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Abstract

Virtual collaboration—the act of working together across boundaries of space, time, and

organization, aided by technology—has become increasingly commonplace in recent

years. Doing so, however, presents a number of challenges to those involved. One of

these is that because of a lack of experience in collaborating through computer-based

collaboration systems, there is little knowledge on how to carry out collaboration virtu-

ally. Another is that it is not easy for those not directly involved in the collaboration to

know what is, and has been, “going on” during virtual collaboration. This thesis sug-

gests that both of these challenges can be addressed with the same approach, namely by

referring to observations of virtual collaboration. The problem then is how such obser-

vations of virtual collaboration can be obtained without requiring those involved in it to

document their own actions. To address this problem is the objective of this thesis.

The approach proposed here involves three elements: firstly, the collection of data

about virtual collaboration; secondly, the modeling of this data; and thirdly, the deriva-

tion of increasingly abstract, larger-scale representations of virtual collaboration from

this data. These representations are termedpatterns of virtual collaboration, which are

abstract descriptions of activities of virtual collaboration. A multi-layered conceptual

model of information, theInformation Pyramid of Virtual Collaboration, is proposed,

providing different views of information related to virtual collaboration, at different lev-

els of abstraction. The thesis then suggests how from a given body of data, patterns

of virtual collaboration at a corresponding level of the Information Pyramid can be ex-

tracted, and how from collections of such patterns more abstract patterns of larger-scale

activity can be derived, providing the observations of virtual collaboration sought.

In considering how the extraction of patterns of virtual collaboration fits into the

larger context of the conception, design, and use of collaboration systems, aFramework

for Pattern Extraction and Feedbackis proposed. This framework introduces the notion

of collaboration memory, a type of organizational memory that contains records of col-

laborative activity. Moreover, the framework suggests how extracted patterns of virtual

collaboration feed back into both ongoing development and use of collaboration systems.
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Finally, the modeling and extraction of patterns of virtual collaboration is illustrated

in a case study involving the LIVENET collaboration system.
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Chapter 1

Introduction

This thesis is concerned with obtaining insights into the work of virtual teams who col-

laborate through the support of computer-based systems. Such systems can collect large

amounts of fine-grained data about events transpiring in them (e.g. user logs in, user

opens a discussion forum, user uploads a document, etc.). This thesis suggests how col-

lections of such fine-grained events can be aggregated to more abstract representations of

work activities such as tasks and processes (e.g. reviewing a paper). It also suggests how

these abstract representations can contribute in an ongoing manner to an organization’s

records of its own actions. The following sections outline the issues that motivate this

research and the problems it attempts to address.

1.1 The Changing Organizational Setting

The following discussion is concerned with organizations and the changes experienced

by them. In this context, the term “organization” is understood to refer to any entity

that forms a social structure comprised of members, be they individuals or in turn other

organizations. For the most part, the comments made in this section apply to business

organizations specifically, but many of the issues raised also bear upon other types of

organizations, such as governmental, educational, and other organizations.

In past decades, many business organizations could operate in relatively stable and

predictable environments:

By the late 1970s, the industrial economy had been chugging along for al-

most a century, and, for the most part, its structure was fixed and competition

was predictable. (Carr, 2001, p. ix)

With the introduction and spread of information and communication technology,

however, this relative stability has started eroding, and this trend has been particularly
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marked and accelerated in the past decade: “In recent years, it seems as though the only

constant in business has been upheaval” (Sawhney and Parikh, 2001). Greater amounts

of more easily accessible information, and more open, increasingly global markets, have

influenced the way organizations are run and business is conducted. Business organiza-

tions are operating in increasingly competitive environments, with some sectors of the

economy operating under such great competitive pressures that the management com-

munity has coined a new term to describe this phenomenon:hypercompetition(D’Aveni,

1994; Naff, 1995). This greatly increased competition has given rise to an equally greatly

increased pace of operation. For instance, products and services are no longer conceived,

developed and launched in timeframes that are measured in years, but for many sectors

of the economy this cycle time has been reduced to months or less:

New products, even whole markets, appear, mutate, and disappear within

shorter and shorter periods of time. The pace of innovation continues to

quicken, and the direction of innovation is often unpredictable. (Goldman

et al., 1995, p. 3)

