ y.action ∈ {read, write} ∧ ∃z{z | z ∈ O ∧ z.oi = y.oi ∧ z.ci =
x.ci}}}

ONI4

Feature 7.5.6

For each object-class, the number of objects instantiated from the object-
class whose attributes are directly accessed by a global function.
ONI4 = {(ci, total)} = {(x.ci, total) | x ∈ C ∧ total = #{y.oi | y ∈
FOAccessO ∧ y.action ∈ {read, write} ∧ ∃z{z | z ∈ O ∧ z.oi = y.oi ∧ z.ci =
x.ci}}}

ONI5

Feature 7.5.3

For each object-class, the number of other object classes it is connected to
via direct access to at least one of the object’s hidden attributes or methods.

Unable to define ONI5 in terms of previously defined mathematical model
of object connection obscurity as mathematical model does not support the
relationship “object member methods directly access hidden object
methods or attributes”.

Table 5-26 Measures of Object Connection via Non-standard Interface

Chapter 5 - Operational Measure Definition

 160

Object Connection Obscurity : Non-standard Connection :
Connection via Non-standard Interface (cont.)
ONI6

Feature 7.5.4

For each object-class, the number of other object classes it is connected to
via direct access to at least one of the object’s inaccessible attributes or
methods.

Unable to define ONI6 in terms of previously defined mathematical model
of object connection obscurity as mathematical model does not support the
relationship “object member methods directly access inaccessible object
methods or attributes”.

ONI7

Feature 7.5.7

For each object-class, the number of objects instantiated from the object-
class whose hidden methods or attributes are directly accessed by the
member methods of another object-class.

Unable to define ONI7 in terms of previously defined mathematical model
of object connection obscurity as mathematical model does not support the
relationship “object member methods directly access hidden object
methods or attributes”.

ONI8

Feature 7.5.8

For each object-class, the number of objects instantiated from the object-
class whose inaccessible methods or attributes are directly accessed by the
member methods of another object-class.

Unable to define ONI8 in terms of previously defined mathematical model
of object connection obscurity as mathematical model does not support the
relationship “object member methods directly access inaccessible object
methods or attributes”.

ONI9

Feature 7.5.9

For each object-class, the number of objects instantiated from the object-
class whose hidden methods or attributes are directly accessed by a global
function.

Unable to define ONI9 in terms of previously defined mathematical model
of object connection obscurity as mathematical model does not support the
relationship “global function directly accesses hidden object methods or
attributes”.

ONI10

Feature 7.5.10

For each object-class, the number of objects instantiated from the object-
class whose inaccessible methods or attributes are directly accessed by a
global function.

Unable to define ONI10 in terms of previously defined mathematical model
of object connection obscurity as mathematical model does not support the
relationship “global function directly accesses inaccessible object methods
or attributes”.

Table 5-27 Measures of Object Connection via Non-standard Interface (cont.)

Figures 5-9 and 5-10 link the natural language model of C++ object connection obscurity to the

descriptive measures. As previously discussed in Chapter 4, section 4.2.4.6, the mathematical

entity model of object connection obscurity is unable to describe the member elements of all

possible C++ objects. Figures 5-9 and 5-10 show that connection obscurity measures OVC1,

Chapter 5 - Operational Measure Definition

 161

OUR4, OUR5, OUR6 and OUER6:OCM4 are affected by this modelling shortcoming Measure

CER2 can be used to identify objects that are potentially only partially described by these

measures. The mathematical model of object connection obscurity does not describe point 7.3.2

of the object connection obscurity natural language model. Table 4-3 of Chapter 4 describes

how to further examine these identified objects to determine whether or not the OVC1, OUR4,

OUR5, OUR6 and OUER6:OCM4 measures of object connection obscurity are able to fully

describe them. Section 4.2.4.6 of Chapter 4 also discusses the reasons that connection via non-

standard interface features 7.5.3, 7.5.4, 7.5.7, 7.5.8, 7.5.9 and 7.5.10 are not described by

measures. Figure 5-10 shows that measures OER6:OCM5, OER7:OCM6 and OER8:OCM7 can

be used to identify objects whose measured description of connection obscurity is potentially

affected by this loss of measure detail. Table 4-3 of Chapter 4 describes how to further examine

these identified objects to determine whether or not they posses the natural language features

7.5.3, 7.5.4, 7.5.7, 7.5.8, 7.5.9 and 7.5.10 that are not described by measures.

 C++ object connection obscurity - part 1

 unstated relationships

variable connection distant connection

 7.1.1 7.2.1 7.2.3 7.2.5 7.3.1

 7.1.2 7.2.2 7.2.4 7.2.6 7.3.2

 CER2 CER2 CER2 CER2

 OVC1 OUR1 OUR3 OUR5 ODC1

 OVC2 OUR2 OUR4 OUR6

Figure 5-9 C++ object connection obscurity CHARMER diagram - Part 1

Chapter 5 - Operational Measure Definition

 162

 C++ object connection obscurity - part 2

 non-standard connection

 connection via non-standard interface

unexpected relationship

 OER6

 OER7

 OER8

 7.5.3

 7.5.4

7.4.1 7.4.3 7.4.5 7.5.1 7.5.5 7.5.7

 7.5.8

 7.4.2 7.4.4 7.4.6 7.5.2 7.5.6 7.5.9

 7.5.10

 CER2

OUER1 OUER3 OUER5 ONI1 ONI3

 OUER2 OUER4 OUER6 ONI2 ONI4

Figure 5-10 C++ object connection obscurity CHARMER diagram - Part 2

Chapter 5 - Operational Measure Definition

 163

5.2.4.4 Measures of C++ object dependency

Figure 3-3 shows that the dependency sub-characteristic of object oriented software modularity

is sub-characterised at the lowest level as service invocation, interface provision, external

variable reading and external function writing. The natural language and mathematical entity

models of C++ object dependency are defined in section 4.2.4.5. These models describe

software features that increase the levels of C++ object dependency present in the software.

The following tables define measures that quantify the software features identified in the

natural language entity models of object dependency.

Object Dependency :
Service Invocation
OSI1:OCM9

Feature 8.1.1

For each object-class, the number of global functions directly invoked.

OSI1:OCM9 = {(ci, total)} = {(x.ci, total) | x ∈ C ∧ total = #{y.fi | y ∈
MGInvF ∧ ∃z{z | z ∈ OM ∧ x.ci = z.ci ∧ z.mi = y.mi}}}

OSI2

Feature 8.1.2

For each object-class, the number of other objects whose methods are
directly invoked.

OSI2 = {(ci, total)} = {(x.ci, total) | x ∈ C ∧ total = #{y.oi | y ∈
MOAccessO ∧ y.action = invoke ∧ ∃z{z | z ∈ OM ∧ x.ci = z.ci ∧ z.mi =
y.mi}}}

Table 5-28 Measures of Object Service Invocation

Object Dependency :
Interface Provision
OIP1

Feature 8.2.1

For each object-class, the number of inherited interface methods.

OIP1 = {(ci, total)} = {(x.ci, total) | x ∈ C ∧ total = #{y.mi | y ∈ AM ∧ y.ci
= x.ci ∧ y.protection = public}}

OIP2

Feature 8.2.1

For each object-class, the number of inherited interface attributes.

OIP2 = {(ci, total)} = {(x.ci, total) | x ∈ C ∧ total = #{y.ai | y ∈ AA ∧ y.ci =
x.ci ∧ y.protection = public}}

Table 5-29 Measures of Object Interface Provision

Chapter 5 - Operational Measure Definition

 164

Object Dependency : State Dependency :
External Variable Reading
OEVR1

Feature 8.3.1

For each object-class, the number of global variables its methods directly
read.

OEVR1 = {(ci, total)} = {(x.ci, total) | x ∈ C ∧ total = #{y.vi | y ∈
MGReadV ∧ ∃z{z | z ∈ OM ∧ z.ci = x.ci ∧ z.mi = y.mi}}}

OEVR2

Feature 8.3.2

For each object-class, the number of other objects whose attributes are
directly read.

OEVR2 = {(ci, total)} = {(x.ci, total) | x ∈ C ∧ total = #{y.oi | y ∈
MOAccessO ∧ y.action = read ∧ ∃z{z | z ∈ OM ∧ x.ci = z.ci ∧ z.mi =
y.mi}}}

Table 5-30 Measures of Object External Variable Reading

Chapter 5 - Operational Measure Definition

 165

Object Dependency : State Dependency :
External Function Writing
OEFW1

Feature 8.4.1

For each object-class, the number of other object-classes writing to a global
variable it reads.

OEFW1 = {(ci, total)} = {(x.ci, total) | x ∈ C ∧ total = #{y.ci | y ∈ C ∧ y.ci
≠ x.ci ∧ ∃z{z | z ∈ OM ∧ z.ci = y.ci} ∧ ∃w{w | w ∈ OM ∧ w.ci = x.ci} ∧
∃v{v | v ∈ V ∧ (w.mi, v.vi) ∈ MGReadV ∧ (z.mi, v.vi) ∈ MGWriteV}}}

OEFW2

Feature 8.4.2

For each object-class, the number of global functions writing to a global
variable read by the object-class.

OEFW2 = {(ci, total)} = {(x.ci, total) | x ∈ C ∧ total = #{y.vi | y ∈
FGWriteV ∧ ∃z{z | z ∈ OM ∧ z.ci = x.ci} ∧ ∃w{w | w ∈ MGReadV ∧ w.mi
= z.mi ∧ w.vi = y.vi}}}

OEFW3

Feature 8.4.3

For each object-class, the number of objects instantiated from that class
that have a global functions writing to one of their attributes.

OEFW3 = {(ci, total)} = {(x.ci, total) | x ∈ C ∧ total = #{y.oi | y ∈ O ∧ y.ci
= x.ci ∧ ∃z{z | z ∈ FOAccessO ∧ z.oi = y.oi ∧ z.action = write}}}

OEFW4

Feature 8.4.4

For each object-class, the number of other object-classes class-writing to a
static attribute class-read by the object-class.

OEFW4 = {(ci, total)} = {(x.ci, total) | x ∈ C ∧ total = #{y.ci | y ∈ C ∧ y.ci
≠ x.ci ∧ ∃z{z | z ∈ OM ∧ z.ci = x.ci} ∧ ∃w{w | w ∈ OM ∧ w.ci = y.ci} ∧
∃a{a | a ∈ A ∧ a.static = true ∧ (z.mi, a.ai) ∈ MCReadA ∧ (w.mi, a,ai) ∈
MCWriteA}}}

OEFW5

Feature 8.4.6

For each object-class, the number of objects instantiated from that class
that have another object-class object-writing to one of their attributes.

OEFW5 = {(ci, total)} = {(x.ci, total) | x ∈ C ∧ total = #{y.oi | y ∈ O ∧ y.ci
= x.ci ∧ ∃z{z | z ∈ MOAccessO ∧ z.oi = y.oi ∧ z.action = write}}}

OEFW6

Feature 8.4.5

For each object-class, the number of objects instantiated from another
object-class whose member methods directly object-write to a static
attribute directly object-read by the object-class.

Unable to define OEFW6 in terms of previously defined mathematical
model of object dependency as mathematical model does not support the
relationships “object member methods directly object-read and object-write
to object member attributes”.

Table 5-31 Measures of Object External Function Writing

Chapter 5 - Operational Measure Definition

 166

Figure 5-11 links the natural language model of C++ object dependency to the descriptive

measures. As previously discussed in Chapter 4, section 4.2.4.6, the mathematical entity model

of object dependency is unable to describe the member elements of all possible C++ objects.

 C++ object dependency

 interface provision state dependency

 external variable reading

service invocation external function writing

 OER5

 8.1.1 8.2.1 8.3.2 8.4.2 8.4.4 8.4.6

 8.1.2 8.3.1 8.4.1 8.4.3 8.4.5

 CER2

 OSI1 OIP1 OEVR2 OEFW2 OEFW4 OEFW5

 OIP2

 OSI2 OEVR1 OEFW1 OEFW3

Figure 5-11 C++ object dependency CHARMER diagram

Figure 5-11 shows that dependency measures OIP1 and OIP2 are affected by this modelling

shortcoming and measure CER2 can be used to identify objects that are potentially only

partially described by this measure. Table 4-3 of Chapter 4 describes how to further examine

these identified objects to determine whether or not the OIP1 and OIP2 measures of object

dependency are able to fully describe them. Section 4.2.4.6 of Chapter 4 also discusses the

Chapter 5 - Operational Measure Definition

 167

reasons that external function writing feature 8.4.5 is not described by measures. Figure 5-11

shows that measure OER5:OCM4 can be used to identify objects whose measured description

of dependency is potentially affected by this loss of measure detail. Table 4-3 of Chapter 4

describes how to further examine the objects identified by measure OER5:OCM4 to determine

whether or not they posses the natural language feature 8.4.5 that is not described by measures.

Object Modularity Sub-characteristics

Common Feature

Measure

Interface Dependence : Interface Implementation
Dependence: Interface Size
Interface Dependence : Interface Implementation
Dependence: Data Exposure

5.2.1

5.3.1

OIS1:OCM1

ODE1:OCM1

Interface Dependence : Interface Implementation
Dependence: Interface Size
Interface Dependence : Interface Implementation
Dependence: Data Exposure

5.2.3.3

5.3.2

OIS7:OCM2

ODE2:OCM2

Interface Dependence : Interface Implementation
Dependence: Interface Size
Interface Dependence : Interface Implementation
Dependence: Data Exposure

5.2.3.3

5.3.2

OIS8:OCM3

ODE3:OCM3

External Relationships
Connection Obscurity : Non-standard Connection :
Unexpected Relationship

6.1.5

7.4.6

OER5:OCM4

OUER6:OCM4

External Relationships
Connection Obscurity : Non-standard Connection :
Unexpected Relationship

6.1.6

7.4.3

OER6:OCM5

OUER3:OCM5

External Relationships
Connection Obscurity : Non-standard Connection :
Unexpected Relationship

6.1.7

7.4.4

OER7:OCM6

OUER4:OCM6

External Relationships
Connection Obscurity : Non-standard Connection :
Unexpected Relationship

6.1.8

7.4.5

OER8:OCM7

OUER5:OCM7

Connection Obscurity : Unstated Relationship
Connection Obscurity : Non-standard Connection :
Unexpected relationship

7.2.1

7.4.1

OUR1:OCM8

OUER1:OCM8

Connection Obscurity : Unstated Relationship
Dependency : Service Invocation

7.2.2
8.1.1

OUR2:OCM9
OSI1:OCM9

Connection Obscurity : Distant Connection
Connection Obscurity : Non-standard Connection :
Unexpected relationship
Connection Obscurity : Non-standard Connection :
Connection via Non-standard Interface

7.3.1

7.4.2

7.5.1

ODC1:OCM10

OUER2:OCM10

ONI1:OCM10

Table 5-32 Measures quantifying features common to several object modularity sub-
characteristics

Chapter 5 - Operational Measure Definition

 168

As mentioned in Section 4.2.4.7 of Chapter 4, some features of the object modularity natural

language model are common to several modularity sub-characteristics. The implications of this

for data analysis are discussed in Section 4.2.3.6 of Chapter 4. Table 5-32 identifies the

measures quantifying these common features, facilitating the removal of common measures

where the selected data analysis technique dictates such a procedure.

5.2.5 Level of measurement of modularity measures

The C++ class and object modularity measures developed in this thesis are defined at the ratio

level of measurement. For these measures, a value of zero indicates an absence of software

features that reduce modularity and values above zero indicate decreasing modularity. There are

no negative measured values.

The only exceptions to these rules are measures CIS2 and OIS2, counting the number of hidden

attributes in a module, and measures CIS4 and OIS4, counting the number of hidden methods in

a module. While these measures are made at the ratio level of measurement, a value of zero

indicates an absence of software features that increase modularity, which is the opposite of the

other measures. Measures CIS2, CIS4, OIS2 and OIS4 need to be analysed with respect to

measures CIS1:CCM1, CIS3, OIS1:OCM1 and OIS3, the number of interface attributes and

methods. To obtain a ratio level description class interface size where zero indicates high

modularity, the following calculations should be performed. Where a class or object has no

methods at all, the interface size is undefined and for analysis purposes, should be set to zero.

class attribute interface size = CIS1:CCM1 / (CIS1:CCM1 + CIS2)

class method interface size = CIS3 / (CIS3 + CIS4)

object attribute interface size = OIS1:OCM1 / (OIS1:OCM1 + OIS2)

object method interface size = OIS3 / (OIS3 + OIS4)

These calculations result in data of a ratio level of measurement where zero indicates high

modularity and values increasing from zero indicate decreasing modularity.

Chapter 5 - Operational Measure Definition

 169

5.2.6 Content validation of modularity measures

As discussed in section 5.1.4.2, content validation is appropriate to the set of C++ class and

object descriptive measures that are developed in this thesis. Figure 5-4 describes the process of

software descriptive measure content validation. The CHARMER diagrams, such as the one

illustrated in Figure 5-2, facilitate this process of content validation. Step 1 of the content

valuation process described in Figure 5-2 is accomplished in the CHARMER diagram by the

specification of links from characteristics and sub-characteristics to the software features that

affect them. Step 2 of the content validation is accomplished by examining each of these

software features and annotating them with importance and frequency ratings. To perform

content validation step 3, a potential user of the measures must examine the features identified

in the natural language entity model as affecting the levels of characteristic present. The user

must be satisfied that the natural language entity model includes all the features they consider

important. If essential features are excluded, then the descriptive measures will not describe

these essential features and the user must declare the measures to have insufficient content

validity for their intended application. If the user judges the features described by the measures

to be adequate, then step 4 of the content validation process can proceed.

To accomplish content validation step 4, a potential user must examine the measures

quantifying each software feature. If the measures adequately quantify the features considered

by the user to be important and/or frequently occurring, then the set of descriptive measures can

be declared to have sufficient content validity. If the potential user decides that the measures do

not adequately quantify important or frequently occurring software features, then the measures

should be declared to have insufficient content validity. A set of measures with sufficient

content validity can be applied to the measurement task. A set of measures with insufficient

content validity can either be discarded completely, or augmented with new measure definitions

to increase the content validity to acceptable levels.

The following section describes the content validation of a hypothetical software system. The

Figure 5-4 content validation process is used and is facilitated by the Figure 5-14 object

dependency CHARMER diagram.

Chapter 5 - Operational Measure Definition

 170

5.2.6.1 Example of a content validation

A software engineer is interested in evaluating the dependency sub-characteristic of object

modularity. They are particularly interested in the dependency of object modules on state

information maintained by software elements external to the object. They are not interested in

an object's dependency on interface elements provided by ancestor classes. The following

points describe the composition of the software system to be measured.

• The software system to be measured has very few global functions and global variables.

• It does not have friend type relationships between modules.

• One class has a static attribute. This class is not involved in inheritance however it does

instantiate 10 objects in the system.

• No objects have attributes appearing in their interfaces.

• Approximately one quarter of system classes are involved in inheritance relationships

as parents or children or both.

Step 1 of the Figure 5-4 content validation process is accomplished in the CHARMER diagram

of Figure 5-14, which describes the relationships between C++ object dependency sub-

characteristics, features and measures.

Chapter 5 - Operational Measure Definition

 171

 C++ object dependency

 interface provision state dependency

 external variable reading

service invocation external function writing

 OER5

 8.1.1
I-2,F-3

 8.2.1
I-3,F-2

 8.3.2
I-1,F-3

 8.4.2
I-1,F-3

 8.4.4
I-1,F-2

 8.4.6
I-1,F-3

 8.1.2
I-2,F-1

 8.3.1
I-1,F-3

 8.4.1
I-1,F-3

 8.4.3
I-1,F-3

 8.4.5
I-1,F-3

 CER2

 OSI1 OIP1 OEVR2 OEFW2 OEFW4 OEFW5

 OIP2

 OSI2 OEVR1 OEFW1 OEFW3

Figure 5-12 Example of content validation of object dependency measures using CHARMER
diagram

In step 2 of the content validation process, importance and frequency ratings are assigned to

each CHARMER diagram software feature. The importance (I) and frequency (F) ratings used

are as follows: 1- high, 2 - medium, 3 - low. In Figure 5-14, the importance and frequency

ratings are shown in the natural language feature boxes beneath the feature identification

number. The information that the user is interested in measuring object dependency on external

state information and is not interested in interface provision dependency is used to assign

important ratings to each software feature. Frequency ratings are assigned based on the given

Chapter 5 - Operational Measure Definition

 172

information regarding the composition of the software system to be measured.

In step 3 of the content validation process, the software engineer examines the set of object

dependency natural language features and determines that the ones they consider important are

included in the set. This means that the theoretical basis from which the measures are

developed is appropriate to the description of object dependency the software engineer wishes

to obtain by applying the measures.

Step 4 of the content validation process involves the software engineer examining the measures

to decide whether or not they adequately quantify the software features. If they do, then the

measures can be judged to adequately describe object dependency. In particular, the features

identified as being important and/or frequently occurring need to be adequately quantified by

measures. The CHARMER diagram indicates that feature 8.2.1 is adequately described by

measures OIP1 and OIP2 only under some conditions identified by measure CER2. Measure

CER2 is applied to the software system and indicates that 10 classes have distant ancestor

classes. Examination of the inheritance hierarchies of these 10 classes shows that none inherit

from more than one version of an ancestor class. This means that, for this software system, the

mathematical model of object dependency is able to describe all their member elements and

that measures OIP1 and OIP2 correctly describe these classes. Hence, feature 8.2.1 is correctly

described for all objects in the measured software system.

The CHARMER diagram also indicates that feature 8.4.5 is not described by any measures and

that measure OER5:OCM4 indicates whether or not the software system to be measures has this

feature. Measure OER5:OCM4 is applied to the software system and indicates that one object-

class has a static attribute. Examination of this object-class shows that the static attribute is

hidden within the object-class and is directly read from and written to several of the object-

class's member methods. In the software system to be measured, only this object-class possesses

feature 8.4.5 and hence, the validity of its measured levels of dependency is reduced by the lack

of measures to describe feature 8.4.5. For all other system object-classes, the validity of their

measured levels of dependency is not affected by the lack of measures to describe feature 8.4.5.

Examination of the Figure 5-14 CHARMER diagram shows that measures are defined to

quantify all the remaining important and/or frequently occurring object dependency features.

The software engineer judges that the measures adequately describe the dependency of the

objects within the system to be measured with the exception of the single object-class with a

Chapter 5 - Operational Measure Definition

 173

hidden static attribute. It is reasonable to declare the set of object dependency measures to have

sufficient content validity for this software system because the majority of objects are

adequately described by the object dependency measures. Analysis of the measured data

obtained from this system should take into account the fact that the object-class with the hidden

static attribute, identified by measure OER5:OCM4, has a higher level of external function

writing dependency than the measured values indicate.

5.3. Conclusion

The third stage of the systematic measure development process is the development of

operational definitions of software characteristics. This is accomplished by defining measures

to quantify the software features identified in the natural language entity model as affecting the

levels of characteristics present in the software. The prerequisites of the operational definition

stage are the conceptual definition of the characteristic to be described by the measures, and the

natural language entity model describing the features of the software that affect the level of

characteristic present. Together, the conceptual definition and natural language entity model

express the theoretical basis from which the measures are developed. An optional prerequisite

to the operational definition stage is a mathematical entity model describing the software

features identified in the natural language entity model.

A set of natural language measure definitions is the primary product of the operational

definition stage. Where a suitable mathematical entity model has been defined in the entity

modelling stage of measure development, a set of mathematical measure definitions are a

secondary but important product of this stage. The mathematical measure definitions should

complement the natural language measure definitions by defining the characteristic of interest

in precise, unambiguous terms. Included with each measure definition should be a statement of

the level of measurement it achieves. This information will guide a future user in the selection

of appropriate analysis techniques to apply to the data obtained from applying the measures to a

software system.

Before applying the measures to a system, a user should assess the content validity of the set of

measures. Content validity establishes the degree to which the set of measures is appropriate for

a proposed application. The theoretical basis from which the measures are developed, as

expressed in the conceptual definition and natural language entity model, and the degree to

which the measures quantify these natural language model features, must be considered when

Chapter 5 - Operational Measure Definition

 174

determining measure content validity.

Section 5-2 of this chapter demonstrates the process of developing the operational definition of

C++ class and object modularity. C++ class and object modularity sub-characteristics are

operationally defined in terms of natural language and mathematical measure definitions. The

basis for this operational definition is provided by the natural language and mathematical entity

models of C++ class and object modularity developed in section 4.2 of Chapter 4. The C++

object mathematical entity models were unable to completely describe all the features of their

associated natural language models. These mathematical model shortcomings need to be taken

into account when operationally defining object modularity.

The CHARMER diagrams illustrate the operational definition of the identified C++ class and

object modularity sub-characteristics. These diagrams describe the measures defined to

quantify natural language models features. They also show the natural language model features

whose measured description is affected by mathematical model shortcomings and also show

features that are not described by measures. The information presented in the CHARMER

diagram facilitates the content validation of the modularity measures.

The measurement instrument implementation stage of measure development, as presented in

Chapter 6, can proceed once the prerequisite mandatory natural language and optional

mathematical measure definitions have been developed to quantify the features of the software

that affect the levels of characteristic present.

Chapter 6 - Measurement Instrument Implementation

 175

6. Measurement Instrument Implementation

This chapter describes the measurement

instrument implementation stage of

software descriptive measure development.

This stage corresponds to the shaded boxes

in the Figure 6-1 diagrammatic

representation of the measure development

process. Section 6.1 of this chapter

describes the implementation of descriptive

measures of software within a software

based measurement instrument and section

6.2 demonstrates the implementation of the

C++ class and object modularity

mathematical measure definitions

developed in section 5.2 of Chapter 5.

Figure 6-1 Measurement instrument
implementation stage of the measure

development process

6.1. Stage 4 of measure development process - measurement instrument

implementation

In the measurement instrument implementation stage, a tool is developed to collect, from a

software entity, data describing the characteristic of interest. In software measurement, it is

usual to implement measures within a software based measurement instrument capable of

automatically analysing the software system to be measured and producing the measurement

data. Abreu, Goulao and Esteves (1995 p.44) note that "the [metrics] collection process is

really a repetitive, tedious, boring, time-consuming and expensive task for humans!". A

software based measurement instrument can reliably collect measurement data from software

system documents if these documents have a regular syntax that can be analysed automatically.

Software system source code is an example of a software document from which measurement

data can be automatically collected using a software based measurement instrument. A

disadvantage of a software based measurement instrument is that it is only able to collect data

related to the structure and syntax of the software. This in turn limits the type of measures that

can be collected and hence the type of characteristics that can be described by these measures.

Measurement
Instrument

Implementation

Entity Modelling

Operational Definition

Conceptual Definition

Measurement
Instrument
Implementation

Chapter 6 - Measurement Instrument Implementation

 176

The measurement instrument implementation discussed in this chapter is limited to measures

that have been formally defined in terms of a mathematical entity model. This represents an

ideal case and reflects the C++ class and object modularity implementation presented in section

6.2 of this chapter.

The many different approaches to software measurement "stop at the point at which

measurement concepts or specific metrics are identified. They do not define how such measures

can be collected and stored, nor (in general) do they define how they can be analyzed."

(Kitchenham, Hughes & Linkman 2001, p788). One exception to this is Arisholm, Briand and

Foyen (2004) who describe the operation of a tool for collecting coupling data. Limitations of

measurement instruments are generally not discussed in detail when software measures are

implemented and collected. The limitations of the measurement instrument selected to

implement a set of measures can have a significant effect on the quality of the final description

of the software obtained. In particular, it may be necessary to tailor measure definitions to fit

the capabilities of the selected measurement instrument. The modified measures thus

implemented may not provide the same description of the software as the original measure

definitions. This potential change of measure validity should be recognised and documented so

that it can be taken into account when analysing and interpreting measured data obtained from

applying the measurement instrument.

Figure 6-2 illustrates the components of a software based measurement instrument. The

elements of this measurement instrument are the source code analyser, the basic software

model, the software measurement model, the basic model to measurement model

transformations and the software measure definitions.

Chapter 6 - Measurement Instrument Implementation

 177

Figure 6-2 Elements of a software based measurement instrument

The input to this type of measurement instrument is the source code of the software system to

be measured. The output from this measurement instrument is the software measurement data.

The arrows between elements of Figure 6-2 represent transformation processes. These

transformations are accomplished by their associated measurement instrument element. The

data to fill the basic software model is obtained by parsing the software system source code

through a source code analyser. Data manipulations transform the basic software model data

into the software measurement model data. This software measurement model represents the

implementation of the mathematical entity models defined in the entity modelling stage of

measure development. Applying the measure definitions to the software measurement model

data generates the software measure data. These measure definitions represent the

implementation of the mathematical measure definitions developed in the operational definition

stage of measurement development. Measurement instrument limitations, manifest in an

inability to implement the full set of defined measures, can be caused by problems

implementing one or more of the components of this measurement instrument. As each

component is implemented, any problems encountered should be documented so that the impact

on the measurement data obtained from the measurement instrument can be assessed.

Software Based Measurement Instrument

Software
System
Source Code

Basic Software
Model

Software
Measurement

Model
(implementation

of Chapter 4
mathematical
entity model)

Software
Measurement
Data

Basic Software to
Software

Measurement
Model

Transformations

Software
Measure

Definitions
(implementation

of Chapter 5
mathematical

measure
definitions)

Source Code
Analyser

Chapter 6 - Measurement Instrument Implementation

 178

The following sections describe the measurement instrument implementation stage of measure

development in terms of its prerequisites, performance and products. This description is

specific to software based measurement instruments implementing measures that have been

mathematically defined.

6.1.1 Prerequisites to the measurement instrument implementation stage

A set of measure definitions formally defined in terms of a mathematical entity model is

prerequisite to the software based measurement instrument implementation stage of measure

development. It is important that these measure definitions specify precisely how each measure

is to be made because software based measurement instruments cannot accommodate the

implementation of ambiguous measure definitions. Another prerequisite is a measurement

instrument capable of implementing the set of measures and performing the measurement

operation by extracting the required information from the software system and transforming

this into the measured data. If the selected measurement instrument is not capable of

implementing the full set of measures, the measure developer must decide whether to seek a

different, more capable measurement instrument or accept the limitations of the available

instrument and proceed with the implementation.

6.1.2 Performance of the measurement instrument implementation stage

Once the prerequisite requirements have been met, the measurement instrument can be

implemented. The Figure 6-2 measurement instrument is implemented progressively from left

to right. The first step is to define and implement the basic software model and implement the

software document parser that extracts the data needed to fill this model. Following this, the

transformations to generate the software measurement model from the basic software model

must be defined and implemented. Finally, the mathematical measure definitions are

implemented. These definitions transform data from the software measurement model into the

software descriptive measurement data.

If the selected measurement instrument is unable to fully implement the mathematical software

entity model within the software measurement model then the shortcomings of the software

measurement model should be described. Similarly, if any mathematical measure definitions

are not fully implemented within the measurement instrument this shortcoming should be

described.

Chapter 6 - Measurement Instrument Implementation

 179

As Figure 1-3 from Chapter 1 shows, the level of measurement, validity and reliability of the

implemented measures should be assessed, even though the level of measurement and validity

of the set of defined measures have been previously assessed as part of the operational

definition stage of measure development. This reassessment is necessary because measurement

instrument shortcomings may change the level of measurement and validity of the implemented

measures. The process of level of measurement and validity assessment of implemented

measures is discussed in section 6.1.4. The assessment of software based measurement

instrument reliability is discussed in section 6.1.5.

6.1.3 Products of the measurement instrument implementation stage

The primary product of the measurement instrument implementation stage is a software based

measurement instrument capable of automatically analysing a software document and

transforming the data obtained from this analysis into data describing the levels of the

characteristic of interest present in the analysed software system.

If the measurement instrument is able to implement the full set of measures from the

operational definition stage of measure development, then the characteristic to measure

relationship (CHARMER) diagrams and level of measurement statements from the operational

definition stage are applicable to the implemented measurement instrument. If however the

measurement instrument is unable to implement the full set of measures defined in the

operational definition stage of measure development, then the CHARMER diagrams need to be

updated to reflect the measurement instrument shortcomings. It may also be necessary to restate

the level of measurement of measures that have been modified in the implementation.

6.1.4 Assessing implemented measure level of measurement and validity

As previously mentioned, before a measurement instrument is applied to a particular

measurement task, the level of measurement, validity and reliability of the implemented set of

measures should be assessed. A measurement instrument should only be applied when its levels

of validity and reliability are judged to be sufficient for an intended application. The level of

measurement of the resulting data needs to be known so that appropriate analysis techniques

can be applied.

Chapter 6 - Measurement Instrument Implementation

 180

Where measure definitions have been modified to accommodate limitations of the measurement

instrument, their level of measurement may have changed. The level of measurement achieved

by implemented measures should be reassessed and restated as part of the measurement

implementation stage of measure development.

Limitations of the measurement instrument may also result in the reduction of the validity of

the set of measures. The measure validity determined at the operational definition stage

represents the maximum level of validity that the set of measures can achieve. If the measures

can be fully implemented within the measurement instrument, their level of validity will be the

same as for the operational definition stage. Any limitations in the ability of the measurement

instrument to implement the mathematical entity model as the software measurement model, or

the mathematical measure definition as the software measure definitions will reduce the

maximum possible validity of the set of measures. A content type validation will be performed

on the measures implemented in this thesis. The process of content validation is the same as

described in section 5.1.4.2 of Chapter 5.

6.1.5 Reliability of software based measurement instruments

Reliability is the "degree to which an instrument measures the same way each time it is used

under the same conditions with the same subjects." (Sproull 1995, p. 74). The validity of a set

of measures should be established before determining reliability because a reliable measure that

is invalid is not useful.

The five main types of reliability are test-retest reliability, alternative or equivalent forms

reliability, split-sample or split-half reliability, internal consistency reliability, and interrater or

scorer reliability (Diamantopoulos & Schlegelmilch 1997, p. 36; Sproull 1995, p. 83). Of these,

test-retest reliability and interrater reliability are most applicable to software measurement.

Test-retest reliability is an estimate of the degree to which a measure produces the same result

when administered to the same subject at different times (Sproull 1995, p. 84). Interrater or

scorer reliability is an assessment of the degree to which different people "rate the same

variables in the same way" (Sproull 1995, p. 89). Interrater reliability is not applicable to

measures collected using a software-based instrument as no human judgement is needed when

taking the measures from the software. With regard to test-retest reliability, a software based

measurement instrument will always produce the same results when applied to the same subject

at any time. Thus, the reliability of a software based measurement instrument should always be

Chapter 6 - Measurement Instrument Implementation

 181

considered acceptable.

6.1.6 Practical Considerations

A significant consideration of measurement instrument implementation is how the data needed

to fill the basic software model is to be extracted from the software document. While a software

based application may be able to automatically parse the software document, it may not be able

to extract all the required data. Missing data from the basic software model means that data will

also be missing from the software measurement model, which in turn means that some

measures cannot be implemented. Another consideration when extracting data from the

software document is the way in which it is to be entered into the basic software model. For

instance, the software code parsing application may present the data it extracts in a format that

is not compatible with the data structures of the basic software model. In this case, a means

must be found to modify the format of the data.

Once the basic software model is implemented, the transformations to derive the software

measurement model must be defined and implemented. If the selected measurement instrument

is unable to perform all the required transformations then measures relying on the information

missing from the software measurement model cannot be implemented. The ability of the

selected measurement instrument to implement the mathematical measure definitions is an

important consideration. Measures defined in a way that is not compatible with the format

required by the measurement instrument may need to be redefined or an alternative

measurement instrument used.

The size or complexity of a software system to be measured may affect the operation of the

measurement instrument. A prototype measurement instrument such as the one demonstrated in

section 6.2, constructed from several general purpose applications, may be able to adequately

measure relatively small software systems. Problems may arise when an attempt is made to

measure a large complex software system. In particular, the measurement instrument may lack

the capacity to perform the transformation of basic software model to software measurement

model. To overcome problems related to size of the measured system, a large software system

may need to be broken down into smaller components that are measured separately.

Alternatively, the measures could be implemented on a more powerful measurement

instrument.

Chapter 6 - Measurement Instrument Implementation

 182

A final practical consideration is that of human errors made during the implementation stage.

For example, a mathematical measure definition could be implemented incorrectly resulting in

it generating incorrect measures. A bug in the implementation of a set of measures may not be

immediately apparent and could result in an unrecognised reduction in the validity of measured

data obtained from a software system. To reduce the chances of this type of error occurring in a

measurement instrument, system testing should be undertaken to ensure that each measure is

operating correctly.

The remainder of this chapter demonstrates the measurement instrument implementation stage

for the implementation of descriptive measures of C++ class and object modularity.

6.2. Implementation of C++ class and object modularity measures

This section describes the implementation of C++ class and object modularity measures within

a software based measurement instrument. Figure 6-3 illustrates the measurement instrument

used for this implementation.

Figure 6-3 Measurement instrument implementing C++ class and object modularity measures

Software Based Measurement Instrument

C++ Software
System
Source Code

Microsoft Access

C++ Basic
Software
Model

Microsoft Access

C++ Software
Measurement

Model

C++ Software
Modularity
Measurement
Data

Microsoft Access
SQL and custom
C++ applications

Basic Software to

Software
Measurement
Model C++

Transformations

Microsoft Access
SQL

C++ Software
Modularity

Measure
Definitions

Perl interface to
Understand for

C++

Source Code
Analyser

Chapter 6 - Measurement Instrument Implementation

 183

The basic software model describes the elements of the software that can be directly extracted

from the software document by a source code analyser. The elements of the basic software

model are selected on the basis that it is possible to derive the software measurement model

from them. In this implementation, the data to fill the C++ basic software model is extracted

from the C++ software system source code using the Understand for C++ source code analyser

(Scientific Toolworks Inc. 2003).

Initially, the data is stored within the Understand for C++ internal database. A Perl

programming language interface enables custom Perl scripts to extract data from this database.

This data is output to text files in a format that can be read directly into the Microsoft Access

tables implementing the C++ basic software model.

The information available within the basic software model and the ability of the selected

measurement instrument to perform the necessary transformations will affect the degree to

which the software measurement model is fully implemented. In this implementation, a

combination of Microsoft Access queries, Microsoft Visual Basic routines and custom written

C++ applications transform the C++ basic software model into the C++ software measurement

model. Appendix 2 describes the basic software model transformations that generate the

software measurement model.

The measure definitions specify the data that must be taken from the measurement model in

order to describe the characteristic of interest. The C++ class and object modularity measures

mathematically defined in Chapter 5 are implemented as Microsoft Access queries on the

software measurement model database. The measurement data obtained from these queries can

be output to data analysis applications such as Microsoft Excel or the Statistical Package for

the Social Sciences (SPSS).

Section 6.2.1 discusses the definition and implementation of a C++ basic software model from

which the C++ software modularity measurement model is derived. Section 6.2.2 discusses the

transformation of this basic software model into the software measurement model. Section

6.2.3 discusses the implementation of the Chapter 5 C++ class and object modularity measures

as queries on the C++ software modularity measurement model database. The level of

measurement of the implemented measures and the validity and reliability of the implemented

measurement instrument are discussed in section 6.2.4.

Chapter 6 - Measurement Instrument Implementation

 184

6.2.1 C++ basic software model implementation

The basic software model describes features of the C++ software that can be obtained by direct

code analysis. The elements of the basic software model are selected on the basis that they can

be transformed into the elements of the C++ class and object software measurement models.

The basic software model is defined in natural language and mathematical terms.

6.2.1.1 Natural language C++ basic software model

The following points define the C++ basic software model in natural language terms. This

natural language model is divided into two sections. The first section describes fundamental

software elements and the membership, inheritance, friend and association relationships that

must exist before various interactions between these elements can occur. The second section

describes interactions between C++ software elements that take place due to these

relationships. The C++ basic software mathematical model defined in section 6.2.1.2 describes

the features identified in this natural language model. Included with each natural language

model point are the names of the associated mathematical model sets describing each feature. A

one to one correspondence between natural language feature and mathematical model set

indicates that the mathematical model is able to describe the associated feature.

• Software elements and relationships between them

• A class (C) has member method (MM, M), member attribute (MA, A) and member

object (MO, O) elements.

• Class (C) member attributes (MA, A) are instances of, or pointers to, a C++ primitive

data types, declared within the class (C) definition. A primitive data type is one of char,

double, float, int, long, short, signed or unsigned.

• Class (C) member methods (MM, M) are the functions and procedures declared within

the class (C) definition.

• Class (C) member objects (MO, O) are direct instances of, or pointers to instances of

(OIC) a class (C).

• A class (C) is divided into interface and hidden regions. Interface elements have a

public or protected level of protection (MM, M, MA, A, MO, O) and hidden elements

have a private level of protection (MM, M, MA, A, MO, O).

Chapter 6 - Measurement Instrument Implementation

 185

• The Inherits Parent (IP) type relationship occurs only between classes (C). A child

class (C) can inherit from one or more immediate parent classes (C). It can only

immediately inherit from one version of a parent class.

• A class (C) may have friend global functions (FF, F), friend classes (FC, C) and friend

methods (FM, M).

• A class (C) may have global objects (O) within its scope (SO).

• A class (C) may have global functions (F) within its scope (SF).

• A class (C) may have global variables (V) within its scope (SV).

• Global function (F) associated objects (FIMO, O) are direct instances of, or pointers to

instances of (OIC) a class (C).

• Global objects (O) are direct instances of, or pointers to instances of (OIC) a class (C).

• Interactions between software elements

• A method (M) can directly class-read (MCReadA) a value from an attribute (A) or

class-write (MCWriteA) a value to an attribute (A). Class-read and class-write

interactions are allowed between methods and attributes when the method and attribute

are members of the same class, or when the attribute is a member of an ancestor to the

method's member class.

• A method (M) can directly class-invoke (MCInvM) a method (M). Class-invoke

interactions are allowed between methods when they are members of the same class, or

when the invoked method is a member of an ancestor to the invoking method's member

class.

• A method (M) can directly global-read (MGReadV) a value from a global variable (V)

or directly global-write (MGWriteV) a value to global variable (V).

• A method (M) can directly global-invoke (MGInvF) a global function (F).

• A global function (F) can directly global-read (FGReadV) a value from a global

variable (V) or global-write (FGWriteV) a value to a global variable (V).

• A method (M) can directly read, write or invoke access (MOAccessO) an object (O).

• A global function (F) can directly read, write or invoke access (FOAccessO) an object

(O).

6.2.1.2 Mathematical C++ basic software model

The entity-relationship model describing the C++ basic software model is illustrated in Figure

6-4. The set definitions of the entities and relationships of this model are detailed in Appendix

1. As indicated in the C++ basic software natural language model definition, the mathematical

model is able to describe all the features of the C++ basic software natural language model.

Chapter 6 - Measurement Instrument Implementation

 186

Figure 6-4 Basic software mathematical model

CLASS

C

METHOD

M

Inherits Parent
IP

N

M

Has Immediate
FIMO

M 1

Function
Immediate Friend

FF
N M

Class Immediate
Friend

FC

N

M

Method Immediate
Friend

FM

1

OBJECT

O

Instance Of
OIC

N

1

N

Has Member
MA

1

N

Has Member
MM

M

N

ATTRIBUTE

A

GLOBAL FUNCTION

F

GLOBAL VARIABLE

V
N M Global Writes

FGWriteV

Class Invokes
MCInvM

N M

N

M

Global Reads
MGReadV

 N

M

Global Writes
MGWriteV

Global Invokes
MGInvF

N

M

Class Reads
MCReadA

N M

Class Writes
MCWriteA N M

Object
Accesses

MOAccessO

N M Object
Accesses

FOAccessO

N M

Has Member
MO

N

1

Global Object
Within Scope

SO

M

N

Function Within
Scope

SF

N M

Variable Within
Scope

SV
N

M

Chapter 6 - Measurement Instrument Implementation

 187

6.2.1.3 Implementation of C++ basic software model

The basic software model is implemented as a Microsoft Access database. The data to fill this

database is obtained from the C++ software system source code using the Understand for C++

"reverse engineering, documentation and metrics tool for C and C++ source code" (Scientific

Toolworks Inc. 2003). The Understand for C++ application parses C++ software code

documents and creates a project file database of software entities and the relationships between

them. The required basic software model data is extracted from this project file database using

customised Perl scripts developed based on the sample scripts provided by Scitools (Scientific

Toolworks Inc. 2003). This data is output to a set of text files corresponding to the entities and

relationships of the basic software model. The format of these files is such that they can be read

directly into the Microsoft Access basic software model database. Figure 6-7 illustrates this

process.

Figure 6-5 Implementation of Basic Software Model

Due to limitations of the Understand for C++ code analysis application, some of the data

required by some tables of the basic software model database cannot be extracted from the

source code of C++ software systems. This means that the basic software model cannot be fully

implemented within the measurement instrument developed in this thesis and described in

Figure 6-3. An area for possible future work would be to find and implement a code analysis

application capable of extracting all the basic software model data from the C++ source code.

The following points describe the elements of the basic software model that cannot be fully

implemented in the selected measurement instrument implemented in this thesis.

C++ Code
Software
Documents

Microsoft
Access

Implementation
of Basic
Software
Model

Understand

for C++

Database

Microsoft
Access

Compatible
Text Data

Files

parsed into queried by
Perl scripts

imported
into

Chapter 6 - Measurement Instrument Implementation

 188

• In set FOAccessO, the action performed by the global function accessing the object cannot

be determined from the Understand for C++ application's code analysis. In Appendix 1, the

relation FOAccessO is defined as

FOAccessO = {(fi, oi, action)} = {(f.fi, o.oi, action) | f ∈ F ∧ o ∈ O ∧ action ∈ {read,

write, invoke) ∧ (object o is directly accessed by global function F)}

Within the measurement instrument implemented within this thesis, the action field of the

FOAccessO is assigned an empty string. The revised set definition becomes:

FOAccessO = {(fi, oi, action)} = {(f.fi, o.oi, "") | f ∈ F ∧ o ∈ O ∧ (object o is directly

accessed by global function F)}

• In set MOAccessO, the action performed by the method accessing the object cannot be

determined from the Understand for C++ application's code analysis. In Appendix 1, the

relation MOAccessO is defined as

MOAccessO = {(mi, oi, action)} = {(m.mi, o.oi, action) | m ∈ M ∧ o ∈ O ∧ action ∈

{read, write, invoke) ∧ (object o is directly accessed by method M)}

Within the measurement instrument implemented within this thesis, the action field of the

MOAccessO is assigned an empty string. The revised set definition becomes:

MOAccessO = {(mi, oi, action)} = {(m.mi, o.oi, "") | m ∈ M ∧ o ∈ O ∧ (object o is

directly accessed by method M)}

• Set SO cannot be implemented.

