Patterns of Virtual Collaboration

Robert P. Biuk-Aghai

A thesis submitted for the degree of
Doctor of Philosophy in Computing Sciences
at the
University of Technology, Sydney

Faculty of Information Technology
University of Technology, Sydney

Sydney, Australia

2003

Copyright(C) 2003 by Robert P. Biuk-Aghai <Robert.Biuk-Aghailacm.org>

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.

To my parents, with love and gratitude

Certificate of Authorship/Originality

| certify that this thesis has not previously been submitted for a degree nor has it been
submitted as part of requirements for a degree except as fully acknowledged within the
text.

| also certify that the thesis has been written by me. Any help that | have received
in my research work and the preparation of the thesis itself has been acknowledged. In
addition, | certify that all information sources and literature used are indicated in the

thesis.

Abstract

Virtual collaboration—the act of working together across boundaries of space, time, and
organization, aided by technology—has become increasingly commonplace in recent
years. Doing so, however, presents a number of challenges to those involved. One of
these is that because of a lack of experience in collaborating through computer-based
collaboration systems, there is little knowledge on how to carry out collaboration virtu-
ally. Another is that it is not easy for those not directly involved in the collaboration to
know what is, and has been, “going on” during virtual collaboration. This thesis sug-
gests that both of these challenges can be addressed with the same approach, namely by
referring to observations of virtual collaboration. The problem then is how such obser-
vations of virtual collaboration can be obtained without requiring those involved in it to
document their own actions. To address this problem is the objective of this thesis.

The approach proposed here involves three elements: firstly, the collection of data
about virtual collaboration; secondly, the modeling of this data; and thirdly, the deriva-
tion of increasingly abstract, larger-scale representations of virtual collaboration from
this data. These representations are terpaterns of virtual collaborationwhich are
abstract descriptions of activities of virtual collaboration. A multi-layered conceptual
model of information, thénformation Pyramid of Virtual Collaborationis proposed,
providing different views of information related to virtual collaboration, at different lev-
els of abstraction. The thesis then suggests how from a given body of data, patterns
of virtual collaboration at a corresponding level of the Information Pyramid can be ex-
tracted, and how from collections of such patterns more abstract patterns of larger-scale
activity can be derived, providing the observations of virtual collaboration sought.

In considering how the extraction of patterns of virtual collaboration fits into the
larger context of the conception, design, and use of collaboration systéwanawork
for Pattern Extraction and Feedbadk proposed. This framework introduces the notion
of collaboration memorya type of organizational memory that contains records of col-
laborative activity. Moreover, the framework suggests how extracted patterns of virtual
collaboration feed back into both ongoing development and use of collaboration systems.

Abstract iv

Finally, the modeling and extraction of patterns of virtual collaboration is illustrated
in a case study involving thellZENET collaboration system.

Acknowledgments

At the end of a long and arduous undertaking such as doctoral research, great thanks are
due to many people who have been of help and support along the way:

First and foremost to my supervisor Igor Hawryszkiewycz, who by email accepted
me as a PhD student without ever having met me, and let me spend my first year as a
PhD student overseas (still without having met me!). Thus, at least in part, my PhD work
was carried out in a form of virtual collaboration, the very thing which this research is
about. Igor not only gave me much guidance, but also a great degree of freedom, for both
of which | am very grateful.

To my co-supervisor John Debenham, who always was ready to discuss my research
(on the few occasions that | ventured into his office), and who never failed to inundate me
with a torrent of ideas of what | could or should consider, as well as numerous comments
on various drafts of thesis chapters. My thesis is so much the better because of this.

Great thanks are due to Simeon Simoff, a good colleague and friend whom | had the
great fortune of collaborating with. In particular, the development of the ideas presented
in Section 4.5 are based on earlier joint work performed by Simeon and myself (Biuk-
Aghai and Simoff, 2001). Looking forward to many more fruitful collaborations!

To my office colleagues Ingrid Slembek, Alan Lin, and Dongbai Xue whom | hassled
more than once, and who were always willing to help and listen.

To the colleagues from the School of Management, Thekla Rura-Polley and Ellen
Baker. We have overlapping research interests, and it was great and enlightening to work
with them.

To the technical and admin staff at the Faculty of Information Technology, for their
usually prompt and helpful support, particularly: Malik, Alex, Graham, Bj, and sbg.

To a number of colleagues in the faculty who made comments along the way which
no doubt got reflected in the thesis one way or another: Maolin Huangri¥abay,
Richard Raban, and Toni Robertson.

To the DSTC staff with whom | had fruitful discussions, or who simply were help-
ful when help was needed: Luke Cole, Kim Dinh, Glen “Marty” MacLarty, and Tim
Mansfield.

Acknowledgments Vi

To my employer, the University of Macau, for their willingness to invest in my future
and maintain my position for me while | was overseas for two years.

To the makers of those wonderful software tools which | could not have done without
in preparing this thesis, mainl¥TgX, BIBTEX, and XFig.

Not least of all to my wife Ouling and my daughter Chuer for their continuing love
and support, and for having endured five years of my long nights and weekends of work,
as well as several months absence when | was overseas for conferences or work.

Finally, to my parents who gave me the gift of life and enabled me to get where | am
now. | am deeply grateful to them.

Contents

1

Introduction 1
1.1 The Changing Organizational Setting. 1
1.2 Virtual Teams and Virtual Collaboration 2
1.3 Challenges. e 6
1.4 ResearchProblem 8
1.5 Research Methodology and Approach 10
151 ResearchMethodology 10
1.5.2 ResearchApproach 11
1.6 OutlineoftheThesis 11
1.7 TypographicConventions 12
The Problem Domain 13
2.1 Virtual Collaboration Processes 13
2.1.1 Kinds of Virtual Collaboration Processes 13
2.1.1.1 Definitions o 14
2.1.1.2 Implications for Support Systems 18
2.1.2 Representing Virtual Collaboration Processes 20
2121 ExampleProcess. 22
2.1.2.2 The Collaborative Process Model 22
2123 SeeMeModels., 24
2.1.2.4 Collaborative Business Process Models 27
2.2 Collaboration Systems e 31
2.2.1 Structuring Metaphors Lo oo 32
2.2.2 AWArENESS e e e 33
2.2.3 Review of Existing Collaboration Systems 36
2231 BSCW e 37
2232 CBE e 39

2233 TEAMROOMS 40

Contents

viii

2.4 Summary

2.3.1
2.3.2
2.3.3
2.3.4
2.3.5
2.3.6
2.3.7
2.3.8

2234 CVW. e
2235 RBIT . . . oo

2236 UVENET

2.2.3.7 Summary and Comparison
2.3 Organizational Memory
Data, Information, Knowledge
Knowledge Creation
Locus of Organizational Memory
Levels of Organizational Memory
Declarative vs. Procedural Memory
Remembering L.
Forgetting

Organizational Memory vs. Knowledge Management

3 Modeling Patterns of Virtual Collaboration

3.1
3.2
3.3
3.4

Patterns
The Information Pyramid of Virtual Collaboration
Graphical Representation of Action Patterns
Example of Levels of Information

3.4.1
3.4.2
3.4.3
3.4.4
3.4.5

SystemLevel
UserLevel
CollaborationLevel
TasklLevel
ProcesslLevel
3.5 Summary

4 Deriving Patterns of Virtual Collaboration

4.1

4.2

Information Derivation
Ontologies
ModelingMethod
Knowledge Model of the Ontology
Notation for Ontology Specification
Ontology Specification
CommonClasses

SESSIONS
Specification of Concept Mappings

41.1
41.2
4.1.3
41.4

421
4.2.2
4.2.3

Contents iX
4.2.3.1 Unmodified One-To-One Correspondence 106
4.2.3.2 One-To-One Correspondence With Modifications . . . 107
4.2.3.3 Many-To-One Correspondence 112
4.2.4 Definition of Mapping Functions 118
4.3 Extraction of Patterns of Virtual Collaboration 120
4.3.1 Base Level Pattern Extraction 120
4.3.2 Higher-Level Pattern Extraction 123
4.4 Visualization of Patterns of Virtual Collaboration 125
4.4.1 Measures of Collaboration Spaces 129
4.4.2 Requirements of VisualizationTools 131
4.5 Framework for Pattern Extraction and Feedback 131
45.1 CollaborationSystems 133
45.1.1 DomainUnderstanding 134
4512 SystemDesign. 134
45.1.3 SystemUtilization 135
45.2 CollaborationData 135
4521 DataUnderstanding 136
4522 DataModeling. 136
4523 DataCollection 136
453 PatternExtraction. 137
45.3.1 PatternRecognition 137
45.3.2 PatternDerivation 138
4.5.3.3 Pattern Specification 138
45.4 CollaborationMemory 139
4541 OntologyandMappings 140
45.4.2 TopologiesandPatterns 140
4.5.4.3 Collaboration Understanding 141
4.6 SUMMAIY o e e e 141
5 Case Study: Modeling and Pattern Extraction in LIVE NET 143
5.1 Specification of the vENET Ontology 144
5.1.1 Step 1: Identifyingthe BaseLevel 145
5.1.2 Step 2: Modeling the Base Level (SystemLevel) 145
5.1.2.1 Step 2.1: Identifying Objects 146
5.1.2.2 Step 2.2: Identifying Actions 147
5.1.2.3 Step 2.3: Identifying Action Patterns 149

5.1.2.4 Step 2.4: Specifying Concepts 150

Contents X

5.1.3 Step 3: Modelingthe UserLevel 155
5.1.3.1 Step 3.1: Identifying Objects 156
5.1.3.2 Step 3.2: Identifying Actions 158
5.1.3.3 Step 3.3: Identifying Action Patterns 161
5.1.3.4 Step 3.4: Specifying Concepts 162

5.1.4 Step 4: Defining Mappings Between System Level and User Level 168
5.1.4.1 Step 4.1: ldentifying Source and Target Concepts and

Attributes 168
5.1.4.2 Step 4.2: Identifying Mapping Constraints 169
5.1.4.3 Step 4.3: Specifying Mappings 169
5.1.4.4 Step 4.4: Defining Mapping Functions 170
5.1.5 Step 5: Modeling the Collaboration Level 172
5.1.5.1 Step5.1: Identifying Objects 172
5.1.5.2 Step5.2: Identifying Actions 173
5.1.5.3 Step 5.3: Identifying Action Patterns 176
5.1.5.4 Step 5.4: Specifying Concepts 176
5.1.6 Step 6: Defining Mappings Between User Level and Collabora-
tionLevel 177
5.1.6.1 Step 6.1: Identifying Source and Target Concepts and
Attributes 177
5.1.6.2 Step 6.2: Identifying Mapping Constraints 178
5.1.6.3 Step 6.3: Specifying Mappings 179
5.1.6.4 Step 6.4: Defining Mapping Functions 179
5.1.7 Step 7: Modeling the Task Level 180
5.1.7.1 Step 7.1: Identifying Objects 180
5.1.7.2 Step 7.2: ldentifying Actions, 180
5.1.7.3 Step 7.3: Identifying Action Patterns 182
5.1.7.4 Step 7.4: Specifying Concepts 182
5.1.8 Step 8: Defining Mappings Between Collaboration Level and
TaskLevel 183
5.1.8.1 Step 8.1: Identifying Source and Target Concepts and
Attributeso 183
5.1.8.2 Step 8.2: Identifying Mapping Constraints 184
5.1.8.3 Step 8.3: Specifying Mappings 186
5.1.8.4 Step 8.4: Defining Mapping Functions 186
5.1.9 Step 9: Modeling the Process Level 186

5.1.9.1 Step9.1: Identifying Objects 186

Contents Xi

5.1.9.2 Step 9.2: Identifying Actions 187
5.1.9.3 Step 9.3: Identifying Action Patterns 187
5.1.9.4 Step 9.4: Specifying Concepts 187
5.1.10 Step 10: Defining Mappings Between Task Level and Process
Level 188
5.1.10.1 Step 10.1: Identifying Source and Target Concepts and
Attributes Lo 188
5.1.10.2 Step 10.2: Identifying Mapping Constraints 189
5.1.10.3 Step 10.3: Specifying Mappings 189
5.1.10.4 Step 10.4: Defining Mapping Functions 189
5.1.11 Relationships Between Concepts in the Completed Ontology . . . 190
5.2 Pattern Extraction fromiveNETData 191
521 DataCollection 192
5.2.1.1 Data Collection Facilites 192
5.21.2 DataSource 193
5.2.2 PatternExtraction. o 193
5.2.2.1 Mapping Action Patterns from System Level to User
Level 194
5.2.2.2 Mapping Action Patterns from User Level to Collab-
orationLevel L. 196
5.2.2.3 Mapping Action Patterns from Collaboration Level to
TaskLevel, 200
5.2.2.4 Mapping Action Patterns from Task Level to Process
Level 201
5.2.3 DISCUSSION e 202
53 Summary e e e e 205
6 Summary and Conclusions 207
6.1 Summary e e e 207
6.2 ContributionsofthisResearch 208
6.3 FutureWork 209
6.4 ConcludingRemarks 211
A LI1VENET Workspace Visualizer 213
A.l Intra-Workspace Maps 213
All Filtering. 215

A.2 Inter-Workspace Maps 216

Xii

Contents
A.2.1 Workspace RelationshipTypes 218
A.2.2 Node Expansion, 220
A23 Focusing 221
A24 Clustering e 223
A.2.5 Workspace Measures e 226
A.25.1 Densitymeasures: 228
A.25.2 Intensitymeasures: 229
A.25.3 Recencymeasures: 230
A.3 From Inter- to Intra-workspaceMaps 231
B Pattern Extraction Queries 233
B.1 Database Structure 233
B.2 Sessions 233
B.2.1 Number of Actions PerSession 233
B.2.2 SessionsPerDay 238
B.2.3 System-Level Actionsin All Sessions 240
B.2.4 Session4228 e e 242
Glossary & Abbreviations 250
Associated Publications 257
259

Bibliography

List

11
1.2
1.3

2.1
2.2
2.3

2.4
2.5

2.6

2.7
2.8

2.9

2.10
2.11
2.12
2.13
2.14
2.15
2.16

3.1
3.2
3.3

of Figures

Time-place matrix of collaboration 4
Categories of virtual groups, teams, and meetings 5
Categories of virtual projects L. 5
Process types related to task and sequence predefinition 17
Collaborative Process Model of a product concept development process . 23
Decomposition of the Final Report Preparation task from the Collabora-

tive Process Model of a product concept development process. 24
SeeMe model of a product concept development process 26
SeeMe model of the Final Report Preparation task of a product concept
development process 27

A Hawryszkiewycz-style rich picture of a product concept development
PrOCESS e e e e e 29
Transition diagram for a product concept development process 30
MOO diagram for the Final Report Preparation task of a product concept
development process e e 30
BSCWuserinterface 38
CBE generic and domain-specificapplets 40
TEAMWAVE WORKPLACEUSer interface 41
CVWuserinterface 43
OrBIT-GOLD userinterface oL 45
LIVENET user interface (web interface) 46
Modes of knowledge conversion and the cycle of knowledge creation. . . 56
Multiple levels of organizationalmemory 58
Records from a collaborationsystem 65
MOO diagram of a report preparationtask 65
Views of information about virtual collaboration at different levels of

abstraction 68

List of Figures Xiv

3.4 Information Pyramid of Virtual Collaboration with different levels of in-

formation 72
3.5 Modeling elements of EMOO diagrams 76
3.6 Default meanings of actions in EMOO diagrams 77
3.7 EMOO diagram of a report preparation action pattern 78
3.8 EMOO diagrams of three consecutive system-level action patterns 80

3.9 EMOO diagram of user-level action patt@&wost-Discussion-Statement 82
3.10 EMOO diagram of collaboration-level action patt@mup-Discussion . 84
3.11 EMOO diagram of task-level action pattéinal-Report-Preparation. . 86
3.12 EMOO diagrams of five task-level action patterns and rich picture of the
corresponding process-level action patteraduct-Concept-Developmen88
3.13 Chain of correspondences of action patterns from system level to process
level of the Information Pyramid 89

4.1 Information Pyramid for two actual collaboration systemsHNET and

TEAMROOMS e 91
4.2 Related and identical concepts on different levels of the Information Py-

ramid 92
4.3 Modeling method for deriving information in the Information Pyramid . . 94

4.4 Models and mappings for deriving information in the Information Pyramid 96
4.5 Part of an ontology, showing a class, instance, slots, and facets for repre-

senting users in a collaborationsystem 98
4.6 Taxonomic hierarchy of common classes of the ontology of collaboration

SYSIEMS e e e 101
4.7 Taxonomic hierarchy of four levels of classes in a given collaboration

system’sontology 103
4.8 A sequence of actions belonging to one or more sessions 105
4.9 Classsession for representing sessions in a collaboration system’s on-

tology 106
4.10 Mapping of object classser to object clas§erson 108

4.11 Mapping of object clas®cument to object clas¥ersioned-Document 111
4.12 Mapping of object classesard andpage to object clas®hiteboard . 113
4.13 Mapping of instances of object classgs teboard and Versioned-

Document to object clas®rainstorming-Room. 114
4.14 Mapping of sequence of action classesk-Board, Draw-On-Board,
andUnlock-Board to action classocked-Draw 115

4.15 Mapping constructs used for mapping slots and instances across levels . . 117

List of Figures XV

4.16 Extraction of instances of action patterns from object and action records
at the collaboration system’s base level, via object and action instances . . 122
4.17 Extraction of instances of leval4- 1 action patterns from levei+ 1

objects and actions and levehction patterns 124
4.18 Completeness of specification versus scale of activity for the six levels of

the Information Pyramid 127
4.19 Example of a node-and-link diagram 129
4.20 Framework integrating collaboration memory, collaboration systems, col-

laboration data, and pattern extraction 132
5.1 System-level object clags-Statement 152
5.2 System-level action clags-Add-Statement 153
5.3 System-level action pattern class-Add-Statement-Pattern 154
5.4 Action pattern classV-Add-Statement-Pattern and related action and

objectclasses 155
5.5 Different views of discussions on system and userlevels 157
5.6 Different types of action patterns based on acBesup-Discussion . . . 177
5.7 EMOO diagram of th®ouble-Blind-Review task-level action 181
5.8 Task-level action pattern clas$-Double-Blind-Review-Pattern . . . 183
5.9 Process-level action pattern clasisManuscript-Preparation-Pat-—

L= o 188
5.10 Horizontal and vertical links between some of the concepts inthe-L

NET ontology on different levels of the Information Pyramid 190
5.11 Datacollectionin IWVENET 192
5.12 EMOO diagrams representing a sequence of instances of three system-

levelactionpatterns 197

5.13 EMOO diagram representing an instance of a user-level action pattern . . 197
5.14 EMOO diagram representing an instance of a collaboration-level action

pattern L e e e 199
5.15 EMOO diagram representing an instance of another collaboration-level
actionpattern 200
5.16 Intra-workspace map of the master workspace of Group9 201
5.17 EMOO diagram representing an instance of a task-level action pattern . . 202
5.18 Inter-workspace map of workgroape-group-09 203
A.1 Intra-workspace map of workspaBeok-Review 214
A.2 Intra-workspace map with popup menu for filtering objects by type 215

A.3 Intra-workspace map with only role and discussion forum objects visible . 216

List of Figures XVi

A.4 Intra-workspace map with only role and document objects visible 217
A.5 Inter-workspace map of a collection of workspaces, showing parent-child
workspace relationshipso 218
A.6 Control panel allowing features of the visualization to be controlled . . . 219
A.7 Inter-workspace map of a collection of workspaces, showing all types of
workspace relationships Lo 221
A.8 Navigation of a workspace tree through a sequence of node expansion
actionsS L 222
A.9 Focused workspace with parent-child and message rule relationships . . . 222
A.10 Magnets-and-connecting-springs model on which the force-directed ani-
mated visualization algorithmisbased 224

A.11 Clustering of workspace nodes in an inter-workspace map with parent-
child, shared document, shared background, and shared discussion forum

INKS e 225
A.12 Inter-workspace map of a collection of workspaces, with node colouring
indicating workspace density L. 227

A.13 Weighted action coumtfor recency measures, with recency peribe 30 230

B.1 Number of actions per sessionforGroup9 235
B.2 Sessions of Group 9 per day, 11/Aug/2000—-6/Nov/2000 239
B.3 Ranked list of number of occurrences of system-level actions performed

by Group9inallsessions, 241

List of Tables

2.1

3.1
3.2

3.3

B.1
B.2

Comparative overview of six collaboration systems 49
Fields in LVENET's system-level logrecords 79
Attributes of an instance of user-level action pattBost-Discussion-
Statement. 81
Attributes of an instance of collaboration-level action pat@®roup-
DISCUSSION. 83
Structure of databasetalleg, 234
Occurrence of system-level actions in session 4228 overtime 244

List of Definitions

© 00 N O 0o A WDN P

P R R R R R R R R R
© 00N UDWNERERO

Virtualteam e 3
Collaboration 3
Cooperation L e e 3
Virtual collaboration, 3
Task e 14
Process e e 15
Collaborationprocess e 15
Virtual collaborationprocess L. 15
Processmodel e 20
Collaborationspace 32
Collaborationsystem 32
Data, Information, Knowledge 55
Pattern L 67
Object e 69
ACtiON 69
Actioncontext. e 69
Actionpattern e 70
SeSSION e 103

Collaborationmemory 139

Chapter 1
Introduction

This thesis is concerned with obtaining insights into the work of virtual teams who col-
laborate through the support of computer-based systems. Such systems can collect large
amounts of fine-grained data about events transpiring in them (e.g. user logs in, user
opens a discussion forum, user uploads a document, etc.). This thesis suggests how col-
lections of such fine-grained events can be aggregated to more abstract representations of
work activities such as tasks and processes (e.g. reviewing a paper). It also suggests how
these abstract representations can contribute in an ongoing manner to an organization’s
records of its own actions. The following sections outline the issues that motivate this
research and the problems it attempts to address.

1.1 The Changing Organizational Setting

The following discussion is concerned with organizations and the changes experienced
by them. In this context, the term “organization” is understood to refer to any entity
that forms a social structure comprised of members, be they individuals or in turn other
organizations. For the most part, the comments made in this section apply to business
organizations specifically, but many of the issues raised also bear upon other types of
organizations, such as governmental, educational, and other organizations.

In past decades, many business organizations could operate in relatively stable and
predictable environments:

By the late 1970s, the industrial economy had been chugging along for al-
most a century, and, for the most part, its structure was fixed and competition
was predictable. (Carr, 2001, p. ix)

With the introduction and spread of information and communication technology,
however, this relative stability has started eroding, and this trend has been particularly

Chapter 1. Introduction 2

marked and accelerated in the past decade: “In recent years, it seems as though the only
constant in business has been upheaval’ (Sawhney and Parikh, 2001). Greater amounts
of more easily accessible information, and more open, increasingly global markets, have
influenced the way organizations are run and business is conducted. Business organiza-
tions are operating in increasingly competitive environments, with some sectors of the
economy operating under such great competitive pressures that the management com-
munity has coined a new term to describe this phenomemgrercompetitiofD’Aveni,

1994; Naff, 1995). This greatly increased competition has given rise to an equally greatly
increased pace of operation. For instance, products and services are no longer conceived,
developed and launched in timeframes that are measured in years, but for many sectors
of the economy this cycle time has been reduced to months or less:

New products, even whole markets, appear, mutate, and disappear within
shorter and shorter periods of time. The pace of innovation continues to
quicken, and the direction of innovation is often unpredictable. (Goldman

etal., 1995, p. 3)

The impact this has had, and is having, on the affected organizations is profound:

Changes have occurred at every level, from the way entire industries are
structured, to the way companies interact with customers, to the way basic
tasks are carried out in individual organizations. (Sawhney and Parikh, 2001)

1.2 Virtual Teams and Virtual Collaboration

Coping with these pressures and ensuring survival of the organization often requires great
agility, i.e. the ability of the organization to quickly and nimbly reorganize itself, in part

or in whole, in response to a given stimulus. The concept oatile companyas been
proposed as a solution to the changing organizational setting (Goldman et al., 1995).
This type of organization often employs new organizational forms (Coleman and Khanna,
1995, p. 3) such as cross-functional teams (i.e. teams whose members come from dif-
ferent functional areas, and usually also from different organizational units) (Goldman
et al., 1995; Richards and Makatsoris, 2002) and virtual teams. While a conventional
team is understood to be “a group of people organized to work togeétleevirtual team

has been defined as follows:

1The Collins Concise Dictionary of the English Language, 2nd edition, 1988.

Chapter 1. Introduction 3

Definition 1 A virtual team, like every team, is a group of people who
interact through interdependent tasks guided by a common purpose. Unlike
conventional teams, a virtual team works across space, time, and organiza-
tional boundaries with links strengthened by webs of communication tech-
nologies (Lipnack and Stamps, 1997).

O

A virtual team may be assembled only for the duration of a given project, cutting
across the organizational hierarchy and integrating otherwise separate human resources.
When these resources are physically distributed, the use of information and communica-
tion technology facilitates collaboration of these teams, despite their members’ physical
distance (Steinfield, 2002). It has been suggested that the organization of the 21st century
will be made up of virtual teams and of networks of such teams (Lipnack and Stamps,
1999).

Members of virtual teams interact with each other in a modeadiaboration or
cooperation These two terms are defined here as follows:

Definition 2 Collaborationis the act of working together on a common
task or process.
O

Definition 3 Cooperationis the joint operation or action toward a com-
mon goal or benefit.
O

The meaning of these two terms seems to be almost the same, and indeed in the
literature they are often used interchangeably. The connotations associated with each,
however, are slightly different and are best highlighted by considering their antonyms:
the antonym of collaboration is “working independently”, while that of cooperation is
“competition”—an entirely different notion. Therefore, when talking about the work of
virtual teams in the context of this thesis, the term “collaboration” is used instead of
“cooperation”, to emphasize the fact of working together.

Virtual collaboration, then, is defined as follows:

Definition 4 Virtual collaboration is collaboration which is conducted
without face-to-face interaction, enabled by technology.
O

Chapter 1. Introduction 4

Time
same different
% Same Time Different Time
o Same Place Same Place
Place &
% Same Time Different Time
-% Different Place Different Place

Figure 1.1: Time-place matrix of collaboration, adapted from (Johansen et al., 1991)

Most commonly this technology is a computer-based system, but virtual collaboration
can also make use of other tools such as telephone, fax, video-conferencing systems, etc.

Virtuality of teams and collaboration is not an absolute measure, but rather is a contin-
uum that ranges between the completely non-virtual and the completely virtual. An early
classification of collaboration support systems was proposed in (Johansen et al., 1991)
based on the two dimensionstohe andplaceof the collaboration, and their distribution
among the two poles dfameanddifferent yielding the now well-known matrix shown
in Figure 1.1. Virtual collaboration as defined here thus matches all quadrants except the
top-left one (same time, same place).

However, this classification is somewhat simplistic in its assumption that collabo-
rative work fits neatly into one of the four areas of the matrix, i.e. that the totality of
collaborative activity can be confined within that quadrant. In reality, it is more common
for a mix of these different conditions to exist. For instance, for a joint authoring task an
initial face-to-face meeting (same time, same place) may be followed by a period of indi-
vidual writing activity (different time, different place), followed by a concluding period
of integration of the separate sections of the joint work aided by collaboration technology
(same time, different place).

Other classifications have been put forward, such as the one proposed in (Nieder-
man and Beise, 1999), which is concerned with defining virtuality of groups, teams, and
meetings. It suggests that rather than classifying by the dimensions of time and place,
the preferred dimensions for classification should be the extent to which technology is
used, and to which technology use is combined with face-to-face interactions. Values in
each of these two dimensions range frlmw to high. The resulting classification takes
the form shown in Figure 1.2. In this framework, thighly-virtual category, where face-
to-face interactions are low and electronic mediation is high, most closely matches the
definition of virtual collaboration adopted here.

Chapter 1. Introduction 5

Face-to-Face

low high
_% Inactive Traditional
Electronic
Mediated -
2| Highly-Virtual | Fully-Supported

Figure 1.2: Categories of virtual groups, teams, and meetings, from (Niederman and
Beise, 1999)

Geographic Dispersion

low high
_% Traditional Distributed
Affiliation
Dispersion _
2 Inter- Virtual
organizational

Figure 1.3: Categories of virtual projects, from (Katzy et al., 2000)

Virtual teams may also span organizational boundaries, where separate organizations
that otherwise compete with each other decide to pool their resources in order to jointly
achieve what each one of them singly is not able to. Indeed, entire organizations may
decide to form temporary alliances that present themselves to the outside as a single
organization, so-calledrtual organizationgDonlon, 19973.

Yet another classification of virtuality, in the contextftual projects that includes
organizational boundary-spanning virtual teams has been proposed in (Katzy et al., 2000)
and is shown in Figure 1.3. This classification includes the dimensiaiffibation dis-
persion which expresses the extent to which members of a project team belong to the
same or different organizations. The other dimensiagesgraphic dispersigrwhich is
the same as thaelacedimension in the classification of (Johansen et al., 1991). Values in
each dimension range frolaw to high. As this classification is specifically concerned
with the aspect of affiliation dispersion, it does not map clearly into the definition of vir-
tual collaboration adopted here. In all quadrants it is possible for virtual collaboration to

2An example of the application of the concept of virtual organizations can be found in movie produc-
tion, where a large number of independent companies and individuals come together for the duration of the

project, then disband.

Chapter 1. Introduction 6

take place, although in the two left ones (low geographic dispersion) the collaboration is
more likely to be of the face-to-face type, rather than being virtual.

The trend towards virtual teams and virtual organizations leads to an increased blur-
ring of both inter- and intra-organizational boundaries, along with an increased degree of
virtual collaboration. As a result, a greater portion of an individual’s activity shifts from
the physical to the virtual world. This offers a number of opportunities, among which are
cost and time savings, greater accessibility of team members regardless of time zone or
location, ability to participate in multiple projects at the same time, etc. However, this
shift also presents a number of challenges, some of which are discussed in the following
section.

1.3 Challenges

People have centuries of experience working in collaboration with each other. Until very
recently, however, this collaboration has practically always been of the face-to-face kind,
in more or less close physical proximity. Not until the advent of modern telecommunica-
tion technology has it become possible to effectively carry out collaboration in any other
way®. Consequently, appropriate methods and techniques for communication, collabor-
ation, management and coordination in the physical world were developed over a long
period of time.

For instance, if a group of people is to work closely together, experience advises that it
is best to bring them together in close physical proximity to each other; to ensure that they
come together at the same time; to make tools and materials required for carrying out the
work easily accessible within the working environment; to place the most frequently used
of these closest to those who make the most use of them; etc. It is known that the physical
arrangement of different members of a collaborative work group should take features of
the work process into account. It is known that this arrangement is also dependent on
the nature of the work carried out: sometimes it is better for people to share an open
office where they are afforded the opportunity to see and hear each other, while at other
times it is better for them to have their own separate offices, such as when their work
requires a quiet environment to support periods of concentrated thinking. Based on the
long experience of working together in the physical world, these kinds of insights come

3Means of communication other than through face-to-face interactions did exist in past centuries, in-
cluding the use of carrier pigeons, drum telegraphs, light and smoke signals, couriers, and later the mail
service and the electric telegraph. However, it can be argued that the limitations of bandwidth and/or
latency of these former means of communication made the kind of collaboration considered here all but
impossible.

Chapter 1. Introduction 7

naturally and do not require much, or indeed any, deliberation.

In the virtual realm, however, the situation is very different. Because collaboration
conducted through the aid of information and communication technology is a very recent
phenomenon, there is very little experience in how to carry out collaboration virtually.
Therefore it is difficult to know how a virtual work environment should be designed, and
how the work should be structured. With what items should the work environment be
furnished? Should it be structured in a similar manner as one does with a physical work
environment? Should one perform all tasks in the same environment or in different ones?
What links should exist between different environments? How should distinct tasks be
related with one another? It is tempting to simply apply one’s experience of face-to-face
collaboration to virtual collaboration, but whether or not these experiences are in fact
transferable to the virtual realm in that form is not certain. Thus there is the following
challenge:

Challenge 1 How can one know how to carry out collaboration virtually?

Moreover, one of the difficulties associated with the virtual world is its lack of many
of the affordances which the physical world provides. In the physical world, the tradi-
tional sensory modes of perception, primarily visual and auditory, provide a continuous
rich source of information on events transpiring in the working environment, both the
immediate and the less immediate one. Thus, for instance, when a nearby co-worker per-
forms an action, one can immediately become aware of it, which may then influence one’s
own work. On the other hand, in the virtual realm one’s view of the world is very much
impoverished, reduced to several square decimeters of screen space, which at best may
be supplemented by an audio channel. Thus knowing what is going on in the virtual work
environment is encumbered by the limitations of the technology. Researchers in the HCI
(human-computer interaction) and CSCW (computer-supported cooperative work) com-
munities have long studied this problemasarenessMuch of the work in this area has
focused on delivering fine-grained events to those present in a virtual work environment,
often with an emphasis on synchronous (same-time) collaboration. This can be of value
to those directly engaged in highly inter-connected work, such as for example in collab-
orative editing. However, to those less directly involved in specific work tasks, including
other colleagues as well as management, such detailed awareness information often is of
little value, and may in fact contribute toformation overloadHiltz and Turoff, 1985;
Fussell et al., 1998). Instead, what is required rather than detailed up-to-the-second event
traces is a high-level overview of the tasks performed by both individual team members
and entire teams, as well as their progress over time, including both the present, as well

Chapter 1. Introduction 8

as the history of actions that have already transpired. Thus another challenge posed is
this:

Challenge 2 How can one know what is, and has been, “going on” during
virtual collaboration?

The history of a given virtual team’s collaboration is particularly relevant to those
who have not been immediately involved in it—new team members who need to get “up
to speed” on what the team has been doing prior to their joining it, or management who
are interested in the work performed by a team. The history of an organization’s actions
is one of the areas of research imi@anizational memorywhich for over a decade has
been addressing the problem of organizations suffering the equivalemradsiai.e. the
inability to recall their past actions and bring that knowledge to bear on present endeav-
ours. Virtual collaboration exacerbates the problem of organizational amnesia because,
taking place in virtual space, it is less directly observable than activity in physical space.

The following section suggests how these challenges can be met.

1.4 Research Problem

The two challenges described above, that is, knowing how to carry out collaboration vir-
tually, and knowing what has transpired during virtual collaboration, form the motivation

for this research. Here it is suggested that meeting these two challenges can be addressed
with the same approach.

Knowing how to carry out collaboration virtually requires knowing how to design the
virtual work environment, and knowing in what way to utilize it to perform specific tasks.
Drawing the parallel with the physical world: how does one know what resources are
required for a task in a physical work environment, how they should be related, and how
they should be utilized for the performance of the task? Unless one has already performed
that task before, there are a number of possibilities: for instance, one may study work
manuals that describe required resources and methods of execution; alternatively one
may resort to trial-and-error; one could ask someone whom one knows to be experienced,
or one could observe someone else perform the task. It is argued here that in most cases
observation is preferable to the other approaches: observation is practical, in that one
can actually perceive the task in action, rather than merely a description of it; and this
observation allows one to gain from the experience of the one performing the task, rather
than having to attempt to gain this experience by trial-and-error.

Thus the answer to the first challenge, “how can one know how to carry out collabor-
ation virtually?” is this: by observing the virtual collaboration of others.

Chapter 1. Introduction 9

The answer to the second challenge, “how can one know what is, and has been, “going
on” during virtual collaboration?”, on the other hand, can be answered in the same way:
by observing the virtual collaboration. Thus meeting the two challenges can be addressed
with the same approach.

However, this raises a new challenge, namely how virtual collaboration can be ob-
served. This is problematic for a number of reasons. Firstly, collaboration in the virtual
world is not direct but always needs to beediated For instance, communication is
mediated through some form of communication channel which relays “utterances” be-
tween the communicating parties; pointing at an object is not performed directly but is
mediated through, for example, some form of graphical pointer; handing a document
to another person too is not performed directly but is mediated through some form of
electronic document exchange mechanism. Thus collaboration consists of a number of
separate mediated actions, which have to be pieced together in order to perceive the col-
laboration performed.

A second problem is that the time and location of observers and the collaboration
being observed may be significantly different. Timezone differences of more than a few
hours make it impractical to directly observe collaboration as it takes place. Even at the
same time, observation requires observers to focus on the same location within the virtual
work environment as where the collaboration of that moment takes place. However,
unlike in a physical work environment where the movement and actions of people within
the environment is easily perceived, in the virtual environment this can be much more
difficult to perceive.

The greatest problem with direct observation, however, is when the history of a col-
laboration needs to be revisited. In this case, direct observation, in the sense of observing
something as it takes place, is not possible as the object of observation has already tran-
spired.

It is argued here that instead it is necessary to maintain a record of a virtual team'’s
collaboration. However, requiring teams to explicitly document their own actions is also
problematic. Firstly, doing so would interfere with the collaboration. Secondly, unless a
large enough benefit for doing so could be perceived on the part of the team, there would
be no incentive to maintain such records, and consequently it is questionable whether ac-
curate and complete records would be maintained. Finally, records from different teams
and different individuals would necessarily be subjective, which would make comparison
difficult.

Thus the main problem to be addressed in this research is this:

Chapter 1. Introduction 10

Problem: How can information on the collaborative activities/practices of
virtual teams be obtained without requiring these teams to explicitly docu-
ment their own actions?

The methodology and approach for addressing this problem are outlined next.

1.5 Research Methodology and Approach

1.5.1 Research Methodology

This research explores the means for understanding virtual collaboration through the fol-
lowing main steps:

1. First, theargumentfor the need for obtaining descriptions of virtual collaboration
is made.

2. Next, the problem domain is surveyed in order to lay ouigbees of relevande
the problem.

3. This is followed by the definition of the magonceptsand approach proposed in
this research for addressing the problem.

4. Based on these developed conceptsthodsare developed to enable these con-
cepts to be applied to the problem.

5. Finally, the methods amppliedto a case study to demonstrate their practical ap-
plicability.

This research mainly sets out to demonstrateplagisibility of the proposed con-

cepts and methods in addressing the research problem. It includes limited testing of the
concepts and methods, leaving rigorous empirical testing in a wide range of real-world
situations for future research. Here it is argued that this approach is justified, as there are
currently no concepts and methods for systematically addressing the research problem.
The focus of the thesis is therefore on the development of concepts and methods. Valida-
tion of the developed concepts and methods is, however, obtained to some extent through
their application to a large case study. The methodology followed here is based on that
of earlier related work published in (de Moor, 1999).

Chapter 1. Introduction 11

1.5.2 Research Approach

This research proposes that high-level descriptions of virtual collaboration can be pro-
duced without the involvement of those performing the collaboration. In outline, this
involves the following:

1. Availability of records of eventsranspiring during virtual collaboration, captur-
ing information on content and context of these events. Such records should be
automatically collected by the computer-based system through which virtual col-
laboration is carried out, without human involvement.

2. Conceptual modelingf information of the computer-based systems through which
virtual collaboration is carried out. The conceptual model should have the expres-
siveness to represent collected records of events.

3. Derivationof successively more abstract, large-scale representations of virtual col-
laboration. Given a conceptual model and collected records of events represented
in terms of the conceptual model, mappings to more large-scale units of informa-
tion can be defined. Records of events can then be mapped to successively more
abstract levels until records represent entire work tasks and processes.

Each of these items is elaborated in later chapters. Key elements of this approach
have been implemented in an existing computer-based system for virtual collaboration,
LIVENET, which was developed at the University of Technology, Sydney’s Collaborative
Systems Laboratory. Relevant sections of the thesis therefore illustrate practical issues
on this system.

1.6 Outline of the Thesis

In outline, the remainder of the thesis is structured as follows:

Chapter 2reviews the main components of the problem domain: virtual collabora-
tion processes; collaboration systems, through which virtual collaboration processes are
performed; and organizational memory, which can maintain a history of virtual collabor-
ation.

Chapter 3then develops principles for the modeling of information of collaboration
systems. It proposes a multi-layered conceptual model for the representation of informa-
tion about collaboration at different levels of abstraction, and suggests how concepts at
each level can be represented in the form of patterns of virtual collaboration.

Chapter 1. Introduction 12

Chapter 4carries on from there to propose details of the specification and extraction
of patterns of virtual collaboration, elaborating on several of the pertinent issues involved.
It then goes on to consider the larger context of pattern extraction by proposing an inte-
grating framework that suggests how extracted patterns can feed back into the virtual
collaboration.

Chapter 5applies the concepts and methods of the preceding two chapters in a case
study of the extraction of patterns of virtual collaboration from data collected by the
LIVENET collaboration system.

Chapter 6concludes this thesis by giving a summary of the points presented, contri-
butions made, opportunities for future work, and by offering some concluding remarks.

1.7 Typographic Conventions

In order to more easily distinguish symbols with special meaning in the text, a number of
different typefaces are used:

e The names of concepts within an ontology are typeset in a sans-serif font (e.g.
Discussion-Forum).

e The names of classes and slots within an ontology, and ontology specifications and
functions are typeset in a courier font (eLg-Discussion-Forum).

e Names of collaboration systems are typeset in small caps (etgNET), except
where the name is an abbreviation already consisting of all capitals (e.g. BSCW).

Chapter 2
The Problem Domain

As the previous chapter has introduced, the research presented here is concerned with
virtual collaboration, and with maintaining observations of such collaboration. In the
present chapter, an overview of the three core areas which make up the problem domain
is given: (1) virtual collaboration processes, (2) collaboration systems, and (3) organiza-
tional memory. This overview provides the basis for the contributions of later chapters.

2.1 Virtual Collaboration Processes

The introduction briefly discussed the trend within many organizations towards virtual
teams and virtual collaboration. Here, this discussion is continued by considering the
virtual collaboration processes carried out by virtual teams. First, the kinds of collabor-
ation processes that can be distinguished are reviewed. This is followed by an overview
of some of the notations available for representing such processes.

2.1.1 Kinds of Virtual Collaboration Processes

When considering work processes in general, many kinds of classifications are possi-
ble. For instance, work processes can be classified by broad category, such as manual
vs. intellectual work; by detailed category, such as product design, marketing, etc; by
temporal features, such as ongoing vs. intermittent; by spatial features, such as fixed vs.
mobile; and so on. However, since the focus of this thesis isallaborativework, the
present discussion is concerned with collaboration processes specifically, rather than its
opposites: competitive processes (more than one person working in competition), and
independent processes (one person working alone). More specifically, this collaboration
is understood to be virtual collaboration, as opposed to face-to-face collaboration.

Chapter 2. The Problem Domain 14

2.1.1.1 Definitions

To repeat from Chapter tpllaborationis understood to be “the act of working together

on a common task or process”. This act of working together involves spactfiaties
performed by individuals. Examples of activities are: reading a report, or commenting
on a paper. An activity may (but does not have to) be performed in order to bring about
a specificgoal. A goal, in turn, refers to the desired realization of a specific state of a
portion of the world that the activity is concerned with. So, for the above example of
commenting on a paper, the goal could be to come up with a list of changes needed for
getting the paper ready for publication. The goal may not always be achieved, however,
and so the outcome of an activity may be different from its goal. Outcome refers to the
actual (as opposed to the desired) realization of a specific state of the portion of the world
affected by the task.

A collection of several activities may have a common goal, where each activity con-
tributes to the achievement of the goal. Such collections of activities with common goals
are referred to agsks Following on from the above example, the task which the men-
tioned activity is part of could be that of reviewing a paper. This task could involve other
activities, such as reading the paper, and writing up a list of required amendments to the
paper. Each of these activities contributes to the achievement of the task’s goal, which in
this case could be that of completion of a paper review. Thus a definition of “task” is as
follows:

Definition 5 Ataskis a collection of activities with a common goal, per-
formed by one or more individuals, such that the successful completion of all
the activities brings about the task’s goal.

O

A process is a collection of related tasks. Processes also have goals; the accomplish-
ment of the goals of all the tasks belonging to a process brings about the process goal.
Unlike tasks and activities, where the task’s activities have a common goal, tasks in a
process do not have a common goal, and their goal typically is not identical to that of the
process which they are part of. However, task goals are subsumed under, and contribute
to, the goal of the process they are part of. An example of a process is that of producing
the proceedings of a conference. It involves many tasks, such as recruiting paper review-
ers, calling for paper submissions, reviewing papers, etc. Each of these tasks has its own
goal, but all contribute to the goal of the entire process, which is the publication of the
conference proceedings. A definition of “process” follows:

Chapter 2. The Problem Domain 15

Definition 6 A processs a collection of related tasks with a goal, such
that the accomplishment of all task goals brings about the process goal.
O

Activities, tasks and processes thus all are units of human activity, however at differ-
ent levels of granularity. Task and activity, as well as process and task are related through
a whole-part relationship. Between the parts, i.e. between the activities of a task or be-
tween the tasks of a process, there are typically also relationships, such as dependencies;
for example, there may exist a dependency that one task can only start when another task
has been completed. Finally, the definition of process provided here purposely considers
it to be made up of aollectionof tasks, rather than a series or sequence. Thus, a process
may well consist of temporally overlapping or parallel tasks. The same comments apply
for the activities of a task.

A collaboration processhen, is defined as follows:

Definition 7 A collaboration processs a process performed by two or
more individuals working together.
O

Finally, bringing this definition together with that of virtual collaboration given in the
previous chapter, @irtual collaboration processs defined as follows:

Definition 8 A virtual collaboration processs a collaboration process
performed without face-to-face interaction, enabled by technology.
O

Different kinds of virtual collaboration processes may be distinguished, and can be
classified according to a number of differentiating attributes. Here the following set of
attributes is proposed:

1. Predefinition: the degree to which the process is predefined. Some processes are
entirely predefined, meaning that every detail of the process has been defined prior
to the commencement of its execution. During execution of the process, it is simply
enactedaccording to its definition. Other processes are much less predefined, and
are executed more in an ad-hoc fashion, where planning and execution converge
(Moorman and Miner, 1998). For these kinds of processes, goals are usually more
abstract and more subject to change.

Chapter 2. The Problem Domain 16

2. Determinism: the degree to which the possible outcomes of the process can be
determined in advance. Particularly in the area of workflow management, where
processes are first modeled and encoded before they are enacted, the possible out-
comes of a process are typically determined in advance. Highly deterministic pro-
cesses produce results within a finite, well-defined set of possible outcomes. Other
processes may produce much less predictable outcomes.

3. Staticness:the degree to which the way the process is performed is static. This
applies mostly to predefined processes and is a measure of how much the execu-
tion of these processes changes over time from one enactment to another. Some
processes are very static, being executed in the same fashion over a long period of
time; others may be more volatile, changing constantly.

4. Repetition: the degree to which the process is repeated. Some processes are highly
repetitive, being executed on a frequent basis. Others may be highly unique, being
executed only once or only very sporadically.

Each of these attributes constitutes a continuum with values between its upper and
lower extremes. Taken together, these attributes define a four-dimensional space of pro-
cess types. Within it, a number of important process types stand out.

On the one hand, all attributes may be at their highest level, i.e. the process is entirely
predefined, completely deterministic, completely static and highly repetitive. Such a
kind of process is designated here gw@duction processThis type of process is very
common in organizations and often constitutes high-volume core activities.

On the other hand, all attributes may be at their lowest level, i.e. the process is entirely
non-predefined, non-deterministic, highly dynamic, and not repetitive. This kind of pro-
cess is designated here assamergent processt has a goal that is typically expressed in
more abstract terms, more like a mission statement rather than a detailed expression of a
desired outcome, and which may mutate. An emergent process is controlled, or driven,
by the increasing amount of knowledge available to it, which may cause its goal to be
adjusted. This type of process occurs in many organizations, and is closely associated
with innovation and improvisation (Moorman and Miner, 1998). Emergent processes are
important as they facilitate organizational flexibility and are thus suited to organizations
operating in volatile and competitive environments where flexibility is a key competency,
as touched upon in the discussion in Chapter 1.

Another categorization of work processes has been proposed in (Hawryszkiewycz,
1999a), whose distinguishing attributes are the degree to which the tasks that make up a
process are predefined, and the degree to which task sequences are predefined. This leads
to the identification of following four types of processes, illustrated in Figure 2.1:

Chapter 2. The Problem Domain 17

high
non-— _
predefined predefined
[
.
£
o
©
o
o
4
(7]
8
emergent
low

low Sequence predefinition pigh

Figure 2.1: Process types related to task and sequence predefinition

1. Predefined processesBoth tasks and task sequences are predefined in detail. An
example is a procurement process in a company where guidelines stipulate the
specific tasks that need to be undertaken, as well as their sequencing.

2. Non-predefined processesTasks are pre-defined, but their sequence is decided
during process execution. An example is the preparation of a report. Individual
tasks such as writing report sections, preparation of diagrams, calculation of fig-
ures, etc. may be known in advance, but their sequencing may be flexible and is
decided during process execution.

3. Mixed processesThese processes are a mix of predefined and non-predefined pro-
cesses, with one type of process nested inside the other; e.g. a process where major
steps are predefined, but where detailed tasks within each step are non-predefined.
An example is software development. Major steps, such as analysis, design, cod-
ing, etc. are known in advance, but the actual tasks that need to be conducted
during a given step, such as user interviews, prototype construction, etc. may only
be decided sometime into a given process step.

4. Emergent processes:Neither the tasks nor their sequence are predefined and
emerge during process execution. An example is the process of defining a new
strategic direction for a company. Both the tasks that need to be undertaken, such
as market analysis, focus group sessions, research into strategies of other compa-
nies, etc., as well as their sequencing may be unclear when the process is initiated
and emerge only during its execution.

Chapter 2. The Problem Domain 18

In the context of office work categorization, the degree of predefinition has been
linked to task complexity (Picot and Reichwald, 1987, quoted in (Syring and Hasenkamp,
1997)). Three different types of office work are identified: h}tructured tasksvhich
are highly complex and allow for little prior planning; (&mi-structured tasksvhich
have medium complexity and allow for some degree of prior planning; arstr(&)tured
tasks which have low complexity and offer a high possibility for prior planning. The
authors go on to link information need, cooperation partners, and solution type to each of
these types of office work: in unstructured tasks, information needs and cooperation part-
ners are undetermined, as is the solution type; in structured tasks, all three are determined
in advance; while semi-structured tasks lie somewhere in betvilgidr) (

Thus, the degree of predefinition emerges as a common property in each of these defi-
nitions, allowing for a broad categorization of work processes, while the other mentioned
properties allow for more fine-level classification.

2.1.1.2 Implications for Support Systems

Virtual collaboration processes are facilitated through computer-based systems. Different
types of such systems are more appropriate for supporting different types of collaboration
processes. Identification of the type of collaboration process to be supported therefore is
important in identifying suitable support systems.

During the 1990’s, workflow management systems have emerged as one such form
of process support, and have subsequently enjoyed great success in the field. The Work-
flow Management Coalition, the relevant industry standards body, refer to a workflow
management system as “a system that completely defines, manages and executes work-
flows through the execution of software whose order of execution is driven by a computer
representation of the workflow logic” (Hollingsworth, 1995). A workflow, in turn, is re-
ferred to as “the computerised facilitation or automation of a business process, in whole
or part” (bid.). Traditionally, workflow management systems have suppgmteduction
processesas defined above (referred to psedefined processes Hawryszkiewycz’s
classification, andtructured processeaccording to Syring and Hasenkamp). Produc-
tion processes need to be analyzed, modeled, and encoded in the workflow management
system before they can be enacted through it. Their structure and possible outcomes are
well-defined and subject to little change. Because of the effort involved in their analy-
sis and modeling, it is usually only economical to do this for processes that are at least
moderately repetitive.

Other types of processes, such as those that are not entirely deterministic, or those that
are less repetitive, or more dynamic, are not well supported by conventional workflow

Chapter 2. The Problem Domain 19

technology. Consequently, the workflow community has, over the last few years, made
efforts to make workflow systems more flexible and to support work processes which are
not always well-defined or deterministic; see for instance (Casati and Pozzi, 1999; Sadiq,
1999). These have centred on either accounting for alternatives to standard workflows,
handling workflow evolution, or dealing with exceptions as they occur. However, in
most cases the basic model of a largely deterministic and knowable process has remained
unchanged.

The category of emergent processes, on the other hand, is not well supported by
workflow management systems. In emergent processes, details of process structure and
of individual task goals may only be determined when the process is well underway, i.e.
theyemergeduring process execution. Such processes arditiusvisationalin nature
(Moorman and Miner, 1998). They also tend to be highly knowledge-intensive, involv-
ing activities of knowledge sharing and creation, and may involve a considerable degree
of tacit knowledge which can be difficult to encode (Nonaka, 1994). Such processes
have been described in the literature as being “generally opportunistic in nature, result
in disconnected and parallel work that must nevertheless be guided to a common goal”
(Hawryszkiewycz, 1999b).

The features of emergent processes place unique demands on their support systems.
In the context of process management, (Debenham, 1999) suggests that, given the special
characteristics of emergent processes, any management system sinoudbadf rather
than attempt t@ontrol emergent processes.

This research argues that the requirements of emergent processes are not met most
appropriately by current workflow management systems, but instead by a class of group-
ware systems referred to here@slaboration systemand discussed in more depth in
Section 2.2. In the context of collaborative research, a similar argument has been put
forward (Appelt, 1999). Such collaboration systems need to be highly flexible to allow
for evolution of the support provided along with the work carried out through them. As
pointed out in (Hawryszkiewycz, 1999b), team formation and governance, provision of
required knowledge sources, communication channels for geographically dispersed team
members, and general tools all need to be supported. However, and more importantly,
they must be supported in a way that facilitates flexible, easy evolution, thus aiding, and
indeed enabling, process emergence.

Finally, the property of process emergence is not exclusively, or even primarily, de-
pendent on certain features of the process itself, but includes the past experience of the
team performing the process. That is, what is an emergent process to one team may be
routine to another. When performed for the first time, the team may need to improvise
to discover how best to perform the process. The next time such a process needs to be

Chapter 2. The Problem Domain 20

performed again, its performance can be based on the team’s experience of the previous

time and would be much less emergent. Once the team starts performing the process

repeatedly, it becomes routine. That is, what started out as an emergent process has de-
veloped into a routine process, or conversely, a routine process may have started out as
an emergent process. Supporting such processes that develop from being more emergent
to being more routine thus puts additional demands on support systems.

2.1.2 Representing Virtual Collaboration Processes

Following the discussion of the kinds of virtual collaboration processes, this section in-
vestigates how such processes can be represented. Representing processes is important
in order to facilitate communication about them, to serve as guidance for process execu-
tion, and to enable their analysis and comparison. Different kinds of information related

to different aspects of processes can be represented. In the context of software develop-
ment processes, for instance, (Curtis et al., 1992) identified four perspectives of processes
which are commonly represented

1. Functional perspective:concerned with flows of information between tasks.

2. Behavioural perspective:concerned with aspects of the performance of processes
such as sequencing, iteration, conditions, etc.

3. Organizational perspective: concerned with the assignment of members of an
organization to tasks, the location of task performance, and the location for storing
of objects involved in tasks.

4. Informational perspective: concerned with the structure of, and relationships
(such as part-of, or version-of) between, informational entities (such as documents)
involved in a process.

Representing any of these perspectives of a process involves the construction of a
process modelA process model is defined as follows:

Definition 9 A process modeis an abstract description of an actual or
proposed process (Curtis et al., 1992).
O

INote that the use of the term “task” used in the discussion that follows assumes the meaning as defined
in this thesis, while (Curtis et al., 1992) refers to tasks as “process steps”.

Chapter 2. The Problem Domain 21

When a process model refers to an actual process, i.e. an instance of a process as it is
being or has been executed, it id@scriptiveprocess model; on the other hand, when it
refers to a proposed process, it iprascriptiveprocess model.

A process model involves a number of basiodeling element# modeling element
is an abstract representation of a type of real world entity involved in the process being
modeled. Different process models may have different sets of modeling elements. For
example, (Curtis et al., 1992) suggest the three modeling eleragatg(a human or
machine performing a taskjple (a set of tasks assigned to an agent), artdfact(a
product manipulated in a task). In the domain of virtual collaboration, however, usually
other modeling elements are included as well, as discussed below.

Much work has been done on process modeling. Examples incRigians which
model coordination aspects of work processes (Holt, 1988; Holt, 1FQNISOFT nets
a type of Petri net developed to model software processes (Emmerich and Gruhn, 1991);
the temporal logic-base@dBM approach for step-wise refinement of organizational pro-
cesses (Sa et al., 1993); and others. Recent years have seen an emphasis on the model-
ing of business processes, mostly in the context of business process re-engineering and
workflow management. Examples of this kind of process modeling includeAdtor
Dependency ModgeWwhich models networks of dependencies among organizational ac-
tors in the context of business process re-engineering (Yu and Mylopoulos, 1993); the
DEMO approach which is based on Speech Act Theory and is used for business pro-
cess redesign (Dietz, 1994); tB®€MAT business process model (Bhaskar et al., 1994),
used for analyzing and re-engineering processestEB©E* model(Zukunft and Rump,

1996) for modeling of business processes for workflow support, which is based on the
EPC model (Keller et al., 1992); the goal-based business process modeling approach of
(Kueng et al., 1996); the event-based business process modeling approach of (Rohloff,
1996); and others.

However, the modeling ofirtual collaborationprocesses has received very little at-
tention, and consequently there are much fewer published modeling approaches. What
sets collaboration processes apart from other types of work processes is that the inter-
actions between humans are essential components of the process. In process models
of face-to-face collaboration processes, where ample opportunity for such interactions
exists, they are usually not represented. For models of virtual collaboration processes,
however, these interactions need to be explicitly represented.

The remainder of this section introduces three modeling approaches which are con-
cerned with modeling collaboration processes, one of which is specifically intended for
modeling virtual collaboration processes. These include the following:

Chapter 2. The Problem Domain 22

1. The Collaborative Process Model (Sarin et al., 1991).
2. The SeeMe modeling method (Herrmann et al., 2000).

3. Collaborative business process models (Hawryszkiewycz, 2000).

For each of these, a brief overview is given, including an identification of the model-
ing elements, and an example of the modeling notation.

2.1.2.1 Example Process

The various representations that follow are illustrated with the following example pro-
cess, which deals with product concept development:

A manufacturing company finds its current product line is not performing as success-
fully in the market as it did in the past, and decides to develop new product concepts. A
number of people with unique expertise are involved in this endeavour, each occupying a
specific role in the overall process. They include product analysts who develop concepts
for new products, market analysts who carry out market studies to evaluate the potential
success of new product concepts, financial analysts who evaluate the financial feasibility
of new product concepts, and a coordinator who oversees the entire process. The process
involves these different roles in a number of tasks: an initial task of product brainstorm-
ing is followed by tasks of concept development, market study, and financial analysis,
culminating in the end in a task of final report preparation where the outcome of the en-
tire process is documented in a report that can later be submitted to upper management
for approval. These tasks produce or manipulate a number of artefacts (documents):
product ideas, product concepts, market analyses, product recommendations, financial
analyses, and a final report. This process does not exist in isolation, but is followed by
other processes, such as product design, manufacturing, etc.

2.1.2.2 The Collaborative Process Model

One of the earliest models explicitly concerned with modeling collaboration processes
was developed at Xerox in the early 1990’s (Sarin et al., 1991). In terms of Gudis
classification, this model provides primarily functional and behavioural perspectives of
the processes modeled.