The impact this has had, and is having, on the affected organizations is profound:

Changes have occurred at every level, from the way entire industries are

structured, to the way companies interact with customers, to the way basic

tasks are carried out in individual organizations. (Sawhney and Parikh, 2001)

1.2 Virtual Teams and Virtual Collaboration

Coping with these pressures and ensuring survival of the organization often requires great

agility, i.e. the ability of the organization to quickly and nimbly reorganize itself, in part

or in whole, in response to a given stimulus. The concept of theagile companyhas been

proposed as a solution to the changing organizational setting (Goldman et al., 1995).

This type of organization often employs new organizational forms (Coleman and Khanna,

1995, p. 3) such as cross-functional teams (i.e. teams whose members come from dif-

ferent functional areas, and usually also from different organizational units) (Goldman

et al., 1995; Richards and Makatsoris, 2002) and virtual teams. While a conventional

team is understood to be “a group of people organized to work together”1, a virtual team

has been defined as follows:
1The Collins Concise Dictionary of the English Language, 2nd edition, 1988.
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Definition 1 A virtual team, like every team, is a group of people who

interact through interdependent tasks guided by a common purpose. Unlike

conventional teams, a virtual team works across space, time, and organiza-

tional boundaries with links strengthened by webs of communication tech-

nologies (Lipnack and Stamps, 1997).

2

A virtual team may be assembled only for the duration of a given project, cutting

across the organizational hierarchy and integrating otherwise separate human resources.

When these resources are physically distributed, the use of information and communica-

tion technology facilitates collaboration of these teams, despite their members’ physical

distance (Steinfield, 2002). It has been suggested that the organization of the 21st century

will be made up of virtual teams and of networks of such teams (Lipnack and Stamps,

1999).

Members of virtual teams interact with each other in a mode ofcollaboration or

cooperation. These two terms are defined here as follows:

Definition 2 Collaboration is the act of working together on a common

task or process.

2

Definition 3 Cooperationis the joint operation or action toward a com-

mon goal or benefit.

2

The meaning of these two terms seems to be almost the same, and indeed in the

literature they are often used interchangeably. The connotations associated with each,

however, are slightly different and are best highlighted by considering their antonyms:

the antonym of collaboration is “working independently”, while that of cooperation is

“competition”—an entirely different notion. Therefore, when talking about the work of

virtual teams in the context of this thesis, the term “collaboration” is used instead of

“cooperation”, to emphasize the fact of working together.

Virtual collaboration, then, is defined as follows:

Definition 4 Virtual collaboration is collaboration which is conducted

without face-to-face interaction, enabled by technology.

2
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Figure 1.1: Time-place matrix of collaboration, adapted from (Johansen et al., 1991)

Most commonly this technology is a computer-based system, but virtual collaboration

can also make use of other tools such as telephone, fax, video-conferencing systems, etc.

Virtuality of teams and collaboration is not an absolute measure, but rather is a contin-

uum that ranges between the completely non-virtual and the completely virtual. An early

classification of collaboration support systems was proposed in (Johansen et al., 1991)

based on the two dimensions oftimeandplaceof the collaboration, and their distribution

among the two poles ofsameanddifferent, yielding the now well-known matrix shown

in Figure 1.1. Virtual collaboration as defined here thus matches all quadrants except the

top-left one (same time, same place).

However, this classification is somewhat simplistic in its assumption that collabo-

rative work fits neatly into one of the four areas of the matrix, i.e. that the totality of

collaborative activity can be confined within that quadrant. In reality, it is more common

for a mix of these different conditions to exist. For instance, for a joint authoring task an

initial face-to-face meeting (same time, same place) may be followed by a period of indi-

vidual writing activity (different time, different place), followed by a concluding period

of integration of the separate sections of the joint work aided by collaboration technology

(same time, different place).