• Set SF cannot be implemented

• Set SV cannot be implemented

Due to the inability of the measurement instrument to implement the SO, SF and SV relations

and to fully implement the FOAccessO and MOAccessO relations of the basic software model,

the description of the software obtained within this implemented basic software model is less

detailed than the theoretical basic software entity-relationship model described in section

6.2.1.2. This in turn affects the description obtained when the software measurement model of

C++ modularity model is generated from the basic software model. The following section

describes the derivation of the software measurement model of C++ modularity.

Chapter 6 - Measurement Instrument Implementation

 189

6.2.2 Software measurement model implementation

The software measurement model is the implementation of the mathematical entity model

defined in the entity modelling stage of measure development described in section 4.2 of

Chapter 4. The sets of which this model is comprised are defined in Appendix 1. As Figure 6-2

shows,

in a software based measurement instrument, the software measurement model is derived from

the basic software model. This derivation is accomplished by transforming the set of the basic

software model into the set of the software measurement model.

6.2.2.1 Derivation of C++ software modularity measurement model

Comparison of the C++ basic software mathematical model defined in section 6.2.1.2 and the

C++ software modularity measurement models defined in section 4.2 of Chapter 4 shows that

most of the sets of the C++ basic software mathematical model also form part of the C++

software modularity measurement model. The exceptions are sets FC (class immediate friend)

and FM (method immediate friend). The C++ software modularity measurement model also

contains sets that are derived from the C++ basic software model. Table 6-1 lists the derived

sets of the C++ software modularity measurement model along with the source C++ basic

software model sets from which they are derived. Both source and derived sets are defined in

Appendix 1. The transformations that produce the derived C++ software modularity

measurement model sets from the source C++ basic software model sets are defined in

Appendix 2.

Chapter 6 - Measurement Instrument Implementation

 190

Derived C++ software modularity
measurement model sets

Transformation
(Appendix 2)

Source C++ basic
software model sets

AA - class has accessible attribute Transformation 1 IP, A

IAA - class has inaccessible attribute Transformation 1 IP, A

AM - class has accessible method Transformation 2 IP, M

IAM - class has inaccessible method Transformation 2 IP, M

AO - class has accessible object Transformation 3 IP, O

IAO - class has inaccessible object Transformation 3 IP, O

IMO - class has immediate object Transformation 4 IP, O, MO,

MICReadA - method indirectly same class
reads attribute

Transformation 5 M, A, MCReadA,
MCInvM

MICWriteA - method indirectly same class
writes attribute

Transformation 6 M, A, MCWriteA,
MCInvM

MICInvM - method indirectly same class
invokes method

Transformation 7 M, A, MCInvM

MIOCReadA - method indirectly same object
class reads attribute

Transformation 8 M, A, IP, MCReadA,
MCInvM

MIOCWriteA - method indirectly same object
class writes attribute

Transformation 9 M, A, IP, MCWriteA,
MCInvM

MIOCInvM - method indirectly same object
class invokes method

Transformation 10 M, IP, MCInvM

CEF - class element immediate friend to class Transformation 11 FC, FM

IDA - class inherits distant ancestor class Transformation 12 IP

CIF - class element inherited friend to class Transformation 13 FC, FM, IP

FIF - global function inherited friend to class Transformation 14 FF, IP

Table 6-1 C++ software modularity measurement model sets derived from C++ basic software
model source sets

6.2.2.2 Implementation of C++ software modularity measurement model

Figure 6-3 shows that the C++ software modularity measurement model is implemented within

a Microsoft Access relational database. The transformations required to derive this software

modularity measurement model from the C++ basic software model are implemented within

this database using a combination of Microsoft Access SQL statements, Microsoft Visual Basic

routines and custom written C++ programs. The C++ basic software model source sets from

which the derived sets are generated are fully implemented within the measurement instrument

Chapter 6 - Measurement Instrument Implementation

 191

as are the transformations needed to generate the C++ software modularity measurement model

derived sets. This means that all the derived sets of the C++ software modularity measurement

model are fully implemented within the selected measurement instrument.

As previously discussed in section 6.2.1.3, the C++ basic software model sets SO, SF and SV

are not implemented and sets FOAccessO and MOAccessO are not fully implemented within

the selected measurement instrument due to limitations of the Understand for C++ source code

analysis application. The SO set forms part of the C++ object external relationships

mathematical model defined in section 4.2.4.3.2 of Chapter 4. It also forms part of the C++

object connection obscurity mathematical model defined in section 4.2.4.4.2 of Chapter 4. The

SF and SV sets form part of the C++ class external relationships mathematical model defined in

section 4.2.3.3.2 of Chapter 4. The FOAccessO and MOAccessO sets form part of the C++

object connection obscurity mathematical model defined in section 4.2.4.4.2 of Chapter 4 and

the C++ object dependency mathematical model defined in section 4.2.4.5.2 of Chapter 4. All

these models are not fully implemented within the selected measurement instrument. The table

below summarises the C++ software modularity measurement model implementation. It shows

that all but the class external relationship, objects external relationship, object connection and

object dependency mathematical entity models are fully implemented in the selected

measurement instrument.

C++ modularity mathematical entity model
(Chapter 4)

Implemented C++ software modularity
measurement model

C++ class interface dependence
(section 4.2.3.2.2)

Fully implemented within selected
measurement instrument.

C++ class external relationships
(section 4.2.3.3.2)

Unable to implement SF and SV sets of this
model.

C++ class connection obscurity
(section 4.2.3.4.2)

Fully implemented within selected
measurement instrument.

C++ class dependency
(section 4.2.3.5.2)

Fully implemented within selected
measurement instrument.

C++ object interface dependence
(section 4.2.4.2.2)

Fully implemented within selected
measurement instrument.

C++ object external relationships
(section 4.2.4.3.2)

Unable to implement SO set of this model.

C++ object connection obscurity
(section 4.2.4.4.2)

Unable to implement SO set of this model.
Unable to fully implement FOAccessO and
MOAccessO sets of this model.

C++ object dependency
(section 4.2.4.5.2)

Unable to fully implement FOAccessO and
MOAccessO sets of this model.

Table 6-2 Implementation of C++ mathematical entity models as C++ software modularity
measurement model

Chapter 6 - Measurement Instrument Implementation

 192

The inability of the measurement instrument to fully implement sets SF, SV, SO, FOAccessO

and MOAccessO affects its ability to fully implement some of the mathematical modularity

measures defined in section 5.2 of Chapter 5. The following section describes measure

implementation within the selected measurement instrument Microsoft Access database.

6.2.3 Software modularity measures implementation

Figure 6-2 shows that the software measure definitions component of the measurement

instrument are the implementation of the mathematical measure definitions developed in the

operational definition stage of descriptive measure development. Figure 6-3 shows that the

selected measurement instrument implements the measures of C++ class and object modularity

defined in section 5.2 of Chapter 5, as Microsoft Access SQL statements within the C++

software modularity measurement model database.

Some measure definitions represent simple query statements while others need to be

implemented with a succession of queries. The following examples show how both a simple

and a complex measure definition convert to Microsoft Access queries. The underlined

statements identify the software modularity measurement model sets used in the query. Joins

between these sets are shown in bold print.

Example 1: Simple Query

Measure CUER2 - For each class, the number of other classes that are immediate full or partial

friends to the class.

CUER2 = {(ci, total)} = {(x.ci, total) | x ∈ C ∧ total = #{y.friend_ci | y ∈ CEF ∧ x.ci = y.ci}}

This measure is implemented within the Microsoft Access software modularity measurement

model database as the following query.

SELECT C.ci, Count(CEF.friend_ci) AS total

FROM C LEFT JOIN CEF ON C.ci = CEF.ci

GROUP BY C.ci;

Chapter 6 - Measurement Instrument Implementation

 193

Example 2: Complex Query

Measure CIS7 is a relatively complex query that has to be implemented in stages within

Microsoft Access.

Measure CIS7 - For each class, for each non-constructor or non-destructor interface method,
the total number of same class attributes directly read.

CIS7 = {(ci, mi, total)} = {(y.ci, y.mi, total) |y ∈ M ∧ y.protection ∈ {public, protected} ∧

y.purpose ∉ {constructor, destructor} ∧ total = #{z.ai | z ∈ A ∧ z.ci = y.ci ∧ (y.mi, z.ai) ∈

MCReadA}}

The first stage of the query generates the set 'sub CIS7' = {(ci, mi, ai)} of a class identifier,

same class member method and same class member attribute, where the method directly reads

from the attribute.

sub_CIS7:

SELECT M.ci, M.mi, A.ai

FROM A INNER JOIN (M INNER JOIN MCReadA ON M.mi = MCReadA.mi) ON

(M.ci = A.ci) AND (A.ai = MCReadA.ai)

GROUP BY M.ci, M.mi, A.ai;

The second stage identifies all the non-constructor and non-destructor interface class member

methods and counts the number of times each of these methods appears in the previously

derived set 'sub_CIS7'. This is a count of the number of attributes read by each class non-

constructor or destructor method.

SELECT M.ci, M.mi, Count([sub_CIS7].ai) AS total

FROM M LEFT JOIN [sub CIS7] ON M.mi = [sub_CIS7].mi

GROUP BY M.ci, M.mi, M.protection, M.purpose

HAVING (((M.protection)="public" Or (M.protection)="protected") AND

((M.purpose)<>"destructor" And (M.purpose)<>"constructor"));

In a similar way to these two examples, the defined measures of modularity are implemented

within the Microsoft Access software modularity measurement database.

Chapter 6 - Measurement Instrument Implementation

 194

As mentioned in section 6.2.2.2, the selected measurement instrument is unable to implement

sets SF, SV and SO and is unable to fully implement sets FOAccessO and MOAccessO, which

means that the class external relationships, object external relationships, object connection

obscurity and object dependency mathematical entity models are not fully implemented. The

measurement instrument is thus unable to fully implement measures of C++ class external

relationships, C++ object external relationships, C++ object connection obscurity and C++

object dependency that rely on data contained within these sets. Table 6-2 lists the measures

omitted from the selected measurement instrument implementation due to their dependence on

the SF, SV, SO, FOAccessO or MOAccessO sets.

Modularity sub-characteristic Omitted Measure Set

CER8 SF Class External Relationships :
Within the System CER9 SV

Object External Relationships :
Within the System

OER2 SO

ONI2 and ONI3 MOAccessO Object Connection Obscurity : Non-standard Connection :
Connection via Non-standard Interface ONI4 FOAccessO

Object Connection Obscurity :
Variable Connection

OVC2 SO

Object Dependency :
Service Invocation

OSI2 MOAccessO

Object Dependency : State Dependency :
External Variable Reading

OEVR2 MOAccessO

OEFW5 MOAccessO Object Dependency : State Dependency :
External Function Writing OEFW3 FOAccessO

Table 6-3 Measures of C++ object modularity omitted from measurement instrument
implementation

The CHARMER diagrams of C++ class interface dependence, connection obscurity and

dependency defined in sections 5.2.31, 5.2.3.3 and 5.2.3.4 respectively remain unchanged for

the selected measurement instrument implementation. The CHARMER diagrams of C++ object

interface dependence and external relationships defined in sections 5.2.4.1 and 5.2.4.2

respectively also remain unchanged for the selected measurement instrument implementation.

The Figure 5.6 CHARMER diagram of class external relationships defined in section 5.2.3.2,

Figure 5-11 and Figure 5-12 CHARMER diagrams of object connection obscurity defined in

section 5.2.4.3 and the Figure 5-13 CHARMER diagram of object dependency defined in

section 5.2.4.4 must be updated to reflect the implemented measures.

Chapter 6 - Measurement Instrument Implementation

 195

6.2.3.1 Class external relationships measure implementation

As Table 6-3 shows, measures CER8 and CER9 are not implemented within the selected

measurement instrument. The Figure 5-6 CHARMER diagram describing the measurement of

class external relationships needs to be updated. Figure 6-6 is the updated version of Figure 5-

6, reflecting the inability of the measurement instrument to implement measures CER8 and

CER9. Class external relationship natural language model points 2.1.8 and 2.1.9 are not

described by implemented measures. When the set of implemented modularity measures are

validated for a specific measurement situation, the potential user will need to decide whether or

not the remaining implemented measures provide an adequate description of the software.

As Figure 6-6 indicates, there is no means provided by which classes affected by the lack of

description of points 2.1.8 and 2.1.9 can be identified. When performing the content validation,

it must be assumed that the description of external relationships of all the software system

classes is affected by the failure to fully implement the defined CER8 and CER9 measures

within the selected measurement instrument.

 C++ class external relationships

outside the system

 within the system

 2.1.1 2.1.3 2.1.5 2.1.7 2.1.9

 2.1.2 2.1.4 2.1.6 2.1.8

 CER1 CER3 CER5 CER7 CER9

 CER2 CER4 CER6 CER8

Figure 6-6 Update of Figure 5-6 C++ class external relationships CHARMER diagram,
reflecting measurement instrument implementation

Chapter 6 - Measurement Instrument Implementation

 196

6.2.3.2 Object external relationships measure implementation

As Table 6-3 shows, measure OER2 is not implemented within the selected measurement

instrument. The Figure 5-10 CHARMER diagram describing the measurement of object

external relationships needs to be updated. Figure 6-7 is the updated version of Figure 5-10,

reflecting the inability of the measurement instrument to implement measure OER2. Object

external relationship natural language model point 6.1.2 is not described by implemented

measures. When the set of implemented modularity measures are validated for a specific

measurement situation, the potential user will need to decide whether or not the remaining

implemented measures provide an adequate description of the software.

As Figure 6-7 indicates, there is no means provided by which classes affected by the lack of

description of point 6.1.2 can be identified. When performing the content validation, it must be

assumed that the description of external relationships of all the software system object-classes

is affected by the failure to fully implement the defined OER2 measure within the selected

measurement instrument.

Chapter 6 - Measurement Instrument Implementation

 197

 C++ object external relationships

outside the system

 within the system

 6.1.1 6.1.3 6.1.5 6.1.7

 6.1.2 6.1.4 6.1.6 6.1.8

 CER2 CER2

 OER1 OER3 OER5 OER7

 OER2 OER4 OER6 OER8

Figure 6-7 Update of Figure 5-10 C++ object external relationships CHARMER diagram,
reflecting measurement instrument implementation

6.2.3.3 Object connection obscurity measure implementation

As Table 6-3 shows, measures OVC2, ONI2, ONI3 and ONI4 are not implemented within the

selected measurement instrument. Both the Figure 5-11 CHARMER diagram and the Figure 5-

12 CHARMER diagram need to be updated. Figure 6-8 is the updated version of Figure 5-11,

reflecting the inability of the measurement instrument to implement measure OVC2. Figure 6-9

is the updated version of Figure 5-12, reflecting the inability of the measurement instrument to

implement measures ONI2, ONI3 and ONI4. Object connection obscurity natural language

model points 7.1.2, 7.5.2, 7.5.5 and 7.5.6 are not described by implemented measures. As

Figure 6.8 shows, in some circumstances, the variable connection sub-characteristics of

connection obscurity is not described by implemented measures. Figure 6-9 shows that the

connection via non-standard interface sub-characteristic of connection obscurity is only

Chapter 6 - Measurement Instrument Implementation

 198

described by a single measure. When the set of implemented modularity measures are validated

for a specific measurement situation, the potential user will need to decide whether or not this

single measure provides an adequate description of the software.

As Figures 6-8 and 6-9 indicate, there is no means provided by which objects affected by the

lack of description of points 7.1.2, 7.5.2, 7.5.5 and 7.5.6 can be identified. When performing

the content validation, it must be assumed that the description of connection via non-standard

interface of all the software system objects is affected by the failure to fully implement the

defined OVC2, ONI2, ONI3 and ONI4 measures within the selected measurement instrument.

 C++ object connection obscurity - part 1

 unstated relationships

variable connection distant connection

 7.1.1 7.2.1 7.2.3 7.2.5 7.3.1

 7.1.2 7.2.2 7.2.4 7.2.6

 CER2 CER2 CER2 CER2

 OVC1 OUR1 OUR3 OUR5 ODC1

 OVC2 OUR2 OUR4 OUR6

Figure 6-8 Update of Figure 5-11 C++ object connection obscurity CHARMER diagram,
reflecting measurement instrument implementation

Chapter 6 - Measurement Instrument Implementation

 199

 C++ object connection obscurity - part 2

 non-standard connection

 connection via non-standard interface

unexpected relationship

 OER6

 OER7

 OER8

 7.5.3

 7.5.4

7.4.1 7.4.3 7.4.5 7.5.1 7.5.5 7.5.7

 7.5.8

 7.4.2 7.4.4 7.4.6 7.5.2 7.5.6 7.5.9

 7.5.10

 CER2

OUER1 OUER3 OUER5 ONI1 ONI3

 OUER2 OUER4 OUER6 ONI2 ONI4

Figure 6-9 Update of Figure 5-12 C++ object connection obscurity CHARMER diagram,
reflecting measurement instrument implementation

Chapter 6 - Measurement Instrument Implementation

 200

6.2.3.4 Object dependency measure implementation

Table 6-3 shows that object dependency measures OSI2, OEVR2, OEFW3 and OEFW5 are not

implemented within the selected measurement instrument. Figure 6-10 is the updated version of

the Figure 5-13 object dependency CHARMER diagram. Object dependency natural language

model points 8.1.2, 8.3.2, 8.4.3 and 8.4.6 are not described by implemented measures.

 C++ object dependency

 interface provision state dependency

 external variable reading

service invocation external function writing

 OER5

 8.1.1 8.2.1 8.3.2 8.4.2 8.4.4 8.4.6

 8.1.2 8.3.1 8.4.1 8.4.3 8.4.5

 CER2

 OSI1 OIP1 OEVR2 OEFW2 OEFW4 OEFW5

 OIP2

 OSI2 OEVR1 OEFW1 OEFW3

Figure 6-10 Update of Figure 5-13 C++ object dependency CHARMER diagram, reflecting
measurement instrument implementation

Chapter 6 - Measurement Instrument Implementation

 201

As Figure 6-10 indicates, there is no means provided by which objects affected by the lack of

description of points 8.1.2, 8.3.2, 8.4.3 and 8.4.6 can be identified. When performing the

content validation, it must be assumed that the description of dependency of all the software

system objects is affected by the failure to fully implement the defined OSI2, OEVR2, OEFW3

and OEFW5 measures within the selected measurement instrument.

The following section discusses the level of measurement and validity of the measures

implemented within the selected measurement instrument and, in Chapter 7 a case study is

performed that demonstrates the content validation of the implemented measures.

6.2.4 Level of measurement and content validity of implemented measures

The inability of a measurement instrument to implement the full set of defined measures of a

software characteristic may be manifest in a change to the level of measurement of some

implemented measures and in a change to the content validity of the entire set of implemented

measures.

6.2.4.1 Level of measurement

Implementation has not changed the level of measurement of implemented measures from that

described in section 5.2.5 of Chapter 5. This means that all the measures are made on the ratio

scale and can be analysed using both non-parametric and parametric statistics

[Diamantopoulos97] p27.

6.2.4.2 Content validity

Software descriptive measure validation is discussed in section 5.1.4.2 of Chapter 5 and content

validity is selected as being appropriate to the measures developed in this thesis. Section 5.2.6

describes a process of software descriptive measure content validation using the CHARMER

diagrams. This same process is applicable to the content validation of implemented software

descriptive measures. It is important to use CHARMER diagrams that have been updated to

reflect the measures implemented within the selected measurement instrument.

Chapter 6 - Measurement Instrument Implementation

 202

Table 6-4 lists the CHARMER diagrams appropriate to the content validation of the measures

implemented within the measurement instrument described by Figure 6-3.

C++ modularity sub-characteristic Measure implementation CHARMER diagram
class interface dependence Figure 5-5 of Chapter 5
class external relationships Figure 6-6 of Chapter 6
class connection obscurity Figure 5-7 of Chapter 5
class dependency Figure 5-8 of Chapter 5
object interface dependence Figure 5-9 of Chapter 5
object external relationships Figure 6-7 of Chapter 6
object connection obscurity Figures 6-8 and 6-9 of Chapter 6
object dependency Figure 6-10 of Chapter 6

Table 6-4 Characteristic to measure relationship (CHARMER) diagrams describing
implemented measures

Chapter 7 presents a case study in which the implemented measurement instrument is applied

to the task of describing the class and object modularity of a small C++ software system. The

content validation of the implemented measures using the CHARMER diagrams listed in the

above table forms part of this case study.

6.3. Conclusion

Measurement instrument implementation of operational measure definitions is the fourth and

final stage of the systematic measure development process. For a software based measurement

instrument, such as the one developed in this thesis, a prerequisite of the measurement

instrument implementation stage is a set of measures defined in terms of a mathematical entity

model of the software. Another prerequisite is a measurement instrument capable of

implementing these measures and automatically collecting them from a software system.

A software based measurement instrument capable of analysing a software system and

outputting a description of this system in the form of measured data is the primary product of

the measurement instrument implementation stage. The other important products of this stage

are a statement of the level of measurement achieved by each implemented measure and a set of

CHARMER diagrams. These diagrams describe which features of the software natural

language models are described by implemented measures, and which are not. The CHARMER

diagrams facilitate the content validation of the set of implemented measures.

Chapter 6 - Measurement Instrument Implementation

 203

Section 6-2 of this chapter demonstrates the measurement instrument implementation of the

C++ class and object modularity measures defined in section 5.2 of Chapter 5. The

measurement instrument selected for this implementation was unable to fully implement the

C++ object connection obscurity and dependency mathematical entity models. This in turn

meant that several measures of object connection obscurity and dependency could not be

implemented. The CHARMER diagrams must be updated to reflect any shortcomings of the

measurement instrument so that a content validation can be accurately performed.

Implementation of the software measures within a measurement instrument marks the

completion of the systematic process of software descriptive measure development. Chapter 7

describes a case study in which the measurement instrument described in section 6.2 is applied

to the task of describing the class and object modularity of a small C++ software system. This

case study will show how the developed measures can be validated and applied and the

resulting measurement data analysed and interpreted to provide an adequate description of the

system's modularity.

Chapter 7 – Application of C++ Class and Object Modularity Measures

7. Application of C++ Class and Object Modularity Measures

The previous chapter described the final stage of the systematic measure development process,

one of the products of which is a measurement instrument capable of automatically collecting

the measurement data from the source code of a C++ software system. This chapter

demonstrates measure validation and the analysis and interpretation of measurement data

obtained by applying this measurement instrument to a small C++ software system.

Section 7.1 of this chapter describes an analysis technique involving the calculation of

modularity aggregate values. The values describe, for individual classes and object-classes

within a measured software system, the relative levels of modularity and modularity sub-

characteristics present. Another data analysis technique, based on the calculation of Euclidean

distance to describe dissimilarity between pairs of measured classes or object-classes, is also

presented.

Section 7.2 describes a content type validation, with respect to the source code of the

eMulePlus file sharing client system, of the implemented measurement instrument described in

Chapter 6. The eMulePlus system will also be used in the example of construct validation and

the two case studies that are also included in Chapter 7. The eMulePlus system was selected

because its complete source code was available which meant that all the connections between

the system class and objects were available to be measured. It was also selected because it is

large enough to provide a significant amount of modularity data and yet small enough to be

able to be measured by the prototype measurement instrument developed for this study. The

specifications of the eMulePlus system are as follows.

System: eMulePlus file sharing client

Version: eMulePlus-1f

Available: http:\\www.sourceforge/net/projects/emuleplus/

Date: 9th June 2003

Chapter 7 – Application of C++ Class and Object Modularity Measure

 205

The measured eMulePlus system consists of:

• 93823 lines of code

• 24378 lines of comment

• 249 classes

• 4373 class methods

• 509 class attributes

• 278 global functions

• 16 global variables

Section 7.3 describes an example of a construct type validation. The eMulePlus class

unweighted and weighted modularity aggregate and Euclidean distance values calculated

according to the methods described in section 7.1 are used in this validation. Only class

modularity construct validation is performed as the content validation described in section 7.2

indicates that the implemented measures are unable to provide an adequate description of

eMulePlus object modularity.

Section 7.4 presented two case studies. The first is a case study of the eMulePlus software

system using the unweighted modularity aggregate calculated according to the method of

section 7.1 to identify classes and objects with relatively low modularity. The second case

study analysing and interpreting the measured data describing the class and object interface

dependence of a selected eMulePlus class that was indicated in the previous case study as

having low modularity.

In presenting these different examples of validation, analysis and data interpretation, the aim is

not to show how the modularity measures should be used, but rather to demonstrate how they

can be used and to show by example how the systematic process by which they were developed

supports their practical application.

Chapter 7 – Application of C++ Class and Object Modularity Measure

 206

7.1. Data Reduction Techniques

A major challenge in analysing and interpreting the modularity measurement data obtained

from measuring a software system is the amount of data that must be presented. Measuring the

modularity of the relatively small eMulePlus system resulted in more than 25,000 individual

points of data. It is not possible for a person to interpret this amount of raw data and gain an

understanding of the levels of modularity present in the system. Some analysis of the

measurement data must be undertaken, and the results of this analysis presented in a way that a

user can understand. "Typically, customers are not experts in software engineering; they want a

"big picture" of what software is like, not a large vector of measures of different aspects."

(Pfleeger, Jeffery, Curtis & Kitchenham 1997, p. 41) This section describes two different

methods of data analysis that result in a single number that describes the general modularity of

individual classes and object-classes. The first method aggregates the various measures of each

identified modularity sub-characteristic to obtain, for each measured class and object-class, a

single numerical aggregate of modularity. The second method combines all the measured

modularity values to calculate a single value of dissimilarity between each pair of classes or

object-classes in the measured system.

7.1.1 Calculation of an Aggregate of Modularity

As explained in section 5.2.2 of Chapter 5, the modularity measures have the property that a

value of zero indicates an absence of software features that reduce modularity and values above

zero indicate decreasing modularity. This property facilitates the calculation of an aggregation

of modularity measures for each measured class and object within a software system. Associate

Professor Peter Petocz, currently of Macquarie University, Sydney (ppetocz@efs.mq.edu.au)

first suggested the calculation of an index as a possible technique for data analysis. From this

suggestion, the modularity aggregation process was developed. The following steps describe

the calculation of class and object modularity aggregates.

Chapter 7 – Application of C++ Class and Object Modularity Measure

 207

7.1.1.1 Preliminary calculations

1. Calculate

class attribute interface size = CIS1:CCM1 / (CIS1:CCM1 + CIS2)

class method interface size = CIS3 / (CIS3 + CIS4)

object attribute interface size = OIS1:OCM1 / (OIS1:OCM1 + OIS2)

object method interface size = OIS3 / (OIS3 + OIS4)

Use these calculated values rather than the CIS1-4 and OIS1-4 to calculate the modularity

indices.

Measures CIEI1 to CIEI8 and OIEI1 to OIEI8 are made on a per method or per attribute

basis rather than on a per class or object-class basis. For each class or object-class calculate

the median of each of these measures for their member methods or attributes. The median

is selected as it is a robust statistic most suited to describing the central location of a

skewed distribution. Preliminary examination of the eMulePlus measures of CIEI1 to CIEI8

show that these distributions are strongly positively skewed. For distributions that are not

skewed, the median is still a suitable statistic for describing central tendency and so, may

be generally used when calculating the modularity aggregate. Alternatively, for normal

distributions, the mean can be used instead of the median.

Use these calculated median values, rather than measures CIEI1 to CIEI8 and OIEI1 to

OIEI8, to calculate the class and object modularity indices.

2. Replace all missing values with 0 since missing values give too much emphasis to the

values that are there for the case. 0 is the replacement value since it does not reduce the

modularity value of the case.

3. Add a Zero class to the set of measured data. All measured values for this class are set to

zero. This provides a point of maximum modularity with which to interpret the modularity

aggregates of the actual system classes and objects.

Chapter 7 – Application of C++ Class and Object Modularity Measure

 208

The method of calculating the modularity aggregate is different for this artificial Zero class

than for the actual measured classes and objects. As recognised by one of the anonymous

assessors of this thesis (Anonymous Assessor, 2005), including the Zero class in the general

normalisation calculation may have the effect of reducing the range of the normalised measured

values by pushing them towards the positive end of the range while the Zero class occurs at the

extreme negative end of the range. This effect will be most pronounced when the measured

values are much greater than 0. To avoid this situation, the actual measured values will be

normalised and the mean and standard deviation from this normalisation will then be used to

calculate the new value of the artificial Zero class.

The method to calculate the modularity aggregates is described below. The terminology used is

that:

• Major modularity sub-characteristics are those directly related to modularity. They are

interface dependence, external relationships, connection obscurity and dependency.

• Minor modularity sub-characteristics are those that are directly associated with each

major sub-characteristic. They are interface element interdependence, interface

implementation dependence, external relationships within the system, external

relationships outside the system, variable connection, unstated relationship, distant

connection, non-standard connection, service invocation, interface provision, and state

dependency.

• Sub-minor modularity sub-characteristics are directly related to some minor

modularity characteristics. They interface size, data exposure, unexpected relationship,

connection via non-standard interface, external variable reading and external function

writing.

This method of aggregate calculation is based on the idea that each sub-minor sub-

characteristic contributes equally to the aggregate value of its associated minor sub-

characteristic, that each minor sub-characteristic contributes equally to the aggregate value of

its associated major sub-characteristic and that each major sub-characteristic contributes

equally to the main characteristic aggregate value.

Chapter 7 – Application of C++ Class and Object Modularity Measure

 209

7.1.1.2 Class and object modularity aggregate calculation

1. Calculate the standard normal distribution Z_X of each modularity measure X except the

Zero class and object-class. The distribution Z_X has a mean of zero and a standard

deviation of 1. Using a normalised distribution of measurement data ensures that each

measure, regardless of its range, contributes equally to each aggregate. The standard

normal distributions are calculated as follows (Swift 2001, p. 483).

Z_X = (X - µX) / σX

where µX is the mean of distribution X and σX is its standard deviation.

2. Using the previously calculated values of µ and σ, calculate the normalised value of the

Zero class or object-class for measure X.

Z_XZero = (xZero - µX) / σX

3. For each minor and sub-minor modularity sub-characteristic for which measures have been

directly defined, for each class (i = 1..N+1) and each object class (i = 1..N+1), including

the Zero class and object class, calculate the aggregate of the normalised measured values

where N is the number of measured classes and the number of measured object classes.

Class Interface Dependence

A_CIEI(ci) = CIEI1(ci) + CIEI2(ci) + CIEI3(ci) + CIEI4(ci) + CIEI5(ci) + CIEI6(ci) +

CIEI7(ci) + CIEI8(ci)

A_CIS(ci) = CIS1:CCM1(ci) + CIS2(ci) + CIS3(ci) + CIS4(ci) + CIS5(ci) + CIS6(ci) +

CIS7:CCM2(ci) + CIS8:CCM3(ci)

 A_CDE(ci) = CDE1:CCM1(ci) + CDE2:CCM2(ci) + CDE3:CCM3(ci) + CDE4(ci) +

CDE5(ci)

Class External Relationships

A_CER(ci) = CER1(ci) + CER2(ci) + CER3(ci) + CER4(ci) + CER5:CCM4(ci) +

CER6:CCM5(ci) + CER7:CCM6(ci)

Chapter 7 – Application of C++ Class and Object Modularity Measure

 210

Class Connection Obscurity

 A_CUR(ci) = CUR1(ci) + CUR2:CCM7(ci)

 A_CDC(ci) = CDC1:CCM8(ci) + CDC2(ci)

 A_CUER(ci) = CUER1:CCM8(ci) + CUER2:CCM4(ci) + CUER3:CCM6(ci) +

CUER4:CCM5(ci)

 A_CNI(ci) = CNI1:CCM8(ci) + CNI2(ci) + CNI3(ci)

Class Dependency

 A_CSI(ci) = CSI1:CCM7(ci) + CSI2(ci)

 A_CEVR(ci) = CEVR1(ci) + CEVR2(ci)

 A_CEFW(ci) = CEFW1(ci) + CEFW2(ci) + CEFW3(ci) + CEFW4(ci)

Object Interface Dependence

A_OIEI(ci) = OIEI1(ci) + OIEI2(ci) + OIEI3(ci) + OIEI4(ci) + OIEI5(ci) + OIEI6(ci) +

OIEI7(ci) + OIEI8(ci)

A_OIS(ci) = OIS1:OCM1(ci) + OIS2(ci) + OIS3(ci) + OIS4(ci) + OIS5(ci) + OIS6(ci) +

OIS7:OCM2(ci) + OIS8:OCM3(ci)

 A_ODE(ci) = ODE1:OCM1(ci) + ODE2:OCM2(ci) + ODE3:OCM3(ci) + ODE4(ci) +

ODE5(ci)

Object External Relationships

A_OER(ci) = OER1(ci) + OER2(ci) + OER3(ci) + OER4(ci) + OER5:OCM4(ci) +

OER6:OCM5(ci) + OER7:OCM6(ci)

Object Connection Obscurity

 A_OUR(ci) = OUR1:OCM8(ci) + OUR2:OCM9(ci)

 A_ODC(ci) = ODC1:OCM10(ci) + ODC2(ci)

 A_OUER(ci) = OUER1:OCM8(ci) + OUER2:OCM10(ci) + OUER3:OCM5(ci) +

OUER4:OCM6(ci)

 A_ONI(ci) = ONI1:OCM10(ci) + ONI2(ci) + ONI3(ci)

Chapter 7 – Application of C++ Class and Object Modularity Measure

 211

Object Dependency

 A_OSI(ci) = OSI1:OCM9(ci) + OSI2(ci)

 A_OEVR(ci) = OEVR1(ci) + OEVR2(ci)

 A_OEFW(ci) = OEFW1(ci) + OEFW2(ci) + OEFW3(ci) + OEFW4(ci)

4. Calculate the standard normal distribution of each aggregate calculated in the previous step,

excluding the Zero class. For example,

ZA_CIEI = (A_CIEI - µ) / σ

where µ is the mean of distribution A_CIEI and σ is its standard deviation.

5. Use the µ and σ calculated in the previous step to calculate the new values of the Zero class

and object-class aggregates.

6. The following minor modularity sub-characteristics have associated sub-minor sub-

characteristics.

• Interface implementation dependence of classes (CIID) and objects (OIID)

• Non-standard connection of classes (CNSC) and objects (ONSC)

• State dependency of classes (CSD) and objects (OSD)

For each of these minor modularity sub-characteristics, for each class and each object class,

including Zero, calculate the sum of the normalised sub-minor aggregates calculated in the

previous step.

A_CIID(ci) = ZA_CIS(ci) + ZA_CDE(ci)

 A_CNSC(ci) = ZA_CUR(ci) + ZA_CNI(ci)

 A_CSD(ci) = ZA_CEVR(ci) + ZA_CEFW(ci)

A_OIID(ci) = ZA_OIS(ci) + ZA_ODE(ci)

 A_ONSC(ci) = ZA_OUR(ci) + ZA_ONI(ci)

 A_OSD(ci) = ZA_OEVR(ci) + ZA_OEFW(ci)

Chapter 7 – Application of C++ Class and Object Modularity Measure

 212

7. Calculate the standard normal distribution of these sums, excluding Zero, to get an

aggregate describing the minor modularity sub-characteristics.

For example,

ZA_CIID = (A_CIID - µ) / σ

where µ is the mean of distribution A_CIID and σ is its standard deviation.

8. Use the µ and σ calculated in the previous step to calculate the new values of the Zero class

and object-class aggregates.

9. For each major modularity sub-characteristic, for each class and each object class,

including Zero, calculate the sum of the associated minor modularity sub-characteristics.

• Interface dependence of classes (CID) and objects (OID)

• External relationships of classes (CMER) and objects (OMER)

• Connection obscurity of classes (CCO) and objects (OCO)

• Dependency of classes (CD) and objects (OD)

A_CID(ci) = ZA_CIEI(ci) + ZA_CIID(ci)

A_CMER(ci) = ZA_CER(ci)

A_CCO(ci) = ZA_CUR(ci) + ZA_CDC(ci) + ZA_CNSC(ci)

A_CD(ci) = + ZA_CSI(ci) + ZA_CSD(ci)

A_OID(ci) = ZA_OIEI(ci) + ZA_OIID(ci)

A_OMER(ci) = ZA_OER(ci)

A_OCO(ci) = ZA_OVC(ci) + ZA_OUR(ci) + ZA_ODC(ci) + ZA_ONSC(ci)

A_OD(ci) = + ZA_OSI(ci) + ZA_OIP(ci) + ZA_OSD(ci)

10. Calculate the standard normal distribution of these sums, excluding Zero, to get an

aggregate describing the major modularity sub-characteristics.

For example,

ZA_CID = (A_CID - µ) / σ

where µ is the mean of distribution A_CID and σ is its standard deviation.

11. Use the µ and σ calculated in the previous step to calculate the new values of the Zero class

and object-class aggregates.

Chapter 7 – Application of C++ Class and Object Modularity Measure

 213

12. For each class and each object class, including Zero, calculate the sum of the major

modularity sub-characteristics.

A_CMOD(ci) = ZA_CID(ci) + ZA_CMER(ci) + ZA_CCO(ci) + ZA_COD(ci)

A_OMOD(ci) = ZA_OID(ci) + ZA_OMER(ci) + ZA_OCO(ci) + ZA_OOD(ci)

13. Calculate the standard normal distribution of these sums, excluding Zero, to get an

aggregate describing modularity.

ZA_CMOD = (A_CMOD - µ) / σ

where µ is the mean of distribution A_CMOD and σ is its standard deviation.

ZA_OMOD = (A_OMOD - µ) / σ

where µ is the mean of distribution A_OMOD and σ is its standard deviation.

14. Use the µ and σ calculated in the previous step to calculate the new values of the Zero class

and object-class modularity aggregate.

The result of this process is a set of normalised aggregate values describing the various sub-

characteristics of modularity as well as a single aggregate value describing general modularity.

7.1.1.3 Class and object modularity weighted aggregate calculation

Fundamental to this calculation is the determination that each modularity sub-characteristic

contributes equally to the aggregate value of its immediately associated sub-characteristic or

characteristic. For example, the interface dependence, external relationships, connection

obscurity and dependency sub-characteristics contribute equally to the levels of modularity

present in the software. Weighting values are not included in the description of the aggregate

calculation because they could occur in any place throughout the calculation. The particular

purpose in taking the modularity measures should dictate the type of weighting used and should

provide grounds to justify such weighting. Part of the process of content validation described in

Section 1.4.1 of Chapter 1 involves assigning importance values to measured characteristics

and features. These importance factors could be used to indicate where weighting could be

applied during the aggregate calculation.

Using importance values to assign weighting in the aggregate calculation is one possibility.

Chapter 7 – Application of C++ Class and Object Modularity Measure

 214

Another possible weighting scheme could be based on the recognition that interface

dependence modularity sub-characteristic describes an aspect of information hiding while the

external relationships, connection obscurity and dependency all describe aspects of coupling.

For information hiding to be equally represented with coupling in the aggregate calculation, the

information hiding normalised aggregate could be weighted by a factor of 3 before being used

to calculate the final modularity aggregate. Steps 12 to 14 of the aggregate calculation process

would then become:

12. For each class and each object class, including Zero, calculate the sum of the major

modularity sub-characteristics, with the interface dependence sub-characteristic weighted

by a factor of 3.

A_WEIGHTED_CMOD(ci) = 3(ZA_CID(ci)) + ZA_CMER(ci) + ZA_CCO(ci) +

ZA_COD(ci)

A_WEIGHTED_OMOD(ci) = 3(ZA_OID(ci)) + ZA_OMER(ci) + ZA_OCO(ci) +

ZA_OOD(ci)

13. Calculate the standard normal distribution of these sums, excluding Zero, to get an

aggregate describing modularity.

ZA_WEIGHTED_CMOD = (A_WEIGHTED_CMOD - µ) / σ

where µ is the mean of distribution A_WEIGHTED_CMOD and σ is its

standard deviation.

ZA_WEIGHTED_OMOD = (A_WEIGHTED_OMOD - µ) / σ

where µ is the mean of distribution A_WEIGHTED_OMOD and σ is its

standard deviation.

14. Use the µ and σ calculated in the previous step to calculate the new values of the Zero class

and object-class modularity weighted aggregate.

Care should be taken when applying weighting values, that the values used are selected so that

they provide the required amount of emphasis on the weighted measured sub-characteristics

without overwhelming the contribution of the non-weighted measured sub-characteristics. A

possible area for future research is the appropriate selection of weighting values in the

calculation of the modularity aggregate.

Chapter 7 – Application of C++ Class and Object Modularity Measure

 215

7.1.2 Calculation of a Modularity Distance

Using the measured values of modularity to calculate the Euclidean distance between pairs of

classes or objects provides an indication of the dissimilarity of modularity between the pairs.

By taking advantage of the fact that the modularity measures are defined such that zero

indicates optimum modularity and values above zero indicate decreasing modularity, an

artificial Zero class and object-class can be added to the cases for which dissimilarity is

calculated. The calculated levels of dissimilarity of all classes and object-classes with respect

to this Zero class provide indications of relative modularity.

The first step in calculating the dissimilarity values is to perform the preliminary calculations

previously described in Section 7.1.1.1. Next, all modularity measure distributions are

normalised. Using a normalised distribution of measurement data ensures that each measure,

regardless of its range, contributes equally to the distance value. As for the aggregate

calculation previously described, the artificial Zero class and object-class should be normalised

separately from the actual measures classes and object classes.

The standard normal distributions are calculated as follows (Swift 2001, p. 483).

Z_X = (X - µX) / σX

where µX is the mean of distribution X and σX is its standard deviation.

Using the previously calculated values of µ and σ, calculate the normalised value of the Zero

class or object-class for measure X.

Z_XZero = (xZero - µX) / σX

Once all measure distributions are normalised, with a statistical software package such as

SPSS, use all the modularity measure values to calculate the Euclidean distance between the

Zero class or object-class and each of the measured system classes or object-classes. The

greater the distance value, the less modular a class or object-class is.

The advantage of using the aggregate value to describe modularity is that its calculation takes

into account the hierarchy of sub-characteristics that together describe modularity. The

calculation process also results in intermediate aggregate values describing the various

Chapter 7 – Application of C++ Class and Object Modularity Measure

 216

modularity sub-characteristics. The calculation method also ensures that sub-characteristics

described by more individual measures do not have a greater influence on the final modularity

value than sub-characteristics described by only a few measures.

The Euclidean distance indicator of modularity has that advantage of being relatively easy to

calculate as, once the measure distributions are normalised, a statistical software package such

as SPSS will generate it automatically. Another advantage is that SPSS can use the Euclidean

distances to perform analysis such as cluster analysis to identify classes and objects with

similar levels of modularity, and can produce graphical representations, such as dendrograms,

showing relative class and object-class modularity. A disadvantage of the Euclidean distance

indicator of modularity is that its calculation, as described above, does not take into account the

sub-characteristic hierarchy when calculating the final value. All measures are treated equally

and sub-characteristics described by many measures will have a greater effect on the final

indicator value than sub characteristics described by few measures.

In Section 7.3, an example of construct validation examines modularity aggregate values and

Euclidean distance values as descriptors of general class and object modularity. This construct

validation will investigate the validity of these two modularity indicators as descriptors of

eMulePlus class modularity.

7.2. Content validation – eMulePlus software system

For the case studies described later in this chapter, content validation must demonstrate that the

measures of C++ class and object modularity provide an adequate description of the modularity

of the eMulePlus system. As Figure 5-4 of Chapter 5 shows, the first step in content validation

is to examine the characteristics to be described by the measures and list the software features

that affect the level of characteristics present. The characteristic to measure relationship

(CHARMER) diagrams listed in Table 6-4 of Chapter 6 support this step by displaying the

natural language entity model point numbers associated with each identified modularity sub-

characteristic. These natural language points describe features of the software that affect the

levels of modularity sub-characteristic present in the software. The CHARMER diagrams

associated with the content validation of the eMulePlus system are found in Appendix 4.

In the next step of content validation, the importance and frequency of occurrence of each of

the characteristics and associated features are determined and stated. In this case study, all the

Chapter 7 – Application of C++ Class and Object Modularity Measure

 217

importance ratings are set to the same value because the aim is to describe general modularity,

taking into account all the different modularity sub-characteristics described by the measures.

Were some sub-characteristics more relevant to the study than others, then their importance

ratings could be set higher than that of sub-characteristics of less importance. This would

emphasise the need to demonstrate in the content validation that the defined measures

adequately describe the more important sub-characteristics. The frequency ratings are set

according to the frequency with which each identified software feature occurs within the

software system. To determine the frequency ratings, the eMulePlus system source code is

examined using the Understand for C++ code analysis application. The Appendix 4 eMulePlus

CHARMER diagrams are annotated with the frequency ratings thus determined. Importance

ratings are not specifically noted on these diagrams because, as stated previously, for this case

study they are all set to the same value.

Once importance and frequency ratings have been assigned, the list of features identified as

affecting the level of the characteristic present in the software is re-examined to make sure all

crucial features are included, even if they occur infrequently. After examining the natural

language models of C++ class and object modularity in Chapter 4, section 4.2, the features of

the software identified as affecting the levels of C++ class and object modularity are judged to

be sufficient for the purpose of this case study. Were the identified features judged insufficient,

then the case study measurement of the eMulePlus system should not proceed.

The final step of content validation involves comparing each of the characteristics and features

on the list to the individual measures that describe them to ensure that each important

characteristic and frequently occurring feature is described by at least one measure.

Examination of the C++ class modularity CHARMER diagrams shows that all but two

identified software features are described by at least one measure implemented in the

measurement instrument. These implemented measures are judged to adequately quantify their

associated software features. Features 2.1.8 and 2.1.9 of class external relationships are not

described by implemented measures. The existence of global functions within the scope of a

class is described by feature 2.1.8. Examination of the eMulePlus system shows that it has a

high frequency of global functions. Not measuring point 2.1.8 means that there is a high

probability that the measured description of eMulePlus class external relationships will

underestimate the level of external relationships for a class. The existence of global variables

within the scope of a class is described by feature 2.1.9. Examination of the eMulePlus system

shows that it has a low frequency of global variables. Not measuring point 2.1.9 means that

Chapter 7 – Application of C++ Class and Object Modularity Measure

 218

there is a low probability that the measured description of eMulePlus class external

relationships will underestimate the level of external relationships for a class. Despite these

omissions, the implemented measures of C++ class modularity will be declared to have

sufficient content validity for the task of describing the modularity of the eMulePlus system.

Examination of the C++ object modularity CHARMER diagrams in Appendix 4 shows that

determining the content validity of the implemented object modularity measures is not as

straight forward a task as determining class content validity. As the Chapter 5, Figure 5-9 to 5-

13 C++ object CHARMER diagrams indicate, in certain situations, some of the object

modularity measures are unable to describe all the features of the software system. As was

previously discussed in Chapter 5, measures CER2, OER5:OCM4, OER6:OCM5,

OER7:OCM6 and OER8:OCM7 can be used to identify object-classes that are potentially not

fully described by some measures of object modularity. Appendix 4 lists the CER2,

OER5:OCM4, OER6:OCM5, OER7:OCM6 and OER8:OCM7 measured values taken from the

eMulePlus system. The following sections discuss the content validation of the individual

modularity sub-characteristics.