Collaborative Process Models represeis (which in terms of the terminology used
here are the same as processes), where a job is defined as “a multi-person collaborative
activity with some goal”. A job includes users, documents, application tools, and other
resources. Each job is composed of multiple tasks, and has associated witikspace

Chapter 2. The Problem Domain 23

/ ROLES \

Coordinator
Concept
Development

Financial
Analysis

Product Analyst

Market Analyst

YyvYyYvYyy

Financial Analyst

Final
Report
Preparation

Product
Brainstorming

DOCUMENTS
Product Ideas

Market Analysis

Product Recomm.

Financial Analysis

Product Concept

\ Final Report

Figure 2.2: Collaborative Process Model of a product concept development process

YvyvyvyYyYyy

within which activity related with the job is situated. Tasks are related through finish-to-
start dependencies, which define a sequencing of task execution. Tasks may in turn be
broken down into sub-tasks, resulting in a hierarchy of work activities.

When modeling collaborative processes, the following modeling elements are in-
cluded, as defined in (Sarin et al., 1991):

1. Documents:“abstract data object[s] or resource[s] that [are] manipulated as a unit
from tasks in jobs.”

2. Roles: “place holders for users who can perform tasks in the job.”

3. Tasks: “units of work.”

To illustrate this, a Collaborative Process Model of the job corresponding to the prod-
uct concept development process described above is shown in Figure 2.2. Here, the whole
process is shown as a network of dependent tasks, in this case consisting of five tasks,
three of which are executed in parallel with some dependencies between them (the task
Concept Development is partially dependent on output produced by tasks Market Study
and Financial Analysis). The boxes at the top right and bottom right show, respectively,
the externally visible roles and documents involved in the process.

To show details of individual tasks, any task in the Collaborative Process Model may
be decomposed into sub-tasks, which are shown in a separate diagram. For instance,

Chapter 2. The Problem Domain 24

Collate Discuss Finalize
Parts Report Report

Edit
Sections

Figure 2.3: Decomposition of the Final Report Preparation task from the Collaborative
Process Model of a product concept development process

details of the Final Report Preparation task are shown in Figure 2.3. This task, as modeled
here, consists of four sub-tasks: first the different sections of the report are collated in
the proper sequence, then this draft version of the report is discussed, if necessary any
sections of the report are edited, and lastly the report is finalized. Note that the editing of
sections and discussing of the draft report may be repeatedly performed, in a loop.

While the Collaborative Process Model is intended to represent collaborative pro-
cesses, interactions among the actors involved in the collaboration are not represented.
Only the modeled dependencies among tasks imply the likelihood of interactions among
the task performers. Thus the model is very limited in its ability to represent highly
collaborative processes, and resembles more workflow-oriented process models.

2.1.2.3 SeeMe Models

SeeMe models describe semi-structured socio-technical systems. The SeeMe diagram-
ming technique was developed to aid requirements engineering and system design, and
to allow an element of vagueness, incompleteness and contradictions to be explicitly rep-
resented (Herrmann et al., 2000). In terms of Cuetial.s classification, SeeMe mod-
els can provide functional, behavioural, organizational, and informational perspectives.
Most commonly, however, the emphasis is on the functional and behavioural aspects of
processes.

SeeMe models are made up of following three basic modeling elements:

1. Roles: “a set of rights and responsibilities assigned to a person, a group or an
organizational unit” (Herrmann et al., 2000).

2. Entities: passive objects or things used as resources in activities.

Chapter 2. The Problem Domain 25

3. Activities: actions performed by people occupying roles, which act on entities.

Any type of modeling element can be related to any other type of modeling element
through default semantics. For instance, a role can be related to an activity, meaning that
the role carries out the activity. Another example is where an activity is related to another
activity meaning that one is followed by the other. However, these semantics are flexible
and can be extended as needed.

Any of the modeling elements can be at any desired level of granularity. For instance,
an entire process, a task, a sub-task, or a minute user action can all be represented as
activities. The same applies to entities and roles. Furthermore, hierarchical structuring
of any type of modeling element can be represented in a given model thnesghgof
the detail level inside the higher-level element. Finally, relationships between diagrams
can be represented metadiagrams Thereby a complex process can be modeled as a
collection of separate diagrams, with one metadiagram establishing how these diagrams
are related to one another.

SeeMe models can also include conditions and branches to represent details of be-
haviour. In order to accommodate vagueness or ambiguity, certain notations exist to
indicate that information may be incomplete, may have been purposely omitted (such as
when it is deemed not to be relevant), or that its correctness is doubtful.

An illustration of the use of SeeMe models is given in Figure 2.4, which shows a
model of the product concept development process introduced earlier. Depicted are roles
in ovals, activities (in this case tasks) in boxes with rounded corners, and entities (docu-
ments) in rectangles. Arrows express relationships: arrows pointing from roles to activi-
ties mean that the role carries out the activity; arrows between activities signify sequenc-
ing; and arrows between activities and entities mean that the entity is used in, and/or
created/changed by the activity.

Nesting is applied in order to aggregate roles, activities, and entities, thereby sim-
plifying the diagram. When modeling elements are nested, any arrow connecting the
compound modeling element to another modeling element represents the same type of
arrow connecting each of its contained modeling elements with the other modeling el-
ement. Thus, for instance, the roles Market Analyst, Product Analyst, and Financial
Analyst are aggregated into the role Writer. This aggregated role carries out the Prod-
uct Brainstorming and Final Report Preparation activities, meaning that each of the three
roles contained in the role Writer is involved in these two activities. Similarly, the three
activities Market Study, Financial Analysis, and Concept Development are aggregated to
a compound activity which, as a whole, is successor to activity Product Brainstorming
and is followed by activity Final Report Preparation. This compound activity receives the

Chapter 2. The Problem Domain 26

/Product Concept Development \

Writer
Product Financial
Analyst Analyst

' 7

Financial
Analysis
R

Preparation
Concept
Development

Market
Analyst

Market
Study

Product
Brainstorming

/ 3

\ AN J
Product Report Parts * * \ \ Final
deas Market Product Product Financial Report
Analysis Recomm. Concept Analysis

N /

Figure 2.4: SeeMe model of a product concept development process

entity Product Ideas, meaning that this entity is used by each of the compound activity’s
constituent activities. Finally, the four entities Market Analysis, Product Recommenda-
tions, Product Concept, and Financial Analysis are nested inside the entity Report Parts.
This compound entity is used in the activity Final Report Preparation, meaning that each
of the contained entities is used by this activity. Thus the nesting of modeling elements
enables a convenient shorthand in modeling relationships between these and other mod-
eling elements.

In the Final Report Preparation activity, an intended omission of detail is indicated by
the black filled semi-circle near its lower right corner: it denotes that more detail about
this activity is available but has not been included in the diagram, and has instead been
placed in another diagram. Figure 2.5 shows the detail of the Final Report Preparation
activity as a separate SeeMe model. It can be seen that the modeling of this task is very
similar to that of the entire process, i.e. again roles, activities and entities are represented,
and are linked through arrows signifying relationships among them. The diagram also
shows a condition, in the hexagon linking the Discuss Report and Edit Sections activities:
if in the Discuss Report activity a section of the report is found to require revision, the
Edit Sections activity is performed. This may be repeated any number of times, each time
updating the draft report, until no more revisions are required, at which time the Finalize
Report task is performed, producing the Final Report entity. As the entity Draft Report

Chapter 2. The Problem Domain 27

/Final Report Preparation \

Edit
Sections

A

Discuss ‘ Finalize

Report - Report
_

Section
Requires
Revision

Parts Report

- /

Figure 2.5: SeeMe model of the Final Report Preparation task of a product concept de-
velopment process

is internal to the Final Report Preparation activity, it does not appear in the model of the
whole process in Figure 2.4.

SeeMe models are intended to provide a semi-formal, flexible notation that allows
vagueness inherent in socio-technical systems to be made explicit, rather than enforcing
completeness of specification. As stated by their authors, SeeMe diagrams are seen as
a modeling notation for the representation of cooperation and communication processes
(Herrmann et al., 2000). Given the inclusion of details on roles involved in activities,
SeeMe diagrams appear to be more appropriate for representing collaboration processes
than Collaborative Process Model diagrams.

2.1.2.4 Collaborative Business Process Models

A model for representing collaborative business processes was introduced in (Hawrysz-
kiewycz, 2000). In terms of Curtiet al.s classification, this model provides primarily
functional and behavioural perspectives of the processes modeled.

The collaborative business process model is part of a methodology for the design of
collaborative applications. These applications are intended to be used by virtual teams
performing the modeled processes in a mode of virtual collaboration. Support for emer-
gent processes, and for the evolution of processes over time, are seen as key require-
ments. Thus, modeling represents processes in terms of main process elements and their

Chapter 2. The Problem Domain 28

relationships, rather than representing fine detail which is likely to change as processes
evolve.
Collaborative business process models contain following four modeling elements:

1. Roles: organizational roles with associated rights and responsibilities.
2. Artefacts: passive objects, such as documents, used or manipulated in activities.
3. Activities: tasks performed by people occupying roles, and affecting artefacts.

4. Discussions: communication channels between people, involving one or more
roles.

The first three modeling elements are similar to those of other modeling approaches.
The last one, discussions, however, is unique to collaborative business process models.
Discussions represent communicative interactions between people. In conventional pro-
cesses these need not be explicitly represented, as face-to-face settings provide ample
opportunity for communication between people, both formal and informal. However,
since this modeling approach specifically focuses on virtual collaboration, channels al-
lowing for the communication between people need to be explicitly represented.

Collaborative business process models include diagramming notations both for rep-
resenting the overall structure of virtual collaboration processes, and for representing de-
tails of individual tasks. Processes are represented in a notation Radle@ictures The
rich picture is a modeling tool originally introduced by the Soft Systems Methodology
(SSM) (Checkland, 1981). It captures relationships and connections between elements
of human activity. However, the modeling method of Hawryszkiewycz has proposed
a modified form of rich pictures, which constitutes both an augmentation, as well as a
simplification of the original form (Hawryszkiewycz, 2000). Unlike the original rich
pictures, it introduces standard symbols and has a defined syntax and semantics. An ex-
ample of a rich picture of the product concept development process presented earlier is
shown in Figure 2.6. Here roles are shown as stick figures, activities as clouds, and arte-
facts as boxes. Lines and arrows relate the different modeling elements to each other; for
instance, lines linking roles and activities represent involvement of roles in the activities,
while arrows between artefacts and activities represent the use or creation of the artefacts
in the activities.

Hawryszkiewycz-style rich pictures provide a functional perspective of the overall
process. As an augmentation to traditional rich pictures, the collaborative business pro-
cess modeling approach is complemented by so-caléatsition diagramswhich ex-
press sequencing of activities: transition diagrams capture the possible transitions be-
tween activities in a rich picture. For example, a transition diagram corresponding to the

Chapter 2. The Problem Domain 29

r

Coordinator

Market
Analysis

Market

Analyst Writer

Product
Recommendations

Final
Report
Preparation

Product
Ideas

Financial
Analysis

Product
Brainstorming

Financial
Analysis

Product
Concept Final
Report

Financial
Analyst

Concept

Product
Development

Analyst

Figure 2.6: A Hawryszkiewycz-style rich picture of a product concept development pro-
cess

rich picture of Figure 2.6 is shown in Figure 2.7. These transition diagrams resemble
the task network of Collaborative Process Models, such as the one shown on page 23.
Each of the activities in a rich picture and its corresponding transition diagram repre-
sents one task. When tasks are very large, however, they may need to be decomposed
by modeling them as a collection of related sub-tasks. To allow the representation of
such sub-tasks, Hawryszkiewycz-style rich pictures can be expanded to multiple levels
of detail, much like data flow diagrams, by modeling details of one higher-level activity

as an entire lower-level rich picture consisting of sub-activities. Each such expansion is
accompanied by its own separate transition diagram.

The internal structure of tasks that are sufficiently small, i.e. which have been de-
composed to a level where further decomposition is not deemed necessary, is represented
using another modeling notation, the so-calM@O diagram(Hawryszkiewycz, 2000).

A MOO diagram represents internals of activities as a combination of roles, artefacts,
and discussions. At this level, communicative interactions are made explicit. An exam-
ple MOO diagram corresponding to the Final Report Preparation task of Figure 2.6 is
shown in Figure 2.8. Here, the hexagon represents a discussion, ovals roles, and boxes
with rounded corners artefacts. Arrows represent involvement and use/creation, respec-
tively, as above with rich pictures.

Chapter 2. The Problem Domain 30

Concept
Development

Financial
Analysis

Final
Report
Preparation

Product
Brainstorming

Figure 2.7: Transition diagram for a product concept development process

Final-Report
Discuss
Report
Report-Parts

Figure 2.8: MOO diagram for the Final Report Preparation task of a product concept
development process

Compared with other modeling notations, collaborative business process models are
more abstract, as they are not intended to model a great level of detail of processes.
By outlining only general process elements and leaving open the actual implementation
of the process, this notation is particularly suited for representing partially planned and
emergent processes. Moreover, the explicit representation of communicative interactions
makes this modeling notation well suited for representing virtual collaboration processes.

The three presented process modeling approaches are an illustration of some of the ways
that collaborative processes can be represented. While all of them allow both processes
and their constituent tasks to be modeled, the modeling differs in terms of the modeling
elements that are included, the modeling notation, the amount of detail represented, and
whether or not communicative interactions are represented. In later chapters, some of
these notations are used for the representation of virtual collaboration.

Chapter 2. The Problem Domain 31

2.2 Collaboration Systems

The preceding section discussed virtual collaboration processes. The present section car-
ries on from there to investigate the systems through which these processes are supported
and carried out.

Physical collaboration takes place in physical space where all necessary tools, objects
and people are assembled for the task at hand. A product concept development process,
for example, may bring together experts comprising product analysts, market analysts, fi-
nancial analysts, as well as others; documents in various stages of development; product
catalogues, design manuals, company guidelines, various reference works, word process-
ing tools, calculators, etc. into a single office or a set of offices that are in reasonably close
proximity to one another to afford the opportunity of easy face-to-face interaction.

If face-to-face contact is not an available option, however, the carrying out of col-
laborative tasks, such as the ones involved in product concept development, becomes
challenging. Collaboration then becomes possible if it is mediated by technology, when
it is referred to agemote collaborationor more commonlyvirtual collaboration (cf.
the definition of virtual collaboration on page 3). Moreover, different types of technol-
ogy provide different degrees of support and are suited to different kinds of collaborative
tasks.

For example, in the simplest case, the telephone can be used to support the collab-
orative team’s communication requirements, specifically synchronous communication,
while fax allows for primitive document exchange. Video-conferencing allows two or
more participants to communicate simultaneously, but can usually only be used effec-
tively among a limited number of participants. For asynchronous communication, elec-
tronic mail can be used, which also offers a somewhat more sophisticated document
exchange potential, when compared to the alternatives of fax or postal mail, through the
use of email attachments.

However, all of these technologies provide only partial support for the overall require-
ments of collaborative groups, which have been termed the three ‘C’s of group interac-
tion: communication, collaboration, and coordination (Ellis et al., 1991).

Systems which attempt to offer a more complete support for the different aspects
of virtual collaboration provide integrateshvironmentsn which collaboration can take
place, not merely a collection of separate tools. These kinds of environments have been
named differently in the literatureollaboration spaceg~arshchian and Divitini, 1997),
collaborative environment@arshchian and Divitini, 1997; Simoff and Maher, 2000),
collaborative virtual environmeni®enford et al., 1997)ollaborative virtual workspa-
ces(Spellman et al., 1997%ollaborative workspace@ankoke-Babatz and Syri, 1997),

Chapter 2. The Problem Domain 32

locales(Fitzpatrick et al., 1996 network placegRoseman and Greenberg, 199)ared
workspace¢Dourish and Bellotti, 1992; ter Hofte et al., 1998amroomgRoseman and
Greenberg, 1996yirtual collocation environment@oltrock and Engelbeck, 1997)y-

tual information spacefRhee, 1999), andiorkspacegBaker et al., 1999). Common to
research and development effort on such environments is the desire to provide the oppor-
tunity for bringing together required people, resources, and communication channels for
joint activity in a virtual place or set of places. For the remainder of this thesis, the term
collaboration spaceshall encompass these various terms, while a system that provides
collaboration spaces shall be referred to aslaboration systemThese two terms are
defined as follows:

Definition 10 A collaboration spaces a virtual space which provides
the opportunity for bringing together people, artefacts, and communication
channels for individual or joint activity.

O

Definition 11 Acollaboration systenms a software system which supports
virtual collaboration through the provision of collaboration spaces.
O

2.2.1 Structuring Metaphors

As the generality of collaboration systems aim to provide some kirehefonmentor
collaboration, the question arises how this environment should be internally structured,
and what metaphors should be employed for representing and presenting the virtual en-
vironment.

Existing collaboration systems can be broadly divided into two general categories
with regard to the structuring metaphor employed: (1) systems which employ a spatial
metaphor; and (2) systems which employ an abstract metaphor.

The first category of systems conceive of some kind of virtual counterpart to a phys-
ical structure. For instance, some systems provide a set of rooms that are connected by
doorways (Roseman and Greenberg, 1996); different rooms are used for different tasks
or by different users, and users move from room to room to work on different tasks or
to interact with different users. Other systems extend this metaphor to entire buildings
which are organized into different floors, have corridors, and rooms for different pur-
poses. The way this spatial metaphor is represented to the user ranges from the very
simple, textual interface in the style of MUDs (multi-user domains) (Churchill and Bly,
1999); to the two-dimensional layout of objects in a “room”, with simple clickable lists

Chapter 2. The Problem Domain 33

of rooms or doorways to other rooms; to sophisticated three-dimensional virtual reality
worlds (Greenhalgh, 1999) in which the user may be represented by an avatar or other
representation (Capin et al., 1999), and where navigation from room to room is visual-
ized as the actual action of walking out one door, down a corridor, and through another
door into a different room.

The second category of systems, the ones employing an abstract metaphor, do not bor-
row concepts from real-world structures. Instead, the virtual environment is presented as
a kind of abstract entity, a cyberspace with no connection to the physical world. These
environments may be referred to within the collaboration systemoskspacesvirtual
places or other terms mentioned earlier. As with the systems based on spatial metaphors,
these systems too usually allow users to set up different environments for different tasks
or for use by different users. Navigation between different environments, however, here
follows different metaphors, such as that of a tree, or web. Representation of the environ-
ment to the user is typically as a screen within which objects such as documents and tools
are listed or displayed in textual and/or graphical form. Users are usually not represented
through embodiments in these systems, and the user perspective is thus more detached
from the virtual space when compared with the spatially-oriented systems.

There has been some discussion in the literature on the appropriateness of applying
spatial metaphors to virtual environments such as collaboration spaces, see for instance
(Harrison and Dourish, 1996). These authors emphasize the importaptazefather
thanspacein collaboration systemsSpace is the opportunity; place is the understood
reality” (Harrison and Dourish, 1996, p. 69). That is, what a pliade not so much a
matter of its spatial features but rather what its usleraithin it and which turns a space
into a place (this is similar to the difference between a house and a home). Thus it is
important that any collaboration space creates the opportunity for users to appropriate it
and turn it into a place for collaboration.

2.2.2 Awareness

Face-to-face collaboration affords the opportunity for a great amount of peripheral per-
ception, i.e. the ability to know what is “going on” around oneself without actively seek-
ing this knowledge. This includes knowledge about who is around, what they are doing,
who is currently working with whom, as well as overhearing and overseeing the conver-
sations and work of others. The importance of thigarenes®f the activities of others

in facilitating the individual’'s work as part of an overall collaborative task becomes par-
ticularly evident when it is absent, such as in virtual collaboration settings. It has been
argued that the opportunity for casual interaction is of great importance in facilitating

Chapter 2. The Problem Domain 34

collaboration (Kraut et al., 1988). Awareness of others is a prerequisite for making such
opportunistic interactionpossible.

In the context of virtual collaboration, awareness has been defined as “an understand-
ing of the activities of others, which provides a context for your own activity” (Dourish
and Bellotti, 1992). As the kind of awareness afforded by face-to-face collaboration is
absent in the realm of collaboration spaces, a substitute has to be explicitly provided. The
earliest work on providing awareness in CSCW systems dates back to the early 1990’s
and the research of a group at Rank Xerox EuroPARC (Moran and Anderson, 1990;
Borning and Travers, 1991; Dourish and Bellotti, 1992; Dourish and Bly, 1992). There,
awareness was provided by maintaining audio and video links among a number of lo-
cations. The intention was to provide a constant stream of background information that
could be tapped into as and when needed. To quote from Moran and Anderson:

...people deal with a complex environment by not attending to most of it
most of the time. Itisimportant not to saturate people with things they cannot
ignore. Our approach to using audio technology to provide a natural ambient
audio environment . . . illustrates the principle. On the other hand, people are
very aware of what goes on in their environment; without such awareness
they would feel isolated. The environment needs to be rich with many things
(including other people) that could be attended to. The environment needs
to signal the availability of these things by tapping on people’s ability to
peripherally process the non-attended parts of the environment so that they
can redirect their attention when appropriate. (Moran and Anderson, 1990,
p. 386)

It has been suggested that four different types of awareness can be distinguished
(Gutwin and Greenberg, 1995):

1. Informal awarenessknowledge of who is around and what they are doing.
2. Social awarenesknowledge of the social and conversational context.

3. Group-structural awarenesknowledge of people’s roles and responsibilities, as
well as group processes.

4. Workspace awarenesknowledge of others’ interactions with the virtual space and
its artefacts.

However, this list of types of awareness is far from exhaustive, and other types could
be distinguished; for instanceiltural awarenesg.e. the knowledge of cultural norms of
the people involved in the collaboration, and thus expectations of how to behave.

Chapter 2. The Problem Domain 35

Out of the above list, the first three are general awareness categories that apply to both
face-to-face and virtual collaboration. The fourth category, however, applies exclusively
to virtual collaboration, and consequently CSCW research has put the greatest emphasis
on it.

Workspace awareness aims to assist users in acquiring knowledge on five aspects
of their collaboration spacewho (is around),where(are they working, looking)what
(are they doing and working onkhen(did something happen), amdw (did something
happen) (Gutwin and Greenberg, 2002). This kind of awareness knowledge is seen as
having following uses in collaboratioib{d.):

e simplification of communication

coordination of actions and activities

anticipation of events

provision of assistance

management of coupling

This research activity has contributed to a richer support of awareness in groupware
systems. Among the most active in this area, the University of Calgary’s Grouplab has
been investigating awareness and building prototypes, particularly in the realm of syn-
chronous collaboration, of a numberafareness widget&Gutwin et al., 1995). These
are interface components that contribute to a certain aspect of awareness. Navigation
of the virtual environment, for instance, is supported by awareness widgets that provide
secondary viewporter miniature views artefact manipulation is made visible through
action indicators characteristics and progress of an action are shown thraciign an-
imationsandsound cuesandalternative view representatioqsovide gestural commu-
nication and deictic references (Gutwin and Greenberg, 1998a; Gutwin and Greenberg,
1998b).

This work on awareness in synchronous collaboration has been extended by others
to include asynchronous modes of collaboration (Dourish, 1997). Dourish argues that
collaborative interaction progresses through repeated cycles of divergence and synchro-
nisation, aided by awareness information. The difference between synchronous and asyn-
chronous collaboration lies in the timescales of these cycles: seconds in the synchronous
case, versus hours or days in the asynchronous case. As a consequence, the focus of
awareness shifts: in synchronous collaboration the focus is mainly on other group mem-
bers and their actions, while in asynchronous collaboration the focus is on the artefact

Chapter 2. The Problem Domain 36

and its change over time. Awareness thus extends to cover the history of collaboration,
rather than only the here-and-now.

Recent work that has been aimed at providing richer resources for awareness and
collaboration has combined both synchronous and asynchronous awareness with com-
munication facilities and media spaces (Greenberg and Rounding, 2001). On the other
hand, the scope of awareness has been extended to refer to a knowledge of more general
features of the collaboration at hand, such as the collaboration’s goal, priorities, and mile-
stones, as well as a shared terminology relating to the collaboration (Hawryszkiewycz,
1999b).

This discussion on awareness has highlighted the importance of the concept in the
support of virtual collaboration. While most existing collaboration systems include sup-
port for awareness, they differ sometimes significantly in the extent to which they provide
this support, as well as the type of awareness they offer. In the review of a number of
collaboration systems that follows below, a discussion of their support of awareness is
included to explore this aspect further.

2.2.3 Review of Existing Collaboration Systems

Today, there exist a great many systems that can be referred to as collaboration systems,
according to the definition of the term given above (cf. p. 32). Originally, such systems
were the products of research laboratories and universities, however in recent years there
has been a proliferation of commercial collaboration systems, particularly those that are
web-based. The intention of this section is not to exhaustively review all of these sys-
tems, a near-impossible task considering the pace with which these systems appear on
the market, as well as vanish. Rather, the intention is to give a flavour of some of the
systems that have been developed, to highlight the variety of features with which these
systems attempt to support virtual collaboration. The emphasis here is on systems that
have come out of research and which are documented in the research literature. Some of
these, however, have since evolved into commercial products.

The following collaboration systems are reviewed, listed in chronological order of
their first mention (shown below in parentheses):

e BSCW (1995)
e CBE (1996)
e TEAMROOMS (1996)

e CVW (1997)

Chapter 2. The Problem Domain 37

e ORBIT (1997)

e LIVENET (1999)

In the following subsections, these systems are briefly introduced and their main fea-
tures discussed. One of these systemsgNET, is treated in slightly more detail, as
later chapters use this system for illustration.

2.2.3.1 BSCW

The BSCW system was developed in the mid-1990’s at the GMD in Germany, and has
since undergone continuous further development (Bentley et al., 1995; Bentley et al.,
1997; Appelt, 1999). It was originally conceived as “a means of supporting the work of
widely-dispersed work-groups, particularly those involved in large research and develop-
ment projects” (Bentley et al., 1995). The original motivation for developing the BSCW
system was the limitation of existing technologies such as email and ftp that only allow
informationexchangewhile there was the perceived need for collaborative information
sharing Information sharing is understood to involve not only the ability to access a
shared copy of a document, but also to make annotations, and to see details of changes
made by other users.

The BSCW system is web-based: a central web server is accessed by multiple clients
using standard web browsers. The user interface is primarily text-based, complemented
by a few graphical icons. The interface is similar to that of a file system browser, made up
of a hierarchy of folders containing objects (such as other folders or documents). A sam-
ple screen of a BSCW workspace is shown in Figure 2.9. Documents can be locked, mul-
tiple versions can be maintained, and annotations can be attached to documents. While
the emphasis of the system lies in (primarily asynchronous) information sharing, the use
of other collaboration tools is made possible through interfaces to external synchronous
conferencing or shared whiteboard applications. A built-in discussion facility for asyn-
chronous communication also exists, and newer versions of BSCW have added support
for simple project management and calendaring, as well as for stored searches of infor-
mation within BSCW and on the Internet.

Structuring Metaphor

BSCW uses an abstract structuring metaphor resembling that of a file system. Individual
collaboration spaces are referred tovawkspaces Each workspace hasraot folder,

which may contain various objects such as documents, links (URLS), as well as other
folders. Those folders in turn may contain other folders, resulting in a tree-structured

Chapter 2. The Problem Domain 38

209
Help
v wt' Bookmarks A Location: |[t_1ttp:,f,fdemo. orbitean. de/bscw/bscw. cgi/0/216306 I

| Fie | it | wiew | options | Goto | Helo | |

W Lof (O] | @] [uf[ie

Home Fublic Cliphd “Waste Addr - Calend

@D o2 H @ D

Wour location:

Ll Mary Lamb § Froduct Concept Development ‘

FE T | catchup | copy | cut | delete

P=> Froduct Concept Development Sentries [B]
Mame Size Shared Mote Rafing Owner Diate Eusnts Actian
< [Concept Development 0 Marylamb 2002-10-13 06:20 [
< [0 Final Report Preparation 0 MaryLamb 2002-10-13 06:20 |
i{ < [[Q Financial Analysis 0 MaryLamb 2002-10-13 0619 |
i
- < [0 Market Study 0 Marylamb 2002-10-13 06:18 |
i
£ A B
| “ [Product Brainstorming 1 MaryLamb 2002-10-13 06:24 ¥
S B ST - SE T aned VAT
= | L e e

Figure 2.9: BSCW user interface

folder hierarchy. Other types of objects that may be contained in a folder are projects,
calendars, discussion forums, and stored searches.

Awareness Support

As BSCW is a system for primarily asynchronous collaboration, awareness is provided
in the form of a history of events. For instance, whenever an object is added to a folder,
or read or changed, this is shown in the user interface through icons indicating that such
events have transpired. The user can then click on the icon to obtain more information on
the event. In this way, a basic form of awareness about activities on the objects within the
current view of the user is provided. Additionally, users can choose to receive an emailed
daily report of events to become aware of what events have taken place in the workspace
as a whole during a given day.

Access Control

BSCW provides fine-level access control, where detailed access privileges can be as-
signed for every object and user in a workspace. This is complemented by role-based ac-

Chapter 2. The Problem Domain 39

cess control, allowing roles to be created, and access permission templates to be defined
for each role. When users are added to a specific role, they inherit all the permissions
which that role possesses.

2.23.2 CBE

CBE is a toolkit for creating extensible collaboration environments in Java, created at the
University of Michigan in 1996 (Lee et al., 1996). It is an outgrowth of the UARC (Up-

per Atmospheric Research Collaboratory) scientific collaboration system (Clauer et al.,
1995). Using CBE, collections of loosely-coupled tools can be assembled to support spe-
cific tasks. Its four main design components ajpplets users applet groupsandrooms

Applets are small client-side applications that may run in a web browser but could also
be local applications on the user’'s computer. They may either offer general collaboration
services, such as shared whiteboards or multi-user chat; or be domain-specific, such as
scientific visualization tools. Applet groups consist of all instances of the same type of
applet belonging to users in the same room, among which data is shared. Both individual
applets, as well as entire applet groups can be dynamically transferred between rooms.
Individual and group work are supported through private and group rooms. As room state
persists across sessions, CBE can be used for both synchronous and asynchronous work.
By allowing users to create their own applets, CBE is user-extensible. Figure 2.10 shows
an example of a number of generic and domain-specific applets being used by a number
of collaborating users.

Structuring Metaphor

In CBE, shared workspaces callebmsprovide the basic structuring construct. How-

ever, the term is used in a somewhat abstract sense, and is not intended to imply a strict
room-based metaphor. Rooms provide a space for users to meet, and rooms house the
applets which users use. A room thus constitutes the working environment for an indi-
vidual or a group of collaborating users. Rooms cannot be nested, but may be linked to
each other, resulting in a non-hierarchical network of collaboration spaces.

Awareness Support

Basic awareness is provided in the form of information about users who are present in a
room. In the case of synchronous collaboration, information about the actions of other
users may be provided by the applets used, but this is dependent on each such applet.

Chapter 2. The Problem Domain 40

o
[1saalite Room (3] | Al TING Model Prediction of Electon Density
s dar and Model Reom (10} el o Ll . e
- +
. Chat
1 3
D Current Wiew 7l s
Harry BovikiEstratos. angin.umich.edu e
smitheefalaska.edu TB1ES
Wayna Bruce@sprlumich.edu 144E+05
helmsihaystack.edu
watsonBEhaystack.edu 1.2E5
Laont Cranbrook@dit ady 1.10E+05
Don.GarvinBhao.ucar.edu
Jake.Chapman@sprl.umich,adu AE
alser@dmi min.dk 7.5BE+04
Fielsted@eiscat uitng BBEE+DA
+
= :
EnterRoam | Who? | aut | ATES
File Session Broup Options 2 ABE+04
Don.Garvin@hao.ucar.eda | 7 B0E403
+
| -1 | Geographic Coordinatas
=] =1 | Rangelkml Set Axie] Sondrestron: Ectron Tam] Dehutel Bectron Tamp elkm| Set Axis| EISCAT: Electron Temp.| Delata Blacton Tamp:
Send | SendTo ||| s | |08 o
| GApr1597 173153 GMT Don Garvin
‘@hag.uceredu The polarimage is A0 B
pretty much explading....! Thdeg Hdeg
]
SApri%a7 17:36:05 GMT Harry Bovik |
‘@strato.enginemichedu Itis |]
certainly spectacular The brightening|| | ur ur
usunuwﬂnrmw much across the night tima tme 173018 MRER1E 1309 1319 T40E 10400
side. Harn i
: Rangs(lm| Sat fvie] | Millstone: Elaciron Tam. | Delatef Bactron Tamp | | Rangstiem| Set Axic] EISCAT: TING model_| Delote] Blactron Tamp
SApr1597 17-36:30 GMT Jake &0t 700
Chapman@sprlemich.edu Looks 200 a8
like POLAR is moving down, correct 1500
we may not see the substarm R et o % dag 90 deg
SApr1587 17:40:18 GMT Don Garvin® 1004 | e i
haw ucar.ede It appears that there 500
I:als boen a significant change in By | UT TR0 17319 ITRID IRIRIE ITADIE TR E H";e T e T e T
i tme o E M i £ s
£ 1840, Univarsity of Michigan

Figure 2.10: CBE generic and domain-specific applets (figure used with permission,
courtesy of Hyong Sop Shim and Atul Prakash, Department of Electrical Engineering
and Computer Science, University of Michigan)

Access Control

CBE provides four predefined roles (administrator, member, observer, restricted), which
users may occupy. Associated with each room is an access control list which stores
access privileges for each role. In addition, access control can be enhanced using strong,
cryptographic security.

2.2.3.3 TeamMRoowms

The TEAMRoOOMS collaboration system was developed at the University of Calgary’s
Grouplab in the mid-1990s (Roseman and Greenberg, 1996). It was subsequently com-
mercialized under the nameEAMWAVE WORKPLACE in 1996. The inspiration for

the system came from the observation of collaborating face-to-face business teams, who
come together and collaborate in team rooms that are furnished with tools and docu-
ments required for their joint tasks. TheAMROOMS system aims to provide the virtual

Chapter 2. The Problem Domain 41

= Teanlave lorkplace - [Loc 000
Fle Edit Room Tools Vote Help
Dl How in Other Connected Users [N

Final Report Preparation

Product Brainstorming K

Market Stucly i

|-J| Financial Analysis / /

= X

= - Unify style of all secti
il Ity STyle o FECTIONS

T Product Concept Development Post Follow-Up Delete bt e apen) b atas et Mew

bf the cha WWrite executive summary

— Delete |
- "
B Financial-Analysis.sdw Anprovelchanyes o section 2 Fielcts: |
@

|| D / i
[] rdarket Analysis. sow | 1
— = | 0 Hew Qi i Description IW‘Hte executive summary
b ? Aasighed |MaryLamb

ject: | What do you all think of the s fo section
e Product-Concept sdw m e ol ERID Due [a0so2002
Size Completed o
Style Priarity 3 — I
Baor) proguct-Rec ommendations. sdw Falteoid =
% October 20025 | & I—j
SMTWTF S I—
1.2 3 45 9
Drafi-Report sdw R Here's a new version i
of the draft report; (&5 e e
check it out! 13 14 1516 17 18 19| 11 |
20 21 22 23 24 25 26| qp7 I
27 25 23 30 31 o 4
I

Chatto Everyone | QQILI

||

Figure 2.11: EAMWAVE WORKPLACE user interface

equivalent of such team rooms to support the collaboration of virtual teams. It is place-
based, providing features characteristic of physical places: being long-lived, persistent,
providing a venue for communication, offering tools for collaboration and the possibil-

ity of bringing in special-purpose tools to customize the placeAMROOMS supports

both synchronous and asynchronous collaboration. A multitude of tools (teamed

plet9 serve as conversational props, such as shared whiteboards or noteboards, and other
generic or special-purpose tools for collaboratio®EAT RooMs supports both individ-

ual and group work through the use of private and team rooms. Figure 2.11 shows the
user interface of one room which is filled with a number of tools (the figure is of the
TEAMWAVE WORKPLACE commercial version of the system).

Structuring Metaphor

The collaboration spaces provided bgAMRoOMS are referred to asooms Upon
installation, one room, the “Foyer”, is provided as a starting point, but other rooms can
be created at any time. Rooms cannot be nested, thus there is no hierarchy among the

Chapter 2. The Problem Domain 42

collection of rooms in EAMRooOMS. Doorwayscan be placed in rooms and configured
to connect to other rooms—by clicking on a doorway, its associated room is entered.
Thus TEAMROOMS aims to mimic certain of the spatial features of physical team rooms.

Awareness Support

Awareness is provided through several means. In synchronous mode, displays of other
users in the same room, together with their idle times, give information on “who is
around” and how active they are. This is complemented by several “awareness widgets”,
such as tele-pointers (other users’ pointers appearing on one’s copy of the shared space),
and radar views (miniature displays of the whole room and the portion in the viewport of
different users). Moreover, a complete version history of each object in the shared space
is maintained, allowing participants in asynchronous collaboration to trace the changes
that have occurred in a room since they last left it.

Access Control

Access control in EAMRoOMS is room-based. Permissions such as entering a room,
adding tools, drawing on the whiteboard, etc. can be assigned to just the room owner,
or to everyone. Assigning certain access privileges to just some users and not to others,
however, is not possible. Thus access control is rather coarse-grained.

2234 CVW

The Collaborative Virtual Workspace (CVW) was developed at Mitre Corporation in the
mid-1990s (Spellman et al., 1997) to overcome the limitations of other collaboration
tools which were seen as being either session-centric, such as video-conferencing tools,
or document-centric, such as document management/workflow system. It has since been
released into the public domain, where its development continues. CVW’s approach
is to beplace-basedmeaning that persistent collaboration spaces are provided within
which applications, documents and people exist. It supports both synchronous and asyn-
chronous collaboration through a set of generic collaboration services. Figure 2.12 shows
a collection of tools in the CVW client’s user interface.

Structuring Metaphor

CVW providesroomsas collaboration spaces. These are arranged on floors and orga-
nized into buildings. Despite this strongly space-based terminology, however, rooms are

Chapter 2. The Problem Domain 43

CVW Client Interface Private Data

15 - VW
i Carterarca Raom View Hile

e
=R (A

L qne

ST alalalalel] |

wet red CWNOpmEome ViSRHe. DTAAS Deb 7438 Dot
CYNUie NTRE . Commasl OT-Ape28 et 1M Do
CoA-Edamal MITRE ‘i el (64008 Dty 8-804 Do
Fmtirriosty bt Diagr0 Rampsr Oh-Am00 Hamue
Dot IrdbeetngOros Group 1800H3E et 14-00HIE De
| |memsn deminpion b HoApeak Dob Hapan Dot
s s AL Fude HFe 0 Do I)-Fie- D0 Dt
0rca8 Dot 0-Dwe-a8 Dot

Text
Chat

Fushe |

JL;” Lasi merash: Thu Ape 20 1306:78 EOT 700

waros | Usar | Locaion

TN DT
TV Dev i
W Dt
1B Rsam

W D Clr
VA Dev Clr

e QARRERAE

in Room s Cas R Ken S

s

BT
SV DT
F

WA Dev it
EiF

F Owhesd View Hierarchecal View ‘
Audio Video Virtual Building IF ;
Conferencing Conferencing Floor Plan Shared Whiteboard

Figure 2.12: CVW user interface (Figure is in the public domain, courtesy of the Mitre
Corporation)

presented to the user primarily in the form of abstract information spaces. Only “virtual
building floor plans” relate different rooms to each other spatially.

Awareness Support

CVW provides only rudimentary facilities for gaining awareness of others. The main one
is a list of online users with idle times, that is an indication of how long ago those users
have interacted with the system. This provides basic awareness of “who is around” and
how recently they have been active. In addition, the interface for each room similarly has
a list of users who are online in the room at that time.

Access Control

Access control is on a room level: access to a room can be restricted through an access
control list (ACL) attached to the room. In this case, only users listed in the ACL are
permitted to enter the room. Rooms without an ACL are public meaning that everyone
is permitted to enter them. Once inside a room, all its contents are accessible. To modify
or delete an object, however, requires special rights: usually only the object’s owner

Chapter 2. The Problem Domain 44

(or multiple owners) has this privilege, but it can also be assigned to others. Per-object
privileges, however, do not exist, thus the access control in CVW is rather coarse-grained.

2235 RBIT

The OrBIT system was developed at the University of Queensland and the CRC for Dis-
tributed Systems Technology (DSTC) in 1996, and has since evolved over a number of
years (Mansfield et al., 1997; Mansfield et al., 1999). Its design is based on a theory of
collaborative activity, Fitzpatrick's locales framework (Fitzpatrick, 1998). The term
caleis understood to refer togacein the sense of (Harrison and Dourish, 1996), and as
discussed above (cf. p. 33) RBIT is meant to “provide a ‘ubiquitous collaborative desk-
top’ through which users will perform all shared and individual tasks” (Mansfield et al.,
1997). Users can share access to documents and various objects, and can participate in
multiple distinct activities at the same time with different degrees of intensity. Although
ORBIT is intended for both synchronous and asynchronous collaboration, it actually only
provides support for synchronous communication, through audio-video links and text-
based chat. Figure 2.13 shows the user interface of t®©GOLD client program.

Structuring Metaphor

The main structure in @BIT is thelocale which constitutes an abstract information
space populated by people and furnished with documents and objects of relevance to the
activities of those people. The developers ¢fEDr have purposely chosen this place-
based approach instead of utilizing spatial metaphors as others have done, seeing the
notion of place as resulting “in greater power and flexibility in CSCW environments”
(Mansfield et al., 1997). Locales are seen as places that afford interactions of social
groups. As different individuals may be members of different social groups, they conse-
guently may be members of multiple locales. This results in overlapping locales, where
some objects or members that exist in one locale can also be found in another locale. To
connect different locales whose members need to share objects, soecaltggrdscan

be created. Objects placed in a courtyard are then accessible from all connected locales.

Awareness Support

ORBIT provides a number of facilities for providing awareness. It displays which users
are in which locales, and the actions performed by these users on objects in the lo-
cales. Awareness is implemented through an event-based notification service which al-
lows users to choose the kinds of events they are interested in receiving. Thus awareness
is user-tailorable.

Chapter 2. The Problem Domain 45

(= - N - 0 =) — T
B0t vigoior AT-TE hﬂ ‘
Fil
Comic Tovmm -
M et ! Y a 3
I .h;ﬂ-l:ﬂl:l W Bfe merrey Uader ey
(T
I s s ll 'J 3 i l_"l
. B 7o Specs B Yot Pac il BTeos
FE '1
Tair's Dffics
B oweum , i] Eﬂ
'
Pyl Soiief by |]
B Fan aen ol el ¥ O Prispartuz [Proect Coemew
F)| b
[Y T m
il Urnigred ko Acchel Window [)Pmdu Prepeas
[]]

oo B Eawa s e B Gexice Wicresss BBk

Ea e o e Aopes Weiacoe

Figure 2.13: @&BIT-GOLD user interface (Figure used with permission, courtesy of Tim
Mansfield, Distributed Systems Technology Centre, Sydney, Australia)

Access Control

Access control in @BIT is locale-based. All members of a locale have full access to
all objects within the locale, while all non-members have no access at all to any of the
objects. No distinction of types of locale membership or roles exists, and this is perceived
to be a shortcoming to be addressed (Mansfield et al., 1997).

2.2.3.6 UVENET

The LIVENET collaboration system was developed at the University of Technology, Syd-
ney’s Collaborative Systems Laboratory in the late 1990’s (Hawryszkiewycz, 1999b), and
is still being actively developed further. It supports mainly asynchronous collaboration of
distributed groups of people, i.e. different-time, different-place interactions, while sup-
port for synchronous interactions is being added to the current version of the system.
A central server is accessed across the network through one of several client interfaces,

Chapter 2. The Problem Domain 46

S g &8
File Edit “iew Go Communicatar Help

v‘ . Bookmarks A Location: lff_nttp:,-",-"livenet. it uts. edu. au/livenst/servlet/Workspace?link=folderskeyl=3 ,!|

LiveNal Login | Switch Workspaces | Home Page | Update User Info | User Guide | How To | Logout

This is workspace Final Report Preparation in workgroup Manufacturing owned by taryLamb.

=fAhout this workspace
P You are karyLamb taking the rale of Cwner. Also you are a group leader,

hlenws Report

Surprises For folder Report: you can delete it, rename it, edit it, assign it to other roles, edit its

Milestones notification rules.

Terminology

FaQ | Refreshl ‘ Add Item| ‘ Deletel Checked items Copy Link| Checkad items
=About your role Type Item Mame ~ Last Contributor Last Modified Option
—fnlders m| @ Discuss Report MaryLamh 200210141317 Edit,Rename
E}Create new folder
E}HEEW(EJ | Final Report MaryLamb 2002 10141216 Edit Rename

J[EY Financial Analysis kdaryLamb zo0z-10-14 1212 Edit, Rename

~Team i
ﬁﬁpamcigams@) | Idarket Analysis karyLamb 00210141213 Edit Rename
i
gpnies) | Product Cancept MaryLatnh 20021014 1315 Edit Renare
FOFANTING the WilFkegans a Product Recormendations MaryLamb 200210141514 Edit Rename
+Workspaces navigation
+Communication @m”
+0rganizing the workgroup u The list shows all the items in this folder.

u Click Copy Link to copy the selected items link to the clip board.

m Click Paste Link to paste the links from clip board to the current folder,

= To share this folder with others click on 2z 5ian, then edit permissions for the role vou want o share with.
m Click one of the item Mame, Last Contributort and Last modified to change the items display order.

= Toreplace a document with newer version, click an replace then upload the new version.

more...

Copyright Collahorative Systems Laboratary UTS
=TT | i R e |

Figure 2.14: LVENET user interface (web interface)

most commonly through a Web interface (an example of which is shown in Figure 2.14).
LIVENET provides collaboration spaces calldrkspacesThese can be populated
with a number of different types of objects such as documents, discussion forums, tools,
and message channels. Across workspaces, most of these objects can be shared. For

each workspace, any numberrofescan be defined, and users can be added to a work-
space aparticipantsoccupying roles. The same user can have different roles in different
workspaces, but can only occupy one role in each workspace.

For documents in allvENET workspace, two types of documents are distinguished:
on the one hand documents which form the object of the work performed in the work-
space (simply termedocuments and on the other hand documents which constitute
background material needed for the task (termackgrounds

Discussion forums constitute the main means of communication. Internally, they

Chapter 2. The Problem Domain 47

are structured as farum (one per workspace), which can have any number of discus-
sionblocks(named with the topic of discussion), each of which in turn can contain any
number of discussiostatements Since statements may be replies to other statements,
the collection of statements is a threaded discussion structure like that of many popular
bulletin boards, such as Usenet news.

Message channels constitute another means of communication. They are intended for
the somewhat more formal communication requirements, where defined lines of commu-
nication are known in advance. As message channels are uni-directional they are mostly
useful for notification purposes only, such as from the performer of one task to the per-
former(s) of another dependent task. Messages transmitted over message channels have
a pre-defined type, for example “proposal completed”, and a semi-structured message
body. Internally, a message channel is defined eessage-rulspecifying source and
destination, as well as message type. Message types are separately defined, as are the
actual messages transmitted.

Finally, a facility is provided for sending electronic mail from within a workspace to
an external email address.

Structuring Metaphor

The structuring metaphor employed inMENET is an abstract one: the collaboration
space is referred to asveorkspaceand the collection of workspaces is referred to as a
workspace networkAll workspaces form a tree hierarchy with parent workspaces and
subworkspaces, where each workspace has exactly one parent workspace, except for the
root of the tree which is parent-less.

Workspaces are grouped together imarkgroups Each workgroup has its own tree
of workspaces, and therefore its own root workspace. Besides workspaces, a workgroup
also has a collection of users. Only users who are members of a workgroup can be added
as participants to workspaces in that workgroup. In this way, workspaces associated with
different groups of users can be kept separate from other groups. However, the same user
may be a member of multiple workgroups.

Awareness Support

Awareness facilities in WVENET can be divided into two categories. On the one hand,
notificationof certain defined events is provided, which is sent by ordinary email to the
user’s mailbox, i.e. outside the system. The set of events that can trigger a notification can
be configured and includes such events as: uploading of a document to a folder, addition
of a new user to a workspace, posting of a statement in a discussion forum, etc. The other

Chapter 2. The Problem Domain 48

awareness facility in VENET is rather unique when compared to other collaboration
systems, and consists of a set of pages with general task-related information, including:
goals, news, surprises, milestones, terminology, and FAQs (frequently asked questions).
These aim to assist the user in gaining awareness of the more general aspects of the
overall collaboration.

Access Control

Access to the various facilities provided ilMENET is controlled by access rules. Two

sets of rules are provided: the first set of rules applies to the level of workgroups and
defines whether a user has permission to add users to and remove users from a work-
group. Users with these privileges have the status of workgleagber The second set

of rules applies to individual workspaces and defines general permissions, such as cre-
ating, modifying and deleting workspaces, adding and removing participants, roles and
documents, the use of communication facilities, etc. While the first set of rules applies
to individual users directly, the second set of rules applies to roles, and thus indirectly to
the users occupying those roles. The access control modeVe®NET is thus a hybrid

of user-based and role-based access control.

2.2.3.7 Summary and Comparison

The preceding pages have briefly reviewed six collaboration systems that have emerged
from research within the past decade, giving a flavour of some of the variety of the sys-
tems in existence. These systems differ in a number of ways, both in terms of their imple-
mentation and in their support for virtual collaboration. Table 2.1 presents an overview
comparing these collaboration systems in terms of seven attributes: architecture, struc-
turing metaphor, support for synchronous or asynchronous collaboration, communication
facilities, document sharing facilities, awareness facilities, and access control.

Architecture

In terms of architecture, three main approaches can be distinguished: pure web-based,
web-based Java applets, and client-server. While client-server systems typically pro-
vide the richest feature sets and user interfaces, they are the most difficult to deploy as
they require installation on each client computer, and typically do not work through fire-
walls. Therefore, many systems adopt the web-based architecture where no installation
of client-side software is required (except for a web browser, which is a standard software
on today'’s office computers). The disadvantage, however, is the much less sophisticated

49

Chapter 2. The Problem Domain

SWB)SAS UONRIOMR[|0D XIS JO MBIAIBAO aANeedwo) :T°Z a|gel

suoissiwiad dnoub
-ylom 79 aoedsylom | suoissiwiad aeao| SOV suoissiwiad paurelb
ad ‘paseg-sjos P Had paseg-iasn Wool-1ad paseqg-iasn | suoissiwiad wool S7OV Wool -auly ‘paseq-sjol B |0U0D
paseq-iasn pugAH ‘paurelb-asieo) ‘paurelb-asreo) fiad ‘paseq-lasn tiad ‘paseq-a|0y paseg-1asn pLIAH SS90y
uoneuwlojul Aoisiy 109(
gsaualeme ysel Aioisiy 100 ‘SM3IA Jepel ‘sia Ssaualeme eIxa
‘uonealou JUdAS Juana pale|al-1oalqo awn a|p! |-uiodady ‘awn sip! jppinoid Aew s1a|d sboj Juana saniioe}
pareja-199lgO [s8fed0] ul s1asn Jasn ‘Swool ul SI1asn Jasnh ‘swool ul siasn tde ‘swool ul s1asn |Arep ‘Aloisiy Jusag ssaualremy
suonelouue
spreoganym ‘Bupjoo| ‘Juaw
spJeoganym pareys ‘Juswabe abeuew UOISIaA sanijoe}
paJeys ‘Buireys |-uew UOISIaA Burreys erep [bBulreys uawin Burreys
Burreys juswnoog | Buureysuswnooq juswnaop 3dwis {Buueys wuswnoog [19dde 01 panwi] toop parednsiydos uswnoog
S|00]
[rewsa s|au [eusaixa ybnoiys
‘glouueyd abessaw s|jauueyd |-UBYD 03PIA 7R OIpNe pseog aonou 51910 ‘lewd ‘swini saniioe}
SWNIo} UOISSNIJSIQ | 08PIA - % 0IpNy [‘Teyd 1xal Jasn-RiNA [‘Teyd 1xal JIasn-jnAl | 1eyd 1xal Jasn-ninjAl |-0} uoISSnNasIg | uoneduNWWo)
snouoJIyouAse a|qissod a|qissod S|00] [RUIBIXD
Joj uoddns payu pspe snouoJyo os[e snouoJys ybnoiyl snouoiyo uoddns
-wi| ‘snouodyd tuhse ‘snouolyd snouoJyouAse tuhse ‘snouolyd Fuhs {snouolyd | snouolyouAse
SNOUOJIYJUASY | -UAS Aurey | -uAs Aure|\ pue SNOUOJIYJUAS | -UAS Aurely | -uAse Aurey | /snhouolyduAs
wiolsAs
salyaJelaly 9|l Bullgwasal
9an odynw ul ‘Ayaressly aan Ul
(,saordsyiom,) (.sae20],) (,soordsyiom,) Joydelow
$aoeds 1oeNSqQY $9oeds 1oeNSqQY Swool, 10ensqy Swiool, 10ensqy Swiool, 10ensqy $aseds 1eNSqY Buunonns
(s191d
s19|d sio|d |-de eaer yum Aje
paseq-gan-fde ener paseq-gap JanIas-ualD Janias-ial) -de eaer paseq-gapn tuondo) paseq-gap 2IMoa)IYIY
(a109-11940) IAVAM NV |
1IN IAIT 11940 MAD [SWOOY WV3 L 3490 MOSd

Chapter 2. The Problem Domain 50

user interface, as well as the slower response time since practically all user actions re-
quire a request to be sent back to the server. Also, pure web-based systems (i.e. with an
HTML-only interface) typically only support asynchronous collaboration well, because

of the difficulty of providing synchronous communication facilities through such an in-
terface. A few systems therefore adopt an approach that lies in between the client-server
and the pure web-based approach, using web-based Java applets that connect back to
the collaboration system’s server through their own network connection (such as a sep-
arate socket connection, or using Java remote method invocation). This enables them
to provide a more sophisticated user interface than pure web-based systems, including
synchronous communication tools. It also facilitates deployment to client computers
by avoiding having to install the software on those computers—the applets are simply
downloaded and started from the web whenever a specific web page is opened. The dis-
advantages, however, are the longer time required to download the applets, limitations
on applet communication back to the server when firewalls need to be crossed, and the
poorer stability—applets tend to crash more easily than traditional client-server applica-
tions. Thus in terms of architecture there is no ideal solution, with each alternative hav-
ing its own advantages and disadvantages, and consequently several different approaches
may co-exist.

Structuring Metaphor

All the reviewed systems employ a more or less abstract structuring metaphor. Some
are completely abstract, such as the BSCW antENET systems, while others draw

on the terminology of physical spaces. For example, CBEAMRooMS, and CVW
provide “rooms”, while QRBIT makes “courtyards” available. In CVW, “virtual building

floor plans” show maps of rooms in spatial relation to each other, however the spatial
metaphor is not employed elsewhere in the system. Thus on the whole, the collaboration
space itself constitutes an abstract information space in all the reviewed systems.

Synchronous/Asynchronous Support

Both synchronous and asynchronous collaboration depend on suitable communication fa-
cilities. For instance, audio/video conferencing is suitable for synchronous collaboration,
but not for asynchronous collaboration, as it requires all parties to be present at the same
time. On the other hand, a discussion forum may be suitable for asynchronous collabor-
ation, but does not support synchronous collaboration very well. In addition, the support
of suitable awareness facilities is a further requirement for both modes of collaboration.
In the case of synchronous collaboration, awareness of users in the collaboration space

Chapter 2. The Problem Domain 51

is important, while in asynchronous collaboration awareness of the event history of the
collaboration space is of importance. The provision of these communication and aware-
ness facilities, however, is largely dependent on the collaboration system’s architecture.
Consequently, pure web-based systems are limited to providing support for asynchronous
collaboration only, while client-server systems and web-based Java applets have the op-
portunity for providing support for both synchronous and asynchronous collaboration. In
the case of web-based systems, synchronous communication facilities can be optionally
provided through the use of Java applets or external third-party applications, such as with
the BSCW system which supports both of these approaches.

Communication Facilities

Communication facilities provided by collaboration systems can be divided into two main
categories, as mentioned above: those supporting synchronous collaboration, and those
supporting asynchronous collaboration. Communication facilities for synchronous col-
laboration typically include text-based chat and audio/video channels. For asynchronous
collaboration, they include discussion forums and notice boards, message channels, and
email (which consists of facilities for sending of email only).

Document Sharing Facilities

The sharing of documents is important for most collaborative endeavours, regardless of
the mode of collaboration, and consequently document sharing facilities are typically
provided. In the simplest case, they allow documents to be uploaded to a server and
shared with others, while more sophisticated facilities include versioning, locking, and
annotation capabilities. Some systems, such as CBE, do not provide document upload
functions but instead enable the sharing of their tools’ data. Thus a tool may load and dis-
play some data, which may then be viewed by the other members of the virtual team. The
same principle applies for shared whiteboards where drawings made on the whiteboard
by a team member are visible to other members.

Awareness Facilities

As mentioned earlier, awareness facilities provided by collaboration systems differ de-
pending on whether the system aims to support synchronous or asynchronous collab-
oration. For synchronous collaboration, typically a list (possibly including pictures) of
users in a collaboration space is provided. This may be supplemented by information
such as the users’ idle time to give an indication as to their involvement in the work of

Chapter 2. The Problem Domain 52

that collaboration space. More sophisticated awareness of the activities of others is pro-
vided through telepointers and radar views such as by twvRoOMS system. For
asynchronous collaboration, awareness is usually provided in the form of the history of
events that has transpired in the collaboration space, particularly those which affect ob-
jects (such as object creation/modification/deletion). In the case ofittENET system,
additional awareness of general aspects of the collaboration is provided.

Access Control

All collaboration systems provide some form of control over access to collaboration
spaces and the objects they contain. In some cases, this control is very fine-grained,
allowing particular types of access to individual objects in specific collaboration spaces
to be defined separately for each user, such as in the case of the BSCW system. In other
cases, the control is much more coarse-grained, allowing either all or no access permis-
sions for specific users, such as in the casemB@; or allowing access to all or no users
(besides the collaboration space’s owner), such as in the cagaeofRooms. The other

way in which access control differs among systems is in whether access is assigned to
individual users directly, or to roles and thereby indirectly to users occupying those roles.
Most systems support either one or the other type of access control, but some systems
support a combination of both user-based and role-based access control, such as BSCW
and LVENET.

This comparison has highlighted the differences between different collaboration systems
in terms of a number of attributes. At the same time it has become evident that considered
collectively, all these systems share certain characteristics: all of them support virtual
collaboration; all provide more or less abstract collaboration spaces; all provide commu-
nication and document sharing facilities, awareness, and access control. These shared
characteristics define collaboration systems as a separate class of software systems, apart
from other classes of software systems such as, say, office productivity applications, or
middleware software. Chapter 3 revisits this class of software systems, showing how
their information can be modeled.

2.3 Organizational Memory

This research is concerned with obtaining and retaining observations of virtual collabora-
tion from collaboration systems. Such observations constitute records of the activities of
the organizations where the virtual collaboration takes place. Records of organizational

Chapter 2. The Problem Domain 53

activity can be regarded as being part ofaganizational memoryOM). This section
reviews what organizational memory is and what the issues in the OM field are.