Other classifications have been put forward, such as the one proposed in (Nieder-

man and Beise, 1999), which is concerned with defining virtuality of groups, teams, and

meetings. It suggests that rather than classifying by the dimensions of time and place,

the preferred dimensions for classification should be the extent to which technology is

used, and to which technology use is combined with face-to-face interactions. Values in

each of these two dimensions range fromlow to high. The resulting classification takes

the form shown in Figure 1.2. In this framework, thehighly-virtualcategory, where face-

to-face interactions are low and electronic mediation is high, most closely matches the

definition of virtual collaboration adopted here.
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Figure 1.2: Categories of virtual groups, teams, and meetings, from (Niederman and

Beise, 1999)

organizational

Geographic Dispersion
low high

lo
w

hi
gh

Affiliation
Dispersion

Virtual

DistributedTraditional

Inter−

Figure 1.3: Categories of virtual projects, from (Katzy et al., 2000)

Virtual teams may also span organizational boundaries, where separate organizations

that otherwise compete with each other decide to pool their resources in order to jointly

achieve what each one of them singly is not able to. Indeed, entire organizations may

decide to form temporary alliances that present themselves to the outside as a single

organization, so-calledvirtual organizations(Donlon, 1997)2.

Yet another classification of virtuality, in the context ofvirtual projects, that includes

organizational boundary-spanning virtual teams has been proposed in (Katzy et al., 2000)

and is shown in Figure 1.3. This classification includes the dimension ofaffiliation dis-

persion, which expresses the extent to which members of a project team belong to the

same or different organizations. The other dimension isgeographic dispersion, which is

the same as theplacedimension in the classification of (Johansen et al., 1991). Values in

each dimension range fromlow to high. As this classification is specifically concerned

with the aspect of affiliation dispersion, it does not map clearly into the definition of vir-

tual collaboration adopted here. In all quadrants it is possible for virtual collaboration to

2An example of the application of the concept of virtual organizations can be found in movie produc-

tion, where a large number of independent companies and individuals come together for the duration of the

project, then disband.
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take place, although in the two left ones (low geographic dispersion) the collaboration is

more likely to be of the face-to-face type, rather than being virtual.

The trend towards virtual teams and virtual organizations leads to an increased blur-

ring of both inter- and intra-organizational boundaries, along with an increased degree of

virtual collaboration. As a result, a greater portion of an individual’s activity shifts from

the physical to the virtual world. This offers a number of opportunities, among which are

cost and time savings, greater accessibility of team members regardless of time zone or

location, ability to participate in multiple projects at the same time, etc. However, this

shift also presents a number of challenges, some of which are discussed in the following

section.

1.3 Challenges

People have centuries of experience working in collaboration with each other. Until very

recently, however, this collaboration has practically always been of the face-to-face kind,

in more or less close physical proximity. Not until the advent of modern telecommunica-

tion technology has it become possible to effectively carry out collaboration in any other

way3. Consequently, appropriate methods and techniques for communication, collabor-

ation, management and coordination in the physical world were developed over a long

period of time.

For instance, if a group of people is to work closely together, experience advises that it

is best to bring them together in close physical proximity to each other; to ensure that they

come together at the same time; to make tools and materials required for carrying out the

work easily accessible within the working environment; to place the most frequently used

of these closest to those who make the most use of them; etc. It is known that the physical

arrangement of different members of a collaborative work group should take features of

the work process into account. It is known that this arrangement is also dependent on

the nature of the work carried out: sometimes it is better for people to share an open

office where they are afforded the opportunity to see and hear each other, while at other

times it is better for them to have their own separate offices, such as when their work

requires a quiet environment to support periods of concentrated thinking. Based on the

long experience of working together in the physical world, these kinds of insights come

3Means of communication other than through face-to-face interactions did exist in past centuries, in-

cluding the use of carrier pigeons, drum telegraphs, light and smoke signals, couriers, and later the mail

service and the electric telegraph. However, it can be argued that the limitations of bandwidth and/or

latency of these former means of communication made the kind of collaboration considered here all but

impossible.
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naturally and do not require much, or indeed any, deliberation.

In the virtual realm, however, the situation is very different. Because collaboration

conducted through the aid of information and communication technology is a very recent

phenomenon, there is very little experience in how to carry out collaboration virtually.

Therefore it is difficult to know how a virtual work environment should be designed, and

how the work should be structured. With what items should the work environment be

furnished? Should it be structured in a similar manner as one does with a physical work

environment? Should one perform all tasks in the same environment or in different ones?