7.2.1 eMulePlus object interface dependence

As the Figure A4-5 CHARMER diagram of eMulePlus object interface dependence in

Appendix 4 shows, when CER2 for an object-class is greater than zero, it is possible that the

object interface dependence measures are unable to fully describe these object-classes. This

situation arises when the object-class inherits more than once from the same ancestor class. For

the eMulePlus system, measure CER2 indicates that 16 classes have distant ancestor classes

that could cause this situation to arise. An examination, using the Understand for C++ code

analyser, of the inheritance hierarchy of these 16 classes shows that in the eMulePlus system,

no classes inherit from more than one version of an ancestor class. This means that the object-

class E-R models are able to describe all the inherited elements of the object-classes in the

eMulePlus system and the interface dependence measures with the CER2 validity indicator are

able to fully describe the associated modularity sub-characteristic of the eMulePlus object-

classes. The implemented measures of object interface dependence have sufficient content

validity to provide an adequate description of the eMulePlus system.

Chapter 7 – Application of C++ Class and Object Modularity Measure

 219

7.2.2 eMulePlus object external relationships

As the Figure A4-6 CHARMER diagram of eMulePlus object external relationships in

Appendix 4 shows, when CER2 for an object-class is greater than zero, it is possible that some

of the object external relationships measures are unable to fully describe these object-classes.

As discussed in the previous eMulePlus object interface dependence content validation in

section 7.1.2.1, examination of the eMulePlus system shows that this situation does not arise.

This means that measures OER1 and OER5:OCM4 are able to fully describe the eMulePlus

system. Measure OER2 is not implemented and thus cannot measure the eMulePlus system.

The feature quantified by measure OER2 occurs with moderate frequency in the software and

so, not measuring it will not have a major impact on the final description of object external

relationships. Since all other object external relationship measures can be made on the

eMulePlus system, the implemented measures of object external relationships have sufficient

content validity to provide an adequate description of the eMulePlus system.

7.2.3 eMulePlus object connection obscurity

As the Figure A4-7 and Figure A4-8 CHARMER diagrams of eMulePlus object connection

obscurity in Appendix 4 show, in certain situations, some measures are unable to fully describe

a software system. As previously discussed, measures annotated with the CER2 measure are

able to fully describe the eMulePlus system and so, these implemented measures have

sufficient content validity to adequately describe the variable connection, unstated

relationships, distant connection and unexpected relationship sub-characteristics of eMulePlus

object connection obscurity. The aspect of variable connection described by measure OVC2

cannot be described by the implemented measures. Since this feature occurs only with

moderate frequency in the eMulePlus system, the decision is made to accept the remaining

measure of variable connection as providing an adequate description of this sub-characteristic.

Figure 7-1 shows the CHARMER diagram of the non-standard connection sub-characteristic of

object connection obscurity.

Chapter 7 – Application of C++ Class and Object Modularity Measure

 220

 C++ object connection obscurity - part 2

 non-standard connection

 connection via non-standard interface

unexpected relationship

 OER6
 OER7

 OER8

 7.5.3
 7.5.4

F - 2

7.4.1
F - 3

 7.4.3
F - 1

 7.4.5
F - 1

 7.5.1
F - 3

 7.5.5
F - 2

 7.5.7
7.5.8

 7.5.9
 7.4.2

F - 3
 7.4.4

F - 1
 7.4.6

F - 3
 7.5.2

F - 2
 7.5.6

F - 2
 7.5.10

F - 2

 CER2

OUER1 OUER3 OUER5 ONI1 ONI3

 OUER2 OUER4 OUER6 ONI2 ONI4

Figure 7-1 CHARMER diagram showing content validation for eMulePlus measures describing
object connection obscurity.

Chapter 7 – Application of C++ Class and Object Modularity Measure

 221

From Figure 7-1 it can be seen that the implemented measures are able to fully describe

eMulePlus object unexpected relationship sub-characteristic of modularity but are unable to

fully describe the connection via non-standard interface sub-characteristic. The shaded boxes in

the Figure 7-1 CHARMER diagram indicate software features that are not described by the

measures implemented in the measurement instrument that will be applied to the eMulePlus

software system. This diagram shows that only feature 7.5.1 of the ten identified features of the

connection via non-standard interface sub-characteristic of object modularity is described by

any implemented measure. Applying measures OER6:OCM5, OER7:OCM6 and OER8:OCM7

to the eMulePlus system shows that while no eMulePlus object-classes have friend global

functions (OER7:OCM6), 29 object-classes have friend classes (OER6:OCM5) and 28 object-

classes in the eMulePlus system are friends to other object-classes (OER8:OCM7). The classes

identified by these measures as being involved in friend type relationships potentially have

levels of connection via non-standard interface that reduce the modularity of the eMulePlus

system. As the Figure 7-1 CHARMER diagram shows, no measures are defined to describe

these relationships. This problem, combined with the inability of the selected measurement

instrument to implement measures ONI2, ONI3 and ONI4, leads to the implemented

measurement instrument being judged to have insufficient content validity to adequately

describe the levels of connection via non-standard interface present in the eMulePlus system.

This lack of content validity means that the connection via non-standard interface sub-

characteristic of object connection obscurity should not be measured for the eMulePlus system.

Chapter 7 – Application of C++ Class and Object Modularity Measure

 222

7.2.4 eMulePlus object dependency

As the Figure 7-2 CHARMER diagram of eMulePlus object dependency shows, in certain

situations, some measures are unable to fully describe a software system.

 C++ object dependency

 interface provision state dependency

 external variable reading

service invocation external function writing

 OER5

 8.1.1
F - 2

 8.2.1
F - 2

 8.3.2
F - 2

 8.4.2
F - 3

 8.4.4
F - 3

 8.4.6
F - 2

 8.1.2

F - 1
 8.3.1

F - 3
 8.4.1

F - 3
 8.4.3

F - 3
 8.4.5

F - 3

 CER2

 OSI1 OIP1 OEVR2 OEFW2 OEFW4 OEFW5
 OIP2

 OSI2 OEVR1 OEFW1 OEFW3

Figure 7-2 CHARMER diagram showing content validation for eMulePlus measures describing
object dependency.

As previously discussed, measures annotated with the CER2 measure are able to fully describe

the eMulePlus system and so, the implemented measures have sufficient content validity to

adequately describe the interface provision sub-characteristic of eMulePlus object dependency.

When OER5:OCM4 for an object-class is greater than zero, the object-class has one or more

static attributes. For the eMulePlus system, measure OER5:OCM4 indicates that only 1 object-

class has a static attribute. Examination of this object-class, using the Understand for C++ code

Chapter 7 – Application of C++ Class and Object Modularity Measure

 223

analyser, shows that this static attribute is not written to by any object in the eMulePlus system.

This means that the validity of the measured description of eMulePlus object dependency is not

reduced by the lack of measures defined to describe feature 8.4.5 of object dependency since

this feature does not occur in the eMulePlus system. The validity of the description of object

modularity is however reduced by the inability of the measurement instrument to implement

measures OSI2, OEVR2, OEFW3 and OEFW5. In particular, the Figure 7-2 CHARMER

diagram shows that measure OSI2 describes a feature of the software that occurs with high

frequency in the eMulePlus system. The measurement instrument is judged to have insufficient

content validity to provide an adequate description of eMulePlus system object dependency.

This lack of content validity means that object dependency should not be measured for the

eMulePlus system.

Table 7-1 summarises the results of the content validation of the implemented measurement

instrument with respect to the eMulePlus system.

Modularity sub-characteristic Content validity Proceed with measurement

class interface dependence sufficient yes
class external relationships sufficient yes
class connection obscurity sufficient yes
class dependency sufficient yes
object interface dependence sufficient yes
object external relationships sufficient yes
object connection obscurity:
variable connection

sufficient yes

object connection obscurity:
unstated relationships

sufficient yes

object connection obscurity:
distant connection

sufficient yes

object connection obscurity:
non-standard connection:
unexpected relationship

sufficient yes

object connection obscurity:
non-standard connection: connection
via non-standard interface

insufficient no

object dependency insufficient no

Table 7-1 Results of eMulePlus system content validation

The measurement instrument can be applied to the eMulePlus system to describe the aspects of

modularity for which it is able to provide a sufficiently valid description. The implemented

measurement instrument has sufficient content validity to provide an adequate description of

Chapter 7 – Application of C++ Class and Object Modularity Measure

 224

eMulePlus class modularity. It also has sufficient content validity to provide an adequate

description of eMulePlus object interface dependence, external relationships and the variable

connection, unstated relationship, distant connection and unexpected relationship sub-

characteristics of object connection obscurity. The implemented measurement instrument has

insufficient content validity to provide an adequate description of eMulePlus object

dependency and the connection via non-standard interface sub-characteristic of object

connection obscurity.

7.3. Example of a construct validation – eMulePlus software system

In general terms, construct validation involves measuring the characteristic of interest, in this

case modularity, and characteristics that are theoretically associated with this characteristic.

The strength of the relationship between the characteristic of interest and the associated

characteristics is then statistically evaluated and from this, the construct validity of the

measures of the characteristic of interest is estimated. The modularity measures defined in this

thesis were developed based on Meyer’s (1997, pp. 46-53) five rules of modularity. Associated

with these five rules are five criteria of modularity. These are: decomposability, composability,

understandability, continuity and protection (Meyer 1997, pp. 40-46). Were sufficiently valid

and reliable measures of these five software criteria available, then they could be used to

perform construct type validation of the modularity measures developed in this thesis. Since

such modularity criteria measures are yet to be defined, this is an area for future work rather

than a construct validation that can be demonstrated in this thesis.

An alternative to these five criteria is a construct validation of the modularity measures with

respect to software size. Figure 1-6 in Section 1.4 described a process of construct validation.

According to Steps 1 and 2 of this process, the theory associated with software modularity

should be examined and software characteristics that would distinguish modules with differing

levels of modularity be selected. One intuitive view of modularity is that it is related to module

length. (Fenton 1995, p. 189) According to this view, longer (or larger) modules have lower

levels of modularity. This view is supported by the object oriented design heuristic

recommending that, to promote high levels of modularity, a software system be composed of

several smaller modules rather than one single large module. The example of a construct

validation described in this section will investigate the relationship between the modularity

measures defined in this thesis and a measure of module size, in order to demonstrate evidence

of construct validity of the modularity measures. This construct validation will be with respect

Chapter 7 – Application of C++ Class and Object Modularity Measure

 225

to class modularity only, as the previous section 7.2 identified the modularity measures as

having sufficient content validity to describe class modularity but insufficient content validity

to fully describe object modularity.

It is important to note that evidence of modularity measure construct validity obtained in this

example is only applicable to the eMulePlus system with respect to a single size measure. This

single piece of evidence is not sufficient to be able to declare the measures of class modularity

to have an acceptable level of construct validity. To be able to declare the class modularity

measures to have generally acceptable levels of construct validity, many diverse software

systems will need to be evaluated against different measures of a number of criteria identified

as being theoretically related to class and object modularity.

Another important point to note is that, should the construct validation procedure confirm a

relationship between the class modularity measures and class size, this does not mean that the

size measure can be substituted for the modularity measures as an indicator of class modularity.

One reason for this is that while the modularity to size relationship may hold for a population

of measured classes, it may not be true for each individual class in the population. A corollary

of this is height vs weight example of construct validation discussed in section 1.4.2. While

theory suggests that there is a relationship between height and weight of adults, and construct

validation of a population of adults may support this theory, some individual adults within the

sample population may not. For example, a very short, fat person may weigh the same as a

much taller, thin person which means that a height measure cannot be substituted for a weight

measure. Another reason why evidence of a relationship between modularity and size measures

does not mean that size measure can be substituted for modularity measures is that, while size

measures may indicate modules with high or low modularity, they do not specifically identify

features of the module that contribute to overall modularity levels. A large size measure

indicates that a module should be split into several smaller modules to increase its modularity

however modularity measures will indicate other ways in which the module’s modularity can

be increased without necessarily dividing it into several modules.

Having identified the theoretical relationship between module size and modularity as the basis

for an example construct validation, the next stages of the validation process can proceed. Steps

3 and 4 of the Figure 1-6 construct validation process require that a validation software system

be selected and measures of module modularity and size be taken from this system. This sample

construct validation will be performed on the eMulePlus software system. Modularity will be

Chapter 7 – Application of C++ Class and Object Modularity Measure

 226

represented as a Euclidean distance value calculated according to the process described in

section 7.1.2 and as an unweighted aggregate value and a weighted aggregate value calculated

according to the process described in section 7.1.1. The weighted aggregate is calculated in the

manner described in section 7.1.1.3 where the class interface dependence values are multiplied

by a factor of 3 to balance the three coupling aggregate values.

Figure 1.2 illustrates the measurement relationships between software source code size, lines of

code and measures describing size by quantifying the lines of code software feature. In this

construct validation example, a measure quantifying lines of code will be used to describe

module size. The following equation defines this measure, based on the entity-relationship

mathematical model of modularity developed in the entity modelling stage of measure

development.

CLASS_LOC = {(ci, total)} = {(x.ci, total) | x ∈ C ∧ total = �{y.lines | y ∈ M ∧ x.ci = y.ci}}

Examination of the defined modularity measures shows that only measure CIS5 quantifies the

lines of code feature of C++ software. Since construct validation relies on correlation between

measures of software characteristics, it would be advantageous to have the modularity and size

characteristics described by separate features since using common features could artificially

enhance the correlation between measures of the characteristics. Measure CIS5 provides such a

link between the modularity and size measures. To demonstrate the possible effect measure

CIS5 could have on the correlation, Figures 7-3, 7-4 and 7-5 show the relationship between

unweighted and weighted class modularity aggregates and modularity Euclidean distances

calculated with and without measure CIS5.

Chapter 7 – Application of C++ Class and Object Modularity Measure

 227

-1.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0

eMulePlus Class Modularity Aggregate - Without CIS5

-1.0

0.0

1.0

2.0

3.0

4.0

5.0

6.0

eM
ul

eP
lu

s
C

la
ss

 M
od

ul
ar

ity
 A

gg
re

ga
te

Figure 7-3 Effect of measure CIS5 on eMulePlus unweighted class modularity aggregate values

-2.0 0.0 2.0 4.0 6.0 8.0

eMulePlus Weighted Class Modularity Aggregate Without CIS5

-2.0

0.0

2.0

4.0

6.0

eM
ul

eP
lu

s
W

ei
gh

te
d

C
la

ss
 M

od
ul

ar
ity

 A
gg

re
ga

te

Figure 7-4 Effect of measure CIS5 on eMulePlus weighted class modularity aggregate values

Chapter 7 – Application of C++ Class and Object Modularity Measure

 228

0.0 5.0 10.0 15.0 20.0 25.0

eMulePlus Class Modularity Distance - Without CIS5

0.0

5.0

10.0

15.0

20.0

25.0

eM
ul

eP
lu

s
C

la
ss

 M
od

ul
ar

ity
 D

is
ta

nc
e

Figure 7-5 Effect of measure CIS5 on eMulePlus class modularity distance values

As these graph show, measure CIS5 has a relatively small effect on the final modularity values

and CIS5’s effect on the final construct validation correlation should also be small. For this

reason, measure CIS5 will remain in the modularity aggregate and distance calculations for this

construct validation. The values of lines of code, unweighted and weighted modularity

aggregate and Euclidean distance for eMulePlus classes are listed in Appendix 5.

Although calculated by different methods, if both the unweighted and weighted modularity

aggregates and modularity distance values provide a valid description of modularity, then there

should be a strong relationship between their values for each measured class. Figure 7-6

illustrates the relationships between the weighted and unweighted modularity aggregates and

modularity Euclidean distance values.

Chapter 7 – Application of C++ Class and Object Modularity Measure

 229

0.0 5.0 10.0 15.0 20.0 25.0

eMulePlus Class Modularity Euclidean Distance

-2.0

0.0

2.0

4.0

6.0

e
M

u
le

P
lu

s
C

la
ss

 M
o
d
u
la

ri
ty

 A
g
g
re

g
a
te

0.0 5.0 10.0 15.0 20.0 25.0

eMulePlus Class Modularity Euclidean Distance

-2.0

0.0

2.0

4.0

6.0

e
M

u
le

P
lu

s
W

e
ig

h
te

d
 C

la
ss

 M
o

d
u

la
rit

y
A

g
g

re
g

a
te

-2.0 0.0 2.0 4.0 6.0

eMulePlus Weighted Class Modularity Aggregate

-2.0

0.0

2.0

4.0

6.0

e
M

u
le

P
lu

s
C

la
ss

 M
o
d
u
la

ri
ty

 A
g
g
re

g
a
te

Figure 7-6 Comparison of weighted and unweighted modularity aggregate and modularity
distance indicators of eMulePlus class modularity

Figure 7-6 shows a strong positive relationship between these three different modularity

indicators which means it is highly likely that they are describing the same characteristic of the

eMulePlus system software. The construct validation performed in the remainder of this

section, will provide evidence as to whether or not this characteristic is modularity. As well as

Chapter 7 – Application of C++ Class and Object Modularity Measure

 230

providing evidence of the construct validity of the defined modularity measures, the construct

validation described in the remainder of this section will also provide evidence as to which of

these three methods of data reduction gives the most valid indication of eMulePlus software

system class modularity.

According to Step 5 of the Figure 1-6 process of construct validation, the measurement data

must be analysed using appropriate statistical techniques, to determine whether or not classes

with high and those with low measured modularity are statistically differentiated by the class

size measure. Table 7-2 describes the distributions of eMulePlus class total lines of code,

modularity aggregate and modularity distance values. The artificial Zero class is not included in

this description and will not be included in the construct validation because it does not

represent a genuine case.

 eMulePlus

Class Lines
of Code

eMulePlus
Class

Modularity
Aggregate

eMulePlus
Weighted

Class
Modularity
Aggregate

eMulePlus
Class

Modularity
Euclidean
Distance

Valid 249 249 249 249 N

Missing 0 0 0 0

Mean 266.6988 .0000000 .0000000 5.6422

Median 136.0000 -.3142856 -.3064389 4.5300

Mode .00 -.64350 -.71328 3.42

Std. Deviation 424.83571 1.0000000
0

1.0000000
0

3.80883

Variance 180485.381 1.000 1.000 14.507

Skewness 3.909 2.178 2.349 2.192

Std. Error of Skewness .154 .154 .154 .154

Kurtosis 20.780 5.749 9.105 6.498

Std. Error of Kurtosis .307 .307 .307 .307

Range 3543.00 6.24191 7.78536 23.18

Minimum .00 -1.00601 -1.17927 .00

Maximum 3543.00 5.23590 6.60609 23.18

25 27.0000 -.6369538 -.6818372 3.4235

50 136.0000 -.3142856 -.3064389 4.5300

75 336.5000 .2158530 .3624061 6.8170

Percentiles

95 962.5000 2.1564022 1.7276447 13.2605

Table 7-2 eMulePlus class lines of code, modularity aggregate and modularity distance
distribution statistics

From Table 7-2 it can be seen that the class unweighted and weighted modularity aggregates,

Chapter 7 – Application of C++ Class and Object Modularity Measure

 231

modularity distance and lines of code distributions are positively skewed. This deviation from a

normal distribution means that the construct validation must be performed with a

nonparametric correlation technique. Comparison of the median and maximum values in Table

7-2 also shows that the unweighted and weighted modularity aggregates, distance and lines of

code distributions contain outliers. Extreme outlier values should be removed from the data set

prior to correlation analysis as they may have an undue effect on the final correlation

coefficient obtained. Figure 7-7 shows eMulePlus outlier classes having total lines of code or

unweighted modularity aggregate values above the 95th percentile, Figure 7-8 shows eMulePlus

outlier classes having total lines of code or weighted modularity aggregate values above the 95th

percentile and Figure 7-9 shows eMulePlus outlier classes with total lines of code or

modularity distance values above the 95th percentile. All these classes, which can be identified

from the Appendix 5 Table 5-1 listing of lines of code, unweighted and unweighted modularity

aggregates and modularity distance values, will be excluded from the construct validation

correlation calculations.

-2.0 0.0 2.0 4.0 6.0

eMulePlus Class Modularity Aggregate

0.0

1000.0

2000.0

3000.0

4000.0

eM
ul

eP
lu

s
C

la
ss

 L
in

es
 o

f C
od

e

Figure 7-7 eMulePlus class lines of code and unweighted modularity aggregate outliers

Chapter 7 – Application of C++ Class and Object Modularity Measure

 232

-2.0 0.0 2.0 4.0 6.0

eMulePlus Weighted Class Modularity Aggregate

0.0

1000.0

2000.0

3000.0

4000.0

eM
ul

eP
lu

s
C

la
ss

 L
in

es
 o

f C
od

e

Figure 7-8 eMulePlus class lines of code and weighted modularity aggregate outliers

0.0 5.0 10.0 15.0 20.0 25.0

eMulePlus Class Modularity Euclidean Distance

0.0

1000.0

2000.0

3000.0

4000.0

eM
ul

eP
lu

s
C

la
ss

 L
in

es
 o

f C
od

e

Figure 7-9 eMulePlus class lines of code and modularity Euclidean distance outliers

Chapter 7 – Application of C++ Class and Object Modularity Measure

 233

Table 7-3 describes the correlation relationship between the remaining eMulePlus class lines of

code, unweighted and weighted modularity aggregates and modularity Euclidean distance

values.

 eMulePlus

Class Lines
of Code

eMulePlus
Class

Modularity
Aggregate

eMulePlus
Weighted

Class
Modularity
Aggregate

eMulePlus
Class

Modularity
Euclidean
Distance

Correlation
Coefficient

1.000 .515(**) .556(**) .474(**)

Sig. (2-tailed) . .000 .000 .000

eMulePlus
Class Lines
of Code

 N 222 222 222 222

Correlation
Coefficient

.515(**) 1.000 .917(**) .903(**)

Sig. (2-tailed) .000 . .000 .000

eMulePlus
Class
Modularity
Aggregate

N 222 222 222 222

Correlation
Coefficient

.556(**) .917(**) 1.000 .934(**)

Sig. (2-tailed) .000 .000 . .000

eMulePlus
Weighted
Class
Modularity
Aggregate

N 222 222 222 222

Correlation
Coefficient

.474(**) .903(**) .934(**) 1.000

Sig. (2-tailed) .000 .000 .000 .

Spearman's
rho

eMulePlus
Class
Modularity
Euclidean
Distance

N 222 222 222 222

** Correlation is significant at the 0.01 level (2-tailed).

 Table 7-3 Strength of relationships between eMulePlus class lines of code, unweighted and
weighted modularity aggregates and modularity distance

Table 7-3 shows that there is a very strong positive relationship between the unweighted and

weighted modularity aggregates and modularity Euclidean distance indicators of eMulePlus

class modularity. This means that all these indicators are providing a similar summary of the

modularity measured values and are therefore highly likely to be describing the same

characteristic of the measured eMulePlus classes.

From Table 7-3 it can be seen that there is a moderately strong relationship between the

unweighted and weighted modularity aggregate values and lines of code for the eMulePlus

classes and between the modularity Euclidean distance value and lines of code. According to

Step 6 of the construct validation process described in Figure 1-6, this is evidence that the

unweighted and weighted aggregate values and the distance values calculated from the

Chapter 7 – Application of C++ Class and Object Modularity Measure

 234

modularity measures have a moderate degree of construct validity with respect to the theory

that relates modularity and module size. It also offers evidence of the construct validity of lines

of code as a measure of class size and of the validity of the theorised relationship between class

size and modularity. The correlation between lines of code and the weighted modularity

aggregate is slightly stronger than between lines of code and unweighted modularity aggregate

which in turn is slightly stronger than the relationship between lines of code and modularity

Euclidean distance. This is evidence that, for the eMulePlus software system, the weighted

modularity aggregation provides a more valid summary of the modularity measures than the

unweighted aggregate and Euclidean distance calculations. Further construct validations against

different software systems and criterion characteristics are needed before this can be

conclusively determined.

Given that the aggregate and distance values calculated from the eMulePlus class modularity

measures are positively related to the lines of code size measure, the question arises as to

whether the individual measures from which they are calculated are also positively related to

the lines of code measure. Appendix 3 Table 3-1 shows the correlation between a class total

lines of code count and measured values of class modularity taken from eMulePlus classes. As

expected, measure CIS5 is strongly related to the lines of code measure. This is expected

because CIS5 is itself a lines of code count.

From Appendix 3 Table 3-1, measures that are strongly related to the lines of code measure are

• CIS5 - median lines of code in class interface methods

• CUR2:CCM7 and CSI1:CCM7 - number of global functions invoked by class methods

• CSI2 - number of other classes whose methods are invoked by a class

• CDE4 - number of methods writing to a same class attribute

• CDE5 - number of methods reading from a same class attribute

The remaining measures of class modularity are not strongly related to the lines of code

measure and so, are providing a description of modularity that is independent of the number of

lines of code in the class.

While the individual measures of class modularity are not uniformly related to the class size

lines of code measure, the composite modularity indicators of unweighted and unweighted

modularity aggregates and modularity Euclidean distance are related to size. This is in

Chapter 7 – Application of C++ Class and Object Modularity Measure

 235

accordance with software engineering theory, as expressed by Fenton (1995, p. 189), used as

the basis for the preceding construct validation of the class modularity measures. This means

that while the modularity composite measures are related to module size, the individual

measures from which they are calculated offer more insight into the modularity of individual

classes than may be obtained from a lines of code measure describing class size. This result is

true for modularity and size measures describing the eMulePlus software system. Before this

result can be declared to be generally true, it needs to be evaluated for several different

software systems.

For the purposes of the following case studies, the previous content and construct validations

will be accepted as providing sufficient evidence of the validity of the defined measures of C++

class and object modularity. These two case studies describe two types of measurement and

data analysis of eMulePlus system modularity. The first case study uses the unweighted

modularity aggregate values to identify eMulePlus classes and objects with low modularity.

The unweighted modularity aggregate summary of the measures is selected instead of the

weighted modularity aggregate or Euclidean distance because it represents most closely the

hierarchical structure of the modularity sub-characteristics, described in Chapter 3, which

formed the basis of the measure development. The second case study presents a detailed

description of the interface dependence of a selected class identified in the previous case study

as having low modularity.

Chapter 7 – Application of C++ Class and Object Modularity Measure

 236

7.4. Modularity measurement case studies

Processes such as the GQM paradigm (Basili 1988) place software measurement within a wider

context of the purpose for which the measures are being applied. As illustrated in Figure 2-2,

the work in this thesis assumes that this contextualisation has already been performed and the

characteristics to be described by the measures identified. In this case study, the simple aim in

making the measures is to identify class and object modules with relatively low modularity. In

practice, this simple aim would be part of a higher level aim such as to improve software

maintainability or reusability. This higher level aim involves establishing the validity of the

relationship between modularity and another characteristic of interest such as maintainability to

show that the modularity measures can predict software maintainability. Such a case study,

while very relevant to the real world of software engineering, is beyond the scope of this thesis.

This thesis aims to identify a way in which descriptive measures of low level characteristic

such as modularity can be developed such that they provide a valid description of the software.

For this reason, the case studies presented in this chapter will be presented in the limited

context of describing aspects of C++ class and object modularity. In future, should the process

of measure development advocated in this thesis be accepted in the software community,

further research could be performed to place the systematic measure development process

within the wider context of software quality assessment and control.

The first step of the measure application process is to state the aim of the measurement activity;

what the user wishes to find out about the software system from the measurement data

collected. The next step is to examine the validity of the measures and decide whether or not

the measures implemented within the measurement instrument provide an adequate description

of the software system characteristic of interest. The adequacy of the description is determined

with respect to the previously stated aims of the measurement study and the composition of the

software system to be measured. If the measures are determined to have sufficient validity, the

next step is to apply the measurement instrument to the software system source code and obtain

the measurement data. This data is then analysed and the resulting information presented and

interpreted with respect to the original aims of the measurement study.

The first case study presents a general description of the eMulePlus system class and object

modularity. From this general view of the software system, individual class and object modules

with relatively low modularity are identified. The second case study presents a more detailed

Chapter 7 – Application of C++ Class and Object Modularity Measure

 237

description of the interface dependence of a single class and object module. A graphical

representation of the interface dependence of the module provides an overview that is further

clarified by a detailed analysis of individual measures describing module interface size. This

analysis serves to identify specific ways in which the implementation of the module can be

modified to decrease its levels of interface dependence and hence improve its modularity.

These case studies demonstrate different types of analysis. They show how the highly detailed

description of C++ class and object modularity obtained directly from the measures can be

analysed and presented to provide different descriptions of the eMulePlus system from the

general overview presented in case study 1 to the most specific description presented in case

study 2.

7.4.1 Case study 1 - modularity of the eMulePlus software system

In this case study, a general description of the levels of class and object modularity in the

eMulePlus software system is presented and discussed.

7.4.1.1 Aims

The aim of this case study is to obtain a general description of the modularity of the eMulePlus

software system, highlighting any classes and objects with relatively low modularity. These

could be candidates for further investigation to identify ways in which their modularity could

be improved.

7.4.1.2 Application

The measurement instrument described in section 6.2 of Chapter 6 was applied to the

eMulePlus system and the measured data was successfully extracted. Data was successfully

imported from the eMulePlus source code into the C++ basic software model database. This

basic software model was successfully transformed into the software modularity measurement

database. While most transformations were accomplished smoothly and quickly,

transformations 8, 9 and 10, defined in Appendix 2, that generate sets MIOCReadA,

MIOCWriteA and MIOCInvM took several hours to complete when run on an IBM Pentium 3

laptop. The greater the number of classes and methods in a software system, the longer these

transformations take to run. Measuring the eMulePlus system tested the limits of the

implemented measurement instrument. To measure a larger system, a better measurement

Chapter 7 – Application of C++ Class and Object Modularity Measure

 238

instrument will be needed. Alternatively, the different sub-systems of which large software

systems are most usually comprised, could be treated as software systems in their own right,

and measured individually.

The modularity measures were taken from the eMulePlus software measurement database and

the resulting data imported into the Statistical Package for the Social Sciences (SPSS)

application for analysis.

7.4.1.3 Analysis and interpretation

The class and object modularity analyses present, for illustrative purposes, two different levels

of analysis detail. The eMulePlus class modularity analysis is performed at a general level

resulting in a single aggregate value of modularity. The eMulePlus object modularity analysis

presents aggregated values of object interface dependence, external relationships and

connection obscurity as well as a partial aggregate of object modularity calculated from these

sub-characteristic aggregates. This extra information identifies object-classes with low

modularity due to low levels of the measured sub-characteristics. Modularity aggregates are

calculated according to the method defined in section 7.1. No weighting is used in this

calculation. The eMulePlus modularity aggregate values used in this case study are listed in

Appendix 5.

7.4.1.3.1 eMulePlus system class modularity

Table 7-4 describes the distributions of the modularity aggregates for the eMulePlus system

classes. None of the distributions are normal and all have a strong positive skew. Comparison

of the 75th percentile and maximum values indicates that extreme outlier classes exist that

whose aggregate values indicate low modularity.

Chapter 7 – Application of C++ Class and Object Modularity Measure

 239

 eMulePlus
Class

Modularity
Aggregate

eMulePlus
Class

Interface
Dependence
Aggregate

eMulePlus
Class External
Relationships

Aggregate

eMulePlus
Class

Connection
Obscurity
Aggregate

eMulePlus
Class

Dependenc
y Aggregate

N Valid 249 249 249 249 249

 Missing 0 0 0 0 0

Mean .0000000 .0000000 .0000000 .0000000 .0000000

Median -.3142856 -.2770341 -.1743744 -.4159969 -.2895275

Mode -.64350 -.92170 -.64663 -.41600 -.49616

Std. Deviation 1.0000000
0

1.00000000 1.00000000 1.0000000
0

1.00000000

Variance 1.000 1.000 1.000 1.000 1.000

Skewness 2.178 3.988 2.377 5.391 4.208

Std. Error of Skewness .154 .154 .154 .154 .154

Kurtosis 5.749 23.629 7.180 37.134 22.673

Std. Error of Kurtosis .307 .307 .307 .307 .307

Range 6.24191 9.14861 6.48465 8.58055 7.60244

Minimum -1.00601 -.92170 -.64663 -.41600 -.49616

Maximum 5.23590 8.22691 5.83802 8.16455 7.10628

Percentiles 25 -.6369538 -.5143310 -.6466280 -.4159969 -.4961632

 50 -.3142856 -.2770341 -.1743744 -.4159969 -.2895275

 75 .2158530 .1850939 .2890585 -.0268967 .0079100

 95 2.1564022 1.5989198 2.2297711 1.5203834 1.7744980

Table 7-4 eMulePlus system class modularity aggregate statistics

The Figure 7-10 histogram describes the distribution of the eMulePlus system class modularity

normalised aggregate values. This distribution has a mean of zero and a standard deviation of

one. Low aggregate values indicate high modularity and increasing aggregate values indicate

decreasing modularity. The reference lines at the 75th and 90th percentiles show that the

majority of eMulePlus classes have relatively high modularity with only a few classes having a

modularity aggregate indicating low modularity.

Chapter 7 – Application of C++ Class and Object Modularity Measure

 240

-1.0 0.0 1.0 2.0 3.0 4.0 5.0

eMulePlus Class Modularity Aggregate

0

10

20

30

40

50

60

70

Fr
eq

ue
nc

y

Figure 7-10 Frequency histogram of eMulePlus class modularity normalised aggregate values

Examination of the eMulePlus class modularity normalised aggregate values listed in Appendix

5 shows that 12 out of the total of 249 measured eMulePlus classes have an aggregate class

modularity value above the 95th percentile. Class CPartFile with a class modularity aggregate of

5.24 has the lowest overall modularity of all the eMulePlus classes. Table 7-5 lists the outlier

eMulePlus classes with a modularity aggregate value above the 95th percentile.

Chapter 7 – Application of C++ Class and Object Modularity Measure

 241

eMulePlus class

Class modularity aggregate

CPartFile 5.24

CKnownFile 4.41

COptionTreeFontSelColorButton 3.79

CColorButton 3.77

CClientReqSocket 3.29

CFriend 3.15

CAbstractFile 2.58

CWebServer 2.52

CEMSocket 2.41

CSearchDlg 2.27

CSharedFilesCtrl 2.24

DbEnv 2.22

Table 7-5 eMulePlus modularity aggregates of classes with relatively low modularity

The classes listed in Table 7-5 are all candidates for further investigation. The case study

described in section 7.2.4.1 is an example of the type of investigation that could be performed

on these classes to identify ways in which their levels of modularity could be improved.

Chapter 7 – Application of C++ Class and Object Modularity Measure

 242

7.4.1.3.2 eMulePlus system object modularity

Table 7-6 describes the distributions of the modularity aggregates for the eMulePlus system

object-classes. As for the eMulePlus classes, none of the distributions are normal and all have a

strong positive skew. Comparison of the 75th percentile and maximum values indicates that

extreme outlier object-classes exist that whose aggregate values indicate low modularity.

 eMulePlus

Partial
Object

Modularity
Aggregate

eMulePlus
Object

Interface
Dependence
Aggregate

eMulePlus
Object

External
Relationship
s Aggregate

eMulePlus
Object

Connection
Obscurity
Aggregate

N Valid 249 249 249 249

 Missing 0 0 0 0

Mean .0000000 .0000000 .0000000 .0000000

Median -.3496998 -.2899236 -.3490133 -.3390886

Mode -.81843 -.65407 -.49163 -.53396

Std. Deviation 1.00000000 1.00000000 1.00000000 1.0000000
0

Variance 1.000 1.000 1.000 1.000

Skewness 3.192 5.471 4.174 4.387

Std. Error of Skewness .154 .154 .154 .154

Kurtosis 15.826 42.093 22.935 26.361

Std. Error of Kurtosis .307 .307 .307 .307

Range 8.44795 9.32633 8.56114 8.04635

Minimum -.81843 -.65407 -.49163 -.53396

Maximum 7.62951 8.67226 8.06950 7.51239

Percentiles 25 -.6003406 -.4519868 -.4916339 -.5339600

 50 -.3496998 -.2899236 -.3490133 -.3390886

 75 .2685776 .2022586 -.0041828 .1001530

 95 2.0680979 1.1695865 1.8790978 1.6656312

Table 7-6 eMulePlus system object modularity aggregate statistics

The histograms in Figure 7-11 describe the distribution of the eMulePlus object interface

dependence, external relationships and connection obscurity modularity aggregates. The

reference lines at the 75th and 90th percentiles show that the majority of eMulePlus object-

classes have relatively high modularity with only a few object-classes having a modularity

aggregate indicating low modularity. As discussed in section 7.1.2, the implemented measures

have insufficient validity to describe the connection via non-standard interface sub-

characteristic of connection obscurity and the dependency modularity sub-characteristic.

Connection via non-standard interface is a minor sub-characteristic of object connection

obscurity and so, the decision has been made to calculate a connection obscurity aggregate

Chapter 7 – Application of C++ Class and Object Modularity Measure

 243

without its input, which is relatively small. Dependency however is an immediate sub-

characteristic of modularity and makes a significant contribution to the modularity aggregate

values. Without measures describing object dependency, a full object modularity aggregate

cannot be calculated.

0.0 2.0 4.0 6.0 8.0

eMulePlus Object Interface
Dependence Aggregate

0

20

40

60

80

100

120

F
re

qu
en

cy

0.0 2.0 4.0 6.0 8.0

eMulePlus Object External
Relationships Aggregate

0

20

40

60

80

100

120

F
re

qu
en

cy

0.0 2.0 4.0 6.0

eMulePlus Object Connection
Obscurity Aggregate

0

20

40

60

80

100

120

F
re

qu
en

cy

0.0 2.0 4.0 6.0

eMulePlus Object Partial
Modularity Aggregate

0

20

40

60

80

100

F
re

qu
en

cy

Figure 7-11 Frequency histogram of eMulePlus object modularity aggregates

Chapter 7 – Application of C++ Class and Object Modularity Measure

 244

The histograms of Figure 7-11 include a partial normalised object modularity aggregate

histogram. This identifies eMulePlus object-classes that have the potential to have low object

modularity. It is important to recognise that without a dependency component to this aggregate,

an object-class with a high aggregate value cannot be said to have low modularity and an

object-class with a low aggregate value cannot be said to have high modularity. In practice, the

partial object modularity aggregate could be used to identify object-classes with the potential to

have low modularity. These object-classes could be examined by hand to determine their levels

of dependency and thus their levels of object modularity. Examination of the eMulePlus partial

object normalised modularity aggregate listed in Appendix 5 shows that 12 eMulePlus object-

classes have an aggregate value above the 95th percentile. Object-class CFriend with a partial

object-class modularity aggregate of 7.63 is indicated as potentially having the lowest overall

modularity of all the eMulePlus object-classes. Table 7-7 lists the object interface dependence,

external relationships and connection obscurity aggregate values for the eMulePlus object-

classes with a partial object modularity aggregate value above the 95th percentile. The case

study described in section 7.2.4.2 is an example of the type of investigation that could be

performed on these object-classes to identify ways in which their levels of modularity could be

improved.

Chapter 7 – Application of C++ Class and Object Modularity Measure

 245

eMulePlus Object-Class

eMulePlus
Partial
Object
Modularity
Aggregate

eMulePlus
Object
Interface
Dependence
Aggregate

eMulePlus
Object
External
Relationships
Aggregate

eMulePlus
Object
Connection
Obscurity
Aggregate

CFriend 7.63 8.67 4.92 2.06

CColorButton 3.74 -.43 .60 7.51

COptionTreeFontSelColorButton 3.73 -.45 .60 7.51

COScopeCtrl 3.65 8.40 -.36 -.53

CPreferences 3.64 -.36 8.07 -.24

CUpDownClient 3.53 .42 4.81 2.02

DbEnv 2.72 -.32 4.43 1.47

CClientReqSocket 2.61 -.35 1.90 3.80

CemuleApp 2.25 .76 .02 3.83

CAsyncSocketEx 2.22 -.03 3.22 1.35

CServerSocket 2.15 -.35 1.45 3.32

CWebServer 2.15 -.46 3.54 1.33

Table 7-7 eMulePlus normalised modularity aggregates of object-classes with potentially low
modularity

7.4.1.4 Discussion

This case study highlights the importance of performing a content validation of the measures

with respect to the software system to be measured. Without a clear demonstration of measure

content validity, it is difficult to determine whether or not a set of measures provide an

adequate description of a particular software system. Demonstrating sufficient content validity

means that measures can be confidently applied to a particular measurement situation and the

resulting data analysed and interpreted. Measures determined to have insufficient content

validity should not be applied to the task of describing a software system. Their lack of content

validity should be documented and taken into account when analysing and interpreting the data

from measures that were collected. This was the case when applying the measures of object

modularity to the eMulePlus system. These measures were determined to have insufficient

content validity to adequately describe the dependency sub-characteristic of object modularity.

Chapter 7 – Application of C++ Class and Object Modularity Measure

 246

Analysis and interpretation of the measurement data that was obtained to describe eMulePlus

object modularity needs to take into account the fact that this aspect of modularity was not

described.

Fundamental to the content validation is the clear connections established between the

characteristics to be described by the set of measures, the features of the software believed to

affect the levels of these characteristics present in the software and the measures defined to

quantify these features. The descriptive measure development process described and

demonstrated in this thesis supports measure content validation by documenting these

connections throughout the development process. For example, it is possible to see from the

Figure 7-1 CHARMER diagram of object connection obscurity, that the features identified in

points 7.5.3, 7.5.4, 7.5.7, 7.5.8, 7.5.9 and 7.5.10 of the object modularity natural language

model are not quantified by measures. This in turn shows that the aspects of connection via

non-standard interface affected by these features are not described by measures.

When measuring a complex, cluster type characteristic (Gasking 1960; Ellis 1966) such as

modularity (Meyer 1997, p39), a large volume of data may be produced due to the large number

of measures defined to quantify the many features identified as affecting the many sub-

characteristics identified. As previously noted, measuring the modularity of the eMulePlus

system resulted in more than 25,000 points of data. It is important to select an analysis

technique that reduces this large amount of data to useful information that can be interpreted.

The large numbers of measures developed in this thesis provide a detailed description of C++

class and object modularity. This volume of data can be reduced to manageable proportions by

the process of data analysis. The result of this is a more general, high level description of

modularity. If a more detailed description is required, then there is sufficient information

available, within the raw data set, to generate this too. It is possible to use analysis to reduce the

detail of measured description but it is not possible to add detail by analysis. For this reason, it

is useful to define measures to provide a detailed description of a characteristic rather than a

more general one. As this case study has shown, it is possible to obtain a general description of

eMulePlus system class and object modularity from the detailed measured description by

aggregating the normalised measured values of the modularity sub-characteristics. Once a

general description of modularity has been used to identify classes and object with relatively

low modularity, a more detailed description of their modularity could be used to identify ways

in which their modularity could be improved. The next case study demonstrates the detailed

Chapter 7 – Application of C++ Class and Object Modularity Measure

 247

description of software that can be obtained from the measures of C++ class and object

modularity developed in this thesis. The natural language entity model from which the

measures were developed supports the interpretation of this detailed description.

7.4.2 Case study 2 - interface dependence of CPartFile class and object modules

The results of the content validation summarised in Table 7-1 indicate that the implemented

measures of class and object interface dependence provide an adequate description of

eMulePlus system class and objects. Thus the measures of C++ class and object interface

dependence provide an adequate description of the CPartFile class and object modules.

In this case study, interface dependence data of the eMulePlus system CPartFile class and

CPartFile object will be analysed and interpreted to answer the question "How can the interface

dependence be changed to increase the modularity of the CPartFile class and CPartFile

object?". This case study demonstrates the analysis and interpretation of interface dependence

measures to provide a detailed description of an aspect of the eMulePlus system. This

complements the previous case study that demonstrated an analysis that provided a general

description of eMulePlus system modularity. The CPartFile module has been selected for this

detailed description case study because it was highlighted in the general description case study

as having relatively low class modularity. The detailed description of CPartFile interface

dependence that is obtained in this case study can be used to identify ways in which the

modularity of the CPartFile class and object modules can be improved.

7.4.2.1 Aims

This case study aims to investigate the interface dependence of the eMulePlus system CPartFile

class and object-class modules and identify specific ways in which the interface dependence of

these modules can be decreased to improve their modularity.

7.4.2.2 Application

CPartFile class interface dependence is described by 1935 individual points of data and

CPartFile object interface dependence is described by 2605 individual points of data. This

measurement data is listed in Appendix 6. In its raw state, this large amount of data cannot be

fully comprehended. It needs to be analysed so that useful information regarding the level of

CPartFile interface dependence is obtained. This information can then be interpreted to gain an

Chapter 7 – Application of C++ Class and Object Modularity Measure

 248

understanding of CPartFile interface dependence.

7.4.2.3 Analysis and interpretation

The method of analysis used is this case study compares CPartFile interface dependence with

that of an ideal module with low interface dependence. The derivation of this ideal module

representation is discussed in section 3.2.2.2 of Chapter 3.

Figure 7-12 is a diagrammatic representation of the low interface dependence module described

by the C++ class interface dependence natural language entity model in Chapter 4, section

4.2.3.2.1. This is the same representation presented in Figure 3-3. In accordance with point 1.2

of the C++ class interface dependence natural language entity model in Chapter 4, section

4.2.3.2.1, the Figure 7-12 module interface is small; containing no attributes and relatively few

member methods. The interface methods themselves have relatively few lines of code, few

same module method invocations and few same module attribute accesses. In accordance with

point 1.1 of the C++ class interface dependence natural language entity model in Chapter 4,

section 4.2.3.2.1, Figure 7-12 module interface methods do not directly or indirectly access

same module interface attributes and do not directly or indirectly invoke other same module

interface methods. This is indicated by the separation between interface methods shown in

Figure 7-12 and the arrows from interface to hidden methods indicating that interface methods

can invoke hidden methods but that hidden methods cannot invoke interface methods. In

accordance with point 1.3 of the C++ class interface dependence natural language entity model

in Chapter 4, section 4.2.3.2.1, there are no attributes in the Figure 7-12 module interface and

the hidden attributes are not directly accessed by the interface methods.

Chapter 7 – Application of C++ Class and Object Modularity Measure

 249

Figure 7-12 Representation of an object oriented module with low interface dependence

The measures of C++ class and object-class interface dependence contain sufficient

information to enable the construction of a representation of the CPartFile module similar to

that of Figure 7-12. This CPartFile representation can be compared to the ideal module

represented by Figure 7-12 to identify ways in which the modularity of the CPartFile class and

object-class can be improved by reducing their levels of interface dependence.