For more than a decade, the concept of organizational memory has received con-
siderable attention in the fields of information systems, CSCW, management science,
organization science, and various others. The idea underlying the concept is that orga-
nizations, like individuals, can be regarded as having a memory. In the simplest view,
this memory is the sum of the memories of the individuals making up the organization.
More complex views accommodate other elements, as is discussed later on. The notion
implies that the organization as a whole “knows” something, as long as it can obtain that
knowledge from within its memory.

Knowledge of past actions and decisions is intended to inform present decision-
making, as well as to fuel processes of organizational learning. The latter is understood
to consist of information processing which affects organizational behaviour and decision
making. As defined by (Huber, 1996, p. 126): “An entity learns if, through its pro-
cessing of information, the range of its potential behaviors is changed”. In this context,
organizational memories are seen as critical for organizational learning: only when an
organization has the ability to recall that which it has learned and stored in its memory
can it use its learning (Huber, 1996, p. 150).

The problem related to organizational memory is that “organizations frequently do
not know what they know” (Huber, 1996, p. 149). Organizations are found to be “rein-
venting the wheel”, and “have serious limitations in transferring previous learning to
current problems” (Conklin, 1993, pp. 561-2). That is, while the required knowledge
may reside somewhere within the organization, such as in the heads of its employees,
it may not be accessible to other organizational members and consequently is of little
value. Moreover, sharing the knowledge of organizational members may be difficult,
particularly when the knowledge is tacit and thus not readily sharable (this is discussed
in more detail in Section 2.3.2). When these members leave the organization, part of the
overall organizational memory is lost.

This case of “organizational amnesia” has motivated researchers in the CSCW and
information systems fields to try to provide some sort of computer-based support that
can enable organizations to remember aspects of their past. Thusttbe of orga-
nizational memory is translated ingystemdor organizational memory. Such systems
should continually be updated with records of the decision stimuli and responses that
occur within the organization, to enable later “remembering” of what the organization
knows. In this vein, in Walsh and Ungson’s seminal paper on the issue, the behaviour of
organizations is characterized in terms of information processing activities of acquisition,
retention, and retrieval (Walsh and Ungson, 1991). To Walsh and Ungson, “...organiza-

Chapter 2. The Problem Domain 54

tional memory refers to stored information from an organization’s history that can be
brought to bear on present decisions” (Walsh and Ungson, 1991, p. 61). This view is
echoed by Huber: “Organizational memory is the means by which knowledge is stored
for future use” (Huber, 1996, p. 127). Some views on organizational memory, however,
are more narrow in scope, such as the one espoused by Conklin who sees organizational
memory as “the record of an organization that is embodied in a set of documents and
artifacts” (Conklin, 1993, p. 561). A similar view is expressed by Ackerman to whom or-
ganizational memory is “organizational knowledge with persistence” (Ackerman, 1994).
These artefact-oriented views stand in contrast to other more process-oriented ones such
as the following: “Organizational memory (OM) is a generic concept used to describe the
acquisition, retention, maintenance, search, and retrieval of knowledge within an organi-
zation” (Corbett et al., 1999). By and large, however, these different views agree that an
organizational memory supports the remembering of aspects of the organization’s past,
which exist in one form or another as pieces of information or knowledge.

2.3.1 Data, Information, Knowledge

Here, the meaning associated with the terms “data”, “information”, and “knowledge” is
clarified. These terms are frequently used with different meanings in different situations
by different authors. The definition of some of these terms is subject to much contro-
versy, such as the distinction between information and knowledge; a few attempts to
review and/or define the meaning of these terms in the context of information systems
are provided in (Tuomi, 1999; Spiegler, 2000; Nunamaker Jr. et al., 2001). An important
notion associated with these terms is that they constithierarchy of increasing value
(Ackoff, 1996). That is, the value associated with information is higher than that of data,
and likewise the value of knowledge is higher than that of information. Value in this
context refers to potential usefulness—the more value something has, the more potential
it has to be useful (Nunamaker Jr. et al., 2001). Usefulness in turn is typically seen in the
extent to which something can influence and/or guide action. Thus knowledge, which in
this hierarchy has the highest level of potential usefulness, has been defined as “informa-
tion made actionable” (Valil 11, 1999). This view is confirmed by (Spiegler, 2000) who
sees information as “knowing-that”, i.e. being concerned with facts; while knowledge
is seen as “knowing-how”, i.e. being concerned with the ability to turn information into
action.

The view taken here concurs with that of (Spiegler, 2000): “when we attempt to
capture, record or store knowledge it turns back into information or data”; while (Alavi
and Leidner, 1999) suggest that “information becomes knowledge once it is processed

Chapter 2. The Problem Domain 55

in the mind of an individual”. Thus that which is referred to as “knowledge” can only
ever reside in the minds of individuals. For the purpose of this thesis, the terms data,
information, and knowledge are defined as follows:

Definition 12 Datarefers to uninterpreted raw fact$nformation is in-
terpreted data, such that it is given meanikgnowledgeas information made
actionable as a result of cognitive effort.

O

To illustrate this, “152”, “smith.pdf”, and “2002/06/22" are examples of items of
data. Without interpretation they do not convey meaning in and of themselves (although
of course the meaning can in some caseguessedbut this then already constitutes an
interpretation, perhaps based on previous encounters with the same or similar data). Data
such as the one above is transformed into information by interpreting it and associating
meaning with it, such as by saying “paper submission number 152 has the name smith.pdf
and was created on June 22nd, 2002". Each of the data items now has become meaning-
ful; moreover, relationships between the three pieces of data have now become evident:
they all refer to the same instance of a paper submission. Processing this information and
relating it to other information, knowledge can be produced. For instance, relating it to
the information “papers will be accepted until June 15th, 2002”, the knowledge “paper
152 should be rejected because it was submitted late” can be produced. In this way, the
original facts have become actionable knowledge.

2.3.2 Knowledge Creation

The knowledge which is the object of organizational memory can be divided into two
categoriesexplicitknowledge andacit knowledge.

Explicit knowledge (as conceived of in the literature) has the property that it can be
codified, for example by writing it down or recording it in a form that enables its shar-
ing with others. Thus explicit knowledge can be transmitted between people, possibly
through an intermediary such as a computing system.

Tacit knowledge, on the other hand, resides in people’s minds and finds expression
through their actions and decisions. It is closely associated with experience and learning.

While explicit knowledge is relatively easily captured, stored and retrieved in an in-
formation system, tacit knowledge first needs to be converted to explicit knowledge be-
fore it can be thus handled. Nonaka has developed a theory that explains how this conver-
sion of knowledge takes place in organizations (Nonaka, 1994). According to this theory,

Chapter 2. The Problem Domain 56

To
Tacit Knowledge Explicit knowledge

Tacit

knowledge Socialization /V\Externahzauon
From
Explicit o \4/ o
Internalization Combination

knowledge

Figure 2.15: Modes of knowledge conversion and the cycle of knowledge creation;
adapted from (Nonaka, 1994)

knowledge is created in iterations of four consecutive steps that he terms socialization,
externalization, combination, and internalization.

Socialization occurs when people share experiences with each other. The on-the-job
training of an apprentice by a master is a typical example of socialization. This creates
tacit knowledge in one person from the tacit knowledge in another person by enacting it.
Externalization happens when tacit knowledge is articulated and brought into an explicit
form. Combination creates knowledge by integrating existing information and knowl-
edge in new meaningful ways. Thus, explicit knowledge is created from other explicit
knowledge. Finally, internalization takes place when people apply explicit knowledge
through “learning by doing”, thus creating tacit knowledge. When performed iteratively,
a cycle of knowledge creation results, what Nonaka callssghieal of organizational
knowledge creationThe four modes of knowledge conversion and the cycle of knowl-
edge creation are shown in Figure 2.15.

2.3.3 Locus of Organizational Memory

As an organizational memory contains the knowledge an organization possesses, the
guestion arises where this knowledge resides, i.e. where the locus of organizational mem-
ory is. Walsh and Ungson have proposed a framework of organizational memory that
suggests that the memory’s retention facilities are structured in terms aketmetion
bins(Walsh and Ungson, 1991). These retention bins are:

1. Individuals the members of an organization whose own memories contain a record
of what has transpired in the organization. Individuals use records and files as
memory aids.

Chapter 2. The Problem Domain 57

2. Culture, a “learned way of perceiving, thinking, and feeling about problems that is
transmitted to members in the organization” (Walsh and Ungson, 1991). Culture
influences decision-making in an organization and is mostly passed along orally.

3. Transformationswhich take inputs and produce outputs, be they material or intan-
gible, embody a logic that can be regarded part of organizational memory.

4. Structures expressed in terms of the roles that members of the organization oc-
cupy, have certain expected behaviours attached. However, it also extends to orga-
nizational structure, which contains information on how the organization views its
environment.

5. Ecology referring to the physical structure of the organization and its workplace
arrangement, holds information about the organization and its members.

In addition to these five retention bins that are internal to the organization, a sixth one
is identified:external archivesincluding such things as data compiled by competitors or
government bodies, information held by former employees, stories prepared by the news
media, etc.

Walsh and Ungson’s framework is comprehensive, and is often quoted in the OM
literature. However, it is not without its critics. Bannon and Kuutti comment:

“The conceptual framework that is proposed by Walsh & Ungson is compre-
hensive, but it suffers from an attempt to include virtually everything, so that
one is left wondering what, within organizations, is not a part of organiza-
tional memory?” (Bannon and Kuutti, 1996)

This criticism seems only partly justified. While it is true that the framework is com-
plex, so is the reality it attempts to model. The problem seems to be not related to the
concept of organizational memory itself, but rather to the way it can be harnessed to
inform decision-making in the organization. Furthermore, while current OM systems
only support a small part of the above framework, this should be seen as a motivating
challenge to explore if and how information relating to other parts of the framework, that
have thus far been elusive, could possibly be obtained and made part of the organizational
memory. Chapter 4 again touches upon this question.

2.3.4 Levels of Organizational Memory

Organizations are collections of people, and arguably the most important repositories
of organizational memory are the minds of its people. However, organizations are also

Chapter 2. The Problem Domain 58

External Internal

Organizational
level

Group
level

Individual
level

Figure 2.16: Multiple levels of organizational memory; adapted from (Anand et al., 1998)

internally organized in smaller units, such as groups. When considering the different
groupings of people in different organizational units, the scope of the memory available
in those groupings can be identified. One model that attempts to represent levels of or-
ganizational memory has been proposed in (Anand et al., 1998). It identifies the three
levels ofindividual, group, andorganization It then incorporates the concepttodins-

active memoryo define the scope of organizational memory at each level. Transactive
memory is that portion of OM which does not reside in a particular individual, but which
that individual knows how to obtain from another individual, through a set of communi-
cation transactions.

Because of the notion of transactive memory, an organization’s memory can actually
include portions that lie outside the organization, namely through communication of a
member of the organization with an outside individual. Likewise, this communication
can involve entire outside groups and organizations. A simplified representation of this
arrangement is shown in Figure 2.16 (the original representation chosen by Anhand

Chapter 2. The Problem Domain 59

al. differentiates between access to only explicit, or both tacit and explicit knowledge;
these details have been omitted here for the sake of simplicity). The figure shows both
internal and external individuals and units. It shows that organizations are composed
of groups, which in turn are composed of individuals (composition is indicated by the
dashed lines). Thus an organization’s memory is the sum of the memories of its contained
groups, and in the same manner, the group’s memory is the sum of the memories of its
contained individuals. It can also be seen that groups internal to the organization may
include external individuals, and vice versa. The solid lines among pairs of individuals,
groups, and organizations indicate access to the others’ knowledge. Thus indigjdual
for example, is able to access knowledge of individBaby means of a communication
transaction.

OM systems have the potential to eliminate the need for some of the communica-
tion transactions among organizational members. This effectively broadens the scope of
availability of organizational memory by making it available even where no access to the
knowledge of others would have otherwise existed.

2.3.5 Declarative vs. Procedural Memory

Most discussions of organizational memory assume that its contents are records of what
an organization has done, i.e. decision stimuli and responses. However, this constitutes
only one kind of organizational memory, usually ternttlarative memoryAnother
kind of organizational memory, however, relates noivtwat has been done, but twow
something was done or should be done, and this is tepraedural memorgMoorman
and Miner, 1998).
The termprocedural memorylescribes a broad category of organizational memory.
In terms of Walsh and Ungson’s framework, it encompasses elememtdivtiuals (as
in “the way | do things”) andculture (as in “the way things are done around here”),
but particularly agransformations As prescriptions for work, such transformations are
expressed as procedures, rules, and formalized systems (Walsh and Ungson, 1991, p. 65).
Early efforts at capturing organizational memory focused primarily on declarative
memory, such as the work on Answer Garden (Ackerman, 1994) and its successor An-
swer Garden 2 (Ackerman and McDonald, 1996), both of which facilitate the interactive
evolution of a body of declarative knowledge. On the other hand, the need for retaining
procedural aspects of work was already pointed out relatively early on (Conklin, 1993).
However, the cost of capture was seen as too high:

“The most immediate barrier to capturing more of the process of work and
making it part of organizational memory is that it seems to present an in-

Chapter 2. The Problem Domain 60

surmountable and onerous documentation burden on the people doing the
work.” (Conklin, 1993)

This is because it was expected that people carrying out the work would themselves
contribute records of what they were doing to the organizational memory. As doing so
usually benefited others more than the people contributing these records, there was very
little incentive to motivate such contributions. Also, making records of one’s work inter-
fered with the work itself, an undesirable situation. Conklin suggested that groupware
should be linked with organizational memory to ongoingly tap into the flow of interac-
tions between members of an organization, and to crystallize this into the organizational
memory. This has been echoed more recently in the context of virtual team effectiveness,
where the following “effectiveness dimension” has been proposed:

“The degree to which the team’s process and outcomes can be captured elec-
tronically, stored and retrieved as needed to contribute to increased levels of
organizational knowledge and learning for future teams.” (Furst et al., 1999,
p. 253)

Despite this support for the notion of capturing and retaining procedural memory,
there has to date been very little practical work in that direction. The issue of the capture
and retention of procedural memory is revisited in Chapter 4 where it is suggested how
such a memory can be created and maintained.

2.3.6 Remembering

In the context of organizational memory, remembering is usually understood as being
synonymous with query and retrieval. That is, if an organizational memory contains
some material, remembering that material means formulating a query for its retrieval.
This view of remembering considers memory as a passive store.

Drawing on early psychology research, Bannon and Kuutti have proposed an alterna-
tive view where memory is seen as a constructive act (Bannon and Kuutti, 1996). They
argue that:

“Each action of memorizing or storing information and each action of re-
calling and remembering take place in the context of an activity. If storing
context and recalling context are the same activity, the interpretation of the
material may not be problematic. But if remembering takes place in a differ-
ent activity where material has been stored, the material will be reinterpreted

Chapter 2. The Problem Domain 61

with respect to the new object or activity, and there is no automatic guaran-
tee that the material is relevant anymore in the same way than it was in the
context of storing it.” (Bannon and Kuutti, 1996)

So, an act of remembering is seen not as mere retrieval, but as constructing meaning
within a certain context. Removed from that context, some of the meaning of that original
material may well be lost. An organizational memory system thus needs to allow for the
interpretation and the shared assigning of meaning in the context of remembering if it is
to provide any benefit from knowledge of the past in present decision-making.

2.3.7 Forgetting

It has been suggested that an organizational memory system should have the ability to for-
get (Landry, 1999). This is justified by comparing the OM with human memory. Humans
need to forget in order to cope with overwhelming amounts of information, otherwise
they suffer information overload, and are bogged down with a deluge of mindless trivia.
The danger of not forgetting is the risk of being caught up in the past, without adapt-
ing to changed circumstances in the present, resulting in poor decision-making. On the
other hand, total amnesia is dangerous too, as it prevents learning from the past. Thus, a
“good” memory should combine the right amount of remembering with the right amount
of forgetting. The challenge then is “to build systems that are appropriately forgetful”
(Landry, 1999).

On the other hand, to compare OM with human memory and then conclude that an
OM should mimic human memory in every aspect seems to deny the shortcomings of
human memory. For forgetting not only frees us of “mindless trivia”, it also suffers us
to lose important information, sometimes with disastrous consequences. Landry’s claim
is that organizational forgetting is overall beneficial, that the instances when forgetting
jeopardizes the organization’s survival are outweighed by those when remembering leads
to poor decision-making.

The obvious alternative to forgetting in the context of OM systerfiiésing, that is,
the selective withholding of material. Landry briefly addresses, and dismisses, this pos-
sibility, however without offering any convincing reason why not to utilize it. Filtering
appears to be the most suitable solution for dealing with excessive amounts of informa-
tion. In the literature, however, this has been a relatively unexplored area, which seems
deserving of further research.

Chapter 2. The Problem Domain 62

2.3.8 Organizational Memory vs. Knowledge Management

Before closing this discussion on organizational memory, some words should be said
about its relationship to knowledge management (KM), which is often mentioned in the
context of, and sometimes seen as synonymous with, organizational memory. Because
most research into knowledge management has been relatively recent, its concepts and
terminology are still somewhat fluid and at times vague. Thus there is no universally
agreed-upon definition of knowledge management, or a clear distinction between it and
organizational memory. For instance, (Maier and Lehner, 2000) consider KM systems to
be a subset of OM systems; by implication, one should regard KM as being subsumed un-
der OM. However, others take the opposite view, such as (Katzy et al., 2000) who regard
the OM to be the knowledge repository of a KM system, thus OM being a subset of KM.
Others take a more process-oriented view, such as the following: “Organizational Mem-
ory (OM) can be defined as the way an organization applies past knowledge to present
activities. Knowledge Management (KM) addresses the process of acquiring, creating,
distributing and using knowledge in organizations” (Morrison and Olfman, 1999). This
definition of KM is strikingly similar to that of OM by (Corbett et al., 1999) presented
earlier. The difference between the two may indeed be a subtle one in terms of defini-
tion. However, it appears that by and large the focus of organizational memory is the
memory component itself, as a repository of the organization’s knowledge; while that
of knowledge management is the process of acquiring, representing, and disseminating
knowledge within the organization. Thus the distinction can be seen as that between an
entity and a process.

2.4 Summary

This chapter has provided an overview of the problem domain of this research work:
virtual collaboration processes, collaboration systems, and organizational memory.

Virtual collaboration processes are understood to be goal-directed collections of mul-
tiple tasks, involving multiple individuals, and performed without face-to-face interac-
tion. Several different types of such processes can be identified, which can be classified
according to a number of process attributes. Common among these classifications is the
attribute of predefinition, which can be used to broadly divide between production pro-
cesses and emergent processes. For modeling these processes, a number of modeling
methods and notations are available, and this chapter has reviewed several of them.

In order to carry out virtual collaboration, collaboration systems are employed. These
provide collaboration spaces structured according to some abstract or spatial metaphors.

Chapter 2. The Problem Domain 63

Collaboration spaces provide certain facilities to enable virtual collaboration, includ-
ing document sharing, communication, and awareness facilities, supporting synchronous
and/or asynchronous collaboration. Many such systems have been developed, and a num-
ber of them were reviewed in this chapter.

Finally, observations of virtual collaboration can be seen as belonging to an organiza-
tional memory. Such a memory contains knowledge of what the organization “knows”, in
terms of experience from its past which it can bring to bear on present decisions. Several
aspects relating to organizational memory were investigated, including its locus, multiple
levels, declarative and procedural content, remembering, and forgetting.

Having separately reviewed these areas in this chapter, the following chapters make
the connection between this research and these areas of the problem domain, relating and
integrating these areas.

Chapter 3

Modeling Patterns of Virtual
Collaboration

As stated in the previous chapters, this thesis is concerned with obtaining observations of
virtual collaboration. Since the observations are to be collected without requiring mem-
bers of virtual teams to document their own actions (and also without requiring others to
do so), the collaboration systems used by the virtual teams are the only practical infor-
mation sources. Thus, a given collaboration system needs to collect records from which
such observations can be made. The challenge, however, is that the records typically col-
lected by such systems on the one hand, and the observations that are sought on the other
hand, usually differ significantly in both the amount of detail contained and the scale of
the activity represented. To illustrate this, consider the records shown in Figure 3.1 which
originate from one particular collaboration system. The observations sought, on the other
hand, are more of the kind as shown in Figure 3.2 (cf. the discussion on MOO diagrams
on page 29 for a reminder of the notation). Here, the records in Figure 3.1 correspond
to only a small part of the overall task represented in Figure 3.2. In terms of the amount
of detail, the records in Figure 3.1 contain a large amount of detail, while the represen-
tation of the collaborative activity sought, as shown in Figure 3.2, contains much less
detail. In terms of the scale of the activity represented, the records from the collaboration
system shown in Figure 3.1 are of a very small scale, representing actions performed by
a single user in a given collaboration system; while the corresponding representation of
the collaborative activity shown in Figure 3.2 is of a much larger scale, representing an
aggregation of multiple actions performed by multiple users. To bridge from the former
to the latter is the object of this and the following chapter. As will be argued in these two
chapters, doing so involves the combination of two things: the modeling of information
about virtual collaboration, and the derivation of information about virtual collaboration.

Chapter 3. Modeling Patterns of Virtual Collaboration 65

161.64.61.126 - - [25/Aug/2000:09:40:55 +1000] "GET http://livenet.i
t.uts.edu.au/livenet/servlet/Document ?keyl=1367667488&key2=-18563551
85&folderName=Report&document=http://livenet.it.uts.edu.au/docs/Repo
rt/FinalReport.pdf" 200 1980

161.64.61.126 - - [25/Aug/2000:09:41:51 +1000] "GET http://livenet.i
t.uts.edu.au/livenet/servlet/Discussion?link=discussionOpen&keyl=136
7667488&key2=-1856355185&discussion=Discuss-Report|disc://Report-Pre
paration.John_Smith.Report.Discuss-Report&folderName=Report" 200 653

Figure 3.1: Records from a collaboration system

Final-Report
Discuss
Report

Figure 3.2: MOO diagram of a report preparation task

Report-Parts

The current chapter deals with the former, the modeling and representation of informa-
tion about collaboration. The following chapter then carries on from there to deal with
the latter, the method for deriving the observations sought from a collaboration system’s
records.

3.1 Patterns

It is proposed that observations of virtual collaboration should be regardealtt@sns

that can be modeled, and then extracted, from data on collaboration. The MOO diagram
in Figure 3.2 is an example of a simple pattern of activity between two individuals. At
this point, some words are in order about what is meant by the term “pattern”.

Within the computing sciences, the term stands associated mainly with following two
concepts: on the one hand, a pattern is understood to be a structure existing in a body of
data (Fayyad et al., 1996); this is essentially the meaning which the term occupies in the
areas of data mining and pattern recognition. On the other hand, a pattern is understood
to be the specific combination of classes and objects for solving a certain type of design
problem (Gamma et al., 1995); this is the meaning which the term occupies in the area
of object-oriented software construction.

Chapter 3. Modeling Patterns of Virtual Collaboration 66

The main distinction between these two concepts is this: in the former case, i.e. a
pattern as structure in a body of data, a pattern is understooddeduoeiptivein that it
conveys something about a pre-existing body of data. In the latter case, however, i.e. a
pattern as a combination of classes and objects, a pattern is seen agrbsangptivein
that it expresses how software should be constructed. A further distinction between these
two meanings of the term is that for the former, the descriptive patterisoiimeeof the
pattern is the body of data itself. That is, the pattern already pre-exists within the data
and is subsequently discovered. The latter, the prescriptive pattern, however, does not
exist of its own, but rather is the product of a human cognitive process, i.e. its source is
the tacit knowledge of a human expert, in this case a software designer.

The idea of patterns has been applied to the broad domain of collaboration by a num-
ber of researchers. For patterns in the prescriptive sense, some of the earliest work has
been by Coplien and his colleagues who have investigated the software development pro-
cess, compiling a collection of patterns of productive software organizations (Coplien,
1995; Harrison and Coplien, 1996). Within the domain of online learning, Wessner and
Pfister have suggested the concepPoiints of Cooperationwhich somehow seem sug-
gestive of patterns for cooperative interactions (Wessner and Pfister, 2000). Briggs and
his colleagues have created the notiothafikLetsas patterns of group facilitation within
the domain of Group Support Systems (GSS) (Briggs et al., 2001). In the domain of
workflows, the notion ofworkflow patternsas basic building blocks of workflows has
recently been proposed (van der Aalst et al., 2003). Finally, IBM has developed a set
of e-business patterrsarchitectural patterns used in the construction of e-business sys-
tems, including those facilitating collaboration—together with a methodology for apply-
ing them (Adams et al., 2001).

For patterns in the descriptive sense, on the other hand, Erickson has suggested the
use of pattern languages for making the results of workplace studies more easily reusable
(Erickson, 2000). In a similar vein, Martin and his colleagues at Lancaster University
have suggested the use of patterns of cooperative interaction to inform design, where the
patterns are drawn from ethnographic studies of work environments (Martin et al., 2001).

The patterns of virtual collaboration that are sought here are patterns in the descrip-
tive sense, i.e. structures within data. Structure within data refers totéreslationand
arrangemenbf individual units of data within a larger body of data; i.e. related units of
data placed together in a specific arrangement. A database record is an example of struc-
ture within data, as it constitutes an arrangement of multiple interrelated fields (where
each field typically represents an attribute of some entity, such as in a record consisting
of the name and address of a person).

Individual structures may be combined to form larger structures. The example of

Chapter 3. Modeling Patterns of Virtual Collaboration 67

the records from a collaboration system shown in Figure 3.1 is a case in point: the two
records are units of data that are interrelated (recording actions performed by the same
user, in the same collaboration space) and arranged in consecutive order. Together these
are part of alarger structure, which is represented in an abstract form as the MOO diagram
of Figure 3.2. This abstract description is a pattern:

Definition 13 A patternis an abstract description of the structure of a
body of data.
O

A pattern of virtual collaboration is therefore an abstract description of the structure
of a body of data related to virtual collaboration. It relates to users, collaboration spaces,
artefacts, etc., and to certain relationships among these. In order to get from a body of
data to a pattern, however, it is necessary to model the information of each one. The
following section deals with this issue in more detail.

3.2 The Information Pyramid of Virtual Collaboration

Patterns of virtual collaboration are obtained from a source body of data about virtual
collaboration. At the beginning of this chapter, the disparity in terms of the amount
of detail and the scale of the activity between the two was mentioned: the source data
provided by collaboration systems is typically very detailed and represents very small-
scale activity, while the patterns sought are of much larger scale activity and much less
detailed. Here it is suggested that this disparity is too great to be bridged in a single
giant step. Instead, information related to virtual collaboration should be considered
at a number of differentevels of abstraction Each of these presents a differemew

of the same information. Here, it is proposed to consider six different levels, named
infrastructure systemuser, collaboration task andprocesslevels, with six different
views, as shown in Figure 3.3.

Each of these levels consists of information about virtual collaboration. This infor-
mation is of two kinds: on the one hand there is information about the entities in collab-
oration spaces, as well as their combination into specific configurations; this is referred
to asstatic information. On the other hand there is information about the actions that
take place within a collaboration space; this is referred yasmicinformation. Static
information representstructuresof virtual space, while dynamic information represents
behaviourassociated with those structures.

Static information consists afbjectsprovided and maintained by the collaboration
system:

Chapter 3. Modeling Patterns of Virtual Collaboration 68

Process

— Tasks
View

- Collaboration spaces
Task — % — Communication channels

— - Artefacts
View % I &h — Actions
d - Users

- Collaboration spaces

Collaboration — Communication channels
- Artefacts
View - Actions
- Users
— Collaboration spaces
User — Communication channels
] - Artefacts
View - Actions
System - Database tables
] - System logs
View
Infrastructure U J J .
- Files

w0 0D

Figure 3.3: Views of information about virtual collaboration at different levels of abstrac-
tion (left and centre) and the contents of each view (right)

Chapter 3. Modeling Patterns of Virtual Collaboration 69

Definition 14 An objectis a static entity provided and maintained by a
collaboration system. It consists of one or mat&ibutesthat describe it.

The set of values of an object’s attributes at a given point in time constitutes
the object’sstateat that time.

O

Examples of objects are collaboration spaces, documents, discussion forums, users,
messages, etc. Attributes are meta-data related to the object. Examples of the attributes
of an object, say a document, are its name, creator, creation timestamp, etc.

Dynamic information consists @fctionsthat occur within a collaboration system:

Definition 15 Anactionis a function or operation that can be performed
in a collaboration system. It consists of one or matg&ibutesthat describe
it.

O

Examples of actions are creating a collaboration space, opening a document for read-
ing, posting a statement to a discussion forum, etc. An example of the attributes of an
action, say for the action of creating a collaboration space, are the name of the new col-
laboration space, and the name of the user who is to be the new collaboration space’s
owner. Actions themselves astateless However, actions usually affect objects, and
may alter the state of one or more objects. Actions are performedtiyn performers
either humans (such as the users of a collaboration system), or software systems (such as
the collaboration system itself).

The definition of an action aboveisinimalin that it includes only attributes describ-
ing the action itself. However, the action performer, that which is being acted upon, the
location of the action, and the time of the action, are not among the attributes describing
an action, but rather form theontextof the action. In order to fully describe an action
in any meaningful way, however, requires the inclusion of its context. Action context is
defined as follows:

Definition 16 ~ An action contextis the set of information identifying the
subject, referent, location, and time of an action.
O

The subject is the action performer, which as mentioned above is either a human
user or a software system. Every action context must have at least one subject, but it is
possible for an action context to have multiple subjects in cases where more than one
subject participates in the performance of an action. The referent is that which is being

Chapter 3. Modeling Patterns of Virtual Collaboration 70

acted upon, an object such as a collaboration space or discussion'foNmh every

action context has a referent, depending on the action it relates to, while some action
contexts may have multiple referents. Location is the place where the action occurs, such
as a collaboration space. Every action context must have at least one location, but it is
possible for an action to take place in multiple locations simultaneously and thus for the
action context to identify multiple locations. Finally, time is the instant or period in time
when the action takes place, and this information must be present in every action context.
Subject, referent and location are objects, while time is a data value (in the case where
time is an instant) or a pair of data values (in the case where time is a period), identifying
any or all of year, month, day, hour, minute, second, and millisecond.

A given action may occur in many different action contexts. For example, the action
of posting a discussion statement could be performed by different subjects (users, roles);
have different referents (discussion forums); be performed in different locations (collab-
oration spaces); and take place at different times. Collections of similar actions can be
generalizednto action patterns Recall Definition 13 of patterns above: “a pattern is an
abstract description of the structure of a body of data.” Based on this definition, an action
pattern is defined as follows:

Definition 17 Anaction patternis a pattern describing an action together
with a particular action context.
O

Thatis, an action pattern combines an action and an action context. Whereas an action
refers to only the actual activity performed, and the action context refers to information
related to that activity but not including the activity itself, an action pattern brings these
two together.

As an action pattern describes an activity of virtual collaboration, the term “action
pattern” is synonymous with the term “pattern of virtual collaboration”. both mean the
same and may be used interchangeably.

An example of an action pattern is the one depicted in Figure 3.2 above, consisting of
action “Report Preparation” together with the action context consisting of subjects “Co-
ordinator” and “Writer”, referents being a discussion forum named “Discuss Report” and
two documents named “Report-Parts” and “Final-Report”, location being a collaboration
space “Report Preparation”, and time being the period 20/8/2000-12/8/2000

1In grammar this is usually called thobject however since this term is already being used here with a

different meaning (see Definition 14 above), the teefierentis used instead in order to avoid confusion.
2Note that the MOO diagram in Figure 3.2 does not show the location and time.

Chapter 3. Modeling Patterns of Virtual Collaboration 71

In each of the six views of information of Figure 3.3, there are objects, actions, action
context, and action patterns. However, the views of information at different levels differ
in terms of both amount of detail and scale of activity, ranging from detailed information
about small-scale activity (infrastructure level) to abstract information about large-scale
activity (process level). The different views of information are as follows:

1. In theinfrastructure view information is seen from the point of view of the in-
frastructure underlying the collaboration system, consisting of files that contain
records of objects and actions.

2. In thesystem viewinformation is seen from the point of view of the collaboration
system, consisting of its information repositories, such as database tables and log
files that contain records of objects and actions.

3. In theuser view information is seen from the point of view of the individual user,
consisting of the objects of the collaboration system which the user interacts with
using the actions provided by the collaboration system.

4. In thecollaboration view information is seen from the point of view of multiple
users in collaboration with each other, consisting of the objects of the collaboration
system which these users interact with using the actions provided by the collabor-
ation system.

5. In thetask view information is seen from the point of view of multiple users per-
forming tasks, consisting of multiple collaboration-level actions and objects be-
longing to these tasks.

6. In theprocess viewinformation is seen from the point of view of multiple users
performing processes, consisting of multiple related tasks belonging to these pro-
cesses.

Given these views of information at different levels of abstraction, all of which are
based on the same underlying objects and actions, it is proposed that a source body of
data can be transformed into high-level patterns of virtual collaboration throaghes
of increasingly abstract intermediate-level patterfidis abstraction implies a general-
ization from the specific detail of one view to less specific detail of another view. Based
on the views of information presented in Figure 3.3 above, here a model of informa-
tion consisting of six levels of patterns is proposed: ltifermation Pyramid of Virtual
Collaboration shown in Figure 3.4.

Chapter 3. Modeling Patterns of Virtual Collaboration 72

Process level

Macro level Task level

Collaborative)
. Collaboration level

actions

Meso level User actions User level
System events System level
micro level @ 04A OO0
Infrastructure

Infrastructure events
level

Figure 3.4: Information Pyramid of Virtual Collaboration with different levels of infor-
mation

As with the views of information, at the bottom of the Information Pyramid is the
most small-scale, detailed information, while at the top is the most large-scale, abstract
information. This is expressed in the shape and colour of the figure. The shape of the fig-
ure suggests that the amount of information at higher levels is smaller, as it constitutes a
higher level of abstraction. The different colours suggest that information at higher levels
is denserthan that at lower levels, in the sense that each unit of higher-level information
corresponds to several units of lower-level information. From bottom up, the different
levels contain following information:

1. Infrastructure level: This is the level of the underlying software infrastructure
running “below” the collaboration system itself. In the case of a web-based collab-
oration system, for instance, the underlying infrastructure is a web server. At this
level, objects are recorded in the files under the control of the underlying system.
Actions are typically recorded as events occurring in the software infrastructure,
such as web server access requests recorded in a web server log. Another example
are records in the transaction log maintained by a database management system, in
the case where a collaboration system operates on top of such a system.

Action patterns at this level consist of actions and action context that correspond to
events in the software infrastructure.

2. System level: This is the level of the collaboration system itself, through which

Chapter 3. Modeling Patterns of Virtual Collaboration 73

collaboration is carried out. Records of objects at this level are contained in the
application data of the collaboration system, typically residing in files or database
tables. Actions are the commands issued to the collaboration system.

Collaboration systems are typically structured as client-server systems, where mul-
tiple clients are served by one server. In this case, clients send service requests to
a server, which then performs the requested actions. Records of such service re-
guests, such as in a server log, constitute records of actions at this level. This
information is of a larger scale than the corresponding information on the infras-
tructure level, so a single object or action on the system level usually corresponds
to multiple objects or actions on the infrastructure level.

Action patterns at this level consist of action and action context that correspond to
operations performed by the collaboration system.

3. User level: This is the level on which individual users operate. These users perform
actions on objects residing in collaboration spaces. Objects at this level are the
collaboration spaces and other objects contained in them, while actions at this level
are the operations performed by users, such as for instance opening a document for
reading. Objects at this level are often abstractions of corresponding objects at the
system level. Likewise, actions at this level often correspond to multiple actions
on the system level; i.e. a single action performed by the user may require the
collaboration system to perform several system-level actions.

Action patterns at this level consist of action and action context that correspond to
operations performed by a single user.

4. Collaboration level: At this level, multiple users work in collaboration with each
other. Objects at this level, as on the user level, are the collaboration spaces and
other objects contained in them, while actions at this level are the operations per-
formed by multiple users. Objects at this level mostly correspond closely to those
at the user level. However, actions at this level are abstractions of multiple user-
level actions.

Action patterns at this level consist of action and action context that correspond to
operations performed by groups of users.

5. Task level: At this level, larger-scale activity involving several lower-level actions
takes place. Objects at this level are groupings of multiple lower-level objects,
while actions at this level are the tasks performed by multiple users. These tasks
consist of certain combinations of actions and objects from lower levels.

Chapter 3. Modeling Patterns of Virtual Collaboration 74

Action patterns at this level consist of action and action context that correspond to
tasks performed by groups of users.

6. Process level:At this, the highest level of the Information Pyramid, collections
of tasks are performed by groups of users. These constitute work processes, i.e.
collections of related tasks. Objects at this level are combinations of multiple
lower-level objects involved in the process. Actions at this level are collections
of task-level actions.

Action patterns at this level consist of action and action context that correspond to
processes performed by groups of users.

A broad categorization of levels in the Information Pyramid is shown by the labels
on the left hand side of Figure 3.4: micro level, meso level, and macro level. This
categorization is centred on the user level, for it is here that the actual actions performed
by users of the collaboration system take place. This level is designatedrassbédevel
in this categorization. At levels below the meso level, multiple smaller-scale operations
corresponding to each user action occur, thus the designaiiwo level On the other
hand, at levels above the meso level are aggregations of individual user actions into multi-
user actions, tasks, and processes, thus the designagicno level

Multi-layer models of data and/or information can be used to bridge disparities be-
tween desired and required levels of detail. A prominent example of such a multi-layer
model is the ISO OSI Reference Model for networking (Tanenbaum, 1988). In this
model, the desired level of detail is that of the communication between processes on
the model’s top layer, the application level. However, in order to bring this communica-
tion about, the required level of detail involves individual bits moving across a network
medium such as a wire, which takes place on the model’s bottom layer, the physical layer.
By modeling this communication in seven stacked layers, the communication is concep-
tually simplified. The same principle applies to the Information Pyramid. It too consists
of multiple layers with varying degree of detail. The desired level of detail is that of
collaborative tasks and processes, at the top levels of the model, while the required level
of detail is that of records of constituents of these tasks and processes, residing at the
bottom levels of the model. As in the case of the OSI model, the modeling in multiple
layers conceptually simplifies the mapping between the bottom and top layers.

Related work in the domain of workflow has been presented in (Weigand et al., 2000),
which applies linguistic theory, in particular speech act theory (Searle, 1969) and Haber-
mas’ theory of communicative action (Habermas, 1981), to the analysis of communica-
tion and conversation. Analysis is performedwoaorkflow pattern®n different levels of
abstraction.

Chapter 3. Modeling Patterns of Virtual Collaboration 75

The levels of the Information Pyramid are illustrated later on in this chapter with an
example of information at each level. First, however, a graphical representation of action
patterns is introduced.

3.3 Graphical Representation of Action Patterns

To fully describe an action pattern requires the specification of its action and action con-
text, details of which are given in the following chapter. However, a simple graphical
notation can be useful in conveying main features of an action pattern. Such a notation
is presented here. The notation aims to both aid communication about the contents of an
action pattern, and to focus on only its main features.

The definition of collaboration spaces, given in Chapter 2 on page 32, identifies sev-
eral important concepts, namely: collaboration spaces, people, artefacts, communication
channels, and joint activity. These five concepts constitute the main features that need to
be represented in a graphical notation of action patterns.

In the review of representations of virtual collaboration processes in Chapter 2, the
notations of the Collaborative Business Process Model were introduced. These include
MOO diagramdor representing tasks, ani¢h picturesfor representing processes (Haw-
ryszkiewycz, 2000). These notations have representations for roles, actions, interactions,
and artefacts, thus being close to the requirements for the notation needed here. The
representation of action patterns can thus largely utilize these notations. Only the MOO
diagramming notation needs to be slightly extended.

Here, theextended MOO diagram, or EMOO diagram for short, is introduced,
which forms an extension of the original MOO diagramming notation of (Hawryszkie-
wycz, 2000). The following are the extensions to the original MOO diagramming nota-
tion added by the EMOO diagramming notation:

1. Defined defaults for actions.
2. Representation of collaboration spaces.

3. Refined representation for roles to distinguish between those occupied by a single
person vs. those occupied by multiple people (designated hesiaglston roles
andmulti-roles respectively).

4. Refined representation for artefacts (documents) to distinguish between those that
consist of a single item vs. those that consist of multiple ones (designated here as
singleton artefactandmulti-artefacts respectively).

Chapter 3. Modeling Patterns of Virtual Collaboration 76

Roles: Artefacts: Communication Channel:
Singleton Singleton Communication
Role Artefact Channel
/—\ ﬁ Collaboration Space:
Multi—Artefact
G Ny =

Actions:

one-way two-way
R ———

Figure 3.5: Modeling elements of EMOO diagrams

The distinction between singleton roles and multi-roles facilitates the description of
situations of virtual collaboration in which it is important to know whether a single person
or multiple people are involved, while the distinction between singleton artefacts and
multi-artefacts facilitates representation of situations of virtual collaboration involving a
large number of related artefacts which are to be treated as a collective entity. Graphical
symbols for these various modeling elements are shown in Figure 3.5. Descriptions of
the different modeling elements are listed below:

Role: An organizational role occupied by one or more people. A role occupied by only
one user of a collaboration system is termesirgyleton roleand is represented
by a single oval, labeled with the name of the role. A role occupied by multiple
users of a collaboration system is termenhalti-role and is represented by three
overlapping ovals, the one in front being labeled with the name of the role.

Artefact: A passive object or collection of objects containing information. An artefact
consisting of only one object is termedsingleton artefacand is represented by
a single rectangle with rounded corners, labeled with the name of the artefact. An
artefact consisting of multiple objects is termenhalti-artefactand is represented
by three overlapping rectangles with rounded corners, the one in front being la-
beled with the name of the artefact. Examples of artefacts include text documents,
drawings, audio/video recordings, etc.

Communication channel: A facility for the exchange of messages, available to users of
a collaboration space. A communication channel is represented by a hexagon, la-

Chapter 3. Modeling Patterns of Virtual Collaboration 77

create/change post
Artefact Communication
Channel
read read
Artefact Communication
Channel
create/change/read post/read

Artefact Communication
Channel

Figure 3.6: Default meanings of actions in EMOO diagrams

beled with the name of the communication channel. Examples of communication
channels include discussion forums, text-based chat, audio or audio-video chan-
nels, etc.

Action: A function or operation that can be performed in a collaboration system. An
action is represented by a single- or double-headed arrow connecting a role (the
subject of the action) with an artefact or communication channel (the referent of
the action), and may optionally be labeled with the name of the action. If the arrow
is not labeled, a default meaning of the action is assumed (see below).

Collaboration space: A virtual space in which roles, artefacts, and communication chan-
nels may be placed, and in which actions may be performed. A collaboration space
is represented by a rectangle, and is labeled with its name shown in a small rectan-
gle placed flush left on top of the rectangle representing the collaboration space.

As mentioned above, the arrow representing an action may not be labeled. In this
case, the arrow connecting subject and referent of the action it represents is assumed to
take on a default meaning. Figure 3.6 shows the default meanings of different actions
involving the modeling elementsle, artefact andcommunication channelThe figure
only shows singleton roles and singleton artefacts, however the same meaning applies to
actions involving multi-roles and multi-artefacts, respectively.

A simple example of an EMOO diagram corresponding to the MOO diagram of Fig-
ure 3.2 is shown in Figure 3.7. It shows one collaboration space (“Prepare-Report”),
containing two roles (“Coordinator”, a singleton role, and “Writer”, a multi-role), two
artefacts (“Final-Report”, a singleton artefact, and “Report-Parts”, a multi-artefact), one
communication channel (“Discuss Report”), and five actions (the arrows connecting the
roles with the artefacts and the communication channel, all assuming default meanings).

Chapter 3. Modeling Patterns of Virtual Collaboration 78

Final-Report—-Preparation:

Prepare—Report
Final-Report
Discuss
Report
Report-Parts ll

Figure 3.7: EMOO diagram of a report preparation action pattern

3.4 Example of Levels of Information

To illustrate the levels of the Information Pyramid, an example of patterns of virtual
collaboration on different levels is presented below. The example is based on data ob-
tained from the LYENET collaboration system. As the main source of information in
LIVENET is on the system level, the example illustrates patterns of virtual collaboration
starting from that level up to the process level. The example is related to a specific virtual
collaboration process, concerned with product concept development, and shows patterns
of virtual collaboration of parts of that same process at different levels of the Information
Pyramid up to the process level where the process as a whole is shown. The example
is intended to illustrate the different information at different levels of the Information
Pyramid, and their correspondence across levels. It is specifically not concerned with
explaining how higher-level information is derived from lower-level information, as this

is the subject of the following chapter.

3.4.1 System Level

In the LIVENET system, actions performed by theVENET server are recorded in a
server log. Each log entry records the action performed by the NET client, context
information including subject, referent, location, and time, and any other attributes of
the action that may be supplied. An example taken from theeNET log for three
consecutive system-level actions is shown bélow

Sldentifying information, such as actual user and group names, have been changed in this and all fol-
lowing examples to preserve the anonymity of the users involved.

Chapter 3. Modeling Patterns of Virtual Collaboration 79

Field | Attribute
Log-Id
Timestamp
Session-Id
Workgroup
Workspace
Workspace-Ownef
User
Role

[EEN

© 00 NOo 0oL WD

Action
10...19 | Action Attributes

Table 3.1: Fields in LYENET's system-level log records

[8498912000.08.26 19:12:05.10314325|Group3 |Prepare-Report|John.Smith|
Mary.Lamb|Writer|get_block_tree|Prepare-Report_John.Smith|

Discuss—Report]

[8499012000.08.26 19:12:05.51414325|Group3|Prepare-Report|John.Smith|
Mary.Lamb|Writer|add_statement|1094|0|Reminder|Please upload your
part of the impact and activity change table before 9 PM tomorrow.
Please also download and review all others part before the meeting
on the coming Monday. We will have to complete the Milestone by

next Monday. |null]

[8499112000.08.26 19:12:06.515]4325|Group3 |Prepare-Report|John.Smith|
Mary.Lamb|Writer|get_block_tree|Prepare-Report_John.Smith|

Discuss—Report]

Each of these records consists of the fields shown in Table 3.1, where adjacent fields
are separated by a vertical bar’j: Up to ten action attributes may be present, but the
actual number of attributes depends on the action.

The three records shown correspond to three actions performed byvE&NET
server over a time period of about 1.5 seconds on 26/8/2000 (the actions with the log-
id numbers 84989-84991). The actions wgetblock tree (an action for retrieving a
list of statements posted in a discussion forum), followedatg statemen{an action
for posting a statement in a discussion forum), followed by anajegblock treeaction.

Chapter 3. Modeling Patterns of Virtual Collaboration 80

get_block_tree:

Prepare—Report
Discuss / \’
Report

add_statement:

Prepare—Report
Discuss g \’
Report

get_block_tree:

Prepare—Report
Discuss g \’
Report

Figure 3.8: EMOO diagrams of three consecutive system-level action patterns
getblock treg, add statemenandget block tree

They were issued in session 4325 from within workgr@rpup3 in workspacdrepare-
Reportowned byJohn.Smith The actions were performed Bary.Lamh taking the
role of Writer in the given workspace. For each of these actions, a system-level action
pattern can be derived, including both information from the log record and from the
LIVENET application database (for information on actions and objects, respectively).
EMOO diagrams of these three system-level action patterns are shown in Figure 3.8.
The action patterns obtained from records of the collaboration system’s actions are
very detailed, but only represent very small-scale activity. On the next level of the Infor-
mation Pyramid, more abstract action patterns are derived therefrom.

3.4.2 User Level

A user-level action in LYENET is an action performed by a single user. Examples of
this include: opening a document, entering a workspace, posting a discussion statement,

Chapter 3. Modeling Patterns of Virtual Collaboration 81

Attribute Value

Session-ld 4325
Action-Number | 4

Timestamp 2000.08.26 19:12:05

Begin-Action-ld | 84989
End-Action-Id 84991

Workgroup Group3

Workspace Prepare-Report
Workspace-Ownef John.Smith

User Mary.Lamb

Role Writer

Action Post-Discussion-Statement

Disc-Forum-Id 1094
Parent-Stmt-No 0

Table 3.2: Attributes of an instance of user-level action patteost-Discussion-
Statement

etc. User-level actions and action patterns are not loggedviBNLET, thus they can only

be derivedfrom corresponding system-level actions and action patterns. Details of this
derivation process are presented in the following chapter; here an example of a derived
user-level action pattern is presented.

From the three system-level action patterns shown above, a single user-level action
pattern can be derived, as shown in Table 3.2. This action pattern shows that in session
4325, action number 4 took place at about 7:12PM on 26/8/2000. The user-level action
corresponds to system-level actions 84989 to 84991 (these are the three system-level
actions represented in the three system-level action patterns shown above). It took place
within workgroup Group3 in workspacePrepare-Reporowned byJohn.Smith The
user-level action was performed by udédary.Lamb taking the role ofWriter in the
given workspace, and the action wasst-Discussion-StatemenA number of action
attributes Disc-Forum-ldandParent-Stmt-Npare also given.

The user actioPost-Discussion-Statementthis case corresponds to three system-
level action patterns, because the collaboration systewgNET, carries out three ac-
tions each time a statement is posted in a discussion forum: first it obtains a list of
statements in the discussion forum, then it adds the new statement, then it obtains an up-
dated list of discussion statements. The rationale for this particular sequence of actions is
unknown, and is not relevant. What matters is that anytime this sequence of actions takes

Chapter 3. Modeling Patterns of Virtual Collaboration 82

Post-Discussion—Statement:

Prepare—Report
Discuss / \’
Report

Figure 3.9: EMOO diagram of user-level action pattBast-Discussion-Statement

place in the same session, a user-level action pattern can be derived which corresponds
to the user-level action of posting a discussion statement. That is, the given sequence of
system-level action patterns cantbe@nsformedo a single user-level action pattern.

The EMOO diagram in Figure 3.9 represents Buest-Discussion-Statemeunser-
level action pattern presented in this example. It shows that th&\foter (a multi-role)
is connected with the discussion forubiscuss Reporthrough a posting action (shown
by the arrow pointing from the role to the discussion forum).

This action pattern is that of a single user at a single point in time. The next step of
abstraction is to consider collections of such action patterns.

3.4.3 Collaboration Level

A collaboration-level action in LYENET is an action performed by a group of users. A
collaboration-level action pattern corresponds to a collection of user-level action patterns
with a (partially) shared action context. The part of the action context that is shared
may be time (actions taking place in temporal proximity), location (actions taking place
in spacial proximity, where the space is understood to be virtual), or some object being
affected by the action pattern (a document jointly worked on; a discussion forum where
a joint discussion takes place; etc.).

To continue the earlier example, a group of user-level action patterns within the
shared context of a given discussion forum (the action’s referent) together constitute the
collaboration-level action patte@roup-Discussionlt corresponds to a number of user-
level action patterns related to the given discussion forum. In the case/bNET, the
user-level action patterns which contribute to tBeup-Discussioraction pattern in-
clude Post-Discussion-Statemefosting a statement) ar@pen-Discussion-Statement
(reading a statement). Attributes of the corresponding collaboration-level action pattern
are shown in Table 3.3.

This action pattern shows that the collaboration-level action with id 736 took place

Chapter 3. Modeling Patterns of Virtual Collaboration 83

Attribute Value

Action-ld 736
Begin-Timestamp| 2000.08.21 22:08:17
End-Timestamp | 2000.11.01 16:58:23

Workgroup Group3

Workspace Prepare-Report

Workspace-Ownef John.Smith

Users John.Smith, Mary.Lamb, Paul.Jones, Helen.Blake
Action Group-Discussion

Num-Posts 34

Num-Reads 84

Read-Post-Ratio | 2.47
Posts-Per-Day 0.48
Reads-Per-Day | 1.18
Avg-Thread-Size | 1.82
Avg-Thread-Depth 1.73

Table 3.3: Attributes of an instance of collaboration-level action pattéroup-
Discussion

between the dates 21/8/2000 and 1/11/2000 within workg®uqup3 in workspace
Prepare-Reporbwned byJohn.Smith The action was of typ&roup-Discussionin-

volving the four userslohn.Smith Mary.Lamb Paul.Jones and Helen.Blake Several

action attributes are included, in this caliscussion metricsthe total number oPost-
Discussion-Statemeuaictions (34); the total number @pen-Discussion-Statemeant-

tions (84); the read/post ratio (2.47); the average number of messages posted per day
(0.48); the average number of messages read per day (1.18); the average size of discus-
sion threads, in number of statements (1.82); and the average discussion thread depth
(1.73), being the number of levels of replies in each thread.

Besides attributes about action context, such as time, location, etc., the inclusion of
discussion metrics in this record expresses something about the nature of the discussion
taking place among this particular group of users, such as the intensity of the discussion
(being a measure of the numbers of posts and reads per day); the depth of the discussion
tree (being a measure of thread depth); etc. These discussion metrics can provide addi-
tional information to help categorize different instances of@neup-Discussioraction
pattern.

Figure 3.10 (b) shows an EMOO diagram of tBeoup-Discussiorcollaboration-

Chapter 3. Modeling Patterns of Virtual Collaboration 84

Post-Discussion—-Statement: Post-Discussion-Statement:

Prepare—Report Prepare—Report

Discuss
Report

Discuss
Report

Coordinator

Open-Discussion—-Statement: Open-Discussion—-Statement:

Prepare—Report Prepare—Report

Discuss
Report

Discuss
Report

(a) User-level action patterns

Group-Discussion:

Prepare—Report

/

Discuss
Report

(b) Collaboration-level action pattern

Figure 3.10: EMOO diagram of collaboration-level action pat@raup-Discussioras
an aggregation ddpen-Discussion-Statemearid Post-Discussion-Statememser-level
action patterns involving roléd/riter andCoordinator

Chapter 3. Modeling Patterns of Virtual Collaboration 85

level action pattern presented in this example. It shows that two roles are involved
in the discussion (of whichriter is a multi-role). Both of the roles have read and
post access to the discussion forum, which thus forms an aggregation of several indi-
vidual Open-Discussion-Statemeantd Post-Discussion-Statemeamser-level action pat-
terns. Part (a) of the figure shows the four individual user-level action patterns that are
aggregated into the collaboration-level action pattern.

3.4.4 Task Level

A task-level action in LYENET is a larger-scale activity (compared to a collaboration-
level action) and is performed by a group of users. A task-level action pattern corresponds
to the combination of two or more collaboration-level action patterns.

An example of a task is that of joint report preparation. This is an activity which
involves several collaboration-level actions: it may start out with a discussion of the
format and structure of the report, followed by individual document preparation work.
This may then lead to document sharing and review, before integrating the separate report
pieces into the whole report document.

In terms of the action patterns involved, this task may consist of a combination of
Group-DiscussionDocument-Sharingand Document-Preparatiorcollaboration-level
action patterns. They are combined through the subjects (i.e. roles) involved in those
action patterns, linking the collaboration-level action patterns together int&itiad-
Report-Preparationtask-level action pattern. An EMOO diagram of this action pat-
tern, combining the earlieGroup-Discussioraction pattern from Figure 3.10 with a
Document-Sharingnd aDocument-Preparatioaction pattern, is shown in Figure 3.11.
Part (a) of the figure shows the constituent action patterns, while the task-level action
pattern itself is shown in part (b) of the figure. Here Becument-Sharingollaboration-
level action pattern involves both tH@oordinator and Writer roles, and is mediated
through theReport-Partartefact (a multi-artefact, with one artefact for each report part).
Artefact access within th®ocument-Sharingollaboration-level action pattern differs
between the two roles: while th&'riter role has both read and write access, @uordi-
natorrole has only read access. Lastly, theal-Reportartefact constitutes the task’s fi-
nal outcome, and is produced by @eordinatorrole through théocument-Preparation
action pattern.

3.4.5 Process Level

A process-level action is the largest-scale activity in the Information Pyramid, and is
performed by a group of users. A process-level action pattern consists of a number of

Chapter 3. Modeling Patterns of Virtual Collaboration 86

Group-Discussion:

Prepare—Report

Document-Preparation:

Prepare—Report

Final-Report

Document-Sharing:

Prepare—Report

Discuss
Report
(e)

<>

Report-Parts ll

(a) Collaboration-level action patterns

Final-Report-Preparation:

Final-Report
Report-Parts ll

Prepare—Report

Discuss
Report

(b) Task-level action pattern

Figure 3.11: EMOO diagram of task-level action patténal-Report-Preparatioras
a combination of action patteri@roup-DiscussionDocument-SharingandDocument-
Preparation

Chapter 3. Modeling Patterns of Virtual Collaboration 87

task-level action patterns.

Following on from the example of joint report preparation, this task may be part of a
process concerned with developing concepts for new products. The whole process may
consist of several tasks, including: brainstorming ideas for new products, market study,
financial analysis, development of a selected product concept, and finally preparation of
a report with the results of the individual tasks.

In terms of the action patterns involved, this process combines the five task-level
action pattern®roduct-BrainstormingMarket-StudyFinancial-Analysis Concept-De-
velopmentandFinal-Report-Preparationwvhich was already shown above. Each of these
task-level action patterns takes place in its own collaboration space and involves a number
of roles, communication channels and artefacts. All roles are involved in more than
one task-level action pattern, as are most of the artefacts. EMOO diagrams of these
five task-level action patterns are shown in Figure 3.12 (a). Together these task-level
action patterns constitute the process-level action paerauct-Concept-Development
shown in the form of a rich picture in Figure 3.12 (b).

The above example has illustrated the different levels of the Information Pyramid of Vir-
tual Collaboration, from the system level up to the process level, showing instances of
action patterns at each of these levels. The example showed that action patterns on a
given level (with the exception of the lowest level) are aggregations of action patterns on
the level below. Thus an instance of a higher-level action pattern corresponds to multiple
instances of lower-level action patterns. In this way theredsan of correspondences

of action patterns from the lowest level to the highest level of the Information Pyramid.
This bridges the disparity mentioned at the beginning of this chapter, in terms of amount
of detail and scale of the activity between the source data and the patterns of virtual col-
laboration sought. In the case of the above example, the chain of corresponding action
patterns across levels is shown in Figure 3.13. It shows the correspondence of two ac-
tion patterns on the system level (astdtement and géilock tree) to the user-level ac-

tion pattern Post-Discussion-Statement (the correspondence being represented by the line
connecting the names of two action patterns). In turn, there is a correspondence of two
user-level action patterns (Post-Discussion-Statement and Open-Discussion-Statement)
to the collaboration-level action pattern Group-Discussion. This chain of correspon-
dences continues step-by-step until it reaches the process level, and the action pattern
Product-Concept-Development.

Chapter 3. Modeling Patterns of Virtual Collaboration 88

Product-Brainstorming: Market-Study:

Brainstorming Market-Study

Product "

Analyst

G)

Product Ideas
Market Analysis

Product
Recommendations

Discuss
Market
Condit.

Market g‘
Analyst

Discuss
Product
Recom.

Product Ideas

Discuss
Ideas

Analyst

Financial ’.

Analyst

Financial-Analysis:

Financial-Analysis

Discuss
Concept-Development: Analysis

Develop—-Concept
Product Ideas

Product
Recommendations

Financial Analysis
Product Concept

Product Ideas

Financial Analysis

Financial ‘.