What links should exist between different environments? How should distinct tasks be

related with one another? It is tempting to simply apply one’s experience of face-to-face

collaboration to virtual collaboration, but whether or not these experiences are in fact

transferable to the virtual realm in that form is not certain. Thus there is the following

challenge:

Challenge 1 How can one know how to carry out collaboration virtually?

Moreover, one of the difficulties associated with the virtual world is its lack of many

of the affordances which the physical world provides. In the physical world, the tradi-

tional sensory modes of perception, primarily visual and auditory, provide a continuous

rich source of information on events transpiring in the working environment, both the

immediate and the less immediate one. Thus, for instance, when a nearby co-worker per-

forms an action, one can immediately become aware of it, which may then influence one’s

own work. On the other hand, in the virtual realm one’s view of the world is very much

impoverished, reduced to several square decimeters of screen space, which at best may

be supplemented by an audio channel. Thus knowing what is going on in the virtual work

environment is encumbered by the limitations of the technology. Researchers in the HCI

(human-computer interaction) and CSCW (computer-supported cooperative work) com-

munities have long studied this problem ofawareness. Much of the work in this area has

focused on delivering fine-grained events to those present in a virtual work environment,

often with an emphasis on synchronous (same-time) collaboration. This can be of value

to those directly engaged in highly inter-connected work, such as for example in collab-

orative editing. However, to those less directly involved in specific work tasks, including

other colleagues as well as management, such detailed awareness information often is of

little value, and may in fact contribute toinformation overload(Hiltz and Turoff, 1985;

Fussell et al., 1998). Instead, what is required rather than detailed up-to-the-second event

traces is a high-level overview of the tasks performed by both individual team members

and entire teams, as well as their progress over time, including both the present, as well
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as the history of actions that have already transpired. Thus another challenge posed is

this:

Challenge 2 How can one know what is, and has been, “going on” during

virtual collaboration?

The history of a given virtual team’s collaboration is particularly relevant to those

who have not been immediately involved in it—new team members who need to get “up

to speed” on what the team has been doing prior to their joining it, or management who

are interested in the work performed by a team. The history of an organization’s actions

is one of the areas of research intoorganizational memory, which for over a decade has

been addressing the problem of organizations suffering the equivalent ofamnesia, i.e. the

inability to recall their past actions and bring that knowledge to bear on present endeav-

ours. Virtual collaboration exacerbates the problem of organizational amnesia because,

taking place in virtual space, it is less directly observable than activity in physical space.

The following section suggests how these challenges can be met.

1.4 Research Problem

The two challenges described above, that is, knowing how to carry out collaboration vir-

tually, and knowing what has transpired during virtual collaboration, form the motivation

for this research. Here it is suggested that meeting these two challenges can be addressed

with the same approach.

Knowing how to carry out collaboration virtually requires knowing how to design the

virtual work environment, and knowing in what way to utilize it to perform specific tasks.

Drawing the parallel with the physical world: how does one know what resources are

required for a task in a physical work environment, how they should be related, and how

they should be utilized for the performance of the task? Unless one has already performed

that task before, there are a number of possibilities: for instance, one may study work

manuals that describe required resources and methods of execution; alternatively one

may resort to trial-and-error; one could ask someone whom one knows to be experienced;

or one could observe someone else perform the task. It is argued here that in most cases

observation is preferable to the other approaches: observation is practical, in that one

can actually perceive the task in action, rather than merely a description of it; and this

observation allows one to gain from the experience of the one performing the task, rather

than having to attempt to gain this experience by trial-and-error.

Thus the answer to the first challenge, “how can one know how to carry out collabor-

ation virtually?” is this: by observing the virtual collaboration of others.
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The answer to the second challenge, “how can one know what is, and has been, “going

on” during virtual collaboration?”, on the other hand, can be answered in the same way:

by observing the virtual collaboration. Thus meeting the two challenges can be addressed

with the same approach.