7.4.2.3.1 CPartFile class interface dependence

From Figure 3-7 of Chapter 3, the sub-characteristics of interface dependence that are directly

described by the defined measures are 'interface size', 'data exposure' and 'interface element

interdependence'. The following points list the measurement data required to construct a model

of the CPartFile class similar to that of the ideal module represented by Figure 7-12.

Interface Methods

Hidden Attributes
Hidden Implementation
Methods

Chapter 7 – Application of C++ Class and Object Modularity Measure

 250

• Interface Size

• 0 interface attributes - CIS1:CCM1

• 133 non-constructor and non-destructor interface methods - CIS3

• 34 hidden attributes - CIS2

• 5 hidden methods - CIS4

• Data Exposure

• 0 interface attributes - CDE1:CCM1

• 133 (all) interface methods directly access an attribute - CDE2:CCM2, CDE3:CCM3

• 34 (all) hidden attributes directly accessed by an interface method - CDE4, CDE5

• Interface Element Interdependence

• no interface attributes so no interface methods access interface attributes - CIEI1-6

• 54 interface methods directly or indirectly invoke an interface method - CIEI7, CIEI8

Figure 7-13 represents the interface dependence of the CPartFile class. This figure is developed

based on the same theoretical basis of low interface dependence that was used to develop the

Figure 7-13 representation of a module with low interface dependence.

Chapter 7 – Application of C++ Class and Object Modularity Measure

 251

Figure 7-13 Graphical representation of CPartFile class interface dependence

Similarities between the Figure 7-12 ideal module and the Figure 7-13 CPartFile class

representation of interface dependence are that:

• some CPartFile class interface methods do not invoke other CPartFile interface

methods.

• the CPartFile class has no interface attributes.

5 hidden methods.

34 hidden attributes,
all directly accessed by
interface and hidden
methods.

54 interface dependent
interface methods, all
invoking interface
methods and all directly
accessing hidden
attributes.

79 interface independent
interface methods, all
directly accessing hidden
attributes

Chapter 7 – Application of C++ Class and Object Modularity Measure

 252

Differences between the ideal module and the CPartFile class representation of interface

dependence are that:

• the CPartFile interface contains a relatively high proportion of the total class

methods while in the ideal module, the interface contains relatively few methods.

• 54 of the CPartFile class interface methods directly or indirectly invoke other class

CPartFile interface methods whereas in the ideal module, no interface methods

directly or indirectly invoke each other.

• all the CPartFile interface methods directly access one or more class attributes

while in the ideal module, interface methods do not directly access class attributes.

These differences indicate that the interface dependence of the CPartFile class module could be

decreased by:

• moving some of the class interface methods to the hidden part of the module.

• modifying the CPartFile class module implementation so that interface methods do

not directly or indirectly invoke other interface methods. The services they are

invoking should be provided by methods within the hidden part of the module.

• modifying the CPartFile class module implementation so that interface methods

only indirectly access class attributes via hidden methods.

Point 1.2.3 of the natural language model of class interface dependence in Chapter 4, section

4.2.3.2.1 indicates that interface method lines of code, total method invocations and total

attribute accesses describe the interface size and that interface size affects the level of interface

dependence present in a module. Table 7-8 presents a summary of the CPartFile class interface

method lines of code (CIS5), method invocations (CIS6), attribute reads (CIS7:CCM2) and

attribute writes (CIS8:CCM3) measurement data. These measures can be used to identify the

largest methods in the CPartFile class module that are most likely to contain implementation

dependent code. Moving the methods thus identified to the hidden part of the CPartFile class

module would reduce its interface dependence.

Chapter 7 – Application of C++ Class and Object Modularity Measure

 253

 Class CPartFile Statistics

 CIS5 CIS6 CIS7:CCM2 CIS8:CCM3

N Valid 133 133 133 133

 Missing 0 0 0 0

Mean 23.98 1.08 .59 .68

Median 12.00 .00 .00 .00

Mode 1 0 0 0

Std. Deviation 35.570 1.925 1.596 3.054

Skewness 3.124 2.718 4.562 8.619

Std. Error of Skewness .210 .210 .210 .210

Kurtosis 12.788 8.601 28.353 85.453

Std. Error of Kurtosis .417 .417 .417 .417

Range 228 11 13 32

Minimum 1 0 0 0

Maximum 229 11 13 32

Percentiles 25 1.00 .00 .00 .00

 50 12.00 .00 .00 .00

 75 32.50 1.50 .00 .00

Table 7-8 Summary of class CPartFile interface size measurement data

The information in Table 7-8 indicates that the distributions of the CPartFile CIS5-8 measured

values are positively skewed. In this situation, the median value provides the most robust

description of central tendency. Examination of the range and 75th percentile values for each

CIS measure shows that each distribution as a few extreme outlier values. CPartFile methods

with these extreme measured values are most likely to contribute to a decrease in CPartFile

modularity.

Table 7-8 shows that some of the CPartFile class interface methods are relatively large having

up to 229 lines of code, 11 method invocations and 32 direct attribute accesses. These relatively

large interface methods are highly likely to contain implementation dependent code that could

be moved to the hidden part of the class to decrease its level of interface dependence and hence

improve its modularity. A measured CIS value greater than the 75th percentile value will be

used to identify methods that are possibly increasing module CPartFile’s interface size and

hence reducing its modularity. The following analysis identifies some of these large interface

methods.

Chapter 7 – Application of C++ Class and Object Modularity Measure

 254

Figure 7-14 shows the CPartFile class interface methods with lines of code greater than the

CPartFile class 75th percentile value of 32.5.

P
ro

ce
ss

L
o

a
d
P

a
rtF

ile
S

a
ve

P
a

rtF
ile

D
ra

w
S

ta
tu

sB
a

r
A

d
d

F
ro

m
S

to
re

d
S

o
u
rce

s
F

lu
sh

B
u
ffe

r
S

a
ve

S
o

u
rce

s
G

e
tN

e
xtR

e
q
u
e
ste

d
B

lo
ck

IsM
o
vie

C
h

u
n
k

C
re

a
te

S
rcIn

fo
P

a
cke

t
C

re
a

te
E

D
2

K
S

o
u

rce
L
in

k
In

it
G

e
tO

u
tp

u
tD

ir
G

e
tN

e
xtE

m
p

tyB
lo

ckIn
P

a
rt

G
e
tP

ro
g
re

ssS
trin

g
S

a
ve

S
o

u
rce

sT
o
F

ile
L
o

a
d
A

n
d
A

d
d
S

o
u

rce
s

W
rite

T
o
B

u
ffe

r
C

re
a

te
P

a
rtF

ile
L
o

a
d
S

o
u
rce

sF
ro

m
F

ile
S

a
ve

T
o

S
to

re
d
S

o
u
rce

s
G

e
tF

ille
d
L

ist
P

re
vie

w
A

va
ila

b
le

S
a

ve
T

o
S

to
re

d
S

o
u
rce

s
A

d
d

S
o
u
rce

s
G

e
tD

o
w

n
lo

a
d
F

ile
In

fo
4
T

o
o
ltip

s
P

re
vie

w
F

ile
G

e
tG

a
p
sIn

P
a
rt

H
a
sh

S
in

g
le

P
a

rt
P

a
rtF

ile
H

a
sh

F
in

ish
e
d

A
d
d

G
a

p
IsB

e
tte

rM
o

vie
C

h
u

n
k

D
e
le

te
F

ile

Class CPartFile Interface Method

0

50

100

150

200

250

L
in

e
s

o
f
C

o
d
e
 (

C
IS

5
)

Figure 7-14 Class CPartFile interface methods with more than 32 lines of code

Figure 7-14 identifies CPartFile class interface methods Process and LoadPartFile as the most

likely to contain service implementation specific code.

Chapter 7 – Application of C++ Class and Object Modularity Measure

 255

Figure 7-15 shows the cumulative value of measures CIS6 - methods directly invoked,

CIS7:CCM2 - attributes directly read and CIS8:CCM3 - attributes directly written by CPartFile

class interface methods. Only CPartFile class interface methods that invoke other methods or

access attributes are included in this graph.

P
ro

ce
ss

In
it

L
o
a

d
P

a
rtF

ile
F

lu
sh

B
u
ffe

r
D

ra
w

S
ta

tu
sB

a
r

A
d
d
F

ro
m

S
to

re
d
S

o
u

rce
s

W
rite

T
o

B
u

ffe
r

S
a
ve

S
o
u
rce

s
L
o
a

d
A

n
d
A

d
d

S
o

u
rce

s
C

re
a
te

P
a

rtF
ile

G
e
tD

o
w

n
lo

a
d
F

ile
In

fo
4

T
o
o
ltip

s
G

e
tD

o
w

n
lo

a
d
F

ile
In

fo
P

re
vie

w
A

va
ila

b
le

S
a
ve

P
a
rtF

ile
L
o
a

d
S

o
u
rce

sF
ro

m
F

ile
P

a
rtF

ile
H

a
sh

F
in

ish
e
d

C
o
m

p
le

te
F

ile
S

to
p
F

ile
G

e
tN

e
xtR

e
q
u
e

ste
d
B

lo
ck

S
a
ve

S
o
u
rce

sT
o
F

ile
S

a
ve

T
o
S

to
re

d
S

o
u
rce

s
S

a
ve

T
o
S

to
re

d
S

o
u
rce

s
D

e
le

te
F

ile
A

d
d
C

lie
n
tS

o
u

rce
s

P
a
u
se

F
ile

R
e
su

m
e
F

ile
A

d
d
S

o
u
rce

s
In

itia
lize

F
ro

m
L

in
k

M
o

vie
2

M
o

vie
1

U
p
d
a
te

D
o

w
n
lo

a
d

A
u

to
P

rio
rity

S
e
tP

rio
rity

F
irstL

a
stL

o
a

d
e
d

G
e
tP

ro
g

re
ssS

trin
g

P
re

vie
w

F
ile

F
illG

a
p

g
e

tP
a
rtfile

S
ta

tu
sR

a
n
g

G
e
tP

a
rtfile

S
ta

tu
s

U
p
d
a
te

A
va

ila
b
le

P
a

rtsC
o
u
n

t
G

e
tR

e
m

a
in

in
g

B
lo

cksIn
P

a
rt

U
p
d
a
te

C
o

m
p
le

te
d
In

fo
s

G
e
tC

o
m

p
le

te
S

o
u
rce

sC
o
u

n
t

G
e
tS

o
u

rce
sA

fte
rS

e
rve

rC
o

n
n
e
ct

G
e
tT

im
e

R
e
m

a
in

in
g

IsM
o

vie

Class CPartFile Interface Method

0

10

20

30

40
CIS8
CIS7
CIS6

Figure 7-15 Class CPartFile interface method invocations and attribute accesses

Figure 7-15 identifies CPartFile class interface methods Process, Init, LoadPartFile and

FlushBuffer as most likely to contain implementation specific code. Of these, the Init method is

most likely to contain implementation specific code because measure CIS8:CCM3 indicates

that it directly writes to 32 CPartFile class attributes.

Chapter 7 – Application of C++ Class and Object Modularity Measure

 256

Figure 7-16 plots the class CPartFile lines of code count vs. the sum of methods invoked and

attributes accessed for interface methods indicated in both Figures 7-14 and 7-15 as potentially

increasing the interface dependence of class CPartFile.

0 10 20 30

Sum of Class CPartFile CIS6, CIS7 and CIS8

50

100

150

200

250

C
la

ss
 C

P
ar

tF
ile

 C
IS

5

Process

Init

LoadPartFile

FlushBuffer

DrawStatusBar AddFromStoredSources

SaveSources

SavePartFile

GetNextRequestedBlock

Figure 7-16 Class CPartFile interface methods that potentially increase interface dependence

The CPartFile interface methods annotated on the Figure 7-16 plot are relatively large

compared to the other CPartFile class interface methods. These methods are indicated as being

most likely to contain implementation dependent code and should be examined by hand to

determine whether or not this is the case. If they do contain implementation specific code, then

to reduce the interface dependence of the CPartFile class module, this code should be moved to

methods within the hidden part of the module.

Chapter 7 – Application of C++ Class and Object Modularity Measure

 257

This case study aimed to answer the question "How can the interface dependence be changed to

increase the modularity of the CPartFile class?". The points below summarise the previous

discussion to answer this question

• move the code implementing method Init to the hidden part of the module.

• examine the Process, LoadPartFile, AddFromStoredSources, DrawStatusBar,

SavePartFile, FlushBuffer, GetNextRequestedBlock and SaveSources interface

methods to determine whether or not they contain implementation specific code. If

they do, move this code to the hidden part of the module.

• modify the CPartFile implementation so that interface methods only directly invoke

hidden methods and hidden methods do not invoke interface methods. This will

ensure that interface methods are not themselves directly or indirectly dependent

on other interface methods.

• modify the CPartFile implementation so that interface methods only indirectly

access the class attributes via hidden methods.

These actions would help to reduce the levels of interface dependence of the CPartFile class

and hence increase its modularity. It is important to remember that at system runtime, it is the

CPartFile object rather than the class that is executing. For this reason, the interface

dependence of the CPartFile object will affect the modularity of the eMulePlus system as it

executes. The next section analyses and interprets CPartFile object interface measurement data

to answer the question of "How can the CPartFile object interface dependence be changed to

increase its modularity?"

7.4.2.3.2 CPartFile object interface dependence

The CPartFile object differs from the CPartFile class in two ways. Firstly, the CPartFile class

interface is comprised of elements with public and protected levels of protection, while the

CPartFile object interface is comprised of only elements with a public level of protection.

Chapter 7 – Application of C++ Class and Object Modularity Measure

 258

Secondly, the CPartFile object includes elements inherited from its one immediate parent class

and two distant ancestor classes. Figure 7-17 illustrates the inheritance hierarchy of CPartFile.

Figure 7-17 Object CPartFile inherits elements from three ancestor classes

The following analysis investigates ways in which CPartFile object interface dependence

differs from CPartFile class interface dependence and how the interface dependence of the

CPartFile object can be reduced to improve its level of modularity.

The following points list the measurement data required to construct a model of the CPartFile

object similar to that of the ideal module represented by Figure 7-12.

• Interface Size

• 4 interface attributes - OIS1:OCM1

• 179 non-constructor and non-destructor interface methods - OIS3

• 43 hidden attributes - OIS2

• 16 hidden methods - OIS4

• Data Exposure

• 4 interface attributes - ODE1:OCM1

• 57 interface methods directly access an attribute - ODE2:OCM2, ODE3:OCM3

• 122 interface methods do not directly access an attribute - ODE2:OCM2, ODE3:OCM3

• 4 (all) interface attributes directly accessed by an interface method - ODE4, ODE5

• 41 hidden attributes directly accessed by an interface method - ODE4, ODE5

• 2 hidden attributes not directly accessed by interface methods - ODE4, ODE5

CPartFile

CKnownFile

CAbstractFile CLoggable

Chapter 7 – Application of C++ Class and Object Modularity Measure

 259

• Interface Element Interdependence

• 25 interface methods directly or indirectly access interface attributes - OIEI1, OIEI2,

OIEI4, OIEI5

• 71 interface methods directly or indirectly invoke an interface method - OIEI7, OIEI8

• 78 interface methods directly or indirectly access an interface element - OIEI1, OIEI2,

OIEI4, OIEI5, OIEI7, OIEI8

• 101 interface methods do not directly or indirectly access an interface element - OIEI1,

OIEI2, OIEI4, OIEI5, OIEI7, OIEI8

Figure 7-18 represents the interface dependence of the CPartFile object. This figure is

developed based on the same theoretical basis of low interface dependence that was used to

develop the Figure 7-12 ideal module representation.

Figure 7-18 Graphical representation of CPartFile object interface dependence

41 hidden attributes,
all directly accessed by
interface methods

78 interface dependent
methods, all invoking
interface methods
and/or accessing
interface attributes

101 interface
independent methods

2 hidden attributes,
not directly accessed
by interface methods

16 hidden methods

4 interface attributes,
all directly accessed by
interface methods

Chapter 7 – Application of C++ Class and Object Modularity Measure

 260

Similarities between the Figure 7-12 ideal module and the Figure 7-18 CPartFile object

representation of interface dependence are that:

• some CPartFile object interface methods do not invoke other CPartFile object

interface methods.

• the CPartFile object has some hidden attributes that are not directly accessed by

interface methods.

Differences between the ideal module and the CPartFile object representation of interface

dependence are that:

• the CPartFile object interface contains a relatively high proportion of the total object

methods while in the ideal module, the interface contains relatively few methods.

• 78 CPartFile object interface methods directly or indirectly invoke other CPartFile

object interface methods whereas in the ideal module, no interface methods directly or

indirectly invoke each other.

• 57 CPartFile object interface methods directly access a CPartFile object attribute and

122 interface methods do not. This is different to the ideal module where no interface

methods access an attribute.

• the CPartFile object module has 4 interface attributes whereas the ideal module has

none.

These differences indicate that the interface dependence of the CPartFile object module could

be decreased by:

• moving some of the object interface methods to the hidden part of the module.

• moving all the object interface attributes to the hidden part of the module.

• modifying the CPartFile object module implementation so that interface methods

do not directly or indirectly invoke other interface methods. The services they are

invoking should be provided by methods within the hidden part of the module.

• modifying the CPartFile object module implementation so that interface methods

only indirectly access object attributes via hidden methods.

Point 5.2.3 of the natural language model of object interface dependence in Chapter 4, section

4.2.4.2.1 indicates that interface method lines of code, total method invocations and total

attribute accesses describe the interface size and that interface size affects the level of interface

dependence present in a module. Table 7-9 presents a summary of the CPartFile object

interface method lines of code (OIS5), method invocations (OIS6), attribute reads

(OIS7:OCM2) and attribute writes (OIS8:OCM3) measurement data.

Chapter 7 – Application of C++ Class and Object Modularity Measure

 261

 Object CPartFile Statistics

 OIS5 OIS6 OIS7:OCM2 OIS8:OCM3

N Valid 179 179 179 179

 Missing 0 0 0 0

Mean 20.32 1.39 .66 .40

Median 9.00 .00 .00 .00

Mode 1 0 0 0

Std. Deviation 31.745 2.545 1.725 1.334

Skewness 3.539 2.910 4.566 5.198

Std. Error of Skewness .182 .182 .182 .182

Kurtosis 16.890 9.979 26.211 32.538

Std. Error of Kurtosis .361 .361 .361 .361

Range 228 14 14 11

Minimum 1 0 0 0

Maximum 229 14 14 11

Percentiles 25 1.00 .00 .00 .00

 50 9.00 .00 .00 .00

 75 28.00 2.00 1.00 .00

Table 7-9 Summary of object CPartFile interface size measurement data

The information in Table 7-9 indicates that the distributions of the CPartFile OIS5-8 measured

values are positively skewed. In this situation, the median value provides the most robust

description of central tendency. Examination of the range and 75th percentile values for each

OIS measure shows that each distribution as a few extreme outlier values. CPartFile methods

with these extreme measured values are most likely to contribute to a decrease in CPartFile

object modularity.

Table 7-9 shows that some of the CPartFile object interface methods are relatively large having

up to 229 lines of code, 14 method invocations and 25 direct attribute accesses. These relatively

large interface methods are highly likely to contain implementation dependent code that could

be moved to the hidden part of the class to decrease its level of interface dependence and hence

improve its modularity. A measured OIS value greater than the 75th percentile value will be

used to identify methods that are possibly increasing object module CPartFile’s interface size

and hence reducing its modularity. The following analysis identifies some of these large

interface methods.

Chapter 7 – Application of C++ Class and Object Modularity Measure

 262

Figure 7-19 shows the CPartFile object interface methods with lines of code greater than the

CPartFile object 75th percentile value of 28.

P
ro

ce
ss

L
o
a

d
P

a
rtF

ile
S

a
ve

P
a

rtF
ile

D
ra

w
S

ta
tu

sB
a

r
A

d
d
F

ro
m

S
to

re
d
S

o
u
rce

s
F

lu
sh

B
u
ffe

r
S

a
ve

S
o

u
rce

s
G

e
tN

e
xtR

e
q

u
e
ste

d
B

lo
ck

IsM
o

vie
C

h
u

n
k

C
re

a
te

S
rcIn

fo
P

a
cke

t
C

re
a

te
E

D
2
K

S
o
u

rce
L
in

k
G

e
tO

u
tp

u
tD

ir
L
o
a

d
H

a
sh

se
tF

ro
m

F
ile

G
e

tP
ro

g
re

ssS
trin

g
S

a
ve

S
o

u
rce

sT
o
F

ile
L
o
a

d
A

n
d
A

d
d

S
o
u

rce
s

W
rite

T
o
B

u
ffe

r
C

re
a

te
F

ro
m

F
ile

L
o
a

d
S

o
u
rce

sF
ro

m
F

ile
W

rite
T

o
F

ile
S

a
ve

T
o

S
to

re
d
S

o
u
rce

s
C

re
a

te
S

rcIn
fo

P
a
cke

t
G

e
tF

ille
d
L

ist
P

re
vie

w
A

va
ila

b
le

S
a
ve

T
o

S
to

re
d
S

o
u
rce

s
A

d
d
S

o
u
rce

s
C

a
lcu

la
te

C
o
m

p
le

te
S

o
u
rce

s
G

e
tD

o
w

n
lo

a
d
F

ile
In

fo
4
T

o
o
ltip

s
P

re
vie

w
F

ile
G

e
tG

a
p
sIn

P
a

rt
H

a
sh

S
in

g
le

P
a

rt
P

a
rtF

ile
H

a
sh

F
in

ish
e
d

A
d
d
G

a
p

IsB
e
tte

rM
o
vie

C
h
u

n
k

G
e

tT
ra

fficB
lo

ck
G

e
tT

ra
fficP

a
rt

D
e

le
te

F
ile

A
d
d
C

lie
n

tS
o

u
rce

F
illG

a
p

S
a
ve

T
o

F
ile

T
ra

ffic
In

itia
lize

F
ro

m
L
in

k
L
o
a

d
F

ro
m

F
ile

T
ra

ffic

Object CPartFile Interface Method

0

50

100

150

200

250

L
in

e
s

o
f
C

o
d
e
 (

C
IS

5
)

Figure 7-19 Object CPartFile interface methods with more than28 lines of code

Figure 7-19 identifies CPartFile object interface methods Process and LoadPartFile as most

likely to contain service implementation code. These are the same methods identified in the

CPartFile class interface dependence analysis as being most likely to contain implementation

dependent code.

Chapter 7 – Application of C++ Class and Object Modularity Measure

 263

Figure 7-20 shows the cumulative value of measures OIS6 - methods directly invoked,

OIS7:OCM2 - attributes directly read and OIS8:OCM3 - attributes directly written by CPartFile

object interface methods. More CPartFile interface methods invoke other methods or access

attributes than could be clearly displayed on a single graph. For this reason, in Figure 7-20,

only CPartFile object interface methods that invoke more than one other method or access more

than one attribute are included in this graph. Since this analysis is intended to identify interface

methods that make a significant contribution to interface dependence, the omission of methods

making only a slight contribution is acceptable.

P
ro

ce
ss

L
o
a
d

P
a

rtF
ile

F
lu

sh
B

u
ffe

r
S

a
ve

P
a
rtF

ile
G

e
tD

o
w

n
lo

a
d

F
ile

In
fo

4
T

o
o
ltip

s
G

e
tD

o
w

n
lo

a
d

F
ile

In
fo

D
ra

w
S

ta
tu

sB
a
r

A
d

d
F

ro
m

S
to

re
d
S

o
u

rce
s

W
rite

T
o
B

u
ffe

r
S

a
ve

S
o
u

rce
s

L
o
a
d

A
n

d
A

d
d
S

o
u
rce

s
L

o
a
d

S
o

u
rce

sF
ro

m
F

ile
P

re
vie

w
A

va
ila

b
le

P
a
rtF

ile
H

a
sh

F
in

ish
e
d

In
itia

lize
F

ro
m

L
in

k
C

re
a
te

F
ro

m
F

ile
W

rite
T

o
F

ile
G

e
tN

e
xtR

e
q
u

e
ste

d
B

lo
ck

S
a

ve
S

o
u

rce
sT

o
F

ile
S

a
ve

T
o
S

to
re

d
S

o
u
rce

s
S

a
ve

T
o
S

to
re

d
S

o
u
rce

s
H

a
sh

S
in

g
le

P
a
rt

D
e
le

te
F

ile
L

o
a
d

F
ro

m
F

ile
S

to
p

F
ile

C
re

a
te

E
D

2
K

S
o
u
rce

L
in

k
L

o
a
d

H
a

sh
se

tF
ro

m
F

ile
A

d
d
C

lie
n

tS
o
u

rce
s

P
a
u

se
F

ile
R

e
su

m
e

F
ile

G
e
tP

ro
g
re

ssS
trin

g
A

d
d
S

o
u

rce
s

C
a
lcu

la
te

C
o
m

p
le

te
S

o
u

rce
s

U
p

d
a
te

D
o

w
n
lo

a
d

A
u

to
P

rio
rity

F
irstL

a
stL

o
a
d
e

d
C

re
a
te

S
rcIn

fo
P

a
cke

t
G

e
tG

a
p
sIn

P
a

rt
IsB

e
tte

rM
o
vie

C
h
u

n
k

L
o
a
d

F
ro

m
F

ile
T

ra
ffic

M
o

vie
2

U
p

d
a
te

A
va

ila
b
le

P
a
rtsC

o
u

n
t

P
re

p
a

re
C

o
m

p
a
re

P
a
rt

G
e
tR

e
m

a
in

in
g
B

lo
cksIn

P
a

rt
W

rite
P

a
rtS

ta
tu

s
U

p
d
a
te

C
o

m
p
le

te
d
In

fo
s

U
p

d
a
te

U
p

lo
a
d
A

u
to

P
rio

rity
M

o
vie

1
S

e
tP

rio
rity

G
e
tT

im
e
R

e
m

a
in

in
g

Object CPartFile Interface Method

0

10

20

30

40 OIS8
OIS7
OIS6

Figure 7-20 Object CPartFile interface method invocations and attribute accesses

Figure 7-20 identifies CPartFile object interface methods Process, LoadPartFile and

FlushBuffer as most likely to contain implementation specific code. The Init method, identified

in the CPartFile analysis as containing highly implementation dependent code, does not appear

in the CPartFile object interface.

Chapter 7 – Application of C++ Class and Object Modularity Measure

 264

Figure 7-21 plots the CPartFile object lines of code count vs. the sum of methods invoked and

attributes accessed for interface methods indicated in both Figures 7-19 and 7-20 as potentially

increasing the interface dependence of the CPartFile object.

0 10 20 30 40

Sum of object CPartFile OIS6, OIS7 and
OIS8

0

50

100

150

200

250

O
bj

ec
t C

P
ar

tF
ile

 O
IS

5

Process

LoadPartFile

FlushBuffer

SavePartFileDrawStatusBar

SaveSources

Figure 7-21 Object CPartFile interface methods that potentially increase interface dependence

The CPartFile interface methods annotated on the Figure 7-21 plot are relatively large

compared to the other CPartFile object interface methods. These methods are indicated as

being most likely to contain implementation dependent code and should be examined by hand

to determine whether or not this is the case. If they do contain implementation specific code,

then to reduce the interface dependence of the CPartFile object module, this code should be

moved to methods within the hidden part of the module.

This case study aimed to answer the question "How can the interface dependence be changed to

increase the modularity of the CPartFile object?". The points below summarise the previous

discussion to answer this question

• examine the Process, LoadPartFile, AddFromStoredSources, DrawStatusBar,

SavePartFile, FlushBuffer and SaveSources interface methods to determine

whether or not they contain implementation specific code. If they do, move this

code to the hidden part of the module.

Chapter 7 – Application of C++ Class and Object Modularity Measure

 265

• modify the CPartFile object implementation so that the 4 interface attributes are

moved to the hidden part of the module.

• modify the CPartFile object implementation so that interface methods only directly

invoke hidden methods and hidden methods do not invoke interface methods. This

will ensure that interface methods are not themselves directly or indirectly

dependent on other interface methods.

• modify the CPartFile object implementation so that interface methods only

indirectly access the class attributes via hidden methods.

• examine the eMulePlus system to determine which CPartFile object interface

methods are directly accessed by system elements external to CPartFile. Any

interface methods not directly accessed can be moved to the hidden part of the

object.

The CPartFile object is made up of more elements than the CPartFile class, and its interface is

made up of only public elements, as opposed to the public and protected elements that comprise

the CPartFile class interface. Despite these differences, many of the causes of their high levels

of interface dependence are similar.

Similarities between the CPartFile class and object modules that increase their levels of

interface dependence are that:

• both have a relatively large number of module methods appearing in their interface.

• both have a high proportion of interface methods directly or indirectly invoking

other interface methods.

• for both the CPartFile class and object, the same interface methods are identified as

most likely to contain implementation dependent code. The only exception to this

is method Init, which appears in the CPartFile class interface but not in the object

interface.

• both CPartFile class and object have interface methods that directly access module

attributes.

Significant differences between CPartFile class and object interface dependence are:

• the CPartFile object has interface attributes while the CPartFile has none. In this

way, CPartFile class interface dependence is less than that of the CPartFile object.

• all the 133 CPartFile class interface methods directly access attributes while only

57 of the 179 CPartFile object interface methods directly access attributes. In this

way, CPartFile object interface dependence is less than that of the CPartFile class.

Chapter 7 – Application of C++ Class and Object Modularity Measure

 266

This case study shows that reducing the interface dependence of the CPartFile class module in

the ways outlined in section 7.2.4.1, would have the effect of also significantly reducing the

interface dependence of the CPartFile object module. Additional measures needed to further

reduce the CPartFile object interface dependence are the removal to the hidden part of the

module of the 4 interface attributes and any interface methods not invoked by external

eMulePlus system elements. Reducing the levels of interface dependence in these ways would

increase the modularity of the CPartFile class and object modules.

7.4.2.4 Discussion

The natural language entity model of class and object interface dependence contains sufficient

detail such that a graphical representation of an ideal module with a low level of interface

dependence, as shown in Figure 7-12, can be constructed. The measures developed from this

natural language entity model provide a detailed description of C++ class and object interface

dependence that can be used to construct a graphical representation of a measured module. This

is a powerful method of analysis capable of presenting information from almost 2000 data

points in a relatively easily understood way. Figures 7-13 and 7-18 graphically represent the

interface dependence of the CPartFile class and object modules. The interface dependence of

these measured CPartFile modules can be interpreted with respect to the ideal module by

comparing their images. Differences between the measured and ideal module images indicate

ways in which the measured modules can be modified to improve their levels of interface

dependence. Guided by this information, detailed analysis of individual measures can be

performed to identify specific ways in which the implementation of the CPartFile class and

object modules can be changed to reduce their levels of interface dependence and hence

increase their modularity.

7.5. Conclusions

Content validation is an important preliminary step to applying a measurement instrument to a

software system. Content validation aims to demonstrate that the measures implemented within

the measurement instrument provide an adequate description of the software system. The level

of content validity of a set of implemented measures is dependent on the particular software

features possessed by the software system to be measured and the particular aim of the user in

applying the measures to the software system.

Chapter 7 – Application of C++ Class and Object Modularity Measure

 267

The descriptive software measure development process described and demonstrated in this

thesis facilitates content validation by maintaining the links between the characteristic and sub-

characteristics of interest, the software features that affect the levels of these characteristics and

sub-characteristics present in the software, and the measures defined to quantify these features.

The CHARMER diagrams express these connections. The CHARMER diagrams are also able

to express conditional links between characteristics, features and measures. Investigating

whether these special conditions apply to the software system to be measures forms part of the

content validation. Finally, CHARMER diagrams are able to indicate software features that are

not, for some reason, described by implemented measures. As demonstrated in case study 1,

section 7.1.2, the information contained within the CHARMER diagrams, combined with the

importance and frequency ratings specified by a potential user, can be used directly to facilitate

content validation.

Although it is important to ensure that measures have content validity, the process of

determining content validity is subjective and content validity alone is not “fully sufficient for

assessing the validity” (Carmines and Zeller 1979, p. 22) of measures of complex

characteristics such as software modularity. Construct validity offers an objective estimate of

measure validity. “Construct validity is … central to the measurement of abstract theoretical

concepts.” (Carmines and Zeller 1979, p. 23) The simple construct validation presented in this

chapter provided evidence of the construct validity of the defined measures of C++ class

modularity when they were combined into unweighted and weighted aggregate values and into

a Euclidean distance value. To be able to generally accept the construct validity of the measures

of C++ class and object modularity, further work is needed. This work should estimate

construct validity for different software system validation cases against multiple measures of

several criteria.

If the validity of measures, as they are implemented in a measurement instrument, is

determined to be sufficient for the intended measurement purpose, the instrument can be

applied to the software system and measurement data extracted. The resulting data set can be

relatively large, requiring appropriate analysis to derive the required information. The aim in

performing the measurement will in part dictate the appropriate analysis technique. Having

analysed the data, it must be interpreted. The sub-characterisation and conceptual definition of

the characteristic of interest and the natural language entity model express the theoretical basis

from which the measures were developed. The measured data is interpreted with respect to this

theoretical basis, clearly identified by the CHARMER diagrams developed as part of the

measure development process.

Chapter 7 – Application of C++ Class and Object Modularity Measure

 268

The case studies performed in this chapter demonstrate the content validation of the set of

modularity measures with respect to the eMulePlus software system. The first case study

showed how the modularity measurement data obtained from the eMulePlus system could be

aggregated to provide a general description of class and object modularity. The modularity sub-

characterisation described in Chapter 3 provided the theoretical basis for this analysis. The

second case study showed how the modularity measurement data could be used to provide a

detailed description of the interface dependence of a single module.

The systematic method of software descriptive measure development illustrated in Figure 1-3

and described and demonstrated in Chapters 3, 4, 5 and 6 can facilitate the production of a set

of measures that can be implemented, validated, applied to a measurement task and the

resulting measured data analysed and interpreted. Future work is needed to demonstrate the

wider applicability of the measurement process to the development of descriptive measures of

software

characteristics other than modularity. Future work is also suggested to investigate the

usefulness of the C++ class and object modularity measures developed and demonstrated as

part of this thesis.

Chapter 8 – Discussion and Suggestions for Further Work

 269

8. Discussion and Suggestions for Further Work

This thesis has shown that, where a software characteristic is sufficiently well understood, the

systematic process of descriptive measure development illustrated in Figure 1-3 can be used to

define and implement a set of measures that provide a detailed description of this characteristic.

The systematic measure development process supports the development of conceptual

definitions, natural language and mathematical entity models and measure definitions, which

establish the explicit descriptive measurement relationships shown in Figure 1-8. These explicit

relationships create the implicit descriptive measurement relationship between the

characteristic of interest and the defined measures, allowing the measures to describe the

characteristic. By assessing these explicit relationships, summarised in the CHARMER

diagram, a user is able to perform a content type validation of the measures with respect to an

intended application. Where the theoretical basis from which the measures were developed

identifies other characteristics related to the measured characteristic of interest, and where valid

measures of these other characteristics exist, construct validation can also be carried out. If the

measures are judged to have sufficient validity, and are applied to a software system, the

systematic measure development process provides sufficient information, again summarised in

the CHARMER diagram, to allow the user to analyse and interpret the resulting measurement

data.

8.1. Research Outcomes

There are several outcomes of the research described in this thesis document. First and

foremost is the systematic process of software descriptive measure development. This process

represents the most significant outcome because it is applicable to the development of measures

to describe software characteristics other than the modularity characteristic for which measures

were developed here. These measures describing object oriented C++ class and object

modularity are the second outcome of this research. The final significant outcome of the

research is the case study performed on the eMulePlus software system. This case study is

significant because it demonstrates validation of the measures as well as analysis and

interpretation of the measurement data.

The following sections discuss each of these research outcomes in terms of both the positive

contributions they make to the field of software engineering, and in terms of any recognised

limitations or shortcomings.

Chapter 8 – Discussion and Suggestions for Further Work

 270

8.1.1 Systematic process of software descriptive measure development

The systematic process of software descriptive measure development described in section 1.3

and demonstrated in this thesis document supports the definition, implementation, validation

and analysis and interpretation of measures to describe software characteristics of interest. This

process emphasises the need to complete each stage of the process before moving to the next

stage. The systematic measure development process specifies the different products that

together define a set of measures, and identifies and describes the theoretical basis from which

the measures were derived. The process also specifies the order in which these products should

be produced. This is to ensure that sufficient information is documented in previous stages to

complete the following stage. The progression through the measure development stages is such

that a documented path is created between each characteristic and sub-characteristic of interest

via the software features identified as affecting these characteristics, to the individual measures

quantifying the features and hence describing the characteristics. This path, summarised in the

CHARMER diagram, supports the content validation of the measures and later supports the

analysis and interpretation of the measurement data.

While contributing to the rigour with which software descriptive measures are defined, the

systematic process of descriptive measure development has a number of currently identified

limitations. The first of these is that it is necessary to begin the process with sufficient

theoretical understanding of the characteristic to be described by the measures to be able to

conceptually define it, including a sub-characterisation if necessary. This means that the

process is applicable to the development of measures to describe characteristics that are

considered by the measure developer to be sufficiently well understood. The judgement as to

whether or not the available theoretical understanding of a characteristic is sufficient for

measure development should be based on the intended purpose of the measures. A limited

understanding will result in measures providing a less detailed, and possibly less valid,

description of the software, while a more detailed understanding will result in a more detailed

and possibly more valid description.

While the systematic process of software descriptive measure development does not

specifically include mechanisms to identify ways in which the theoretical basis of defined

measures can be improved, it does indirectly support the development of such theory. In the

first place, the systematic process of measure development indicates the type of theoretical

understanding needed to support the development of descriptive measures. To complete the

Chapter 8 – Discussion and Suggestions for Further Work

 271

characteristic conceptual definition stage of measure development, theory relating to the sub-

characterisation of complex characteristics is required, as well as sufficient theoretical

understanding of the characteristic and sub-characteristics to be able to define them

conceptually in relatively simple terms. To complete the natural language modelling of the

software, a theoretical understanding of the features of the software that affect the levels of

characteristic and sub-characteristic present is required. Finally, to perform a construct

validation, an understanding of characteristics that are related to the characteristic of interest is

required. Research effort can be focussed on developing these types of theoretical

understanding that will then support the development of software descriptive measures.

Documenting the theoretical basis of the developed measures in the conceptual definition and

natural language model of the characteristic allows future measure researchers to examine this

theory and enhance it with new information as it becomes available. For example, research

regarding a particular software feature such as inheritance may identify new ways in which it

affects modularity of objects. Examination of a natural language model of object modularity

may show that this feature is not included. The measures developed based on this model may

be improved by adding the new feature to the model and defining new measures to quantify it.

Explicitly describing the theoretical basis from which the measures are developed is important

as this information supports the validation and interpretation of the measurement data. As

shown in Figure 1-1 of Chapter 1, the theoretical basis for measure development identifies

software features affecting characteristics of interest. The execution of the systematic measure

development process is such that characteristics and sub-characteristics of interest are first

identified, followed by the identification of the software features that affect the levels of these

characteristics and sub-characteristics in the software. Where no features can be identified for a

particular characteristic, this is recorded in the documentation of the measure development

process. The opposite situation of identifying software features that are not understood

sufficiently to be able to say whether or not they affect the characteristic of interest is not

recorded as part of the systematic measure development process. In its current form, the

systematic measure development process does not identify software features that have not been

included in the natural language model because the measure developer could not find any

theory describing whether or not the feature contributed to the levels of characteristic in the

software. For example, the C++ language supports the definition of class templates. As no

theory was discovered to describe whether or not this software feature affects modularity, it

was omitted from the natural language model. Such an omission implies that templates have

little or no affect on class modularity where as the truth was that there was no information

Chapter 8 – Discussion and Suggestions for Further Work

 272

available to determine the effect of templates on modularity. While omitted features do not

belong in the natural language model, another document could be included in the systematic

measure development process identifying features whose effect on the characteristic of interest

is unknown. Should a more detailed description of a characteristic be required, this list could

form a basis for future research to identify new ways that features affect the characteristic of

interest.

An important consideration, once the measures have been developed, is that their validity be

established in some way. Validation demonstrates the degree to which a measure or set of

measures is describing the characteristic they purport to (Carmines and Zeller 1979, p. 12).

Such validation builds evidence as to the validity of measures rather than proving it

conclusively. The systematic process of measure development advocates content validity as an

appropriate form of validation of the measure definition products. This is because content

validation is based only on the theory that was used to develop the measures in the first place.

No extra theory or measures are needed. The main limitations of content validity are that it is a

subjective process based on the judgement of the person examining the measures. It is also

based on the examination and acceptance of the theoretical basis from which the measures were

developed. This theory is not tested objectively by content validation. Another type of

validation appropriate to the descriptive measures developed according to the systematic

process is construct validation. This validation involves the objective assessment of the degree

to which measures of a characteristics are related to measures of another characteristic

theoretically related to the first. Because construct validation involves theory and measures

beyond those of the systematic measure development of a particular characteristic of interest, it

is not explicitly included in the development process. This is not to say that construct validation

is not important or necessary, but rather it is saying that it is a separate process to be executed

after the systematic measure development has occurred. An area for possible future work is the

development of a process of construct validation that can be added on to the existing measure

development process.

Another shortcoming of the systematic measure development process is that, for complex

software characteristics, it is not simple to perform. If all that is required of a measure is that it

indicates cases with potentially unacceptable levels of a particular characteristic, then a single

measure, simply defined, may be adequate. For example, the construct validation in section 7-3

demonstrated that, for the eMulePlus software system, a simple class lines-of-code count could

be used as a moderately valid indicator of class modularity. The difference between using the

Chapter 8 – Discussion and Suggestions for Further Work

 273

lines of code measure and the full set of modularity measures is that the lines of code count is

only able to indicate that modularity could be improved by reducing the lines of code of a class.

On the other hand, the modularity measures identify the specific class features that cause the

high modularity, allowing targeting of software improvement effort. One way to determine

whether or not the effort in developing a set of measures of a particular software characteristic

according to the systematic process of measure development is justified is to consider how

widely applicable and useful the measures will be. For example, modularity is a well

recognised characteristic of high quality software and measures describing modularity have the

potential to be widely useful, justifying the effort needed to develop them. By contrast, a set of

measures providing a detailed description of a more obscure and less relevant software

characteristic may not justify the effort spent developing them. As for any development

activity, the perceived benefit must balance the effort needed to create the product.

An issue regarding the systematic measure development process is that it advocates the use of a

mathematical model of the software to support mathematical measure definitions. Ideally,

measurement data is collected from the features that have the most significant effect on the

characteristic of interest, while less significant features are not measured. The use of a

mathematical model may have the unintended effect of altering the features from which

measurement data is collected from the most significant, to those that can be most easily

included in the selected mathematical model. To recognise the possible limitations of

mathematical measure definitions, natural language definitions should be given for measures

quantifying all the software features identified in the natural language software model. After

this, where possible, mathematical measure definitions should also be given. By providing both

natural language and mathematical measure definitions, features affecting the characteristic of

interest that are included in the natural language model but not in the mathematical model will

not be overlooked. The measures of the object connection obscurity sub-characteristic of

connection via non-standard interface given in Tables 5-26 and 5-27 of section 5.2.4.3 show

examples of measures defined in natural language terms that cannot then be defined in terms of

the implemented mathematical model. The natural language measure definitions are

independent of the selected mathematical software model and so can be adapted to different

software models. In this thesis, the mathematical model and measure definitions are

implementation dependent. It is possible that a generic, implementation independent

mathematical model can be defined and similarly implementation independent measures

defined from it. This is a potential area for future research. It is important to note however that

Chapter 8 – Discussion and Suggestions for Further Work

 274

implementation independent mathematical models and measure definitions must eventually be

defined in implementation dependent terms so that a measurement instrument can be

constructed.

Another issue for discussion regarding the systematic process of measure development is that

the measures are only classified according to the particular sub-characteristics and

characteristic they describe. While other classification schemes are possible, the process as

defined in this thesis does not identify or accommodate them. For example, measures

quantifying features that theory suggests have a strong effect on the characteristic of interest

could be rated more highly than those quantifying features believed to have a lesser effect.

These ratings could be used in the analysis phase to highlight particularly important measures.

Another possible classification scheme could be according to the level of description provided

by each measure. Some measures may provide a general view of the software characteristic

while others may be describing the software at a more detailed level. Such identification of the

level of detail provided by each measure is according to the theory from which the measures

were derived. An area for future research is the ways in which the measures can be classified

and how these classifications can be used to aid the analysis and interpretation of the

measurement data.

The systematic process of software descriptive measure development described and

demonstrated in this thesis is capable of supporting the development of measures that provide a

detailed description of a complex software characteristic. While the execution of this process

requires thought and effort on the part of the measure developer, and may require several

iterations to achieve a satisfactory result, it has been shown in the thesis to produce measures

that can be successfully validated, analysed and interpreted to provide an understanding of the

levels of modularity present in a software system. It is not contended that this process is fully

refined and ready to be widely promoted to the software development community however, it is

contended that it provides a useful means of defining descriptive measures that warrants further

investigation and improvement.

8.1.2 Descriptive measures of C++ class and object modularity

The set of measures describing C++ class and object modularity represent another important

outcome of the research described in this thesis. These measures provide a detailed description

of the complex software characteristic of modularity. This description is derived from the

Chapter 8 – Discussion and Suggestions for Further Work

 275

theoretical basis of Meyer’s (1997 pp. 46-53) five rules of modularity. This theory is

interpreted with reference to C++ class and object modules and this interpretation is illustrated

in the diagrammatic conceptual models of modularity of Figures 3-3, 3-4, 3-5 and 3-6 in

Chapter 3 and described in the conceptual definitions, and the associated natural language

models of modularity. The sub-characteristics selected to describe modularity are defined such

that an absence of the sub-characteristic, indicated by a measured value of zero, indicates

optimum modularity. This is intended to simplify the analysis of the measurement data.

Measures are defined to quantify the features identified in the natural language model as

reducing the modularity of a C++ class or object module.

In the set of measures defined to describe C++ class and object modularity, some features of

C++ software are associated with more than one modularity sub-characteristic. These features

are identified and discussed in section 4.2.3.6 of Chapter 4. While having several measures

quantifying the same feature provides a natural weighting in the final measured description to

these more widely influential features, it also introduces dependencies between the measured

descriptions of sub-characteristics sharing common measured features. These dependencies

may cause problems when using an analysis technique based on the independence of the

measured description of separate software characteristics and sub-characteristics. When

analysing such measured data, one approach could be to remove unwanted dependencies by not

using the data from measures describing common features. To facilitate this, Table 5-14 and

Table 5-32 in Chapter 5 identifies measures describing common C++ class and object software

features.