Analyst

Final-Report-Preparation:

Prepare-Report

Discuss
Report

Product N

%

Analyst Final-Report

Report-Parts II

Discuss
Product

(a) Task-level action patterns

r

Coordinator

[]
o O
m Market
Analysis

Market
Analyst Witer
Product
Recommendations .
. . Final
Product Product Financial nal
i i Ideas Analysis port
Brainstorming y: Prenbotion
o O
m
i i Analysis Product
oy Final
Analyst S
ﬁ
Product Concept
Analyst Development

(b) Process-level action pattelPmoduct-Concept-Development

Figure 3.12: EMOO diagrams of five task-level action patterns and rich picture of the
corresponding process-level action patteraduct-Concept-Development

Chapter 3. Modeling Patterns of Virtual Collaboration 89

Level Action Pattern
Process Product-Concept-Development
Task Product-Brainstorming Concept-Development Final—Report‘—Preparation Market-Study Financial-Analysis
Collaboration Document-Preparation Group—D‘iscLJssion Document-Sharing
User Pos?ssion—&{nem Open-Discussion—Statement
System add_statement get_block_tree

Figure 3.13: Chain of correspondences of action patterns from system level to process
level of the Information Pyramid

3.5 Summary

This chapter has discussed the modeling of patterns of virtual collaboration. It started by
considering what a pattern is, providing a definition of the term.

Next, the Information Pyramid of Virtual Collaboration was proposed as a model
of information related to collaboration systems and the virtual collaboration carried out
through them. This information model suggests that information about virtual collabor-
ation can be considered at six different levels of abstraction, presenting a diffexent
of information at each level, ranging from small-scale activities to entire tasks and pro-
cesses. In this model, two main kinds of information exabjectsandactions An action
extended by aaction contexts anaction patternwhich describes an activity of virtual
collaboration.

The graphical notation of EMOO (extended MOOQO) diagrams was proposed to rep-
resent action patterns. This was followed by an illustrative example of action patterns
at the different levels of the Information Pyramid of Virtual Collaboration for an actual
collaboration system.

The next chapter carries on from here to deal with the representation of information
and the pattern derivation process in more detail.

Chapter 4

Deriving Patterns of Virtual
Collaboration

The previous chapter has introduced the notiopatferns of virtual collaborationand
proposed a multi-level model of information, the Information Pyramid of Virtual Collab-
oration (cf. Figure 3.4 on page 72). The present chapter carries on from there to consider
how patterns of virtual collaboration can be obtained from information on lower levels of
the Information Pyramid and be transformed onto progressively higher levels.

This thesis argues that the successful derivation of patterns of virtual collaboration
relies on the combination of both of these: an information model for representing pat-
terns of virtual collaboration, namely the Information Pyramid presented in the previous
chapter; and a process for modeling and deriving these patterns, namely the methods and
framework presented in the current chapter.

4.1 Information Derivation

The extraction of patterns of virtual collaboration is crucially dependent on the availabil-
ity of information related to this collaboration, namely about objects, actions, and action
context (cf. the discussion in Section 3.2). As the source of this information is data col-
lected by the collaboration systems themselves, these systems need to collect sufficient
data to enable the extraction of patterns. The issue of designing data collection for col-
laboration systems is explored in more detail in Section 4.5. For now, however, it shall be
acknowledged that different existing systems may collect source data on different levels
of the Information Pyramid.

Conceptually, the Information Pyramid consists of six levels. However, not every col-
laboration system will collect data on all of the levels, and most will usually only collect

Chapter 4. Deriving Patterns of Virtual Collaboration 91

Process level

777777777777777777777777

Task level

77

Collaboration level

77

User level

System level

Infrastructure .
level

Figure 4.1: Information Pyramid for two actual collaboration systemggNET (left)
and TEAMRooMS (right)

data on one or two levels. For instance, a traditional client-server collaboration system
may only collect data on the system level, but not on the infrastructure level. On the other
hand, a web-based collaboration system may collect data on the infrastructure level and
the system level. In yet another case, the collection of higher-level data may have been
considered during the design of a collaboration system, and it may collect data at the user
level. In most cases, however, the data source is at the micro level of the Information
Pyramid, while meso and macro level data is usually absent. As an example, consider the
situation of the LvENET and TEAMROOMS systems, illustrated in Figure 4. 1IMENET

is a web-based system and thus the web server records infrastructure-level events, while
the LIVENET server records system-level events. In addition, the system level holds the
application data in the form of a workspace database. The meso and macro levels of the
Information Pyramid, however, are absent. TlEal1RoomMms system, on the other hand,

is not web-based but is a conventional client-server system. Its only data source thus is
at the system level, consisting of application data, while the infrastructure level as well
as meso and macro levels are absent.

However, as mentioned before in Chapter 3, information on upper levels ade-be
rived from information on lower levels, producing an Information Pyramid that is com-
plete from the level of the data source up to the top level.

Here it is proposed that performing derivations of higher-level information involves
two main steps:

1. Describing information at a given level.

2. Performing a mapping which takes information on one level and converts it to a
form on the next-higher level.

Chapter 4. Deriving Patterns of Virtual Collaboration 92

|
[Post—Discussion—Statement]
[}
]
[getﬁblockﬁtree] [addistatement]
(a) Related concepts (b) Identical concepts

Figure 4.2: Related and identical concepts on different levels of the Information Pyramid

The first step entailsmodel building i.e. the specification of a representation of a set
of entities, namely the information about virtual collaboration. For this, the definition
of information in collaboration systems from Section 3.2 provides the basis. The second
step entailsnodel transformationi.e. the specification of mappings between instances of
models in different forms. Principles for mapping models are developed in this chapter.

4.1.1 Ontologies

In order to describe and map between different levels of the Information Pyramid of
Virtual Collaboration, it is necessary to utilize a set of common, well-defomatepts

This set of concepts needs to express entities and actions associatal sitals of the
modeled collaboration system, for following two reasons: firstly, as many concepts on
one level are related to concepts on a neighbouring level, it follows that all levels need to
be included to allow such relationships of concepts to be expressed. For instance, it was
seen earlier that collections of instances of one or more action patterns on a given level
may map to an instance of an action pattern on the next-higher level. This is illustrated in
Figure 4.2 (a), showing a number of concepts on three different levels of the Information
Pyramid being related to one another (this corresponds to the example presented earlier
in Figures 3.8, 3.9 and 3.10). Secondly, as certain concepts are used across two or more
levels, it is necessary that a single representation of the concepts exists, so as to avoid
problems of both synonyms and homonyms, and thereby to ensure semantic consistency.
For instance, the concept of a role may be used on multiple levels, yet have the same
meaning. This is illustrated in Figure 4.2 (b), where the conBej is present on four

levels of the Information Pyramid.

Chapter 4. Deriving Patterns of Virtual Collaboration 93

It is suggested here that these requirements can be suitably satisfied by defining a
meta-model, oontologyof these concepts. Ontologies have been used in the field of
artificial intelligence for over a decade, for knowledge sharing and reuse. In that context,
the term ontology has been defined as “an explicit specification of a conceptualization”
(Gruber, 1993). Another definition is given in (Sowa, 2000):

The subject obntologyis the study of theategoriesof things that exist or
may exist in some domain. The product of such a study, calfedntology

is a catalog of the types of things that are assumed to exist in a domain of
interestD from the perspective of a person who uses a langlafpe the
purpose of talking aboub.

More recently, ontologies have found application in various other areas of the com-
puting sciences (Gruninger and Lee, 2002).

Every ontology describes a certaiomain theuniverse of discourseCollaboration
systems have over the past decade emerged as a separate class of CSCW systems. The
concepts supported by this class of systems, and the information provided by them, con-
stitute the universe of discourse under investigation here. By specifying this universe of
discourse in the form of an ontology, it becomes possible to bridge a number of separate
conceptual realms. It was seen earlier that the Information Pyramid of Virtual Collabora-
tion spans six levels, each having its own view of the information comprised within it, i.e.
its own conceptual realm (cf. Figure 3.3 on page 68). Each of these could conceivably be
specified in its own terms; for instance, the system level could be specified as an entity-
relationship diagram of the database structure, accompanied by an event model of the
system events. Other levels could similarly have their own specification, using their own
modeling notations. However, relating concepts across levels, which as mentioned above
is an important requirement, would then not be possible without employing some kind
of intermediary mapping level or other approach to bridge these separate representations.
The approach of using an ontology, on the other hand, makes it possible to specify, and
then relate concepts from, all levels using a common notation and terminology.

Within the computing sciences today, ontologies are being used in mainly three ca-
pacities: for communication, for computational inference, and for reuse and organization
of knowledge (Gruninger and Lee, 2002). In the present context, ontologies are mainly
used in the first and third capacity: to communicate meaning, and to reuse and organize
knowledge (although, in line with the meanings of these terms defined earlier, here the
term “information” is used, rather than “knowledge”).

1The term “ontology” was originally coined in philosophy, where it means “the theory or study of being
as such; i.e., of the basic characteristics of all reality”. (Source: Encyclopeedia Britannica)

Chapter 4. Deriving Patterns of Virtual Collaboration 94

Define
mappings
(top two levels)

T

Model
next level —

(static/dynamic)

T

Model
base level
(static/dynamic)

T

Identify
base level

Figure 4.3: Modeling method for deriving information in the Information Pyramid

4.1.2 Modeling Method

For creating models and mappings between models for a given collaboration system, the
following method is proposed, as illustrated in Figure 4.3:

Step 1: Identify the highest-level source of information available. This will constitute
thebase levebf the Information Pyramid for the given collaboration system.

Step 2: Model the base level by modeling its static and dynamic concepts.

Step 2.1: Identify objects.

Step 2.2: Identify actions.

Step 2.3: Identify action patterns.
Step 2.4: Specify concepts.

Step 3: Model the next-higher level in the same manner; the modeling of concepts on
higher levels may be based on corresponding concepts on lower levels.

Step 3.1: Identify unchanged/modified/new objects.

Chapter 4. Deriving Patterns of Virtual Collaboration 95

Step 3.2: Identify unchanged/modified/new actions.
Step 3.3: Identify unchanged/modified/new action patterns.

Step 3.4: Specify concepts.

Step 4: Define mappings between concepts on the two levels just modeled.

Step 4.1: Identify source and target concepts and attributes.
Step 4.2: Identify mapping constraints.

Step 4.3: Specify mappings.

Step 4.4: Define mapping functions.

Steps 5 and above:Repeat steps 3 and 4 until the top level is reached.

Each of the models and mappings adds to an evolving ontology, until the resulting
ontology covers all levels of the Information Pyramid from the base level up, as well as
the mappings between them. This is illustrated in Figure 4.4: while a different model
and a different mapping is needed for different levels, a common ontology is used for
representing all of the models and mappings.

4.1.3 Knowledge Model of the Ontology

Before entering into details on how the ontology for the models and mappings is speci-
fied, a few explanatory words about ontologies and their representation are in order.

The principal components of an ontology ae@nceptsand theirrelationships Con-
cepts correspond to the entities that make up the universe of discourse, while relation-
ships establish how these entities are related to one and®neperties or attributes
capture detailed aspects of the concepts. Ontologies may also make use of various other
constructs to specify certain aspects of the universe of discoumestraints axioms
functions etc. (for further detail refer to (Gruber, 1993)).

To express an ontology, it is usual to empldyrewledge modelA knowledge model
provides certain constructs to enable the specification of the universe of discourse that is
the subject of the ontology. For the representation of the concepts related to the In-
formation Pyramid of Virtual Collaboration, an existing knowledge model is employed.
This is the knowledge model of Pagge-2000, an integrated knowledge-base develop-
ment and management system (Noy et al., 2000); this knowledge model is similar to the
widely-used OKBC knowledge model (Chaudhri et al., 1998). &@2000 ontologies
are specified in an extended form of the CLIPS language, a Lisp-like language which is

Chapter 4. Deriving Patterns of Virtual Collaboration 96

Process—level model k
\

A Y

Mapping
(task level to process level)
A

Task-level model

A

Mapping
(collaboration level to task level)
A

Collaboration—level model

A

Mapping
[(user level to collaboration level) Ontology
A

User—level model

A

Mapping
(system level to user level)
A

System-level model

A

Mapping /
(infrastructure level to system level))

A /
/ Legend

I4 — information flow
Infrastructure—level model

- - - -» representation

Figure 4.4: Models and mappings for deriving information in the Information Pyramid

Chapter 4. Deriving Patterns of Virtual Collaboration 97

part of the CLIPS expert system shell (Giarratano and Riley, 1998)ed@&000 uses
an object-oriented representation of concepts which employs following main modeling
constructs:

Classesrepresent entities in the universe of discourse, i.e. concepts. For instance,
the classiser may be used to represent the concept of a collaboration system'’s user, i.e.
a person involved in collaboration on the computer. Classes candpeotalizations
i.e. subclassegvhich inherit from their superclass, or in the case of multiple inheritance,
from all their superclasses. Thus the set of classes in a given ontology féaxs®mic
hierarchy A class whose instances are themselves classes is catedaalass Each
class has @ole, which indicates how the class may be usallstractclasses cannot be
instantiated directly, whileoncreteclasses may be instantiated.

Instances then, are instantiations of a class. Classes and instances are thus similar to
types and variables in programming languages: classes are like types, while instances are
like variables of a given type. To follow the previous example, one instance okthe
class could represent the user with the namien Smith. Instances inherit all attributes
of the class they instantiate, as well as all of that class’s ancestors (i.e. its superclass(es),
recursively to the root of the class hierarchy).

Slots are attributes of classes and instances. They contain the details of the rep-
resented concepts. For example, the class could have a slotmail-address to
hold the value(s) of the user’'s email address(es), while the instance of this class rep-
resenting usefohn Smith could have, say, the two valugshn.smith@xyz.com and
john@yahoo.com in this slot.

Facetsare simple constraints imposed on slots. They can specify minimum and max-
imum cardinalities of the slot, as well as limit the range of allowable values. For instance,
the slotemail-address could have a facet that specifies the minimum cardinality to be
0 and the maximum to be unbounded, thus making it optional for a user to have an email
address, but allowing multiple addresses.

Constraints, finally, are limitations or rules imposed on concepts and attributes in
the ontology. As opposed to facets which are simple rules on the allowed values of
a slot, constraints in the general sense allow the specification of complex conditions,
such as involving multiple slots from different classes. For instance, a constraint may be
specified that requires users who are owners of workspaces to have an email address that
has the domain nameyz . con.

The above example of the concepter is illustrated in Figure 4.5, which also in-
troduces the graphical notation used for representing these modeling concepts. The box
with the rounded corners represents a class, while the box with sharp corners represents
an instance. The two boxes are divided into two parts: for classes, the upper part identi-

Chapter 4. Deriving Patterns of Virtual Collaboration 98

/ User \

name [1:1]
email-address [0:?]

instance—of

User_0217

John Smith
(john.smith@xyz.com,
john@yahoo.com)

Figure 4.5: Part of an ontology, showing a class, instance, slots, and facets for represent-
ing users in a collaboration system

fies the class, while the lower part identifies any slots (and cardinality facets, if any); for
instances, the upper part identifies the instance (by its class name and an instance number
suffix), while the lower part shows values of slots. Here, thesslat 1-address of class

User has the facet0:?], which specifies the slot’s cardinality constraint (lower bound

0, no upper bound); while the shown instance of this class has two values for this slot.

4.1.4 Notation for Ontology Specification

The modeling concepts of ontologies just introduced are used in specifying concepts
in the target domain. These are typically represented in textual notation, and may be
supplemented with a graphical notation to facilitate understanding, such as the one just
introduced. A number of textual notations are available; many of these employ a Lisp-
like syntax, while more recently XML (the Extensible Markup Language) has been used
for this purpose too. Here a slightly simplified form of the notation used byeBre2000
is adopted. This notation is Lisp-like, i.e. it uses nested lists with expressions, such as
predicates or functions, in a prefix notation.

An example of the specification of classer, which was shown in graphical form in
Figure 4.5, is given below (note that the line numbers shown to the left are not part of the
class specification):

(defclass User "A user of a collaboration system."
(is—a :THING)

(role concrete)

A WON B

(single-slot name

Chapter 4. Deriving Patterns of Virtual Collaboration 99

(type STRING)

(cardinality 1 1))
(multislot email-address

(type STRING)

(cardinality 0 ?VARIABLE)))

O 0 N O O

Here, on line 1defclass is a function that defines a new classer is the name
of the new class, and the quoted string that follows is documentation of the class. The
remainder of the class definition consists of the definition of four slots. On line 2, the
first slot (is-a :THING) identifies the superclass of the new class, in this case a system-
defined class calledraING which encompasses every concept in the ontology. On line 3,
the second slotrole concrete) identifies the role of the new class as concrete, mean-
ing that it may be instantiated. On lines 4—6, the third slot defines the attrilute
Being asingle-slot, it may contain only one value (as opposed taatislot which
may contain multiple values). This slot has two facets that constrain values of the slot.
The first facet(type STRING) constrains the data type of its value to character strings.
The second facetcardinality 1 1) is a cardinality specification which prescribes
that each instance afser must have both at least and at most one (in other words,
exactly one) value in this slot. Finally, the slot on lines 7-9 defines another attribute,
email-address. This slot is similar to the previous one, with following two exceptions:
firstly, itis amultislot, thus it can contain multiple values; and secondly, its cardinality
ranges from zero to a variable (i.e. unlimited) upper bound.

Given this definition of clasgser, instances may be created. An instance of the class
corresponding to the one shown in Figure 4.5, is specified below:

([User_0217] of User
(name "John Smith")
(email-address

"john.smithl@xyz.com"

a b~ W0 DN PP

"john@yahoo.com"))

Here, on line 1,[User_0217] identifies the instance, and the keywartlindicates
which class this instance instantiates (in this case the tkas9. Lines 2-5 specify slot
values for the indicated slots.

Finally, a notation for the specification of general (i.e. non-facet) constraints is needed.
Since those constraints need to express a desired state of a given body of data, a declar-
ative notation such as predicate logic is appropriate. The notation used here is PAL, the
Proege Axiom Language that is employed within the Fgi-2000 system. An exam-

Chapter 4. Deriving Patterns of Virtual Collaboration 100

ple of a constraint corresponding to the one mentioned in Section 4.1.3 above, where
owners of workspaces must have an email address endingzircon, is shown below

(it is assumed that the classrkspace has been previously defined, and that this class
includes a slobwner which holds a reference to an instance of the clags who owns

the workspace):

(defrange ?ws :FRAME Workspace)
(defrange ?em :FRAME User email-address)
(forall ?ws

(exists ?em

(and (email-address (owner ?ws) ?em)

O Ol WDN B

(suffix-of "xyz.com" ?em))))

Thedefrange function in line 1 defines a variablers, which ranges over the frame
(instance or classjorkspace. Similarly, line 2 defines another variablesm, which
ranges over the slaimail-address, a multi-slot of classiser. The remaining lines
state a constraint involving the two previously defined variabiesand?en. The con-
straint starts on line 3 with the universal quantifietrall which is applied to variable
?ws, thereby applying to all instances of therkspace class. On line 4, the existential
quantifierexists is applied to the variableen, thereby applying to email addresses in
instances of classser. Lines 56 state the conjunction of a condition that must hold
for the quantified variables: thenail-address of the owner of aWorkspace must be
equal to the value ofen, and that value ofem must end inxyz.com. When applied to
instances ofiorkspace andUser in the ontology, the constraint will evaluate to either
true or false; it will be true if and only if all instances wbrkspace are owned by users
whose email address endssiiz . com, and will be false otherwise. Using this constraint
language, arbitrarily complex constraints can be specified.

4.2 Ontology Specification

The ontology for a given collaboration system consists, as described above, of two parts:
on the one hand, a set of models for each layer of the Information Pyramid; on the
other hand, a set of mappings between these models. These are specified in a bottom-up
fashion according to the modeling method outlined earlier. Here, further details of the
specification of these two parts are given.

Chapter 4. Deriving Patterns of Virtual Collaboration

101

[Action \ Action—Pattern
N N N
A A A
is—a is—a is—a

[Proc-LvI-Object

/ Sys-LvI-Object \

/ Infra-LvI-Object "\

/ Proc-LvI-Action \

/ Sys-LvI-Action \

/ Infra—LvI-Action \

ﬁroc—LvI—Action—Patterm

[Task-LvI-Object [Task-Lvl-Action [Task-LvI-Action-Pattern
/ Coll-LvI-Object \ / Coll-LvI-Action \ [Coll-LvI-Action-Pattern
[User-LvI-Object [User-Lvl-Action mser—Lvl—Action—Pattem

/Sys—LvI—Action—Patterh

[Infra-LvI-Action—Pattern \\

Figure 4.6: Taxonomic hierarchy of common classes of the ontology of collaboration
systems

4.2.1 Common Classes

The previous chapter has given a definition of the basic units of information from col-
laboration systems which are related to the derivation of patterns of virtual collaboration.
These are: objects, actions, and action patterns. Furthermore, these basic units of infor-
mation exist at each level of the Information Pyramid. Thus, a basic structaogrohon
classesneeded by the ontology of any collaboration system can be defined. These are
defined as follows: a set of abstract classes defines the basic units of information them-
selves, and a set of abstract subclasses of these classes defines units of information for
specific levels of the Information Pyramid.

Figure 4.6 shows the taxonomic hierarchy of common classes of the resulting ontol-
ogy. Note that class names are printed in italics to signify that the classes are abstract,
that is, they are not intended to be directly instantiated. The three most fundamental con-

Chapter 4. Deriving Patterns of Virtual Collaboration 102

cepts of the ontology ar@bject, Action, andAction-Pattern (each being a subclass of the
ontology’s root concepMHING). Each of these has six subclasses, one for each level of
the Information Pyramid. Classes corresponding to concepts of a specific collaboration
system are then subclasses of these classes.

For instance, the concepser, representing a collaboration system’s user, specified
on the system level of a given collaboration system would be a subclass $ydhel-
Object class, since it is an object and it resides on the system level. The relevant class
specifications for this concept, as well as for its superchyssLvl-Object and for that
class’s superclasdbject, are shown below:

(defclass Object
(is—a :THING)

(role abstract))

(defclass Sys-Lvl-Object
(is—a Object)

(role abstract))

(defclass User "A user of a collaboration system."
(is-a Sys-Lvl-Object)
(role concrete)
(single-slot name
(type STRING)
(cardinality 1 1))
(multislot email-address
(type STRING)
(cardinality 0 ?VARIABLE)))

It can be seen that the classesject andSys-Lvl-Object are defined as abstract,
while the classser is defined as concrete. The part of the taxonomic hierarchy of
classes involved here (and also including the ontology’s root classNG) is shown in
Figure 4.7.

Other classes defining all of a given collaboration system’s objects, actions, and ac-
tion patterns are specified in a similar manner.

4.2.2 Sessions

As discussed in the previous chapter, collections of actions occurring on a given level of
a collaboration system’s Information Pyramid can often be mapped to a single action on

Chapter 4. Deriving Patterns of Virtual Collaboration 103

/[THING
N

Sys-LvI-Object

A

is—a

BN AN N

N Y Y

User
name [1:1]
email-address [0:?]

Figure 4.7: Taxonomic hierarchy of four levels of classes in a given collaboration sys-
tem’s ontology

the next-higher level of the Information Pyramid. One example of this is the mapping
of multiple instances of th@ost-Discussion-Statemeand Open-Discussion-Statement
action patterns to the single action patt&roup-Discussionshown in Figure 3.10 on
page 84. Mappings such as these are possible when the lower level's instances of action
patterns share certain parts of their action context, such as subject (which user or role
performed the action), referent (on which object the action was carried out), or location
(in which collaboration space the action took place).

However, in some cases of mappings between action patterns, these parts of an action
pattern’s action context are not sufficient, and the additional context information of the
action pattern’sessioris required. A session is defined as follows:

Definition 18 A sessionis a sequence of actions performed by the same
user over a given period of time, with a defined starting and ending point.
O

Starting and ending points are actions or events that occur in the collaboration system
and that it can recognize as delimiting the start and end of a session. These are system-
dependent, but common ones include the following:

e Login/logout: In some collaboration systems, users login in order to use the sys-
tem, and logout when finished. In this case, the login and logout actions act as

Chapter 4. Deriving Patterns of Virtual Collaboration 104

delimiters of a session. That is, the sequence of actions starting with a login action
and including all actions until the following logout action constitute a given session
in this type of collaboration system.

e Connect/disconnect:Some collaboration systems do not require user login, and
may instead simply serve requests from any connecting client software. In this
case, when the client software connects to the server this marks the start of a ses-
sion, and when it disconnects from the server it marks the session’s end. The
sequence of actions occurring between the client software’s connection and dis-
connection then constitute a given session in this type of collaboration system.

e Timeout: Some collaboration systems do not maintain their connection with the
client software from one action to the next, and instead open and close a new
connection for each action. In this case, the starting and ending of a session may
not be marked by specific events, but instead the end of a session is marked after a
specific time period during which no action has been performed, i.e. after a timeout
period. The sequence of actions occurring between one timeout and the following
timeout then constitute a given session in this type of collaboration system.

To give an example of a mapping of action patterns in which it is necessary to con-
sider the session which the action patterns belong to recall the sequence of the three con-
secutive system-level action pattemget block tree, add statementand getblock tree
(shown earlier in Figure 3.8 on page 80). This sequence maps to a single user-level ac-
tion patternPost-Discussion-Statemefghown earlier in Figure 3.9 on page 82). This
mapping, however, is only valid if the three system-level action patterns take place in the
same session. Examples of two sequences of action patterns where only the first one can
be mapped are shown in Figure 4.8.

Part (a) of the figure shows an extract of a sequence of actions recorded by a collab-
oration system. Part (b) of the figure shows a case where all the seven actions shown
belong to one session (Session 1). Finally, part (c) of the figure shows a different case
where only the first three actions belong to one session (Session 1), and the remaining
four actions belong to a separate session (Session 2). Assume that actions 3, 4, and 5 are
the consecutive system-level actiogest block tree, add statementandget block tree.

In the case shown in part (b) of the figure these three actions occur in the same session,
and it is therefore possible to map the sequence of these three actions to the user-level
action patterriPost-Discussion-Statemer@n the other other hand, in the case shown in

2Such a timeout is system-defined and thus varies from one system to another; however, timeout values
of around 10-30 minutes are common.

Chapter 4. Deriving Patterns of Virtual Collaboration 105

time : time Session 1 time Session 1 Session 2
action 1 action 1 action 1
action 2 action 2 action 2
action 3 action 3 action 3
action 4 action 4 action 4
action 5 action 5 action 5
action 6 action 6 action 6
action 7 action 7 action 7
\/ : \/ \/
(a) Sequence of (b) Actions belonging to the (c) Actions belonging to separate
actions same session sessions

Figure 4.8: A sequence of actions belonging to one or more sessions

part (c) of the figure this is not possible, because the three actions do not belong to the
same, but to two different sessions. The session thus extends the action context of the
involved actions, and constitutes part of an action’s locatidngeeal location.

Sessions are modeled as special kinds of objects. Sessions are composite objects
consisting of some general information about the session itself, and a set of actions that
belong to the session. Below is the definition of a classsion which models the
session and consists of a numeric session identifier and a set of actions belonging to the
session:

(defclass Session

(is-a Object)

(role concrete)

(single-slot SessionID
(type INTEGER)
(range 1 ?VARIABLE)
(cardinality 1 1))

(multislot Session-Actions
(type INSTANCE)
(allowed-classes Action)

(cardinality 1 ?VARIABLE)))

A diagram of the relevant part of the ontology is shown in Figure 4.9. Here two
different kinds of class relationships are shown: iha relationship where one class

Chapter 4. Deriving Patterns of Virtual Collaboration 106

f Object \ / Action \
N) \

A
is—a
f Session \
SessionID [1:1] J references
Session—Actions [1:?]

Figure 4.9: Classession for representing sessions in a collaboration system’s ontology

subclasses another class; andréferences relationship where one class references an-
other class through one or more of its slots.

Using this class, an actual session can be represented by creating an instance of
Session and filling its Session-Actions slot appropriately with the actions that make
up the session, in the sequence of their occurrence.

4.2.3 Specification of Concept Mappings

Initially, after concepts of the ontology of virtual collaboration have been specified, the
result are separate sets of concepts on different levels of the Information Pyramid. How-
ever, many of these concepts on different levels are related. To be able to map concepts
on a lower level to concepts on the next-higher level, it is necessary to identify how these
concepts are related, and then to specify this. However, this specification of the mapping
of concepts depends on the type of relationship between the concepts involved. Here,
following three main types of relationships are distinguished:

1. Unmodified one-to-one correspondence
2. One-to-one correspondence with modifications
3. Many-to-one correspondence

The specification of mappings for each of these types of relationships is considered
next.

4.2.3.1 Unmodified One-To-One Correspondence

Unmodified one-to-one correspondence means that two concepts on adjacent levels are
identical in terms of all their slots and facets. This is the simplest of all cases as no
explicit mapping is required (or rather, the mapping in this case is the identity function).
However, the lower-level concept is specified as a subclass of its level's type of class

Chapter 4. Deriving Patterns of Virtual Collaboration 107

(e.g. as a system-level object). This marks the class as belonging to that level. In order to
indicate that the same class also represents an identical concept on a different level, the
class specification needs to be extended by adding the appropriate superclass-to its
slot.

Consider the case of a class representing users of a collaboration system (only the
first two lines of the class specification are shown):

(defclass User "A user of a collaboration system."

(is-a Sys-Lvl-Object)

This class specification is for an object on the system level, indicated by its superclass
Sys-Lvl-Object. If the same concept also exists on the user level in unmodified form,
the class specification can simply be extended to the following:

(defclass User "A user of a collaboration system."

(is—a Sys-Lvl-Object User-Lvl-Object)

Here, thei s-a slot is now extended by a second superclassy-Lv1-Object. The
remainder of the class specification, however, remains unchanged. This now indicates
that the clasgser is an object that belongs to both the system and user levels, and has
an identical definition on both levels.

4.2.3.2 One-To-One Correspondence With Modifications

One-to-one correspondence with modifications means that for a given concept on one
level, there exists a corresponding concept on the level above it, but with a different
definition of its slots and facets. In this case it is not possible to simply add the upper
level's superclass to thes-a slot of the lower-level class, as the class definitions are
not identical. Instead, there are two separate classes whose correspondence is explicitly
expressed in the form of a mapping. This mapping establishes which slot belonging to
the lower-level class maps to which slot belonging to the upper-level class.

For instance, consider the two classesr andperson. The former belongs to the
system level and records such information as userid, password and user name, while the
latter belongs to the user level and consists only of userid and username, that is, it does
not include the password. The two class definitions are shown below:

Chapter 4. Deriving Patterns of Virtual Collaboration 108

f User \ Mapping f Person \
userid [1:1] slotligh userid [1:1] j

password [1:1 ’77 slot2 ——— » username [1:1]
username [1:1

—_—

-
-

—_—

Figure 4.10: Mapping of object classer to object clasgerson

(defclass User "A user of a collaboration system."
(is—a Sys-Lvl-Object)
(role concrete)
(single-slot userid

(type STRING)
(cardinality 1 1))
(single-slot password
(type STRING)
(cardinality 1 1))
(single-slot username
(type STRING)
(cardinality 1 1)))

(defclass Person "A person using a collaboration system."
(is-a User-Lvl-Object)
(role concrete)
(single-slot userid
(type STRING)
(cardinality 1 1))
(single-slot username
(type STRING)
(cardinality 1 1)))

Here, the slotsiserid andusername from theUser class appear in the definition
of theperson class. What is required is to establish that these slots map across the two
classes. In the form of a diagram, the mapping between these two classes is shown in
Figure 4.10.

This mapping maps from theser class to the@erson class. In a mapping of classes,
that which is being mapped from is called theurce classand that which is being
mapped to is called thmrget class

Chapter 4. Deriving Patterns of Virtual Collaboration 109

Simple slot mappings

In the figure, a mapping construct between clagses andPerson establishes corre-
spondence of slots. This mapping construct is defined here in the form of special mapping
classes. The first onelass-Mapping, represents the mapping to a target class:

(defclass Class-Mapping

(is—a :THING)

(role concrete)

(single-slot Target-Class
(type SYMBOL)
(allowed-parents :THING)
(cardinality 1 1))

(multislot Slot-Map
(type INSTANCE)
(allowed-classes Slot-Mapping)
(cardinality 1 ?VARIABLE)))

It identifies the target class that is being mapped to and consists of one or more slot
mappings (the source class(es) being mapped from are identified inside the slot map-
pings). The second mapping class,ot-Mapping, represents the mapping to a slot
in the target class. Because there are several different ways that slots can be mapped,
the Slot-Mapping class is defined as abstract and concrete subclasses are defined for
the different kinds of mappings to slots. Below are definitions of the abstract class
Slot-Mapping and of one subclass,imple-Slot-Mapping, which maps a slot from
a source class to a slot in the target class:

(defclass Slot-Mapping

(is—a :THING)

(role abstract)

(single-slot Target-Class
(type SYMBOL)
(allowed-parents :THING)
(cardinality 1 1))

(single-slot Target-Slot
(type INSTANCE)
(allowed-classes :STANDARD-SLOT)
(cardinality 1 1)))

Chapter 4. Deriving Patterns of Virtual Collaboration 110

(defclass Simple-Slot-Mapping

(is-a Slot-Mapping)

(role concrete)

(single-slot Source-Class
(type SYMBOL)
(allowed-parents :THING)
(cardinality 1 1))

(single-slot Source-Slot
(type INSTANCE)
(allowed-classes :STANDARD-SLOT)
(cardinality 1 1)))

The slots holding source and target classes in these two class definitions are con-
strained to the classTHING, meaning that any classes can be mapped (SIDEENG is
the root of the class hierarchy). Similarly, the source and target slots are constrained
to instances of STANDARD-SLOT, which is the superclass of all slots in the ontology,
thereby allowing any slot to be mapped. Becasiseple-Slot-Mapping iS a subclass
of Slot-Mapping, it inherits the two slotSarget-Class and Target-Slot from its
parent class.

Using theClass-Mapping andSimple-Slot-Mapping classes as mapping tools, it
is now possible to specify mappings of slots for any corresponding classes across levels
of the Information Pyramid. This is done by creating instances of the mapping classes
and setting slot values appropriately.

Aggregated slot mappings

In some cases it may not be sufficient to simply map slots from one class to another, that
is, to map a single slot value from a single instance of a source class to a slot in a target
class. Instead, sometimes aggregationof slot values from instances of a source class

to a slot in a target class is required.

Consider the example of a collection of versioned documents where each member
of the document collection constitutes a different version of the same document. On
one level, say the user level, the class-ument may represent an individual docu-
ment in the collection, while on the next-higher level, the collaboration level, the class
Versioned-Document may represent the collection of all individual documents that
make up the versioned document. In this case, the tlassient may be mapped to the
classversioned-Document, this mapping too being of the type “one-to-one correspon-
dence with modifications”. That is, when considering the mapping on the level of classes,

Chapter 4. Deriving Patterns of Virtual Collaboration 111

/ Document \ Mapping K/ersioned—Document\
name [1:1]%7 slotl > name [1:1]
creation—date [1:1] slot2 > creation—date [1:1]
slot3 modification—date [1:1]

slot4 ———*® version—count [1:1]

Figure 4.11: Mapping of object classcument to object clas§ersioned-Document

a single source class is mapped to a single target class. This is shown in Figure 4.11.
When considering this mapping on the level of instances however, multiple instances
of the source class are mapped to a single instance of the target class. Here, values of the
source class’s instances aggregatednto a single value of a slot in the target class. In
the example given here, the value of the targetstett ion-date represents the date of
the creation of the first version of the document. It can be obtained by getting the smallest
value of the slotreation-date from all corresponding instancesmfcument. On the
other hand, the value of the target stetdification-date represents the date of the
latest modification of the versioned document, which is the date of the creation of the
latest version of the document. This can be obtained by getting the largest value of the
slot creation-date from all corresponding instances nécument. Finally, the target
slot version-count holds the number of versions of the document collection. It can
be obtained by counting the number of instances of the source class, or by counting the
number of values of a given slot in the source class. In the example, a count of all values
of the slotcreation-date yields the count of versions of the document.
Specifying mappings of slots which are obtained through aggregation requires the
specification of amggregation functiofor the source slot. A number of such aggregation
functions can be defined, including the following:

¢ all: given a set of values, returns the whole set of all values
e any: given a set of values, returns any one of the values

e avg: given a set of numerical values, returns the average, i.e. the arithmetic mean,
of those values

e count: given a set of values, returns a count of the values, i.e. the cardinality of the
set

e max: given a set of values, returns the largest value

e min: given a set of values, returns the smallest value

Chapter 4. Deriving Patterns of Virtual Collaboration 112

e sum: given a set of numerical values, returns the sum of all values

Another subclass of thglot-Mapping class is defined here for the specification of
aggregated slots, namely the claggregated-Slot-Mapping shown below:

(defclass Aggregated-Slot-Mapping

(is—a Slot-Mapping)

(role concrete)

(single-slot Source-Class
(type SYMBOL)
(allowed-parents :THING)
(cardinality 1 1))

(single-slot Source-Slot
(type INSTANCE)
(allowed-classes :STANDARD-SLOT)
(cardinality 1 1))

(single-slot Aggregation-Function
(type SYMBOL)
(allowed-values all any avg count max min sum)

(cardinality 1 1)))

Since this class is a subclass of the clalss:-Mapping, it inherits its slotSTarget-
Class andTarget-Slot. One of its own slotsiggregation-Function, identifies the
aggregation function to be performed on all instances’ source slot. Allowed values for
this slot are the seven functions mentioned above, but this facet could be extended to
allow for other aggregation functions as needed.

4.2.3.3 Many-To-One Correspondence

Many-to-one correspondence means that two or more concepts on one level correspond
to a single concept on the next-higher level. In this case, the slots of the upper-level class
originate from the lower-level classes. Again, this needs to be expressed in the form of a
mapping.

An example of this is shown in Figure 4.12. This example concerns a shared white-
board for writing and drawing. On one level this is represented as an instance of the class
Board for each whiteboard, which contains references to one or more instaneesof
the pages of the whiteboard. On the next-higher level, however, the whiteboard is repre-
sented by a single clasghiteboard, which contains the information that is relevant at
that level, in this case the name of the board and a list of users who have drawn on it (i.e.

Chapter 4. Deriving Patterns of Virtual Collaboration 113

/ Board \
K Boardname [1:1]j7
Pages [1:?] —
ges [17] Mapping / Whiteboard \
%Name [1:1]
» Contributors [0:?]

slotl
/ slot2 >

/ Page \

Contributors [0:?]
GraphicObijects [0:7]

-t

Figure 4.12: Mapping of object classesard andpage to object clas@hiteboard

its contributors). The first attributelame is mapped from the sl®oardname of class

Board (note that the mapping of slots does not require the source and target slots to have
the same names). The second attriboteributors, is mapped from the slot with the
same name in the classge.

To realize these mappings once again requires the specification of mappings of the
class and its slots, for which the mapping classesss-Mapping andSimple-Slot-
Mapping, defined above, are used. That is, the mapping of concepts for the case of one-
to-one correspondence with modifications, and the case of many-to-one correspondence
is achieved in the same manner. However, in order to achieve a valid mapping in the
case of many-to-one correspondence, the specified mapping needsaisti@ined to
ensure that only pages which are part of the whiteboard being mapped are included in the
mapping. Thismapping constrainis expressed in Figure 4.12 through the arrow from
slot Pages in classBoard to classpage. When writing functions to map instances of
concepts across levels, this constraint needs to be considered. This is discussed below in
Section 4.2.4.

Instance mappings

The examples of mapping slots across classes shown above assumed that the target slot
of a target class can be mapped from a specific source slot of a source class. However,
this may not always be the case. In some cases, for instance, a class may exist at one
level, but may not be referenced in any slot of any class on that level. If an instance of
this class has to be mapped to a target slot in a class on the next-higher level, the mapping
classes shown above can not be used, as they require any instance that is to be mapped
to exist as the value of a slot in some class (i.e. the instance is referenced by that slot).
Instead, another kind of mapping is needed that takes an instance of a source class and
directly maps it to a target slot in a target class.

To illustrate this, consider the case of an objeciinstorming-Room which repre-

Chapter 4. Deriving Patterns of Virtual Collaboration 114

f Whiteboard \

Name [1:1]
Contributors [0:?]

Mapping ﬂ?;rainstorming—RoonN
slotl 4%> Whiteboard [1:1] j
slot2 » Qutcome [1:1
ﬁ/ersioned—Documerh (L4

name [1:1]
creation—date [1:1]
modification—date [1:1]
version—count [1:1]

-
-

Figure 4.13: Mapping of instances of object clasgasteboard and Versioned-
Document to object clas§rainstorming-Room

sents a virtual “room” for brainstorming. This “room” may be equipped with an elec-
tronic whiteboard, which is an instance of object classteboard, on which people in
the room write or draw their ideas; as well as with a versioned document, which is an
instance of object clas&rsioned-Document, to record the outcomes of the brainstorm-
ing that takes place in the virtual room, including its history, for which multiple versions
of the document are maintained. Given that no class on this level contains references to
instances of the two classesiteboard andversioned-Document, @ mapping to class
Brainstorming-Room requires entire instances to be mapped. This example is illus-
trated in Figure 4.13. Here, the first slotifainstorming-Room, the slotwhiteboard,
is mapped from an instance of the class with the same nahie dboard), while the
second slotput come, is mapped from an instance of clags sioned-Document.

To specify this kind of mapping requires a different kind of mapping class. For this
purpose the mapping classstance-Slot-Mapping is defined:

(defclass Instance-Slot-Mapping

(is—a Slot-Mapping)

(role concrete)

(single-slot Source-Instance
(type INSTANCE)
(allowed-classes :THING)
(cardinality 1 1)))

This mapping class is a subclasssobt-Mapping and thus inherits its slot&rget -
Class andTarget-Slot. In addition, it contains the sleburce-Instance which holds
a reference to the instance to be mapped. This slot is constrained to instances of the class
: THING, meaning that any class can be mapped.

Chapter 4. Deriving Patterns of Virtual Collaboration 115

< Lock—Board ;

/ Draw-On-Board \4 Mapping =/ Locked—Draw \
N / _ /

< Unlock-Board ;

Figure 4.14: Mapping of sequence of action classesx-Board, Draw-On-Board, and
Unlock-Board to action clas$.ocked-Draw

Action/action pattern sequence mappings

The case of mapping of multiple actions (and action patterns) is another special case that
has to be considered. Just as with objects, multiple actions and action patterns on one
level can also correspond to ones on the next-higher level. Thus the correspondence of
slots can be specified in the same manner as was shown for objects above. However,
actions occur in a temporal sequence, and this sequence may be of importance in deter-
mining correspondence of actions across levels. For instance, the sequence of actions
Lock-Board, Draw-On-Board, andUnlock-Board may occur on one level of the Infor-
mation Pyramid whenever a user performs a drawing operation on a shared whiteboard
with concurrency control implemented through locking. This specific sequence of actions
may correspond to the single actioacked-Draw on the next-higher level, as shown in
Figure 4.14. However, if the sequence of actions on the lower level were changed, the
correspondence would no longer be valid. Thus for correspondences of multiple actions
on one level to a single action on the next-higher level, it is important to not only specify
mappings of slots, but also the specific sequence of actions.

Action (and action pattern) sequences can be expressed using another mapping con-
struct, the clasSequence-Mapping, the definition of which is shown below:

(defclass Sequence-Mapping
(is—a :THING)
(role concrete)
(single-slot Mapping-Target
(type SYMBOL)
(allowed-parents Action Action-Pattern)

(cardinality 1 1))

Chapter 4. Deriving Patterns of Virtual Collaboration 116

(multislot Sequence-Elements
(type SYMBOL)
(allowed-parents Action Action-Pattern)

(cardinality 1 ?VARIABLE)))

Here, the sloMapping-Target identifies the target action or action pattern of the
mapping, such as the classcked-Draw mentioned in the example above. The multi-
slot sequence-Elements holds the classes of actions or action patterns, in the sequence
in which they are to be mapped to the target. Thus forltheked-Draw action tar-
get, thesequence-Elements slot would contain the three action classesk-Board,
Draw-On-Board, andUnlock-Board, in that sequence.

Given on the one hand specifications of action sequences, expressed through instances
of Sequence-Mapping, and on the other hand specifications of sessions containing ac-
tions in the sequence in which they actually occurred, through instancessefon,
makes it possible to identify higher-level actions within sessions. This involves the
matching of action sequences in the session with action sequence mappings.

To summarize, this section has proposed the mapping constract-Mapping for the
specification of mappings of classes from one level to the next-higher level; together with
following four mapping constructs for the mapping of slots and instances from one level
to the next-higher level:

1. simple-Slot-Mapping: Map one slot from one instance of one class to one slot
in another class; applicable to both objects and actions/action patterns.

2. Aggregated-Slot-Mapping: Map one slot from multiple instances of one class to
one slot in another class, performing some aggregation on the multiple slot values;
applicable to both objects and actions/action patterns.

3. Instance-Slot-Mapping: Map an instance of one class to a slot in another class;
applicable to both objects and actions/action patterns.

4. Sequence-Mapping: Map a sequence of instances of classes to an instance of
another class; applicable to actions/action patterns only.

lllustrations of these four mapping constructs are shown in Figure 4.15. For each of
the four example mappings, the left-hand side shows one or more instances of classes to

Chapter 4. Deriving Patterns of Virtual Collaboration 117

Class A: Instance 1 Simple-Slot—-Mapping

slot a —> slot x » slot x: [value 1]

Class X: Instance 1

slota: [value 1] <

(a) simple-Slot-Mapping: map one slot of one instance of one class to one slot of another
class

Class A: Instance 1

slota: [value 1] <=

Class A: Instance 2

Aggregated-Slot-Mapping
f(slot a) —> slot x

Class X: Instance 1

slota: [value 2]
Class A: Instance 3

slot x: [value y]

slot a: [value 3] <=

(b) Aggregated-Slot-Mapping: map one slot of multiple instances of one class to one slot of
another class

Class A: Instance 1 Instance-Slot—Mapping

Class A —> slot x

Class X: Instance 1
slot x: [Class A: Instance 1]

slot a: [value 1] -

(c) Instance-Slot-Mapping: map one instance of one class to one slot of another class

Class A: Instance 1

slota: [value 1] =

Class B: Instance 1 Sequence—Mapping

Class X: Instance 1

slot b: [value 2] = Class A, Class B, Class C 4,—» slot x: [
Class C: Instance 3 —> slot X Class A: Instance 1,
Class B: Instance 2,
slot c: [value 3] <=

Class C: Instance 3]

(d) sequence-Mapping: map a sequence of instances of classes to an instance of another class

Figure 4.15: Mapping constructs used for mapping slots and instances across levels

Chapter 4. Deriving Patterns of Virtual Collaboration 118

be mapped, the middle shows the mapping construct, and the right-hand side shows an
instance of the resulting mapped class.

The list of mapping constructs proposed above is for some of the more obvious types
of class mappings, rather than being a complete list of all possible class mapping con-
structs. However, when other types of class mappings are needed, other mapping con-
structs can be defined in a similar manner as the ones above. Moreover, certain types of
mappings may be subject to constraints that need to be satisfied. In this case, the spec-
ification of mappings needs to include these constraints. This is discussed further in the
following section, and is illustrated in Chapter 5.

4.2.4 Definition of Mapping Functions

The specification of concept mappings above has identified how concepts on one level of
the Information Pyramid map onto concepts on the next-higher level. Given this informa-
tion about mappings, it is now possible to map actosdancesf these concepts across
levels. Doing so involves taking instances of those classes which appear as source classes
of a given class mapping, retrieving slot values according to the specified slot mappings
and subject to any identified constraints, and using these to construct new instances of
the target class. In order to facilitate this mapping of instancegping functionsre
defined.

A mapping function is a function that creates instances of a specific target class.
The function receives input parameters holding references to instances of the concept
mapping’s source class(es), and produces instances of the target class. An example of
a mapping functiongreate-whiteboard, for the mapping of instances abard and
Page toWhiteboard is shown below. In pseudocode this function is defined as foflows

FUNCTION create-whiteboard (board)
IF board is an instance of class Board THEN
initialize the list of contributors to an empty list;
FOR all pages of board DO
add the contributors of the page to the list of contributors;
END_FOR
create an instance of class Whiteboard using the value of
Boardname of board and the list of contributors;
END_IF
END_FUNCTION

3The pseudocode notation employed here and in the rest of this chapter is based on the Program Design
Language of (Easteal and Davies, 1989).

Chapter 4. Deriving Patterns of Virtual Collaboration 119

For use in the Prége-2000 system this function can be implemented using the func-
tion deffunction, as follows:

(deffunction create-whiteboard (?board)
(if (and (instancep ?board)
(eq (class ?board) Board))
then
(bind $?contrib (create$))
(foreach ?page (slot—-get ?board Pages)
(bind $?contrib
(union$ S$?contrib (slot-get ?page Contributors))))
(make-instance of Whiteboard
(Name (slot-get ?board Boardname))

(Contributors $?contrib))))

This function,create-whiteboard, takes one input paramete&soard which holds
a reference to the instance Bfard to be mapped. It then performs input validation,
testing whetheepboard is actually an instance (using predicatest ancep), and whether
its class isBoard (using predicatelass to obtain the instance’s class, then testing for
equality with predicateq). If these conditions are satisfied, an instancgigfteboard
can be created. First the set of contributors is obtained by iterating over all instances
of Page held in the slotages of Board (retrieved using the functionlot-get which
returns the value of a given slot), and retrieving the value of thelotributors
of each instance dfage. These sets of values are joined together using the set union
functionunion$, then bound to the variablg2contrib. Finally, the new instance of
Whiteboard is created using functiomake-instance, with the name taken from the
slotBoardname of Board, and the set of contributors being the one previously constructed
and stored in variablé?contrib.

The function thus implements the mapping of the two lower-level classesi and
Page to the upper-level clasghiteboard corresponding to the specification of its class
and slot mappings. The constraint identified earlier, namely that instanees«fo be
mapped need to be elements of the multi-skate s of the instance ofoard involved in
the mapping, is implicitly satisfied, as the mapping function only involves a single input
parameter referencing the instancerotrd, and any instances a@fage are obtained
through the slobages of that instance ofoard.

4This and all following functions are defined in the language of Jess (Friedman-Hill, 2001), an expert
system shell that has the ability to manipulate ontologies in theegg#000 system through the JessTab
software (Eriksson, 2001).

Chapter 4. Deriving Patterns of Virtual Collaboration 120

Once defined, mapping functions are added to, and become an integral part of, a
collaboration system’s ontology.

4.3 Extraction of Patterns of Virtual Collaboration

After the ontology of virtual collaboration for a given collaboration system has been
specified, including specifications of concepts and concept mappings as well as mapping
functions, patterns of virtual collaboration can be extracted from data collected by that
collaboration system. Two types of pattern extraction can be distinguished: extraction of
patterns directly from the data collected by the collaboration system, and extraction of
patterns through derivation from other patterns. Each of these is detailed below.

4.3.1 Base Level Pattern Extraction

Data at the base level of the Information Pyramid of Virtual Collaboration forms the
source for the extraction of the lowest-level patterns of virtual collaboration. This data is
of two types:

1. Data on objects maintained by the collaboration system.

2. Data on actions performed in the collaboration system.

As discussed in Section 3.2, the former is commonly stored in files or database tables,
while the latter is typically stored in the form of some type of server log file that records
actions that have been performed.

The extraction of action patterns initially requires that the source data on objects and
actions recorded by the collaboration system be transformed into a form that is amenable
to subsequent pattern extraction. Each collaboration system typically has its own unique
format in which it stores records of objects and actions. For each object record, an in-
stance of the corresponding object class (as specified in the ontology) is created, which
then can be added to the ontology. The same applies to action records.

In pseudocode, the creation of instances of object classes is expressed as follows:

FOR all object records DO
lookup ontology definition of corresponding object class;
create instance of object class with values from object record;
add object instance to ontology;

END_FOR

Chapter 4. Deriving Patterns of Virtual Collaboration 121

Instances of action classes are created in a similar fashion, with details obtained from
records of actions. As a result, representations of objects and actions in the format of the
ontology of virtual collaboration exist. This then makes the extraction of action patterns
possible. For each action instance, a corresponding action pattern instance is created.
As instances of action pattern classes contain details that are also obtained from action
records, for example attributes that belong to an action’s action context, the extraction of
action pattern instances is performed together with the creation of action instances. This
is shown in the following pseudocode:

FOR all action records DO
lookup ontology definition of corresponding action class;
create instance of action class with values from action record;

add action instance to ontology;

lookup ontology definition of corresponding action pattern class;
identify related object instances from action record;
create action pattern instance referencing action instance and
identified object instances;
add action pattern instance to ontology;
END_FOR

The entire extraction process is illustrated in Figure 4.16. At the bottom of the figure
the data sources are shown, namely records of objects and actions in the format of the
collaboration system from which they were obtained. The upper part of the figure shows
the ontology of virtual collaboration, containing classes and instances of objects, actions,
and action patterns. The data sources are transformed into instances of objects and actions
(indicated by the left and right thick upward-pointing arrows). These instances become
part of the ontology of virtual collaboration, being instances of the corresponding object
and action classes, respectively. Finally, instances of action patterns are extracted from
actions, objects, and information contained in action records (indicated by the three thick
arrows pointing to the central section of the ontology).

For instance, to continue the whiteboard example given above in Section 4.2.3.3,

a collaboration system’s object records may include records of whiteboards and their
pages, while action records may include records of actions performed on the white-
boards’ pages. To extract action patterns from these records, firstly instances of the
objects are created and added to the ontology, in this case instances of the object classes
Board andPage. This is followed by creation of instances of the action classes, such

as theLock-Board, Draw-On-Board, andUnlock-Board action classes shown earlier

Chapter 4. Deriving Patterns of Virtual Collaboration 122

Ontology of Virtual Collaboration

Object Classes Action Pattern Classes Action Classes

instance—of

nstance+t instance—of

|:> instance—of <:|

instance—of

references

- reférences references
Object Instances : Action Pattern Instances Action Instances
[
. action 1
action 2

action 3

[
L)L

Object Records Action Records

Figure 4.16: Extraction of instances of action patterns from object and action records at
the collaboration system’s base level, via object and action instances

(cf. Figure 4.14). Finally, for each instance of these action classes, an instance of a cor-
responding action pattern class is produced. Thus an instance of action pattern class
Lock-Board-Pattern (an action pattern corresponding to theck-Board action) is
created from instances of the objectard and the action.ock-Board, as well as ac-

tion context information obtained from the collaboration system’s action record. In like
manner, instances of other action patterns are produced.

Once all object and action records have been processed, and instances of the cor-
responding object and action classes have been created, and instances of action pattern
classes have been extracted from these, the extraction of base-level action patterns is
complete. This is followed by the extraction of higher-level action patterns, detailed
next.

Chapter 4. Deriving Patterns of Virtual Collaboration 123

4.3.2 Higher-Level Pattern Extraction

Patterns on higher levels of the Information Pyramid (i.e. higher than the base level) are
extracted by exclusively using classes and instances in the ontology of virtual collabor-
ation, without having to refer to object and action records of the collaboration system.
That is, instances of higher-level object, action, and action-pattern classes are created
from corresponding lower-level instances in the ontology. The process of pattern ex-
traction resembles that at the base level: first object instances are created, next action
instances are created, and finally action pattern instances are extracted from object and
action instances. For each of these, i.e. objects, actions, and action patterns, instances are
created through (previously defined) mapping functions.

Object instances for a given level are created by iterating all object mapping functions
over all possible input objects on the level below. Thus if an object mapping function
creates instances of an object class,$afrom instances of another object class, ¥ay
the object mapping function is invoked for each such possible instance of objecY class
The resulting instances of object clasare then added to the ontology. This is shown in
the pseudocode below:

FOR all object mapping functions DO
FOR all possible input object instances DO
call mapping function to create instance of target object class;
add object instance to ontology;
END_FOR
END_FOR

Instances of actions are created in a similar fashion: action mapping functions iterate
over all possible input actions to create instances of action classes on a given level. This
is shown in the pseudocode below:

FOR all action mapping functions DO
FOR all possible input action instances DO
call mapping function to create instance of target action class;
add action instance to ontology;
END_FOR
END_FOR

Finally, instances of action patterns are extracted. These reference previously created
instances of objects, actions, and action patterns. This is shown in the pseudocode below:

Chapter 4. Deriving Patterns of Virtual Collaboration 124

Ontology of Virtual Collaboration

e ; 7
Object Classes : Action Pattern Classes : Action Classes
1 1 A
- : f
instance—of :
+ :> instance-of <,‘:| instance—of
= : :
T 1 1
> : :
Q
- : :
references "
m referencgs
Object Instances § Action Pattern Instances § Action Instances
Object Classes § Action Pattern Classes § Action Classes
c | instance—of . _ : instance—of
- instance—-of instance—of :
>
Q
- L
instance—of
references
references :
: references
Object Instances : Action Pattern Instances ﬁ Action Instances
G . : J

Figure 4.17: Extraction of instances of leve} 1 action patterns from level+- 1 objects
and actions and level action patterns

FOR all action pattern mapping functions DO
FOR all possible input action pattern instances DO
call mapping function to create instance of target action pattern
class;
add action pattern instance to ontology;
END_FOR
END_FOR

This extraction process is illustrated in Figure 4.17. It shows the ontology of virtual
collaboration, including two adjacent levels (the upper and lower half of the box). At each
level there are classes and instances of objects, actions, and action patterns. The thick
arrows represent the mapping of instances of these classes from one level to the level

Chapter 4. Deriving Patterns of Virtual Collaboration 125

above (performed, as mentioned above, by mapping functions), and finally the extraction
of instances of action patterns from instances of objects and actions on the same level, as
well as from instances of action patterns on the level below.

To continue the above whiteboard example, instances oftithe=board object class
(which in the ontology of Figure 4.17 would reside at lene} 1) are created from in-
stances of th@oard object class (which in the ontology of Figure 4.17 would reside
at leveln) by applying the mapping functiotireate-whiteboard (Shown on page 119
above). Other mapping functions are used to create instances ofileviehction classes
from their leveln source classes. For example, an instance of (level) action class
Locked-Draw is created from the sequence of (lemglactionsLock-Board, Draw-0n-

Board, andunlock-Board (corresponding to the mapping shown in Figure 4.14 above).
Finally, instances of action patterns are created, referencing related instances of object
and action classes. Thus an instance of the (level) Locked-Draw-Pattern action

pattern class (an action pattern corresponding tasheed-Draw action) is created from
instances of the (level+ 1) Whiteboard object class andocked-Draw action class, as

well as action context information obtained from instances of the (leyvaktion pat-

tern instancesock-Board-Pattern, Draw-On-Board-Pattern, andUnlock-Board-
Pattern. Instances of other action pattern classes are created in a corresponding manner.

The mapping of object and action instances, and the extraction of action pattern in-
stances, continues one-by-one on all levels of the Information Pyramid above the base
level, until it finally reaches the highest level. The result is an ontology that is complete
with classes and instances of all objects, actions, and action patterns across all levels.

4.4 \Visualization of Patterns of Virtual Collaboration

The modeling method for producing models and mappings of different levels of the Infor-
mation Pyramid that was proposed earlier in this chapter presented a bottom-up approach
for the derivation of patterns of virtual collaboration. This approach takes fine-grained
low-level information and transforms it into successively more high-level representations
of collaborative activity. On the highest level, the process level, combinations of collab-
oration spaces specially configured to support specific processes are identified.