However, this raises a new challenge, namely how virtual collaboration can be ob-

served. This is problematic for a number of reasons. Firstly, collaboration in the virtual

world is not direct but always needs to bemediated. For instance, communication is

mediated through some form of communication channel which relays “utterances” be-

tween the communicating parties; pointing at an object is not performed directly but is

mediated through, for example, some form of graphical pointer; handing a document

to another person too is not performed directly but is mediated through some form of

electronic document exchange mechanism. Thus collaboration consists of a number of

separate mediated actions, which have to be pieced together in order to perceive the col-

laboration performed.

A second problem is that the time and location of observers and the collaboration

being observed may be significantly different. Timezone differences of more than a few

hours make it impractical to directly observe collaboration as it takes place. Even at the

same time, observation requires observers to focus on the same location within the virtual

work environment as where the collaboration of that moment takes place. However,

unlike in a physical work environment where the movement and actions of people within

the environment is easily perceived, in the virtual environment this can be much more

difficult to perceive.

The greatest problem with direct observation, however, is when the history of a col-

laboration needs to be revisited. In this case, direct observation, in the sense of observing

something as it takes place, is not possible as the object of observation has already tran-

spired.

It is argued here that instead it is necessary to maintain a record of a virtual team’s

collaboration. However, requiring teams to explicitly document their own actions is also

problematic. Firstly, doing so would interfere with the collaboration. Secondly, unless a

large enough benefit for doing so could be perceived on the part of the team, there would

be no incentive to maintain such records, and consequently it is questionable whether ac-

curate and complete records would be maintained. Finally, records from different teams

and different individuals would necessarily be subjective, which would make comparison

difficult.

Thus the main problem to be addressed in this research is this:
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Problem: How can information on the collaborative activities/practices of

virtual teams be obtained without requiring these teams to explicitly docu-

ment their own actions?

The methodology and approach for addressing this problem are outlined next.

1.5 Research Methodology and Approach

1.5.1 Research Methodology

This research explores the means for understanding virtual collaboration through the fol-

lowing main steps:

1. First, theargumentfor the need for obtaining descriptions of virtual collaboration

is made.

2. Next, the problem domain is surveyed in order to lay out theissues of relevanceto

the problem.

3. This is followed by the definition of the mainconceptsand approach proposed in

this research for addressing the problem.

4. Based on these developed concepts,methodsare developed to enable these con-

cepts to be applied to the problem.

5. Finally, the methods areapplied to a case study to demonstrate their practical ap-

plicability.

This research mainly sets out to demonstrate theplausibility of the proposed con-

cepts and methods in addressing the research problem. It includes limited testing of the

concepts and methods, leaving rigorous empirical testing in a wide range of real-world

situations for future research. Here it is argued that this approach is justified, as there are

currently no concepts and methods for systematically addressing the research problem.

The focus of the thesis is therefore on the development of concepts and methods. Valida-

tion of the developed concepts and methods is, however, obtained to some extent through

their application to a large case study. The methodology followed here is based on that

of earlier related work published in (de Moor, 1999).
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1.5.2 Research Approach

This research proposes that high-level descriptions of virtual collaboration can be pro-

duced without the involvement of those performing the collaboration. In outline, this

involves the following:

1. Availability of records of eventstranspiring during virtual collaboration, captur-

ing information on content and context of these events. Such records should be

automatically collected by the computer-based system through which virtual col-

laboration is carried out, without human involvement.

2. Conceptual modelingof information of the computer-based systems through which

virtual collaboration is carried out. The conceptual model should have the expres-

siveness to represent collected records of events.

3. Derivationof successively more abstract, large-scale representations of virtual col-

laboration. Given a conceptual model and collected records of events represented

in terms of the conceptual model, mappings to more large-scale units of informa-

tion can be defined. Records of events can then be mapped to successively more

abstract levels until records represent entire work tasks and processes.

Each of these items is elaborated in later chapters. Key elements of this approach

have been implemented in an existing computer-based system for virtual collaboration,

L IVENET, which was developed at the University of Technology, Sydney’s Collaborative

Systems Laboratory. Relevant sections of the thesis therefore illustrate practical issues

on this system.

1.6 Outline of the Thesis

In outline, the remainder of the thesis is structured as follows:

Chapter 2reviews the main components of the problem domain: virtual collabora-

tion processes; collaboration systems, through which virtual collaboration processes are

performed; and organizational memory, which can maintain a history of virtual collabor-

ation.