In the set of measures describing of C++ class and object modularity, some sub-characteristics

are described by several measures while others are described by only a few. The sub-

characteristics described by many measures may have a more significant effect on the overall

description of modularity that the sub-characteristics described by a few measures only because

of this extra data rather than because the sub-characteristic is more significant. When analysing

the measurement data, it may be necessary to equalise the contribution that each sub-

characteristic makes to the final measured description. For example, in the calculation of the

modularity aggregate value described in section 7.1.1, progressive summation and

normalisation of measures describing each modularity sub-characteristic ensures that each sub-

characteristic measured description contributes to the final modularity measured description

according to its significance in the sub-characteristic hierarchy. By contrast, in calculating the

modularity indicator using Euclidean distance, as described in section 7.1.2, all measures have

Chapter 8 – Discussion and Suggestions for Further Work

 276

equal significance which means that sub-characteristics described by many measures have a

greater representation, and hence greater effect on the final modularity value than those

described by few measures.

Validation of the defined measures of modularity is important as the use of invalid measures

could have significant negative consequences for a software development project. As with any

measure, before it should be used, it is important to demonstrate that the measure or set of

measures provide an adequate description of the characteristic they purport to. Validation is

performed to demonstrate this. In this thesis, content and construct validation are demonstrated.

Content validation, described in section 7.2, is a subjective type of validation that involves

examination of the theory linking the characteristic of interest to the measured software

features and examination of the measures quantifying these features. Some drawbacks of

content validation include that the software system to be measured must be examined prior to

performing the content validation and that the content validity assessment for a particular

software system is only applicable to that system and should not be generalised to other

software systems. A positive aspect of content validation is that the theoretical understanding

needed to perform it is described within the products of the systematic measure development

process.

 Construct validation, described in section 7-3, is an objective type of validation that involves

examining the relationships between the measures of the characteristic of interest and measures

of several other characteristics that theory suggests are related. Evidence of a relationship

between the measures describing the characteristic of interest and a single measure of a single

theoretically related criterion is not sufficient to demonstrate the construct validity of the

measures. To be able to declare measures to have a general level of acceptable construct

validity, it is necessary to perform many construct validations against several different

measures describing several different theoretically related criteria for many different software

systems. A problem that could be encountered when attempting to demonstrate the construct

validity of measures is that the theoretical understanding of the characteristic may not be

sufficient to identify other theoretically related criterion characteristics. Carmines and Zeller, in

discussing the construct validation of complex characteristics in the field of social science, note

that it is not true “that only formal, fully developed theories are relevant to construct

validation….What is required is that one be able to state several theoretically derived

hypotheses involving the particular concept.” (Carmines & Zeller 1979, pp. 23-24). Once

sufficient construct validations have been performed, and the theoretical relationships between

Chapter 8 – Discussion and Suggestions for Further Work

 277

the characteristic of interest and the criteria characteristics are all supported by the construct

validation evidence, then the measures of the characteristic of interest can be declared to have

sufficient construct validity in the generally sense. The full construct validation of the measures

of modularity developed in this thesis is an area for future research as it will require a lot of

time and effort to perform thoroughly and correctly.

Having defined the set of measures to describe C++ class and object modularity, and

demonstrated content and construct validity against the eMulePlus software system, another

outcome of this research is the case study describing the modularity of the eMulePlus software

system.

8.1.3 Case study – eMulePlus software system

The case study described in section 7.4 of Chapter 7 demonstrated the analysis and

interpretation of the modularity measurement data. The first case study used the modularity

aggregate calculation to provide a general description of the modularity of all the measured

eMulePlus classes and objects. The content validation performed on the measures before they

were used in the case study showed that while the class modularity measured had sufficient

validity to describe the eMulePlus system, the object modularity measures did not. The case

study demonstrated one approach to the problem of reduced content validity by presenting a

partial description of object modularity and recognising the incomplete description in the

interpretation. Strengths of using an aggregation of the measures to represent modularity as a

single value are that the relative modularity of individual classes and object within an entire

system can be represented on a graph such as a scatter plot. This makes it easier to identify

modules with particularly poor modularity that could benefit from remedial work. A drawback

of representing modularity as a single value is that much of the descriptive detailed contained

in the measures is lost. While the aggregate value provides a high level description that is

suitable for identifying cases with relatively low, medium or high modularity, it is not suitable

for identifying how the modularity of each case can be changed. For this, the individual

measures must be examined. The second case study demonstrated the analysis of individual

measures to provide a detailed description of a class and object identified as having low

modularity.

In the case study, the measured values were used to construct a conceptual illustration of the

structure of the selected class and object that represented its interface dependence. This

Chapter 8 – Discussion and Suggestions for Further Work

 278

representation was compared to a similar representation of a module with high modularity,

allowing the differences between the modules to be observed. This conceptual diagrammatic

representation provided a way to present a detailed description of the module in a

comprehensible form. A drawback of this type of data analysis is that presenting the entire

measured system in this way could overwhelm the viewer with too much information. To

overcome this problem, a high level overview description of the whole system could be

presented, with the ability to allow the viewer to zoom in on parts of the system representation

for a more detailed description. This is a possible avenue for future work.

The two forms of data analysis presented in the case study of the eMulePlus system were

shown to be compatible, as the aggregate calculation presented an overview of relative

modularity of the classes and objects, and the interface dependence conceptual representation

provided a sufficiently detailed description of a module that specific ways to improve the

modularity of individual modules could be determined.

8.1.4 Summary – research contributions and considerations

The following points summarise the main contributions made by this research and identify

some considerations that may prove to be obstacles to the adoption of the systematic measure

development process in the wider software engineering community.

8.1.4.1 Contributions

• Defined and demonstrated a systematic process by which software descriptive

measures can be developed, implemented, validated, applied and analysed and

interpreted. The measure development process promotes the explicit documentation of

the theoretical basis from which the measures were developed and the relationships

between software characteristic and sub-characteristic, through software feature to the

measures that quantify the software feature and hence describe a particular

characteristic or sub-characteristic of interest.

• Defined, implemented and performed preliminary validation of a set of measures to

describe modularity of C++ class and object modules. These measures provide a

detailed description of modularity that can be used to identify explicit ways in which

modularity can be improved.

Chapter 8 – Discussion and Suggestions for Further Work

 279

• Defined and demonstrated a data analysis technique involving the calculation of a

single modularity aggregate value to summarise the modularity of C++ classes and

objects. Performed an example construct validation of the modularity aggregate against

a simple module size measure. This validation provided evidence of a moderate degree

of construct validity.

• A case study of the eMulePlus software system to describe various aspects of its

modularity. A general description of the levels of class and object modularity of the

eMulePlus system was obtained from the calculation of a modularity aggregation. From

this, identified a class and object-class with relatively low modularity. Performed a

detailed analysis of the levels of interface dependence of this class and identified ways

in which its modularity could be improved.

8.1.4.2 Considerations

• A prerequisite of using the systematic process of measure development is a theoretical

understanding of the ways in which features of the software affect the levels of

characteristic of interest present in the software. A detailed understanding will support

the development of measures to provide a detailed description. A less detailed

understanding will result in less detailed measures.

• Ideally, objective construct validation is used to demonstrate that the developed

measures are sufficiently valid. The process of construct validation is based on a

theoretical understanding of the measured characteristic. Where this understanding is

limited, such as in the relatively new field of software engineering, this may limit the

extent to which construct validation can be performed. Content validation is a type of

validation that is also important, however it is a subjective type of validation that is

specific to each measured software system. Performing a content validation is better

than doing no validation at all however ideally, both content and construct validity is

established before measures are used.

• The systematic measure development process is long and detailed, and time consuming

to perform. The software characteristics to which the process is most applicable are

those that are of wide interest to the software engineering community, and that have the

potential for many applications since this will justify the development time and effort.

Chapter 8 – Discussion and Suggestions for Further Work

 280

• Currently, the C++ class and object modularity mathematical software model and

measure definitions are defined in an implementation specific way. The particular

mathematical model chosen limited the number of measures that could be

mathematically defined. Since the natural language model and natural language

measure definitions are not implementation specific, necessary information is retained.

It is possible that a less implementation specific mathematical model would have

supported the mathematical definition of more measures. Ultimately, the mathematical

model and measures will be defined in an implementation specific way so that they can

be included in a measurement instrument implementation, however delaying this step

could be advantageous.

• Only a single software system was examined in the case study. This system contained a

significant number of measured classes and object-classes which provided a good

demonstration of the modularity measures. This is a positive aspect of the case study. It

is not possible to predict whether the eMulePlus software system examined in the case

study is representative of C++ software systems in general. The validation and data

analysis results obtained from the eMulePlus system should not be generalised for all

software systems. The modularity measures should be applied to many diverse software

systems before they are more widely accepted and used.

8.1.5 Further work

While this thesis has successfully shown that it is possible to develop descriptive software

measures according to a systematic process, it has also identified several areas in which further

work could be performed. The following points list some areas for further work.

• With regard to the systematic process of descriptive measure development defined in this

thesis, an avenue for further work would be to use this process to develop a set of measures

describing another complex software characteristic. By developing another set of measures,

the systematic process will be further tested and ways in which it could be improved,

identified.

• It is not possible to use the systematic process of measure development defined in this

thesis without a good understanding of the characteristic of interest. Further work could be

performed to sub-characterise and conceptually define some of the complex software

characteristics that are of interest to software engineers. Examples of these include

coupling, cohesion and complexity.

Chapter 8 – Discussion and Suggestions for Further Work

 281

• Another prerequisite to the systematic measure development process defined in this thesis

is a good understanding of the ways in which the conceptually defined characteristics and

sub-characteristics are manifest in the software. Once complex software characteristics

have been conceptually defined, further work could be performed to identify the features of

software that affect their levels within the software.

• With regard to the mathematical model of C++ class and object modularity developed in

this thesis, further work could be performed to find an alternative model capable of

describing all the features identified in the natural language modularity model. A better

model would support the definition of measures to provide a more detailed description of

modularity. This model may need to be conceptually defined rather than implementation

specific, as the one in this thesis is.

• With regard to the implementation of the modularity measures, further work could be done

to identify a measurement instrument platform capable of implementing all the defined

measures and collecting measurement data from larger software systems than the

eMulePlus system used in the case study.

• With regard to the validation of the modularity measures, further work could be performed

to demonstrate different types of validity. For example, if the content validity of the

modularity measures defined in this thesis is accepted as being sufficient, then Meyer's

theory of modularity could form the basis of a construct type validation. This construct

validation (Diamantopoulos & Schlegelmilch 1997, p. 35) would demonstrate the degree to

which the modularity descriptive measures, defined in this thesis based on Meyer's rules of

modularity (Meyer 1997, pp. 46-53), are related to Meyer's five criteria of modularity

(Meyer 1997, pp. 40-46). While a simple construct validation was demonstrated in the case

study, this is not sufficient to declare the measures to have a generally acceptable level of

construct validity. Validation of the measures against several different measures of several

criterion variables for several software systems would be necessary to build evidence of

construct validity.

• Another avenue for further work is to investigate other ways to analyse the measurement

data obtained from the modularity measures defined in this thesis. One possibility is to

identify the measures describing aspects of modularity that have a large influence on the

overall levels of modularity present in the software. The reduced set of measures thus

identified could be an alternative to the full measurement set when a less detailed

description of the software modularity is required.

Chapter 8 – Discussion and Suggestions for Further Work

 282

• Methods of presenting the measurement data in a way that is easily interpreted is another

avenue for future work. One potential avenue of investigation is the interactive, software

based visual presentation of a high level software system description that can be selectively

refined and zoomed in on where the viewer chooses to ask for more information.

• The measures defined in this thesis describe C++ class and object modularity. Java is a

popular object oriented programming language that is very similar to C++. Further work

could be performed to modify the C++ measures developed in this thesis to describe Java

class and object modularity.

• This thesis defined and applied a process of measure development to the task of developing

descriptive measures of software products. It is possible that this systematic method of

measure development could be modified to support the definition of descriptive measures

of characteristics related to software processes.

Software measurement has been of interest to software engineers for almost as long as software

has been developed. As the field of software engineering matures and greater understanding of

software products and process is gained, the field of software measurement will also continue

to progress.

THE END.

Appendix 1 – Entity-Relationship Model Set Definitions

 283

1. Appendix 1 - Entity-Relationship Model Set Definitions

In this Appendix 1, the sets that comprise the entity-relationship models of C++ class and

object modularity described in Chapter 4, and the basic software model described in Chapter 6,

are defined.

1.1. Entities

Class Entity C

The set C is the set of all classes. This is the equivalent of the entity CLASS in the
entity relationship diagrams.

ci is a unique integer identifier used as the key field in relation C
name is the name of the class

C = {(ci, name) | (ci is a unique integer identifier) ∧ (name is a valid C++ class name) }

Method Entity M and Class Has Member Method MM

The set M is the set of all methods. This set is the equivalent of the entity METHOD in
the entity relationship diagrams. A class may have member methods. This relationship
is described by the set MM and is the equivalent of the Has Member relationship
between the CLASS entity and the METHOD entity. Since this is a 1:N relationship,
the set MM can be combined with the set M.

mi is a unique integer identifier used as the key field in relation M
ci is an identifier of an existing class
protection is the level of protection assigned to the method within the class
name is the name of the method
parameter_list is the text defining the method parameter list
purpose specifies the general purpose of the method
lines is a count of the number of lines of code within the method

M = {(mi, ci, protection, name, parameter_list, purpose, lines)} = {(mi, c.ci, protection,
name, parameter_list, purpose, lines) | (mi is a unique integer identifier) ∧ c ∈ C ∧ (m
is a member method of c) ∧ protection ∈ {public, protected, private} ∧ (name is a valid
C++ method name) ∧ (parameter_list is the text defining the parameter list of the
method) ∧ (purpose ∈ {constructor, destructor, operator, normal}) ∧ (lines is a count of
the number of lines of code within the method)}

Attribute Entity A and Class Has Member Attribute MA

The set A is the set of all attributes. This set is the equivalent of the entity
ATTRIBUTE in the entity relationship diagrams. A class may have member attributes.
This relationship is described by the set MA and is the equivalent of the Has Member
relationship between the CLASS entity and the ATTRIBUTE entity. Since this is a 1:N
relationship, the set MA can be combined with the set A.

ai is a unique integer identifier used as the key field in relation A
ci is an identifier of an existing class
protection is the level of protection assigned to the attribute within the class
name is the name of the attribute
type specifies the type of the attribute

Appendix 1 – Entity-Relationship Model Set Definitions

 284

pointer specifies whether or not the attribute is a pointer
static specifies whether or not the attribute is declared to be static

A = {(ai, ci, protection, name, type, pointer, static)} = {(ai, c.ci, protection, name,
type, pointer, static) | (ai is a unique integer identifier) ∧ c ∈ C ∧ (a is a member
attribute of c) ∧ protection ∈ {public, protected, private} ∧ (name is a valid C++
attribute name) ∧ (type ∈ {char, short, int, long, unsigned char, signed char, unsigned
short, signed short, unsigned int, signed int, unsigned long, signed long, float, double,
long double}) ∧ (pointer ∈ {true, false}) ∧ (static ∈ {true, false})}

Object Entity O and Object Instance of Class OIC

The set O is the set of all objects. This is the equivalent of the entity OBJECT in the
entity relationship diagrams. An object is an instance of a class. This relationship is the
equivalent of the Instance Of OIC relationship between the CLASS entity and the
OBJECT entity. Since OIC is a 1:N relationship, it can be combined with O to form
one relation.

oi is a unique integer identifier used as the key field in relation O
ci is an identifier of the class from which the object is instantiated
name is the name of the object
pointer specifies whether or not the object is a pointer
global specifies whether or not the object is a global one

O = {(oi, ci, name, pointer, global)} = {(oi, c.ci, name, pointer, global) | (oi is a unique
integer identifier) ∧ c ∈ C ∧ (name is a valid C++ object name) ∧ (pointer ∈ {true,
false}) ∧ (global ∈ {true, false})}

Global Function Entity F
The set F is the set of all global functions. Attribute fi is a unique integer identifier used
as the key field in relation F. Attribute name is the name of the global function. This is
the equivalent of the entity GLOBAL FUNCTION in the entity relationship diagrams.

fi is a unique integer identifier used as the key field in relation F
name is the name of the global function

F = {(fi, name) | (fi is a unique integer identifier) ∧ (name is a valid C++ global
function name)}

Global Variable Entity V

The set V is the set of all global variables. Attribute vi is a unique integer identifier
used as the key field in relation V. Attribute name is the name of the global variable.
This is the equivalent of the entity GLOBAL VARIABLE in the entity relationship
diagrams.

vi is a unique integer identifier used as the key field in relation V
name is the name of the global variable
type specifies the type of the global variable

V = {(vi, name, type) | (vi is a unique integer identifier) ∧ (name is a valid C++ global
variable name) ∧ (type ∈ {char, short, int, long, unsigned char, signed char, unsigned
short, signed short, unsigned int, signed int, unsigned long, signed long, float, double,
long double})}

Appendix 1 – Entity-Relationship Model Set Definitions

 285

1.2. Basic Relationships

Method Class-Writes Attribute MCWriteA
A method may directly class-write a value to an attribute. Class-writing describes the
case where the method references the attribute using only its identifier name, or uses
one or more class names, separated by colons, before the attribute name. This is the
equivalent of the Class-Writes relationship between the METHOD and ATTRIBUTE
entities.

mi is an identifier of an existing method
ai is an identifier of an existing attribute

MCWriteA = {(mi, ai)} = {(m.mi, a.ai) | m ∈ M ∧ a ∈ A ∧ (method m class-writes to
attribute a)}

Method Class-Reads Attribute MCReadA

A method may directly class-read a value from an attribute. Class-reading describes the
case where the method references the attribute using only its identifier name, or uses
one or more class names, separated by colons, before the attribute name. This is the
equivalent of the Class-Reads relationship between the METHOD and ATTRIBUTE
entities.

mi is an identifier of an existing method
ai is an identifier of an existing attribute

MCReadA = {(mi, ai)} = {(m.mi, a.ai) | m ∈ M ∧ a ∈ A ∧ (method m class-reads from
attribute a)}

Method Class-Invokes Method MCInvM

A method may directly class-invoke a method. Class-invoking describes the case where
the method references the method using only its identifier name, or uses one or more
class names, separated by colons, before the method name. This is the equivalent of the
Class-Invokes relationship between METHOD entities

mi is an identifier of an existing method
invoked_mi is an identifier of an existing method

MCInvM = {(mi, invoked_mi)} = {(m.mi, x.mi) | m ∈ M ∧ x ∈ M ∧ m.mi ≠ x.mi ∧
(method mi directly class-invokes method invoked_mi)}

Class Inherits Parent Class IP

A class c may have immediate parent classes. This relationship is the equivalent of the
Inherits Parent relationship between CLASS entities. The protection level assigned to
the inherited parent is described by one of {public, protected, private}.

ci is an identifier of an existing class
parent_ci is an identifier of an existing class
protection is the level of protection assigned to the inheritance

IP = {(ci, parent_ci, protection)} = {(c.ci, x.ci, protection) | c ∈ C ∧ x ∈ C ∧ protection
∈ {public, protected, private} ∧ (x is an immediate parent class of class c with given
inheritance protection level)}

Global Function Immediate Friend to Class FF

Appendix 1 – Entity-Relationship Model Set Definitions

 286

A class may have one or more friend global functions. This relationship is the
equivalent of the Function Immediate Friend relationship between the CLASS entity
and GLOBAL FUNCTION entity.

ci is an identifier of an existing class
friend_fi is an identifier of an existing global function

FF = {(ci, friend_fi)} = {(c.ci, f.fi) | c ∈ C ∧ f ∈ F ∧ (within the definition of class c,
global function f is explicitly declared to be a friend)}

Global Function Has Immediate Object FIMO

A global function f may have immediate objects. These are objects that are instantiated
within the body of the global function. This relationship is the equivalent of the Has
Immediate relationship between the GLOBAL FUNCTION entity and the OBJECT
entity.

fi is an identifier of an existing global function
oi is an identifier of an existing object

FIMO = {(fi, oi)} = {(f.fi, o.oi) | f ∈ F ∧ o ∈ O ∧ (o is an immediate object of f)}

Method Global Writes to Global Variable MGWriteV

A method may directly write a value to a global variable. This is the equivalent of the
Global Writes relationship between the METHOD and GLOBAL VARIABLE entities.

mi is an identifier of an existing method
vi is an identifier of an existing global variable

MGWriteV = {(mi, vi)} = {(m.mi, v.vi) | m ∈ M ∧ v ∈ V ∧ (method m directly global-
writes to global variable v)}

Method Global Reads From Global Variable MGReadV

A method may directly read a value from a global variable. This is the equivalent of the
Global Reads relationship between the METHOD and GLOBAL VARIABLE entities.

mi is an identifier of an existing method
vi is an identifier of an existing global variable

MGReadV = {(mi, vi)} = {(m.mi, v.vi) | m ∈ M ∧ v ∈ V ∧ (method m directly global-
reads from global variable v)}

Method Global Invokes Global Function MGInvF

A method may directly invoke a global function. This is the equivalent of the Global
Invokes relationship between the METHOD and GLOBAL FUNCTION entities.

mi is an identifier of an existing method
fi is an identifier of an existing global function

MGInvF = {(mi, fi)} = {(m.mi, f.fi) | m ∈ M ∧ f ∈ F ∧ (method m directly global-
invokes global function f)}

Class Has Member Object MO

A class c may have a member object. This relationship is the equivalent of the Has
member relationship between the CLASS entity and the OBJECT entity.

ci is an identifier of an existing class
oi is an identifier of an existing object
protection is the level of protection of the object within the class ci

Appendix 1 – Entity-Relationship Model Set Definitions

 287

MO = {(ci, oi, protection)} = {(c.ci, o.oi, protection) | c ∈ C ∧ o ∈ O ∧ (o is a member
object of c) ∧ protection ∈ {public, protected, private}}

Global Function Object-Accesses Object FOAccessO

A global function may access an object. This access may be reading or writing an
object attribute or invoking an object method. This relationship is the equivalent of the
Object Accesses relationship between the GLOBAL FUNCTION and OBJECT
entities.

fi is an identifier of an existing global function
oi is an identifier of an existing object
action is the type of access from the global function to the object

FOAccessO = {(fi, oi, action)} = {(f.fi, o.oi, action) | f ∈ F ∧ o ∈ O ∧ action ∈ {read,
write, invoke) ∧ (global function f directly object-accesses object o)}

Method Object-Accesses Object MOAccessO

A method may access an object. This access may be reading or writing an object
attribute or invoking an object method. This relationship is the equivalent of the Object
Accesses relationship between the METHOD and OBJECT entities.

mi is an identifier of an existing method
oi is an identifier of an existing object
action is the type of access from the method to the object

MOAccessO = {(mi, oi, action)} = {(m.mi, o.oi, action) | m ∈ M ∧ o ∈ O ∧ action ∈
{read, write, invoke) ∧ (method m directly object-accesses object o)}

Global Function Global Writes to Global Variable FGWriteV

A global function may directly write a value to a global variable. This is the equivalent
of the Global Writes relationship between the GLOBAL FUNCTION and GLOBAL
VARIABLE entities.

fi is an identifier of an existing global function
vi is an identifier of an existing global variable

FGWriteV = {(fi, vi)} = {(f.fi, v.vi) | f ∈ F ∧ v ∈ V ∧ (global function f directly global-
writes to global variable v)}

Method Immediate Friend to Class FM

A class may have one or more friend methods. This relationship is the equivalent of the
Method Immediate Friend relationship between the CLASS entity and METHOD entity
in the Basic Software Document Model. This set does not appear in the Software
Measurement Model.

ci is an identifier of an existing class
friend_mi is an identifier of an existing method

FM = {(ci, friend_mi)} = {(c.ci, m.mi) | c ∈ C ∧ m ∈ M ∧ (within the definition of
class c, method m is explicitly declared to be a friend)}

Class Immediate Friend to Class FC

A class may have one or more friend classes. This relationship is the equivalent of the
Class Immediate Friend relationship between the CLASS entity and METHOD entity
in the Basic Software Document Model. This set does not appear in the Software
Measurement Model.

ci is an identifier of an existing class

Appendix 1 – Entity-Relationship Model Set Definitions

 288

friend_ci is an identifier of an existing class

FC = {(ci, friend_ci)} = {(c.ci, x.ci) | c ∈ C ∧ x ∈ C ∧ (within the definition of class c,
class x is explicitly declared to be a friend)}

Global Function Within Scope of Class SF

A class may have one or more global functions within its scope. This relationship is the
equivalent of the Function Within Scope relationship between the CLASS and
GLOBAL FUNCTION entities.

ci is an identifier of an existing class
fi is an identifier of an existing global function

SF = {(ci, fi)} = {(c.ci, f.fi) | c ∈ C ∧ f ∈ F ∧ (the global function f is within the scope
of class c such that class c is potentially able to invoke the global function)}

Global Variable Within Scope of Class SV

A class may have one or more global variables within its scope. This relationship is the
equivalent of the Variable Within Scope relationship between the CLASS and
GLOBAL VARIABLE entities.

ci is an identifier of an existing class
vi is an identifier of an existing global variable

SV = {(ci, vi)} = {(c.ci, v.vi) | c ∈ C ∧ v ∈ V ∧ (the global variable v is within the
scope of class c such that class c is potentially able to access the global variable)}

Global Object Within Scope of Class SO

A class may have one or more global objects within its scope. This relationship is the
equivalent of the Global Object Within Scope relationship between the CLASS and
OBJECT entities.

ci is an identifier of an existing class
oi is an identifier of an existing object

SO = {(ci, oi)} = {(c.ci, o.oi) | c ∈ C ∧ o ∈ O ∧ (the global object o is within the scope
of class c such that class c is potentially able to access the global object)}

Appendix 1 – Entity-Relationship Model Set Definitions

 289

1.3. Derived Relationships

Class Has Accessible Attribute AA

A class c may have accessible inherited attributes. This relationship is the equivalent of
the Has Accessible relationship between the CLASS entity and the ATTRIBUTE
entity.

ci is an identifier of an existing class
ai is an identifier of an existing attribute
protection is the level of protection of the attribute within the class ci

AA = {(ci, ai, protection)} = {(c.ci, a.ai, protection) | c ∈ C ∧ a ∈ A ∧ protection ∈
{public, protected, private} ∧ (a is an inherited attribute of c with given protection
level)}

Class Has Inaccessible Attribute IAA

A class c may have inaccessible inherited attributes. This relationship is the equivalent
of the Has Inaccessible relationship between the CLASS entity and the ATTRIBUTE
entity.

ci is an identifier of an existing class
ai is an identifier of an existing attribute
protection = inaccessible

IAA = {(ci, ai, protection)} = {(c.ci, a.ai, protection) | c ∈ C ∧ a ∈ A ∧ ((a is a private
member or inherited attribute of an immediate parent of class c) ∨ (a is an inaccessible
attribute of an immediate parent of class c)) ∧ protection = inaccessible }

Class Has Object Attribute OA

To simplify many of the object modularity measure definitions, the set OA of object
attributes is defined. This set contains all the member and inherited attributes of each
class.

ci is an identifier of an existing class
ai is an identifier of an existing attribute
protection ∈ {public, protected, private, inaccessible}

OA = {(ci, ai, protection)} = AA ∪ IAA ∪ {(x.ci, x.ai, x.protection) | x ∈ A}

Class Has Accessible Method AM

A class c may have accessible inherited methods. This relationship is the equivalent of
the Has Accessible relationship between the CLASS entity and the METHOD entity.
The purpose attribute is carried over unchanged from the original purpose of the
attribute in its member class. Although this represents a redundancy in the database, it
greatly simplifies some measure definitions.

ci is an identifier of an existing class
mi is an identifier of an existing method
protection is the level of protection of the method within the class ci
purpose specifies the general purpose of the method

AM = {(ci, mi, protection, purpose)} = {(c.ci, m.mi, protection) | c ∈ C ∧ m ∈ M ∧
protection ∈ {public, protected, private} ∧ (purpose ∈ {constructor, destructor,
operator, normal}) ∧ (m is an inherited method of c with given protection level)}

Appendix 1 – Entity-Relationship Model Set Definitions

 290

Class Has Inaccessible Method IAM
A class c may have inaccessible inherited methods. This relationship is the equivalent
of the Has Inaccessible relationship between the CLASS entity and the METHOD
entity. The purpose attribute is carried over unchanged from the original purpose of the
attribute in its member class. Although this represents a redundancy in the database, it
greatly simplifies some measure definitions.

ci is an identifier of an existing class
mi is an identifier of an existing method
protection = inaccessible
purpose specifies the general purpose of the method

IAM = {(ci, mi, protection, purpose)} = {(c.ci, m.mi) | c ∈ C ∧ m ∈ M ∧ ((m is a
private member or inherited method of an immediate parent of class c) ∨ (m is an
inaccessible method of an immediate parent of class c)) ∧ protection = inaccessible ∧
(purpose ∈ {constructor, destructor, operator, normal})}

Class Has Object Method OM

To simplify many of the object modularity measure definitions, the set OM of object
methods is defined. This set contains all the member and inherited methods of each
class.

ci is an identifier of an existing class
mi is an identifier of an existing method
protection ∈ {public, protected, private, inaccessible}

OM = {(ci, mi, protection)} = AM ∪ IAM ∪ {(x.ci, x.mi, x.protection) | x ∈ M}

Class Has Immediate Object IMO

A class c may have immediate objects. These are objects that are member, accessible or
inaccessible objects of the class. This relationship is the equivalent of the Has
Immediate relationship between the CLASS entity and the OBJECT entity.

ci is an identifier of an existing class
oi is an identifier of an existing object
protection is the level of protection of the object within the class.

IMO = {(ci, oi, protection)} = {(c.ci, o.oi, protection) | c ∈ C ∧ o ∈ O ∧ (o is an
immediate object of c) ∧ protection ∈ {public, protected, private, inaccessible}}

Method Indirectly Same Class-Writes Attribute MICWriteA

A method may indirectly class-write a value to an attribute that is a member of the
same class. This occurs when the method invokes a same class method that itself
directly or indirectly same class-writes an attribute. This is the equivalent of the
Indirectly Same Class-Writes relationship between the METHOD and ATTRIBUTE
entities.

mi is an identifier of an existing method
ai is an identifier of an existing attribute

MICWriteA = {(mi, ai)} = {(m.mi, a.ai) | m ∈ M ∧ a ∈ A ∧ m.ci = a.ci ∧ (method m
indirectly class-writes to attribute a)}

Method Indirectly Same Class-Reads Attribute MICReadA

Appendix 1 – Entity-Relationship Model Set Definitions

 291

A method may indirectly class-read a value to an attribute that is a member of the same
class. This occurs when the method invokes a same class method that itself directly or
indirectly same class-reads an attribute. This is the equivalent of the Indirectly Same
Class-Reads relationship between the METHOD and ATTRIBUTE entities.

mi is an identifier of an existing method
ai is an identifier of an existing attribute

MICReadA = {(mi, ai)} = {(m.mi, a.ai) | m ∈ M ∧ a ∈ A ∧ m.ci = a.ci ∧ (method m
indirectly class-reads from attribute a)}

Method Indirectly Same Class-Invokes Method MICInvM

A method may indirectly class-invoke a method. This occurs when the method invokes
a same class method that itself directly or indirectly same class-invokes a method. This
is the equivalent of the Indirectly Same Class-Invokes relationship between METHOD
entities

mi is an identifier of an existing method
invoked_mi is an identifier of an existing method

MICInvM = {(mi, invoked_mi)} = {(m.mi, x.mi) | m ∈ M ∧ x ∈ M ∧ m.mi ≠ x.mi ∧
m.ci = x.ci ∧ (method m indirectly class-invokes method invoked_mi)}

Method Indirectly Same Object Class-Writes Attribute MIOCWriteA

A method may indirectly class-write a value to an attribute that is a member of the
same object. This occurs when the method invokes a same object method that itself
directly or indirectly same object class-writes an attribute. This is the equivalent of the
Indirectly Same Object Class-Writes relationship between the METHOD and
ATTRIBUTE entities.

mi is an identifier of an existing method
ai is an identifier of an existing attribute

MIOCWriteA = {(mi, ai)} = {(m.mi, a.ai) | m ∈ OM ∧ a ∈ OA ∧ m.ci = a.ci ∧
(method m indirectly class-writes to attribute a)}

Method Indirectly Same Object Class-Reads Attribute MIOCReadA

A method may indirectly class-read a value to an attribute that is a member of the same
object. This occurs when the method invokes a same object method that itself directly
or indirectly same object class-reads an attribute. This is the equivalent of the Indirectly
Same Object Class-Reads relationship between the METHOD and ATTRIBUTE
entities.

mi is an identifier of an existing method
ai is an identifier of an existing attribute

MIOCReadA = {(mi, ai)} = {(m.mi, a.ai) | m ∈ OM ∧ a ∈ OA ∧ m.ci = a.ci ∧ (method
m indirectly class-reads from attribute a)}

Method Indirectly Same Object Class-Invokes Method MIOCInvM

A method may indirectly class-invoke a method that is a member of the same object.
This occurs when the method invokes a same object method that itself directly or
indirectly same object class-invokes a method. This is the equivalent of the Indirectly
Same Object Class-Invokes relationship between METHOD entities

mi is an identifier of an existing method
invoked_mi is an identifier of an existing method

Appendix 1 – Entity-Relationship Model Set Definitions

 292

MIOCInvM = {(mi, invoked_mi)} = {(m.mi, x.mi) | m ∈ OM ∧ x ∈ OM ∧ m.mi ≠ x.mi
∧ m.ci = x.ci ∧ (method m indirectly class-invokes method invoked_mi)}

Class Inherits Distant Ancestor Class IDA

A class c may have distant ancestor classes. This relationship is the equivalent of the
Inherits Distant Ancestor relationship between CLASS entities.

ci is an identifier of an existing class
ancestor_ci is an identifier of an existing class

IDA = {(ci, ancestor_ci)} = {(c.ci, x.ci) | c ∈ C ∧ x ∈ C ∧ (x is a distant ancestor class
of class c)}

Class Element Immediate Friend to Class CEF

A class may have one or more friend classes that have member elements with a friend
relationship to the class. This relationship is the equivalent of the Class Element
Immediate Friend relationship between CLASS entities.

ci is an identifier of an existing class
friend_ci is an identifier of an existing class

CEF = {(ci, friend_ci)} = {(c.ci, x.ci) | c ∈ C ∧ x ∈ C ∧ (class x or member elements of
class x are immediate friends to class c)}

Class Element Inherited Friend to Class CIF

A class may have inherited ancestor classes that have one or more friend classes that
have member elements with a friend relationship to the ancestor class. This relationship
is the equivalent of the Class Element Inherited Friend relationship between CLASS
entities.

ci is an identifier of an existing class
friend_ci is an identifier of an existing class

CIF = {(ci, friend_ci)} = {(c.ci, x.ci) | c ∈ C ∧ x ∈ C ∧ (class x or member elements of
class x are immediate friends to an ancestor of class c)}

Global Function Inherited Friend to Class FIF

A class may have inherited ancestor classes that have one or more friend global
functions. This relationship is the equivalent of the Function Inherited Friend
relationship between the CLASS entity and GLOBAL FUNCTION entity.

ci is an identifier of an existing class
friend_fi is an identifier of an existing global function

FIF = {(ci, friend_fi)} = {(c.ci, f.fi) | c ∈ C ∧ f ∈ F ∧ (global function f is an immediate
friend to an ancestor of class c)}

Class Has Accessible Object AO

A class c may have an inherited accessible object. This relationship is the equivalent of
the Has Accessible relationship between the CLASS entity and the OBJECT entity.

ci is an identifier of an existing class
oi is an identifier of an existing object
protection is the level of protection of the object within the class ci

Appendix 1 – Entity-Relationship Model Set Definitions

 293

AO = {(ci, oi, protection)} = {(c.ci, o.oi, protection) | c ∈ C ∧ o ∈ O ∧ protection ∈
{public, protected, private} ∧ (o is an inherited object of c with given protection level)}

Class Has Inaccessible Object IAO

A class c may have inherited inaccessible objects. This relationship is the equivalent of
the Has Inaccessible relationship between the CLASS entity and the OBJECT entity.

ci is an identifier of an existing class
oi is an identifier of an existing object
protection = inaccessible

IAO = {(ci, oi, protection)} = {(c.ci, o.oi, protection) | c ∈ C ∧ o ∈ O ∧ protection =
inaccessible ∧ ((o is a private member or private accessible or inaccessible object of an
immediate parent of class c)) }

Appendix 2 - Basic Model to Measurement Model Transformations

 294

2. Appendix 2 - Basic Model to Measurement Model Transformations

2.1. Transformation 1 - AA and IAA

The set AA of accessible inherited attributes of a class is defined as follows.

AA = {(ci, ai, protection)} = {(x.ci, a.ai, protection) | x ∈ IP ∧ a ∈ A ∧ (attribute a is an
inherited attribute of class x.ci ∧ protection ∈ {public, protected, private})}

The set IAA of inaccessible inherited attributes of a class is defined as follows.

IAA = {(ci, ai, protection)} = {(x.ci, a.ai, inaccessible) | x ∈ IP ∧ a ∈ A ∧ (attribute a is an
inherited but inaccessible attribute of class x.ci)}

An attribute inherited from a parent may be a member attribute of the parent or may be itself an
inherited attribute of the parent class. An attribute may be inherited more than once by a class.
This is because it may be inherited through different paths in the inheritance hierarchy. If this is
the case, only a single instance of the attribute will be recorded. Any measures made from the
inherited attribute data must not distinguish between multiple inheritance of a single attribute.

As attributes are inherited, their level of protection can change. The level of protection assigned
depends on the level of protection the attribute has within the immediate parent class, and the
level of protection assigned to the parent inheritance.

Constructing the sets of accessible and inaccessible attributes for each class from the collected
data requires the recursive application of an algorithm. Ross and Wright (1992, p. 188), define
a recursive set by a starting point (B) and by a relation (R) that is repeatedly applied using the
previous values. Similarly, the algorithm that must be repeatedly applied here to produce the set
of accessible inherited attributes has a starting point we shall call (B) and a repeated element
(R).

To determine the sets AA and IAA, the starting point is derived from the set of basic parents
BP of classes that are parent classes but themselves have no parents.

BP = {(ci, parent_ci, protection)} = {(x.ci, x.parent_ci, x.protection) | x ∈ IP ∧ ¬∃y{y | y ∈ IP
∧ y.ci = x.parent_ci}}

Starting Point (B)

Start_AApublic = {(ci, ai, protection)} = {(x.ci, y.ai, public) | x ∈ BP ∧ y ∈ A ∧ x.parent_ci =
y.ci ∧ x.protection = y.protection = public }

Start_AAprotected1 = {(ci, ai, protection)} = {(x.ci, y.ai, protected) | x ∈ BP ∧ y ∈ A ∧ x.parent_ci
= y.ci ∧ x.protection = public ∧ (y.protection = protected)}

Start_AAprotected2 = {(ci, ai, protection)} = {(x.ci, y.ai, protected)| x ∈ BP ∧ y ∈ A ∧ x.parent_ci
= y.ci ∧ x.protection = protected ∧ y.protection ∈ {public, protected}}

Start_AAprivate = {(ci, ai, protection)} = {(x.ci, y.ai, private) | x ∈ BP ∧ y ∈ A ∧ x.parent_ci =
y.ci ∧ x.protection = private ∧ y.protection ∈ {public, protected}}

Appendix 2 - Basic Model to Measurement Model Transformations

 295

AA = Start_AApublic ∪ Start_AAprotected1 ∪ Start_AAprotected2 ∪ Start_AAprivate

IAA = {(ci, ai, protection)} = {(x.ci, y.ai, inaccessible) | x ∈ BP ∧ y ∈ A ∧ x.parent_ci = y.ci ∧
y.protection = private }

New_AA = AA ∪ IAA

The set NP is the set of descendants of the base parents that are themselves parents to other
classes.

NP = {(ci, parent_ci, protection)} = {(x.ci, x.parent_ci, x.protection) | x ∈ IP ∧ ∃y{y| y ∈ BP ∧
y.ci = x.parent_ci}}

Repeated Algorithm (R)
Once the start sets have been constructed, the repeated application of the algorithm (R)
constructs the full sets AA and IAA. In (R), class parent_ci itself has parent classes. Algorithm
(R) is applied until all parent child relationships (ci, parent_ci) ∈ IP have been investigated for
possible attribute inheritance.

repeat {

Repeat_AApublic1 = {(ci, ai, protection)} = {(x.ci, y.ai, public) | x ∈ NP ∧ y ∈ A ∧ y.ci =
x.parent_ci ∧ x.protection = public ∧ y.protection = public}

Repeat_AApublic2 = {(ci, ai, protection)} = {(x.ci, y.ai, public) | x ∈ NP ∧ y ∈ New_AA
∧ x.parent_ci = y.ci ∧ x.protection = public ∧ (y.protection = public)}

Repeat_AAprotected1 = {(ci, ai, protection)} = {(x.ci, y.ai, protected) | x ∈ NP ∧ y ∈ A ∧
x.parent_ci = y.ci ∧ x.protection = public ∧ y.protection = protected}

Repeat_AAprotected2 = {(ci, ai, protection)} = {(x.ci, y.ai, protected) | x ∈ NP ∧ y ∈
New_AA ∧ x.parent_ci = y.ci ∧ x.protection = public ∧ y.protection = protected}

Repeat_AAprotected3 = {(ci, ai, protection)} = {(x.ci, y.ai, protected) | x ∈ NP ∧ y ∈ A ∧
x.parent_ci = y.ci ∧ x.protection = protected ∧ y.protection ∈ {public, protected}}

Repeat_AAprotected4 = {(ci, ai, protection)} = {(x.ci, y.ai, protected) | x ∈ NP ∧ y ∈
New_AA ∧ x.parent_ci = y.ci ∧ x.protection = protected ∧ y.protection ∈ {public,
protected}}

Repeat_AAprivate1 = {(ci, ai, protection)} = {(x.ci, y.ai, private) | x ∈ NP ∧ y ∈ A ∧
x.parent_ci = y.ci ∧ x.protection = private ∧ y.protection ∈ {public, protected}}

Repeat_AAprivate2 = {(ci, ai, protection)} = {(x.ci, y.ai, private) | x ∈ NP ∧ y ∈
New_AA ∧ x.parent_ci = y.ci ∧ x.protection = private ∧ y.protection ∈ {public,
protected}}

Repeat_AA = Repeat_AApublic1 ∪ Repeat_AApublic2 ∪ Repeat_AAprotected1 ∪
Repeat_AAprotected2 ∪ Repeat_AAprotected3 ∪ Repeat_AAprotected4 ∪ Repeat_AAprivate1 ∪
Repeat_AAprivate2

Appendix 2 - Basic Model to Measurement Model Transformations

 296

AA = AA ∪ Repeat_AA

Repeat_IAA1 = {(ci, ai, protection)} = {(x.ci, y.ai, inaccessible) | x ∈ NP ∧ y ∈ A ∧
x.parent_ci = y.ci ∧ y.protection = private}

Repeat_IAA2 = {(ci, ai, protection)} = {(x.ci, y.ai, inaccessible) | x ∈ NP ∧ y ∈
New_AA ∧ x.parent_ci = y.ci ∧ y.protection ∈ {private, inaccessible}}

Repeat_IAA = Repeat_IAA1 ∪ Repeat_IAA2

IAA = IAA ∪ Repeat_IAA

New_AA = Repeat_AA ∪ Repeat_IAA

New_NP = {(ci, parent_ci, protection)} = {(x.ci, x.parent_ci, x.protection) | x ∈ IP ∧
∃y{y| y ∈ NP ∧ y.ci = x.parent_ci}}

NP = New_NP

} until (New_NP = ∅)

For classes in the system that have inherited attributes, the resultant set AA is a set of the
inherited accessible attributes and IAA is a set of the inherited inaccessible attributes.

2.2. Transformation 2 - AM and IAM

The set AM of accessible inherited methods of a class is defined as follows.

AM = {(ci, mi, protection)} = {(x.ci, m.mi, protection) | x ∈ IP ∧ m ∈ M ∧ (method m is an
inherited method of class x.ci ∧ protection ∈ {public, protected, private})}

The set IAM of inaccessible inherited methods of a class is defined as follows.

IAM = {(ci, mi, protection)} = {(x.ci, m.mi, inaccessible) | x ∈ IP ∧ m ∈ M ∧ (method m is an
inherited but inaccessible method of class x.ci)}

The sets AM and IAM are derived in the same way as sets AA and IAA. The algorithm given
previously for the derivation of sets AA and IAA is used with the substitution of set M for set
A, set AM for set AA and set IAM for set IAA.

2.3. Transformation 3 - AO and IAO

The set AO of accessible inherited objects of a class is defined as follows.

AO = {(ci, oi, protection)} = {(x.ci, o.oi, protection) | x ∈ IP ∧ o ∈ MO ∧ (object o is an
inherited object of class x.ci ∧ protection ∈ {public, protected, private})}

The set IAO of inaccessible inherited objects of a class is defined as follows.

Appendix 2 - Basic Model to Measurement Model Transformations

 297

IAO = {(ci, oi, protection)} = {(x.ci, o.oi, inaccessible) | x ∈ IP ∧ o ∈ MO ∧ (object o is an
inherited but inaccessible object of class x.ci)}

The sets AO and IAO are derived in the same way as sets AA and IAA. The algorithm given
previously for the derivation of sets AA and IAA is used with the substitution of set O for set
A, set AO for set AA and set IAO for set IAA.

2.4. Transformation 4 - IMO

The set IMO of immediate objects of a class is defined as follows.

IMO = {(ci, oi, protection)} = {(x.ci, o.oi, protection) | x ∈ IP ∧ o ∈ MO ∧ (object MO is a
member or inherited object of class x.ci ∧ protection ∈ {public, protected, private,
inaccessible})}

IMO = MO ∪ AO ∪ IAO

2.5. Transformation 5 - MICReadA

A class member method indirectly class-reads a same class member attribute if it class-invokes
a same class member method that itself either directly or indirectly reads the same class
member attribute. To determine the set of attributes indirectly read by a method, a path matrix
must be constructed showing all the possible invocation paths between same class methods. If a
path exists, the path matrix will have a 1 in the position corresponding to a connection between
two same class methods. If no path exits, the path matrix value for that connection will be 0.

For example, the following diagram shows a simple calling structure between methods m1 to
m5 and attribute Celsius.

Display Temperature °F
m1

Construct Display
String

m2

Display String
m4

Convert °C to °F
m3

Read Temperature °C
m5

Celsiu

Appendix 2 - Basic Model to Measurement Model Transformations

 298

Method m5 directly reads from attribute Celsius and methods m3 and m1 indirectly read from
attribute Celsius. Methods m2 and m4 neither directly nor indirectly read from attribute
Celsius.