One way in which the modeling of action patterns differs across the different levels is
in the sourcefrom which patterns are obtained. Two main sources can be distinguished:
on the one hand theollaboration systentself, on the other hand the collaboration sys-
tem’'susers

The lowest-level patterns, such as those from the Information Pyramid’s micro level,
relate to events generated by the system at that level. Therefore, the source of the pat-

Chapter 4. Deriving Patterns of Virtual Collaboration 126

terns is entirely the collaboration system itself. Thus by inspecting the set of commands
that the collaboration system makes available, patterns involving those commands are
identified and specified, without having to observe the system in use.

The highest-level patterns, on the other hand, such as those at the task and process
levels, relate to tasks and processes performed by the collaboration system’s users. The
source of these patterns is necessarily the group of users of the system who perform these
tasks and processes. In order to be able to identify and specify patterns at these levels,
it is necessary to refer to records of actual tasks and processes that have been performed
through the system.

Finally, on intermediate levels the source of patterns may consist of a combination of
both the collaboration system and its users. For example, the system provides basic ob-
jects and actions that can be performed on these objects, while the users provide specific
configurations or combinations of these objects and actions.

To illustrate this, consider the example of the levels of information given in Chapter 3.
Figure 3.8 (page 80) showed examples of system-level action patterns. Here, the source
of the action patterns is exclusively the collaboration system itself: without observing
the system in use, i.e. without any user input, it is possible to determine the constituent
elements and structure of an action pattern su@ddstatemenshown in the figure. On
the other hand, for process-level action patterns sudPr@duct-Concept-Development
shown in Figure 3.12 (b) (page 88), the source of the action pattern is the group of users:
the specific combination of task-level action patterns that makes up the process-level
action pattern is entirely dependent on the way that the collaboration system’s users have
combined these tasks together. Finally, Figure 3.10 (b) (page 84) shows an example of
an intermediate-level action pattern, in this case the collaboration-level action pattern
Group-Discussionlts source is a combination of system and users: on the one hand, the
basic objects and action patterns (in this case, obfeote and Discussion-Forunmand
action pattern®©pen-Discussion-StatemeaaridPost-Discussion-Statemgiatre given by
the collaboration system; on the other hand, their specific combination into the action
patternGroup-Discussioms performed by the collaboration system’s users.

Dependent on the source, the specification of the set of action patterns at a particular
level of the Information Pyramid can be more or leesnplete meaning that all possible
action patterns are specified. Where the collaboration system is the source, the set of
all possible action patterns can be feasibly determined in advance by inspecting the set
of objects and actions provided by the system. Because a collaboration system provides
only a finite number of actions, corresponding action patterns too are finite in number,
making it possible to completely specify all possible valid action patterns at a given level
of the Information Pyramid.

Chapter 4. Deriving Patterns of Virtual Collaboration 127

incomplete
process

Completeness
of Specification collaboration

infrastructure system
complete @ @

low Scale of high
Activity

user

Figure 4.18: Completeness of specification versus scale of activity for the six levels of
the Information Pyramid

On the other hand, where the source of action patterns is the group of users, combin-
ing objects and actions in specific ways into action patterns, the number of all possible
patterns is infinite, because any number of any actions and objects can be combined in
any desired way to produce a new, unique action pattern. Thus the specification of the set
of action patterns at that level of the Information Pyramid is incomplete and open®nded
This is illustrated in Figure 4.18, which shows how completeness of specification (on the
vertical axis) is related to the scale of activity (on the horizontal axis).

In order to obtain patterns at the highest two levels, the task and process levels, there-
fore requires inspection of the particular combinations of objects and actions created
by the system'’s users, and their inter-relationships. Doing so, however, is not always
straightforward. A given collaboration system may contain a large number of collabora-
tion spaces, each of which may in turn contain a large number of objects, related to one
another in multiple and possibly complex ways. Thus, these patterns are often not easily
discernible(in the sense that they can not be readily assimilated by the human observer),

5This is not to say that an individual action pattern may be only partially specified. Each action pattern,
regardless of the level of the Information Pyramid and the source of action patterns, is always completely
specified. However, theetof all possible action patterns at a given level of the Information Pyramid may
be incomplete, in that some of the (infinitely many) possible action patterns have not been specified.

Chapter 4. Deriving Patterns of Virtual Collaboration 128

requiring time-consuming analysis of large amounts of information.

Here it is proposed that for the identification of patterns at the task and process lev-
els of the Information Pyramid, the mentioned bottom-up approach be complemented
through visual analysis and exploration of the objects and actions directly on those lev-
els, using techniques aiformation visualization

Information visualization aims to reveal patterns and structures in a body of informa-
tion. Its advantage over the direct analysis of raw data is that it supports a more “rapid
assimilation of information”, thereby “reducing the time cost of information access and
increasing the scale of information that a user can handle at one time” (Robertson et al.,
1993). This is achieved by shifting part of the process of identifying patterns to the
human perceptual system, and thus relieving the cognitive system.

Because information objects are abstract, often lacking physical representations, the
challenge is to find suitable metaphors for making objects and their relationships visible
(Gershon and Page, 2001). The notation used to represent information objects usually
depends on the type of information that is to be visualized. Shneiderman identifies seven
different basic types: 1-D, 2-D, 3-D, Temporal, Multi-Dimensional, Tree, and Network
(Shneiderman, 1998, p. 524).

In the case of information about virtual collaboration, a possibly large number of
objects may be related to multiple other objects. Such information can therefore be most
appropriately considered to be of the network type. For instance, in the task-level patterns
shown in Figure 3.12 (a) on page 88, the information items are the instances of roles,
discussion forums, and documents, most of which are related to several objects of one or
two other types.

For network structures, the most common forms of visualization aredde-and-
link diagram which represents information items as nodes connected by links repre-
senting relationships between items, and which focuses on making these relationships
between items visible; and tlsguare matrixvhere the values of a selected link attribute
for pairs of items are represented in the row-column positions of a matrix and which fo-
cuses on making specific attribute values visible (Shneiderman, 1998, p. 534). Given that
in the search for task and process patternssthectureof the configuration of objects
and actions is sought (i.e. the inter-relation and arrangement of items, cf. the discussion
on structure in Section 3.1), a suitable representation is the node-and-link diagram. Such
diagrams take the general form like the example shown in Figure 4.19: nodes, shown here
as square boxes, represent information items; and links, shown here as connecting lines,
represent relationships between these information items. Each pair of distinct nodes in
the graph may be connected by one (or possibly several) link(s). This type of diagram
may be used to represent an individual task, with nodes representing its constituent roles,

Chapter 4. Deriving Patterns of Virtual Collaboration 129

Figure 4.19: Example of a node-and-link diagram

discussion forums, documents, etc., and links representing relationships among these
items. It may also be used to represent an entire process, with nodes corresponding to
individual tasks and links representing inter-task relationships.

4.4.1 Measures of Collaboration Spaces

Identifying which collaboration spaces to investigate for pattern extraction itself can be
non-trivial when there are many collaboration spaces. Another situation is where a num-
ber of collaboration spaces have a similar structure, and it is not immediately obvious how
those collaboration spaces differ from one another. In both of these cases it can be helpful
to obtain additional information about the collaboration spaces in order to facilitate their
comparisonMeasuref collaboration spaces provide such additional information.

A measure of a collaboration space is a quantitative attribute which expresses some-
thing about a certain characteristic of a collaboration space, usually an aspect of its com-
plexity. Such a measure may be derived, or computed, from information related to the
collaboration space. In order to illustrate the notion of measures of collaboration spaces,
some examples of such measures are given below:

1. Collaboration space density:a measure of how many objects are contained in a
single collaboration space. This measure can give a first indication of the complex-
ity of the work carried out in the collaboration space, where more complex work
usually involves a larger number of objects.

2. Document exchange intensitya measure of how often documents are exchanged

Chapter 4. Deriving Patterns of Virtual Collaboration 130

in a collaboration space through create/read document actions per unit of time,
calculated as an average over the history of the collaboration space. This measure
can give an indication of the intensity of the work carried out in the collaboration
space.

3. Document exchange recencya measure of the number of “recent” document
exchanges in a collaboration space. Recency is the number of actions (in this case
document exchanges) during a fixed time interval up until the time of observation,
for example the past fortnight or the past month. This measure expresses how
strongly users in a collaboration space are presently exchanging documents, which
can suggest the extent to which the work in the collaboration space is currently
progressing.

4. Communication intensity: a measure of the number of statements exchanged
through discussion forums in a collaboration space per unit of time, calculated as
an average over the history of the collaboration space. This measure can give an
indication of the intensity of the work carried out in the collaboration space.

5. Communication recency: a measure of the number of statements “recently” ex-
changed through discussion forums in a collaboration space, again for a pre-defined
time interval such as a fortnight or a month. This measure expresses how strongly
users in a collaboration space are presently communicating, which can suggest the
extent to which work in the collaboration space is currently progressing.

6. Evolution intensity: a measure of how strongly the structure of a collaboration
space is subject to change, in terms of change actions per unit of time, calculated
as an average over the history of the collaboration space. This measure can suggest
the extent to which the work carried out in the collaboration space is emergent.

7. Evolution recency: a measure of how strongly the structure of a collaboration
space has “recently” been subject to change, again for a pre-defined time interval.
This measure expresses the extent to which the work in the collaboration space is
still actively evolving.

The above list of measures is by no means intended to be exhaustive but rather to be
suggestive of some (largely arbitrarily selected) measures that can be useful in highlight-
ing differences when comparing a collection of collaboration spaces. Other measures can
be defined by considering other information related to collaboration spaces and express-
ing it quantitatively.

Chapter 4. Deriving Patterns of Virtual Collaboration 131

4.4.2 Requirements of Visualization Tools

The visualization of task and process patterns in a given collaboration system requires a
visualization tool which needs to access data from that system and represent it in terms
of information items and their relationships. Some functional requirements for a visual-
ization tool are proposed here:

e Multiple node/link types: The ability to represent different types of information
items and different relationship types differently, so as to be able to distinguish
between these different types when they are contained within the same diagram.

e Task/process visualization: The ability to visualize networks of information at
different levels of detail, corresponding to the visualization of tasks and processes.

¢ Navigation: The ability to navigate a (possibly large) network of information and
focus on only a portion of the network that is of interest.

e Filtering: The ability to filter out information from the visible portion of a given
network of information that is not of interest.

e Comparison: The ability to visualize measures of collaboration spaces to enable
their comparison.

An example of a visualization tool that satisfies these requirements is introduced in
Appendix A.

4.5 Framework for Pattern Extraction and Feedback

The preceding sections have discussed details of the modeling, specification, and deriva-
tion of patterns of virtual collaboration at different levels of the Information Pyramid.
However, the ability to extract patterns of virtual collaboration from the data collected by
a collaboration system is something that depends on what and how much data that system
collects and makes available, which is something that can be planned and designed for.
This section therefore considers the larger context of pattern extraction in the develop-
ment and ongoing use of collaboration systems. It also considers how extracted patterns
can be maintained and eventually fed back into ongoing use.

This involves a number of relevant topic areas: (1) collaboration systems, (2) col-
laboration data, (3) pattern extraction, and (4) organizational memory. Héranee-

Chapter 4. Deriving Patterns of Virtual Collaboration 132

~
Collaboration Collaboration Collaboration
Memory Systems Data
Conceptual Ontology and - Domain > Data
Level Mappings ™ Understanding | Understanding
Structural Topologies and N System > Data
Level > Patterns =] Design - Modeling
Collaboration _| Collaboration N System N Data
Level "] Understanding =] Utilization 1 Collection
& % & % o %
4 .
Pattern Extraction Y
Pattern i Pattern
> Specification - Pattern - Recognition
Derivation A
_ A

Figure 4.20: Framework integrating collaboration memory, collaboration systems, col-
laboration data, and pattern extraction

work for Pattern Extraction and Feedbatkproposed that integrates these four different
strands into a cohesive fabticThe two primary goals of the framework are:

1. Toinfluence the design of collaboration systems so as to provide the data necessary
for the extraction of patterns of virtual collaboration.

2. To feed extracted patterns back into the use of collaboration systems.

Because of the pivotal role of high-quality data for pattern extraction, data design
and design of the collaboration system are seen as complementary and parallel activities,
affording the opportunity to more greatly control the extent and quality of data collec-
tion. Moreover, patterns extracted from collaboration data can themselves contribute to
the ongoing design of a collaboration system. A number of related research efforts are
underway in the direction of controlled data collection, carried out mainly in the field of
e-commerce and Web data mining (Ansari et al., 2000; Spiliopoulou and Pohle, 2001).

A graphical depiction of the framework is shown in Figure 4.20. It includes four
major groups of inter-woven components:

This framework is based on earlier joint work of the present author and Dr. Simeon J. Simoff (Biuk-
Aghai and Simoff, 2001).

Chapter 4. Deriving Patterns of Virtual Collaboration 133

1. Collaboration Systems:concerned with the analysis, design, implementation, and
utilization of the core collaboration support technology.

2. Collaboration Data: concerned with the analysis, design, and collection of data
related to collaboration.

3. Pattern Extraction: concerned with the analysis of data, recognition and extrac-
tion of patterns, and derivation and specification of progressively higher-level pat-
terns.

4. Collaboration Memory: concerned with maintaining concepts and making avail-
able patterns of collaboration at various levels of abstraction.

Moreover, the three components appearing in the upper part of the figure consist of
three parts, at different levels of abstraction:

1. Conceptual Level: related to elementary concepts.
2. Structural Level: related to designs and structures intended for use.

3. Collaboration Level: related to actual collaboration instances.

Between the different parts, shown as rectangular boxes in the figure, arrows indicate
flows of data and/or information. Below, each of the components of the framework is dis-
cussed in more detail, starting from the centel{aboration Systemsthen continuing
clockwise througiCollaboration DataandPattern Extractiorto Collaboration Memory

4.5.1 Collaboration Systems

The first major component of the framework is related to collaboration systems, the sup-
port systems through which collaboration is performed. When a new collaboration sys-
tem is designed and developed, certain decisions are made as to the basic features of
the collaborative work domain it should support. Such basic features may include, for
instance, synchronous vs. asynchronous work, formal vs. informal collaboration, loosely
vs. tightly coupled work, etc. Designing and developing a collaboration system, there-
fore, should entail obtaining an understanding of such domain-dependent requirements
for the system.

The activities from conception to implementation and use of the collaboration system
are shown in the vertical dimension of the box labe@allaboration Systemms Fig-
ure 4.20, proceeding top-down from the abstr&awrfiain Understandingthrough the
intermediate-level§ystem Desigrio the concreteystem Ultilization

Chapter 4. Deriving Patterns of Virtual Collaboration 134

4.5.1.1 Domain Understanding

Domain understanding (the top box in the figure) refers to the study of the domain of
collaboration to be supported by the new collaboration system, i.e. the basic features
of collaborative work touched upon above. In terms of software development, this cor-
responds to the step of requirements analysis. Decisions made at this stage determine
what kind of collaboration system will result from the development process. Some fun-
damental features to be supported by the system may also be laid down at this stage as
requirements, including: the structuring metaphor to be employed, navigation facilities,
representation of people and their abilities, provision of awareness information, access
to various information sources and tools, etc. When completed, this step contributes to
an understanding of the domain of collaborative work, its concepts, activities, objects
involved, etc. Together with feedback from the stefafta Understandingdiscussed

later), this understanding of the domain is specified in the form of a multi-level ontology
corresponding to the Information Pyramid, as well as mappings between levels.

4.5.1.2 System Design

The conceptual modeling phase is followed by the design phase (the centre box in the
figure) where the identified requirements are translated into software designs. At this
phase, decisions are made about the details of the implementation of each conceptual
element, and how each requirement is to be satisfied in the new system. If not already
fixed during the previous phase, decisions are made on the type of interface and interac-
tion mode (such as textual vs. graphical, web-based vs. client-server), representations of
collaboration spaces and of all conceptual elements in the collaboration space, abilities
and affordances these conceptual elements are to be furnished with and the relationships
they can have with one another, layout and detailed structuring of the collaboration space,
navigation paths, etc. After the design has been finalized, it is implemented as a working
collaboration system.

System design, however, extends even beyond software design and implementation.
Collaboration systems, including all those surveyed in Chapter 2, offer their users the
ability to configure and customize their collaboration spaces. This may be as simple a
matter as adding a few documents and users into a collaboration space, or as complex as
designing entire processes consisting of multiple tasks spread across several collaboration
spaces and involving multiple users, communication channels, and artefacts each. Thus
even in the finished collaboration system, a certain amount of “system design” is carried
on continuously. This second type of system design creates the structures within which
actual collaboration takes place. Different collaboration requirements, as well as working

Chapter 4. Deriving Patterns of Virtual Collaboration 135

styles and personal preferences, and not least of all familiarity with the system, influence
the way these collaboration spaces are set up, i.e. what virtual structures users create.
While the collaboration system itself provides users with virtual “spaces”, it is through
the appropriation of these spaces, their configuration, and by populating them with the
necessary props that they become “places” for collaboration, to use the terminology of
(Harrison and Dourish, 1996).

4.5.1.3 System Utilization

Once a collaboration system has been created, and collaboration spaces have been set up
and configured, these are utilized for collaboration (the lower box in the figure). At this
time, users enter the collaboration spaces and carry out the activities for which these were
designed. During this phase, it is possible that changes may be made to collaboration
spaces in response to changes in the processes carried out in them. That is, in highly
emergent processes, the activity of design of collaboration spaces may be ongoing into
their utilization, and the two activities may be interleaved with one another throughout
the collaboration space’s existence. In other cases, where a collaboration process is more
stable and predictable, the collaboration space may be utilized with no or little change
throughout its existence.

45.2 Collaboration Data

The second major component of the framework, shown in the right hand portion of Fig-
ure 4.20, is related to collaboration data. Within the framework, collaboration data is
understood to be that portion of data related to concepts within the domain of the collab-
oration system. This includes data on the objects and actions provided by the collabor-
ation system. Some of this data is of direct use within the collaboration system, while
other data exists solely for the purpose of facilitating later pattern extraction.

Traditionally, the majority of collaboration systems have only maintained a small
portion of what is here referred to as collaboration data, namely “internal data” needed for
their own operation. However, for purposes of pattern extraction, this portion of data is
almost always insufficient—either by lacking data on some of the concepts of interest, by
lacking sufficient detail, or by lacking enough contextual information to enable different
data items to be related during pattern extraction.

To remedy this deficiency and to emphasize the importance of collaboration data, the
status of design and collection of collaboration data is elevated by treating it as a separate
component within the framework. The activities related to collaboration data proceed, as
shown in the vertical dimension of the right hand portion of the figure, from the abstract

Chapter 4. Deriving Patterns of Virtual Collaboration 136

(Data Understandingthrough the intermediate-leveDéta Modeling to the concrete
(Data Collection:

4.5.2.1 Data Understanding

Data understanding is the first activity in the sphere of collaboration data. Its purpose is
to obtain an understanding of the main data elements required in a collaboration system.
Data understanding thus essentially consists of conceptual data modeling. However, the
framework does not impose a specific modeling method, so the outcome of this activ-
ity may be an E-R model, an object model, or whatever output the modeling method
produces.

The activity of data understanding goes hand-in-hand with the corresponding activ-
ity on the conceptual level of collaboration systems, i.e. idimain Understanding
While domain understanding leads to the identification of concepts in the domain un-
der investigation, data understanding leads to the identification of data elements needed
to represent these concepts. This relationship is represented by the information flow
betweenDomain Understandingnd Data Understanding On the other hand, the ac-
tivity of data understanding may also advance domain understanding, for instance by
identifying details of concepts or relationships previously not considered, perhaps even
suggesting the inclusion of additional concepts. This is represented by the reverse flow,
from Data Understandingo Domain Understanding

4.5.2.2 Data Modeling

Once data understanding is complete, the initial data requirements are transferred to the
next stageData Modeling More specifically, this activity is equivalent to the step of log-

ical, and subsequently physical, data modeling. As before, this activity too goes hand-in-
hand with the corresponding activity of collaboration systems on the same level, i.e. with
the structural-level activitysystem DesignWhile in the collaboration systems’ sphere
decisions relating to every aspect of the collaboration system are made, the parallel activ-
ity of data modeling makes decisions on details of collaboration data, their relationships,
and representation. This includes such aspects as the data model employed (relational,
object-oriented, hierarchical, etc.); details of all data elements, including fields, data type
and size; relationships among data elements; storage organization and file formats; etc.

45.2.3 Data Collection

Finally, once the data model has been completed, and subsequently implemented, the col-
laboration system is put to use and data is collected. Once again, the activity at this level,

Chapter 4. Deriving Patterns of Virtual Collaboration 137

Data Collection works in parallel with the corresponding collaboration systems activity,
System Utilizationwith data transfer from the latter to the former. That is, utilization of
the collaboration system generates data which is transferred for data collection, shown
by the flow fromSystem Utilizatiorio Data Collection

Minimally, data collection simply involves storing data in a certain form, such asin a
database or in flat files. However, it may also involve some simple processing of the data.
Such processing may be performed in preparation for subsequent pattern extraction. This
may involve sorting, grouping, or other operations. These processing steps are driven by
the decisions made during the data modeling phase, indicated by the arrow bBataen
ModelingandData Collectionin Figure 4.20. The aim of data collection is thus not only
to make data available, but ideally to make data available in a form which is ready for
pattern extraction without the need for additional pre-processing.

45.3 Pattern Extraction

The third major component of the framework is related to pattern extraction, shown as
the horizontal box at the bottom of Figure 4.20. Pattern extraction is concerned both
with identifying new patterns of virtual collaboration, as well as with obtaining instances
of those patterns from collaboration data, using the methods described eatrlier in this
chapter. It consists of three activities, shown right to left in the box labB&tern
Extraction proceeding fronPattern RecognitionthroughPattern Derivation to Pattern
Specification

4.5.3.1 Pattern Recognition

The first activity related to pattern extraction is the recognition of patterns in the source
body of data (shown as the right-most box in the figure). The data that forms the input
to this activity is obtained from the collaboration system, which collects it (in activity
Data Collectior) in a form as previously designed during the activityDafta Modeling

This source data is analysed to first identify instances of elementary concepts, i.e. objects
and actions at the base level of the Information Pyramid. Once instances of these objects
and actions have been recognized in the data, instances of action patterns involving these
objects and actions are extracted. The recognition of instances of objects and actions,
and the extraction of action patterns, draws upon the corresponding classes previously
identified and specified during the activity Dbmain Understandingnd provided by
Ontology and Mapping&iscussed later).

Chapter 4. Deriving Patterns of Virtual Collaboration 138

4.5.3.2 Pattern Derivation

Once instances of patterns at the base level of the Information Pyramid have been recog-
nized, these provide the input for deriving instances of higher-level patterns (represented
by the arrow fromPattern Recognitiomo Pattern Derivation. That is, from instances of
base-level action patterns identified durigttern Recognitioninstances of action pat-

terns on the next-higher level may be derived. These instances of derived patterns may
then in turn be used to identify instances of patterns on the next-higher level, and so on
up to the top level of the Information Pyramid.

Besides deriving instances of patterns, this activity may also identify new classes of
action patterns not previously observed. While action patterns on the micro and meso
levels of the Information Pyramid can be completely specified, it is not possible to com-
pletely specify all possible action patterns on the macro levels of the Information Pyra-
mid, as these are infinite in number (cf. the discussion in Section 4.4). Particularly in the
case of collaborative processes that are emergent, new configurations of collaboration
spaces, and networks of related collaboration spaces, are created by the collaboration
system’s users. These may be identified by drawing upon and analysing instances of
lower-level objects, actions, and action patterns. As discussed earlier, in Section 4.4, this
activity can be supported through information visualization. The outcome are new classes
of action patterns on the macro levels of the Information Pyramid which contribute to an
ever-growing ontology of the given collaboration system.

Both the derivation of instances of action patterns, as well as the identification of
new classes of action patterns draws upon definitions of classes of the concepts involved,
as well as definitions of mapping functions, both of which, as above in the case of the
Pattern Recognitiomctivity, are provided byontology and Mapping&iscussed later).

4.5.3.3 Pattern Specification

The last step of pattern extraction is the representation of the discovered patterns in a form

corresponding to the specification of the related classes in the ontology. This consists of

the specification of both discovered instances of patterns, as well as newly derived classes

of patterns. The input to this activity is produced by the activikaiern Recognition

(for instances of patterns) arRhttern Derivation(for both instances and new classes

of patterns). As with these earlier two activities, pattern specification draws upon the

existing specification of elementary classes (namely of objects and actions, which are the

basic building blocks of action patterns), as well as that of other action pattern classes.
Extracted patterns are depositeddallaboration Memory newly discovered pattern

Chapter 4. Deriving Patterns of Virtual Collaboration 139

classes feed intdopologies and Patternsvhile discovered instances of patterns feed
into Collaboration Understandingthis is discussed in more detail below).

4.5.4 Collaboration Memory

The final major component of the framework is the box labé&etlaboration Memory
shown in the left hand portion of Figure 4.20.

Chapter 2 discussed organizational memory as one of the core areas which constitute
the problem domain of this research. There, the distinction between declarative and
procedural memory was made, and the need for capturing more of the procedural aspect
of organizational work processes was pointed out (cf. pp. 59-60). Applied to virtual
collaboration, this suggests that there is value in retaining and later drawing on historical
records of such collaboration. Such records may be referenced when setting out on new
virtual collaboration, to “see how others have done it”, and perhaps to reuse and re-
enact parts of others’ experience. They also help provide awareness on what has been
“going on” during collaboration. In this way, they have the potential to help address the
challenges posed in Chapter 1 (cf. pp. 6-8).

Here, the notion of aollaboration memorys proposed, building upon the suggestion
of Conklin to link groupware with organizational memory (Conklin, 1993). Collabora-
tion memory is defined as follows:

Definition 19 A collaboration memoryconstitutes one part of an organi-
zational memory, consisting of records of procedural aspects of collaborative
activity.

O

That is, an organizational memory is understood to consist of multiple parts (cf. also
(Ackerman and Halverson, 2000)), of which collaboration memory is but one. These dif-
ferent parts of organizational memory each capture different aspects of an organization’s
activity and outcomes, and should be regarded as complementary. That is, while some
parts of the overall organizational memory may contain declarative descriptions of, say,
a problem and the resulting solution that was devised for it, the collaboration memory
complements this with a procedural description of the collaboration that brought about
the solution. In the case of virtual collaboration, these procedural descriptions are the
patterns of virtual collaboration discussed in this and the preceding chapter.

Each of the parts of collaboration memory in this framework is discussed below,
proceeding top-down fror@®ntology and MappingghroughTopologies and Patterns
Collaboration Understanding

Chapter 4. Deriving Patterns of Virtual Collaboration 140

45.4.1 Ontology and Mappings

The first part of the collaboration memory is related to maintaining the ontology of ele-
mentary concepts on the different levels of the Information Pyramid, and mappings be-
tween these levels. This consists of specifications of objects and actions, which form the
basic “building blocks” for more complex entities such as action patterns. These objects
and actions are specified using information on these basic concepts that is obtained from
the activity ofDomain Understandingthis is indicated by the arrow from that activity to
Ontology and Mappings

The ontology of these elementary concepts and mappings, as well as patterns (dis-
cussed below), feeds into each activity belongin@attern Extraction That is, pattern
recognition, derivation, and specification rely on these concepts and mappings in order
to recognize instances of these concepts in the source data, to map lower-level concepts
to higher-level concepts, and to finally specify extracted patterns in a form according to
the ontology’s definition of the concepts involved. This is indicated by the arrows from
Ontology and Mappingt each of the three boxes Rattern Extraction

4.5.4.2 Topologies and Patterns

The second part of the collaboration memory is related to maintaining definitions of
classes of patterns of virtual collaboration. These are expressed in terms of the elemen-
tary concepts of objects and actions deposited irCthtlogy and Mappingpart of the
collaboration memory (this is indicated by the arrow from that pafdpologies and
Patterng. Thus, as seen in the discussion of action patterns in Chapter 3, a given action
pattern class usually contains references to multiple object and action classes. In this part
of the collaboration memory, onlglasseof patterns are deposited, not actual instances

of these classes.

Patterns deposited at this level can be of use in the design of new collaboration spaces.
That is, when a new collaborative task or process is being embarked on, existing patterns
of the same or similar tasks or processes can be referenced to aid in the setup of the new
collaboration space(s) (this is indicated by the arrow frimpologies and Patternt®
System DesignThese retained patterns thus constitute certain reusgiéogiesof the
structure of collaboration spaces.

Together with elementary concepts of objects and actions from the p@ritofogy
and Mappingsthe patterns in this part of the collaboration memory feed into the activi-
ties of Pattern Extractior—as was discussed above. Again, this is indicated by the arrows
from Topologies and Patterr®e each of the three boxes Hattern Extraction

On the other hand, durinBattern Extractionnew classes of patterns may be dis-

Chapter 4. Deriving Patterns of Virtual Collaboration 141

covered. Once these are specified in the appropriate form, referencing the elementary
concepts of the objects and actions involved, these feed back into the collaboration mem-
ory in the part ofTopologies and Patternghus becoming available for later use.

4.5.4.3 Collaboration Understanding

The third part of the collaboration memory is related to maintaining instances of patterns
of virtual collaboration. These are expressed as instances of the relevant pattern classes
that are deposited in thi@pologies and Patternsart of the collaboration memory (this is
indicated by the arrow from that part €@ollaboration Understanding These instances
express how collaboration is actually being performed, by capturing actual values for the
attributes of the collaboration that make up the corresponding pattern classes. This may
also includederived attributeshat characterize features of the collaboration, such as the
attributes measuring properties of group discussion shown in the example in Table 3.3 on
page 83.

The source of these instances of patterns of virtual collaboration is the block of activi-
ties of Pattern Extraction There, these instances of patterns are extracted from the source
data and specified in the form of instances of the corresponding classes of patterns. This
is indicated by the arrow frorRattern Specificatioto Collaboration Understanding

The instances of patterns contained in this part of collaboration memory can provide
an understanding of the collaboration to those requiring it—members of the virtual teams
themselves, or other stakeholders such as management. For example, it can identify what
main types of activities were conducted within a collaboration space, how the activi-
ties were carried out over time, what differences exist in the activity of different people
within the collaboration space, etc. Thus they have the potential to serve as an awareness
resource within the collaboration spaces from which they originated. This is indicated by
the arrow fromCollaboration Understandingp System Utilization

4.6 Summary

This chapter has elaborated on the extraction and derivation of patterns of virtual collab-
oration from the data collected from a collaboration system.

It was proposed that this process of pattern extraction and the derivation of higher-
level patterns requires an ontology of concepts and mappings related to each level of the
Information Pyramid to be specified. A modeling method for creating such an ontol-
ogy step-by-step, starting from the lowest level and working its way up to the top level,
was presented. In order to actually specify the ontology, both a textual and a graphical

Chapter 4. Deriving Patterns of Virtual Collaboration 142

notation were introduced.

Details of several issues related to the specification of the ontology were given. Re-
gardless of the actual collaboration system for which an ontology is to be created, a set of
common classes can be defined, thus formithgsefor the new ontology. When iden-
tifying patterns of virtual collaboration according to the specifications contained within
the ontology, it may be necessary to distinguish between diffeesgionsvithin which
the patterns’ constituent actions take place. For the mapping of the ontology’s concepts
across levels of the Information Pyramid, principles and mechanisms were developed
which distinguish between three different kinds of correspondences of concepts. Once
correspondences have been identifiledpping functionsire specified which transform
concepts across levels.

The degree of completeness that can be achieved in the specification of patterns de-
pends on the level of the Information Pyramid being specified, decreasing from bottom
to top level. This is paralleled by a shift of the source of patterns from the collaboration
system to its users. To facilitate the recognition of patterns on the highest levels of the
Information Pyramid, it is proposed to employ techniquemfifrmation visualization

Finally, a Framework for Pattern Extraction and Feedback was proposed which places
the activity of pattern extraction and derivation in the larger context of the development
and utilization of collaboration systems. Moreover, the framework suggests how discov-
ered patterns can be retained in a special type of organizational memory teottzdd
oration memoryas well as how these retained patterns can feed back into the design and
use of collaboration spaces.

Having detailed the modeling and transformation of information about virtual col-
laboration in this and the preceding chapter, the following chapter goes on to apply the
proposed concepts and methods to the extraction of patterns of virtual collaboration from
an actual collaboration system.

Chapter 5

Case Study: Modeling and Pattern
Extractionin L IVENET

The previous two chapters have detailed the concepts and methods involved in modeling
and extracting patterns of virtual collaboration. It was shown that this involves on the one
hand the specification of an ontology of concepts in the domain of collaboration and for
the particular collaboration system that constitutes the source of data; and on the other
hand the specification of mappings for correspondences between concepts on different
levels of abstraction. Given these two, the models and the mappings, it is possible to
transform source data that represents detailed, small-scale activity through successive
mappings into abstract representations of large-scale collaborative activity, in the form of
patterns of virtual collaboration.

This chapter demonstrates the use of the concepts and methods by means of a case
study, providing some degree of validation of their plausibility and applicability. The
given case study involves student users engaged in the collaborative preparation of re-
ports, using a particular collaboration systemy®&NET, and the data collected by it
(LIveNET was first introduced in Chapter 2, pp. 45—-48). Since its initial development,
this system has evolved over several versions; the material in this chapter is based on
LIVENET version 2.4. LvENET has been used over the course of several semesters to
support courses involving hundreds of users, including students and faculty at the Uni-
versity of Technology, Sydney as well as other institutions. The testing and on-going de-
velopment of LVENET that has led up to version 2.4 have produced a well-functioning
system that is a reliable source of data for use in this case study.

As presented in the previous two chapters, both the concepts and methods proposed
are generic and are not limited to any specific collaboration system, type of users, or ac-
tivity. As is the case in any case study, the application of concepts and methods here is

Chapter 5. Case Study: Modeling and Pattern Extraction in LIVENET 144

naturally specific to the particular collaboration system, users, and activities that are the
subject of this case study. However, this specific application of concepts and methods
in the given case study should not be regarded as implying any limitation in their appli-
cability to cases similar to the one presented here. On the contrary, since the concepts
and methods developed in this thesis are generic by design, they can be equally applied
in other collaboration systems, with other types of users, as well as with other types of
activities.

The following two sections concentrate, respectively, on the specification oftee L
NET ontology, and on the application of the ontology to actual data collected from the
LIVENET system.

5.1 Specification of the LvE NET Ontology

The first step in the process leading to the extraction of patterns of virtual collabora-
tion consists of modeling the concepts of the Information Pyramid for the collaboration
system that is the source of data, in this case tive NET system. This produces an on-
tology consisting of specifications of classes of concepts, as well as mappings between
corresponding classes across levels. The method followed is the one described in Chap-
ter 4, and briefly outlined below:

1. Identify the base level of the Information Pyramid for the given system.
2. Model the base level.

3. Model the next-higher level.

4. Define mappings between the two levels just modeled.

5. Repeat the previous two steps until the top level of the Information Pyramid is
reached.

For the modeling of the VvENET system, each of these steps is carried out below.
However, as a complete specification of the ontology fietENET would fill many pages
and would go beyond the scope of this thesis, specification is mainly illustrated in the first
few steps below, while detailed specification is omitted in later steps. The specifications
of concepts that are shown lead from detailed ones on lower levels up to a final action
pattern of manuscript preparation at the process level.

Chapter 5. Case Study: Modeling and Pattern Extraction in LIVENET 145

5.1.1 Step 1: Identifying the Base Level

In the case of the IvENET collaboration system, a number of information sources exist
(the level of each of these is shown in parentheses):

e Web server log(infrastructure level): the lvENET system is web-based, and so
records of user interactions are maintained in the web server log. These records
contain mostly dynamic information, and only to some extent static information.
However, both dynamic and static information are expressed in terms of web page
accesses, and as the requested pages are themselves dynamically produced, it is
difficult to relate this information to system-level entities.

e Database transaction log(infrastructure level): the VENET system’s applica-
tion data is stored in a database management system (DBMS), and so the trans-
action log of the DBMS constitutes a record of dynamic information. This log
contains great detail, however its focus are the operations accessing or manipulat-
ing data contained in thellzENET database, rather than the data itself.

e Database tablegsystem level): LvENET application data is stored in a relational
database. Information on different kinds of entities, such as users, documents,
workspaces, etc., are stored in separate database tables. This information reflects
the current state of each\L ENET entity, but not its history.

e LIVENET server log(system level): LvENET is implemented as a client-server
system, with the server receiving requests (commands) from the client, which it in
turn carries out. These client requests are recorded on the server side in the form
of a server log. It contains details about the types of requests, as well as references
to relevant LVENET entities such as workspaces, users, etc. The server log thus
constitutes a detailed source of system events.

Given that both static and dynamic information are available on the system level
(contained in application data and system events, respectively), itis not necessary to make
use of the infrastructure level data sources. Therefore the base level of the Information
Pyramid for LVENET is thesystem level

5.1.2 Step 2: Modeling the Base Level (System Level)

Given that the system level has been identified as the base level, its concepts can now
be modeled. As described in Section 4.1.2 (pp. 94-95), this consists of the steps of
identifying objects, actions, and action patterns, and specifying these concepts.

Chapter 5. Case Study: Modeling and Pattern Extraction in LIVENET

146

5.1.2.1 Step 2.1: Identifying Objects

On the system level, information related to objects iIRBENET is deposited in a rela-
tional database consisting of 16 tables. These contain information on following 18 types

of objects, most of which are stored in separate database tables:

Object Name

Description

Action

Background

Block
Discussion
Document
Forum
Message

Message-Rule

Message-Type
Notification-Rule

Object

Participant
Role
Statement
User
User-Group
Workgroup

Workspace

a tool for performing some action, callable from within a
workspace

similar to a document, but containing information that is intend
as “background material” for a given task

a collection of discussion statements

a reference to a discussion forum, as visible to the user

an artefact containing information, residing on a network serve
an internal representation of a discussion forum

a semi-structured message routed between workspaces acco
to a pre-defined message rule

a rule defining routing of messages between workspaces, bas
their message type

a defined type of a message in a workspace

a rule specifying which user to notify by external email when a
statement is posted in a discussion forum

a thing of a particular type residing in a workspace; Document,

Background, Action, and Discussion are types of objects

a user occupying a particular role in a particular workspace
an organizational role occupied by users in a workspace

a statement posted in a discussion forum

a person registered in the system

a collection of users

a conceptual entity grouping together users and workspaces
a collaboration space

ed

2

rding

ed on

Each of these entities needs to be modeled as an object concept in the system-level

part of the ontology.

Chapter 5. Case Study: Modeling and Pattern Extraction in LIVENET 147

5.1.2.2 Step 2.2: Identifying Actions

System-level dynamic information is contained in a server log file consisting of log
records. These capture information on commands performed (i.e. actions), and contain
references to system-level objects involved. In the casev#MNET, technical documen-
tation of all server commands exists, making the identification of the set of system-level
actions triviat. In total, LIVENET has 70 different commands, thus corresponding to 70
actions, listed in brief below:

Action Name Description

Add-Block Add a new block to a forum

Add-Forum Add a new forum

Add-Group-User Add a user to a group

Add-Message Add a message

Add-Msg-Rule Add a new message rule to the current workspace

Add-Msg-Type Add a new message type to the current workspace

Add-Notify Add a notification email address

Add-Object Add an object to the current workspace

Addparticipant Add a new participant to the current workspace

Add-Role-Object Assign an object to a role

Add-Statement Add a new statement to a block

Add-User Create a new user

Change-Path Change the path of an object

Change-Type Change the type of an object

Create-Workgroup Create a workgroup

Create-Workspace Create a workspace

Delete-Block Delete a block from a forum

Delete-Forum Delete a forum

Delete-Group-User Delete a user from a group

Delete-Message Delete a message

Delete-Msg-Rule Delete a message rule from the current workspace

Delete-Msg-Type Delete a message type from the current workspace

Delete-Notify Delete a notification email address

Delete-Object Delete an object from the current workspace

Deleteparticipant Delete a participant from the current workspace
continued...

1For other collaboration systems which do not have such documentation, the set of commands has to
be discovered through examination of the server log.

Chapter 5. Case Study: Modeling and Pattern Extraction in LIVENET

148

Action Name

Description

Deleterole
Delete-Statement
Delete-User
Delete-Workgroup

Delete-Workspace
Edit-Statement
Edit-User
Exe-External
Get-All-Objects
Get-All-Workgroups
Get-Block-Tree
Get-Led-Workgroups
Getlogin
Get-Msg-Rules
Get-Msg-Types
Getmyworkspaces

Get-Namevalues
Get-Own-Workspaces
Getparticipants
Get-Role-Messages
Get-Role-Objects
Getroles
Get-Role-Templates

Get-Statement

Getstatistics
Get-User-Email-Homepages
Get-User-Emails
Get-User-Names
Get-User-Profiles

Get-Users
Get-Users-In-Group

Delete a role from the current workspace
Delete a statement

Delete a user

Delete a workgroup and all workspaces in the
workgroup

Delete a workspace

Edit an existing statement

Edit an existing user

Launch an external program

Get all the objects of the current workspace
Get all the workgroups in the system

Get the statement tree of a block

Get workgroups of which the current user is a leads
Get login information of the specified user

Get the message rules of the current workspace
Get the message types of the specified workspace
Get workspaces of which the current user is a
participant

Get server configuration parameters

Get workspaces of which the current user is the ow
Get all participants of the current workspace

Get all the messages the current user can access
Get the objects that a specific role can access
Get roles of a given workspace

Get roles and their permission templates of a given
workspace

Get a statement
Get server statistics

Get all users’ email addresses and homepage URL

Get all users’ email addresses
Get all users’ names

Get all users’ profiles

Get all users’ information

Get all the users in a given group

ner

S

continued...

Chapter 5. Case Study: Modeling and Pattern Extraction in LIVENET 149

Action Name Description

Get-Users-In-Mygroups Get all the users in the groups of which the current
user is a leader

Get-Workspace-Tree Get workspace tree

Get-Ws-Objects Get objects owned by the current user

Give-Ownership Change the owner of the current workspace to another
user

Login Log a user in

Logoff Log a user off

Modify-Workspace Modify an existing workspace

Newrole Create a new role in the current workspace

Open-Object Open an object in the current workspace

Remove-Role-Object Remove an object from a role

Send-Email Send emaill

Set-Role-Template Set a role’s permission template

Set-Role-Url Set arole’s URL

Setworkspace Enter a workspace

Most of these actions take one or more action attributes (some take as many as ten).
Action attributes may provide information needed for the execution of the action, and
may also identify objects in thellZENET database that are involved in the action.

5.1.2.3 Step 2.3: Identifying Action Patterns

To identify action patterns involving the actions identified above, the specific action con-
text involved in each action has to be identified too. This can be discovered by inspecting
the source data and determining the action context associated with each action.

According to Definition 16 (p. 69), “an action context is the set of information identi-
fying the subject, referent, location, and time of an action.” In the case of the commands
recorded in the LVENET server log, information on context is included in each log
record. An example of three log records was shown earlier, in Section 3.4.1 (p. 78), and
the structure of each log record was shown in Table 3.1 (p. 79). The four parts of the
action context provided in IVENET's server log records are:

Subject: identification of the action performer

e user performing the action

e role of the user performing the action

Chapter 5. Case Study: Modeling and Pattern Extraction in LIVENET 150

Referent: that which is being acted upon
e reference to the object being affected by the action
Location: identification of the logical/virtual location of the action

e workgroup in which the action occurred
e workspace in which the action occurred

e session in which the action occurred
Time: moment in time of the action’s performance
¢ timestamp of the action

The detailed content of each action context depends on the action which it belongs to.
For instance, th@dd-Statement action, which adds a discussion statement to an object
of type Block, takes a reference to thdock to which the statement is being added as
its referent (all other parts of the action context are as described above). On the other
hand, theLogin action, which logs a user into the\ENET system, has no referent (no
object is being affected by the login action), no subject (because at the time the action is
performed, no reference to the performing user exists yet), and besides a session identifier
no location information.

Thus in order to identify action patterns fonMENET's system-level actions, the
action context has to be identified for each action individually. However, all actions have
structurally only one possible context. That is to say, if a given type of action includes,
for example, a role as its subject and a discussion forum as its referent, that same type of
action will always include those two types of objects in those parts of the action context,
and cannot be used, say, without a discussion forum or with two roles.

Thus the action patterns can be identified in a straightforward manner by identifying
the object types involved in the action context of each action type. Consequently there
are 70 action patterns corresponding to the 70 actions identified earlier.

5.1.2.4 Step 2.4: Specifying Concepts

The object, action, and action pattern concepts identified above now need to be specified.
This specification can be based on the common classes defined in Section 4.2.1 (p. 101).
Thus the classes can be created as subclasses of the commonglasses-0object,
Sys—-Lvl-Action, andSys-Lvl-Action-Pattern. Below, this is illustrated for the
objectStatement and actionAdd-Statement, as well as the action pattepaid-Statement-

Pattern involving both this object and this action.

Chapter 5. Case Study: Modeling and Pattern Extraction in LIVENET 151

The first classL.N-Statement, models the object conceftatement, a statement in
a LIVENET discussion forum:

(defclass LN-Statement "A statement posted in a discussion forum."
(is-a Sys-Lvl-Object)
(role concrete)
(single-slot Block
(type INSTANCE)
(allowed-classes LN-Block)
(cardinality 1 1))
(single-slot StatementNo
(type INTEGER)
(cardinality 1 1))
(single-slot Type
(type STRING)
(cardinality 0 1))
(single-slot Originator
(type INSTANCE)
(allowed-classes LN-User)
(cardinality 1 1))
(single-slot ParentStmt
(type INSTANCE)
(allowed-classes LN-Statement)
(cardinality 0 1))
(single-slot Heading
(type STRING)
(cardinality 1 1))
(single-slot Text
(type STRING)
(cardinality 0 1))
(single-slot ArtefactLink
(type STRING)
(cardinality 0 1))
(single-slot DateTimeSent
(type INTEGER)
(cardinality 1 1)))

The class name has the prefiX- to indicate that it models aiENET concept.

Chapter 5. Case Study: Modeling and Pattern Extraction in LIVENET 152

LN-Statement

Block [1:1]
StatementNo [1:1]
Type [0:1]
Originator [1:1]
ParentStmt [0:1]
Heading [1:1]
Text [0:1]
ArtefactLink [0:1]

\DateTimeSent [1:1] J

Figure 5.1: System-level object clags-Statement

Using such a naming convention effectively establishes a separate namespace for each
collaboration system modeled. The class subclasses/tha.v1-0bject class, thereby
establishing that it represents a system-level object type. It has a number of slots which
can be filled with values; in this case, these are all single-slots, meaning that they can
contain only a single value. Some of these slots are intended to contain instances of
other classes, such as theiginator slot whose value is constrained to an instance of
the LN-User class (a class representingvE NET users). Moreover, each slot specifies
the allowed cardinality, in this case being either.@, meaning that a value for this
slot is optional, or 1..1, meaning that a value for this slot is required. A graphical
representation of the class is shown in Figure 5.1.

Next, the class.N-Add-Statement is specified, modeling the action conceyaid-
Statement which adds a discussion statement to a discussion forum:

(defclass LN-Add-Statement "An action that adds a statement to a
discussion forum."
(is—a Sys-Lvl-Action)
(role concrete)
(single-slot Heading
(type STRING)
(cardinality 1 1))
(single-slot Text
(type STRING)
(cardinality 0 1)))

This action is very simple, having only two attributes, the statement heading and text
which are being added to the discussion forum. In graphical form, this action class is

Chapter 5. Case Study: Modeling and Pattern Extraction in LIVENET 153

/ LN—Add—Statement\
Heading [1:1]
Text [0:1]

Figure 5.2: System-level action class-Add-Statement

shown in Figure 5.2.

When this action is performed inlENET, it is situated within a context that in-
cludes a subject consisting of the user and role carrying out the action; a referent that
identifies the block to which the new statement is to be added; a location identifying
the workgroup and workspace, as well as the session, in which the action occurs; and a
timestamp for the moment when the action is performed.

When modeling the action pattern corresponding to this action, both the action itself,
as well as all elements of its context need to referenced. Below is the specification of class
LN-Add-Statement-Pattern corresponding to action pattern concept-Statement-

Pattern:

(defclass LN-Add-Statement-Pattern "An action pattern that adds a
statement to a discussion forum."
(is—a Sys-Lvl-Action-Pattern)
(role concrete)
(single-slot Action-Instance
(type INSTANCE)
(allowed-classes LN-Add-Statement)
(cardinality 1 1))
(single-slot User
(type INSTANCE)
(allowed-classes LN-User)
(cardinality 1 1))
(single-slot Role
(type INSTANCE)
(allowed-classes LN-Role)
(cardinality 1 1))
(single-slot Block
(type INSTANCE)
(allowed-classes LN-Block)
(cardinality 1 1))

Chapter 5. Case Study: Modeling and Pattern Extraction in LIVENET 154

/ LN—Add—Statement—\
Pattern

Action—Instance [1:1]

User [1:1]

Role [1:1]

Block [1:1]
Workgroup [1:1]
Workspace [1:1]

Session-Instance [1:1]
Timestamp [1:1]

Figure 5.3: System-level action pattern classAdd-Statement-Pattern

(single-slot Workgroup
(type INSTANCE)
(allowed-classes LN-Workgroup)
(cardinality 1 1))
(single-slot Workspace
(type INSTANCE)
(allowed-classes LN-Workspace)
(cardinality 1 1))
(single-slot Session-Instance
(type INSTANCE)
(allowed-classes Session)
(cardinality 1 1))
(single-slot Timestamp
(type INTEGER)
(cardinality 1 1)))

Here the class’s first slot references an instance of the action of kypeld-state-
ment, While all remaining slots constitute the action’s context. This class is shown in
graphical form in Figure 5.3.

Specified classes in the ontology usually are related to other classes. This was seenin
the specification of theN-Add-Statement-Pattern class which references instances
of seven other classes. Represented graphically, the relationships between the action pat-
tern and its action on the one hand, and all involved objects on the other hand become
visible. This is shown in Figure 5.4 which shows the action patt&ridd-Statement -
Pattern together with actioriN-Add-Statement and six related objects (arrows sym-
bolize thereferenceselationship).

Chapter 5. Case Study: Modeling and Pattern Extraction in LIVENET 155

/ LN-Block \A ;/LN—Add—Statement\

BlockID [1:1] Heading [1:1]
ForumName [1:1] Text [0:1]
BlockName [1:1]

BlockType [1:1]

SourceGoal [1:1]
BlockGoal [1:1]

LN-User

Owner [1:1] ﬁ_N—Add—Statement—\ Name [1:1]
DateTimeCreated [1:1] Pattern Password [1:1]
FirstStatement [0:1] Action—Instance [1:1] Email [0:1]

DateJoined [0:1]

User [1:1]
/ LN-Workspace \4 ;g';‘([[113'11]]
Name [1:1] Work T
. group [1:1] LN—Role
Owner [1:1] Workspace [1:1]

DateCreated [0:1]
Workgroup [1:1]
ParentWorkspace [0:1]
WorkspaceType [0:1]
Goals [0:1]
WsOptions [0:1]
Milestones [0:1]
Surprises [0:1]
Terminology [0:1]
Plans [0:1]

WorkspaceAgent [O:ly

Workspace [1:1]
Name [1:1]
DateCreated [0:1]
RoleAgent [0:1]
RoleType [0:1]
Permissions [0:1]

Session-Instance [1:1] T
Timestamp [1:1]

Session

SessionID [1:1]
Session—-Elements [1:7]

‘/ LN-Workgroup \
VK Name [1:1] /

Figure 5.4: Action pattern classi-Add-Statement-Pattern and related action and
object classes

The above specifications of one object, one action, and one action pattern are illus-
trative of the specifications of all other of W\ ENET’s system-level concepts, which are
specified in the same manner. Once all these concepts have been specified, modeling of
the base level is complete.

5.1.3 Step 3: Modeling the User Level

Modeling of the user level proceeds in the same manner as modeling of the system level.
The first step is the identification of objects, actions, and action patterns, followed by their
specification. However, unlike on the system level, which is the base level, modeling of
the user level may not have to model every concept on this level in detail. Indeed, some
concepts on this level may be identical to those on the lower level. Others may resemble
those on the system level, but may differ only in some details, and may thus need to be
modified for this level. However, some concepts may be entirely new on this level and
thus need to be fully specified.

Chapter 5. Case Study: Modeling and Pattern Extraction in LIVENET 156

5.1.3.1 Step 3.1: Identifying Objects

In LIVENET, user-level objects correspond in large part to those on the system level.
However, the objects on this level are those as seen through the user view, i.e. as they are
perceived by the user. For some object types, this view does not necessarily correspond
to that on the system level. For instance, for implementation reasons the system level
has three objects to capture different aspects of a discussion forum (dbigetission,

Forum, andBlock). In the user view, however, no such separation exists, and a discussion
forum is therefore a single object. Identifying the objects on this level thus consists of
examining the collaboration system from the user’s point of view and determining what
objects are present in this view. These objects then need to be compared with those on
the system level to determine if they are unchanged or modified.

Identifying unchanged objects
The following ten system-level objects are unchanged on the user level:

e Action

e Background

e Document

e Message

e Message-Rule

e Message-Type

e Role

e User

e Workgroup

e Workspace

Identifying modified objects

As mentioned earlier, the objects related to discussions differ to some extent between the
system and user levels. On the system level, discussions were represented as a discussion
object, with an associated forum, which in turn has an associated block, which in turn
contains a number of discussion statements. This arrangement is shown in Figure 5.5 (a).

Chapter 5. Case Study: Modeling and Pattern Extraction in LIVENET 157

/ Discussion \
N /
references
Y
/ Forum \
N
belongs-to
/ Block \ fDiscussion—Forum\
N) / N) /
belongs-to belongs-to
/ Statement \ f Statement \
N / N /
(a) System-level discussion (b) User-level discussion

Figure 5.5: Different views of discussions on system and user levels

On the user level, i.e. as perceived through the user view, discussions are much sim-
pler: to the user there are simply discussion forums consisting of discussion statements.
This arrangement is represented in Figure 5.5 (b). Thus the olyactsssion, Forum,
andBlock are replaced with a single objeBiscussion-Forum. The objeciStatement, on
the other hand, remains, but it now contains a reference tDitle@ssion-Forum which
it belongs to, whereas on the system level it referred t@tbek it belonged to.

Thus the modified concept on this level is the obf@atement. Although the mean-
ing of this concept remains unchanged, its details differ slightly from the level below.

Identifying new objects

As the preceding discussion mentioned, the objp&isussion, Forum, andBlock are re-
placed by the objedbiscussion-Forum. This therefore constitutes the only new concept
on this level:

Discussion-Forum: a forum for the posting of discussion statements
In summary, of the 18 objects represented in the system-level part of the ontology, ten

remain unchanged on the user level, and one is slightly changed. Seven objects, most of
which are “internal” to the operation ofiiZENET, and which thus do not appear in the

Chapter 5. Case Study: Modeling and Pattern Extraction in LIVENET 158

user view of the system, are omitted from the user level; theseBdwek, Discussion,
Forum, Notification-Rule, Object, Participant, andUser-Group. On the other hand, one
new objectDiscussion-Forum, has been introduced.

5.1.3.2 Step 3.2: Identifying Actions

User-level actions are primarily identified through exploration of the user interface: an
interface function that can be performed by the user constitutes a user-level action. Thus
by exhaustively exploring every function in the user interface, the set of actions can be
determined.

As with objects, the user level's actions too differ from the system level. However,
in the case of actions the difference is greater, as the commands which form the set of
actions on the system level are all “internal”, i.e. they are not exposed to the user view.
While there is some correspondence between certain user-level and system-level actions,
most user-level actions correspond not just to one, but to a sequence of several system-
level actions. Moreover, the number of action attributes which are associated with a
user-level action usually differs from the corresponding one on the system level, as some
of these are too detailed to be of interest at this level, and are thus omitted. As a result,
the set of user-level actions is for the most part disjoint from the corresponding set of
system-level actions.

Allin all, L IVENET has following 73 user-level actions:

Action Name

Description

Add-Discussion-Forum-Notification

Add-Background

Add-Document

Add-User-To-Workgroup
Add-User-To-Workgroup-And-Workspace

Add-User-To-Workspace
Add-Workflow-Rule
Assign-Action
Assign-Background
Assign-Discussion-Forum
Assign-Document
Copy-Workspace

Add a notification email address to a
discussion forum
Add a background to a workspace
Add a document to a workspace
Add a new user to a workgroup
Add a new user to a workgroup and a
workspace
Add a user to a workspace
Create a workflow rule
Assign an action to a user
Assign a background to a user
Assign a discussion forum to a user
Assign a document to a user
Copy a workspace

continued...

Chapter 5. Case Study: Modeling and Pattern Extraction in LIVENET

159

Action Name

Description

Create-Action
Create-Discussion-Forum
Create-Message-Type
Create-Role
Create-Subworkspace
Create-Workgroup
Deassign-Action
Deassign-Background
Deassign-Discussion-Forum
Deassign-Document
Delete-Action
Delete-Background
Delete-Current-Workspace

Delete-Discussion-Forum

Delete-Document
Delete-Message
Delete-Message-Rule
Delete-Message-Type
Delete-Other-Workspace

Delete-Role
Delete-Workgroup
Edit-Discussion-Statement
Edit-Role-Description
Edit-Role-Permissions
Edit-Workspace
Enter-User-Administration
Enter-Workspace
Invoke-Action
List-Workflow-Rules

Login

Logoff

Open-Background
Open-Discussion-Forum

Create an action

Create a discussion forum
Create a message type
Create arole

Create a workspace under the current ¢
Create a workgroup

Deassign an action from a user
Deassign a background from a user
Deassign a discussion forum from a ust
Deassign a document from a user
Delete an action from a workspace
Delete a background from a workspace
Delete the current workspace

Delete a discussion forum from a
workspace

Delete a document from a workspace
Delete a message from a workspace

Delete a message rule from a workspac

Delete a message type from a workspa:
Delete a workspace other than the currg
one
Delete a role from a workspace
Delete a workgroup
Modify a discussion statement
Edit the description of a role
Edit the permissions of a role
Edit the properties of a workspace
Invoke the user administration function
Enter a workspace
Invoke an action
Show a list of workflow rules
Login to the system
Logoff from the system
Open a background
Open a discussion forum
continued...

ne

e

ent

Chapter 5. Case Study: Modeling and Pattern Extraction in LIVENET

160

Action Name

Description

Open-Discussion-Statement
Open-Document
Open-Message
Open-Subworkspace
Post-Discussion-Statement
Refresh-Action-List
Refresh-Background-List
Refresh-Discussion-List
Refresh-Document-List
Refresh-Message-List
Refresh-Participant-List
Refresh-Role-List
Refresh-Subworkspace-List
Refresh-Workflow-Rule-List

Remove-Discussion-Forum-Notification

Remove-User-From-Workgroup
Remove-User-From-Workspace
Replace-Background
Replace-Document

Send-Email

Send-Message
Switch-Workspace
Update-User-Info
Upload-Background
Upload-Document
View-Incoming-Messages
View-Workflow-Rule-List
View-Subworkspace-List

Open a discussion statement

Open a document

Open a message

Open a workspace under the current or
Post a statement to a discussion forum
Redisplay the action list

Redisplay the background list
Redisplay the discussion statement list
Redisplay the document list

Redisplay the message list

Redisplay the participant list

Redisplay the role list

Redisplay the subworkspace list
Redisplay the workflow rule list
Remove a notification email address fra
a discussion forum

Remove a user from a workgroup
Remove a user from a workspace
Replace a background with a new one
Replace a document with a new one
Send an email

Send a message

Switch to another workspace

Update user information

Upload a background

Upload a document

Display a list of received messages
Display a list of workflow rules

Display a list of subworkspaces

e

m

Identifying unchanged actions

The following four system-level actions are unchanged on the user level:

e Create-Workgroup

e Delete-Workgroup

Chapter 5. Case Study: Modeling and Pattern Extraction in LIVENET 161

e Logoff

e Send-Email

Identifying modified actions

The following two system-level actions are modified on the user level:

e Delete-Message
e Login

Although the semantics of both of these actions are the same as on the system level,
they have slightly different or fewer action attributes on this level. For instance, while on
the system level theogin action includes a user-id and password, on the user level the
password is not included among its action attributes.