Chapter 3then develops principles for the modeling of information of collaboration

systems. It proposes a multi-layered conceptual model for the representation of informa-

tion about collaboration at different levels of abstraction, and suggests how concepts at

each level can be represented in the form of patterns of virtual collaboration.
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Chapter 4carries on from there to propose details of the specification and extraction

of patterns of virtual collaboration, elaborating on several of the pertinent issues involved.

It then goes on to consider the larger context of pattern extraction by proposing an inte-

grating framework that suggests how extracted patterns can feed back into the virtual

collaboration.

Chapter 5applies the concepts and methods of the preceding two chapters in a case

study of the extraction of patterns of virtual collaboration from data collected by the

L IVENET collaboration system.

Chapter 6concludes this thesis by giving a summary of the points presented, contri-

butions made, opportunities for future work, and by offering some concluding remarks.

1.7 Typographic Conventions

In order to more easily distinguish symbols with special meaning in the text, a number of

different typefaces are used:

• The names of concepts within an ontology are typeset in a sans-serif font (e.g.

Discussion-Forum).

• The names of classes and slots within an ontology, and ontology specifications and

functions are typeset in a courier font (e.g.LN-Discussion-Forum).

• Names of collaboration systems are typeset in small caps (e.g. LIVENET), except

where the name is an abbreviation already consisting of all capitals (e.g. BSCW).



Chapter 2

The Problem Domain

As the previous chapter has introduced, the research presented here is concerned with

virtual collaboration, and with maintaining observations of such collaboration. In the

present chapter, an overview of the three core areas which make up the problem domain

is given: (1) virtual collaboration processes, (2) collaboration systems, and (3) organiza-

tional memory. This overview provides the basis for the contributions of later chapters.

2.1 Virtual Collaboration Processes

The introduction briefly discussed the trend within many organizations towards virtual

teams and virtual collaboration. Here, this discussion is continued by considering the

virtual collaboration processes carried out by virtual teams. First, the kinds of collabor-

ation processes that can be distinguished are reviewed. This is followed by an overview

of some of the notations available for representing such processes.

2.1.1 Kinds of Virtual Collaboration Processes

When considering work processes in general, many kinds of classifications are possi-

ble. For instance, work processes can be classified by broad category, such as manual

vs. intellectual work; by detailed category, such as product design, marketing, etc; by

temporal features, such as ongoing vs. intermittent; by spatial features, such as fixed vs.

mobile; and so on. However, since the focus of this thesis is oncollaborativework, the

present discussion is concerned with collaboration processes specifically, rather than its

opposites: competitive processes (more than one person working in competition), and

independent processes (one person working alone). More specifically, this collaboration

is understood to be virtual collaboration, as opposed to face-to-face collaboration.
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2.1.1.1 Definitions

To repeat from Chapter 1,collaborationis understood to be “the act of working together

on a common task or process”. This act of working together involves specificactivities,

performed by individuals. Examples of activities are: reading a report, or commenting

on a paper. An activity may (but does not have to) be performed in order to bring about

a specificgoal. A goal, in turn, refers to the desired realization of a specific state of a

portion of the world that the activity is concerned with. So, for the above example of

commenting on a paper, the goal could be to come up with a list of changes needed for

getting the paper ready for publication. The goal may not always be achieved, however,

and so the outcome of an activity may be different from its goal. Outcome refers to the

actual (as opposed to the desired) realization of a specific state of the portion of the world

affected by the task.

A collection of several activities may have a common goal, where each activity con-

tributes to the achievement of the goal. Such collections of activities with common goals

are referred to astasks. Following on from the above example, the task which the men-

tioned activity is part of could be that of reviewing a paper. This task could involve other

activities, such as reading the paper, and writing up a list of required amendments to the

paper. Each of these activities contributes to the achievement of the task’s goal, which in

this case could be that of completion of a paper review. Thus a definition of “task” is as

follows:

Definition 5 A task is a collection of activities with a common goal, per-

formed by one or more individuals, such that the successful completion of all

the activities brings about the task’s goal.