The path matrix associated with this the above example is given below.

 j

 m1 m2 m3 m4 m5

 m1 0 1 1 1 1

 m2 0 0 0 0 0

i m3 0 0 0 0 1

 m4 0 0 0 0 0

 m5 0 0 0 0 0

To determine the attributes indirectly accessed by each method, the following algorithm must
be applied.

Use the sets method same class-reads attribute MSCReadA and method same class invokes
method MSCInvM.

MSCReadA = {(mi, ai)} = {(x.mi, y.ai) | x ∈ M ∧ y ∈ A ∧ (x.ci = y.ci) ∧ (x.mi, y.ai) ∈
MCReadA}

MSCInvM = {(mi, invoked_mi)} = {(x.mi, y.mi) | x ∈ M ∧ y ∈ M ∧ (x.ci = y.ci) ∧
(x.mi, y.mi) ∈ MCInvM}

Grassmann and Tremblay (1996, p. 363) define a directed graph G = (V, E) where V is the set
of vertices and E the set of edges of the graph. For a directed graph, the edges form ordered
pairs �vi, vj� where vi = the vertex from where the edge begins, and vj the vertex where the edge
ends.

MCInvMGraph(V, E) where the vertices V = {v : v ∈ M}
and edges E = {�vi, vj� : �vi, vj� ∈ MSCInvM}

Grassmann and Tremblay (1996, p. 378) then, from graph MCInvMGraph(V, E), form an n × n
adjacency matrix MCInvMAdjacency, where n = #M, i identifies the row, and j the column of
the graph, and whose elements aij are given by
 aij = 1, if �vi, vj� ∈ E
 aij = 0, otherwise.

Using Warshall's algorithm (Grassmann & Tremblay 1996, pp. 383-385) calculate the path
matrix MCInvMPath from the adjacency matrix MCInvMAdjacency. Each element of the path
matrix,
 pij = 1 if an invocation path exists from vi to vj
 pij = 0 if no invocation path exists from vi to vj

Appendix 2 - Basic Model to Measurement Model Transformations

 299

Another way of writing pij is MCInvMPath�mi, mj� where mi is the method from which the
invocation originates and mj is the method invoked. If pij = 1 and i ≠ j then member method mi
indirectly reads the attributes that method mj directly reads.

The set MICReadA of class member attributes indirectly read from by same class member
methods is defined as follows.

MICReadA = {(mi, ai)} = {(x.mi, y.ai) | x ∈ M ∧ y ∈ MSCReadA ∧ (MCInvMPath�x.mi, y.mi�
= 1) }

For the example given above, MICReadA = {(Convert °C to °F, Celsius), (Display
Temperature °F, Celsius)}

2.6. Transformation 6 - MICWriteA

A class member method indirectly writes a same class member attribute if it invokes a same
class method that itself either directly or indirectly writes that attribute. The same algorithm as
that used to determine the set of methods indirectly reading from an attribute is applied here.
Use the sets MSCWriteA and MSCInvM and construct the directed graph MCInvMGraph(V,
E).

MSCWriteA = {(mi, ai)} = {(x.mi, y.ai) | x ∈ M ∧ y ∈ A ∧ (x.ci = y.ci) ∧ (x.mi, y.ai) ∈
MCWriteA}

MSCInvM = {(mi, invoked_mi)} = {(x.mi, y.mi) | x ∈ M ∧ y ∈ M ∧ (x.ci = y.ci) ∧
(x.mi, y.mi) ∈ MCInvM}

MCInvMGraph(V, E) where the vertices V = {v : v ∈ M}

and edges E = {�vi, vj� : �vi, vj� ∈ MSCInvM}

From this, as before determine the adjacency matrix MCInvMAdjacency and then the path
matrix MCInvMPath.

The set MICWriteA of attributes indirectly written to by same class member methods is defined
as follows.

MICWriteA = {(mi, ai)} = {(x.mi, y.ai) | x ∈ M ∧ y ∈ MSCWriteA ∧ (MCInvMPath�x.mi,
y.mi� = 1)}

2.7. Transformation 7 - MICInvM

A class member method indirectly invokes a same class member method if it invokes a same
class method that itself either directly or indirectly invokes that method. The same algorithm as
that used to determine the set of methods indirectly reading from an attribute is applied here.
Use the set MSCInvM and construct the directed graph MCInvMGraph(V, E).

MSCInvM = {(mi, invoked_mi)} = {(x.mi, y.mi) | x ∈ M ∧ y ∈ M ∧ (x.ci = y.ci) ∧
(x.mi, y.mi) ∈ MCInvM}

Appendix 2 - Basic Model to Measurement Model Transformations

 300

MCInvMGraph(V, E) where the vertices V = {v : v ∈ M}
and edges E = {�vi, vj� : �vi, vj� ∈ MSCInvM}

From this, as before determine the adjacency matrix MCInvMAdjacency and then the path
matrix MCInvMPath.

The set MICInvM of methods indirectly invoked by same class member methods is defined as
follows.

MICInvM = {(mi, invoked_mi)} = {(x.mi, y.invoked_mi) | x ∈ M ∧ y ∈ MSCInvM ∧
(MCInvMPath�x.mi, y.invoked_mi� = 1)}

2.8. Transformation 8 - MIOCReadA

A class member method indirectly reads a same object attribute if it invokes a same object
method that itself either directly or indirectly reads that attribute. Use the sets OM, OA,
MSOCReadA and MSOCInvM and construct the directed graph MOCInvMGraph(V, E).

OM = {(ci, mi, protection)} = {(x.ci, x.mi, x.protection) | x ∈ M} ∪ {(x.ci, x.mi) | x ∈ AM} ∪
{(x.ci, x.mi) | x ∈ IAM}

OA = {(ci, ai, protection)} = {(x.ci, x.ai, x.protection) | x ∈ A} ∪ {(x.ci, x.ai) | x ∈ AA}

MSOCReadA = {(mi, ai)} = {(x.mi, y,ai) | x ∈ OM ∧ y ∈ OA ∧ x.ci = y.ci A (x.mi, y.ai) ∈
MCReadA}

MSOCInvM = {(mi, invoked_mi)} = {(x.mi, y.mi) | x ∈ OM ∧ y ∈ OM ∧ x.ci = y.ci ∧ (x.mi,
y.mi) ∈ MCInvM}

MOCInvMGraph(V, E) where the vertices V = {v : v ∈ OM}

and edges E = {�vi, vj� : �vi, vj� ∈ MSOCInvM}

From this, as before determine the adjacency matrix MOCInvMAdjacency and then the path
matrix MOCInvMPath.

The set MIOCReadA of attributes indirectly written to by same object methods is defined as
follows.

MIOCReadA = {(mi, ai)} = {(x.mi, y.ai) | x ∈ OM ∧ y ∈ MSOCReadA ∧
(MOCInvMPath�x.mi, y.mi� = 1)}

2.9. Transformation 9 - MIOCWriteA

A class member method indirectly writes a same object attribute if it invokes a same object
method that itself either directly or indirectly writes that attribute. Use the sets OM, OA,
MSOCWriteA and MSOCInvM and construct the directed graph MOCInvMGraph(V, E).

Appendix 2 - Basic Model to Measurement Model Transformations

 301

OM = {(ci, mi, protection)} = {(x.ci, x.mi, x.protection) | x ∈ M} ∪ {(x.ci, x.mi) | x ∈ AM} ∪
{(x.ci, x.mi) | x ∈ IAM}

OA = {(ci, ai, protection)} = {(x.ci, x.ai, x.protection) | x ∈ A} ∪ {(x.ci, x.ai) | x ∈ AA}

MSOCWriteA = {(mi, ai)} = {(x.mi, y,ai) | x ∈ OM ∧ y ∈ OA ∧ x.ci = y.ci A (x.mi, y.ai) ∈
MCWriteA}

MSOCInvM = {(mi, invoked_mi)} = {(x.mi, y.mi) | x ∈ OM ∧ y ∈ OM ∧ x.ci = y.ci ∧ (x.mi,
y.mi) ∈ MCInvM}

MOCInvMGraph(V, E) where the vertices V = {v : v ∈ OM}

and edges E = {�vi, vj� : �vi, vj� ∈ MSOCInvM}

From this, as before determine the adjacency matrix MOCInvMAdjacency and then the path
matrix MOCInvMPath.

The set MIOCWriteA of attributes indirectly written to by same object methods is defined as
follows.

MIOCWriteA = {(mi, ai)} = {(x.mi, y.ai) | x ∈ OM ∧ y ∈ MSOCWriteA ∧
(MOCInvMPath�x.mi, y.mi� = 1)}

2.10. Transformation 10 - MIOCInvM

A class member method indirectly invokes a same object method if it invokes a same object
method that itself either directly or indirectly invokes that method. Use the sets OM and
MSOCInvM and construct the directed graph MOCInvMGraph(V, E).

OM = {(ci, mi, protection)} = {(x.ci, x.mi, x.protection) | x ∈ M} ∪ {(x.ci, x.mi) | x ∈ AM} ∪
{(x.ci, x.mi) | x ∈ IAM}

MSOCInvM = {(mi, invoked_mi)} = {(x.mi, y.mi) | x ∈ OM ∧ y ∈ OM ∧ x.ci = y.ci ∧ (x.mi,
y.mi) ∈ MCInvM}

MOCInvMGraph(V, E) where the vertices V = {v : v ∈ OM}

and edges E = {�vi, vj� : �vi, vj� ∈ MSOCInvM}

From this, as before determine the adjacency matrix MOCInvMAdjacency and then the path
matrix MOCInvMPath.

The set MIOCInvM of methods indirectly invoked by same object methods is defined as
follows.

MIOCInvM = {(mi, mi)} = {(x.mi, y.invoked_mi) | x ∈ OM ∧ y ∈ MSOCInvM ∧
(MOCInvMPath�x.mi, y.invoked_mi� = 1)}

Appendix 2 - Basic Model to Measurement Model Transformations

 302

2.11. Transformation 11 - CEF

The friendship relationship between classes can be defined on a class to class level or on a class
method to class level.

The set CEF of classes with their friend classes is defined as follows.

CEF = {(ci, friend_ci)} = FC ∪ {(x.ci, y.ci) | x ∈ FM ∧ y ∈ M ∧ (x.mi = y.mi)}

2.12. Transformation 12 - IDA

To determine the set IDA, an intermediate set class ancestor classes CAS must be constructed.

CAS = {(ci, ancestor_ci)} = {(x.ci, y.ci) | x ∈ C ∧ y ∈ C ∧ y is an immediate or distant ancestor
of class x}

Constructing the set CAS requires the recursive application of an algorithm. To determine the
set CAS, the starting point is derived from the set of class, distant ancestor classes where there
is only one intervening class.

DIS = {(ci, ancestor_ci)} = {(x.ci, y.parent_ci) | x ∈ IP ∧ y ∈ IP ∧ x.parent_ci = y.ci}

Starting Point (B)

Start_CAS = DIS

CAS = Start_CAS
New_CAS = CAS

Repeated Algorithm (R)
Once the start sets have been constructed, the repeated application of the algorithm (R)
constructs the full set CAS. In (R), class ancestor_ci itself has parent classes. Algorithm (R) is
applied until all parent child relationships (ci, parent_ci) ∈ IP have been investigated.

repeat {

Repeat_CAS = {(ci, ancestor_ci)} = {(x.ci, y.ancestor_ci) | x ∈ IP ∧ y ∈ New_CAS ∧
x.parent_ci = y.ci} ∪ {(x.ci, y.ancestor_ci) | x ∈ IP ∧ y ∈ CAS ∧ x.parent_ci = y.ci}

CAS = CAS ∪ Repeat_CAS
New_CAS = Repeat_CAS

} until (New_CAS = ∅)

For classes in the system that have parents, the resultant set CAS is a set of immediate and
distant ancestor classes.

The set IDA of distant ancestor classes is defined as follows:

IDA = {(ci, ancestor_ci)} = {(x.ci, x.ancestor_ci) | x ∈ CAS ∧ ¬∃y{y | y ∈ IP ∧ y.ci = x.ci ∧
y.parent_ci = x.ancestor_ci}}

Appendix 2 - Basic Model to Measurement Model Transformations

 303

2.13. Transformation 13 - CIF

If a child class inherits from ancestor classes that have friends defined then the child class has a
partial friend relationship with the inherited friend classes. Set CAS of class ancestor classes,
as defined in Transformation 12, is needed to derive set CIF.

The set CIF of classes with their inherited friend classes is defined as follows.

CIF = {(ci, friend_ci)} = {(x.ci, y.friend_ci) | x ∈ CAS ∧ y ∈ CEF ∧ x.ancestor_ci =
y.ci }

2.14. Transformation 14 - FIF

If a child class inherits from ancestor classes that have friend global functions defined then the
child class has a partial friend relationship with the inherited friend global function. Set CAS of
class ancestor classes, as defined in Transformation 12, is needed to derive set FIF.

The set FIF of classes with their inherited friend global functions is defined as follows.

FIF = {(ci, friend_fi)} = {(x.ci, y.friend_fi) | x ∈ CAS ∧ y ∈ FF ∧ x.ancestor_ci = y.ci}

Appendix 3 – eMulePlus C++ Class Modularity to Lines of Code Correlation Data

 304

3. Appendix 3 – eMulePlus C++ Class Modularity to Lines of Code

Correlation Data

The following table lists, for each class modularity measure taken from the eMulePlus software
system, the correlation between the normalised measured value and a normalised count of the
number of class lines of code. Missing values occur when the measured values for a measure
are all the same and so cannot be normalised.

Table Appendix 3-1 eMulePlus software system class modularity measure to class lines of code
correlation

 Zscore: Class Total
Lines of Code

Spearman's rho Zscore: CER1 Correlation Coefficient .183(**)

 Sig. (2-tailed) .004

 N 250

 Zscore: CER2 Correlation Coefficient .187(**)

 Sig. (2-tailed) .003

 N 250

 Zscore: CER3 Correlation Coefficient .057

 Sig. (2-tailed) .368

 N 250

 Zscore: CER4 Correlation Coefficient .004

 Sig. (2-tailed) .951

 N 250

 Zscore: CER5 Correlation Coefficient .029

 Sig. (2-tailed) .653

 N 250

 Zscore: CER6 Correlation Coefficient .

 Sig. (2-tailed) .

 N 0

 Zscore: CER7 Correlation Coefficient .136(*)

 Sig. (2-tailed) .032

 N 250

 Zscore: CUR1 Correlation Coefficient .136(*)

 Sig. (2-tailed) .032

 N 250

 Zscore: CUR2 Correlation Coefficient .430(**)

 Sig. (2-tailed) .000

 N 250

 Zscore: CDC1 Correlation Coefficient .042

 Sig. (2-tailed) .505

 N 250

 Zscore: CDC2 Correlation Coefficient .172(**)

 Sig. (2-tailed) .006

 N 250

Appendix 3 – eMulePlus C++ Class Modularity to Lines of Code Correlation Data

 305

 Zscore: CUER1 Correlation Coefficient .042

 Sig. (2-tailed) .505

 N 250

 Zscore: CUER2 Correlation Coefficient .048

 Sig. (2-tailed) .451

 N 250

 Zscore: CUER3 Correlation Coefficient .119

 Sig. (2-tailed) .061

 N 250

 Zscore: CNI1 Correlation Coefficient .042

 Sig. (2-tailed) .505

 N 250

 Zscore: CNI2 Correlation Coefficient .167(**)

 Sig. (2-tailed) .008

 N 250

 Zscore: CNI3 Correlation Coefficient .066

 Sig. (2-tailed) .298

 N 250

 Zscore: CSI1 Correlation Coefficient .430(**)

 Sig. (2-tailed) .000

 N 250

 Zscore: CSI2 Correlation Coefficient .460(**)

 Sig. (2-tailed) .000

 N 250

 Zscore: CEVR1 Correlation Coefficient .110

 Sig. (2-tailed) .082

 N 250

 Zscore: CEVR2 Correlation Coefficient .145(*)

 Sig. (2-tailed) .022

 N 250

 Zscore: CEFW4 Correlation Coefficient .066

 Sig. (2-tailed) .298

 N 250

 Zscore(ciei1) Correlation Coefficient .035

 Sig. (2-tailed) .585

 N 250

 Zscore(ciei2) Correlation Coefficient -.042

 Sig. (2-tailed) .513

 N 250

 Zscore(ciei3) Correlation Coefficient .

 Sig. (2-tailed) .

 N 0

 Zscore(ciei4) Correlation Coefficient .

 Sig. (2-tailed) .

 N 0

 Zscore(ciei5) Correlation Coefficient .

 Sig. (2-tailed) .

 N 0

Appendix 3 – eMulePlus C++ Class Modularity to Lines of Code Correlation Data

 306

 Zscore(ciei6) Correlation Coefficient .

 Sig. (2-tailed) .

 N 0

 Zscore(ciei7) Correlation Coefficient .185(**)

 Sig. (2-tailed) .003

 N 250

 Zscore(ciei8) Correlation Coefficient .015

 Sig. (2-tailed) .809

 N 250

 Zscore: COMPUTE
cis12rat = cis1 / (cis1 +
cis2) (COMPUTE)

Correlation Coefficient .224(**)

 Sig. (2-tailed) .000

 N 250

 Zscore: COMPUTE
cis34rat = cis3 / (cis3 +
cis4) (COMPUTE)

Correlation Coefficient .044

 Sig. (2-tailed) .486

 N 250

 Zscore(cis5) Correlation Coefficient .604(**)

 Sig. (2-tailed) .000

 N 250

 Zscore(cis6) Correlation Coefficient .267(**)

 Sig. (2-tailed) .000

 N 250

 Zscore(cis7) Correlation Coefficient .042

 Sig. (2-tailed) .504

 N 250

 Zscore(cis8) Correlation Coefficient -.123

 Sig. (2-tailed) .052

 N 250

 Zscore: CDE1 Correlation Coefficient .254(**)

 Sig. (2-tailed) .000

 N 250

 Zscore(cde2) Correlation Coefficient .042

 Sig. (2-tailed) .504

 N 250

 Zscore(cde3) Correlation Coefficient -.123

 Sig. (2-tailed) .052

 N 250

 Zscore(cde4) Correlation Coefficient .425(**)

 Sig. (2-tailed) .000

 N 250

 Zscore(cde5) Correlation Coefficient .418(**)

 Sig. (2-tailed) .000

 N 250

 Zscore: Class Total
Lines of Code

Correlation Coefficient 1.000

 Sig. (2-tailed) .

 N 250

** Correlation is significant at the 0.01 level (2-tailed).

Appendix 3 – eMulePlus C++ Class Modularity to Lines of Code Correlation Data

 307

* Correlation is significant at the 0.05 level (2-tailed).

Appendix 4 – eMulePlus Software System Content Validation

 308

4. Appendix 4 - eMulePlus Software System Content Validation

In step 2 of the content validation, importance and frequency ratings are assigned to each
characteristic to measure relationship (CHARMER) diagram software feature. The importance
(I) and frequency (F) ratings used are as follows: 1- high, 2 - medium, 3 - low. In Figure 5-14,
the importance and frequency ratings are shown in the natural language feature boxes beneath
the feature identification number.

4.1. eMulePlus class modularity

 C++ class interface dependence

 interface implementation dependence

interface element interdependence interface size data exposure

 1.2.3

1.1.1
F - 3

 1.1.3
F - 2

 1.2.1
F - 3

 1.2.3.1
F - 1

 1.2.3.3
F - 3

 1.3.2
F - 3

 1.1.2

F - 3
 1.1.4

F - 2
 1.2.2

F - 1
 1.2.3.2

F - 2
 1.3.1

F - 3
 1.3.3

F - 3

 CIEI7 CIS5

CIS1
CIS2

CIS7
CIS8

CDE2
CDE3

CIEI1
CIEI2
CIEI3

 CIEI8 CIS6 CDE1

CIS3
CIS4

CDE4
CDE5

CIEI4
CIEI5
CIEI6

Figure Appendix 4-1 eMulePlus class interface dependence CHARMER diagram content
validation

Appendix 4 – eMulePlus Software System Content Validation

 309

 C++ class external relationships

outside the system

 within the system

 2.1.1
F - 1

 2.1.3
F - 1

 2.1.5
F - 1

 2.1.7
F - 1

 2.1.9
F - 3

 2.1.2

F - 1
 2.1.4

F - 1
 2.1.6

F - 1
 2.1.8

F - 1

 CER1 CER3 CER5 CER7 CER9

 CER2 CER4 CER6 CER8

Figure Appendix 4-2 eMulePlus class external relationships CHARMER diagram content
validation

Appendix 4 – eMulePlus Software System Content Validation

 310

 C++ class connection obscurity

variable connection non-standard connection

(not applicable)

 unexpected relationship

unstated relationship

 distant connection

connection via

non-standard interface

3.2.1
F - 3

 3.3.1
F - 3

 3.4.1
F - 3

 3.4.3
F - 1

 3.5.1
F - 3

 3.5.3
F - 1

 3.2.2

F - 1
 3.3.2

F - 3
 3.4.2

F - 1
 3.4.4

F - 1
 3.5.2

F - 1

CUR1 CDC1 CUER1 CUER3 CNI1 CNI3

 CUR2 CDC2 CUER2 CUER4 CNI2

Figure Appendix 4-3 eMulePlus class connection obscurity CHARMER diagram content
validation

Appendix 4 – eMulePlus Software System Content Validation

 311

 C++ class dependency

interface provision state dependency

(not applicable)

 external variable reading

service invocation external function writing

 4.1.1

F - 2
 4.3.1

F - 3
 4.4.2

F - 3
 4.4.4

F - 3

 4.1.2

F - 3
 4.3.2

F - 3
 4.4.1

F - 3
 4.4.3

F - 3

 CSI1 CEVR1 CEFW2 CEFW4

 CSI2 CEVR2 CEFW1 CEFW3

Figure Appendix 4-4 eMulePlus class dependency CHARMER diagram content validation

Appendix 4 – eMulePlus Software System Content Validation

 312

4.2. eMulePlus object modularity

 C++ object interface dependence

 interface implementation dependence

interface element interdependence interface size data exposure

 5.2.3

5.1.1
F - 3

 5.1.3
F - 2

 5.2.1
F - 3

 5.2.3.1
F - 1

 5.2.3.3
F - 3

 5.3.2
F - 3

 5.1.2

F - 3
 5.1.4

F - 2
 5.2.2

F - 1
 5.2.3.2

F - 2
 5.3.1

F - 3
 5.3.3

F - 3

CER2 CER2 CER2 CER2 CER2 CER2

 CER2 CER2 CER2 CER2 CER2 CER2

 OIEI7 OIS5

OIS1
OIS2

OIS7
OIS8

ODE2
ODE3

OIEI1
OIEI2
OIEI3

 OIEI8 OIS6 ODE1

OIS3
OIS4

ODE4
ODE5

OIEI4
OIEI5
OIEI6

Figure Appendix 4-5 eMulePlus object interface dependence CHARMER diagram content
validation

Appendix 4 – eMulePlus Software System Content Validation

 313

 C++ object external relationships

outside the system

 within the system

 6.1.1

F - 2
 6.1.3

F - 2
 6.1.5

F - 3
 6.1.7

F - 1

 6.1.2

F - 2
 6.1.4

F - 2
 6.1.6

F - 1
 6.1.8

F - 1

 CER2 CER2

 OER1 OER3 OER5 OER7

 OER2 OER4 OER6 OER8

Figure Appendix 4-6 eMulePlus object external relationships CHARMER diagram content
validation

Appendix 4 – eMulePlus Software System Content Validation

 314

 C++ object connection obscurity - part 1

 unstated relationships

variable connection distant connection

 7.1.1

F - 1
 7.2.1

F - 3
 7.2.3

F - 3
 7.2.5

F - 1
 7.3.1

F - 3

 7.1.2

F - 2
 7.2.2

F - 1
 7.2.4

F - 1
 7.2.6

F - 1
 7.3.2

F - 3

 CER2 CER2 CER2 CER2

 OVC1 OUR1 OUR3 OUR5 ODC1

 OVC2 OUR2 OUR4 OUR6

Figure Appendix 4-7 eMulePlus object connection obscurity CHARMER diagram content
validation - Part 1

Appendix 4 – eMulePlus Software System Content Validation

 315

 C++ object connection obscurity - part 2

 non-standard connection

 connection via non-standard interface

unexpected relationship

 OER6
 OER7

 OER8

 7.5.3
 7.5.4

F - 2

7.4.1
F - 3

 7.4.3
F - 1

 7.4.5
F - 1

 7.5.1
F - 3

 7.5.5
F - 2

 7.5.7
7.5.8

 7.5.9
 7.4.2

F - 3
 7.4.4

F - 1
 7.4.6

F - 3
 7.5.2

F - 2
 7.5.6

F - 2
 7.5.10

F - 2

 CER2

OUER1 OUER3 OUER5 ONI1 ONI3

 OUER2 OUER4 OUER6 ONI2 ONI4

Figure Appendix 4-8 eMulePlus object connection obscurity CHARMER diagram content
validation - Part 2

Appendix 4 – eMulePlus Software System Content Validation

 316

 C++ object dependency

 interface provision state dependency

 external variable reading

service invocation external function writing

 OER5

 8.1.1
F - 2

 8.2.1
F - 2

 8.3.2
F - 2

 8.4.2
F - 3

 8.4.4
F - 3

 8.4.6
F - 2

 8.1.2

F - 1
 8.3.1

F - 3
 8.4.1

F - 3
 8.4.3

F - 3
 8.4.5

F - 3

 CER2

 OSI1 OIP1 OEVR2 OEFW2 OEFW4 OEFW5
 OIP2

 OSI2 OEVR1 OEFW1 OEFW3

Figure Appendix 4-9 eMulePlus object dependency CHARMER diagram content validation

Appendix 4 – eMulePlus Software System Content Validation

 317

4.3. eMulePlus content validation measured values

The following table lists the eMulePlus content validation measured values for all the measured
classes/object-classes in the eMulePlus system.

Table Appendix 4-1 eMulePlus software system content validation measured values

eMulePlus class/object-class

CER2 OER5 OER6 OER7 OER8

C3DPreviewControl 0 0 0 0 0
CAboutDlg 0 0 0 0 0
CAbstractFile 0 0 0 0 0
CAddFileThread 0 0 0 0 1
CAddFriend 0 0 0 0 0
CArchiveRecovery 0 0 0 0 0
CArrowCombo 0 0 0 0 0
CAsyncProxySocket 1 0 0 0 0
CAsyncProxySocketLayer 0 0 0 0 0
CAsyncSocketEx 0 0 2 0 1
CAsyncSocketExHelperWindow 0 0 0 0 4
CAsyncSocketExLayer 0 0 2 0 3
CBarShader 0 0 0 0 0
CButtonST 0 0 0 0 0
CCeXDib 0 0 0 0 0
CChatItem 0 0 0 0 0
CChatSelector 0 0 0 0 0
CChatWnd 4 0 0 0 0
CCKey 0 0 0 0 0
CClientCredits 0 0 0 0 0
CClientCreditsList 0 0 0 0 0
CClientDetailDialog 0 0 0 0 0
CClientList 0 0 0 0 0
CClientReqSocket 2 0 3 0 1
CClientSource 0 0 0 0 0
CClientUDPSocket 0 0 0 0 0
CClosableTabCtrl 0 0 0 0 0
CColorButton 0 0 0 0 0
CColorFrameCtrl 0 0 0 0 0
CColourPopup 0 0 0 0 0
CCommentDialog 0 0 0 0 0
CCommentDialogLst 4 0 0 0 0
CCreditsCtrl 0 0 0 0 0
CCriticalSection_INL 0 0 0 0 0
CDblScope 0 0 0 0 0
CDialogMinTrayBtn 0 0 0 0 0
CDirectoryTreeCtrl 0 0 0 0 0
CDownloadListCtrl 0 0 0 0 0
CDownloadQueue 0 0 2 0 0
CED2KFileLink 0 0 0 0 0
CED2KLink 0 0 0 0 0
CED2KServerLink 0 0 0 0 0
CED2KServerListLink 0 0 0 0 0
CEdit2 0 0 0 0 0

Appendix 4 – eMulePlus Software System Content Validation

 318

CEMSocket 1 0 0 0 0
CemuleApp 0 0 0 0 0
CemuleDlg 1 0 2 0 0
CEnBitmap 0 0 0 0 0
CFileDetailDialog 0 0 0 0 0
CFileHashControl 0 0 0 0 0
CFileInfoDialog 0 0 0 0 0
CFileStatistic 0 0 3 0 1
CFontPreviewCombo 0 0 0 0 0
CFriend 0 1 0 0 0
CFriendList 0 0 0 0 0
CFriendListCtrl 0 0 0 0 0
CGDIThread 0 0 0 0 0
CGradientStatic 0 0 0 0 0
CHostnameSourceWnd 0 0 0 0 0
CHttpDownloadDlg 0 0 0 0 0
CHyperLink 0 0 1 0 0
CHyperTextCtrl 0 0 0 0 0
CIconStatic 0 0 0 0 0
CInfoListCtrl 0 0 0 0 0
CIni 0 0 0 0 0
CInputBox 0 0 0 0 0
CIPFilter 0 0 0 0 0
CIrcMain 0 0 0 0 0
CIrcSocket 1 0 0 0 0
CIrcWnd 4 0 0 0 0
CKeyWord 0 0 1 0 0
CKnownFile 0 0 0 0 1
CKnownFileList 0 0 2 0 1
CLanCast 0 0 0 0 0
ClientsData 0 0 0 0 0
CLineInfo 0 0 0 0 0
CLinePartInfo 0 0 0 0 0
CListBoxST 0 0 0 0 0
CListCtrlSorter 0 0 0 0 1
CListCtrlSorterItem 0 0 1 0 0
CListenSocket 1 0 0 0 1
CLoggable 0 0 0 0 0
CMemDC 0 0 0 0 0
CMemDC2 0 0 0 0 0
CMeterIcon 0 0 0 0 0
CMuleCtrlItem 0 0 0 0 0
CMuleListCtrl 0 0 0 0 0
CMuleRollup 0 0 0 0 0
CMuleSystrayDlg 0 0 0 0 0
CMuleToolbarCtrl 0 0 0 0 1
CMyFont 0 0 0 0 0
CNewServerDlg 0 0 0 0 0
COptionTree 0 0 0 0 0
COptionTreeCheckButton 0 0 0 0 0
COptionTreeColorPopUp 0 0 0 0 0
COptionTreeFileDlg 0 0 0 0 0
COptionTreeFontSel 0 0 0 0 0
COptionTreeFontSelColorButton 0 0 0 0 0
COptionTreeFontSelFontCombo 0 0 0 0 0
COptionTreeFontSelSizeCombo 0 0 0 0 0

Appendix 4 – eMulePlus Software System Content Validation

 319

COptionTreeImagePopUp 0 0 0 0 0
COptionTreeInfo 0 0 0 0 0
COptionTreeIPAddressEdit 0 0 0 0 0
COptionTreeItem 0 0 0 0 0
COptionTreeItemCheckBox 0 0 0 0 0
COptionTreeItemColor 0 0 0 0 0
COptionTreeItemComboBox 0 0 0 0 0
COptionTreeItemDate 0 0 0 0 0
COptionTreeItemEdit 0 0 0 0 0
COptionTreeItemFile 0 0 0 0 0
COptionTreeItemFont 0 0 0 0 0
COptionTreeItemHyperLink 0 0 0 0 0
COptionTreeItemImage 0 0 0 0 0
COptionTreeItemIPAddress 0 0 0 0 0
COptionTreeItemRadio 0 0 0 0 0
COptionTreeItemSpinner 0 0 0 0 0
COptionTreeItemStatic 0 0 0 0 0
COptionTreeList 0 0 0 0 0
COptionTreeRadioButton 0 0 0 0 0
COptionTreeSpinnerButton 0 0 0 0 0
COptionTreeSpinnerEdit 0 0 0 0 0
COScopeCtrl 0 0 0 0 0
CPageSelectionBox 0 0 0 0 0
CPartFile 2 0 0 0 1
CPIDL 0 0 0 0 0
CPPgAdvanced 0 0 0 0 0
CPPgConnection 0 0 0 0 0
CPPgDirectories 0 0 0 0 0
CPPgFiles 0 0 0 0 0
CPPgGeneral 0 0 0 0 0
CPPgHTTPD 0 0 0 0 0
CPPgIRC 0 0 0 0 0
CPPgMessaging 0 0 0 0 0
CPPgModPT 0 0 0 0 0
CPPgNotify 0 0 0 0 0
CPPgProxy 0 0 0 0 0
CPPgScheduler 0 0 0 0 0
CPPgServer 0 0 0 0 0
CPPgSorting 0 0 0 0 0
CPPgStats 0 0 0 0 0
CPPgWindow 0 0 0 0 0
CPPToolTip 0 0 0 0 0
CPreferences 0 0 0 0 0
CPreferencesDlg 0 0 0 0 0
CPreparedHyperText 0 0 0 0 2
CPreviewThread 0 0 0 0 0
CProcessingCmdThread 0 0 0 0 0
CProgressCtrlX 0 0 0 0 0
CQArray 0 0 0 0 0
CQueueListCtrl 0 0 0 0 0
CResizableDialog 0 0 0 0 0
CResizableFormView 0 0 0 0 0
CResizableFrame 0 0 0 0 0
CResizableGrip 0 0 0 0 0
CResizableLayout 0 0 0 0 0
CResizableMDIChild 0 0 0 0 0

Appendix 4 – eMulePlus Software System Content Validation

 320

CResizableMDIFrame 0 0 0 0 0
CResizableMinMax 0 0 0 0 0
CResizablePage 0 0 0 0 0
CResizablePageEx 0 0 0 0 0
CResizableSheet 0 0 0 0 0
CResizableSheetEx 0 0 0 0 0
CResizableState 0 0 0 0 0
CRollupCtrl 0 0 0 0 0
CRollupGripper 0 0 0 0 0
CRollupHeader 0 0 0 0 0
CRWLockLite 0 0 0 0 0
CSafeArray 0 0 0 0 0
CSafeArraySorted 0 0 0 0 0
CSafeFile 0 0 0 0 0
CSafeMemFile 0 0 0 0 0
CSaveDC 0 0 0 0 0
CSearchDlg 4 0 0 0 0
CSearchFile 0 0 1 0 0
CSearchList 0 0 1 0 0
CSearchListCtrl 0 0 0 0 1
CSecuredVar 0 0 0 0 0
CSelBitmap 0 0 0 0 0
CSelBkColor 0 0 0 0 0
CSelBkMode 0 0 0 0 0
CSelBrush 0 0 0 0 0
CSelect 0 0 0 0 0
CSelFont 0 0 0 0 0
CSelMapMode 0 0 0 0 0
CSelPalette 0 0 0 0 0
CSelPen 0 0 0 0 0
CSelROP2 0 0 0 0 0
CSelStock 0 0 0 0 0
CSelTextAlign 0 0 0 0 0
CSelTextColor 0 0 0 0 0
CServer 0 0 0 0 0
CServerConnect 0 0 0 0 2
CServerEntry 0 0 0 0 0
CServerList 0 0 2 0 0
CServerListCtrl 0 0 0 0 1
CServerSocket 2 0 3 0 0
CServerWnd 4 0 1 0 0
CSharedFileList 0 0 3 0 0
CSharedFilesCtrl 0 0 0 0 2
CSharedFilesWnd 4 0 0 0 1
CShellContextMenu 0 0 0 0 0
CSourceEntry 0 0 0 0 0
CSplashScreen 0 0 0 0 0
CSplitterControl 0 0 0 0 0
CStatisticsData 0 0 0 0 0
CStatisticsDlg 4 0 0 0 0
CStoredSources 0 0 0 0 0
CStoredSourcesContainer 0 0 0 0 0
CTag 0 0 0 0 0
CTaskbarNotifier 0 0 0 0 0
CThemeHelperST 0 0 0 0 0
CTitleMenu 0 0 0 0 0

Appendix 4 – eMulePlus Software System Content Validation

 321

CTransferWnd 4 0 0 0 0
CTrayDialog 0 0 0 0 0
CTrayMenuBtn 0 0 0 0 0
CUDPSocket 0 0 1 0 0
CUDPSocketWnd 0 0 0 0 0
CUpdateServerMetDlg 0 0 0 0 1
CUpDownClient 0 0 1 0 0
CUploadListCtrl 0 0 0 0 0
CUploadQueue 0 0 1 0 1
CVisLine 0 0 0 0 0
CVisPart 0 0 0 0 0
CVisualStylesXP 0 0 0 0 0
CWebServer 0 0 1 0 5
CWebSocket 0 0 0 0 1
CXPStyleButtonST 0 0 0 0 0
Db 0 0 1 0 3
Dbc 0 0 1 0 1
DbDeadlockException 0 0 0 0 0
DbEnv 0 0 3 0 7
DbException 0 0 0 0 0
DbLock 0 0 1 0 1
DbLockNotGrantedException 0 0 0 0 0
DbLogc 0 0 1 0 2
DbLsn 0 0 2 0 0
DbMemoryException 0 0 0 0 0
DbMpoolFile 0 0 1 0 1
DbPreplist 0 0 0 0 0
DbRunRecoveryException 0 0 0 0 0
Dbt 0 0 4 0 0
DbTxn 0 0 1 0 0
InputBox 0 0 0 0 0
MD5Sum 0 0 0 0 0
MiniDumper 0 0 0 0 0
Packet 0 0 0 0 0
sfl_itemdata 0 0 0 0 0
StatusBarCtrl 0 0 0 0 0
XBMDraw 0 0 0 0 0

Appendix 5 – eMulePlus Modularity Data Values

 322

5. Appendix 5 – eMulePlus Modularity Data Values

The following table lists, for each measured eMulePlus software system class, the total lines of
code, unweighted and weighted modularity aggregate and Euclidean distance values calculated
according to the methods described in section 7.1.

Table Appendix 5-1 eMulePlus software system class lines of code, unweighted and weighted
modularity aggregate and modularity Euclidean distance values