Identifying new actions

All remaining 67 actions identified above are new on this level.

Thus, in summary, of the 70 system-level actions four remain unchanged on this level,
two exist in modified form on this level, and the remaining 64 actions do not exist on the
user level. On the other hand, 67 user-level actions, based on combinations of system-
level actions, are new on this level.

5.1.3.3 Step 3.3: Identifying Action Patterns

As on the system level, for each of the actions identified above, there is one corresponding
action pattern, since each action again has structurally only one possible action context.
The basic components of the action context are the same as before:

Subject: User, Role
Referent. depends on the action involved
Location: Workgroup, Workspace, Session

Time: timestamp of the action

Once the precise action context is identified for each of the 73 actions on the user
level, the 73 user-level action patterns too can be identified.

Chapter 5. Case Study: Modeling and Pattern Extraction in LIVENET 162

Identifying unchanged action patterns

Corresponding to the actions identified above, the following four system-level action
patterns are unchanged on the user level:

e Create-Workgroup-Pattern
e Delete-Workgroup-Pattern
e Logoff-Pattern

e Send-Email-Pattern

Identifying modified action patterns

The following two system-level actions are modified on the user level:

e Delete-Message-Pattern

e Login-Pattern

Identifying new action patterns

Action patterns for all remaining 67 actions identified above are new on this level.

Thus the situation for action patterns is the same as for actions: four action patterns are
unchanged, two are modified, and 67 are new.

5.1.3.4 Step 3.4: Specifying Concepts

Having identified object, action, and action pattern concepts, these can now be specified.
This again resembles the way that concepts were specified on the system level. On the
user level, classes are specified as subclasses of the common tlasses/1-0Object,
User-Lvl-Action, andUser-Lvl-Action-Pattern. Below, this is illustrated for un-
changed, modified, and new concepts.

Specifying unchanged concepts

Static and dynamic entities, i.e. objects, actions, and action patterns, which remain un-
changed across levels do not need to be re-specified on the higher level. However, the
original specification of the concept on the lower level created its class as a subclass of
that level's class of objects (e.g. an object on the system level is defined as a subclass of

Chapter 5. Case Study: Modeling and Pattern Extraction in LIVENET 163

Sys-Lvl-Object). This marked the class as belonging to, and being available on that
level.

Therefore, in order for the same concept to be available on the higher level, its class
specification needs to be extended by adding the higher level’s class of objects as a su-
perclass (this is the case ohmodified one-to-one correspondemaentioned in Sec-
tion 4.2.3.1, p. 106). The resulting multiple inheritance of the class marks it as belonging
to, and being available on, both levels.

For instance, the system-level class-Workgroup remains unchanged on the user
level. Its specification can now be extended to includer-Lv1-Object as its su-
perclass, as shown below (where the-a slot in the third line now lists both of its
superclasses):

(defclass LN-Workgroup "A conceptual entity grouping together users
and workspaces."
(is—a Sys-Lvl-Object User-Lvl-Object)
(role concrete)
(single-slot Name
(type STRING)
(cardinality 1 1)))

The remainder of the class, however, is unchanged compared with its system-level
specification. The definition of other classes corresponding to unchanged user-level ob-
jects are extended in the same manner, and the same applies to unchanged user-level
actions and action patterns.

Specifying modified concepts

Modified concepts do not need to be specified anew in their entirety, as usually only some
detail of the existing definition has changed. Therefore, specification of these concepts
can be based on the existing definition and only needs to identify and modify those details
that require change.

This raises the question how the modified class should be created. It is obvious that
the original class cannot be changed to express the modified concept, as this would affect
both levels and thus a modified class specification which would be valid on the higher
level would be invalid on the lower level. Therefore the modified concept has to be
specified as a new class. It would be easiest to create the new higher-level class as a
subclass of the existing lower-level class, only overriding those slots which differ, but
this too is problematic: doing so would imply that instances of the higher-level class are

Chapter 5. Case Study: Modeling and Pattern Extraction in LIVENET 164

some kind of specialization of the lower-level class, and that some instances of the latter
are also instances of the former. But this is not the case; instead, every instance of the
higher-level clasgorrespondgbut is notequa) to an instance of the lower-level class.
Thus the specification of a modified concept has to be made as a new class, necessarily
also with a different name than before, and directly sub-classing its own level’'s common
base class.

An example of a modified concept $atement which has, as mentioned earlier, the
same meaning on the system and user levels, however differs slightly in detail between
these two levels. Thus, while on the system level the alasstatement, which imple-
ments this concept, has a skitock to indicate theBlock and thus thé&orum andDiscus-
sion it belongs to, on the user level these three concepts do not exist, as they have been
replaced by the new concepiscussion-Forum. Instead, a different slobisc-Forum, is
needed to identify th®iscussion-Forum which theStatement belongs to. Copying the
existing specification afN-statement (given above in Section 5.1.2.4, p. 150) as a base,
the corresponding slot can be changed to produce the new class specification below:

(defclass LN-Discussion-Statement "A statement posted in a discussion
forum."
(is—a User-Lv1-Object)
(role concrete)
(single-slot Disc-Forum
(type INSTANCE)
(allowed-classes LN-Discussion-Forum)
(cardinality 1 1))
(single-slot StatementNo
(type INTEGER)
(cardinality 1 1))
(single-slot Type
(type STRING)
(cardinality 0 1))
(single-slot Originator
(type INSTANCE)
(allowed-classes LN-User)
(cardinality 1 1))
(single-slot ParentStmt
(type INSTANCE)

(allowed-classes LN-Discussion-Statement)

Chapter 5. Case Study: Modeling and Pattern Extraction in LIVENET 165

(cardinality 0 1))
(single-slot Heading
(type STRING)
(cardinality 1 1))
(single-slot Text
(type STRING)
(cardinality 0 1))
(single-slot ArtefactLink
(type STRING)
(cardinality 0 1))
(single-slot DateTimeSent
(type INTEGER)
(cardinality 1 1)))

Note that the definition of the slatarentstmt has also been modified as a result
of the re-specification of this class for the user level, as this particular slot contains a
self-reference, i.e. it now needs to refer to an instanaaliebiscussion-Statement.
Modified user-level actions and action patterns are specified in a similar manner. For
instance, it was already mentioned that the user-level actgim differs slightly from
the corresponding system-level action by omitting the password action attribute. Thus
the specification of the user-level concept for this action is obtained by re-specifying the
class for this level, in the same manner as for the specification of abjedt scussion-
Statement above.

Specifying new concepts

The specification of new concepts on higher levels in general parallels that of the specifi-
cation of new concepts on the base level: the required classes have to be specified in full,
from scratch. However, in some cases new concepts are related to existing lower-level
concepts, and in these cases some parts of those existing definitions can flow into the new
specifications.

For instance, as identified earlier, the user-level contepbiscussion-Forum iS
new on this level and thus needs to be specified in full. However, this concept is related
to the conceptaN-Discussion andLN-Forum, and in fact some of the slots of those
two classes are also needed in the new clas®iscussion-Forum. Thus the class
LN-Discussion-Forum can reuse the specification of those slots, as shown below:

(defclass LN-Discussion-Forum "A forum for the posting of discussion

Chapter 5. Case Study: Modeling and Pattern Extraction in LIVENET 166

statements."
(is—a User-Lvl-Object)
(role concrete)
(single-slot Name
(type STRING)
(cardinality 1 1))
(single-slot Creator
(type INSTANCE)
(allowed-classes LN-User)
(cardinality 1 1))
(single-slot DateCreated
(type INTEGER)
(cardinality 0 1)))

Here, the specification of the slotme is taken from clasaN-Discussion, while
specifications of slotSreator andDateCreated are taken from clas&i-Forum.

New user-level actions need to be specified in full too, while again building on some
of the specification of system-level classes. An example of a class representing the user
actionPost-Discussion-Statement is shown below:

(defclass LN-Post-Discussion-Statement "An action that posts a
statement to a discussion forum."
(is—a User-Lvl-Action)
(role concrete)
(single-slot Heading
(type STRING)
(cardinality 1 1))
(single-slot Text
(type STRING)
(cardinality 0 1)))

With the inclusion of action context, as in the case of the system level, the corre-
sponding action pattern can be specified as follows:

(defclass LN-Post-Discussion-Statement-Pattern "An action pattern
that posts a statement to a discussion forum."
(is-a User-Lvl-Action-Pattern)

(role concrete)

Chapter 5. Case Study: Modeling and Pattern Extraction in LIVENET 167

(single-slot Action-Instance
(type INSTANCE)
(allowed-classes LN-Post-Discussion-Statement)
(cardinality 1 1))

(single-slot User
(type INSTANCE)
(allowed-classes LN-User)
(cardinality 1 1))

(single-slot Role
(type INSTANCE)
(allowed-classes LN-Role)
(cardinality 1 1))

(single-slot Discussion-Forum
(type INSTANCE)
(allowed-classes LN-Discussion-Forum)
(cardinality 1 1))

(single-slot Workgroup
(type INSTANCE)
(allowed-classes LN-Workgroup)
(cardinality 1 1))

(single-slot Workspace
(type INSTANCE)
(allowed-classes LN-Workspace)
(cardinality 1 1))

(single-slot Session-Instance
(type INSTANCE)
(allowed-classes Session)
(cardinality 1 1))

(single-slot Timestamp
(type INTEGER)

(cardinality 1 1)))

This specification resembles that of the system-level alassdd-Statement-Pat-
tern, with the exception of the slots:t ion-Instance andDiscussion-Forum which
now refer to classes that are new on the user fevel

2However, as the discussion about the mapping of concepts across levels below will show, the concepts
differ more than in only this respect.

Chapter 5. Case Study: Modeling and Pattern Extraction in LIVENET 168

Once all user-level objects, actions and action patterns have been specified in this
manner, the specification of this level is complete, and the next step, mapping of concepts,
follows.

5.1.4 Step 4: Defining Mappings Between System Level and User
Level

The previous two steps have created specifications of concepts on the system level and
user level, respectively. However, these concepts stand separate from each other. Thus
it is, for instance, not possible to tell from the specification that the user-level object
LN-Discussion-Forum is related to, and can be derived from, the system-level ob-
jects LN-Discussion and LN-Forum; or that the user-level action patterm-post-
Discussion-Statement-Pattern isS related to, and can be derived from, the system-
level action pattern.N-Add-Statement-Pattern. These relationships and mappings
across the specified classes need to be explicitly defined in the current step, in order to
enable the transformation of information from one level to the next higher level.

Section 4.2.3 (p. 106) discussed three different types of relationships between con-
cepts on adjacent levels, and how to map between them. The simplesutypedi-
fied one-to-one correspondenaeas already encountered above in the specification of
system-level concepts that are unchanged on the user level. Since the other two types of
correspondences are similar (they both require the identification and specification of map-
pings of slots across classes), a single case is presented below which illustrates the map-
ping in detail for the action pattern class-Post-Discussion-Statement-Pattern.

5.1.4.1 Step 4.1: Identifying Source and Target Concepts and Attributes

The previous step identified and specified concepts on the user level. One of these was
the actionPost-Discussion-Statement. This is a hew concept on the user level, which
does not exist in that form on the system level. However, this action corresponds to the
sequence of three system-level actions, narGelyBlock-Tree, Add-Statement, followed
again byGet-Block-Tree. This is the example that was shown in Figure 3.8 on page 80.
Now the mapping of these action concepts is shown.

To map from the system-level classes to the user-level class, first it is necessary
to identify the source of each of the slots of the target clas®ost-Discussion-
Statement. There are two slots, and consequently two slot mappings:

Chapter 5. Case Study: Modeling and Pattern Extraction in LIVENET 169

No. | Source class Source slot| Target slot
1 | LN-Add-Statement | Heading Heading
2 | LN-Add-Statement | Text Text

In this case, both slots of the target class are mapped from the same source class.

5.1.4.2 Step 4.2: Identifying Mapping Constraints

For the mapping of actions, the sequence of source actions being mapped to the target
action constitutes a constraint. In this case, a sequence of three source actions needs to
be mapped to a single target action:

Seq.No.| Source action Target action
1 LN-Get-Block-Tree
2 LN-Add-Statement LN-Post-Discussion-Statement
3 LN-Get-Block-Tree

5.1.4.3 Step 4.3: Specifying Mappings
Specifying slot mappings

Source classes need to be mapped to target classes according to the identified slot map-
pings. This means creating instances ofthess-Mapping andsimple-Slot-Mapping
classes. The following are instances representing the mapping identified above:

([Class-Mapping_02] of Class-Mapping
(Target-Class LN-Post-Discussion-Statement)
(Slot-Map

[Simple-Slot-Mapping_04]
[Simple-Slot-Mapping_05]))

([Simple-Slot-Mapping_04] of Simple-Slot-Mapping
(Target-Class LN-Post-Discussion-Statement)
(Target-Slot [Heading])

(Source-Class LN-Add-Statement)
(Source-Slot [Heading]))

([Simple-Slot-Mapping_05] of Simple-Slot-Mapping
(Target-Class LN-Post-Discussion-Statement)

(Target-Slot [Text])

Chapter 5. Case Study: Modeling and Pattern Extraction in LIVENET 170

(Source-Class LN-Add-Statement)
(Source-Slot [Text]))

The first instance is of clags ass-Mapping, identifying the target clasgN-Post-
Discussion-Statement. It contains references to the two instances of clasgle-
Slot-Mapping that follow. These in turn specify the slot mappings identified in Step 4.1
above.

Specifying action sequence mappings

For the mapping of actions, a sequence of actions on one level needs to be mapped to
a single action on the next higher level. For this purpose, the slagsnce-Mapping

was defined in Chapter 4. This class now needs to be instantiated in order to represent
the mapping of the sequence identified in Step 4.2 above. The corresponding instance is
shown below:

([Sequence-Mapping_01] of Sequence-Mapping
(Mapping-Target LN-Post-Discussion-Statement)
(Sequence-Elements

LN-Get-Block-Tree
LN-Add-Statement
LN-Get-Block-Tree))

5.1.4.4 Step 4.4: Defining Mapping Functions

Having specified the mapping of slots, and the mapping of action sequences for the given
target class, it is possible to determine how to construct instances of the target class when
the action sequence is encountered in a session. As discussed in Section 4.2.4 (p. 118),
this involves defining anapping function

For the given case of mapping to the user-level actiofPost-Discussion-State-
ment, the mapping functionreate-1n-post-discussion-statement can be defined,
as follows:

(deffunction create-ln-post-discussion-statement
(?session ?pos)
(if (and (instancep ?session)
(eq (class ?session) Session)
(integerp ?pos)
(eq (class (nth$?pos

Chapter 5. Case Study: Modeling and Pattern Extraction in LIVENET 171

(slot-get ?session Session-Actions)))
LN-Get-Block-Tree)
(eq (class (nth$ (+ ?pos 1)
(slot-get ?session Session-Actions)))
LN-Add-Statement)
(eq (class (nth$ (+ ?pos 2)
(slot-get ?session Session-Actions)))
LN-Get-Block-Tree))
then
(bind ?addstmt (nth$ (+ ?pos 1)
(slot-get ?session Session-Actions)))
(make-instance of LN-Post-Discussion-Statement
(Heading (slot-get ?addstmt Heading))
(Text (slot—get ?addstmt Text)))
(return (+ ?pos 3))
else

(return ?pos)

This function receives two input parametersgssion which holds an instance of
a session, andpos which identifies the first action, or starting position, in the session
from where to start mapping actions. The function then performs some input validation
and tests whether from the given starting position, a sequence of actiofst -Block-
Tree, LN-Add-Statement, andLN-Get-Block-Tree can be found. If all conditions are
satisfied, an instance afi-Post-Discussion-Statement iS created with slot values
taken from the corresponding slots of the instancensfadd-statement occurring in
the session. Finally, the function returns the position in the session after the matched
action sequence: if the sequence was successfully matched, the new position is the old
position plus three (for the three actions in the matched sequence), to give a new starting
position for a subsequent matching of the remaining action sequences in the session;
if the sequence was not matched, the old position is returned so that another function
can be called to attempt to match it. In this way, repeatedly cycling through all matching
functions for a session will eventually map all system-level action sequences to user-level
actions.

Mapping functions for other action mappings are created in the same manner: slot
mappings and action sequences for a given mapping of actions are identified and speci-

Chapter 5. Case Study: Modeling and Pattern Extraction in LIVENET 172

fied, then a mapping function is defined.
When all such functions have been specified, the step of mapping between system
level and user level is complete.

5.1.5 Step 5: Modeling the Collaboration Level

On the collaboration level, larger units of activity involving two or more users, as well
as involving other objects, are modeled. The main distinguishing feature of this level
compared with the user level is that actions on this level are less detailed, and are for
the most part summaries of those on the level below. For instance, the example of group
discussion shown in Figure 3.10 (p. 84) is a case in point: the collaboration-level action
Group-Discussion is a summary of multiple instances of multiple kinds of user-level ac-
tions. These and other group actions are modeled on this level. As before, the modeling
of this level is performed by modeling its objects, actions, and action patterns.

5.1.5.1 Step 5.1: Identifying Objects

Objects on the collaboration level are those as seen through the collaboration-level view.
As mentioned before, this level differs from the one below in that it considers collab-
orative actions, i.e. actions involving multiple people. The objects appearing in the
collaboration-level view are thus largely the same as the ones appearing in the user-level
view. However, some user-level objects are too detailed for consideration at this level,
and are thus not represented. For instance, whideussion-Forum is an object which

is involved in collaborative activity between two or more users, the discussion that takes
place within it is considered only at an aggregated level, not at the level of individual
instances oftatement. Thus, discussion statements do not appear in the collaboration-
level view. Similarly, the objectslessage, Message-Type andMessage-Rule are too de-

tailed constructs, and are only considered collectively in the form\dssage-Channel

object.

Identifying unchanged objects

The following eight user-level objects remain unchanged on this level:
e Action
e Background

e Discussion-Forum

Chapter 5. Case Study: Modeling and Pattern Extraction in LIVENET 173

Document

Role

e User

Workgroup

Workspace

Identifying modified objects

No objects from the user level are modified on this level.

Identifying new objects

The objectMessage-Channel is new on this level, encapsulating the three separate user-
level objectaviessage, Message-Rule andMessage-Type:

Message-Channel: a communication channel from a user to a role

5.1.5.2 Step 5.2: Identifying Actions

Actions on the collaboration level involve multiple people. In the case IgENET,
where users always perform actions in a certals, collaborative actions may thus in-
volve: (1) multiple users occupying the same role; or (2) multiple users each occupying
a different role; or (3) a combination of the two.

Identifying the set of collaborative actions on this level is performed by examining
which user-level action concept®nnecttwo or more users. Users can be connected
in two different ways: (1)direct connection, where a user-level action performed by
one user is directed at another user; orif@)jrect connection, where a user-level action
performed by one user affects an object which is subsequently accessed by another user,
thus mediatingthe effect of one user’s actions on the other user. Collections of such
user-level actions constitute collaboration-level actions. Therefore, there is no one-to-
one correspondence between user-level actions and collaboration-level actions. For this
reason there are no unchanged or modified actions on this level, instead all actions on
this level are new.

Chapter 5. Case Study: Modeling and Pattern Extraction in LIVENET 174

Actions directly connecting users

For an action that directly connects users, there has to exist at least one user-level action
that is explicitly directed at another user (or role). In the caselgENET, there are

two such actions, both related to communicati8and-Email andSend-Message. Both

of these are initiated by one user and send a message to another user, either by external
email, or internally according to a workflow rule. Upon receipt of an internal message,
the message is read by the receiver through the user-level antienMessage®. The
corresponding collaboration-level actionNtessage-Exchange: for each pair of users,

any user-level actions of typgend-Email, Send-Message, or Open-Message involving

those two users as either sender or recipient, taken collectively constitute an instance of
Message-Exchange.

Actions indirectly connecting users

Actions indirectly connecting users involve objects accessed by other users. Identifying
these actions consists of identifying user-level actions which operate on objects that are
subsequently accessed by other users using the same or related user-level actions.

An example of this was mentioned above: group discussion. A user performs the
Post-Discussion-Statement action, thereby posting a statement to a discussion forum.
Subsequently, another user performs@pen-Discussion-Statement action, reading the
statement that was posted earlier. This user can then in turn post statements which are
read by other users, etc. In this case, the related user-level actiorss&i@iscussion-
Statement and Open-Discussion-Statement. The connecting objects are the discussion
forum and the statements posted in it. The collaboration-level aGiomp-Discussion
thus corresponds to the aggregation of all the related user-level actions for posting and
opening discussion statements in a given discussion forum.

Another example is related to the exchange of documents. Documents are frequently
used in collaborative activity to share information among a group of users. The related
user-level actions involved aradd-Background, Add-Document, Open-Background,
Open-Document, Replace-Background, Replace-Document, Upload-Background, and
Upload-Document. The connecting objects are the documents and backgrounds being
added, opened, replaced, or uploaded in a workspace. The collaboration-level action
Artefact-Exchange corresponds to the aggregation of these user-level actions within a
given workspace.

Two other collaboration-level actions existvorkspace-Setup, which refers to the

3External email messages are opened with an external email application, of which no record exists in
the LIVENET log, thus they cannot be considered within the Information Pyramid.

Chapter 5. Case Study: Modeling and Pattern Extraction in LIVENET 175

collaborative configuration and setup of a workspace, aggregating such user-level actions
as Create-Role, Add-User-To-Workspace, Create-Discussion, etc. The other collabor-
ation-level action isContent-Management, which refers to the management of content
such as documents and backgrounds in a workspace, aggregating such user-level actions
asAssign-Document, Deassign-Document, Delete-Document, etc.

In total there are thus following five basic collaborative actionsimEINET:

Action Name Description
Artefact-Exchange Exchange of documents and/or backgrounds among a group
of users

Content-Management Rights management and removal of documents and/or
backgrounds, performed collaboratively by two or more
users

Group-Discussion Exchange of discussion statements among a group of users

Message-Exchange ~ Asynchronous direct communication between a pair of users
through messages

Workspace-Setup Creation, setup and configuration of a workspace, performed
collaboratively by two or more users

This set of actions is small, much smaller than the corresponding sets on the lower
levels. The reason for this is that the sets of actions on the levels belogoramgete
in that they capture all possible actions on those levels, whereas on this level the set of
actions is not complete. The issue of completeness of specification was first addressed in
Section 4.4 (p. 125) in the context of visualization. When considering the system-level
set of actions, for instance, it corresponds to the setigE NET commands, with one
action for each command. For any given version of the system, this set of commands
is finite and fixed, and thus the set of corresponding system-level actions is complete.
Similarly for the user level: the set of actions here consists of all the functions provided
to the user through theZENET user interface. Again, for any given version of the
system, this set of functions is finite and fixed, and thus the set of corresponding user-
level actions is complete. On the collaboration level, however, the set of actions consists
of certain aggregations of certain subsets of user-level actions. Given different subsets
and different aggregations, different collaboration-level actions can be defined.

Thus the set of actions on this level is not complete, bapen-ende@ndextensible
by identifying different basic types of actions, or different sub-types of basic action types.

Chapter 5. Case Study: Modeling and Pattern Extraction in LIVENET 176

5.1.5.3 Step 5.3: Identifying Action Patterns

The five collaboration-level actions identified above can be regarded as constituting a
set ofbasicactions for this level, while leaving open the possibility of defining different
subtype®f these actions. For instance, fAmup-Discussion action simply refers to the
posting and reading of statements in a discussion forum among a group of users. It does
not specify in what manner different users participate in this group discussion. However,
it is possible to distinguish between differestylesof the Group-Discussion action based
on, for example, the differences in use between different users. For instance, one style of
group discussion could luestion and answewhere one user or role posts statements
that initiate new discussion threads (to ask questions), while another user or role posts
replies to those statements (answering the questions). This action still matches the same
basic characteristics of tf&@oup-Discussion action (a group of users posting and reading
discussion statements in a given discussion forum), but this style of discussion constitutes
aspecialization or subtype of the basic group discussion action. Another specialization
of the Group-Discussion action is one where the discussion forum is used by one role to
post statements that are notices or announcements, while another role simply reads these
statements without posting any statements of their own. Figure 5.6 shows this in the form
of both an EMOO diagram and the structure of the concept represented: part (a) of the
figure shows the basic action patt&roup-Discussion-Pattern, while part (b) shows the
action pattermotice-Board-Pattern.

These two action patterns differ in that the first o8egup-Discussion-Pattern, pro-
vides for an arbitrary number of roles, while the second dfugice-Board-Pattern, has
exactly two rolesPoster andReader, where the first one is the role that posts statements,
and the second one is the role that reads statements. Furthermorestdrerole per-
forms both read and post actions (i.e. instances ofojen-Discussion-Statement and
Post-Discussion-Statement actions), while thékeader role performs only read actions.

Other specializations of this and other action patterns may similarly exist, and can be
identified by exploring the data collected from the collaboration system.

5.1.5.4 Step 5.4: Specifying Concepts
Having identified concepts, these can now be specified. As this parallels the specification

of concepts on lower levels, it is omitted here.

Once again, when the specification of objects, actions, and action patterns is complete,
the next step, mapping of concepts, can follow.

Chapter 5. Case Study: Modeling and Pattern Extraction in LIVENET 177

ﬁ\l—Group—Discussioh
Pattern

Action-Instance [1:1]
Roles [1:?]

Discussion—Forum [1:1]
Workgroup [1:1]
Workspace [1:1]

Begin—-Timestamp [1:1]
End-Timestamp [1:1]

Discussion-
Forum

(a) Group-Discussion-Pattern

/LN—Notice—Board—\

Pattern

Action—Instance [1:1]
Poster [1:1]
Reader [1:1]

Discussion—Forum [1:1]
Workgroup [1:1]

Workspace [1:1]
Reader Begin-Timestamp [1:1]
KEnd—Timestamp [1:1y

(b) Notice-Board-Pattern

Discussion-
Forum

Figure 5.6: Different types of action patterns based on a@ioap-Discussion

5.1.6 Step 6: Defining Mappings Between User Level and Collabor-
ation Level

As with the previous mapping, it is again necessary to define how concepts on the two
levels just modeled are related.

On the collaboration level, most objects were found to be unchanged from the user
level, so that no mappings need to be defined for these. Only one new object was in-
troduced Kessage-Channel) which needs to be mapped, in the same manner as other
objects on lower levels. The main focus of mapping on this level, however, is the map-
ping of actions. The mapping of the five basic collaboration-level actions is quite similar,
and is illustrated below for theéroup-Discussion-Pattern action concept.

5.1.6.1 Step 6.1: Identifying Source and Target Concepts and Attributes

Similar to the mapping on the lower levels, again the sources of each target slot in each
class to be mapped need to be identified. On the collaboration level, however, the type

Chapter 5. Case Study: Modeling and Pattern Extraction in LIVENET 178

of correspondence to the lower level is different than on the level below: here it is an
aggregationof multiple instances of lower-level classes, as opposed to a direct corre-
spondence of slot values across levels. Therefore not all target slots can be mapped
from some given source slots, and some may instead needctantyguted For the class
LN-Group-Discussion-Pattern, the mapping of slots is identified beltw

No. | Source class Source slot Target slot

1 | LN-Post-Disc-Stmt-Pat.
LN-Open-Disc-Stmt-Pat.
2 | LN-Post-Disc-Stmt-Pat.
LN-Open-Disc-Stmt-Pat.
3 | LN-Post-Disc-Stmt-Pat.

all(Role) Roles

Discussion-Forum | Discussion-Forum

Workgroup Workgroup
LN-Open-Disc-Stmt-Pat.
4 | LN-Post-Disc-Stmt-Pat.
. Workspace Workspace
LN-Open-Disc-Stmt-Pat.
S5 | LN-Post-Disc-Stmt-Pat. o o
. Min(Timestamp) BeginTimestamp
LN-Open-Disc-Stmt-Pat.
6 | LN-Post-Disc-Stmt-Pat. . .
maxTimestamp) EndTimestamp

LN-Open-Disc-Stmt-Pat.

Some notes on a few special mappings: the first Btate s, a multislot, is mapped by
aggregating all of the values (indicated by the aggregation funatipof the single-slot
Role of the instances of the given source classes. The last two Blaf$nTimestamp
andEndTimestamp, are also mapped through an aggregation by obtaining, respectively,
the minimum and maximum values of thémestamp slot from all instances of the two
indicated source classes.

5.1.6.2 Step 6.2: Identifying Mapping Constraints

For the mapping to theN-Group-Discussion action, the only constraint is that the
instances of the source classes need to share the same values for the context attributes
Workgroup, Workspace andDiscussion-Forum. This can be expressed as follows:

“Note that in the table the names of source classeSost-Discussion-Statement-Pattern and
LN-Open-Discussion-Statement-Pattern have been shortened tai-Post-Disc-Stmt-Pat. and
LN-Open-Disc-Stmt-Pat ., respectively.

Chapter 5. Case Study: Modeling and Pattern Extraction in LIVENET 179

Constraint

(and (eq (slot-get ?PostStmt Workgroup)
(slot-get ?0penStmt Workgroup)
?Workgroup)

(eq (slot-get ?PostStmt Workspace)
(slot-get 7?0penStmt Workspace)
?Workspace)

(eq (slot-get ?PostStmt Discussion-Forum)

(slot-get ?0penStmt Discussion-Forum)

?Discussion-Forum))

Here, ?Workgroup, ?Workspace, and?Discussion-Forum are variables referring,
respectively, to instances of the workgroup, workspace, and discussion forum that form
the shared context, whilerostStmt and ?0penStmt are variables ranging over all
instances of theN-Post-Discussion-Statement-Pattern and LN-Open-Discus-
sion-Statement-Pattern classes, respectively.

5.1.6.3 Step 6.3: Specifying Mappings

The previously identified source and target classes and slots need to specified in the form
of a class mapping and multiple slot mappings. As on other levels, this again means
creating instances of the ass-Mapping andSimple-Slot-Mapping classes. In addi-

tion, for a number of slots instancesmfgregated-Slot-Mapping need to be created.
Details of this are omitted here for the sake of brevity.

5.1.6.4 Step 6.4: Defining Mapping Functions

Once again, having identified mappings of slots, as well as mapping constraints, it is
possible to define a mapping function that can transform instances of the source classes
to instances of the target class.

For the given case of mapping to the collaboration-level action pattern tfass
Group-Discussion-Pattern, the mapping function to be defined follows the same
principles as the functiorreate-1n-post-discussion-statement defined in step
4.4. Again, for the sake of brevity, details are omitted here.

When this and all other functions have been specified, the step of mapping between user
level and collaboration level is complete.

Chapter 5. Case Study: Modeling and Pattern Extraction in LIVENET 180

5.1.7 Step 7: Modeling the Task Level

The task level contains information about larger units of activity, typically composed of

a number of lower-level actions, configured in certain ways so as to support the perfor-
mance of certain tasks. Once again, the modeling of this level considers objects, actions,
and action patterns.

5.1.7.1 Step 7.1: Identifying Objects

As with the levels below, information at the task level is perceived through its own view,
the task view. In this view, activity typically consists of not just one, but of several actions
in combination. The objects involved in the activity remain the same as on the previous
level, i.e.:

e Action

e Background

e Discussion-Forum
e Document

e Message-Channel
e Role

e User

e Workgroup

e Workspace

Thus, none of the objects on the task level are modified or new.

5.1.7.2 Step 7.2: Identifying Actions

Actions on the task level consist of combinations of actions from lower levels, for the
most part from the collaboration level. These are combined in such a way as to facili-
tate the performance of certain tasks. Being combinations of lower-level actions, these
actions are thus all new on this level.

Identifying the set of tasks on this level is performed by examining how collaboration-
level actions areonnectedvith each other. When the same objects, such as roles, doc-
uments, discussion forums, etc. exist in two or more collaboration-level actions, they

Chapter 5. Case Study: Modeling and Pattern Extraction in LIVENET 181

Double-Blind—Review
4 N

Discuss
Reviews

Discuss
Manuscript

Figure 5.7: EMOO diagram of theouble-Blind-Review task-level action belonging to
the publishing domain

are considered to be connected. An example of this was shown in Figure 3.11 (p. 86):
collaboration-level action&roup-Discussion and Document-Sharing are connected, be-
cause the roleSoordinator andWriter exist in both. “Plugging together” such connected
action patterns from the collaboration level produces the resulting task-level action pat-
tern.

What was mentioned on the collaboration level about the open-endedness of the set of
actions is even more so the case on the task level. Because any new combination of lower-
level action patterns produces a new task-level action pattern, the number of such action
patterns is virtually unlimited. However, unlike the level below which contained general-
purpose action patterns such as for group discussion, document exchange, or peer-to-peer
messaging, the action patterns on the task level usually are more dolasén-specific
The example of Figure 3.11, for instance, belongs to the domain of report writing, which
is still a fairly generic domain. However, other task-level action patterns can belong
to far more specialized domains. For instance, the domain of publishing involves tasks
related to manuscript preparation. A task in this domain coultfiéuscript-Layout or
Chapter-Review. The configuration of these tasks is specific to the publishing domain:
they involve domain-specific roles and artefacts, combined in a domain-specific way.

An example is the task of reviewing a manuscript in preparation for publication. A
domain-specific form of review is thdouble-blind reviewwhere authors and reviewers
are kept unaware of each other’s identities. This is illustrated by the EMOO diagram
shown in Figure 5.7. The task involves roles specific to the donraitior, Editor, and

Chapter 5. Case Study: Modeling and Pattern Extraction in LIVENET 182

Reviewer; as well as artefactdvlanuscript andReviews. The double-blind review is re-
alized through two separate discussion forum&cuss Manuscript for the editor and
reviewer roles to discuss a manuscript submitted by an authoiabgss Reviews for

the editor and author roles to discuss any reviews submitted by the reviewers. Specific
access configurations complete the setup of the action pattern: all roles have post/read
access to the discussion forums, and read access to the three artefacts. Only the author
role, however, has write access to the manuscript, while only the reviewer role has write
access to the reviews. This particular combination of lower-level objects and actions thus
constitutes a task-level action pattern specific to the domain of publishing. Other task-
level action patterns from the same and other domains are made up in a similar fashion.
The specific set of task-level action patterns for a given system and a given domain has
to be gleaned from usage data collected from the system. The use of information visual-
ization for the identification of such action patterns can greatly facilitate this process, as
was discussed in Section 4.4.

5.1.7.3 Step 7.3: Identifying Action Patterns

Actions on the task level, beingpmbinationsof several lower-level actions rather than
aggregationgas was the case on the lower levels), are not performed by a single user
or at a single time. Instead they extend over a period of time and involve multiple users
and/or roles. For this reason, the kind of information associated with the actions them-
selves, such as action attributes, is very limited, and most information belongs to the ac-
tion context. Therefore, action patterns involving these actions contain most or all of the
information associated with the tasks represented. Thus for the task represented in Fig-
ure 5.7, no action attributes can be identified, while all the relevant components, namely
the collaboration-level action patterns involved (instancesrofip-Discussion-Pattern
andArtefact-Exchange-Pattern) as well as information about location and time are kept
in a corresponding action patterdpuble-Blind-Review-Pattern. Figure 5.8 shows the
structure of the clasBN-Double-Blind-Review-Pattern representing this task-level
action pattern.

Just as with this example, likewise for other actions their action patterns need to be
identified so as to capture the relevant information.

5.1.7.4 Step 7.4: Specifying Concepts

Having identified concepts, these can now be specified. As this parallels the specification
of concepts on lower levels, it is omitted here.

Chapter 5. Case Study: Modeling and Pattern Extraction in LIVENET 183

/~ LN-Double-Blind=

Review—Pattern

Action—Instance [1:1]
Author-Discussion [1:1]
Reviewer—-Discussion [1:1]
Manuscript—-Exchange [1:1]
Review—-Exchange [1:1]
Workgroup [1:1]
Workspace [1:1]
Begin—-Timestamp [1:1]
End-Timestamp [1:1]

Figure 5.8: Task-level action pattern classDouble-Blind-Review-Pattern

Once again, when all objects, actions, and action patterns have been specified, the mod-
eling of the task level is complete, and the mappings from collaboration to task level can
be defined.

5.1.8 Step 8: Defining Mappings Between Collaboration Level and
Task Level

As with the previous mapping, it is again necessary to define how concepts on the two
levels just modeled are related.

In the case of the task level, no object concepts need to be mapped as all objects
remain unchanged from the level below. Action and action pattern concepts, on the other
hand, being all new on this level, require mapping.

5.1.8.1 Step 8.1: Identifying Source and Target Concepts and Attributes

Just as with previous mappings, again the sources of any slots in target classes need to
be identified. To map to a task-level action pattern, its constituent collaboration-level
action patterns need to be identified. Often, entire instances are mapped from the lower
level to a slot on the higher level. This is illustrated below for the mapping to target class
LN-Double-Blind-Review-Pattern;

No. | Source class Source slot Target slot
1 | LN-Group-Disc-Pat. | instance) AuthorDiscussion
continued...

5Note that in the table the names of source classessroup-Discussion-Pattern and LN-
Artefact-Exchange-Pattern have been shortened t@-Group-Disc-Pat. and LN-Artef-Exch-
Pat., respectively.

Chapter 5. Case Study: Modeling and Pattern Extraction in LIVENET

184

No. | Source class Source slot Target slot
2 | LN-Group-Disc-Pat. | instancé) ReviewerDiscussion
3 | LN-Artef-Exch-Pat. | instancé) Manuscript-Exchange
4 | LN-Artef-Exch-Pat. | instancé) Review-Exchange
5 | LN-Group-Disc-Pat.
Workgroup Workgroup
LN-Artef-Exch-Pat.
6 | LN-Group-Disc-Pat.
Workspace Workspace
LN-Artef-Exch-Pat.
7 | LN-Group-Disc-Pat. _ o .
Min(BeginTimestamp) | BeginTimestamp
LN-Artef-Exch-Pat.
8 | LN-Group-Disc-Pat. ,
maxEndTimestamp) EndTimestamp
LN-Artef-Exch-Pat.

Here, the first four slots are mapped framstancef the source classes to the target
slots. The next two slots are straightforward mappings of slot values. Finally, the last
two slots are mapped through aggregation by obtaining, respectively, the minimum and

maximum values of the indicated timestamp values in the source classes.

5.1.8.2 Step 8.2: Identifying Mapping Constraints

For the mapping to the action pattern classDouble-Blind-Review-Pattern, the

constraints that need to be satisfied are that the instances of the source classes need to

share the same values for the action context attribideggroup andwWorkspace, and

that the individual collaboration-level action patterns are connected through the shared

roleseditor, Author, andreviewer. This can be expressed as follows:

No.

Constraint

1

(and (eq (slot-get
(slot-get
(slot-get
(slot-get

(eq (slot-get

(slot-get

(slot-get

(slot-get

?GroupDiscl
?GroupDisc2
?ArtefExchl
?ArtefExch?2
?GroupDiscl
?GroupDisc?2
?ArtefExchl
?ArtefExch2

Workgroup
Workgroup
Workgroup
Workgroup))

Workspace

)
)
)
)
Workspace)
)
Workspace)

)

Workspace)))

continued...

Chapter 5. Case Study: Modeling and Pattern Extraction in LIVENET 185

No. | Constraint
2 (exists ?Role

(and (slot-get ?Role Name) Editor)

member$?Role (slot-get ?GroupDiscl Roles
slot-get ?GroupDisc2 Roles
slot-get ?ArtefExchl Roles

slot-get ?ArtefExch2 Roles

(eq
(
(membersS ?Role
(member$?Role
(

())
())
())
member$?Role ())

))

3 (exists ?Role
(and (slot-get ?Role Name) Author)
member$?Role (slot-get ?GroupDiscl Roles))

member$?Role (slot-get ?ArtefExchl Roles))
member$?Role (slot-get ?ArtefExch2 Roles))))
4 (exists ?Role

(and

(eq
(
(not (member$?Role (slot-get ?GroupDisc2 Roles)))
(
(

(slot-get ?Role Name) Reviewer)

member$?Role (slot-get ?GroupDisc2 Roles))

member$?Role (slot-get ?ArtefExchl Roles))
member$?Role (slot-get ?ArtefExch2 Roles))))

(eq
(
(not (member$?Role (slot-get ?GroupDiscl Roles)))
(
(

Here, ?GroupDiscl and ?GroupDisc?2 are variables ranging over instances of the
LN-Group-Discussion-Pattern class, one for each of the two group discussions in-
volved in this task-level action pattern. SimilarbirtefExchl and?ArtefExch2 are
variables ranging over instances of the-Artefact-Exchange-Pattern class, for the
two artefact exchanges involved in this task-level action pattern. Finally,e is a vari-
able ranging over instances of the-rRole class.

The first constraint states that the two instancesief;roup-Discussion-Pattern
and ofLN-Artefact-Exchange-Pattern mustreside in the same workgroup and work-
space. The second constraint requiresreor role to be present in both group dis-
cussions and both artefact exchanges. The third constraint requirestiie- role to be
present in the first group discussion, and not in the second one, and also to be present in
both artefact exchanges. Lastly, the fourth constraint requireBethis=wer role to be
present in the second group discussion, and not in the first one, and again in both arte-
fact exchanges. In this way, the requirement of mutual anonymity between author and
reviewers can be ensured.

Chapter 5. Case Study: Modeling and Pattern Extraction in LIVENET 186

5.1.8.3 Step 8.3: Specifying Mappings

The previously identified source and target classes and slots need to be specified in the
form of a class mapping and multiple slot mappings. As on other levels, this again means
creating instances of thie ass-Mapping andsSimple-Slot-Mapping classes. For some

slots, instances ofggregated-Slot-Mapping andInstance-Slot-Mapping nheed to

be created. Details of this specification are omitted here.

5.1.8.4 Step 8.4: Defining Mapping Functions

Once again, having identified mappings of slots, as well as mapping constraints, it is
possible to define a mapping function that can transform instances of the source classes to
instances of the target class. In this case, the mapping function needs to take instances of
some of the source classes and place references to these instances in the target class
Double-Blind-Review-Pattern. Apart from this difference, however, the mapping
function required resembles the example shown earlier in Step 4.4, and is omitted here
for brevity.

Mapping functions for other action mappings need to be created in the same manner:
slot mappings and constraints need to be identified and specified, then a mapping function
needs to be defined.

When all such functions have been specified, the mapping step for the task level is
complete.

5.1.9 Step 9: Modeling the Process Level

The process level is the highest level in the Information Pyramid, containing information
about processes, the largest units of activity. Processes are collections of tasks and inter-
task relationships. As before, modeling of this level considers objects, actions and action
patterns.

5.1.9.1 Step 9.1: Identifying Objects

Once again, on the process level information is perceived through its own view, the pro-
cess view. This is a high-level view in which only tasks appear, and in which the objects
involved in those tasks are not of concern. Thus no objects need to be modeled at this
level.

Chapter 5. Case Study: Modeling and Pattern Extraction in LIVENET 187

5.1.9.2 Step 9.2: Identifying Actions

As just mentioned, the only information appearing at this level is related to the combina-
tion of collaborative tasks into processes.

Process-level action patterns can be identified by examining information flows be-
tween tasks. An information flow exists, for example, when one task creates a document
and another task subsequently accesses that document. Information flows such as these
always involve two tasks, one being an information producer, the other an information
consumer. The example in Figure 2.6 (p. 29) showed several instances of such infor-
mation flows between tasks (represented by an artefact between two tasks and an arrow
pointing from a task to it and from it to another task). By looking for pairs of tasks that are
linked through information flows, and for the tasks linked from those tasks, recursively,
it is possible to identify a whole network of tasks that are thus related.

5.1.9.3 Step 9.3: Identifying Action Patterns

As with the task level, the set of action patterns on this level is both open-ended and
domain-specific: any number of action patterns can be defined for any combination of
tasks into processes that serve the collaborative work of specific domains. Actual pro-
cesses can be obtained from the collaboration data, and information visualization can
help identify process-level action patterns within it, as was discussed in Section 4.4. For
instance, the task-level action patte¥ouble-Blind-Review-Pattern may be identified as
belonging together with other task-level action patterns in a process of manuscript prepa-
ration.

5.1.9.4 Step 9.4: Specifying Concepts

Once information on this level has been identified, the corresponding concepts can be
specified. On the process level, the only concepts to be specified are related to dynamic
information, all of which are new on this level. Thus no unchanged or modified concepts
need to be specified.

Process-level action patterns are the new concepts of this level. These action patterns
are mainly represented by the process’s tasks, together with a few attributes representing
the process’s action context. Thus specifications of process-level actions and action pat-
terns need to create classes that contain references to the tasks belonging to the process.

An example was the manuscript preparation process-level action pattern mentioned
above, which can be specified as the classManuscript-Preparation-Pattern,
shown in Figure 5.9. The class consists of four slots for four task-level action patterns that

Chapter 5. Case Study: Modeling and Pattern Extraction in LIVENET 188

/ LN-Manuscript- \

Preparation—Pattern

Create-Proposal [1:1]
Plan—Manuscript [1:1]
Acquire—Chapters [1:1]
Review—Manuscript [1:1]
BeginTimestamp [1:1]
EndTimestamp [1:1]

Figure 5.9: Process-level action pattern clagsManuscript-Preparation-Pattern

make up this process-level action pattern, and two action context attributes identifying
this action pattern’s time interval.

After all process-level actions and action patterns have been specified in this manner, the
modeling of the process level is complete. Only the mapping from the task level to the
process level remains in order to complete the Information Pyramid, which is discussed
next.

5.1.10 Step 10: Defining Mappings Between Task Level and Process
Level

As with the previous mapping, it is again necessary to define how concepts on the two
levels just modeled are related.

In the case of the process level, there are no objects to be mapped as the process level
view does not include objects. Process-level action patterns, however, being all new on
this level, require mapping.

5.1.10.1 Step 10.1: Identifying Source and Target Concepts and Attributes

As before, target concepts need to be mapped from corresponding source concepts, by
mapping slots across classes. In the case of process-level action patterns, most informa-
tion consists of specifications of the collections of tasks involved, but usually a few slots
of context information are also included which need to be mapped. An example of such
a mapping is shown below, for clas8-Manuscript-Preparation-Pattern®,

6Note that in the table the names of source classes have been shortened by abbreviatingethe
suffix in the class name test .

Chapter 5. Case Study: Modeling and Pattern Extraction in LIVENET 189

No. | Source class Source slot Target slot

1 | LN-Create-Proposal-Pat. instance) Create-Proposal

2 | LN-Plan-Manuscript-Pat. instance) Plan-Manuscript

3 | LN-Acquire-Chapters-Pat. instance) Acquire-Chapters
4 | LN-Double-Blind-Review-Pat. | instance) Review-Manuscript
5 | LN-Create-Proposal-Pat.

LN-Plan-Manuscript-Pat. . o o
. Min(BeginTimestamp) | BeginTimestamp
LN-Acquire-Chapters-Pat.

LN-Double-Blind-Review-Pat.

6 | LN-Create-Proposal-Pat.
LN-Plan-Manuscript-Pat. . . .
. MIiN(EndTimestamp) EndTimestamp
LN-Acquire-Chapters-Pat.

LN-Double-Blind-Review-Pat.

The LN-Manuscript-Preparation process-level action pattern involves four task-
level action patterns:LN-Create-Proposal-Pattern, LN-Plan-Manuscript-Pat-
tern, LN-Acquire-Chapters-Pattern, and LN-Double-Blind-Review-Pattern.
The corresponding target slots are mapped from instances of the four task-level action
patterns (indicated by thestanc€) keyword). The begin and end timestamp values of
the process-level action pattern are mapped through aggregation, by obtaining the cor-
responding minimum and maximum values from these four task-level action patterns,
respectively.

5.1.10.2 Step 10.2: Identifying Mapping Constraints

Given that the mapping to process-level action patt@Manuscript-Preparation-
Pattern IS very simple, there are no mapping constraints.

5.1.10.3 Step 10.3: Specifying Mappings

The specification of mappings of process-level action patterns parallels that of the levels
below; in the interest of brevity it is therefore not shown here.

5.1.10.4 Step 10.4: Defining Mapping Functions

Mapping functions need to receive a collection of task-level action patterns as their input
and produce instances of process-level action patterns. This corresponds to the way that
mapping functions on lower levels are implemented. For example, for the mapping to

Chapter 5. Case Study: Modeling and Pattern Extraction in LIVENET 190

Level Actions Action Patterns Objects
Process Manuscript-Preparation———Manuscript-Preparation-Pattern
ask | Double-Bind-Review——Double-Bind-Peiew-Patiem—Discussion-Forum
Collaboration E Group—Dlscussmn VGroup—Dlscussmn—Pattern _ rDris;:LVJsrsiror;—rFroVrurrnr |
System | Add-Ststement———— Add-Sitement_Paten————Block

Figure 5.10: Horizontal and vertical links between some of the concepts insNET
ontology on different levels of the Information Pyramid

process-level action patterm-Manuscript-Preparation-Pattern, @ mapping func-

tion needs to receive four instances of task-level action patterns (one for each of the four
classes involved). It then needs to produce an instance of the target class with references
to these task-level action pattern instances, and needs to derive the overall begin and end
timestamp values of the process-level action pattern from the instances of the task-level
action patterns, as identified in Step 10.1 above.

Once all processes and their mappings have been specified, the Information Pyramid
is complete, allowing the derivation of highest-level action patterns from lowest-level
information.

5.1.11 Relationships Between Concepts in the Completed Ontology

Once the ontology of a particular collaboration system has been completely specified,
such as the one forikENET that has been illustrated on the preceding pages, specifica-
tions of a large number of concepts exist. These concepts do not exist in isolation, but
instead most of them are related to one another in different ways. For instance, some
concepts may reference other concepts on the same level. Other concepts may be ab-
stractions of one or more concepts on a lower level. Thus the completed ontology can be
thought of as consisting of multiple levels (corresponding to the levels of the Information
Pyramid), withhorizontal and vertical linkselating concepts within and across levels,
respectively. This is illustrated in Figure 5.10.

The figure shows a few of the concepts that were discussed in the specification of the

Chapter 5. Case Study: Modeling and Pattern Extraction in LIVENET 191

LIVENET ontology on the preceding pages, with one example each of an action, an action
pattern, and an object, on the five levels from system level up to the process level (recall
that the system level was identified as the base level, which is why the infrastructure
level is absent in the ontology; moreover, since on the process level there are no object
concepts, the corresponding space in the figure is empty).

The horizontal lines linking concepts represent references from one to another con-
cept. Thus, for example, the system-level coneejal-Statement-Pattern, an action pat-
tern concept, is related to the action conoggid-Statement and the object conceplock
on the same level, because the action pateiiStatement-Pattern involves the action
Add-Statement, and an instance dlock is the referent of this action. Similar comments
apply on the other four levels.

On the other hand, the vertical lines linking concepts represent relationships between
sources and targets of mapped concepts, where the higher-level concept is an abstraction
of the lower-level one. Thus, for example, the user-level action coeapDiscussion-
Statement is an abstraction of the system-level action conoefit-Statement, and is
mapped from it. On the other hanHpst-Discussion-Statement is itself mapped to a
higher-level concept, namely collaboration-level action con@ptip-Discussion. The
same applies to other concepts related through vertical links.

It can also be seen that some concepts appear on more than one level, such as the
object concepbiscussion-Forum which exists on the user, collaboration, and task levels.
This is due to the fact that this concept appears unaltered in the respective views of
those levels (i.e. the user, collaboration, and task views). It was seen that this concept is
specified as belonging to all these levels by including the relevant levels’ common classes
as its superclasses.

Thus a completed ontology of a given collaboration system consistsraftax of
inter-related concepts that makes it possible to relate information obtained from collab-
oration data, and to derive progressively higher-level information from it.

5.2 Pattern Extraction from L IvE NET Data

The preceding section has demonstrated the specification of an ontology of concepts
related to the LYENET collaboration system. The present section carries on from there
to illustrate the use of this ontology in the extraction of patterns of virtual collaboration
from data collected by theil.ENET collaboration system.

This process makes use of thevENET Workspace Visualizer, an information vi-
sualization tool developed for this purpose which assists in the identification of highest-

Chapter 5. Case Study: Modeling and Pattern Extraction in LIVENET 192

LiveNet Server

: Action LiveNet
Logging | [Client
Subsys.
1
Object '/
Data .
Action
RDBMS Data
Object
Dlat
Object Action
Database Log

Figure 5.11: Data collection inItENET

level action patterns in the Information Pyramid. Details of this tool are given in Ap-
pendix A.

5.2.1 Data Collection

The extraction of patterns of virtual collaboration requires a body of data from which to
extract the patterns. This in turn requires data collection facilities, and a source of data.
Both of these are discussed below.

5.2.1.1 Data Collection Facilities

The extraction of patterns of virtual collaboration from a collaboration system requires
that system to collect collaboration data. In the case of thv&NET collaboration sys-
tem, it was originally designed to only maintain a database of objects, but not to record
any actions. In order to collect information on actions and thereby to make pattern ex-
traction possible, a logging facility was added tovENET. This records details of all
system-level actions taking place in the system.

Figure 5.11 shows the components involved in the data collectionviBNET. LIVE-
NET is a client-server system, with multiple clients connected to a single server. Clients
send requests to the server, which in turn services these requests. The requests sent by
LIVENET clients are actions to be performed by the server, usually (but not necessar-
ily) involving L IVENET objects such as workspaces, documents, discussion forums, etc.
When a LVENET client (shown as the box on the top right) sends a request to perform
an action to the LYENET server (shown as the box on the top left), the server’s logging

Chapter 5. Case Study: Modeling and Pattern Extraction in LIVENET 193

subsystem records the action in an action log file. TheeNET server then performs the
action, which may result in the creation or modification of objects, which are stored in
a database managed by a relational database management system with whistg the L
NET server interacts. Thus information on both objects and actions can be obtained from
LIVENET by accessing the object database and the action log.

5.2.1.2 Data Source

To extract patterns of virtual collaboration, data originating from actual users of the
LIVENET system needed to be obtained. At the time of writing, most of the users of
LIVENET are students and academics at the University of Technology, Sydney (UTS),
as well as a few other universities. Students of the postgraduate-level course “Conduct-
ing Business Electronically” at UTS were selected as the source of data. These students
were going to use thelENET system as part of their course, to design collaboration
spaces and also to facilitate their own work of preparing group assignments, therefore
they constituted a suitable user group for obtaining data. The students were asked for
permission to use the data generated by their useva#NET. A total of 129 out of 232
students, about 56% of the class, consented to the use of their data. Data was collected
for three months, from 10th August to 9th November 2000, which was the time period
during which the students were using thevy ENET system. About half a million action
records were collected in the action log, while the object database contained more than
600 workspaces created during the data collection period.

To illustrate the extraction of action patterns from this data, the data from one stu-
dent group consisting of five members was chosen for pattern extraction. This group,
designated as “Group 9”7, usedMENET for facilitating the preparation of their group
assignments. This work took place in one workspate,-group-09_Master, referred
to below as the group’s “master workspace”. The action log contained 2737 system-level
actions performed by members of Group 9 in their master workspace during the data
collection period.

The extraction and mapping of action patterns for Group 9 is shown in the remain-
der of this section; for details about the number of system-level actions per session, the
number of sessions per day, and a count of different system-level actions performed,
interested readers may refer to Appendix B .

5.2.2 Pattern Extraction

Once the data was collected, action patterns were extracted from it. This involved the
use of both automated tools as well as manual extraction using database query facilities.

Chapter 5. Case Study: Modeling and Pattern Extraction in LIVENET 194

Moreover, the WWENET Workspace Visualizer described in Appendix A was used in the
identification of task-level action patterns. Identification and extraction of action patterns
was guided by the previously specified ontology. The individual steps were:

1. Import of action log to a databaseTo facilitate the querying and manipulation
of records in LVENET’s action log, the action log was imported into a relational
database. A program specially written for this purpose created one row in a log
database table for each log record contained in the action log file. The total number
of such action log records for Group 9 was 2737. The program also performed
some validation of the log data. These log records constitute the base-level (i.e.
system-level) actions.

2. Derivation of user-level actionssiven the system-level actions in the log database
table, user-level actions were derived according to the specifications ofvige L
NET ontology, through simple matching of sequences of system-level actions. This
was performed by another specially written program. A total of 909 user-level ac-
tions were derived from the 2737 system-level actions of Group 9.

3. Derivation of action patterns at the collaboration levdtrom the user-level ac-
tions, actions and action patterns at the collaboration level were derived. At this
level, action patterns are more easily identifiable, and data volume is smaller, so
this task was performed manually using SQL queries against the database of user-
level action records. Once again, the higher-level actions and action patterns were
derived according to the mappings specified in tineeINET ontology.

4. Identification of action patterns at the task levebiven the collaboration-level
action patterns, thelENET Workspace Visualizer was used to aid in the identi-
fication of task-level action patterns.

The records of actions mentioned above were complemented by records of objects
contained in LYENET’s object database.

5.2.2.1 Mapping Action Patterns from System Level to User Level

The extraction and mapping of action patterns from the collected data is illustrated on
one particular subset of data for one particular session involving one member of Group
9. The detailed action log records of this session (with session number 4228) are shown
in the Appendix in Section B.2.4.

The session consists of a total of 38 system-level actions, as shown in the left half of
the table below:

Chapter 5. Case Study: Modeling and Pattern Extraction in LIVENET

195

System-level actions

User-level actions

Getmyworkspaces

Login

© 00 N O Ol A W N[

el e =
W N Rk O

Setworkspace
Get-Led-Workgroups
Get-Workspace-Tree
Get-Role-Objects
Get-Role-Objects
Get-Role-Objects
Get-Role-Objects
Getroles
Getparticipants
Get-Role-Messages
Get-Msg-Types

Get-User-Email-Homepages

Enter-Workspace

ol
(G2 SN

Add-Object
Get-Role-Objects

Add-Document

.
~N o

Add-Object
Get-Role-Objects

Add-Document

[EY
(00}

Open-Object

Open-Document

=
(o]

Open-Object

Open-Document

N
o

Open-Object

Open-Document

N
=

Open-Object

Open-Document

NN
w N

Delete-Object
Get-Role-Objects

O[N] | Ul

Delete-Document

N N
(€ N

Add-Object
Get-Role-Objects

10

Add-Document

N
(o]

Open-Object

11

Open-Document

N N
o

Add-Object
Get-Role-Objects

12

Add-Document

W N
o ©

Add-Object
Get-Role-Objects

13

Add-Document

w w
N

Add-Object
Get-Role-Objects

14

Add-Document

w
w

Get-Block-Tree

15

Open-Discussion-Forum

continued...