2

A process is a collection of related tasks. Processes also have goals; the accomplish-

ment of the goals of all the tasks belonging to a process brings about the process goal.

Unlike tasks and activities, where the task’s activities have a common goal, tasks in a

process do not have a common goal, and their goal typically is not identical to that of the

process which they are part of. However, task goals are subsumed under, and contribute

to, the goal of the process they are part of. An example of a process is that of producing

the proceedings of a conference. It involves many tasks, such as recruiting paper review-

ers, calling for paper submissions, reviewing papers, etc. Each of these tasks has its own

goal, but all contribute to the goal of the entire process, which is the publication of the

conference proceedings. A definition of “process” follows:
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Definition 6 A processis a collection of related tasks with a goal, such

that the accomplishment of all task goals brings about the process goal.

2

Activities, tasks and processes thus all are units of human activity, however at differ-

ent levels of granularity. Task and activity, as well as process and task are related through

a whole-part relationship. Between the parts, i.e. between the activities of a task or be-

tween the tasks of a process, there are typically also relationships, such as dependencies;

for example, there may exist a dependency that one task can only start when another task

has been completed. Finally, the definition of process provided here purposely considers

it to be made up of acollectionof tasks, rather than a series or sequence. Thus, a process

may well consist of temporally overlapping or parallel tasks. The same comments apply

for the activities of a task.

A collaboration process, then, is defined as follows:

Definition 7 A collaboration processis a process performed by two or

more individuals working together.

2

Finally, bringing this definition together with that of virtual collaboration given in the

previous chapter, avirtual collaboration processis defined as follows:

Definition 8 A virtual collaboration processis a collaboration process

performed without face-to-face interaction, enabled by technology.

2

Different kinds of virtual collaboration processes may be distinguished, and can be

classified according to a number of differentiating attributes. Here the following set of

attributes is proposed:

1. Predefinition: the degree to which the process is predefined. Some processes are

entirely predefined, meaning that every detail of the process has been defined prior

to the commencement of its execution. During execution of the process, it is simply

enactedaccording to its definition. Other processes are much less predefined, and

are executed more in an ad-hoc fashion, where planning and execution converge

(Moorman and Miner, 1998). For these kinds of processes, goals are usually more

abstract and more subject to change.
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2. Determinism: the degree to which the possible outcomes of the process can be

determined in advance. Particularly in the area of workflow management, where

processes are first modeled and encoded before they are enacted, the possible out-

comes of a process are typically determined in advance. Highly deterministic pro-

cesses produce results within a finite, well-defined set of possible outcomes. Other

processes may produce much less predictable outcomes.

3. Staticness: the degree to which the way the process is performed is static. This

applies mostly to predefined processes and is a measure of how much the execu-

tion of these processes changes over time from one enactment to another. Some

processes are very static, being executed in the same fashion over a long period of

time; others may be more volatile, changing constantly.

4. Repetition: the degree to which the process is repeated. Some processes are highly

repetitive, being executed on a frequent basis. Others may be highly unique, being

executed only once or only very sporadically.

Each of these attributes constitutes a continuum with values between its upper and

lower extremes. Taken together, these attributes define a four-dimensional space of pro-

cess types. Within it, a number of important process types stand out.

On the one hand, all attributes may be at their highest level, i.e. the process is entirely

predefined, completely deterministic, completely static and highly repetitive. Such a

kind of process is designated here as aproduction process. This type of process is very

common in organizations and often constitutes high-volume core activities.

On the other hand, all attributes may be at their lowest level, i.e. the process is entirely

non-predefined, non-deterministic, highly dynamic, and not repetitive. This kind of pro-

cess is designated here as anemergent process. It has a goal that is typically expressed in

more abstract terms, more like a mission statement rather than a detailed expression of a

desired outcome, and which may mutate. An emergent process is controlled, or driven,

by the increasing amount of knowledge available to it, which may cause its goal to be

adjusted. This type of process occurs in many organizations, and is closely associated

with innovation and improvisation (Moorman and Miner, 1998). Emergent processes are

important as they facilitate organizational flexibility and are thus suited to organizations

operating in volatile and competitive environments where flexibility is a key competency,

as touched upon in the discussion in Chapter 1.