 Case Summaries

class eMulePlus
Class Lines of

Code

eMulePlus
Class

Modularity
Aggregate

eMulePlus
Weighted

Class
Modularity
Aggregate

eMulePlus
Class

Modularity
Euclidean
Distance

C3DPreviewControl 16.00 -.87585 -.91668 2.07

CAboutDlg 29.00 -.60070 -.36159 3.60

CAbstractFile 37.00 2.58045 1.70363 18.94

CAddFileThread 27.00 -.28231 -.35316 4.25

CAddFriend 56.00 -.50632 -.41479 3.39

CArchiveRecovery 721.00 -.29650 -.36957 4.21

CArrowCombo 6.00 -.73739 -.63735 3.94

CAsyncProxySocket 780.00 .11448 .55587 5.88

CAsyncProxySocketLayer 1026.00 -.24634 -.02477 5.11

CAsyncSocketEx 649.00 1.12790 .74668 7.48

CAsyncSocketExHelperWindow 235.00 -.13913 -.21102 6.17

CAsyncSocketExLayer 411.00 .66231 .78323 7.28

CBarShader 212.00 -.53461 -.22825 5.17

CButtonST 1025.00 -.58651 -.41554 4.87

CCeXDib 234.00 -.75752 -.67797 3.61

CChatItem 5.00 -.82489 -1.05747 .96

CChatSelector 339.00 -.17973 -.47212 3.31

CChatWnd 42.00 .43906 .07436 5.93

CCKey 3.00 -.55626 -.51555 4.05

CClientCredits 68.00 -.67394 -.75294 3.23

CClientCreditsList 111.00 -.04057 -.07867 4.92

CClientDetailDialog 177.00 .41749 .23093 6.38

CClientList 238.00 -.62400 -.65221 3.53

CClientReqSocket 585.00 3.28632 2.53095 12.84

CClientSource 6.00 -.75634 -.67558 4.60

CClientUDPSocket 172.00 .11750 .35294 5.20

CClosableTabCtrl 58.00 -.59802 -.35619 3.53

CColorButton 196.00 3.77392 2.25091 23.08

CColorFrameCtrl 37.00 -.83842 -.84116 3.15

CColourPopup 578.00 .35790 1.57230 9.06

CCommentDialog 48.00 -.61272 -.62944 2.07

Appendix 5 – eMulePlus Modularity Data Values

 323

CCommentDialogLst 68.00 1.10557 .59235 7.27

CCreditsCtrl 969.00 -.06287 .72344 6.76

CCriticalSection_INL 6.00 -.86457 -.89393 3.07

CDblScope 148.00 -.54958 -.25847 4.14

CDialogMinTrayBtn 20.00 -.49566 -.40728 4.20

CDirectoryTreeCtrl 392.00 -.50785 -.66147 2.97

CDownloadListCtrl 1931.00 2.06766 1.49134 11.84

CDownloadQueue 883.00 1.04631 .56561 7.45

CED2KFileLink 153.00 -.25008 -.40680 4.03

CED2KLink 47.00 -.04337 -.06667 6.07

CED2KServerLink 49.00 -.43120 -.52859 3.67

CED2KServerListLink 35.00 -.64825 -.72288 3.41

CEdit2 15.00 -.88060 -.92627 2.00

CEMSocket 415.00 2.41215 1.61155 11.13

CemuleApp 383.00 1.69193 1.22043 10.87

CemuleDlg 1149.00 1.68495 1.23411 8.51

CEnBitmap 140.00 .56702 .60114 7.83

CFileDetailDialog 211.00 .02838 -.31046 5.13

CFileHashControl 136.00 -.80750 -.77880 3.37

CFileInfoDialog 159.00 -.30829 -.25887 4.27

CFileStatistic 314.00 1.23502 1.29067 11.05

CFontPreviewCombo 200.00 .51583 1.89091 10.35

CFriend 79.00 3.15043 6.60609 23.18

CFriendList 171.00 -.00270 -.13315 4.53

CFriendListCtrl 137.00 -.53307 -.58146 3.64

CGDIThread 45.00 -.60603 -.37234 4.45

CGradientStatic 140.00 -.64065 -.68579 3.39

CHostnameSourceWnd 3.00 -.99958 -1.16630 .00

CHttpDownloadDlg 537.00 -.64065 -.68579 3.39

CHyperLink 67.00 -.37111 -.36358 4.75

CHyperTextCtrl 755.00 -.50675 -.51020 2.93

CIconStatic 25.00 -.84555 -.85555 3.12

CInfoListCtrl 503.00 .19333 -.11217 5.28

CIni 661.00 -.27211 .30130 6.87

CInputBox .00 -1.00601 -1.17927 .00

CIPFilter 122.00 -.83604 -.83637 3.16

CIrcMain 443.00 .09227 -.16698 4.62

CIrcSocket 132.00 .33393 -.05347 5.25

CIrcWnd 1159.00 1.59339 1.35106 8.59

CKeyWord 12.00 -.37111 -.36358 4.75

CKnownFile 788.00 4.40733 3.03664 15.83

CKnownFileList 337.00 .84524 .25687 6.42

CLanCast 188.00 -.02054 .09264 8.47

ClientsData 15.00 -1.00601 -1.17927 .00

CLineInfo 12.00 -.28369 .27795 5.56

CLinePartInfo 15.00 -.22230 .31923 5.58

CListBoxST 379.00 -.73177 -.62601 3.80

Appendix 5 – eMulePlus Modularity Data Values

 324

CListCtrlSorter 29.00 -.44699 -.55450 3.85

CListCtrlSorterItem 48.00 1.47849 3.36783 14.62

CListenSocket 142.00 .18672 .08588 5.57

CLoggable 24.00 1.81771 .98019 13.92

CMemDC 55.00 -.85030 -.86515 3.10

CMemDC2 59.00 -.85030 -.86515 3.10

CMeterIcon 292.00 -.14268 .56243 6.33

CMuleCtrlItem 12.00 -.86457 -.89393 3.07

CMuleListCtrl 630.00 -.09998 .15315 4.95

CMuleRollup 6.00 -.80871 -1.04659 1.37

CMuleSystrayDlg 344.00 -.11418 .37632 5.76

CMuleToolbarCtrl 453.00 -.00436 .20759 5.85

CMyFont 24.00 -.78848 -.74043 3.57

CNewServerDlg 43.00 -.63167 -.66768 3.37

COptionTree 828.00 -.61153 -.46601 4.15

COptionTreeCheckButton 144.00 -.78891 -.82386 3.13

COptionTreeColorPopUp 798.00 .56755 1.75166 9.23

COptionTreeFileDlg 257.00 -.82177 -.80758 3.25

COptionTreeFontSel 749.00 .58871 .64490 7.78

COptionTreeFontSelColorButto
n

208.00 3.78819 2.27969 23.09

COptionTreeFontSelFontCombo 103.00 -.45953 -.56399 3.77

COptionTreeFontSelSizeCombo 44.00 -.65016 -.70497 3.33

COptionTreeImagePopUp 340.00 .33196 1.27637 6.93

COptionTreeInfo 15.00 -.85030 -.86515 3.10

COptionTreeIPAddressEdit 32.00 -.83604 -.83637 3.16

COptionTreeItem 515.00 .83016 .60812 7.77

COptionTreeItemCheckBox 100.00 -.27383 -.45830 4.33

COptionTreeItemColor 278.00 -.46638 -.58138 3.64

COptionTreeItemComboBox 111.00 -.30465 -.14241 4.91

COptionTreeItemDate 118.00 -.55494 -.64733 3.49

COptionTreeItemEdit 426.00 -.40933 -.35359 3.77

COptionTreeItemFile 359.00 -.35485 -.24368 4.56

COptionTreeItemFont 314.00 -.11733 .12278 7.18

COptionTreeItemHyperLink 324.00 -.56920 -.67612 3.44

COptionTreeItemImage 423.00 -.20519 -.05447 5.08

COptionTreeItemIPAddress 287.00 -.50262 -.54180 3.91

COptionTreeItemRadio 136.00 -.27383 -.45830 4.33

COptionTreeItemSpinner 138.00 -.27383 -.45830 4.33

COptionTreeItemStatic 91.00 -.57396 -.68571 3.42

COptionTreeList 624.00 .06275 .48967 5.68

COptionTreeRadioButton 204.00 -.74611 -.73752 3.40

COptionTreeSpinnerButton 560.00 -.46912 -.17872 5.21

COptionTreeSpinnerEdit 162.00 -.54483 -.24888 4.17

COScopeCtrl 518.00 .00997 .87039 8.51

CPageSelectionBox 7.00 -.64646 -.45391 3.02

CPartFile 3543.00 5.23590 3.51692 22.61

Appendix 5 – eMulePlus Modularity Data Values

 325

CPIDL 171.00 -.64392 -.44879 3.65

CPPgAdvanced 177.00 -.12446 .11199 4.76

CPPgConnection 480.00 .21040 .67482 6.20

CPPgDirectories 171.00 -.32535 -.04970 4.27

CPPgFiles 217.00 -.01864 .56906 6.08

CPPgGeneral 204.00 -.02350 .18120 4.75

CPPgHTTPD 88.00 -.43189 -.26464 3.57

CPPgIRC 169.00 -.31604 -.03091 4.59

CPPgMessaging 82.00 -.52704 -.45659 2.77

CPPgModPT 132.00 -.30965 -.01801 4.68

CPPgNotify 133.00 -.30653 -.01173 4.60

CPPgProxy 108.00 -.71124 -.82819 2.37

CPPgScheduler 208.00 -.31034 -.01941 4.44

CPPgServer 150.00 -.31398 -.02677 4.62

CPPgSorting 321.00 -.23154 .13956 4.28

CPPgStats 120.00 -.04942 .50697 5.65

CPPgWindow 119.00 -.12942 .10198 4.95

CPPToolTip 2134.00 .05035 .95185 8.56

CPreferences 1594.00 -.03118 -.16887 4.97

CPreferencesDlg 161.00 -.48596 -.37372 3.09

CPreparedHyperText 674.00 -.04286 -.24221 5.57

CPreviewThread 90.00 -1.00601 -1.17927 .00

CProcessingCmdThread 182.00 -.55370 -.62308 3.18

CProgressCtrlX 369.00 -.19037 -.09734 5.35

CQArray 6.00 -.65967 -.72416 3.28

CQueueListCtrl 569.00 .21813 -.19659 4.53

CResizableDialog 61.00 .75523 .20106 7.34

CResizableFormView 71.00 .09895 -.08430 5.16

CResizableFrame 20.00 -.36240 -.52425 4.20

CResizableGrip 80.00 .72166 .57563 9.60

CResizableLayout 336.00 .82954 .62813 8.56

CResizableMDIChild 31.00 -.22392 -.24490 4.40

CResizableMDIFrame 20.00 -.36240 -.52425 4.20

CResizableMinMax 76.00 .63007 .14315 8.43

CResizablePage 20.00 -.63517 -.80919 2.19

CResizablePageEx 27.00 -.61912 -.77682 2.42

CResizableSheet 176.00 1.36428 .58459 8.90

CResizableSheetEx 197.00 .24033 -.17715 6.25

CResizableState 57.00 .66141 .28895 8.70

CRollupCtrl 315.00 -.55068 -.34326 4.51

CRollupGripper 105.00 1.37146 3.61707 14.89

CRollupHeader 155.00 -.69319 -.54819 4.11

CRWLockLite 5.00 -.86457 -.89393 3.07

CSafeArray 349.00 -.78378 -.81352 2.82

CSafeArraySorted 54.00 -.56445 -.66652 3.45

CSafeFile 9.00 -.57336 -.30644 4.04

CSafeMemFile 9.00 -.57336 -.30644 4.04

Appendix 5 – eMulePlus Modularity Data Values

 326

CSaveDC 10.00 -.13655 .30944 6.58

CSearchDlg 956.00 2.26987 1.49423 9.68

CSearchFile 82.00 -.14029 -.40687 4.29

CSearchList 206.00 .84864 .52287 7.72

CSearchListCtrl 283.00 .51355 .14355 6.11

CSecuredVar 54.00 -.81464 -.79319 3.31

CSelBitmap 18.00 -.64350 -.71328 3.42

CSelBkColor 17.00 -.64350 -.71328 3.42

CSelBkMode 15.00 .21357 1.01578 10.64

CSelBrush 17.00 -.64350 -.71328 3.42

CSelect 2.00 -.20790 -.64256 5.54

CSelFont 17.00 -.64350 -.71328 3.42

CSelMapMode 15.00 .21357 1.01578 10.64

CSelPalette 32.00 -.63874 -.70369 3.45

CSelPen 17.00 -.64350 -.71328 3.42

CSelROP2 15.00 .21357 1.01578 10.64

CSelStock 15.00 -.64825 -.72288 3.41

CSelTextAlign 17.00 -.64350 -.71328 3.42

CSelTextColor 17.00 -.64350 -.71328 3.42

CServer 255.00 -.34932 -.45436 3.95

CServerConnect 458.00 .72201 .45376 6.57

CServerEntry 66.00 -.26328 .31913 5.70

CServerList 714.00 .69978 .37187 6.88

CServerListCtrl 581.00 .45631 .13720 6.20

CServerSocket 320.00 1.73115 1.00624 9.72

CServerWnd 260.00 1.80946 .94373 8.55

CSharedFileList 230.00 1.00181 .38515 8.41

CSharedFilesCtrl 1505.00 2.23561 2.24940 13.67

CSharedFilesWnd 133.00 1.71399 1.31678 8.38

CShellContextMenu 182.00 -.63114 -.66660 3.46

CSourceEntry 405.00 -.31457 .10294 6.75

CSplashScreen 65.00 -.56761 -.29483 3.81

CSplitterControl 230.00 -.01501 .81998 7.33

CStatisticsData 208.00 -.81251 -.78890 3.22

CStatisticsDlg 688.00 2.09415 1.28955 9.80

CStoredSources 455.00 -.32585 .08018 6.59

CStoredSourcesContainer 78.00 -.57723 -.42696 4.22

CTag 145.00 -.58834 -.58025 3.92

CTaskbarNotifier 529.00 -.49288 -.38768 3.59

CThemeHelperST 59.00 -.79253 -.74859 3.14

CTitleMenu 109.00 -.57346 -.30664 4.89

CTransferWnd 475.00 .78168 .63469 7.49

CTrayDialog 237.00 -.32944 -.16228 4.89

CTrayMenuBtn 79.00 -.58819 -.33635 4.66

CUDPSocket 251.00 1.00840 1.57237 10.72

CUDPSocketWnd 2.00 -1.00601 -1.17927 .00

CUpdateServerMetDlg 43.00 -.34386 -.47733 3.95

Appendix 5 – eMulePlus Modularity Data Values

 327

CUpDownClient 2620.00 1.74706 1.15012 9.53

CUploadListCtrl 506.00 .28606 -.15051 4.78

CUploadQueue 644.00 1.56944 .81678 9.65

CVisLine .00 -1.00601 -1.17927 .00

CVisPart 15.00 -.66111 -.74882 2.98

CVisualStylesXP 420.00 -.79305 -.74964 3.10

CWebServer 2165.00 2.52829 1.33826 12.85

CWebSocket 166.00 1.70375 3.89715 16.80

CXPStyleButtonST 56.00 -.56920 -.67612 3.44

Db 18.00 .53495 .29343 8.05

Dbc .00 -.36995 -.75154 3.23

DbDeadlockException .00 -.80871 -1.04659 1.37

DbEnv 18.00 2.21865 1.19864 16.63

DbException .00 -.76044 -1.01413 1.71

DbLock .00 -.36995 -.75154 3.23

DbLockNotGrantedException .00 -.80871 -1.04659 1.37

DbLogc .00 -.07976 -.55639 4.84

DbLsn .00 -.31429 -.71411 4.95

DbMemoryException .00 -.80871 -1.04659 1.37

DbMpoolFile 10.00 -.02688 -.05943 4.83

DbPreplist .00 -.87882 -.92269 2.46

DbRunRecoveryException .00 -.80871 -1.04659 1.37

Dbt 17.00 .51888 .03640 10.37

DbTxn 18.00 -.50444 -.63257 3.97

InputBox 22.00 -.71712 -.84006 2.29

MD5Sum 28.00 -.27841 -.44219 4.33

MiniDumper 128.00 -.53262 -.71145 2.63

Packet 158.00 .33794 1.53203 10.11

sfl_itemdata .00 -.85841 -.88150 2.65

StatusBarCtrl 70.00 -.52176 -.44594 4.93

XBMDraw 168.00 -.26137 .32297 7.77

Appendix 5 – eMulePlus Modularity Data Values

 328

The following tables list the eMulePlus object-class modularity aggregates derived in the
manner described in section 7.1 of Chapter 7. As shown in Table 7-1 of Chapter 7, due to
limitations of the measurement instrument, the full object modularity aggregation cannot be
calculated. This is due to the inability of the measurement instrument to measure with sufficient
validity, the connection via non-standard interface sub-characteristic of object connection
obscurity and the entire dependency sub-characteristic. In place of the full object modularity
aggregate, aggregates are calculated for the major measured object modularity sub-
characteristics and from these, a partial object modularity aggregate is calculated.

Table Appendix 5-2 eMulePlus software system class and object modularity aggregate values

Class

eMulePlus
Object

Interface
Dependence
Aggregate

eMulePlus
Object External
Relationships

Aggregate

eMulePlus
Object

Connection
Obscurity
Aggregate

eMulePlus
Partial Object

Modularity
Aggregate

C3DPreviewControl -.35368 -.33725 -.53396 -.59684

CAboutDlg .91996 -.46311 -.53396 -.03757

CAbstractFile .23408 -.49163 -.53396 -.38567

CAddFileThread -.22217 .02011 .14459 -.02800

CAddFriend -.65407 -.49163 .22639 -.44794

CArchiveRecovery -.45693 -.49163 .22639 -.35188

CArrowCombo .24574 -.36577 -.53396 -.31866

CAsyncProxySocket -.15834 -.40606 1.66563 .53658

CAsyncProxySocketLayer .03224 .09739 1.66563 .87475

CAsyncSocketEx -.02863 3.22276 1.35366 2.21595

CAsyncSocketExHelperWindow .01374 1.32715 .88996 1.08700

CAsyncSocketExLayer -.65407 3.16621 1.07258 1.74669

CBarShader -.28160 -.36577 .12806 -.25304

CButtonST -.17025 -.49163 -.53396 -.58268

CCeXDib -.17500 -.36577 -.53396 -.52367

CChatItem -.65407 -.43459 -.04589 -.55282

CChatSelector -.43376 -.33725 -.43563 -.58795

CChatWnd -.65407 -.30872 -.43563 -.68139

CCKey .24574 -.49163 -.43563 -.33208

CClientCredits -.33358 -.36577 -.43563 -.55303

CClientCreditsList -.28168 -.33725 -.24076 -.41889

CClientDetailDialog -.65407 -.46311 .25088 -.42211

CClientList -.20562 -.36577 -.43563 -.49068

CClientReqSocket -.35288 1.90174 3.80299 2.60773

CClientSource .61765 -.49163 -.53396 -.19878

CClientUDPSocket -.36228 -.36577 -.43563 -.56701

CClosableTabCtrl .90174 -.36577 -.53396 .00098

CColorButton -.43496 .60017 7.51239 3.74097

CColorFrameCtrl -.42680 -.36577 -.53396 -.64636

CColourPopup 3.04718 -.49163 -.53396 .98504

CCommentDialog -.65407 -.46311 -.24076 -.66167

Appendix 5 – eMulePlus Modularity Data Values

 329

CCommentDialogLst -.65407 -.46311 -.14243 -.61376

CCreditsCtrl 1.02286 -.36577 -.53396 .05999

CCriticalSection_INL -.35795 -.36577 -.53396 -.61282

CDblScope -.29734 -.36577 -.53396 -.58328

CDialogMinTrayBtn -.49175 -.49163 -.53396 -.73934

CDirectoryTreeCtrl -.40900 -.33725 -.33730 -.52797

CDownloadListCtrl -.14108 -.36577 .44932 -.02803

CDownloadQueue -.20955 .97814 1.28421 1.00025

CED2KFileLink -.27234 -.49163 -.33730 -.53661

CED2KLink 1.04796 -.49163 -.43563 .05881

CED2KServerLink -.27234 -.49163 -.43563 -.58452

CED2KServerListLink -.30920 -.49163 -.43563 -.60248

CEdit2 -.36586 -.36577 -.53396 -.61667

CEMSocket -.32872 -.34901 2.25203 .76709

CemuleApp .76342 .02180 3.83419 2.25085

CemuleDlg -.10892 1.10900 .40640 .68532

CEnBitmap .38386 -.23991 .65232 .38799

CFileDetailDialog -.46088 -.43459 .34742 -.26704

CFileHashControl -.25836 -.33725 -.33909 -.45544

CFileInfoDialog -.65407 -.46311 -.14243 -.61376

CFileStatistic .76011 1.85646 .52714 1.53180

CFontPreviewCombo 1.93565 .60017 .12806 1.29800

CFriend 8.67226 4.92418 2.06161 7.62951

CFriendList -.16124 -.33725 -.14243 -.31229

CFriendListCtrl -.38456 -.21139 -.43563 -.50264

CGDIThread .44554 -.49163 -.53396 -.28264

CGradientStatic -.49992 -.36577 -.43563 -.63408

CHostnameSourceWnd -.65407 -.33725 -.33909 -.64825

CHttpDownloadDlg -.65407 -.49163 -.43563 -.77052

CHyperLink -.35795 .29781 -.30871 -.17973

CHyperTextCtrl .86130 -.02848 -.14422 .33553

CIconStatic -.40994 -.21139 -.33909 -.46797

CInfoListCtrl -.31566 -.13758 .83371 .18539

CIni 1.28921 .47430 -.53396 .59911

CInputBox -.65407 -.36577 -.53396 -.75710

CIPFilter -.28483 -.36577 -.53396 -.57719

CIrcMain -.21750 -.18286 .05244 -.16953

CIrcSocket -.02534 -.22315 2.15370 .92833

CIrcWnd 1.16837 -.12581 -.14243 .43859

CKeyWord -.35795 .29781 -.30871 -.17973

CKnownFile .48087 .36917 .24649 .53429

CKnownFileList -.31180 1.29022 .30368 .62471

CLanCast -.20702 -.33725 -.33909 -.43042

ClientsData -.65407 -.49163 -.53396 -.81843

CLineInfo 1.17081 -.49163 -.53396 .07076

CLinePartInfo 1.24453 -.43459 -.14422 .32438

CListBoxST 1.36230 -.36577 -.53396 .22539

Appendix 5 – eMulePlus Modularity Data Values

 330

CListCtrlSorter -.32053 .11745 -.14861 -.17136

CListCtrlSorterItem .74280 .17194 -.30871 .29529

CListenSocket -.16513 .20302 2.05098 1.01782

CLoggable -.22390 -.49163 -.53396 -.60882

CMemDC -.32139 .47430 -.53396 -.18567

CMemDC2 -.32139 -.49163 -.53396 -.65633

CMeterIcon -.30953 -.36577 -.53396 -.58923

CMuleCtrlItem -.35795 .53135 -.14422 .01422

CMuleListCtrl .92257 -.23991 -.53396 .07245

CMuleRollup -.43080 -.49163 -.53396 -.70964

CMuleSystrayDlg -.23445 -.05201 -.43563 -.35185

CMuleToolbarCtrl -.65407 .11745 -.24516 -.38093

CMyFont -.16296 -.36577 -.53396 -.51781

CNewServerDlg -.65407 -.33725 -.24076 -.60034

COptionTree -.31253 2.32261 .05065 1.00411

COptionTreeCheckButton -.40657 -.46311 -.33909 -.58898

COptionTreeColorPopUp 3.09593 -.49163 -.43563 1.05670

COptionTreeFileDlg -.25792 -.36577 -.53396 -.56408

COptionTreeFontSel -.51305 -.40606 .65232 -.12999

COptionTreeFontSelColorButton -.45389 .60017 7.51239 3.73175

COptionTreeFontSelFontCombo .08374 -.36577 -.33730 -.30178

COptionTreeFontSelSizeCombo -.27264 -.36577 -.43563 -.52334

COptionTreeImagePopUp .91353 -.46311 -.24076 .10216

COptionTreeInfo -.46336 -.21139 -.33909 -.49400

COptionTreeIPAddressEdit -.51068 -.36577 -.53396 -.68723

COptionTreeItem .71666 2.63071 .73538 1.98936

COptionTreeItemCheckBox .70097 -.32049 .93025 .63866

COptionTreeItemColor .68836 -.34901 .73538 .52367

COptionTreeItemComboBox .71022 -.34901 .73538 .53432

COptionTreeItemDate .70975 -.34901 .73538 .53409

COptionTreeItemEdit .69941 -.34901 .73538 .52905

COptionTreeItemFile .70176 -.32049 .73538 .54410

COptionTreeItemFont .71293 -.34901 .73538 .53564

COptionTreeItemHyperLink .69455 -.34901 .73538 .52668

COptionTreeItemImage .68816 -.34901 .73538 .52358

COptionTreeItemIPAddress .69144 -.23492 .73538 .58077

COptionTreeItemRadio .69224 -.32049 .93025 .63441

COptionTreeItemSpinner -.22230 -.29197 .93025 .20269

COptionTreeItemStatic .71845 -.34901 .73538 .53833

COptionTreeList -.18822 -.21139 -.14243 -.26411

COptionTreeRadioButton -.32858 -.46311 -.33909 -.55098

COptionTreeSpinnerButton -.38468 -.30872 -.33909 -.50309

COptionTreeSpinnerEdit .82574 -.21139 -.33909 .13413

COScopeCtrl 8.40274 -.36577 -.53396 3.65590

CPageSelectionBox -.65407 -.49163 -.53396 -.81843

CPartFile .35319 2.11881 .63801 1.51538

CPIDL -.30060 -.49163 -.53396 -.64620

Appendix 5 – eMulePlus Modularity Data Values

 331

CPPgAdvanced -.24573 -.33725 -.14243 -.35346

CPPgConnection .01903 -.33725 -.14243 -.22445

CPPgDirectories -.23684 -.28020 -.24076 -.36924

CPPgFiles -.10426 -.33725 -.24076 -.33244

CPPgGeneral -.25447 -.30872 -.24076 -.39173

CPPgHTTPD -.47626 -.33725 -.24076 -.51370

CPPgIRC -.23869 -.33725 -.24076 -.39794

CPPgMessaging -.65407 -.33725 -.24076 -.60034

CPPgModPT -.65407 -.33725 -.24076 -.60034

CPPgNotify -.26858 -.33725 -.24076 -.41251

CPPgProxy -.65407 -.33725 -.24076 -.60034

CPPgScheduler -.31885 -.33725 -.24076 -.43700

CPPgServer -.24510 -.33725 -.24076 -.40106

CPPgSorting -.38422 -.08053 -.24076 -.34376

CPPgStats -.29249 -.30872 -.24076 -.41026

CPPgWindow -.65407 -.30872 -.14243 -.53853

CPPToolTip .84907 -.28020 -.53396 .01701

CPreferences -.36079 8.06950 -.23897 3.63969

CPreferencesDlg -.65407 .14766 -.24076 -.36406

CPreparedHyperText -.35581 .66948 -.15301 .07828

CPreviewThread -.65407 -.46311 -.33909 -.70958

CProcessingCmdThread .17043 -.36577 -.43563 -.30745

CProgressCtrlX -.44583 -.36577 -.53396 -.65564

CQArray -.29702 -.49163 -.43563 -.59654

CQueueListCtrl -.25521 -.33725 -.23897 -.40512

CResizableDialog -.65407 -.49163 -.53396 -.81843

CResizableFormView -.65407 -.49163 -.53396 -.81843

CResizableFrame -.65407 -.49163 -.53396 -.81843

CResizableGrip -.65407 -.49163 -.53396 -.81843

CResizableLayout -.65407 -.49163 -.53396 -.81843

CResizableMDIChild -.65407 -.49163 -.53396 -.81843

CResizableMDIFrame -.65407 -.49163 -.53396 -.81843

CResizableMinMax -.65407 -.49163 -.53396 -.81843

CResizablePage -.65407 -.49163 -.53396 -.81843

CResizablePageEx -.65407 -.49163 -.53396 -.81843

CResizableSheet .33569 -.49163 .65232 .24186

CResizableSheetEx .33549 -.49163 -.53396 -.33626

CResizableState -.65407 -.49163 -.53396 -.81843

CRollupCtrl -.43080 -.36577 -.53396 -.64831

CRollupGripper -.65407 .47430 -.53396 -.34777

CRollupHeader -.45389 .47430 -.53396 -.25023

CRWLockLite -.35795 -.46311 -.53396 -.66024

CSafeArray -.29804 -.36577 -.53396 -.58363

CSafeArraySorted -.29709 -.49163 -.53396 -.64449

CSafeFile 1.09032 -.49163 -.53396 .03154

CSafeMemFile 1.09032 -.49163 -.53396 .03154

CSaveDC .38465 -.49163 -.53396 -.31231

Appendix 5 – eMulePlus Modularity Data Values

 332

CSearchDlg -.48680 -.22315 .15255 -.27160

CSearchFile -.35795 .04608 -.21038 -.25447

CSearchList -.10779 .32633 .47613 .33848

CSearchListCtrl .92014 .24331 .24470 .68613

CSecuredVar -.22999 -.36577 -.53396 -.55047

CSelBitmap -.41059 -.49163 -.53396 -.69979

CSelBkColor -.41059 -.49163 -.53396 -.69979

CSelBkMode .84920 -.49163 -.53396 -.08595

CSelBrush -.41059 -.49163 -.53396 -.69979

CSelect -.65407 -.49163 -.53396 -.81843

CSelFont -.41059 -.46311 -.53396 -.68589

CSelMapMode .84920 -.49163 -.53396 -.08595

CSelPalette -.37947 -.49163 -.53396 -.68463

CSelPen -.41059 -.49163 -.53396 -.69979

CSelROP2 .84920 -.49163 -.53396 -.08595

CSelStock -.42278 -.49163 -.53396 -.70573

CSelTextAlign -.41059 -.49163 -.53396 -.69979

CSelTextColor -.41059 -.49163 -.53396 -.69979

CServer -.30153 .85189 -.33730 .10381

CServerConnect .25229 1.03530 .72480 .98055

CServerEntry .12731 -.49163 -.53396 -.43770

CServerList -.11701 1.04695 .40462 .65028

CServerListCtrl -.47957 .11745 .04804 -.15304

CServerSocket -.34703 1.44704 3.31753 2.15248

CServerWnd -.45008 .68038 -.11205 .05762

CSharedFileList -.28010 1.64172 1.31281 1.30314

CSharedFilesCtrl -.06255 .72653 .63183 .63139

CSharedFilesWnd -.20002 .23154 -.14683 -.05618

CShellContextMenu -.22390 -.36577 -.43563 -.49959

CSourceEntry -.16949 -.36577 -.53396 -.52099

CSplashScreen .98024 -.43459 -.53396 .00570

CSplitterControl -.34687 -.49163 -.53396 -.66875

CStatisticsData -.02583 -.33725 -.53396 -.43709

CStatisticsDlg -.26567 -.16610 1.04563 .29911

CStoredSources -.15091 -.36577 -.53396 -.51194

CStoredSourcesContainer -.21750 -.49163 -.53396 -.60571

CTag -.11422 -.49163 -.43563 -.50747

CTaskbarNotifier -.65407 -.36577 -.43563 -.70919

CThemeHelperST -.24773 -.11405 -.53396 -.43646

CTitleMenu -.28992 1.22948 -.53396 .19763

CTransferWnd -.38766 -.19463 -.33730 -.44808

CTrayDialog -.31406 -.49163 -.53396 -.65276

CTrayMenuBtn .70132 -.36577 -.53396 -.09668

CUDPSocket .91941 .38338 .17936 .72219

CUDPSocketWnd -.65407 -.33725 -.33909 -.64825

CUpdateServerMetDlg -.57695 .11745 -.05029 -.24840

CUpDownClient .41827 4.80763 2.01597 3.52866

Appendix 5 – eMulePlus Modularity Data Values

 333

CUploadListCtrl -.23979 -.33725 -.14065 -.34970

CUploadQueue -.32140 .65516 2.64586 1.45184

CVisLine -.65407 -.49163 -.53396 -.81843

CVisPart 1.39348 -.12581 .24553 .73732

CVisualStylesXP -.24650 -.49163 -.53396 -.61984

CWebServer -.46323 3.53722 1.33196 2.14684

CWebSocket 1.57572 .95752 -.14861 1.16193

CXPStyleButtonST -.18187 -.33725 -.33909 -.41817

Db .54302 1.43869 .45759 1.18857

Dbc -.65407 .50078 -.11823 -.13230

DbDeadlockException -.65407 -.49163 -.53396 -.81843

DbEnv -.32139 4.43025 1.47512 2.72084

DbException -.65407 -.49163 -.53396 -.81843

DbLock -.65407 .62664 -.11823 -.07098

DbLockNotGrantedException -.65407 -.43459 -.14422 -.60073

DbLogc -.65407 .95547 .07224 .18206

DbLsn -.65407 .58380 -.08346 -.07491

DbMemoryException -.65407 -.46311 -.33909 -.70958

DbMpoolFile .05728 .50078 -.11823 .21431

DbPreplist -.05038 -.46311 -.33909 -.41542

DbRunRecoveryException -.65407 -.49163 -.53396 -.81843

Dbt -.35795 1.91095 .36705 .93556

DbTxn -.32139 .17194 -.30871 -.22324

InputBox -.65407 -.49163 -.43563 -.77052

MD5Sum -.24827 -.49163 -.23897 -.47697

MiniDumper -.40242 -.36577 -.33730 -.53866

Packet 2.49416 .13768 -.53396 1.02221

sfl_itemdata .06096 -.46311 -.33909 -.36117

StatusBarCtrl -.65407 -.43459 -.43563 -.74272

XBMDraw .95522 -.49163 -.53396 -.03429

Zero -.65407 -.49163 -.53396 -.81843

Appendix 6 – CPartFile Interface Dependence Data

 334

6. Appendix 6 - CPartFile Interface Dependence Data

6.1. Class CPartFile

The following tables list the measured data describing the levels of interface dependence

present in the CPartFile class within the eMulePlus software system.

Class CPartFile
 interface method CIEI1 CIEI2 CIEI3 CIEI4 CIEI5 CIEI6 CIEI7 CIEI8
1 AddClientSource 0 0 0 0 0 0 0 0
2 AddClientSources 0 0 0 0 0 0 4 0
3 AddClientSources 0 0 0 0 0 0 1 0
4 AddFromStoredSources 0 0 0 0 0 0 1 0
5 AddGap 0 0 0 0 0 0 1 0
6 AddSources 0 0 0 0 0 0 3 0
7 CharFillRange 0 0 0 0 0 0 0 0
8 CompleteFile 0 0 0 0 0 0 2 0
9 CreateED2KSourceLink 0 0 0 0 0 0 0 0
10 CreateFromFile 0 0 0 0 0 0 0 0
11 CreatePartFile 0 0 0 0 0 0 1 0
12 CreateSrcInfoPacket 0 0 0 0 0 0 1 0
13 DeleteFile 0 0 0 0 0 0 1 0
14 DrawStatusBar 0 0 0 0 0 0 1 0
15 FillGap 0 0 0 0 0 0 2 0
16 FirstLastLoaded 0 0 0 0 0 0 3 0
17 FlushBuffer 0 0 0 0 0 0 9 0
18 GetAvailablePartCount 0 0 0 0 0 0 0 0
19 GetCommonFilePenalty 0 0 0 0 0 0 0 0
20 GetCompletedSize 0 0 0 0 0 0 0 0
21 GetCompleteSourcesAccuracy 0 0 0 0 0 0 0 0
22 GetCompleteSourcesCount 0 0 0 0 0 0 0 0
23 GetDatarate 0 0 0 0 0 0 0 0
24 GetDiscardSuperCompressed 0 0 0 0 0 0 0 0
25 GetDownloadFileInfo 0 0 0 0 0 0 8 0
26 GetDownloadFileInfo4Tooltips 0 0 0 0 0 0 8 0
27 GetFilledList 0 0 0 0 0 0 0 0
28 GetFullName 0 0 0 0 0 0 0 0
29 GetGainDueToCompression 0 0 0 0 0 0 0 0
30 GetGapsInPart 0 0 0 0 0 0 1 0
31 GetLastAnsweredTime 0 0 0 0 0 0 0 0
32 GetLastDownTransfer 0 0 0 0 0 0 0 0
33 GetLoadedSourcesCompletely 0 0 0 0 0 0 0 0
34 GetLoadSourcesAtOnceLimit 0 0 0 0 0 0 0 0
35 GetLoadSourcesSlowTimeInterval 0 0 0 0 0 0 0 0
36 GetLoadSourcesTimeInterval 0 0 0 0 0 0 0 0
37 GetLostDueToCorruption 0 0 0 0 0 0 0 0
38 GetNextEmptyBlockInPart 0 0 0 0 0 0 1 0
39 GetNextRequestedBlock 0 0 0 0 0 0 5 0
40 GetNotCurrentSourcesCount 0 0 0 0 0 0 0 0
41 GetOutputDir 0 0 0 0 0 0 0 0
42 GetPartfileStatus 0 0 0 0 0 0 2 0
43 getPartfileStatusRang 0 0 0 0 0 0 2 0

Appendix 6 – CPartFile Interface Dependence Data

 335

44 GetPartMetFileName 0 0 0 0 0 0 0 0
45 GetPercentCompleted 0 0 0 0 0 0 0 0
46 GetPriority 0 0 0 0 0 0 0 0
47 GetProgressString 0 0 0 0 0 0 2 0
48 GetRating 0 0 0 0 0 0 0 0
49 GetRemainingBlocksInPart 0 0 0 0 0 0 2 0
50 GetSaveSourcesTimeInterval 0 0 0 0 0 0 0 0
51 GetSizeToTransferAndNeededSpace 0 0 0 0 0 0 0 0
52 GetSourceCount 0 0 0 0 0 0 0 0
53 GetSourcesAfterServerConnect 0 0 0 0 0 0 0 0
54 GetSrcpartFrequency 0 0 0 0 0 0 0 0
55 GetStatus 0 0 0 0 0 0 0 0
56 GetStoredSources 0 0 0 0 0 0 0 0
57 GetTempDir 0 0 0 0 0 0 0 0
58 GetTimeRemaining 0 0 0 0 0 0 2 0
59 GetTransfered 0 0 0 0 0 0 0 0
60 GetTransferingSrcCount 0 0 0 0 0 0 0 0
61 GetValidSourcesCount 0 0 0 0 0 0 0 0
62 HasComment 0 0 0 0 0 0 0 0
63 HashSinglePart 0 0 0 0 0 0 0 0
64 HasRating 0 0 0 0 0 0 0 0
65 Init 0 0 0 0 0 0 0 0
66 InitializeFromLink 0 0 0 0 0 0 2 0
67 IsA4AFAuto 0 0 0 0 0 0 0 0
68 IsAlreadyRequested 0 0 0 0 0 0 0 1
69 IsArchive 0 0 0 0 0 0 0 0
70 IsAutoPrioritized 0 0 0 0 0 0 0 0
71 IsAviMovie 0 0 0 0 0 0 0 0
72 IsBetterMovieChunk 0 0 0 0 0 0 1 0
73 IsComplete 0 0 0 0 0 0 0 0
74 IsCorruptedPart 0 0 0 0 0 0 0 0
75 IsMovie 0 0 0 0 0 0 2 0
76 IsMovieChunk 0 0 0 0 0 0 0 0
77 IsMpgMovie 0 0 0 0 0 0 1 0
78 IsPartFile 0 0 0 0 0 0 0 0
79 IsPureGap 0 0 0 0 0 0 0 0
80 IsVLCInstalled 0 0 0 0 0 0 0 0
81 LoadAndAddSources 0 0 0 0 0 0 4 0
82 LoadFromFile 0 0 0 0 0 0 0 0
83 LoadMovieMode 0 0 0 0 0 0 0 0
84 LoadPartFile 0 0 0 0 0 0 5 0
85 LoadSourcesFromFile 0 0 0 0 0 0 1 0
86 localelastdowntransfer 0 0 0 0 0 0 0 0
87 localelastseencomplete 0 0 0 0 0 0 0 0
88 Movie1 0 0 0 0 0 0 3 0
89 Movie2 0 0 0 0 0 0 3 0
90 NewSrcPartsInfo 0 0 0 0 0 0 1 0
91 PartFileHashFinished 0 0 0 0 0 0 4 0
92 PauseFile 0 0 0 0 0 0 2 0
93 PrepareComparePart 0 0 0 0 0 0 1 0
94 PreviewAvailable 0 0 0 0 0 0 6 0
95 PreviewFile 0 0 0 0 0 0 2 0
96 Process 0 0 0 0 0 0 11 0
97 RemoveAllRequestedBlocks 0 0 0 0 0 0 0 0
98 RemoveAllSources 0 0 0 0 0 0 1 0
99 RemoveBlockFromList 0 0 0 0 0 0 0 0
100 RemoveNoNeededSources 0 0 0 0 0 0 0 0

Appendix 6 – CPartFile Interface Dependence Data

 336

101 ResumeFile 0 0 0 0 0 0 3 0
102 SaveMovieMode 0 0 0 0 0 0 0 0
103 SavePartFile 0 0 0 0 0 0 1 0
104 SavePartFileStats 0 0 0 0 0 0 0 0
105 SaveSources 0 0 0 0 0 0 4 0
106 SaveSourcesToFile 0 0 0 0 0 0 2 0
107 SaveToStoredSources 0 0 0 0 0 0 1 0
108 SaveToStoredSources 0 0 0 0 0 0 1 0
109 SetA4AFAuto 0 0 0 0 0 0 0 0
110 SetAlternativeOutputDir 0 0 0 0 0 0 0 0
111 SetAutoPriority 0 0 0 0 0 0 0 0
112 SetDiscardSuperCompressed 0 0 0 0 0 0 0 0
113 SetHasComment 0 0 0 0 0 0 0 0
114 SetHasRating 0 0 0 0 0 0 0 0
115 SetLastAnsweredTime 0 0 0 0 0 0 0 0
116 SetLastAnsweredTimeTimeout 0 0 0 0 0 0 0 0
117 SetLoadedSourcesCompletely 0 0 0 0 0 0 0 0
118 SetLoadSourcesAtOnceLimit 0 0 0 0 0 0 0 0
119 SetLoadSourcesSlowTimeInterval 0 0 0 0 0 0 0 0
120 SetLoadSourcesTimeInterval 0 0 0 0 0 0 0 0
121 SetPriority 0 0 0 0 0 0 2 0
122 SetSaveSourcesTimeInterval 0 0 0 0 0 0 0 0
123 StopFile 0 0 0 0 0 0 4 0
124 TotalPacketsSavedDueToICH 0 0 0 0 0 0 0 0
125 UpdateAvailablePartsCount 0 0 0 0 0 0 0 0
126 UpdateCompletedInfos 0 0 0 0 0 0 0 0
127 UpdateDisplayedInfo 0 0 0 0 0 0 0 0
128 UpdateDownloadAutoPriority 0 0 0 0 0 0 2 0
129 UpdateFileRatingCommentAvail 0 0 0 0 0 0 1 0
130 WriteCompleteSourcesCount 0 0 0 0 0 0 1 0
131 WritePartStatus 0 0 0 0 0 0 1 0
132 WriteToBuffer 0 0 0 0 0 0 3 0
133 WriteToFile 0 0 0 0 0 0 0 0
Total 133 133 133 133 133 133 133 133 133

Appendix 6 – CPartFile Interface Dependence Data

 337

Class CPartFile
 class CIS1 CIS2 CIS3 CIS4
1 CPartFile 0 34 133 5
Total 1 1 1 1 1

Class CPartFile

 interface method CIS5 CIS6 CIS7 CIS8
1 AddClientSource 32 0 0 0
2 AddClientSources 25 4 1 0
3 AddClientSources 19 1 0 0
4 AddFromStoredSources 115 1 4 5
5 AddGap 35 1 0 0
6 AddSources 39 3 1 0
7 CharFillRange 6 0 0 0
8 CompleteFile 28 2 2 2
9 CreateED2KSourceLink 71 0 0 0
10 CreateFromFile 1 0 0 0
11 CreatePartFile 47 1 3 4
12 CreateSrcInfoPacket 74 1 0 0
13 DeleteFile 33 2 3 0
14 DrawStatusBar 116 1 5 4
15 FillGap 32 2 0 0
16 FirstLastLoaded 6 3 0 0
17 FlushBuffer 109 9 3 4
18 GetAvailablePartCount 1 0 0 0
19 GetCommonFilePenalty 3 0 0 0
20 GetCompletedSize 1 0 1 0
21 GetCompleteSourcesAccuracy 1 0 0 0
22 GetCompleteSourcesCount 17 0 1 1
23 GetDatarate 1 0 0 0
24 GetDiscardSuperCompressed 1 0 0 0
25 GetDownloadFileInfo 28 8 0 0
26 GetDownloadFileInfo4Tooltips 39 8 0 0
27 GetFilledList 43 0 0 0
28 GetFullName 1 0 0 0
29 GetGainDueToCompression 1 0 0 0
30 GetGapsInPart 36 1 0 0
31 GetLastAnsweredTime 1 0 0 0
32 GetLastDownTransfer 1 0 0 0
33 GetLoadedSourcesCompletely 1 0 0 0
34 GetLoadSourcesAtOnceLimit 1 0 0 0
35 GetLoadSourcesSlowTimeInterval 1 0 0 0
36 GetLoadSourcesTimeInterval 1 0 0 0
37 GetLostDueToCorruption 1 0 0 0
38 GetNextEmptyBlockInPart 57 1 0 0
39 GetNextRequestedBlock 81 5 0 0
40 GetNotCurrentSourcesCount 15 0 0 0
41 GetOutputDir 63 0 0 0
42 GetPartfileStatus 27 2 0 0
43 getPartfileStatusRang 28 2 0 0
44 GetPartMetFileName 1 0 0 0
45 GetPercentCompleted 1 0 0 0
46 GetPriority 1 0 0 0

Appendix 6 – CPartFile Interface Dependence Data

 338

47 GetProgressString 52 2 0 0
48 GetRating 26 0 0 0
49 GetRemainingBlocksInPart 20 2 0 0
50 GetSaveSourcesTimeInterval 1 0 0 0
51 GetSizeToTransferAndNeededSpace 11 0 0 0
52 GetSourceCount 8 0 0 0
53 GetSourcesAfterServerConnect 8 0 1 1
54 GetSrcpartFrequency 1 0 0 0
55 GetStatus 9 0 1 0
56 GetStoredSources 1 0 0 0
57 GetTempDir 1 0 0 0
58 GetTimeRemaining 8 2 0 0
59 GetTransfered 1 0 0 0
60 GetTransferingSrcCount 1 0 0 0
61 GetValidSourcesCount 16 0 0 0
62 HasComment 1 0 0 0
63 HashSinglePart 36 0 0 0
64 HasRating 1 0 0 0
65 Init 64 0 0 32
66 InitializeFromLink 29 2 0 1
67 IsA4AFAuto 1 0 0 0
68 IsAlreadyRequested 11 0 0 0
69 IsArchive 5 0 0 0
70 IsAutoPrioritized 1 0 0 0
71 IsAviMovie 9 0 0 0
72 IsBetterMovieChunk 35 1 0 0
73 IsComplete 17 0 0 0
74 IsCorruptedPart 7 0 0 0
75 IsMovie 4 2 0 0
76 IsMovieChunk 76 0 0 0
77 IsMpgMovie 14 1 0 0
78 IsPartFile 1 0 0 0
79 IsPureGap 14 0 0 0
80 IsVLCInstalled 12 0 0 0
81 LoadAndAddSources 49 4 4 0
82 LoadFromFile 1 0 0 0
83 LoadMovieMode 9 0 0 0
84 LoadPartFile 204 6 5 8
85 LoadSourcesFromFile 47 1 1 4
86 localelastdowntransfer 1 1 0 0
87 localelastseencomplete 1 1 0 0
88 Movie1 17 3 0 0
89 Movie2 25 3 0 0
90 NewSrcPartsInfo 27 1 0 0
91 PartFileHashFinished 36 4 1 1
92 PauseFile 24 2 1 2
93 PrepareComparePart 21 1 0 0
94 PreviewAvailable 43 6 1 0
95 PreviewFile 38 2 0 0
96 Process 229 11 13 9
97 RemoveAllRequestedBlocks 6 0 0 0
98 RemoveAllSources 17 1 0 0
99 RemoveBlockFromList 11 0 0 0
100 RemoveNoNeededSources 18 0 0 1
101 ResumeFile 13 3 1 1
102 SaveMovieMode 8 0 0 0
103 SavePartFile 126 1 5 0

Appendix 6 – CPartFile Interface Dependence Data

 339

104 SavePartFileStats 28 0 1 0
105 SaveSources 99 4 4 0
106 SaveSourcesToFile 50 2 2 1
107 SaveToStoredSources 45 1 4 0
108 SaveToStoredSources 40 1 4 0
109 SetA4AFAuto 13 0 0 0
110 SetAlternativeOutputDir 6 0 0 0
111 SetAutoPriority 1 0 0 0
112 SetDiscardSuperCompressed 1 0 0 0
113 SetHasComment 1 0 0 0
114 SetHasRating 1 0 0 0
115 SetLastAnsweredTime 1 0 0 0
116 SetLastAnsweredTimeTimeout 1 0 0 0
117 SetLoadedSourcesCompletely 1 0 0 0
118 SetLoadSourcesAtOnceLimit 1 0 0 0
119 SetLoadSourcesSlowTimeInterval 1 0 0 0
120 SetLoadSourcesTimeInterval 1 0 0 0
121 SetPriority 9 2 0 1
122 SetSaveSourcesTimeInterval 1 0 0 0
123 StopFile 13 4 0 2
124 TotalPacketsSavedDueToICH 1 0 0 0
125 UpdateAvailablePartsCount 24 0 1 1
126 UpdateCompletedInfos 18 0 0 2
127 UpdateDisplayedInfo 9 0 0 0
128 UpdateDownloadAutoPriority 17 2 1 0
129 UpdateFileRatingCommentAvail 18 1 0 0
130 WriteCompleteSourcesCount 5 1 0 0
131 WritePartStatus 19 1 0 0
132 WriteToBuffer 49 3 3 3
133 WriteToFile 1 0 0 0
Total 133 133 133 133 133

Class CPartFile
 class CDE1
1 CPartFile 0
Total 1 1

Appendix 6 – CPartFile Interface Dependence Data

 340

Class CPartFile
 interface method CDE2 CDE3
1 AddClientSource 0 0
2 AddClientSources 1 0
3 AddClientSources 0 0
4 AddFromStoredSources 4 5
5 AddGap 0 0
6 AddSources 1 0
7 CharFillRange 0 0
8 CompleteFile 2 2
9 CreateED2KSourceLink 0 0
10 CreateFromFile 0 0
11 CreatePartFile 3 4
12 CreateSrcInfoPacket 0 0
13 DeleteFile 3 0
14 DrawStatusBar 5 4
15 FillGap 0 0
16 FirstLastLoaded 0 0
17 FlushBuffer 3 4
18 GetAvailablePartCount 0 0
19 GetCommonFilePenalty 0 0
20 GetCompletedSize 1 0
21 GetCompleteSourcesAccuracy 0 0
22 GetCompleteSourcesCount 1 1
23 GetDatarate 0 0
24 GetDiscardSuperCompressed 0 0
25 GetDownloadFileInfo 0 0
26 GetDownloadFileInfo4Tooltips 0 0
27 GetFilledList 0 0
28 GetFullName 0 0
29 GetGainDueToCompression 0 0
30 GetGapsInPart 0 0
31 GetLastAnsweredTime 0 0
32 GetLastDownTransfer 0 0
33 GetLoadedSourcesCompletely 0 0
34 GetLoadSourcesAtOnceLimit 0 0
35 GetLoadSourcesSlowTimeInterval 0 0
36 GetLoadSourcesTimeInterval 0 0
37 GetLostDueToCorruption 0 0
38 GetNextEmptyBlockInPart 0 0
39 GetNextRequestedBlock 0 0
40 GetNotCurrentSourcesCount 0 0
41 GetOutputDir 0 0
42 GetPartfileStatus 0 0
43 getPartfileStatusRang 0 0
44 GetPartMetFileName 0 0
45 GetPercentCompleted 0 0
46 GetPriority 0 0
47 GetProgressString 0 0
48 GetRating 0 0
49 GetRemainingBlocksInPart 0 0
50 GetSaveSourcesTimeInterval 0 0
51 GetSizeToTransferAndNeededSpace 0 0
52 GetSourceCount 0 0
53 GetSourcesAfterServerConnect 1 1
54 GetSrcpartFrequency 0 0

Appendix 6 – CPartFile Interface Dependence Data

 341

55 GetStatus 1 0
56 GetStoredSources 0 0
57 GetTempDir 0 0
58 GetTimeRemaining 0 0
59 GetTransfered 0 0
60 GetTransferingSrcCount 0 0
61 GetValidSourcesCount 0 0
62 HasComment 0 0
63 HashSinglePart 0 0
64 HasRating 0 0
65 Init 0 32
66 InitializeFromLink 0 1
67 IsA4AFAuto 0 0
68 IsAlreadyRequested 0 0
69 IsArchive 0 0
70 IsAutoPrioritized 0 0
71 IsAviMovie 0 0
72 IsBetterMovieChunk 0 0
73 IsComplete 0 0
74 IsCorruptedPart 0 0
75 IsMovie 0 0
76 IsMovieChunk 0 0
77 IsMpgMovie 0 0
78 IsPartFile 0 0
79 IsPureGap 0 0
80 IsVLCInstalled 0 0
81 LoadAndAddSources 4 0
82 LoadFromFile 0 0
83 LoadMovieMode 0 0
84 LoadPartFile 5 8
85 LoadSourcesFromFile 1 4
86 localelastdowntransfer 0 0
87 localelastseencomplete 0 0
88 Movie1 0 0
89 Movie2 0 0
90 NewSrcPartsInfo 0 0
91 PartFileHashFinished 1 1
92 PauseFile 1 2
93 PrepareComparePart 0 0
94 PreviewAvailable 1 0
95 PreviewFile 0 0
96 Process 13 9
97 RemoveAllRequestedBlocks 0 0
98 RemoveAllSources 0 0
99 RemoveBlockFromList 0 0
100 RemoveNoNeededSources 0 1
101 ResumeFile 1 1
102 SaveMovieMode 0 0
103 SavePartFile 5 0
104 SavePartFileStats 1 0
105 SaveSources 4 0
106 SaveSourcesToFile 2 1
107 SaveToStoredSources 4 0
108 SaveToStoredSources 4 0
109 SetA4AFAuto 0 0
110 SetAlternativeOutputDir 0 0
111 SetAutoPriority 0 0

Appendix 6 – CPartFile Interface Dependence Data

 342

112 SetDiscardSuperCompressed 0 0
113 SetHasComment 0 0
114 SetHasRating 0 0
115 SetLastAnsweredTime 0 0
116 SetLastAnsweredTimeTimeout 0 0
117 SetLoadedSourcesCompletely 0 0
118 SetLoadSourcesAtOnceLimit 0 0
119 SetLoadSourcesSlowTimeInterval 0 0
120 SetLoadSourcesTimeInterval 0 0
121 SetPriority 0 1
122 SetSaveSourcesTimeInterval 0 0
123 StopFile 0 2
124 TotalPacketsSavedDueToICH 0 0
125 UpdateAvailablePartsCount 1 1
126 UpdateCompletedInfos 0 2
127 UpdateDisplayedInfo 0 0
128 UpdateDownloadAutoPriority 1 0
129 UpdateFileRatingCommentAvail 0 0
130 WriteCompleteSourcesCount 0 0
131 WritePartStatus 0 0
132 WriteToBuffer 3 3
133 WriteToFile 0 0
Total 133 133 133

Class CPartFile

 member attribute protection CDE4 CDE5
1 availablePartsCount private 2 1
2 completedsize private 3 3
3 confirmedsize private 1 1
4 count private 2 1
5 datarate private 5 1
6 fullname private 3 5
7 lastpurgetime private 3 3
8 lastsearchtime private 4 2
9 m_ClientSrcAnswered private 1 0
10 m_iGainDueToCompression private 3 1
11 m_iLastTimeSourcesLoaded private 2 2
12 m_iLastTimeSourcesLoadedPartial private 3 2
13 m_iLastTimeSourcesSaved private 3 2
14 m_iLoadingSourcesPartialTimeInterval private 2 5
15 m_iLoadingSourcesTimeInterval private 3 4
16 m_iLoadSourcesAtOnceLimit private 2 4
17 m_iLostDueToCorruption private 2 0
18 m_iSavingSourcesTimeInterval private 2 4
19 m_iSourceIDIndex private 2 1
20 m_iSourceIndex private 2 1
21 m_iTotalPacketsSavedDueToICH private 2 1
22 m_LastNoNeededCheck private 2 1
23 m_nLastBufferFlushTime private 2 1
24 m_nLastCompleteSrcCount private 2 1
25 m_nSavedReduceDownload private 2 1
26 m_nTotalBufferData private 3 3
27 partmetfilename private 3 5
28 percentcompleted private 3 1

Appendix 6 – CPartFile Interface Dependence Data

 343

29 percentconfirmed private 1 1
30 priority private 3 3
31 status private 7 7
32 tempdir private 3 6
33 transfered private 3 3
34 transferingsrc private 4 1
Total 34 34 34 34

Appendix 6 – CPartFile Interface Dependence Data

 344

6.2. Object CPartFile

The following tables list the measured data describing the levels of interface dependence

present in the CPartFile object within the eMulePlus software system.