Chapter 5. Case Study: Modeling and Pattern Extraction in LIVENET 196

System-level actions User-level actions
34 | Get-Block-Tree 16 | Post-Discussion-Statement
35 | Add-Statement
36 | Get-Block-Tree
37 | Normal-Close 17 | Logoff
38 | Logoff

For the given data of each of these actions, a corresponding system-level action
pattern was extracted. For instance, from the sequence of system-level actions 34-36
(Get-Block-Tree, Add-Statement, Get-Block-Tree) the corresponding system-level
action patterngN-Get-Block-Tree-Pattern, LN-Add-Statement-Pattern andLN-
Get-Block-Tree-Pattern were extracted, containing values for all slots of those action
patterns. In the case of thel-Add-Statement-Pattern action pattern, for example,
several instances of objects are referenced, including one edaah-ovfer, LN-Role,
LN-Block, LN-Workgroup, LN-Workspace, andSession, as well as the actionv-Add-
Statement (this corresponds to the modeling of these concepts on the system level of
the LIVENET ontology; refer to Figure 5.4 on page 155). Represented in the form of an
EMOO diagram, the sequence of these three action patterns is depicted in Figure 5.12.

Having extracted system-level actions and action patterns from the source data, these
were mapped to the user level according to the specified mappings iniENET
ontology. This mapping is shown in the right half of the table above. A sequence of
one or more system-level actions were mapped to a single corresponding user-level ac-
tion. The 38 system-level actions of session 4228 were thus mapped to 17 user-level
actions. For example, the sequence of system-level actions 34e86B(ock-Tree,
Add-Statement, Get-Block-Tree) was mapped to user-level action 1 §t-Dis-
cussion-Statement). An EMOO diagram showing an instance of the resulting user-
level action patteriPost-Discussion-Statement-Pattern is shown in Figure 5.13.

5.2.2.2 Mapping Action Patterns from User Level to Collaboration Level

Once action patterns were mapped to the user level, the next step was to map user-level
action patterns to the next-higher level, the collaboration level. Once again, this was
performed based on the definitions of mappings contained in theNLET ontology.

To illustrate this for Group 9, the mapping of discussion-related action patterns shown
above is continued here. As mentioned in Section 5.1.6, the user-level action patterns
involved arePost-Discussion-Statement-Pattern andOpen-Discussion-State-
ment-Pattern. Group 9 has performed a total of 118 such action patterns in 36 distinct

Chapter 5. Case Study: Modeling and Pattern Extraction in LIVENET 197

Get-Block-Tree—-Pattern
Discuss
Milestone
Add-Statement-Pattern
Discuss
Milestone

Get-Block-Tree—-Pattern

Discuss
Milestone

Figure 5.12: EMOO diagrams representing a sequence of instances of system-level action
patterns Get-Block-Tree-Pattern, Add-Statement-Pattern, and Get-Block-Tree-Pattern,
performed on discussidbiscuss Milestone by a user of Group 9 occupying raléember

Post-Discussion—Statement—Pattern
Discuss
Milestone

Figure 5.13: EMOO diagram representing an instance of user-level action gadtern
Discussion-Statement-Pattern, performed on discussidbiscuss Milestone by a user of
Group 9 occupying rol&ember

Chapter 5. Case Study: Modeling and Pattern Extraction in LIVENET 198

sessions, namely 19 instances of thet-Discussion-Statement-Pattern action
pattern and 99 instances of thgen-Discussion-Statement-Pattern action pattern,
as shown in the table below:

Sessionld| Posting actions| Opening actions
527 1 1
673
981
1209
1316
1616
1627
1643
1701
1702
2039
2049
2362
2571
2732
2742
2862
3006
3190
3250
3960
4207
4228
4457
4478
4784
5232
5539
6527
7165
7919

O P OO0 000 0O FrRPR PFPOPFPOFPDNPFPOPFPOPOOPRPPEPLOOONDMNM©ONDN
O N EFP NNPEFEPDNMNOOMMMOOOOAODNMDNMNMPMAMPOPRPO OPRFP, WA DMMBEDNDOG

1
continued...

Chapter 5. Case Study: Modeling and Pattern Extraction in LIVENET 199

Group-Discussion—Pattern

Discuss / \’
Milestone

Figure 5.14: EMOO diagram representing an instance of collaboration-level action pat-
tern Group-Discussion-Pattern, performed on discussidbiscuss Milestone by the users
of Group 9 occupying rol&ember

Sessionld| Posting actions| Opening actions
8815 1 1
8870 0 2
8946 1 1
9218 0 1
10015 0 2
Total 19 99

These action patterns were all performed by the same Kkdener) on the same
discussion forumiscuss Milestone) in the same workspace (the group’s master work-
space). Therefore, all of these action patterns were mapped to one and the same instance
of collaboration-level action pattelroup-Discussion-Pattern. Represented in the
form of an EMOO diagram, this action pattern is shown in Figure 5.14.

Besides these discussion-related action patterns, there were also document-related
action patterns that took place in the master workspace of Group 9. The action patterns
involved (and their count) over all sessions of Group 9taren-Background-Pattern
(10),0pen-Document-Pattern (179),Upload-Background-Pattern (1), andipload-
Document-Pattern (38). Because they all took place in the same workspace, and were
performed by the same rol&émber), they were all mapped to a single collaboration-
level action pattern, namehrtefact-Exchange-Pattern. An EMOO diagram repre-
senting this action pattern is shown in Figure 5.15. The artefacts involved are shown as a
multi-artefact,Report Components, made up of components of the various reports which
the group was preparing.

Chapter 5. Case Study: Modeling and Pattern Extraction in LIVENET 200

Artefact—Exchange—Pattern

g \» Report l
Components

Figure 5.15: EMOO diagram representing an instance of collaboration-level action pat-
tern Artefact-Exchange-Pattern, performed on multi-artefad®eport Components by the
users of Group 9 occupying roléember

5.2.2.3 Mapping Action Patterns from Collaboration Level to Task Level

The previous mapping step has established that there were primarily two collaboration-
level action patterns that took place in the master workspace of Group 9: an instance
of Group-Discussion-Pattern and an instance @frtefact-Exchange-Pattern. To

assist in the mapping to the next-higher level, the task level, the MET Workspace
Visualizer was used.

A basic intra-workspace map of the master workspace of Group 9 is shown in Fig-
ure 5.16. It shows two rolesMember (at the top) andOwner (at the bottom). The
Member role was occupied by six usershe-janr, cbe-shane, clehmann, ggold, imckean,
andmalibaba. The first five of these were the actual members of Group 9, while the sixth
user was the course tutor assigned to this group. Qiuaeer role was occupied by the
userdesnet-manager, which was the user id used by the course instructor.

The centre of the map is made up of 16 documents, all of which were accessible to
both theMember andOwner roles. Moreover, one discussion forubiscuss Milestones,
was also accessible to both of these roles.

In the version of LYENET from which the data was obtained, every newly created
object is accessible to the role of the user who created it, as well as @t role.

This explains why all the documents and the discussion forum were accessible to both the
Member andOwner roles. However, no action performed by tbener role operating on
documents or the discussion forum was recorded, and therefore this role can be ignored
in the identification of any task-level action patterns.

Given that the two collaboration-level action patterns found in the master work-
space of Group 9group-Discussion-Pattern andArtefact-Exchange-Pattern,
are connected through a common object, the multi-kdenber, these two action pat-
terns were mapped to a single task-level action pattern. In this case, given that both the
collaboration-level action patterns involved were performed by a single role and involved

Chapter 5. Case Study: Modeling and Pattern Extraction in LIVENET 201

= che—group-09_Haster &0 8
clehmann
che-shane cil
cbe—Janr
Member
[Fismes ME \
ct
1.0 Plan Preparation Fnul doc Design Riche Picture.doc Swategic I_Ib|uf‘r| e Analysis 2 doc
N 4 W

NN

Transition Diagram - High Level doc

NV

ActivityCh&lmp Staternents v_1_280800.xlz

2.0 Problem Identification Finale. dor Transition Diagram 1.doc

R A

3.0 Proposed Change Final doc Transition Diagram 3.doc
If

N N e

4 0 Plan Monitoring Finale.doc Transition Diagram <. doc m

4 Transition Diagram 2. doc

o Vi /Al
L Moo Diagrams Final Draft Doc. dorrAA

Directory. doc

HandIn Sheets Group 9_Zand3.rf

s

Croup 2Handinforms-Milestoned. rif

Chner

desnet-rmanager

Figure 5.16: Intra-workspace map of the master workspace of Group 9

all members of Group 9, a task-level action pattern of “collaborative report preparation”
was defined as corresponding to the task performed by the group. Represented in the
form of an EMOO diagram, this action pattern is shown in Figure 5.17.

5.2.2.4 Mapping Action Patterns from Task Level to Process Level

After having identified the task-level action pattexi laborative-Report-Prepara-
tion-Pattern, the next step was to investigate whether this task was part of a larger
process. This involved identifying information flows to or from other tasks. To aid in
this, the LVENET Workspace Visualizer was once again used. An information flow ex-

ists when two workspaces have a shared document, background, discussion, or message

Chapter 5. Case Study: Modeling and Pattern Extraction in LIVENET 202

Collaborative—Report-Preparation—Pattern

Discuss g \‘ Report l
Milestone g Components

Figure 5.17: EMOO diagram representing an instance of task-level action pattern
laborative-Report-Preparation-Pattern, involving multi-role Member, discussion forum

Discuss Milestones, and multi-artefacReport Components

rule (the only way that information can flow from one workspace to anothenwg-L

NET). An inter-workspace map involving the master workspace of Group 9, and showing

all workspaces of the workgrouge-group-09 of which it was a part, as well as visual-

izing inter-workspace relationships of shared documents, backgrounds, discussions, and
message rules, is shown in Figure 5.18. It can be seen that the entire workgroup only con-
sisted of two workspaces, the master workspace and another worksfilas®nes4&5.
Moreover, no shared documents, backgrounds, discussions, or message rules existed (the
only link that exists between the two shown workspaces is a parent-child link). Therefore
theCollaborative-Report-Preparation-Pattern task-level action pattern was not

part of a larger process, and the mapping of action patterns stopped at this point.

5.2.3 Discussion

The pattern extraction shown above for Group 9 started with records at the base level
of the Information Pyramid of the system through which the virtual collaboration was
conducted—in this case thelMENET system—and has through successive steps ex-
tracted progressively larger-scale patterns of virtual collaboration from it. In the end, a
task-level action pattern of collaborative report preparation was identified, which consti-
tutes the largest unit of activity for the given case.

Extracted patterns of virtual collaboration do not exist in isolation from one an-
other. Rather, they are related with each other within and across levels of the Infor-
mation Pyramid. Thus, given a specific instance of collaboration-level action pattern
Group-Discussion-Pattern for example, it is possible to determine which instances
of lower-level action patterns it aggregates (in this case, instanéesofDiscussion-
Statement-Pattern andOpen-Discussion-Statement-Pattern); onthe other hand,
it is also possible to say in which instances of higher-level action patterns this collabora-
tion-level action pattern is involved (in this case, in an instancecafiaborative-

Chapter 5. Case Study: Modeling and Pattern Extraction in LIVENET 203

= lWorkzpace Map (lorkzroups: che-group-08)

Ecbe—gn:-up—[lg_hﬂazter-l

Milestone=sd&S

Figure 5.18: Inter-workspace map of workgroth-group-09

Report-Preparation-Pattern). Knowing these relationships among instances of ac-
tion patterns on different levels makes it possible to both abstract away details of individ-
ual users’ actions in order to obtain a “big picture” of the virtual collaboration at hand;
and to “drill down” into more detail of a specific action pattern whenever such informa-
tion is required. Thus the result of pattern extraction metworkof related instances of
patterns of virtual collaboration that can be traversed in any direction to obtain the infor-
mation sought (on the level of instances, this corresponds to the horizontal and vertical
links among concepts in thetdENET ontology as shown in Figure 5.10 on page 190).
There is a parallel between the models and methods presented here and those of the
well-known Unified Modeling Language, UML. In UML, different modeling notations
exist for representing different aspects of a system, nine types of diagrams in total (Booch
et al., 1999). Three of these can be regarded as similar to those used in this thesis: UML
class diagrams, object diagrams, and use case diagrams. UML class and object diagrams
represent details of classes and objects, respectively. These correspond more or less di-
rectly to the class and object diagrams introduced in Section 4.1.3 and used throughout

Chapter 5. Case Study: Modeling and Pattern Extraction in LIVENET 204

this chapter. These diagrams model structural aspects of the concepts in an ontology. On
the other hand, UML use case diagrams can to some extent be compared to the EMOO
diagrams introduced in Section 3.3 that have also been used in this chapter. The parallel,
however, extends beyond the notation only. As in the case of UML, the class, object and
EMOO diagrams proposed in this thesis are mutually related: objects instantiate classes,
and classes are the constituents of EMOO diagrams. Moreover, EMOO diagrams are
somewhat more abstract representations, hiding the detail contained in class diagrams.
The same is true in the case of UML use case diagrams which hide the detail of UML
class diagrams. However, there is a major difference in the modeling process in UML
and that proposed in this thesis, namely the method of deriving one type of diagram from
another: in UML, first use cases are modeled and represented in use case diagrams. From
these, other diagrams are then produced, including class diagrams but also other diagrams
not mentioned here. These models usually begin at a high level of abstraction and subse-
guently become increasingly detailed as modeling progresses. The method defined in this
thesis, however, is the exact reverse: the starting point in modeling is detailed data from
which classes are modeled. These classes are then abstracted to EMOO diagrams, and
both class and EMOO diagrams become increasingly abstract as modeling progresses.
Thus while there are parallels between the modeling methods and notations of UML and
this thesis, the modeling approach is fundamentally different.

Pattern extraction, such as the one illustrated above, over time results in a large num-
ber of instances of different patterns of virtual collaboration at different levels of abstrac-
tion. When fed into a collaboration memory, as proposed in Section 4.5, these provide
a ready resource that can be tapped into to obtain information related to the procedural
aspects of the work of virtual teams. These patterns thus form the observations of vir-
tual collaboration referred to at the beginning of this thesis, which help address the two
challenges posed in Chapter 1: how to know how to carry out collaboration virtually; and
how to know what is, and has been, “going on” during virtual collaboration.

In relation to the first challenge, consulting such a collaboration memory containing
patterns of virtual collaboration it is possible to learn from the experience of others that
is enshrined in these patterns. For instance, before setting out on an activity of virtual
collaboration, one may refer to a number of patterns originating from those whom one
knows to be more experienced in collaborating virtually, thereby drawing on their experi-
ence. A collaboration system with an integrated collaboration memory component could
make patterns of virtual collaboration available for instantiation, possibly involving a first
step of tailoring these patterns to suit the specific needs of those who are to use them. In
this regard the use of information visualization can be useful in observing initial patterns,
as was demonstrated above. It can also facilitate referencing and looking up patterns

Chapter 5. Case Study: Modeling and Pattern Extraction in LIVENET 205

from the collaboration memory. Moreover, a collaboration system could also provide fa-
cilities for combining several separate patterns (“plugging” them together, as suggested
earlier in this chapter), thereby effectively using these patterns as basic building blocks
for creating the collaboration support required for specific collaborative endeavours.

In relation to the second challenge, those who require information about the activities
of virtual teams can similarly reference records of the virtual collaboration deposited in
the form of patterns of virtual collaboration in a collaboration memory. The informa-
tion within these patterns then provides insights into the procedural aspects of a virtual
team’s collaboration. This makes it possible to determine the kinds of collaborative ac-
tivities performed, the involvement of different team members in these activities, and the
development of the virtual work over time.

By using the methods proposed in the preceding chapters of this thesis, these obser-
vations of virtual collaboration are obtained without requiring virtual teams to explicitly
document their own actions, thereby addressing the research problem posed in Chap-
ter 1. The preceding case study has thus provided basic validation of the plausibility and
applicability of the proposed concepts and methods.

5.3 Summary

This chapter has presented a case study demonstrating the application of the concepts
and methods introduced in the preceding two chapters.

The basis for being able to extract patterns of virtual collaboration from a body of data
is a clear understanding of the concepts and their relationships represented by that data,
as well as the abstractions that can be derived from these concepts. These are specified in
the form of an ontology for a given collaboration system. An example of the specification
of such an ontology for the INENET collaboration system was given in the first part of
this chapter. Because of space considerations, this specification was illustrated by several
representative examples rather than a full specification of all details.

The ontology, as specified fonENET, was used in the second half of this chapter in
the extraction of actual instances of patterns of virtual collaboration from real usage data
obtained from the LYENET collaboration system. This illustration showed the extraction
and mapping of patterns of virtual collaboration from the system level up to the task
level, resulting in a network of inter-related instances of patterns of virtual collaboration
that enables both abstraction and drilling down to obtain the required level of detail of
information about the virtual collaboration.

Having presented and demonstrated the concepts and methods proposed in this thesis

Chapter 5. Case Study: Modeling and Pattern Extraction in LIVENET 206

in this and the preceding chapters, the following chapter carries on from here to provide
a summary and conclusions of this thesis.

Chapter 6
Summary and Conclusions

The preceding chapters have presented and illustrated all the elements this research has
been concerned with. The current chapter concludes the thesis by providing a summary
of the main points, listing the major contributions of this research, outlining areas for
future work, and offering concluding remarks.

6.1 Summary

This thesis began with the observation that recent changes in the organizational setting
have lead to an increase in virtual collaboration, understood to consist of acts of working
together without face-to-face interaction, enabled by technology. Virtual collaboration
is challenging, including the challenges of knowing how to carry out collaboration vir-
tually, and knowing what is and has been “going on” during virtual collaboration. It
was suggested that observation of virtual collaboration, both past and present, can help
meet these challenges, but that this brings up what constitutes the problem motivating
this research: how to obtain these observations without requiring those involved in the
collaboration to document their own actions.

It was then suggested that the solution to this problem involves three components:
firstly, the availability of records of events transpiring during virtual collaboration; sec-
ondly, conceptual modeling of the information of the computer-based systems through
which virtual collaboration is conducted; and thirdly, the derivation of abstract represen-
tations of the virtual collaboration.

After a review of the main areas of the problem domain of this research in Chapter 2,
the main body of the thesis, Chapters 3 and 4, presented details of the problem solution.

The main conceptual element proposed is that patiern of virtual collaboration
which is understood to refer to a structure existing within a body of data about virtual

Chapter 6. Summary and Conclusions 208

collaboration, and which represents both a particular setup of a virtual space and the
actions performed within it. Patterns of virtual collaboration can exist at different levels

of abstraction, ranging from highly detailed expressions of parts of a specific user action
to abstract representations of entire work processes. The thesis proposed a layered model
of information, thelnformation Pyramid of Virtual Collaboratiomvhich consists of six

levels covering this range. Collaboration systems constitute the source of information,
providing information which typically belongs to the lowest one or two levels of the
Information Pyramid. On the other hand, the observations of virtual collaboration that
are sought usually reside on the highest two levels of the Information Pyramid.

In order to bridge from the information source (the input) to the observations sought
(the output), information at the different levels needs to be transformed to successively
higher levels in the Information Pyramid. This requires two steps of (1) modeling of
information, and (2) transformation of models of information from one level to another.

Information from a given collaboration system is specified in the form of an ontology,
capturing concepts and their relationships. This ontology of just one level of the Infor-
mation Pyramid is extended by adding concepts corresponding to the higher levels of the
Information Pyramid, and by defining mappings between concepts on adjacent levels.
The resulting ontology defines how information on higher levels can be obtained from
that at lower levels. The actual transformation of information across levels is performed
by mapping functions

To aid the identification of patterns on the highest two levels of the Information Py-
ramid, the use of information visualization was proposed. Networks of related objects
are visualized as node-and-link diagrams, winleasures of collaboration spacase
visualized in order to aid comparison of different collaboration spaces by certain derived
properties.

A Framework for Pattern Extraction and Feedbaetas proposed, which considers
the extraction of patterns of virtual collaboration in the larger context of the development
and utilization of collaboration systems. The framework includes four areas: collabora-
tion systems, collaboration data, pattern extraction, and collaboration memory. The lat-
ter, collaboration memory, was proposed as a particular kind of organizational memory,
consisting of patterns of collaboration.

Finally, the presented concepts and methods of modeling and derivation of patterns
of virtual collaboration were demonstrated on an actual collaboration systemNET.

6.2 Contributions of this Research

Following are the main contributions of the research presented in this thesis:

Chapter 6. Summary and Conclusions 209

1. Introduction of the concept q@atterns of virtual collaborationas abstractions of
collaborative activities at different levels of granularity.

2. Thelnformation Pyramid of Virtual Collaborationwhich provides views of in-
formation related to virtual collaboration on six layers with different degrees of
abstraction.

3. A method for deriving abstract representations of virtual collaboratmien only
detailed, fine-grained usage data from collaboration systems.

4. The notion ofmeasures of collaboration spacehich allow different collaboration
spaces to be compared based on certain derived properties.

5. A Framework for Pattern Extraction and Feedbawkich suggests ways in which
collaboration systems can provide the data needed for extraction of patterns of vir-
tual collaboration, and how these patterns can feed back into use of these systems.

6. The use of aontology-based notatiofor the representation of patterns of virtual
collaboration.

7. The notion ofcollaboration memoryas part of an organizational memory, which
contains records of procedural aspects of collaborative activity.

6.3 Future Work

The research presented in this thesis has proposed ways how to both model and derive
patterns of virtual collaboration from a given collaboration system. Building on this
work, a number of questions arise which future research should address:

¢ Rigorous empirical testingThe previous chapter has provided some extent of val-
idation of the plausibility of the concepts and methods proposed in this thesis. In
order to demonstrate their robustness, rigorous empirical testing should be carried
out. Such testing should apply these concepts and methods to a wider range of
situations, involving different collaboration systems, different types of users, and
different kinds of work activities.

o Transferability of patternsThe proposed method of pattern extraction is capable of
producing patterns of virtual collaboration from a given collaboration system. An
interesting problem to investigate is whether it is possible to transfer these patterns
across different collaboration systems, and what would be involved in doing so.

Chapter 6. Summary and Conclusions 210

That is, if a pattern of virtual collaboration were obtained from Sys¥ncould

that pattern be transferred and utilized in Systéyrand if so, how? Making it
possible to transfer patterns across different collaboration systems would vastly
broaden the applicability of these patterns, and thus the opportunity to benefit from
the experience of others enshrined in these patterns.

Approaching this problem, the specification of ontologies for different collabor-
ation systems, as described in this thesis, would be a required first step toward
enabling transferability of patterns. Separate ontologies would, however, need to
be reconciled with each other. That is, a given concept, say “Collaboration Space”,
may have a certain meaning and have associated with it certain functional char-
acteristics, which may differ from one collaboration system to another. Thus the
identification, and resolution, of such conceptual incongruities would likely be one
of the requirements for transferring patterns across different collaboration systems.
Other obstacles to the transferability of patterns may exist and will need to be in-
vestigated.

e Accommodation of individual/group preferenc@atterns of virtual collaboration
that are obtained from a collaboration system and deposited in collaboration mem-
ory are available for instantiation, and thus reuse, by others. However, because
different individuals and/or groups may have different preferred ways of working,
and thus different ways of structuring their virtual working environment, the in-
stantiation of a given pattern may not provide the best possible support for a given
user or group, and may therefore need to be manually customized.

An approach for providing instantiations of patterns of virtual collaborations that
are more congruent with the individual and group preferences could involve adap-
tation of patterns based arser and group profiles Such profiles could be ob-
tained through observation of the way that collaboration spaces are typically set
up. The way in which patterns are typically adapted before use could provide an-
other source of information for the creation of such profiles.

e Evaluation of patterns of virtual collaboratioriThe patterns of virtual collabor-
ation extracted from collaboration systems and retained in collaboration memory
may include a wide range of patterns for different purposes as well as preferences.
However, it may be difficult to know which of these patterns are best suited for a
given work activity. Some patterns may facilitate a given work activity more than
others, while some patterns may even encumber work. Thus a problem that exists
with regard to the patterns contained in a collaboration memory is that of evalua-

Chapter 6. Summary and Conclusions 211

tion of their usefulness. Its solution could require a manual approach, such as that
of recommender systems (Resnick and Varian, 1997), or it could involve methods
of automatically evaluating patterns. The solution to this problem should be the

subject of further investigation.

6.4 Concluding Remarks

Virtual collaboration has become part of professional practice in many organizations,
and it is likely for this trend to continue, and indeed to increase, for the foreseeable fu-
ture. The goal of many researchers is to eventually create realistic, three-dimensional,
life-size virtual teleconferencing, where life-size images of other participants are pro-
jected into one’s own working environméntOnce such technology matures and be-
comes widespread, it will be possible to realistically emulate face-to-face collaboration
across a distance, combining the advantages of collaboration in the physical world with
those that virtual collaboration has to offer.

At the present time, however, the technological support for virtual collaboration is
still very rudimentary, and carrying out virtual collaboration is challenging—as was dis-
cussed in Chapter 1. To help meet these challenges, it was suggested that observations of
virtual collaboration can be utilized. Addressing the problem of how to obtain observa-
tions of the activities involved in virtual collaboration without requiring virtual teams to
document their own actions, this thesis has suggested a possible solution.

Collaboration is a complex phenomenon, involving multiple actors, organizations,
activities, artefacts, etc., related to one another in multiple and often complex ways. A
complex phenomenon such as this may be regardedygst@min the sense of systems
theory (Ackoff, 1971). As defined by Ackoff, a system is a “set of inter-related ele-
ments” {bid.). Based on general systems theory, systems analysis approaches common
in the information systems field (Avison and Fitzgerald, 1988) facilitate individual com-
ponents of systems to be examined and critically reviewed. Decomposing a system into
its constituent parts facilitates both the understanding of each part, as well as increasing
understanding of the whole. That is what this thesis has done: the concepts presented—
patterns of virtual collaboration and the multi-layered Information Pyramid—allow vir-
tual collaboration to be examined in terms of (at least some, if not all, of) its constituent
elements. The methods for derivation of higher-level patterns assist in unearthing yet
more elements of the overall collaboration. Each of these constituent elements of the

1Early prototypes of what may be predecessors of such systems have already been developed. For
an example ofele-immersiorsee (Sadagic et al., 2001), and for oneaafmented reality conferencing
see (Billinghurst and Kato, 2002).

Chapter 6. Summary and Conclusions 212

overall collaboration can be examined in order to understand that one element, as well as
contributing to the understanding of the overall complex phenomenon which is the virtual
collaboration itself. Whereas obtaininggampleteunderstanding of the complexities of
virtual collaboration may be difficult or even impossible, the contributions made by this
thesis assist in obtaining at least some degree of understanding.

Furthermore, it is important to realize that obtaining an understanding of virtual col-
laboration is limited by, among other factors, the degree to which collaboration is carried
out virtually. Activities of virtual collaboration are usually embedded within a larger
context of work in an organization, and may indeed only constitute a small part of the
overall work activities of that organization. It may be complemented by other forms
of collaboration, including face-to-face encounters, and may involve technologies other
than collaboration systems. Therefore, insights into virtual collaboration that are ob-
tained through the aid of the contributions made by this thesis should be complemented
by insights obtained from other sources, such as from one’s physical (i.e. non-virtual)
work environment.

Much further work still lies ahead, some of which has been outlined in the preceding
section. It is hoped that through the contributions made by this research some progress
toward overcoming the challenges of collaborating virtually, which were identified in the
introduction of this thesis, has been made.

Appendix A

L IvE NET Workspace Visualizer

In Chapter 4, the use of information visualization was proposed for assisting the identifi-
cation of action patterns at the task and process levels of the Information Pyramid. Some
basic functional requirements of a visualization tool were presented, ambtieeand-

link diagram type was identified as suitable for visualizing patterns of virtual collabora-
tion at the task and process levels.

For visualizing task- and process-level action patterns in th&€ NET collaboration
system, théVorkspace Visualizertool was developed This tool implements the func-
tional requirements proposed in Chapter 4 (cf. p. 131), and employsoithe-and-link
diagram type in its visualizations.

Task- and process-level action patterns iIRENET exist either in individual work-
spaces (as is the case for most task-level action patterns), or span a network of workspaces
(as is the case for most process-level action patterns). Thus, the Workspace Visualizer
provides two basic types of diagrams: one that displays the internal structure of a work-
space, and the other that displays the relationships among a network of workspaces. The
following sections introduce the visualizations of the Workspace Visualizer for each of
these types of diagrams.

A.1 Intra-Workspace Maps

The most basic kind of visualization is the so-calietfa-workspace mapThis makes
the internal structure of a workspace visible. The internal structure is made up of the
objects contained in the workspace, and the relationships between these objects. As this

1This tool was developed by the present writer as an 8600+ line-of-code Java program consisting of
over 40 classes and interfaces. About 5% of the code is based on (now heavily modified) code produced
by Sun Microsystems, Inc.

Appendix A. LIVENET Workspace Visualizer 214

~ Book-Review M| 20 0

MaryLamb

Authar

Ciscuss Reviews

Manuscript

Review 1

I Rewiew 2

Editar Review 3

/ Reviewer

Johnsmith

HelenBlake

Discuss Manuscript

Paullones

Figure A.1: Intra-workspace map of workspaeeok-Review showing users (pink),
roles (yellow), documents (blue) and discussion forums (green)

visualization focuses on th&ructureof the workspace, it draws on static information
obtained from the LYENET database. However, since the relationships between roles
and other objects also imply certain actions, the visualized structure does to some extent
give an indication of the behaviour, or dynamic aspects, supported by the workspace.

An example of an intra-workspace map is shown in Figure A.1. The map is a node-
and-link diagram in which objects are visualized in the form of nodes, and relationships
between objects are visualized as links between nodes. Diffggeedof nodes are dis-
played with different background colours; in the example, participants (users) are shown
in pink, roles in yellow, documents in blue, and discussion forums in green. Other types
of objects that an intra-workspace map may contain are actions, backgrounds, message
rules, and message types.

Two types of relationships are represented by links between nodes: a link connecting
a participant node and a role node indicates that the participant occupies the role. A
link connecting a role node and any other kind of node (action, discussion, document,

Appendix A. LIVENET Workspace Visualizer 215

= Book-Review M S0 0

MarylLamh

¥ Rales

.
Discuss Reviews ™ Participants
¥ ACTIONS
Manuscript W DIsSCUssians
Reyigw 1 ¥ Dacuments

l Rewiewy

¥ Backgraunds
¥ Message Rules
¥ Message Tyvpes
o Shart Labels

a

Review 3

|Reviewer| : :
lahn&mith O Animation
: - HelenBlake
[Discuss Manuseript |

Figure A.2: Intra-workspace map with popup menu for filtering objects by type

background, message rule, or message type) indicates that the role has access to that
object.

A.1.1 Filtering

For workspaces that contain many different objects, intra-workspace maps may contain
a large number of nodes and links. This may make it difficult to discern the task-level
action patterns contained in those workspaces. The example of Figure A.1 contains only
a relatively small number of objects: four users, three roles, four documents, and two
discussion forums. Yet even in this simple map there are some crossing links. For maps
containing a much larger number of objects, the number of crossing links would be much
greater, which can make it difficult to identify which nodes are connected by which links.
In order to facilitate the identification of patterns of virtual collaboration in workspa-
ces, it is therefore often necessaryitter out some objects, i.e. to remove some objects
from view, so that other objects can be more easily discerned. For the intra-workspace
maps of the Workspace Visualizer, objects can be filtered out according taytpeir
This is shown in Figure A.2: the popup menu allows each of the eight types of objects
listed in the upper part of the menu to be excluded from the map. By default all types of
objects are included, but by unchecking the checkbox next to an object type, all objects
of that type, as well as all links attached to it, are hidden.

Appendix A. LIVENET Workspace Visualizer 216

= Book-Review [l 0 0 0

¥ Rales

Auth T
[Participants
i Rewvi i
ISCLSS 2% 2y s DACIIUHS

¥ Discussians

O Documents

O Backgrounds

O Message Rules
[0 Message Tyvpes

o Shart Labels

Reviewer O Animation

Editar

Discuss Manuseript |

Figure A.3: Intra-workspace map with only role and discussion forum objects visible

Figure A.3 shows a visualization of the same workspace where all objects except for
roles and discussion forums are filtered out. The resulting map is much clearer than the
original one that contained all objects. For instance, it is now clearly visible that there
are two separate instances of group discussions involving two roles each, with one of the
roles present in both group discussions.

Similar filtering can be performed to leave only roles and documents visible. This
allows instances of document exchanges among roles to be identified. Figure A.4 shows
an example of such an intra-workspace map.

A.2 Inter-Workspace Maps

The intra-workspace maps presented above allow details of individual workspaces to be
investigated. However, in order to identify process-level action patterns, it is necessary
to examine not only single workspaces in isolation but groups of workspaces that are
related in some way. For instance, examining a workspace susfv@sReview shown

in Figure A.1 may lead to the identification of a task-level action pattern. Consequently
other workspaces related to this one may be investigated to identify other related task-
level action patterns, as well as to identify a process-level action pattern which these task-
level action patterns belong to. To facilitate this, it is necessary to visuadizreorksof

Appendix A. LIVENET Workspace Visualizer 217

= Book-Review 800
™ Ra le S
[Participants
O ACTions
Manuscript O Discussians
Reyiew 1 ¥ Dacuments

' Reviewy

O Backgraunds
O Message Rules
[Message Types
o Shart Labels

|Reviewer| 4 i
O Animation

a

Rewiew 2

Figure A.4: Intra-workspace map with only role and document objects visible

workspaces, and toavigatebetween them. The Workspace Visualizer supports this in
the form ofinter-workspace maps

An inter-workspace map shows several workspaces together in a node-and-link dia-
gram, with nodes representing workspaces and links representing relationships between
workspaces. Workspaces may be related in different ways. For instance, if a given doc-
ument is included in two or more workspaces, these workspaces are related by partici-
pating in the sharing of the document. Other types of relationships according to shared
objects can be similarly identified. Moreover, iMENET workspaces are related in a
hierarchical structure in the form of a tree: with the exception of one workspace at the
root of the tree, every workspace has a parent workspace, or conversely, workspaces may
have child workspaces. Thus the visualization of workspace relationships in a collec-
tion of LIVENET workspaces consists of a tree of parent-child workspace relationships,
overlaid by a network of shared-object relationships.

An example of a basic inter-workspace map, showing only the tree structure of parent-
child workspace relationships, is shown in Figure A.5. Here, nodes with a yellow back-
ground are parent workspaces, i.e. workspaces which have child workspaces, while nodes
with a white background are leaf nodes in the tree which have no child workspaces. The
node at the top of the map is the root workspace, having no parent workspace.

Appendix A. LIVENET Workspace Visualizer 218

S0 8
| cbe-group-06_Ma sterdesnet-manager
cbe-group-06:cbe-irna
Problems for Workspace for Caze Study:cbe-hockl IMi\estoneS-Workspace cbe-hoclcl
[warkspace far Caze Study.che-deng] [COMETRUCTION MAMACEMENT - WS che-hack

[ARCHITECTURAL DESIGN - W:cbe-hack COORDINATION-WS -t b - hoc ke

| warkspace-2-Coordination cba-dang|

Flan Maonitoring:cbe-hock

Workspace-2.3-Propose Change:che-deng IWorkspace-Z.l—Plan Monitoring cbe-dengl

2-1-Plan-Manitoring:desnet -manager| warkspace 2 1 6 clarify issuescbe-hock

2-2-Fropose-Changedesnet-manager|

[workspace 2 1 5 armnge plancbe-hock

|Worlcspace-2 1.2-Distribute Plan & Deslgn:cbe—dengl

|\wrkspace 2 14 keeptrackof changesiche-hock

Figure A.5: Inter-workspace map of a collection of workspaces, showing parent-child
workspace relationships

A.2.1 Workspace Relationship Types

Besides parent-child relationships, a number of other types of relationships can be vi-
sualized. In the Workspace Visualizer, these are represented by different link colours.
Figure A.6 shows the Workspace Visualizer’s control panel with which the desired work-
space relationships can be selected. Here, in the section of the control panel titled “Edge
Pull / Visibility”, up to eight different workspace relationship types can be made visible.
The colour field to the left of each relationship type label corresponds to the colour of the
link shown in the map. The relationship types are:

1. Parent/Child: parent-child relationships between workspaces.

2. Goal: relationships between workspaces which support the same goalvii: L
NET, “goal” is one attribute of a workspace referring to a description of its goal.
When the value of this attribute is identical for a pair of workspaces, a goal rela-
tionship exists.

Appendix A. LIVENET Workspace Visualizer 219

- Map Controls £98 8
Mode Calauring Eclge Pull / Visibility
@ ParentfChild M v [v] Parent;Child

1 Abs. Workspace Density B | [Goal

Min. Warkspace Densit
o o J B | [Document

) Max. Warkspace Density
[_| Background

) Mean Warkspace Density

1 Evalutian Intensity [Discussian
' Evolution Recency [_| Actian
) Message Intensity | [_| Message Rule
' Message Recency [Participant
' Discussian Intensity

Apply To:

' Discussion Recency
® Yisible subgraph

Mode Labels ;
o e 1 Entire graph
Animation Eclge Length
® On) Off —F7 :
All Nodes Map
Expand Callapse Print Clase

Figure A.6: Control panel allowing features of the visualization to be controlled

Appendix A. LIVENET Workspace Visualizer 220

3. Document: relationship between workspaces which share one or more documents.

4. Background: relationship between workspaces which share one or more back-
ground materials.

5. Discussion:relationship between workspaces which share one or more discussion
forums.

6. Action: relationship between workspaces which share one or more actions.

7. Message Rule:relationship between workspaces where a message channel from
one workspace to the other exists.

8. Participant: relationship between workspaces which have one or more partici-
pants in common.

A given collection of workspaces can potentially have a very large number of such
relationships. To illustrate this, an inter-workspace map of the same collection of work-
spaces as shown in Figure A.5, but showing all eight types of workspace relationships,
is shown in Figure A.7. As can be seen, the number of inter-workspace relationships is
confusingly large. Therefore, the same principle should be applied as with the visualiza-
tion of intra-workspace maps: namely to filter out information so that only the subset of
information of interest is visible. To this end, three techniques are applied in the Work-
space Visualizer. The first one, which filters workspace links, consists of the selection of
types of relationships to be visualized, and has already been introduced. The other two,
which filter workspace nodes, anede expansioandfocusing and are introduced next.

A.2.2 Node Expansion

Node expansion refers to the selective making visible of a workspace’s child workspaces.

Thus when the Workspace Visualizer displays an inter-workspace map, it first displays

only the workspace at the root of the tree. Through a user interface action (double-

clicking the mouse pointer on the workspace node), the workspace nexpasded

to reveal its child workspaces. This can in turn be repeated on those child workspaces
which are themselves parent workspaces of the next level, etc. On the other hand, the
same user interface action on an already expanded workspaceoltageseshat node,

i.e., hides the node’s child workspaces and any lower-level workspaces for which the

collapsed node is an ancestoiThus a large workspace tree canrmvigatedthrough

2An ancestoworkspace is a workspace which is either another workspace’s parent workspace, or is its
parent’s ancestor workspace.

Appendix A. LIVENET Workspace Visualizer 221

i i 5
*d‘i_awurkspace Z15armange planiche- hcu:kl

Workspace-2.1.3-| Dlsmbute Flan & Deslgn che- deng
| iy f"fy/
|\wrkspace 21 4keeptmckofchangascbe-hockl

Figure A.7: Inter-workspace map of a collection of workspaces, showing all types of
workspace relationships

a sequence of node expansion actions. An example of this is shown in Figure A.8. At
first only the top-most workspace node is visible. The node is then expanded, revealing
the four child workspaces shown in box 1. Next, one of these child workspaces is ex-
panded, revealing another three workspaces, shown in box 2; lastly another one of these
is expanded, revealing one more workspace, shown in box 3. In this fashion, only a rel-
atively small subset of all workspaces in the entire graph is made visible, hiding other
workspaces which are of no interest.

A.2.3 Focusing

Focusing, on the other hand, refers to a different kind of filtering of the inter-workspace
map. Focusing places the focus of the visualization on a single workspace by only mak-
ing that workspace and its directly related workspaces visible. The set of directly related
workspaces depends on the selected types of workspace relationships. For instance, Fig-
ure A.9 shows examples of focusing on a workspace node. Part (a) of the figure shows

Appendix A. LIVENET Workspace Visualizer 222

©
=]
©

|cbe-gmup—DG_Mas(er:desnet—managerI

cbe-group-0&cbe-irna

|Pmblems forWorkspace for Case Study:cbe—hockl IMi\estoneS*Workspace:cbe*hock|

|CO METRUCTION MAMACEMENT - Wiicbe-hock

|#arkspace for Case Studycbe-deng |

| ARCHITECTURAL DESICM - Wa:che-hock (OO RDIMATIOM-WS:c be - hoc k.

@ Flan Monitoring:cbe-hock

Figure A.8: Navigation of a workspace tree through a sequence of node expansion ac-
tions; workspace nodes appear in the inter-workspace map after expansion of their parent

workspace, in the shown sequence (1, 2, 3).

y (lorkeroups: che-

[cbe-group-06_ Masterdesnet-manager]

[cbe-group-06_Masterdesnet-manager]

r~ o]
[workcspace for Case study:cbe-deng
L -

r~ o]
[workcspace for Case study:cbe-deng
L -

1

1

! [workspace-2.1-Plan Monitoring:cbe-deng |

[#orkspace-2-Coardination wcbe-deng

| #orkspace-2-Coondination «cbe-deng

|warkspace-2.1.3-Distribute Plan & Design:cbe-deng| o AR bect]
workspace Clarify issusscbe-hoc

[workspace 2 1 4 keep track of changesiche-hack]

warkspace 2 1 Sarange plancbe-hock]

(a) “Visible subgraph” link visibility (b) “Entire graph” link visibility

Figure A.9: Focused workspace with parent-child and message rule relationships

Appendix A. LIVENET Workspace Visualizer 223

the workspace at the centre being focused on. This is indicated by the brackets around
the node’s corners. Only that workspace, its parent, and its child workspace are visible in
the map. Part (b) of the figure shows the same workspace being focused on, but this time
includes several more related workspaces. In both cases, the workspace relationships to
visualize include the parent-child and the message rule types. However, the two maps dif-
fer in thescopeof the visibility of workspace relationships. The scope can be controlled

in the lower part of the control panel’s “Edge Pull / Visibility” section; it can be limited to

just the currently visible subgraph, or can be set to apply to the entire graph. For instance,
if a given subset of the graph such as the one in Figure A.9 (a) is currently visible, and the
Message Rule relationship type is being made visible in the “Apply to visible subgraph”
scope, the corresponding links will only be shown if they connect already visible work-
space nodes. In this way, relationships among a set of currently displayed workspaces
can be explored by switching the visibility of different link types on and off. On the other
hand, if the Message Rule relationship type is being made visible in the “Apply to entire
graph” scope, the corresponding links will be shown for all workspace nodes which are
connected to the already visible ones, including those workspace nodes which were not
previously visible. This is useful for identifying all related workspaces for a given set

of workspaces. This is the case in Figure A.9 (b) where five more workspaces are now
visible. These workspaces are related to the focused-on workspace through a message
rule link, but are not among its parent or child workspaces.

A.2.4 Clustering

A large inter-workspace map containing dozens of workspaces may contain hundreds of
workspace links. In order to identify sets of workspaces which are closely related and
may belong to the same process, it can be useful to arrange these in close proximity to
each other in the map. Doing so is referred telasteringof workspace nodes.

To understand how clustering works, it is necessary to understand how the maps are
drawn. Inter-workspace maps are drawn using a force-directed animated visualization
algorithm, similar to that of (Huang et al., 1998). With this algorithm, nodes and links
in the graph behave similar to round magnets connected by springs: the magnets can
be imagined to have the same magnetic pole on the outside so that they repel each other,
while the force of the springs pulls the magnets to a position where the springs are at their
“natural” length (i.e. their length when at rest). This is illustrated in Figure A.10, which
corresponds to an inter-workspace map with one root node (the circle at the top), and
three child nodes (the other three circles). The four outward-pointing arrows correspond
to the repelling forces of the magnets, while the arrows next to the springs correspond to

Appendix A. LIVENET Workspace Visualizer 224

'

Figure A.10: Magnets-and-connecting-springs model on which the force-directed ani-
mated visualization algorithm is based

the spring forces which contract the springs to their natural length, and which counter-act
the magnets’ repelling forces. Other forces such as gravity are assumed to be absent.
When the forces are in equilibrium, the magnets and springs are motionless. However,
when one node is moved, thereby extending or contracting any connecting springs, other
springs and nodes will also move until equilibrium is once again established. This effect
is modeled in the visualization algorithm, where nodes repel each other, while links con-
tract to their natural length. The natural length of links is equal for all links and can be
set in the control panel’s “Edge Length” section.

An extension of the algorithm of (Huang et al., 1998) in the Workspace Visualizer is
the introduction of the notion of springs whose spring force can be disabled. The effectis
that such a spring behaves like an infinitely stretchable string: when a magnet is attached
to it and is repelled from other nearby magnets, the spring is simply extended as far as
necessary. In the Workspace Visualizer, this feature is utilized in selectively enabling and
disabling the spring force for different types of workspace relationship links (this feature
is enabled by checking the “Edge Pull” checkbox next to a type of relationship link in the
control panel). Thus, for instance, all shared-document links can be made springs that
have a spring force, while the spring force of other links is disabled. The effect is that
all pairs of workspace nodes which have shared documents are pulled together into close
proximity (the distance being approximately that of the natural length of the link). In a
large network of workspaces, this resultslostersof related workspaces to emerge.

An example of clustering is presented in Figure A.11. Part (a) of the figure shows
an inter-workspace map with the spring force enabled only on parent-child links (the
default setting). Several groups of workspaces can be identified that are related through

Appendix A. LIVENET Workspace Visualizer 225

808
& -deng | [Anal..onspigrnt [H{Requ Firs.. Augipigrant |[Plan...tion:harm...mann|—L{ Plan. ring:harm...mann
|sece... Oct:pigrant|

Crea..pace:harm..mann
wark. plancbe-hock
[work...suescbe-hack
Proj.. tian:pjgrant

He et

Arch__sign:arm. mann]
T =

o \den..data pgramt A Prop_ange:harm_mann
Wark e Deve_onezpigmnt
ol] PRO)... TIOM:pigrant
Z-1-_ringdesn._ager] 4
che_testcbe_shweta | Cans.ment:harm _mann
2-2-..angedssn. ager| [Analysispigrant Prob...ring:har
i oot o Cans. temzharm. .mann
L
[Porke Jion :cbe-deng Desi...ison:pigrant
¢ Anal..izez pigrant [igen _00] [can... 00
Wk, angeicbe-deng Prab...tudy:cbe -hock|
1 cbe- sterdesn ager
L Dist..Plangroupds_ 00
Date._inespjgrant
cbe_sxamikalmady] Buil._stem:cbe_shweta] N h
Plan 1 Worlc.. | 5
oo Prob...tion groupds_00
che-.sterdesn._ager ikmmialmady Flan._tiongroupd3_00)
e
cbe-...sterdssn..ager L I Prov. .omkgroup4s.00
T L

cbe-..p-D6icbe-ima

Cons. stemgroup45_00]
[Amend Planigroupds_ 00
T

Prop...ange:groupds_00)

cbe-...sterdesn. ager

cbe-...sterdesn..ager

Plan_ring:group45_00] Tlctud. omlgroupds_00
Prob. tion:graupt

http...se 0:9138...5ins

mile._ne 5:9138...5ins 1

Plan...tian:lydia2 Pras...iant:groupds_ 00|

http..se 4:9138...5in%

(Coar...tion:graupan

Froj.. tion:8138...sins

Uplo...port:9138...sins
po- P Plan..tion: 9132 sinz 40

1

=
//

Frop...nge=:913%...sing|

Frob.. tion:2124...sins Flan _tiongraupd0

Proj._ring:9138._zins] Plan [| {chan..tion: H cgroupan

[Seco... Ot pigrant [Aug:pigrR Nt |

Cons..ment:harm._.mann
Fecharm...mann

[ran_tiommarm_mamf
el |

Planning piarant [it B0

FRO).. TION:gjgrant |, W/
CE S vzt o]
[Analysispigrant o AT £ SN e
o] tion pigrant \"

Prob. b ok et \\‘?//‘-

Dete..ines:pigrant
wiark...sign cbe~d=ng

1
[con=temstem f7op g marm..mann
cbe_testicbe_shweta

[cbe- .. sterdesn. ager

work,..ngescbe-hock]

2-1- _ring:desn._ager

farkc..ion :che-deng ool
worke._plan:cbe-hock [1den blemgroupss_ q o=t Plan:group#s. 00|

[suit samcbe.wera]

[cbe-_.sterdesn._ager che_

Plan..ring:che-hack

cbe- _sterdesn_ager

Worke...ange:cbe-deng [2rk. ring.cbe-deng

W rk... tuchy.che-deng

cbe-...p-Oicbesirna

1[Mile._pace:be-hock

cbe- _sterdesn_ager

hitp...5e 0:51 3 g

COMS...- WS cbe-hack

= o L7 i2n-.rinzareupo]
“ -
I

- [rite e 5913953

Plan._t

Froj.__evel:amy9]

Prob...tianza myog

Fro...tion:D138...sins | [nttp.se a:0138._sinz]

AT
Chan._tion:groupdn

N e orsise)

o
\ /=~

Wil
Prop._angeamy39 Disc__ssue:groupdl

(b) Spring force on all links

Figure A.11: Clustering of workspace nodes in an inter-workspace map with parent-
child, shared document, shared background, and shared discussion forum links

Appendix A. LIVENET Workspace Visualizer 226

shared objects. The extent to which workspaces within these groups are related, however,
is not clearly discernible. Part (b) of the figure shows the same inter-workspace map
but with the spring force enabled on all links, including the shared object links. The
spring force has caused the groups of workspaces to contract into tight clusters. This is
particularly evident for the four larger clusters in the upper part of the map. The shape
of these clusters, close to that of regular polygons, indicates that the workspaces in those
clusters share objects with every other workspace in the same cluster, for otherwise the
combination of spring force and repulsion force would drag the cluster apart into a less
regular shape. In contrast, the cluster in the lower right corner indicates just such a case.
Here there appear to be two inter-woven sub-clusters: one involving shared documents
and discussion forums (the lower left part of the cluster), and the other involving shared
documents and background material (the upper right part of the cluster). Thus clustering
can reveal not only which workspaces are related to one another, but also indicate the
regularity (or lack thereof) of the network of relationships within the cluster.

A.2.5 Workspace Measures

In Chapter 4, the notion aheasure®f collaboration spaces was proposed, and a list of
several such measures was presented as an illustration of this notion (cf. p. 129). In the
Workspace Visualizer, the majority of these measures have been implemented, and are
referred to asvorkspace measurelf should be stressed that the choice of this particular
set of measures has been largely arbitrary, based purely on the observation that these
measures have proven useful in distinguishing between different workspaces, but without
claiming that these measures are in any way the “best” ones for comparing workspaces.
Workspace measures can be visualized in inter-workspace maps. This is done by se-
lecting an option from the control panel’s “Node Colouring” section. The default setting
is “Parent/Child” colouring, which corresponds to no workspace measure being visu-
alized, and where parent nodes appear in yellow and leaf nodes appear in white. The
remaining ten node colouring options correspond to workspace measures. Each mea-
sure is mapped to a colour scale which gradually extends from one colour to another,
for example from green through yellow to red. Low values of the measure are given a
colour at one end of the scale, while high values receive a colour at the opposite end.
The colour corresponding to the value of the measure is used as the background colour
of the workspace node, providing a simple and easily perceivable distinction among a
collection of workspaces. An example of node colouring in the Workspace Visualizer
is shown in Figure A.12. Here, the workspace measure being represented by the node’s
background colour is workspace density. Green corresponds to low-density workspaces,

Appendix A. LIVENET Workspace Visualizer 227

]
(2
D

cbe-group-06cbesimna

Problems for Workspace for Case Study:cbe—nockl IMi\estoneS—Workspace:cbe—hockI

[warkspace for Caze study.cbe-dena] [COMSTRUGTION MANAGEMENT - W5:che-hack

ARCHITECTURAL DESIGM - WS che-hock CODRDIMATIOM-WS i be - hac k

Plan Monitoring:cbe-hock

WWarkspace-2.3-Propose Change:cbe-deng

[2-1-Plan-Manitaring desnet-manager| workspace 2 1 Bclarify issuesche—hock

[2-2-Propose-Change:desnet-manager]

[workspace 2 15armnge plancbe-hack

|Worlcspace—z.l.B-D\s(ribute Flan & Design:cbe—dengl

|w0rkspace 2 14 keeptrackof changes:cbe-hock|

T
v
ek

G
fariin
!

Mwm—
ObjeetsiWorkapace

]

=
]

Figure A.12: Inter-workspace map of a collection of workspaces, with node colouring
indicating workspace density

while red correspond to those with a high density, with yellow ones lying in between. The
legend in the lower left corner of the map indicates the value of the measure associated
with each colour. The scale extends from a value of zero (pure green) to 38 (pure red).
It can be readily seen that there are significant differences in workspace density among
the 18 workspace nodes pictured: a few are deep red, i.e. very dense, while a number of
workspace nodes are bright green, i.e. have low density. In deciding which workspaces
to examine, one may for instance choose one each with low, average, and high density,
and then compare their internal structure.

For the workspace density measure, four different options are available in the control
panel: absolute, minimum, maximum, and mean workspace density. The inter-workspace
map in Figure A.12 displays absolute workspace density. This is an absolute measure of
the number of objects in the workspace. The other three types of workspace density
measures are calculated in terms of pleeceiveddensity, as seen by the different roles
in the workspace. Because a different subset of objects can be visible to different roles,
each role may perceive a different workspace density. The minimum density is the small-

Appendix A. LIVENET Workspace Visualizer 228

est density value of all roles’ perceived density; similarly, the maximum density is the
highest value; and the mean density is the average of all roles’ perceived density values.

The evolution intensity, message intensity, and discussion intensity values are cal-
culated as the number of object additions, message postings, and discussion statement
postings per unit of time, respectively. Finally, the evolution recency, message recency,
and discussion recency values are calculated as the number of object additions, message
postings, and discussion statement postings in a defined recency period, respectively. In
the calculation of recency, more recent actions are given a greater weight than those fur-
ther back in the past. Aeflation factoiis applied in the calculation to decrease the count
given for each action the further back in the past it lies. Thus workspaces in which activ-
ity has been most recent are displayed in a colour representing a higher value than those
where activity has been further back.

The ten workspace measures selectable in the Workspace Visualizer’s control panel
are calculated as follows:

A.2.5.1 Density measures:

There are four different workspace density measures. The basic absakite work-
space densityDaps, for workspacew, which is:

Dabs, = |Owl

whereQy is the set of objects of type action, background, document, and discussion
in workspacew, and|Qy| is the cardinality ofO.

For the other types of workspace densities, it is necessary to calcolatgensities
first. The role densit¥,,, of a given roler in workspacew is:

Drw = ‘OW"|

whereQOy, is the set of objects of type action, background, document, and discussion
in workspacew which are visible to role, and wherg Oy, | is the cardinality of this set.

For a given workspacw, let the set of all roles imv be denoted a%,,, and the set of
all role densitiedDy,, in w be denoted ady,. The remaining three types of workspace
density measures are then:

Minimum workspace density, Dpin:

where the function min obtains the smallest valu®gf from Dy, .

Appendix A. LIVENET Workspace Visualizer 229

Maximum workspace density, Dmax

Dma)(: ma)((Q)RW>

where the function max obtains the largest valu®gffrom Dy, .

Mean workspace density Dpean

Dmean: <Q)LRW>

where(Dg,,) denotes the arithmetic mean of the valuedig,.

A.2.5.2 Intensity measures:

Intensity measures express the temporal clustering of a given set of action types in a
workspace. There are three intensity measures in the Workspace Visualizer:

Evolution intensity, leyo|,, measures the number of object additions to workspace
since the time of its creation, over the aaef the workspace’s existence (in weeks):

Lo

evoly a
where |0y is the cardinality of the set of objects added to workspaceObjects

included in O are: roles, participants, documents, backgrounds, discussions, actions,

message types, and message rules.

Message intensitylynsg , measures the number of message postings through message
channels in workspaao# since the time of its creation, over the amgef the workspace’s
existence (in weeks):

| M

lmsg = ——u1
msg, a

where| M, | is the cardinality of the set of messag®sposted in workspace.

Discussion intensity lgisg,, measures the number of discussion statement postings
through discussion forums in workspaeesince the time of its creation, over the ame
of the workspace’s existence (in weeks):

[Sw]

|disqN =

where|Sy| is the cardinality of the set of discussion statemenested in workspace

Appendix A. LIVENET Workspace Visualizer 230

0.8 \
0.6

0.4 <

0.2 ———

Figure A.13: Weighted action counfor recency measures, with recency peribe 30

A.2.5.3 Recency measures:

Recency measures express the temporal clustering of a given set of action types in a
workspace over a time period ending at the time of observation. In the calculation of
recency, youngest actions are given the greatest weight, which decreases with the ac-
tion’s age logarithmically from 1 (actions occurring on day of observation) to 0 (actions
occurring outside the recency period). In the Workspace Visualizer, the recency period
P is 30 days, including the day of observation and 29 days into the past. The weighted
action count for this recency period is shown in Figure A.13. There are three recency
measures in the Workspace Visualizer:

Evolution recency, Reyo,, Mmeasures the weighted number of object additions to
workspacew during recency period. For a workspace in which object additions

occurred within the recency perid® it is calculated as:
n

Revol, = i; Fi

where each value af corresponds to one object addition with age > 0, in days
before the time of observation, and is calculated as:

_In(a+1)

r= in(P) (A.1)

Appendix A. LIVENET Workspace Visualizer 231

Message recencyRmsg,, measures the weighted number of message postings through
message channels in workspaecduring recency perio®. For a workspace in whic
message postings occurred within the recency pd?jatis calculated as:

Rmsgv = iiri

where each value afcorresponds to one message posting withage> 0, in days
before the time of observation, and is again calculated as in eq. A.1 above.

Discussion recencyRyisg,, measures the weighted number of discussion statement
postings through message channels in workspearing recency perio®. For a work-
space in whicH discussion statement postings occurred within the recency periid
is calculated as:

Raisey, = i_lzlri

where each value af corresponds to one discussion statement posting wittaage
a> 0, in days before the time of observation, and is again calculated as in eq. A.1 above.

A.3 From Inter- to Intra-workspace Maps

Through exploration of workspace maps, both of the inter-workspace and intra-work-
space type, structures of task- and process-level action patterns existing wilgin L
NET’s collaboration data can be identified. This exploration is aided by various tech-
niques that were presented above, including a combination of filtering and clustering
techniques, as well as the visualization of workspace measures.

The process of visualization itself may be more or less targeted. In some cases, an
existing workspace is known to be of interest, in which case an intra-workspace map of
just that workspace can be produced for further inspection. At other times, the process
is more exploratory where the visualization can aid in the identification of workspaces
which appear of interest for further investigation. Such workspaces can then be examined
in more detail in a subsequent step by requesting intra-workspace maps for each one.
Thus the exploration usually involves both inter- and intra-workspace maps, and often
alternates between the two.

Using information visualization as provided by the Workspace Visualizer, the extrac-
tion of task- and process-level action patterns from workspaces can be greatly facilitated,
as compared to the direct analysis of large quantities of lower-level action patterns. An

Appendix A. LIVENET Workspace Visualizer 232

example of the application of the Workspace Visualizer to actual collaboration data ob-
tained from the LYENET collaboration system was presented in Section 5.2.

Appendix B

Pattern Extraction Queries

This appendix shows the queries that were performed as part of the extraction of pat-
terns from LVENET data, as well as the results of those queries. The source data was
generated through usage of thevENET collaboration system by a group of\ENET

users, designated as “Group 9” (refer to the discussion of pattern extraction in Chapter 5,
beginning on page 191).

B.1 Database Structure

The queries that follow are issued against the relational databasedabldich contains
records of the LYENET action log. This table has the structure shown in Table B.1.

B.2 Sessions

Group 9 performed 103 sessions with a total of 2737 actions per session, an average of
about 26 actions per session.

B.2.1 Number of Actions Per Session

The following SQL query obtained a list of session identifiers and corresponding number
of actions per session:

SELECT SessionId, COUNT (*) AS Num
FROM Log
WHERE SessionId IN (

SELECT DISTINCT SessionId

FROM Log

Appendix B. Pattern Extraction Queries 234

Column Description

LogId Unique identifier of each log record

LogTimestamp | Timestamp of the log record (date/time)

SessionId Unique identifier of the session which the action recorded in the
log record belongs to

Workgroup Workgroup in which the action occurred

Workspace Workspace in which the action occurred

Owner Owner of the workspace in which the action occurred

UserName Name of the subject (user) performing the action

RoleName Role occupied by the user performing the action

Action The action performed

Attribl Action attribute number 1

Attrib2 Action attribute number 2

Attrib3 Action attribute number 3

Attrib4 Action attribute number 4

Attribb Action attribute number 5

Attrib6 Action attribute number 6

Attrib7 Action attribute number 7

Attrib8 Action attribute number 8

Attrib9 Action attribute number 9

Attribl0 Action attribute number 10

Table B.1: Structure of database tabtey

WHERE Workspace = 'cbe-group-09_Master’
AND NOT UserName = ’desnet-manager’

)

GROUP BY SessionId

ORDER BY SessionId

The nested query is necessary because some actions, ssetwaskspace, take
place before the session has entered a workspace. Using the subquery, all session ids are
identified, which then allows all actions belonging to those sessions to be counted. The
condition to exclude actions performed Bysnet-manager (the course instructor and
owner of the workspace) ensures that only actions performed by members of Group 9 are
considered. The graph in Figure B.1 summarizes the query result. The following output
is produced by the query:

Appendix B. Pattern Extraction Queries

235

140~

120
100
80
60
40

20+

0

Actions

150 981 1616 1702 2501 3006 4206 4478 4951 5232 5402 5564 5703 6310 7068 8369 8946 9996 10341 10431 11950

SessionlID

Figure B.1: Number of actions per session for Group 9

SessionId Num
150 17
329 16
527 21
673 41
784 51
981 18

1198 30
1203 14
1209 59
1316 19
1616 20
1627 53
1643 24
1648 15
1701 42
1702 24
2039 16
2049 21
2058 18
2362 18
2501 16

Appendix B. Pattern Extraction Queries

236

21732
2742
2862
3006
3190
3250
3678
3960
4206
4207
4212
4228
4457
4478
4729
4770
4784
4808
4951
4979
4987
5122
5129
5232
5275
5281
5363
5390
5402
5404
5462
5539
5548
5564
5566
5580
5610

22
21
27
25
26
23
16
22
15
277
48
38
23
17
52
16
23
15
15
14
15
19
15
26
17
59
36
54
14
45
24
18
15
14
19
14
23

Appendix B. Pattern Extraction Queries

237

5613
5703
5764
5768
5853
5874
6310
6312
6514
6527
6847
7068
7165
7394
7919
7955
8369
8752
8759
8815
8870
8946
9218
9640
9646
9987
9996
10015
10022
10039
10326
10341
10365
10374
10383
10416
10431

15
14
27
29
15
15
16
14
20
81
14
15
18
16
30
19
14
20
16
25
18
22
29
16
34
14
32
17
25
40
16
18
36
17
17
14
15

Appendix B. Pattern Extraction Queries 238

10580 20
11370 14
11415 14
11931 103
11950 99
11952 138
20236 28

B.2.2 Sessions Per Day

The following SQL query obtained a list of the number of sessions of Group 9 per day
during the observation period:

SELECT CONVERT (CHAR(11), LogTimestamp) AS SessionDate,
COUNT (DISTINCT SessionId) AS Num
FROM Log
WHERE SessionId IN (
SELECT DISTINCT SessionId
FROM Log
WHERE Workspace = ’cbe-group-09_Master’
AND NOT UserName = ’desnet-manager’
)
GROUP BY CONVERT (CHAR(11l), LogTimestamp)

As above, the nested query obtains all session identifiers for sessions performed by
members of Group 9. The graph in Figure B.2 summarizes the query result. The follow-
ing output is produced by the query:

SessionDate Num

Aug 15 2000
Aug 16 2000
Aug 17 2000
Aug 19 2000

W o s P R e e

Appendix B. Pattern Extraction Queries

239

16
14 -
12 -
10 -

Sessions8 L

o LT ‘ ‘H‘ l ‘ Ll ‘l ‘ l*

* x * x * x * x * x
12/08 26/08 09/09 23/09 07/10 21/10 04/11
Date

Figure B.2: Sessions of Group 9 per day, 11/Aug/2000—-6/Nov/2000

Aug 20 2000
Aug 21 2000
Aug 22 2000
Aug 23 2000
Aug 24 2000
Aug 25 2000
Aug 26 2000
Aug 27 2000
Aug 28 2000
Aug 29 2000
Aug 30 2000
Aug 31 2000
Sep 4 2000
Sep 5 2000
Sep 6 2000
Sep 7 2000
Sep 11 2000
Sep 20 2000
Sep 27 2000
Oct 3 2000
Oct 4 2000

=
w o W s PR wWw W

[
(@3]

[T~ e N N R e A R L i \ N\)

Appendix B. Pattern Extraction Queries 240

Oct 6 2000
Oct 9 2000
Oct 10 2000
Oct 11 2000
Oct 12 2000
Oct 18 2000
Oct 22 2000
Nov 6 2000

R ow ND R a o N

B.2.3 System-Level Actions in All Sessions

A total of 35 different system-level actions were performed by Group 9. The following
SQL query obtained a ranked list of counts of actions:

SELECT Action, COUNT(*) AS Num
FROM Log
WHERE SessionId IN (
SELECT DISTINCT SessionId
FROM Log
WHERE Workspace = ’cbe-group-09_Master’
AND NOT UserName = ’desnet-manager’
)
GROUP BY Action
ORDER BY 2 DESC

As above, the nested query obtains all session identifiers for sessions performed by
members of Group 9. Output is sorted so that the most frequently performed actions are
listed first, and the least frequently ones last. The graph in Figure B.3 summarizes the
guery result. The following output is produced by the query:

Action Num
get_role_objects 683
open_object 189
getparticipants 158
setworkspace 157
get_user_email_homepages 152

getrolesl 151

Appendix B. Pattern Extraction Queries

241

getrole_objects
openobject

e - - - . 58 3
I | G O

getparticipanty m—————— 1 53

setworkspace m——————— 157
getuseremaiLlhomepages m————— 152
getrolesl| m————— 151
getmsgtypes

getrole messages m———————— 149

e 1 49
getled.workgroups| m— 149
getworkspacetree

getmyworkspaces m—— 1 30

s | 4O
logoff | n—— 106
getblock tree
getstatement

add object
getusersin_group
add statement

s | 03
e—— O O
e 50

— 27

20

deleteobject | mmmm 20

normalclose | mmm 18

addparticipant mm 14
addblock | mm 11
sendemail | mm 10

addgroupuser| m 8

addrole_object | 4

createworkspace| 13
newrole | 12
deleteworkspace| 12
getroles| 11
newrolel| 11
edituserl| 1
give_ownership| 11
createworkgroup | 11
getrole_templates| 11
removerole_object | 11
getusersin_mygroups| 11

Figure B.3: Ranked list of number of occurrences of system-level actions performed by
Group 9 in all sessions

Appendix B. Pattern Extraction Queries 242

get_msg_types 149
get_role_messages 149
get_led_workgroups 149
get_workspace_tree 149
getmyworkspaces 130
logoff 106
get_block_tree 103
get_statement 99
add_object 50
get_users_in_group 27
add_statement 20
delete_object 20
normal_close 18
addparticipant 14
add_block 11
send_email 10
add_group_user 8
add_role_object

create_workspace

newrole

delete_workspace

getroles

newrolel

edit_userl
give_ownership
create_workgroup
get_role_templates

remove_role_object

N e e e e = e S NC R GV RN N

get_users_in_mygroups

B.2.4 Session 4228

The following SQL query obtained all log entries for session 4228:

SELECT *

FROM Log

WHERE SessionId = 4228
ORDER BY LogTimestamp

Appendix B. Pattern Extraction Queries 243

Table B.2 shows the occurrence of system-level actions in session 4228 over time.
The following output is produced by the query:

LogId LogTimestamp SessionId Workgroup Workspace Owner UserName
RoleName Action Attribl Attrib2 Attrib3 Attrib4 Attrib5s
Attrib6 Attrib7 Attrib8 Attrib9 Attribl0

82905 "2000-08-26 14:06:53.773" 4228 null null null cbe-shane
null getmyworkspaces null null null null null null null null
null null

82906 "2000-08-26 14:06:57.586" 4228 null null null cbe-shane
null setworkspace cbe-group-09_Master desnet-manager null null
null null null null null null

82907 "2000-08-26 14:06:57.98" 4228 cbe-group-09
cbe-group-09_Master desnet-manager cbe-shane Member
get_led_workgroups null null null null null null null null
null null

82908 "2000-08-26 14:06:58.39" 4228 cbe-group-09
cbe-group-09_Master desnet-manager cbe-shane Member
get_workspace_tree cbe-group-09_Master desnet-manager null null
null null null null null null

82909 "2000-08-26 14:06:58.79" 4228 cbe-group-09
cbe-group-09_Master desnet-manager cbe-shane Member
get_role_objects DOCUMENT null null null null null null null
null null

82910 "2000-08-26 14:06:59.19" 4228 cbe-group-09
cbe-group-09_Master desnet-manager cbe-shane Member
get_role_objects BACKGROUND null null null null null null
null null null

244

Appendix B. Pattern Extraction Queries

BN JI9A0 8ZZ# UOISSaS Ul SUOIOR [9A3]-WB)ISAS JO 90Ua1INd20 :Z'g 9|gel

X pords)IoMIas
X X X X X 198lqouado
X 9so|dTewou
X yoboj
X aaIpoedsyiomiab
X sobedawoyirewalasniah
X TSajonab
X X X X X X X X X X X s1o8lqo-ajor18b
X sobessawaj01106
X swedipiediab
X $aoedsyiomAwnab
X sodArBswiab
X sdnoubxiompaiab
X X X 9a.}00|q19b
X 103lgoals|ap
X Juswiayeisppe
X X X X X X 103lgoppe

8€ LE PE GE V€ €€ CE TE 0E 62 8C L2 92 SC 2 €222 T2 06T 8T LTOT ST VYT ETCTTITIOT 6 8 L 9 GV €E€ECT

Appendix B. Pattern Extraction Queries 245

82911 "2000-08-26 14:06:59.59" 4228 cbe-group-09
cbe-group-09_Master desnet-manager cbe-shane Member
get_role_objects ACTION null null null null null null null
null null

82912 "2000-08-26 14:06:59.99" 4228 cbe-group-09
cbe-group-09_Master desnet-manager cbe-shane Member
get_role_objects DISCUSSION null null null null null null
null null null

82913 "2000-08-26 14:07:00.393" 4228 cbe-group-09
cbe-group-09_Master desnet-manager cbe-shane Member getrolesl
null null null null null null null null null null

82914 "2000-08-26 14:07:00.793" 4228 cbe-group-09
cbe-group-09_Master desnet-manager cbe-shane Member
getparticipants null null null null null null null null null
null

82915 "2000-08-26 14:07:01.193" 4228 cbe-group-09
cbe-group-09_Master desnet-manager cbe-shane Member
get_role_messages null null null null null null null null
null null

82916 "2000-08-26 14:07:01.593" 4228 cbe-group-09
cbe-group-09_Master desnet-manager cbe-shane Member
get_msg_types null null null null null null null null null
null

82917 "2000-08-26 14:07:01.993" 4228 cbe-group-09
cbe-group-09_Master desnet-manager cbe-shane Member
get_user_email_homepages null null null null null null null
null null null

82918 "2000-08-26 14:07:46.236" 4228 cbe-group-09
cbe-group-09_Master desnet-manager cbe-shane Member add_object

DOCUMENT "1.0 Plan Preparation.doc" "http://livenet.maths.uts.edu.

Appendix B. Pattern Extraction Queries 246

au/wsdocs/cbe-group-09_Master_desnet-manager/d/1.0 Plan Preparation.
doc" null null null null null null null

82919 "2000-08-26 14:07:46.64" 4228 cbe-group-09
cbe-group-09_Master desnet-manager cbe-shane Member
get_role_objects DOCUMENT null null null null null null null
null null

82949 "2000-08-26 14:14:33.943" 4228 cbe-group-09
cbe-group-09_Master desnet-manager cbe-shane Member add_object
DOCUMENT "1.0 Plan Preparation #2.doc" "http://livenet.maths.uts.
edu.au/wsdocs/cbe-group-09_Master_desnet-manager/d/1.0 Plan

Preparation #2.doc" null null null null null null null

82950 "2000-08-26 14:14:34.346" 4228 cbe-group-09
cbe-group-09_Master desnet-manager cbe-shane Member
get_role_objects DOCUMENT null null null null null null null
null null

82952 "2000-08-26 14:14:43.576" 4228 cbe-group-09
cbe-group-09_Master desnet-manager cbe-shane Member open_object
"1.0 Plan Preparation #2.doc" null null null null null null
null null null

82954 "2000-08-26 14:14:58.13" 4228 cbe-group-09
cbe-group-09_Master desnet-manager cbe-shane Member open_object
"1.0 Plan Preparation #2.doc" null null null null null null
null null null

82955 "2000-08-26 14:15:07.753" 4228 cbe-group-09
cbe-group-09_Master desnet-manager cbe-shane Member open_object
"1.0 Plan Preparation.doc" null null null null null null null
null null

82956 "2000-08-26 14:15:24.516" 4228 cbe-group-09
cbe-group-09_Master desnet-manager cbe-shane Member open_object

"1.0 Plan Preparation #2.doc" null null null null null null

Appendix B. Pattern Extraction Queries 247

null null null

82957 "2000-08-26 14:15:31.036" 4228 cbe-group-09
cbe-group-09_Master desnet-manager cbe-shane Member delete_object
"1.0 Plan Preparation #2.doc" null null null null null null
null null null

82958 "2000-08-26 14:15:31.436" 4228 cbe-group-09
cbe-group-09_Master desnet-manager cbe-shane Member
get_role_objects DOCUMENT null null null null null null null
null null

83007 "2000-08-26 14:21:45.063" 4228 cbe-group-09
cbe-group-09_Master desnet-manager cbe-shane Member add_object
DOCUMENT "1.0 Plan Preparation 2.doc" "http://livenet.maths.uts.
edu.au/wsdocs/cbe-group-09_Master_desnet-manager/d/1.0 Plan

Preparation 2.doc" null null null null null null null

83008 "2000-08-26 14:21:45.466" 4228 cbe-group-09
cbe-group-09_Master desnet-manager cbe-shane Member
get_role_objects DOCUMENT null null null null null null null
null null

83009 "2000-08-26 14:21:49.17" 4228 cbe-group-09
cbe-group-09_Master desnet-manager cbe-shane Member open_object
"1.0 Plan Preparation 2.doc" null null null null null null
null null null

83045 "2000-08-26 14:45:37.513" 4228 cbe-group-09
cbe-group-09_Master desnet-manager cbe-shane Member add_object
DOCUMENT "2.0 Plan Monitoring.doc" "http://livenet.maths.uts.edu.
au/wsdocs/cbe-group-09_Master_desnet-manager/d/2.0 Plan Monitoring.
doc" null null null null null null null

83046 "2000-08-26 14:45:37.913" 4228 cbe-group-09
cbe-group-09_Master desnet-manager cbe-shane Member

get_role_objects DOCUMENT null null null null null null null

Appendix B. Pattern Extraction Queries 248

null null

83063 "2000-08-26 14:59:26.736" 4228 cbe-group-09

cbe-group-09_Master desnet-manager cbe-shane Member add_object
DOCUMENT "3.0 Problem Identification.doc" "http://livenet.maths.
uts.edu.au/wsdocs/cbe-group-09_Master_desnet-manager/d/3.0 Problem

Identification.doc" null null null null null null null

83064 "2000-08-26 14:59:27.136" 4228 cbe-group-09
cbe-group-09_Master desnet-manager cbe-shane Member
get_role_objects DOCUMENT null null null null null null null
null null

83067 "2000-08-26 15:12:32.166" 4228 cbe-group-09
cbe-group-09_Master desnet-manager cbe-shane Member add_object
DOCUMENT "4.0 Propose Change.doc" "http://livenet.maths.uts.edu.au/
wsdocs/cbe-group-09_Master_desnet-manager/d/4.0 Propose Change.doc"
null null null null null null null

83068 "2000-08-26 15:12:32.556" 4228 cbe-group-09
cbe-group-09_Master desnet-manager cbe-shane Member
get_role_objects DOCUMENT null null null null null null null
null null

83069 "2000-08-26 15:12:49.71" 4228 cbe-group-09
cbe-group-09_Master desnet-manager cbe-shane Member
get_block_tree cbe-group-09_Master_desnet-manager "Discuss

Milestone" null null null null null null null null

83070 "2000-08-26 15:13:23.83" 4228 cbe-group-09
cbe-group-09_Master desnet-manager cbe-shane Member
get_block_tree cbe-group-09_Master_desnet-manager "Discuss
Milestone" null null null null null null null null

83071 "2000-08-26 15:13:24.43" 4228 cbe-group-09
cbe-group-09_Master desnet-manager cbe-shane Member add_statement

1104 0 "Documents Uploaded" "Hey there people check out the new

Appendix B. Pattern Extraction Queries

249

documents, well its a start anyway. Ciao for now." null null
null null null

83072 "2000-08-26 15:13:24.83" 4228 cbe-group-09
cbe-group-09_Master desnet-manager cbe-shane Member
get_block_tree cbe-group-09_Master_desnet-manager "Discuss

Milestone" null null null null null null null null

83073 "2000-08-26 15:13:37.77" 4228 cbe-group-09
cbe-group-09_Master desnet-manager cbe-shane Member
normal_close null null null null null null null null
null

83074 "2000-08-26 15:13:37.98" 4228 cbe-group-09
cbe-group-09_Master desnet-manager cbe-shane Member logoff
null null null null null null null null null

null

null

null

Glossary & Abbreviations

ACL abbrev. forAccess Control List.

action A function or operation that can be performed in a collaboration system. It con-
sists of one or morattributesthat describe it.

action context A set of information identifying the subject, referent, location, and time
of an action (sesubject referent location, time).

action pattern A pattern describing an action together with a particular action context.
Synonymous wittpattern of virtual collaboratior(seepattern).

artefact A passive object or collection of objects in a collaboration system, containing
information.

awarenessAn understanding of the activities of others, which provides a context for
one’s own activity (Dourish and Bellotti, 1992).

base level The level of the Information Pyramid at which the collaboration system col-
lects data about virtual collaboration (deérmation Pyramig.

class mapping A mapping that defines how an instance of a class representing a given
concept can be created from instances of other classes.

collaboration The act of working together on a common task or process.

collaboration level The fourth level of the Information Pyramid; this is the level on
which multiple users work in collaboration with each other (sdermation Pyra-

mid).
collaboration memory One part of an organizational memory, consisting of records of

procedural aspects of collaborative activity.

collaboration process A process performed by two or more individuals working to-
gether.

Glossary & Abbreviations 251

collaboration space A virtual space which provides the opportunity for bringing to-
gether people, artefacts, and communication channels for individual or joint ac-
tivity.

collaboration space densityA measure of how many objects are contained in a single
collaboration space (seeeasure of a collaboration space

collaboration system A software system which supports virtual collaboration through
the provision of collaboration spaces.

collaboration view View of information as seen from the point of view of multiple users
in collaboration with each other, consisting of the objects of the collaboration sys-
tem which these users interact with using the actions provided by the collaboration
system (seeollaboration level.

communication channel A facility for the exchange of messages, available to users of
a collaboration space.

communication intensity A measure of the number of statements exchanged through
discussion forums in a collaboration space per unit of time, calculated as an average
over the history of the collaboration space (ssasure of a collaboration space

communication recency A measure of the number of statements “recently” exchanged
through discussion forums in a collaboration space, for a pre-defined time interval
(seemeasure of a collaboration space

cooperation The joint operation or action toward a common goal or benefit.
CSCW abbrev. forComputer-Supported Cooperative (or Collaborative) Work.
data Uninterpreted raw facts.

document exchange intensityA measure of how often documents are exchanged in a
collaboration space through create/read document actions per unit of time, calcu-
lated as an average over the history of the collaboration spacen@asure of a
collaboration spack

document exchange recencyA measure of the number of “recent” document exchanges
in a collaboration space, for a pre-defined time interval (seasure of a collabor-
ation spacg

Glossary & Abbreviations 252

dynamic information Information about the actions taking place in a collaboration
space, representing the behaviour associated with the collaboration space’s struc-
ture (seeaction).

EMOO diagram short forextended MOO diagrargseeextended MOO diagram

evolution intensity A measure of how strongly the structure of a collaboration space
is subject to change, in terms of change actions per unit of time, calculated as an
average over the history of the collaboration spacefsegsure of a collaboration

space.

evolution recency A measure of how strongly the structure of a collaboration space has
“recently” been subject to change, for a pre-defined time intervalr(sssesure of
a collaboration spacke

extended MOO diagram An extended form of the MOO diagramming notation (see
MOO diagran).

goal The desired realization of a specific state of a portion of the world that an activity
is concerned with.

HCI abbrev. forHuman-Computer Interaction.
HTML abbrev. forHyperText Markup Language.
information Interpreted data, such that it is given meaning.

Information Pyramid short forinformation Pyramid of Virtual Collaboratioifseeln-
formation Pyramid of Virtual Collaboration

Information Pyramid of Virtual Collaboration A six-layer model of information re-
lated to virtual collaboration.

infrastructure level The lowest (first) level of the Information Pyramid; this is the level
of the underlying software infrastructure running “below” the collaboration system
(seelnformation Pyramigl.

infrastructure view View of information as seen from the point of view of the infras-
tructure underlying the collaboration system, consisting of files that contain records
of objects and actions (s@&rastructure levél.

inter-workspace map A visualization of the network of a collection of workspaces (i.e.
collaboration spaces in the\ENET system), and the relationships between them.

Glossary & Abbreviations 253

intra-workspace map A visualization of the internal structure of a workspace (i.e. a
collaboration space in thelENET system).

KM abbrev. forKnowledge Management.
knowledge Information made actionable as a result of cognitive effort.
location The place where an action occurs (se&on context

macro level Levels of the Information Pyramid above the meso level; i.e. the collabor-
ation, task and process levels ($eformation Pyramigdmeso levelcollaboration
level task level process levél

mapping function A function that creates instances of a specific target clasdqsgpet
clasg.

measure of a collaboration spaceA quantitative attribute which expresses something
about a certain characteristic of a collaboration space. Such a measure is derived,
or computed, from information related to the collaboration space.

meso level The user level of the Information Pyramid (skedormation Pyramid user
leve).

micro level Levels of the Information Pyramid below the meso level; i.e. the infrastruc-
ture and system levels (s&gormation Pyramigd meso levelinfrastructure level
system levél

MOO diagram A diagramming notation for representing internals of a task belonging
to a collaboration process, showing roles, artefacts, discussions, and their relation-
ships.

multi-artefact An artefact consisting of multiple objects (saefac).
multi-role A role occupied by several people (gete).

object A static entity provided and maintained by a collaboration system. It consists of
one or morattributesthat describe it. The set of values of an object’s attributes at
a given point in time constitutes the objedimteat that time.

OM abbrev. forOrganizational Memory.
pattern An abstract description of the structure of a body of data.

pattern of virtual collaboration Synonymous wittaction pattern(seeaction pattern.

Glossary & Abbreviations 254

process A collection of related tasks with a goal, such that the accomplishment of all
task goals brings about the process goal.

process levelThe highest (sixth) level of the Information Pyramid; this is the level on
which multiple users perform collections of related tasks corresponding to pro-
cesses (seaformation Pyramidl.

process modelAn abstract description of an actual or proposed process (Curtis et al.,
1992).

process view View of information as seen from the point of view of multiple users per-
forming processes, consisting of multiple related tasks belonging to these processes
(seeprocess levgl

referent That which is being acted upon by an action (aeton context
role An organizational role occupied by one or more people.
rich picture A diagramming notation for representing a collaboration process.

sessionA sequence of actions performed by the same user over a given period of time,
with a defined starting and ending point.

singleton artefact An artefact consisting of only one object (saefac).
singleton role A role occupied by only one person (sede).
slot mapping A mapping that defines a correspondence between two slots.

source classin a mapping of classes, the class which is being mapped fronclaes
mapping.

source slot In a mapping of slots, the slot which is being mapped from &@eemap-
ping).
SQL abbrev. forStructured Query Language, a language used for retrieving and manip-

ulating data in a relational database.

static information Information about the objects in a collaboration space, representing
the collaboration space’s structure (sdxec.

subject An action performer, such as a user or role or even a computational entity (see
action context

Glossary & Abbreviations 255

system level The second level of the Information Pyramid; this is the level of the collab-
oration system itself (sdaformation Pyramig.

system view View of information as seen from the point of view of the collaboration
system, consisting of its information repositories, such as database tables and log
files that contain records of objects and actions éy&stem levél

target class In a mapping of classes, the class which is being mapped tekEsemap-
ping).
target slot In a mapping of slots, the slot which is being mapped to §&eemapping,.

task A collection of activities with a common goal, performed by one or more individu-
als, such that the successful completion of all the activities brings about the task’s
goal.

task level The fifth level of the Information Pyramid; this is the level on which multiple
users perform activity corresponding to tasks (sdermation Pyramidl.

task view View of information as seen from the point of view of multiple users perform-
ing tasks, consisting of multiple collaboration-level actions and objects belonging
to these tasks (s¢ask leve).

time The time when an action occurs (ss&ion context

URL abbrev. forUniform Resource Locator, the address of a resource residing on a
computer network.

user level The third level of the Information Pyramid; this is the level on which individ-
ual users operate (sé&ormation Pyramidl.

user view View of information as seen from the point of view of the individual user,
consisting of the objects of the collaboration system which the user interacts with
using the actions provided by the collaboration system iseelevel.

virtual collaboration Collaboration which is conducted without face-to-face interac-
tion, enabled by technology (seellaboration).

virtual collaboration process A collaboration process performed without face-to-face
interaction, enabled by technology (sedual collaboration).

virtual team A group of people who interact through interdependent tasks guided by
a common purpose, working across space, time, and organizational boundaries
(Lipnack and Stamps, 1997).

Glossary & Abbreviations 256

workspace Synonymous term focollaboration spaces used in the IVENET system
(seecollaboration spacg

web The World-Wide Web.

XML abbrev. forExtensible Markup Language.

Assoclated Publications

Biuk-Aghai, R. P. (2000a). Virtual workspaces for web-based emergent processes. In
Fourth Pacific Asia Conference on Information Systems: Electronic Commerce and
Web-Based Information Systempages 864—880, Hong Kong, China.

Biuk-Aghai, R. P. (2000b). Visualization of web-based workspace structures. In Li, Q.,
Ozsoyoglu, Z. M., Wagner, R., Kambayashi, Y., and Zhang, Y., edifns;eed-
ings of the 1st International Conference on Web Information Systems Engineering
volume 1, pages 302—-309, Hong Kong, China. IEEE Computer Society Press.

Biuk-Aghai, R. P. (2001). Visualizing structural and behavioural aspects of virtual col-
laboration. InProceedings of the Tenth IEEE International Workshops on Enabling
Technologies: Infrastructure for Collaborative Enterprispages 279-284, Cam-
bridge, Massachusetts, USA. IEEE Computer Society Press.

Biuk-Aghai, R. P. (2003). An information model of virtual collaboration Proceedings
of the 2003 IEEE International Conference on Information Reuse and Integration
(IRI-2003) pages 129-136, Las Vegas, Nevada, USA. IEEE Systems, Man, and
Cybernetics Society.

Biuk-Aghai, R. P. and Hawryszkiewycz, I. T. (1999). Analysis of virtual workspa-
ces. In Kambayashi, Y. and Takakura, H., edit@afabase Applications in Non-
Traditional Environments '99pages 325-332, Kyoto, Japan. IEEE Computer Soci-
ety Press.

Biuk-Aghai, R. P. and Simoff, S. J. (2001). An integrative framework for knowledge
extraction in collaborative virtual environments. In Ellis, S., Rodden, T., and Zigurs,
., editors,Proceedings of the 2001 International ACM SIGGROUP Conference on
Supporting Group Worlkpages 61-70, Boulder, Colorado, USA. ACM Press.

Biuk-Aghai, R. P. and Simoff, S. J. (2002). Assisting the design of virtual work pro-
cesses via on-line reverse engineeringPtaceedings of the 35th Hawaii Interna-

Associated Publications 258

tional Conference on System Scien@agjes 58—67, Big Island, Hawaii, USA. IEEE
Computer Society Press.

Biuk-Aghai, R. P., Simoff, S. J., and Slembek, I. (2002). Knowledge-assisted reverse
engineering of virtual work processesnformatik/Informatique (1/2002):30-34.
Special Issue on Knowledge Management and Information Technology.

Simoff, S. J. and Biuk-Aghai, R. P. (2001a). Data mining in collaborative virtual en-
vironments: An integrating framework. IRroceedings of WebNet 2001—World
Conference on the WWW and Internedges 1120-1125, Orlando, Florida, USA.

Simoff, S. J. and Biuk-Aghai, R. P. (2001b). Multimedia mining of collaborative virtual
workspaces: An integrative framework for extracting and integrating collaborative
process knowledge. In Zane, O. R. and Simoff, S. J., editoRroceedings of the
Second International Workshop on Multimedia Data Mining (MDM/KDD’2Q01)
pages 21-30, San Francisco, California, USA.

Simoff, S. J. and Biuk-Aghai, R. P. (2002a). Data mining of collaborative virtual
workspaces: The "Space-Data-Memory” frameworknformatik/Informatique
(1/2002):35-38. Special Issue on Knowledge Management and Information Tech-
nology.

Simoff, S. J. and Biuk-Aghai, R. P. (2002b). Discovering emergent virtual work processes
in collaborative systems. In Meersman, R., Tari, Z., et al., editOrsthe Move
to Meaningful Internet Systems 2002: CooplS, DOA, and ODBASE: Confederated
International Conferences CooplS, DOA, and ODBASE 2002 Procegdiolgsne
2519 ofLecture Notes in Computer Scienpages 286—303. Springer-Verlag.

Bibliography

Ackerman, M. S. (1994). Augmenting the organizational memory: A field study of
Answer Garden. IiProceedings of the Conference on Computer Supported Coop-
erative Work pages 243-252, Chapel Hill, North Carolina, USA. ACM Press.

Ackerman, M. S. and Halverson, C. A. (2000). Reexamining organizational memory.
Communications of the ACM3(1):58—64.

Ackerman, M. S. and McDonald, D. W. (1996). Answer Garden 2: Merging organiza-
tional memory with collaborative help. Proceedings of the ACM 1996 Conference
on Computer Supported Cooperative Wgrges 97-105. ACM Press.

Ackoff, R. L. (1971). Towards a system of system concept$anagement Science
17(11):661-671.

Ackoff, R. L. (1996). On learning and the systems that facilitat€&nter for Quality of
Management Journab(2):27-35.

Adams, J., Koushik, S., Vasudeva, G., and Galambos, G. (28@fterns for e-business:
A Strategy for ReusdBM Press.

Alavi, M. and Leidner, D. E. (1999). Knowledge management systems: Issues, chal-
lenges, and benefitsCommunications of the Association for Information Systems
1(7).

Anand, V., Manz, C. C., and Glick, W. H. (1998). An organizational memory approach
to information managemenfcademy of Management Revj&8(4):796—-809.

Ansari, S., Kohavi, R., Mason, L., and Zheng, Z. (2000). Integrating e-commerce and
data mining: Architecture and challenges VWEBKDD 2000 Workshop: Web Min-
ing for E-Commerce — Challenges and Opportunjtgsston, Massachusetts, USA.

Appelt, W. (1999). WWW based collaboration with the BSCW systenProceedings
of SOFSEM’99volume 1725 ol ecture Notes in Computer Scienpages 66—78,
Milovy, Czech Republic. Springer-Verlag.

Bibliography 260

Avison, D. E. and Fitzgerald, G. (1988)nformation Systems Development: Method-
ologies, Techniques and Tooldnformation Systems Series. Blackwell Scientific
Publications, Oxford, UK.

Baker, E., Hawryszkiewycz, I., and Rura-Polley, T. (1999). Electronic workspace net-
works: Tools for facilitating the creation and sharing of knowledgePoceedings
of KNOW’99: Deciphering Knowledge Managemardlume 1, pages 54—69, Syd-
ney, Australia.

Bannon, L. J. and Kuutti, K. (1996). Shifting perspectives on organizational memory:
From storage to active remembering Hroceedings of the Twenty-Ninth Hawaii In-
ternational Conference on System Scienpgekime 3, pages 156-167. IEEE Com-
puter Society Press.

Benford, S., Snowdon, D., Colebourne, A., O’'Brien, J., and Rodden, T. (1997). Inform-
ing the design of collaborative virtual environments. Aroceedings of the Inter-
national ACM SIGGROUP Conference on Supporting Group Woages 71-80,
Phoenix, Arizona, USA. ACM Press.

Bentley, R., Appelt, W., Busbach, U., Hinrichs, E., Kerr, D., Sikkel, K., Trevor, J., and
Woetzel, G. (1997). Basic support for cooperative work on the World Wide Web.
International Journal of Human-Computer Studié§(6):827—846.

Bentley, R., Horstmann, T., Sikkel, K., and Trevor, J. (1995). Supporting collaborative
information sharing with the World Wide Web: The BSCW shared workspace sys-
tem. The World Wide Web Journgll):63—-74. Proceedings of the 4th International
WWW Conference.

Bhaskar, R., Lee, H. S., Levas, A.étrakian, R., Tsai, F., and Tulskie, B. (1994). An-
alyzing and re-engineering business processes using simulatiétrodeedings of
the 1994 Conference on Winter Simulatipages 1206-1213.

Billinghurst, M. and Kato, H. (2002). Collaborative augmented realiymmunications
of the ACM 45(7):64-70.

Biuk-Aghai, R. P. and Simoff, S. J. (2001). An integrative framework for knowledge
extraction in collaborative virtual environments. In Ellis, S., Rodden, T., and Zigurs,
., editors,Proceedings of the 2001 International ACM SIGGROUP Conference on
Supporting Group Workpages 61-70, Boulder, Colorado, USA. ACM Press.

Booch, G., Rumbaugh, J., and Jacobson, I. (1988¢. Unified Modeling Language User
Guide Addison-Wesley.

Bibliography 261

Borning, A. and Travers, M. (1991). Two approaches to casual interaction over computer
and video networks. IiProceedings of CHI 91: Conference on Human Factors in
Computing pages 13-19, New Orleans, Louisiana, USA. ACM Press.

Briggs, R. O., de Vreede, G.-J., Nunamaker Jr., J. F., and Tobey, D. (2001). ThinkLets:
Achieving predictable, repeatable patterns of group interaction with group support
systems (GSS). IProceedings of the Thirty-Fourth Hawaii International Con-
ference on System Sciencpages 436—444, Maui, Hawaii, USA. IEEE Computer
Society Press.

Capin, T. K., Pandzic, I. S., Magnenat-Thalmann, N., and Thalmann, D. (1898)ars
in Networked Virtual Environmentgohn Wiley & Sons, Chichester, UK.

Carr, N. G., editor (2001)The Digital Enterprise: How to Reshape Your Business for a
Connected WorldHarvard Business School Press, Boston, Massachusetts, USA.

Casati, F. and Pozzi, G. (1999). Modeling exceptional behaviors in commercial workflow
management systems. Rmoceedings of the Fourth IFCIS International Conference
on Cooperative Information Systenmages 127-138, Edinburgh, Scotland. IEEE
Computer Society Press.

Chaudhri, V. K., Farquhar, A., Fikes, R., Karp, P. D., and Rice, J. P. (1998). Open Knowl-
edge Base Connectivity 2.0.3. Technical Report KSL-98-06, Knowledge Systems
Laboratory, Stanford University.

Checkland, P. B. (1981).Systems Thinking, Systems Practicdohn Wiley & Sons,
Chichester, UK.

Churchill, E. F. and Bly, S. (1999). Virtual environments at work: Ongoing use of MUDs
in the workplace. IfProceedings of the International Joint Conference on Work Ac-
tivities Coordination and Collaboratigrpages 99-108, San Francisco, California,
USA.

Clauer, C., Atkins, D., Weymouth, T., Olson, G., Niciejewski, R., Finholt, T., Prakash,
A., Rasmussen, C., Killeen, T., Rosenberg, T., Detrick, D., Kelly, J., Zambre, Y.,
Heinselman, C., Stauning, P., Friis-Christtensen, E., , and Mende, S. (1995). A
prototype atmospheric research collaboratory (UARC). In Szuszczewicz, E., editor,
Applications of Data Handling and Visualization Technique in Space Atmospheric
SciencesNASA SP-519, pages 105-112.

Coleman, D. and Khanna, R., editors (1996joupware: Technology and Applicatians
Prentice Hall.

Bibliography 262

Conklin, E. J. (1993). Capturing organizational memory. In Baecker, R. M., eBi¢ad-
ings in Groupware and Computer-Supported Cooperative Work: Assisting Human-
Human Collaborationpages 561-565. Morgan Kaufmann Publishers.

Coplien, J. O. (1995). A development process generative pattern language. In Coplien,
J. O. and Schmidt, D. C., editoRattern Languages of Program Desjgrapter 13,
pages 183-237. Addison-Wesley, Reading, Massachusetts, USA.

Corbett, J. M., Faia-Correia, M., Patriotta, G., and Brigham, M. (1999). Back up the
organisation: How employees and information systems re-member organisational
practice. InProceedings of the Thirty-Second Annual Hawaii International Confer-
ence on System SciencsEE Computer Society Press.

Curtis, B., Kellner, M. 1., and Over, J. (1992). Process model@gmmunications of the
ACM, 35(9):75-90.

D’Aveni, R. A. (1994). Hypercompetition: Managing the Dynamics of Strategic Man-
agementFree Press, New York.

de Moor, A. (1999). Empowering Communities: A Method for the Legitimate User-
Driven Specification of Network Information SysterR&D thesis, Tilburg Univer-
sity, The Netherlands.

Debenham, J. K. (1999). A multi-agent system for emergent process management. In
Proceedings Nineteenth International Conference on Knowledge Based Systems and
Applied Artificial Intelligence, ES’99: Applications and Innovations in Expert Sys-
tems VI| pages 51-62, Cambridge, UK.

Dietz, J. L. (1994). Modelling business processes for the purpose of redesign. In Glasson,
B., Hawryszkiewycz, I., Underwood, B., and Weber, R., editBissiness Process
Re-Engineering: Information Systems Opportunities and Challermeges 233—

242. North-Holland.

Donlon, J. (1997). The virtual organizatioBhief Executivel25:58—66.

Dourish, P. (1997). Extending awareness beyond synchronous collaboratiGhlI‘@Y
Workshop on Awareness in Collaborative Systeftianta, Georgia, USA.

Dourish, P. and Bellotti, V. (1992). Awareness and coordination in shared workspaces.
In Proceedings ACM Conference on Computer-Supported Cooperative pegs
107-114, Toronto, Canada.

Bibliography 263

Dourish, P. and Bly, S. (1992). Portholes: Supporting awareness in a distributed work
group. InProceedings of ACM Conference on Human Factors in Computer Systems
CHI'92, pages 541-547, Monterey, California, USA.

Easteal, C. and Davies, G. (1989%oftware Engineering: Analysis and Desigihe
McGraw-Hill International Series in Software Engineering. McGraw-Hill, Maiden-
head, Berkshire, England.

Ellis, C. A., Gibbs, S. J., and Rein, G. L. (1991). Groupware: Some issues and experi-
ences.Communications of the ACN84(1):39-58.

Emmerich, W. and Gruhn, V. (1991). FUNSOFT nets: A Petri-net based software process
modeling language. IRroceedings of the 6th International Workshop on Software
Specification and Desigrpages 175-184, Como, lItaly. IEEE Computer Society
Press.

Erickson, T. (2000). Supporting interdisciplinary design: Towards pattern languages for
workplaces. In Luff, P., Hindmarsh, J., and Heath, C., editdfsrkplace Studies:
Recovering Work Practice and Informing Systems Degigges 252—261. Cam-
bridge University Press.

Eriksson, H. (2001). JessTab: Integrating Bggtand Jess. Online atittp://www.
ida.liu.se/ "her/JessTab/.

Farshchian, B. A. and Divitini, M. (1997). ICE: A highly tailorable system for building
collaboration spaces on the WWW. ACM GROUP‘97 Workshop on Tailorable
Groupware: Issues, Methods, and Architectyui@isoenix, Arizona, USA.

Fayyad, U., Piatetsky-Shapiro, G., and Smyth, P. (1996). The KDD process for extracting
useful knowledge from volumes of dat&ommunications of the ACN89(11):27—
34.

Fitzpatrick, G., Kaplan, S., and Mansfield, T. (1996). Physical spaces, virtual places and
social worlds: A study of work in the virtual. In Ackerman, M. S., editerpceed-
ings of the ACM 1996 Conference on Computer Supported Cooperative Vages
334-343, Boston, Massachusetts, USA. ACM Press.

Fitzpatrick, G. A. (1998).The Locales Framework: Understanding and Designing for
Cooperative Work PhD thesis, Department of Computer Science and Electrical
Engineering, The University of Queensland.

Bibliography 264

Friedman-Hill, E. J. (2001). Jess, the expert system shell for the Java platform. Technical
Report SAND98-8206, Sandia National Laboratories, Livermore, California, USA.
Version 6.1a3, online atittp://herzberg.ca.sandia.gov/jess/docs/61/.

Furst, S., Blackburn, R., and Rosen, B. (1999). Virtual team effectiveness: A proposed
research agend#nformation Systems Journ&(4):249—-269.

Fussell, S. R., Kraut, R. E., Lerch, F. J., Scherlis, W. L., McNally, M. M., and Cadiz, J. J.
(1998). Coordination, overload and team performance: Effects of team communica-
tion strategies. IProceedings of the ACM 1998 Conference on Computer Supported
Cooperative Workpages 275-284, Seattle, Washington, USA. ACM Press.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1998%ign Patterns: Elements
of Reusable Object-Oriented Softwasddison-Wesley.

Gershon, N. and Page, W. (2001). What storytelling can do for information visualization.
Communications of the ACM4(8):31-37.

Giarratano, J. and Riley, G. (199&xpert Systems: Principles and ProgrammifRyVS
Publishing Company, 3rd edition.

Goldman, S. L., Nagel, R. N., and Preiss, K. (199%gile Competitors and Virtual
Organizations: Strategies for Enriching the Customevan Nostrand Reinhold,
New York, NY, USA.

Greenberg, S. and Rounding, M. (2001). The notification collage: Posting information to
public and personal displays. Rroceedings of the SIG-CHI Conference on Human
Factors in Computing Systemgages 514-521, Seattle, Washington, USA. ACM
Press.

Greenhalgh, C. (1999).Large Scale Collaborative Virtual EnvironmentsSpringer-
Verlag, London, UK.

Gruber, T. R. (1993). Toward principles for the design of ontologies used for knowledge
sharing. Report KSL-93-04, Stanford Knowledge Systems Laboratory.

Gruninger, M. and Lee, J. (2002). Ontology applications and destgnmmunications
of the ACM 45(2):39-41.

Gutwin, C. and Greenberg, S. (1995). Workspace awareness in real-time distributed
groupware. Report 95-575-27, Dept. of Computer Science, University of Calgary,
Calgary, Canada.

Bibliography 265

Gutwin, C. and Greenberg, S. (1998a). Design for individuals, design for groups: Trade-
offs between power and workspace awarenes®rdeeedings of the ACM Confer-
ence on Computer Supported Cooperative Wpdges 207-216, Seattle, Washing-
ton, USA.

Gutwin, C. and Greenberg, S. (1998b). Effects of awareness support on groupware us-
ability. In Proceedings of the CHI'98 Conference on Human Factors in Computing
Systemspages 511-518. ACM Press.

Gutwin, C. and Greenberg, S. (2002). A descriptive framework of workspace awareness
for real-time groupwareJournal of Computer-Supported Cooperative Wdrk(3—
4):411-446. Special Issue on Awareness in CSCW.

Gutwin, C., Stark, G., and Greenberg, S. (1995). Support for workspace awareness
in educational groupware. IRroceedings of the ACM Conference on Computer
Supported Collaborative Learningages 147—-156, Bloomington, Indiana, USA.

Habermas, J. (1981Yheorie des kommunikativen HandelSaihrkamp.

Harrison, N. B. and Coplien, J. O. (1996). Patterns of productive software organizations.
Bell Labs Technical Journall(1):138-145.

Harrison, S. and Dourish, P. (1996). Re-place-ing space: The roles of place and space
in collaborative environments. In Ackerman, M. S., ediBmgceedings of the ACM
1996 Conference on Computer Supported Cooperative \WWades 67—76, Boston,
Massachusetts, USA. ACM Press.

Hawryszkiewycz, I. T. (1999a). The importance of processes. Unpublished note.

Hawryszkiewycz, 1. T. (1999b). Workspace networks for knowledge sharing. In De-
brency, R. and Ellis, A., editorroceedings of AusWeb99, the Fifth Australian
World Wide Web Conferenceages 219-227, Ballina, Australia.

Hawryszkiewycz, I. T. (2000). Analysis for cooperative business processes. In Zowghi,
D., editor,Proceedings of the Fifth Australian Workshop on Requirements Engineer-
ing, pages 3-11, Brisbane, Australia.

Herrmann, T., Hoffmann, M., Loser, K.-U., and Moysich, K. (2000). Semistructured
models are surprisingly useful. IRroceedings of Coop 200(@ages 159-174,
Sophia Antipolis, France.

Bibliography 266

Hiltz, S. R. and Turoff, M. (1985). Structuring computer-mediated communication sys-
tems to avoid information overloa€Communications of the ACN28(7):680—689.

Hollingsworth, D. (1995). The workflow reference model. Document TC00-1003, Work-
flow Management Coalition.

Holt, A. W. (1988). Diplans: a new language for the study and implementation of coor-
dination. ACM Transactions on Information Syster8€2):109-125.

Holt, A. W. (1997).0Organized Activity and Its Support by Comput&tuwer Academic
Publishers.

Huang, M. L., Eades, P., and Wang, J. (1998). On-line animated visualization of huge
graphs using a modified spring algorithournal of Visual Languages and Com-
puting 9(6):623—-645.

Huber, G. P. (1996). Organizational learning: The contributing processes and the litera-
tures. In Cohen, M. D. and Sproull, L. S., edito@rganizational Learningpages
124-162. Sage Publications.

Johansen, R., Sibbet, D., Benson, S., Martin, A., Mittman, R., and Saffo, P. (1991).
Leading Business Teams: How Teams Can Use Technology and Group Process Tools
to Enhance Performancé\ddison-Wesley.

Katzy, B., Evaristo, R., and Zigurs, I. (2000). Knowledge management in virtual projects:
A research agenda. Iroceedings of the Thirty-Third Hawaii International Con-
ference on System Scienceages 121-129. IEEE Computer Society Press.

Keller, G., Nuttgens, M., and Scheer, A.-W. (1992). Semantische Prozel3modellierung
auf der Grundlage Ereignisgesteuerter Prozel3ketten (EPK). Research Report 89, In-
stitut fur Wirtschaftsinformatik, Universitt des Saarlandes, Saartken, Germany.
(“Semantic Process Modelling Based on Event-Driven Process Chains (EPK)”, in
German).

Kraut, R., Egido, C., and Galegher, J. (1988). Patterns of contact and communication in
scientific research collaboration. Rroceedings of the Conference on Computer-
Supported Cooperative Wqrkages 1-12, Portland, Oregon, USA. ACM Press.

Kueng, P., Bichler, P., and Kawalek, P. (1996). How to compose an object-oriented
business process model? IPG working paper, Informatics Process Group, University
of Manchester, UK.

Bibliography 267

Landry, J. R. (1999). Forgetful or bad memory?Pimceedings of the Thirty-Second An-
nual Hawaii International Conference on System Scien&dsE Computer Society
Press.

Lee, J. H., Prakash, A., Jaeger, T., and Wu, G. (1996). Supporting multi-user, multi-applet
workspaces in CBE. In Ackerman, M. S., editerpceedings of the ACM 1996 Con-
ference on Computer Supported Cooperative \Wpdges 334—-343, Boston, Mas-
sachusetts, USA. ACM Press.

Lipnack, J. and Stamps, J. (199%irtual Teams: Reaching Across Space, Time, and
Organizations with TechnologyViley, New York.

Lipnack, J. and Stamps, J. (1999). Virtual teafsecutive Excellencd6(5):14-15.

Maier, R. and Lehner, F. (2000). Perspectives on knowledge management systems — theo-
retical framework and design of an empirical study. In Hansen, H., Bichler, M., and
Mahrer, H., editorsProceedings of the 8th European Conference on Information
Systems ECIS 200pages 685-693, Vienna, Austria.

Mansfield, T., Kaplan, S., Fitzpatrick, G., Phelps, T., Fitzpatrick, M., and Taylor, R.
(1997). Evolving Orbit: A progress report on building locales.Pioceedings of
the International ACM SIGGROUP Conference on Supporting Group Vyades
241-250, Phoenix, Arizona, USA. ACM Press.

Mansfield, T., Kaplan, S., Fitzpatrick, G., Phelps, T., Fitzpatrick, M., and Taylor, R.
(1999). Toward locales — supporting collaboration with Ordiformation and
Software Technology1(6):367—-382.

Martin, D., Rodden, T., Rouncefield, M., Sommerville, I., and Viller, S. (2001). Find-
ing patterns in the fieldwork. In Prinz, W., Jarke, M., Rogers, Y., Schmidt, K.,
and Wulf, V., editors Proceedings of the Seventh European Conference on Com-
puter Supported Cooperative Worgages 39-58, Bonn, Germany. Kluwer Aca-
demic Publishers.

Moorman, C. and Miner, A. S. (1998). Organizational improvisation and organizational
memory.Academy of Management Revj&8(4):698-723.

Moran, T. P. and Anderson, R. (1990). The workaday world as a paradigm for CSCW de-
sign. InProceedings of the Conference on Computer-Supported Cooperative Work
pages 381-393, Los Angeles, California, USA. ACM Press.

Bibliography 268

Morrison, J. and Olfman, L. (1999). Organizational memory and knowledge manage-
ment (minitrack introduction). IiProceedings of the Thirty-Second Annual Hawaii
International Conference on System Sciengage 564. IEEE Computer Society
Press.

Naff, K. C. (1995). Hypercompetition drives business into the 21st centBuginess
Credit, 97(4):28-29.

Niederman, F. and Beise, C. M. (1999). Defining the "virtualness” of groups, teams,
and meetings. In Prasad, J., editBrpceedings of the 1999 ACM SIGCPR Con-
ference on Computer Personnel Reseamdiges 14-18, New Orleans, Louisiana,
USA. ACM Press.

Nonaka, I. (1994). A dynamic theory of organizational knowledge creaBoganization
Science5(1):14-37.

Noy, N. F., Fergerson, R. W., and Musen, M. A. (2000). The knowledge model of
Pro€ge-2000: Combining interoperability and flexibility. Bnd International Con-
ference on Knowledge Engineering and Knowledge Management (EKAW;2000)
volume 1937 ofLecture Notes in Computer Sciengeges 17-32, Juan-les-Pins,
France. Springer-Verlag.

Nunamaker Jr., J. F., Romano Jr., N. C., and Briggs, R. O. (2001). A framework for col-
laboration and knowledge managementPinceedings of the Thirty-Fourth Hawalii
International Conference on System Scienpages 461-472, Maui, Hawaii, USA.
IEEE Computer Society Press.

Pankoke-Babatz, U. and Syri, A. (1997). Collaborative workspaces for time deferred
electronic cooperation. IRroceedings of the International ACM SIGGROUP Con-
ference on Supporting Group Workages 187-196, Phoenix, Arizona, USA. ACM
Press.

Picot, A. and Reichwald, R. (1987Burokommunikation—Lei#éze fir den Anwender
AIT, Hallbergmoos, Germany, 3rd edition. (“Office Communication—Guidelines
for the User”, in German).

Poltrock, S. E. and Engelbeck, G. (1997). Requirements for a virtual collocation en-
vironment. InProceedings of the International ACM SIGGROUP Conference on
Supporting Group Worlkpages 61—-70, Phoenix, Arizona, USA. ACM Press.

Resnick, P. and Varian, H. R. (1997). Recommender systé&usamunications of the
ACM, 40(3):56-58.

Bibliography 269

Rhee, I. (1999). Support for global teamiBEE Internet Computing3(2):30-31.

Richards, H. D. and Makatsoris, H. G. (2002). The metamorphosis to dynamic trading
networks and virtual corporations. In Franke, U. J., edittenaging Virtual Web
Organizations in the 21st Century: Issues and Challengeapter 1V, pages 61-89.
Idea Group Publishing.

Robertson, G. G., Card, S. K., and Mackinlay, J. D. (1993). Information visualization
using 3D interactive animatiolCommunications of the ACN36(4):57-71.

Rohloff, M. (1996). Reference model and object oriented approach for business pro-
cess design and workflow managementPioceedings of the Information Systems
Conference of New Zealanplages 43-52.

Roseman, M. and Greenberg, S. (1996). TeamRooms: Network places for collaboration.
In Proceedings of the ACM CSCW'96 Conference on Computer-Supported Cooper-
ative Work pages 325-333. ACM Press.

Sa, J., Warboys, B., and Keane, J. (1993). OBM: A specification method for modelling or-
ganisational process. FProceedings of Workshop on Constraint Processing CSAM
'93, pages 143-158, St. Petersburg, Russia.

Sadagic, A., Towles, H., Holden, L., Daniilidis, K., and Zeleznik, B. (2001). Tele-
immersion portal: Towards an ultimate synthesis of computer graphics and com-
puter vision systems. lith Annual International Workshop on Presenéiladel-
phia, Pennsylvania, USA.

Sadig, S. W. (1999). Workflows in dynamic environments—can they be managed? In
Zhang, Y., Rusinkiewicz, M., and Kambayashi, Y., edit@@spoperative Databases
and Applications ‘99—The Proceedings of the 2nd International Symposium on Co-
operative Database Systems for Advanced Applications (CODA$88gs 178—
189, Wollongong, Australia.

Sarin, S. K., Abbott, K. R., and McCarthy, D. R. (1991). A process model and system
for supporting collaborative work. IRroceedings of the Conference on Supporting
Group Work pages 213-224, Atlanta, Georgia USA. ACM Press.

Sawhney, M. and Parikh, D. (2001). Where value lives in a networked wbldgvard
Business Review9(1):79-86.

Searle, J. R. (1969Speech Acts: An Essay in the Philosophy of Langu&genbridge
University Press.

Bibliography 270

Shneiderman, B. (1998Pesigning the User Interface: Strategies for Effective Human-
Computer InteractionAddison Wesley Longman, 3rd edition.

Simoff, S. J. and Maher, M. L. (2000). Analysing participation in collaborative design
environmentsDesign Studie21(2):119-144.

Sowa, J. F. (2000)Knowledge Representation: Logical, Philosophical, and Computa-
tional Foundations Brooks Cole Publishing Co., Pacific Grove, California, USA.

Spellman, P. J., Mosier, J. N., Deus, L. M., and Carlson, J. A. (1997). Collaborative vir-
tual workspace. IfProceedings of the International ACM SIGGROUP Conference
on Supporting Group Worlpages 197-203, Phoenix, Arizona, USA. ACM Press.

Spiegler, I. (2000). Knowledge management: A new idea or a recycled conCapitf?
munications of the Association for Information Systed($4).

Spiliopoulou, M. and Pohle, C. (2001). Data mining for measuring and improving the
success of web site®ata Mining and Knowledge Discovery(1/2):85-114.

Steinfield, C. (2002). Realizing the benefits of virtual tea@smputer 35(3):104-106.

Syring, M. and Hasenkamp, U. (1997). Communication-orientated approaches to support
multi-user processes in office work. In Kirn, S. and O’Hare, G., edi©osperative
Knowledge Processing: The Key Technology for Intelligent Organizatioages
43-63. Springer-Verlag, London.

Tanenbaum, A. S. (1988 omputer NetworksPrentice Hall, 2 edition.

ter Hofte, G., van der Lugt, H. J., and Houtsma, M. A. (1996)*:G% comprehensive
model of groupware functionality. In Verbraeck, A., editélPTEC Conference
of Euromedia‘’96 pages 231-238, London, UK. Society for Computer Simulation
International, London.

Tuomi, I. (1999). Data is more than knowledge: Implications of the reversed knowledge
hierarchy for knowledge management and organizational memoryrolceedings
of the Thirty-Second Annual Hawaii International Conference on System Sciences
IEEE Computer Society Press.

Vail lll, E. F. (1999). Knowledge mapping: Getting started with knowledge management.
Information Systems Managemgebh®(4):16-23.

van der Aalst, W., ter Hofstede, A., Kiepuszewski, B., and Barros, A. (2003). Workflow
patterns Distributed and Parallel Database$4(3):5-51.

Bibliography 271

Walsh, J. P. and Ungson, G. R. (1991). Organizational merd@ademy of Management
Review 16(1):57-91.

Weigand, H., de Moor, A., and van den Heuvel, W.-J. (2000). Supporting the evolution of
workflow patterns for virtual communities. Proceedings of the 33rd Hawaii Inter-
national Conference on System Sciengetume 6, Hawaii, USA. IEEE Computer
Society.

Wessner, M. and Pfister, H.-R. (2000). Points of Cooperation: Integrating cooperative
learning into web-based courses. Rroceedings of the NTCL2000, The Interna-
tional Workshop for New Technologies for Collaborative Learnipgges 33—-41,
Hyogo, Japan.

Yu, E. S. and Mylopoulos, J. (1993). An actor dependency model of organizational
work — with application to business process reengineeringPréiceedings of the
Conference on Organizational Computing Systgmages 258—268. ACM Press.

Zukunft, O. and Rump, F. (1996). From business process modelling to workflow manage-
ment: An integrated approach. In Scholz-Reiter, B. and Stickel, E., edtossiess
Process Modellingpages 3—22. Springer-Verlag.

	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Appendix A
	Appendix B
	Glossary
	Assoc.Publications
	Bibliography