Object CPartFile
 interface method OIEI1 OIEI2 OIEI3 OIEI4 OIEI5 OIEI6 OIEI7 OIEI8
1 AddClientSource 0 0 0 0 0 0 0 0
2 AddClientSources 0 0 0 0 0 0 4 0
3 AddClientSources 0 0 0 0 0 0 1 0
4 AddDebugLogLine 0 0 0 0 0 0 0 0
5 AddFromStoredSources 0 0 0 0 0 0 3 0
6 AddGap 0 0 0 0 0 0 1 0
7 AddLogLine 0 0 0 0 0 0 0 0
8 AddSources 0 0 0 0 0 0 3 0
9 CalculateCompleteSources 0 0 0 0 0 0 0 0
10 CharFillRange 0 0 0 0 0 0 0 0
11 CreateED2KSourceLink 0 0 0 0 0 0 5 0
12 CreateFromFile 0 1 0 0 0 0 0 0
13 CreateFromFile 0 0 0 0 0 0 0 0
14 CreateSrcInfoPacket 0 0 0 0 0 0 2 0
15 CreateSrcInfoPacket 0 0 0 0 0 0 0 0
16 DeleteFile 0 0 0 2 1 1 2 21
17 DrawStatusBar 0 0 0 0 0 0 2 0
18 FillGap 0 0 0 0 0 0 2 0
19 FirstLastLoaded 0 0 0 0 0 0 4 2
20 FlushBuffer 0 0 0 2 1 1 10 21
21 GetAvailablePartCount 0 0 0 0 0 0 0 0
22 GetBlockCount 0 0 0 0 0 0 0 0
23 GetBlockSize 0 0 0 0 0 0 1 0
24 GetBlockTraffic 0 0 0 0 0 0 0 0
25 GetCommonFilePenalty 0 0 0 0 0 0 0 0
26 GetCompletedSize 0 0 0 0 0 0 0 0
27 GetCompleteSourcesAccuracy 0 0 0 0 0 0 0 0
28 GetCompleteSourcesAccuracy 0 0 0 0 0 0 0 0
29 GetCompleteSourcesCount 0 0 0 0 0 0 0 0
30 GetCompleteSourcesCount 0 0 0 0 0 0 0 0
31 GetDatarate 0 0 0 0 0 0 0 0
32 GetDiscardSuperCompressed 0 0 0 0 0 0 0 0
33 GetDownloadFileInfo 0 0 0 0 0 0 13 2
34 GetDownloadFileInfo4Tooltips 0 0 0 0 0 0 13 2
35 GetFileComment 0 0 0 0 0 0 0 0
36 GetFileDate 0 0 0 0 0 0 0 0
37 GetFileHash 0 0 0 0 0 0 0 0
38 GetFileName 0 0 0 0 0 0 0 0
39 GetFileRate 0 0 0 0 0 0 0 0
40 GetFileRatio 0 0 0 0 0 0 0 0
41 GetFileSize 0 0 0 0 0 0 0 0
42 GetFileType 0 0 0 0 0 0 0 0
43 GetFilledList 0 0 0 0 0 0 0 0
44 GetFullName 0 0 0 0 0 0 0 0
45 GetGainDueToCompression 0 0 0 0 0 0 0 0
46 GetGapsInPart 0 0 0 0 0 0 2 0

Appendix 6 – CPartFile Interface Dependence Data

 345

47 GetHashCount 0 0 0 0 0 0 0 0
48 GetLastAnsweredTime 0 0 0 0 0 0 0 0
49 GetLastDownTransfer 0 0 0 0 0 0 0 0
50 GetLoadedSourcesCompletely 0 0 0 0 0 0 0 0
51 GetLoadSourcesAtOnceLimit 0 0 0 0 0 0 0 0
52 GetLoadSourcesSlowTimeInterval 0 0 0 0 0 0 0 0
53 GetLoadSourcesTimeInterval 0 0 0 0 0 0 0 0
54 GetLostDueToCorruption 0 0 0 0 0 0 0 0
55 GetMovieMode 1 0 0 0 0 0 0 0
56 GetNextRequestedBlock 0 0 0 1 0 0 6 12
57 GetNotCurrentSourcesCount 0 0 0 0 0 0 0 0
58 GetOutputDir 0 0 0 0 0 0 0 0
59 GetPartCount 0 0 0 0 0 0 0 0
60 GetPartfileStatus 0 0 0 0 0 0 2 0
61 getPartfileStatusRang 0 0 0 0 0 0 2 0
62 GetPartHash 0 0 0 0 0 0 0 0
63 GetPartMetFileName 0 0 0 0 0 0 0 0
64 GetPartSize 0 0 0 0 0 0 1 0
65 GetPartStatus 0 0 0 0 0 0 0 0
66 GetPartTraffic 0 0 0 0 0 0 0 0
67 GetPath 0 0 0 0 0 0 0 0
68 GetPercentCompleted 0 0 0 0 0 0 0 0
69 GetPermissions 1 0 0 0 0 0 0 0
70 GetPriority 1 0 0 0 0 0 0 0
71 GetPriority 0 0 0 0 0 0 0 0
72 GetProgressString 0 0 0 0 0 0 4 0
73 GetRating 0 0 0 0 0 0 0 0
74 GetRemainingBlocksInPart 0 0 0 0 0 0 2 0
75 GetSaveSourcesTimeInterval 0 0 0 0 0 0 0 0
76 GetSharedFile 0 0 0 0 0 0 0 0
77 GetSizeToTransferAndNeededSpace 0 0 0 0 0 0 1 0
78 GetSourceCount 0 0 0 0 0 0 0 0
79 GetSourcesAfterServerConnect 0 0 0 0 0 0 0 0
80 GetSrcpartFrequency 0 0 0 0 0 0 0 0
81 GetStatus 0 0 0 0 0 0 0 0
82 GetStoredSources 0 0 0 0 0 0 0 0
83 GetTempDir 0 0 0 0 0 0 0 0
84 GetTimeRemaining 0 0 0 0 0 0 3 0
85 GetTrafficBlock 0 0 0 0 0 0 1 1
86 GetTrafficPart 0 0 0 0 0 0 1 1
87 GetTransfered 0 0 0 0 0 0 0 0
88 GetTransferingSrcCount 0 0 0 0 0 0 0 0
89 GetValidSourcesCount 0 0 0 0 0 0 0 0
90 HasComment 0 0 0 0 0 0 0 0
91 HasHiddenParts 0 0 0 0 0 0 0 0
92 HashSinglePart 0 0 0 0 0 0 5 0
93 HasRating 0 0 0 0 0 0 0 0
94 InitializeFromLink 0 0 0 2 2 2 1 9
95 IsA4AFAuto 0 0 0 0 0 0 0 0
96 IsArchive 0 0 0 0 0 0 1 0
97 IsAutoPrioritized 0 0 0 0 0 0 0 0
98 IsAutoPrioritized 0 0 0 0 0 0 0 0
99 IsAviMovie 0 0 0 0 0 0 1 0
100 IsBetterMovieChunk 0 0 0 0 0 0 3 0
101 IsComplete 0 0 0 0 0 0 0 0
102 IsCorruptedPart 0 0 0 0 0 0 0 0
103 IsMovie 0 0 0 0 0 0 2 2

Appendix 6 – CPartFile Interface Dependence Data

 346

104 IsMovieChunk 0 0 0 0 0 0 2 0
105 IsMpgMovie 0 0 0 0 0 0 2 0
106 IsPartFile 0 0 0 0 0 0 0 0
107 IsPartFile 0 0 0 0 0 0 0 0
108 IsPureGap 0 0 0 0 0 0 0 0
109 IsVLCInstalled 0 0 0 0 0 0 0 0
110 LoadAndAddSources 0 0 0 0 0 0 6 5
111 LoadFromFile 0 0 0 2 2 1 3 7
112 LoadFromFile 0 0 0 0 0 0 0 0
113 LoadFromFileTraffic 0 0 0 0 0 0 3 0
114 LoadHashsetFromFile 0 0 0 0 0 0 2 0
115 LoadMovieMode 0 0 0 0 1 0 1 0
116 LoadPartFile 1 0 0 2 3 2 11 27
117 LoadSourcesFromFile 0 0 0 0 0 0 4 0
118 localelastdowntransfer 0 0 0 0 0 0 0 0
119 localelastseencomplete 0 0 0 0 0 0 0 0
120 Movie1 0 0 0 0 0 0 3 7
121 Movie2 0 0 0 0 0 0 3 7
122 NewSrcPartsInfo 0 0 0 0 0 0 2 0
123 PartFileHashFinished 0 0 0 2 1 1 4 21
124 PauseFile 0 0 0 2 1 1 2 3
125 PrepareComparePart 0 0 0 0 0 0 3 2
126 PreviewAvailable 0 0 0 0 0 0 8 4
127 PreviewFile 0 0 0 0 0 0 2 10
128 Process 0 0 0 2 1 1 13 28
129 RemoveAllRequestedBlocks 0 0 0 0 0 0 0 0
130 RemoveAllSources 0 0 0 0 0 0 1 1
131 RemoveBlockFromList 0 0 0 0 0 0 0 0
132 RemoveNoNeededSources 0 0 0 0 0 0 0 0
133 ResumeFile 0 0 0 2 1 1 3 3
134 SaveMovieMode 0 0 0 0 0 0 0 0
135 SavePartFile 2 1 1 0 0 0 3 0
136 SavePartFileStats 0 0 0 0 0 0 1 2
137 SaveSources 0 0 0 0 0 0 6 5
138 SaveSourcesToFile 0 0 0 0 0 0 4 0
139 SaveToFileTraffic 0 0 0 0 0 0 2 0
140 SaveToStoredSources 0 0 0 0 0 0 3 0
141 SaveToStoredSources 0 0 0 0 0 0 3 0
142 SetA4AFAuto 0 0 0 0 0 0 0 0
143 SetAlternativeOutputDir 0 0 0 0 0 0 0 0
144 SetAutoPriority 0 0 0 0 0 0 0 0
145 SetAutoPriority 0 0 0 0 0 0 0 0
146 SetDiscardSuperCompressed 0 0 0 0 0 0 0 0
147 SetFileComment 0 0 0 0 0 0 0 0
148 SetFileName 0 0 0 0 0 0 0 0
149 SetFileRate 0 0 0 0 0 0 0 0
150 SetHasComment 0 0 0 0 0 0 0 0
151 SetHasRating 0 0 0 0 0 0 0 0
152 SetLastAnsweredTime 0 0 0 0 0 0 0 0
153 SetLastAnsweredTimeTimeout 0 0 0 0 0 0 0 0
154 SetLoadedSourcesCompletely 0 0 0 0 0 0 0 0
155 SetLoadSourcesAtOnceLimit 0 0 0 0 0 0 0 0
156 SetLoadSourcesSlowTimeInterval 0 0 0 0 0 0 0 0
157 SetLoadSourcesTimeInterval 0 0 0 0 0 0 0 0
158 SetMovieMode 0 1 0 0 0 0 0 0
159 SetPartStatus 0 0 0 0 0 0 0 0
160 SetPath 0 0 0 0 0 0 0 0

Appendix 6 – CPartFile Interface Dependence Data

 347

161 SetPermissions 0 1 0 0 0 0 0 0
162 SetPriority 0 0 0 2 1 1 2 3
163 SetPriority 0 1 0 0 0 0 0 0
164 SetSaveSourcesTimeInterval 0 0 0 0 0 0 0 0
165 SetSharedFile 0 0 0 0 0 0 0 0
166 StopFile 0 0 0 2 1 1 4 21
167 TotalPacketsSavedDueToICH 0 0 0 0 0 0 0 0
168 UpdateAvailablePartsCount 0 0 0 0 0 0 1 0
169 UpdateCompletedInfos 0 0 0 0 0 0 0 0
170 UpdateDisplayedInfo 0 0 0 0 0 0 0 0
171 UpdateDownloadAutoPriority 0 0 0 2 1 1 3 5
172 UpdateFileRatingCommentAvail 0 0 0 0 0 0 1 0
173 UpdateUploadAutoPriority 0 0 0 0 1 0 3 0
174 WriteCompleteSourcesCount 0 0 0 0 0 0 1 0
175 WritePartStatus 0 0 0 0 0 0 3 0
176 WritePartStatus 0 0 0 0 0 0 1 0
177 WriteToBuffer 0 0 0 2 1 1 5 21
178 WriteToFile 3 0 0 0 0 0 2 0
179 WriteToFile 0 0 0 0 0 0 0 0
Total 179 179 179 179 179 179 179 179 179

Object CPartFile
 object OIS1 OIS2 OIS3 OIS4
1 CPartFile 4 43 179 16
Total 1 1 1 1 1

Object CPartFile
 interface method OIS5 OIS6 OIS7 OIS8
1 AddClientSource 32 0 0 0
2 AddClientSources 25 4 1 0
3 AddClientSources 19 1 0 0
4 AddDebugLogLine 13 0 0 0
5 AddFromStoredSources 115 3 4 5
6 AddGap 35 1 0 0
7 AddLogLine 11 0 0 0
8 AddSources 39 3 1 0
9 CalculateCompleteSources 39 0 1 3
10 CharFillRange 6 0 0 0
11 CreateED2KSourceLink 71 5 0 0
12 CreateFromFile 48 2 2 4
13 CreateFromFile 1 0 0 0
14 CreateSrcInfoPacket 74 2 1 0
15 CreateSrcInfoPacket 44 0 0 0
16 DeleteFile 33 3 3 0
17 DrawStatusBar 116 2 6 4
18 FillGap 32 2 0 0
19 FirstLastLoaded 6 4 0 0
20 FlushBuffer 109 11 4 4
21 GetAvailablePartCount 1 0 0 0
22 GetBlockCount 7 0 1 0
23 GetBlockSize 9 1 1 0
24 GetBlockTraffic 11 0 0 0
25 GetCommonFilePenalty 3 0 0 0

Appendix 6 – CPartFile Interface Dependence Data

 348

26 GetCompletedSize 1 0 1 0
27 GetCompleteSourcesAccuracy 1 0 0 0
28 GetCompleteSourcesAccuracy 1 0 0 0
29 GetCompleteSourcesCount 17 0 1 1
30 GetCompleteSourcesCount 1 0 0 0
31 GetDatarate 1 0 0 0
32 GetDiscardSuperCompressed 1 0 0 0
33 GetDownloadFileInfo 28 13 0 0
34 GetDownloadFileInfo4Tooltips 39 13 0 0
35 GetFileComment 1 0 0 0
36 GetFileDate 1 0 0 0
37 GetFileHash 1 0 0 0
38 GetFileName 1 0 0 0
39 GetFileRate 1 0 1 0
40 GetFileRatio 17 0 0 0
41 GetFileSize 1 0 0 0
42 GetFileType 1 0 0 0
43 GetFilledList 43 0 1 0
44 GetFullName 1 0 0 0
45 GetGainDueToCompression 1 0 0 0
46 GetGapsInPart 36 3 0 0
47 GetHashCount 1 0 0 0
48 GetLastAnsweredTime 1 0 0 0
49 GetLastDownTransfer 1 0 0 0
50 GetLoadedSourcesCompletely 1 0 0 0
51 GetLoadSourcesAtOnceLimit 1 0 0 0
52 GetLoadSourcesSlowTimeInterval 1 0 0 0
53 GetLoadSourcesTimeInterval 1 0 0 0
54 GetLostDueToCorruption 1 0 0 0
55 GetMovieMode 1 0 1 0
56 GetNextRequestedBlock 81 7 0 0
57 GetNotCurrentSourcesCount 15 0 0 0
58 GetOutputDir 63 0 0 0
59 GetPartCount 7 0 1 0
60 GetPartfileStatus 27 2 0 0
61 getPartfileStatusRang 28 2 0 0
62 GetPartHash 9 0 0 0
63 GetPartMetFileName 1 0 0 0
64 GetPartSize 9 1 1 0
65 GetPartStatus 9 0 0 0
66 GetPartTraffic 11 0 0 0
67 GetPath 1 0 0 0
68 GetPercentCompleted 1 0 0 0
69 GetPermissions 1 0 1 0
70 GetPriority 1 0 1 0
71 GetPriority 1 0 0 0
72 GetProgressString 52 4 0 0
73 GetRating 26 0 0 0
74 GetRemainingBlocksInPart 20 3 0 0
75 GetSaveSourcesTimeInterval 1 0 0 0
76 GetSharedFile 1 0 0 0
77 GetSizeToTransferAndNeededSpace 11 1 0 0
78 GetSourceCount 8 0 0 0
79 GetSourcesAfterServerConnect 8 0 1 1
80 GetSrcpartFrequency 1 0 0 0
81 GetStatus 9 0 1 0
82 GetStoredSources 1 0 0 0

Appendix 6 – CPartFile Interface Dependence Data

 349

83 GetTempDir 1 0 0 0
84 GetTimeRemaining 8 3 0 0
85 GetTrafficBlock 34 1 0 0
86 GetTrafficPart 34 1 0 0
87 GetTransfered 1 0 0 0
88 GetTransferingSrcCount 1 0 0 0
89 GetValidSourcesCount 16 0 0 0
90 HasComment 1 0 0 0
91 HasHiddenParts 15 0 0 0
92 HashSinglePart 36 6 1 0
93 HasRating 1 0 0 0
94 InitializeFromLink 29 3 3 3
95 IsA4AFAuto 1 0 0 0
96 IsArchive 5 1 0 0
97 IsAutoPrioritized 1 0 0 0
98 IsAutoPrioritized 1 0 0 0
99 IsAviMovie 9 1 0 0
100 IsBetterMovieChunk 35 3 0 0
101 IsComplete 17 0 1 0
102 IsCorruptedPart 7 0 0 0
103 IsMovie 4 2 0 0
104 IsMovieChunk 76 2 0 0
105 IsMpgMovie 14 2 0 0
106 IsPartFile 1 0 0 0
107 IsPartFile 1 0 0 0
108 IsPureGap 14 0 1 0
109 IsVLCInstalled 12 0 0 0
110 LoadAndAddSources 49 6 4 0
111 LoadFromFile 26 5 1 0
112 LoadFromFile 1 0 0 0
113 LoadFromFileTraffic 29 3 0 0
114 LoadHashsetFromFile 62 3 2 0
115 LoadMovieMode 9 1 0 0
116 LoadPartFile 204 14 8 11
117 LoadSourcesFromFile 47 4 1 4
118 localelastdowntransfer 1 1 0 0
119 localelastseencomplete 1 1 0 0
120 Movie1 17 3 0 0
121 Movie2 25 3 0 0
122 NewSrcPartsInfo 27 2 0 0
123 PartFileHashFinished 36 5 3 1
124 PauseFile 24 2 1 2
125 PrepareComparePart 21 3 0 0
126 PreviewAvailable 43 8 1 0
127 PreviewFile 38 2 0 0
128 Process 229 13 14 9
129 RemoveAllRequestedBlocks 6 0 0 0
130 RemoveAllSources 17 1 0 0
131 RemoveBlockFromList 11 0 0 0
132 RemoveNoNeededSources 18 0 0 1
133 ResumeFile 13 3 1 1
134 SaveMovieMode 8 0 0 0
135 SavePartFile 126 3 10 1
136 SavePartFileStats 28 1 1 0
137 SaveSources 99 6 4 0
138 SaveSourcesToFile 50 4 2 1
139 SaveToFileTraffic 31 2 0 0

Appendix 6 – CPartFile Interface Dependence Data

 350

140 SaveToStoredSources 45 3 4 0
141 SaveToStoredSources 40 3 4 0
142 SetA4AFAuto 13 0 0 0
143 SetAlternativeOutputDir 6 0 0 0
144 SetAutoPriority 1 0 0 0
145 SetAutoPriority 1 0 0 0
146 SetDiscardSuperCompressed 1 0 0 0
147 SetFileComment 21 0 1 0
148 SetFileName 22 0 1 1
149 SetFileRate 21 0 1 1
150 SetHasComment 1 0 0 0
151 SetHasRating 1 0 0 0
152 SetLastAnsweredTime 1 0 0 0
153 SetLastAnsweredTimeTimeout 1 0 0 0
154 SetLoadedSourcesCompletely 1 0 0 0
155 SetLoadSourcesAtOnceLimit 1 0 0 0
156 SetLoadSourcesSlowTimeInterval 1 0 0 0
157 SetLoadSourcesTimeInterval 1 0 0 0
158 SetMovieMode 1 0 0 1
159 SetPartStatus 1 0 0 0
160 SetPath 8 0 1 1
161 SetPermissions 1 0 0 1
162 SetPriority 9 2 0 1
163 SetPriority 1 0 0 1
164 SetSaveSourcesTimeInterval 1 0 0 0
165 SetSharedFile 1 0 0 0
166 StopFile 13 4 0 2
167 TotalPacketsSavedDueToICH 1 0 0 0
168 UpdateAvailablePartsCount 24 1 1 1
169 UpdateCompletedInfos 18 0 1 2
170 UpdateDisplayedInfo 9 0 0 0
171 UpdateDownloadAutoPriority 17 3 1 0
172 UpdateFileRatingCommentAvail 18 1 0 0
173 UpdateUploadAutoPriority 18 3 0 0
174 WriteCompleteSourcesCount 5 1 0 0
175 WritePartStatus 20 1 0 0
176 WritePartStatus 19 3 0 0
177 WriteToBuffer 49 5 3 3
178 WriteToFile 47 2 6 0
179 WriteToFile 1 0 0 0
Total 179 179 179 179 179

Object CPartFile

 object ODE1
1 CPartFile 4
Total 1 1

Object CPartFile
 interface method ODE2 ODE3
1 AddClientSource 0 0
2 AddClientSources 1 0
3 AddClientSources 0 0
4 AddDebugLogLine 0 0

Appendix 6 – CPartFile Interface Dependence Data

 351

5 AddFromStoredSources 4 5
6 AddGap 0 0
7 AddLogLine 0 0
8 AddSources 1 0
9 CalculateCompleteSources 1 3
10 CharFillRange 0 0
11 CreateED2KSourceLink 0 0
12 CreateFromFile 2 4
13 CreateFromFile 0 0
14 CreateSrcInfoPacket 1 0
15 CreateSrcInfoPacket 0 0
16 DeleteFile 3 0
17 DrawStatusBar 6 4
18 FillGap 0 0
19 FirstLastLoaded 0 0
20 FlushBuffer 4 4
21 GetAvailablePartCount 0 0
22 GetBlockCount 1 0
23 GetBlockSize 1 0
24 GetBlockTraffic 0 0
25 GetCommonFilePenalty 0 0
26 GetCompletedSize 1 0
27 GetCompleteSourcesAccuracy 0 0
28 GetCompleteSourcesAccuracy 0 0
29 GetCompleteSourcesCount 1 1
30 GetCompleteSourcesCount 0 0
31 GetDatarate 0 0
32 GetDiscardSuperCompressed 0 0
33 GetDownloadFileInfo 0 0
34 GetDownloadFileInfo4Tooltips 0 0
35 GetFileComment 0 0
36 GetFileDate 0 0
37 GetFileHash 0 0
38 GetFileName 0 0
39 GetFileRate 1 0
40 GetFileRatio 0 0
41 GetFileSize 0 0
42 GetFileType 0 0
43 GetFilledList 1 0
44 GetFullName 0 0
45 GetGainDueToCompression 0 0
46 GetGapsInPart 0 0
47 GetHashCount 0 0
48 GetLastAnsweredTime 0 0
49 GetLastDownTransfer 0 0
50 GetLoadedSourcesCompletely 0 0
51 GetLoadSourcesAtOnceLimit 0 0
52 GetLoadSourcesSlowTimeInterval 0 0
53 GetLoadSourcesTimeInterval 0 0
54 GetLostDueToCorruption 0 0
55 GetMovieMode 1 0
56 GetNextRequestedBlock 0 0
57 GetNotCurrentSourcesCount 0 0
58 GetOutputDir 0 0
59 GetPartCount 1 0
60 GetPartfileStatus 0 0
61 getPartfileStatusRang 0 0

Appendix 6 – CPartFile Interface Dependence Data

 352

62 GetPartHash 0 0
63 GetPartMetFileName 0 0
64 GetPartSize 1 0
65 GetPartStatus 0 0
66 GetPartTraffic 0 0
67 GetPath 0 0
68 GetPercentCompleted 0 0
69 GetPermissions 1 0
70 GetPriority 1 0
71 GetPriority 0 0
72 GetProgressString 0 0
73 GetRating 0 0
74 GetRemainingBlocksInPart 0 0
75 GetSaveSourcesTimeInterval 0 0
76 GetSharedFile 0 0
77 GetSizeToTransferAndNeededSpace 0 0
78 GetSourceCount 0 0
79 GetSourcesAfterServerConnect 1 1
80 GetSrcpartFrequency 0 0
81 GetStatus 1 0
82 GetStoredSources 0 0
83 GetTempDir 0 0
84 GetTimeRemaining 0 0
85 GetTrafficBlock 0 0
86 GetTrafficPart 0 0
87 GetTransfered 0 0
88 GetTransferingSrcCount 0 0
89 GetValidSourcesCount 0 0
90 HasComment 0 0
91 HasHiddenParts 0 0
92 HashSinglePart 1 0
93 HasRating 0 0
94 InitializeFromLink 3 3
95 IsA4AFAuto 0 0
96 IsArchive 0 0
97 IsAutoPrioritized 0 0
98 IsAutoPrioritized 0 0
99 IsAviMovie 0 0
100 IsBetterMovieChunk 0 0
101 IsComplete 1 0
102 IsCorruptedPart 0 0
103 IsMovie 0 0
104 IsMovieChunk 0 0
105 IsMpgMovie 0 0
106 IsPartFile 0 0
107 IsPartFile 0 0
108 IsPureGap 1 0
109 IsVLCInstalled 0 0
110 LoadAndAddSources 4 0
111 LoadFromFile 1 0
112 LoadFromFile 0 0
113 LoadFromFileTraffic 0 0
114 LoadHashsetFromFile 2 0
115 LoadMovieMode 0 0
116 LoadPartFile 8 11
117 LoadSourcesFromFile 1 4
118 localelastdowntransfer 0 0

Appendix 6 – CPartFile Interface Dependence Data

 353

119 localelastseencomplete 0 0
120 Movie1 0 0
121 Movie2 0 0
122 NewSrcPartsInfo 0 0
123 PartFileHashFinished 3 1
124 PauseFile 1 2
125 PrepareComparePart 0 0
126 PreviewAvailable 1 0
127 PreviewFile 0 0
128 Process 14 9
129 RemoveAllRequestedBlocks 0 0
130 RemoveAllSources 0 0
131 RemoveBlockFromList 0 0
132 RemoveNoNeededSources 0 1
133 ResumeFile 1 1
134 SaveMovieMode 0 0
135 SavePartFile 10 1
136 SavePartFileStats 1 0
137 SaveSources 4 0
138 SaveSourcesToFile 2 1
139 SaveToFileTraffic 0 0
140 SaveToStoredSources 4 0
141 SaveToStoredSources 4 0
142 SetA4AFAuto 0 0
143 SetAlternativeOutputDir 0 0
144 SetAutoPriority 0 0
145 SetAutoPriority 0 0
146 SetDiscardSuperCompressed 0 0
147 SetFileComment 1 0
148 SetFileName 1 1
149 SetFileRate 1 1
150 SetHasComment 0 0
151 SetHasRating 0 0
152 SetLastAnsweredTime 0 0
153 SetLastAnsweredTimeTimeout 0 0
154 SetLoadedSourcesCompletely 0 0
155 SetLoadSourcesAtOnceLimit 0 0
156 SetLoadSourcesSlowTimeInterval 0 0
157 SetLoadSourcesTimeInterval 0 0
158 SetMovieMode 0 1
159 SetPartStatus 0 0
160 SetPath 1 1
161 SetPermissions 0 1
162 SetPriority 0 1
163 SetPriority 0 1
164 SetSaveSourcesTimeInterval 0 0
165 SetSharedFile 0 0
166 StopFile 0 2
167 TotalPacketsSavedDueToICH 0 0
168 UpdateAvailablePartsCount 1 1
169 UpdateCompletedInfos 1 2
170 UpdateDisplayedInfo 0 0
171 UpdateDownloadAutoPriority 1 0
172 UpdateFileRatingCommentAvail 0 0
173 UpdateUploadAutoPriority 0 0
174 WriteCompleteSourcesCount 0 0
175 WritePartStatus 0 0

Appendix 6 – CPartFile Interface Dependence Data

 354

176 WritePartStatus 0 0
177 WriteToBuffer 3 3
178 WriteToFile 6 0
179 WriteToFile 0 0
Total 179 179 179

Appendix 6 – CPartFile Interface Dependence Data

 355

Object CPartFile

 member attribute protection ODE4 ODE5
1 availablePartsCount private 1 1
2 completedsize private 2 3
3 confirmedsize private 1 1
4 count private 1 1
5 datarate private 3 1
6 date public 3 4
7 directory protected 5 3
8 filehash protected 0 15
9 filename protected 8 14
10 filesize protected 4 21
11 filetype protected 0 0
12 fullname private 1 4
13 lastpurgetime private 2 3
14 lastsearchtime private 3 2
15 m_ClientSrcAnswered private 0 0
16 m_iGainDueToCompression private 2 1
17 m_iLastTimeSourcesLoaded private 1 2
18 m_iLastTimeSourcesLoadedPartial private 2 2
19 m_iLastTimeSourcesSaved private 2 2
20 m_iLoadingSourcesPartialTimeInterval private 1 5
21 m_iLoadingSourcesTimeInterval private 2 4
22 m_iLoadSourcesAtOnceLimit private 1 4
23 m_iLostDueToCorruption private 1 0
24 m_iMoviePreviewMode public 2 2
25 m_iPermissions public 2 4
26 m_iPriority public 2 5
27 m_iRate protected 2 2
28 m_iSavingSourcesTimeInterval private 1 4
29 m_iSourceIDIndex private 1 1
30 m_iSourceIndex private 1 1
31 m_iTotalPacketsSavedDueToICH private 1 1
32 m_LastNoNeededCheck private 1 1
33 m_nCompleteSourcesAccuracy inaccessible 2 0
34 m_nCompleteSourcesCount inaccessible 2 0
35 m_nCompleteSourcesTime inaccessible 2 2
36 m_nLastBufferFlushTime private 1 1
37 m_nLastCompleteSrcCount private 1 1
38 m_nSavedReduceDownload private 1 1
39 m_nTotalBufferData private 2 3
40 partmetfilename private 1 3
41 percentcompleted private 2 1
42 percentconfirmed private 1 1
43 priority private 2 3
44 status private 4 7
45 tempdir private 1 4
46 transfered private 2 3
47 transferingsrc private 3 1
Total 47 47 47 47

Bibliography

 356

Bibliography

Abreu, F.B. and Carapuca, R. 1994, 'Object-Oriented Software Engineering: Measuring and

Controlling the Development Process', Originally published in Proceedings of the 4th

International Conference on Software Quality, McLean, VA, USA, October 1994, Revised

version available at http://citeseer.nj.nec.com/brito94objectoriented.html, [Accessed 28 April

2002].

Abreu, F., Goulao, M. and Esteves, R. 1995, 'Toward the Design Quality Evaluation of Object-

Oriented Software Systems', Proceedings of the Fifth International Conference on Software

Quality, American Society for Quality Control, Austin, Texas, pp. 44-57.

Abreu, F.B. and Melo, W. 1996, 'Evaluating the Impact of Object-Oriented Design on Software

Quality', Proceedings of the 3rd International Software Metrics Symposium, METRICS '96,

IEEE, Berlin, Germany, pp. 90-99.

Abreu, F. and Goulao, M. 2001, 'Coupling and Cohesion as Modularization Drivers: Are we

being over-persuaded?', Fifth European Conference on Software Maintenance and

Reengineering, Lisbon, Portugal.

Ammann, M.M. and Cameron, R.D. 1994, 'Measuring Program Structure with Inter-Module

Metrics', Proceedings of the 18th Annual International Computer Software and Applications

Conference (COMPSAC 94), IEEE Computer Society, pp. 139-144.

Anonymous Assessor, 2005, Confidential Examiner’s Report On A Thesis Submitted For A

Higher Degree By Research : Student Christine McClean, UTS University Graduate School.

Arisholm, E., Briand, L.C. and Foyen, A. 2004, 'Dynamic Coupling Measurement for Object-

Oriented Software' IEEE Transactions on Software Engineering, vol. 30, no. 8, pp. 491-506.

Basili, V.R. 1988, 'The TAME Project: Towards Improvement-Oriented Software

Environments', IEEE Transactions on Software Engineering, vol. 14, no. 6, pp. 758-773.

Bell, D. And Morrey, I. And Pugh, J. 1992, Software Engineering: a programming approach,

2nd edition, Prentice Hall International, UK.

Bibliography

 357

Bieman, J.M. and Kang, B-K. 1995, ‘Cohesion and Reuse in an Object-Oriented System’,

Proceedings ACM Symposium on Software Reusability, SSR’95, ACM Press, Seattle,

Washington, USA, pp. 259-262.

Blaxter, L., Hughes, C. and Tight, M. 1996, How to Research, Open University Press, UK.

Briand, L.C., Morasca, S. and Basili, V.R. 1996, 'Property-Based Software Engineering

Measurement', IEEE Transactions on Software Engineering, vol. 22, no. 1, pp. 68-85.

Briand, L.C., Daly, J.W. and Wust, J.K. 1997b, A Unified Framework for Cohesion

Measurement in Object-Oriented Systems [Online]. Available:

http://www.iese.fhg.de/ISERN/pub/isern_biblio_tech.html [Accessed 28 November 1999].

Briand, L.C. and Daly, J.W. and Wust, J.K. 1999, 'A Unified Framework for Coupling

Measurement in Object-Oriented Systems', IEEE Transactions on Software Engineering, vol.

25, no. 1, pp. 91-121.

Briand, L.C., Morasca, S. and Basili, V.R., 1999, 'Defining and Validating Measures for

Object-Based High-Level Design', IEEE Transactions on Software Engineering, vol. 25, no. 5,

pp. 722-743.

Briand, L.C., Morasca, S. and Basili, V.R. 2002, 'An Operational Process for Goal-Driven

Definition of Measures', IEEE Transactions on Software Engineering, vol. 28, no. 12, pp.

1106-1125.

Bunge, M. 1977, Treatise on Basic Philosophy: Ontology I: The Furniture of the World,

Riedel, Boston, 1977, cited by (Chidamber and Kemerer 1994).

Bunge, M. 1979, Treatise on Basic Philosophy: Ontology II: The World of Systems, Riedel,

Boston, 1979, cited by (Chidamber and Kemerer 1994).

Carmines, E.G. and Zeller, R.A. 1979, Reliability and Validity Assessment, Sage Publications

Inc., California.

Bibliography

 358

Chidamber, S.R. and Kemerer, C.F. 1994, 'A Metrics Suite for Object Oriented Design', IEEE

Transactions on Software Engineering, vol. 20, no. 6, pp. 476-493.

Chidamber, S.R., Darcy, D.P. and Kemerer, C.F. 1998, 'Managerial Use of Metrics for Object-

Oriented Software: An Exploratory Analysis' IEEE Transactions on Software Engineering, vol.

24, no. 8, pp. 629-639.

Churcher, N.I. and Shepperd, M.J. 1995a, 'Comments on "A Metrics Suite for Object Oriented

Design"', IEEE Transactions on Software Engineering, vol. 21, no. 3., pp. 263-265.

Churcher, N.I. and Shepperd, M.J. 1995b, 'Towards a Conceptual Framework for Object

Oriented Software Metrics', ACM SIGSOFT Software Engineering Notes, vol. 20, no. 2, pp. 69-

76.

Davis, P.J. and Hersh, R. 1986, Descartes Dream: The World According to Mathematics,

Penguin Books Ltd., London.

Diamantopoulos, A. and Schlegelmilch, B.B. 1997, Taking the Fear Out of Data Analysis, The

Dryden Press, London.

Ellis, B. 1966, Basic Concepts of Measurement, Cambridge University Press, Cambridge.

Eriksson, H-E. and Penker, M. 1998, UML Toolkit, John Wiley & Sons, USA.

Fenton, N. and Melton, A. 1990, 'Deriving Structurally Based Software Measures', Journal of

Systems and Software, vol. 12, pp. 177-187.

Fenton, N. 1994, 'Software Measurement: A Necessary Scientific Basis', IEEE Transactions on

Software Engineering, vol. 20, no. 3, pp. 199-206.

Fenton, N.E. 1995, Software metrics: A Rigorous Approach, International Thomson Computer

Press, London.

Ferrett, L.K. and Offutt, J. 2002, 'An Empirical Comparison of Modularity of Procedural and

Object-oriented Software', Proceedings of the Eighth International Conference on Engineering

of Complex Computer Systems (ICECCS'02), IEEE Computer Society, pp 173-182.

Bibliography

 359

Gasking, D. 1960, 'Clusters', The Australian Journal of Philosophy, vol. 38, no. 1, pp. 1-36.

Grassmann, W.K. and Tremblay, J-P. 1996, Logic and Discrete Mathematics: A Computer

Science Perspective, Prentice-Hall, New Jersey.

Hawryszkiewycz, I.T. 1990, Relational Database Design: An Introduction, Prentice Hall,

Australia.

Henderson-Sellers, B. 1996, Object-Oriented Metrics: Measures of Complexity, Prentice Hall

Inc., New Jersey.

Hitz, M. and Montazeri, B. 1995, ‘Measuring Coupling and Cohesion in Object Oriented

Systems’, Proceedings International Symposium on Applied Corporate Computing, Monterrey,

Mexico.

Hitz, M. and Montazeri, B. 1996, 'Chidamber and Kemerer's Metrics Suite: A Measurement

Theory Perspective', IEEE Transactions on Software Engineering, vol 22, no 4, pp. 276-270.

Hoffman, P. 2001, Perl for Dummies, 3rd Edition, IDG Books Worldwide, Foster City, CA.

IEEE Computer Society 1993, "IEEE Standard for a Software Quality Metrics Methodology",

IEEE Std 1061-1992, The Institute of Electrical and Electronic Engineers, New York.

IEEE Computer Society 1998, "IEEE Standard for a Software Quality Metrics Methodology",

IEEE Std 1061-1998, Revision of IEEE Std 1061-1992, The Institute of Electrical and

Electronic Engineers, New York.

Jeffery, R., Scott, L. 2002, 'Has Twenty-five Years of Empirical Software Engineering Made a

Difference?', Proceedings of the Ninth Asia-Pacific Software Engineering Conference

(APSEC'02), pp. 539-546.

Kitchenham, B.A. 1996, Software Metrics: Measurement for Software Process Improvement,

Blackwell Publishers Inc., Massachusetts.

Bibliography

 360

Kitchenham, B.A., Hughes, R.T. and Linkman, S.G. 2001, 'Modeling Software Measurement

Data', IEEE Transactions on Software Engineering, vol. 27, no. 9, pp. 788-804.

Kitchenham, B., Pfleeger, S.L. and Fenton, N. 1995, 'Towards a Framework for Software

Measurement Validation', IEEE Transactions on Software Engineering, vol. 21, no. 12, pp.

929-943.

Kitchenham, B., Pfleeger, S.L. and Fenton, N. 1997, 'Reply to: Comments on "Towards a

Framework for Software Measurement Validation", IEEE Transactions on Software

Engineering, vol. 23, no. 3, p. 189.

Kitchenham, B.A., Pfleeger, S.L., Pickard, L.M., Jones, P.W., Hoaglin, D.C., El Emam, K. and

Rosenberg, J. 2002, 'Preliminary Guidelines for Empirical Research in Software Engineering',

IEEE Transactions on Software Engineering, vol. 28, no. 8, pp. 721-734.

Kitchenham, B.A. and Stell, J.G. 1997, ‘The danger of using axioms in software metrics’, IEE

Proceedings of Software Engineering, vol. 144, no. 5-6, pp. 279-285.

Leaney, J., Rowe, D. & O'Neill, T. 2002 'Issues in the construction of new measures within the

discipline of Open Systems', Proceedings of the Ninth Asia-pacific Software Engineering

Conference (APSEC '02), pp. 527-536.

Li, W. 1998, 'Another metric suite for object-oriented programming', The Journal of Systems

and Software 44, pp. 155-162.

Lippman, S.B. 1993, C++ Primer, 2nd edition, Addison-Wesley Publishing Company,

Massachusetts.

Meyer, B. 1988, Object-Oriented Software Construction, Prentice Hall, New Jersey.

Meyer, B. 1997, Object-Oriented Software Construction, 2nd edition, Prentice Hall, New

Jersey.

Microsoft 1997, Microsoft Access 97, Copyright  1998-1996, Microsoft Corporation.

Bibliography

 361

Morasca, S., Briand, L.C., Weyuker, E.J. and Zelkowitz, M.V. 1997, 'Comments on "Towards a

Framework for Software Measurement Validation"', IEEE Transaction on Software

Engineering, vol. 23, no. 3, pp. 187-188.

Myers, G.J. 1975, Reliable Software Through Composite Design, Mason/Charter Publishers

Inc., USA.

Offen, R.J. and Jeffery, R. 1997, ‘Establishing Software Measurement Programs’, IEEE

Software, vol. 14, no. 2, pp. 45-53.

Page-Jones, M. 1988, The Practical Guide to Structured Systems Design, 2nd edition, Prentice-

Hall International, Englewood Cliffs, NJ, USA.

Pfleeger, S.L., Jeffery, R., Curtis, B. and Kitchenham, B. 1997, 'Status Report on Software

Measurement', IEEE Software, vol. 14, no. 2, pp. 33-43.

Pressman, R.S. 1992, Software Engineering: a practitioner’s approach, McGraw-Hill,

Singapore.

Ross, K.A. and Wright, C.R.B. 1992, Discrete Mathematics, 3rd edition, Prentice-Hall Inc.,

New Jersey.

Scientific Toolworks Inc. 2003, Understand for C++, Available: http://www.scitools.com

[Accessed 1 December 2003].

Shepperd, M. and Ince, D. 1993, Derivation and Validation of Software Metrics, Clarendon

Press, Oxford.

Shlaer, S. And Mellor, S.J. 1992, Object Lifecycles: Modeling the World in States, Prentice-

Hall Inc., Englewood Cliffs, New Jersey.

Sproull, N.L. 1995, Handbook of Research Methods: A Guide for Practitioners and Students in

the Social Sciences, 2nd Edition, The Scarecrow Press, Inc., Metuchen, N.J.

Stevens, S.S. 1946, 'On the Theory of Scales of Measurement', Science, vol. 103, no. 2684, pp.

677-680.

Bibliography

 362

Stevens, W.P., Myers, G.J. and Constantine, L.L. 1974, 'Structured Design', IBM Systems

Journal, no. 2, pp.115-139.

Swift, L. 2001, Quantitative Methods for Business, Management and Finance, Palgrave

Publishers Ltd. New York.

Szyperski, C. 1998, Component Software: Beyond Object-Oriented Programming, Addison-

Wesley, Essex, England.

Tang, M-H and Chen, M-H 2002, 'Measuring OO Design Metrics from UML', Lecture Notes in

Computer Science, vol. 2460/2002, Springer-Verlag Heidelberg, pp368-382.

The Australian Pocket Oxford Dictionary, 5th edition, , 2002, editied by Bruce Moore, Oxford

University Press, Victoria, Australia.

Weyuker, E.J. 1988, 'Evaluating Software Complexity Measures', IEEE Transactions on

Software Engineering, vol. 14, no 9, pp. 1357-1365.

Wolberg, G. 1990, Digital Image Warping, IEEE Computer Society Press, Los Alimitos,

California.

Wolfe, J. 2003, How to Write a PhD Thesis, [Online]. Available:

http://www.phys.unsw.edu.au/~jw/thesis.html [Accessed 18 September 2004].

Yourdon, E., and Constantine, L. 1979, Structured Design: Fundamentals of a Discipline of

Computer Program and Systems Design, Prentice-Hall, Englewood Cliffs, N.J.

Zuse, H. 1996, 'Foundations of Object-oriented Software Measures', IEEE Proceedings of

METRICS '96, pp. 75-87.

	Title Page

	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	Abstract
	Chapter 1 - Introduction
	Chapter 2 - Literature Review
	Chapter 3 - Conceptual Definition
	Chapter 4 - Entity Modelling
	Chapter 5 - Operational Measure Definition
	Chapter 7 – Application of C++ Class and Object Modularity Measures
	Chapter 8 – Discussion and Suggestions for Further Work
	Appendix 1 – Entity-Relationship Model Set Definitions
	Appendix 2 - Basic Model to Measurement Model Transformations
	Appendix 3 – eMulePlus C++ Class Modularity to Lines of Code Correlation Data
	Appendix 4 – eMulePlus Software System Content Validation
	Appendix 5 – eMulePlus Modularity Data Values
	Appendix 6 – CPartFile Interface Dependence Data
	Bibliography