Another categorization of work processes has been proposed in (Hawryszkiewycz,

1999a), whose distinguishing attributes are the degree to which the tasks that make up a

process are predefined, and the degree to which task sequences are predefined. This leads

to the identification of following four types of processes, illustrated in Figure 2.1:
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Figure 2.1: Process types related to task and sequence predefinition

1. Predefined processes:Both tasks and task sequences are predefined in detail. An

example is a procurement process in a company where guidelines stipulate the

specific tasks that need to be undertaken, as well as their sequencing.

2. Non-predefined processes:Tasks are pre-defined, but their sequence is decided

during process execution. An example is the preparation of a report. Individual

tasks such as writing report sections, preparation of diagrams, calculation of fig-

ures, etc. may be known in advance, but their sequencing may be flexible and is

decided during process execution.

3. Mixed processes:These processes are a mix of predefined and non-predefined pro-

cesses, with one type of process nested inside the other; e.g. a process where major

steps are predefined, but where detailed tasks within each step are non-predefined.

An example is software development. Major steps, such as analysis, design, cod-

ing, etc. are known in advance, but the actual tasks that need to be conducted

during a given step, such as user interviews, prototype construction, etc. may only

be decided sometime into a given process step.

4. Emergent processes:Neither the tasks nor their sequence are predefined and

emerge during process execution. An example is the process of defining a new

strategic direction for a company. Both the tasks that need to be undertaken, such

as market analysis, focus group sessions, research into strategies of other compa-

nies, etc., as well as their sequencing may be unclear when the process is initiated

and emerge only during its execution.
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In the context of office work categorization, the degree of predefinition has been

linked to task complexity (Picot and Reichwald, 1987, quoted in (Syring and Hasenkamp,

1997)). Three different types of office work are identified: (1)unstructured tasks, which

are highly complex and allow for little prior planning; (2)semi-structured tasks, which

have medium complexity and allow for some degree of prior planning; and (3)structured

tasks, which have low complexity and offer a high possibility for prior planning. The

authors go on to link information need, cooperation partners, and solution type to each of

these types of office work: in unstructured tasks, information needs and cooperation part-

ners are undetermined, as is the solution type; in structured tasks, all three are determined

in advance; while semi-structured tasks lie somewhere in between (ibid.).

Thus, the degree of predefinition emerges as a common property in each of these defi-

nitions, allowing for a broad categorization of work processes, while the other mentioned

properties allow for more fine-level classification.

2.1.1.2 Implications for Support Systems

Virtual collaboration processes are facilitated through computer-based systems. Different

types of such systems are more appropriate for supporting different types of collaboration

processes. Identification of the type of collaboration process to be supported therefore is

important in identifying suitable support systems.

During the 1990’s, workflow management systems have emerged as one such form

of process support, and have subsequently enjoyed great success in the field. The Work-

flow Management Coalition, the relevant industry standards body, refer to a workflow

management system as “a system that completely defines, manages and executes work-

flows through the execution of software whose order of execution is driven by a computer

representation of the workflow logic” (Hollingsworth, 1995). A workflow, in turn, is re-

ferred to as “the computerised facilitation or automation of a business process, in whole

or part” (ibid.). Traditionally, workflow management systems have supportedproduction

processesas defined above (referred to aspredefined processesin Hawryszkiewycz’s

classification, andstructured processesaccording to Syring and Hasenkamp). Produc-

tion processes need to be analyzed, modeled, and encoded in the workflow management

system before they can be enacted through it. Their structure and possible outcomes are

well-defined and subject to little change. Because of the effort involved in their analy-

sis and modeling, it is usually only economical to do this for processes that are at least

moderately repetitive.

Other types of processes, such as those that are not entirely deterministic, or those that

are less repetitive, or more dynamic, are not well supported by conventional workflow
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technology. Consequently, the workflow community has, over the last few years, made

efforts to make workflow systems more flexible and to support work processes which are

not always well-defined or deterministic; see for instance (Casati and Pozzi, 1999; Sadiq,

1999). These have centred on either accounting for alternatives to standard workflows,

handling workflow evolution, or dealing with exceptions as they occur. However, in

most cases the basic model of a largely deterministic and knowable process has remained

unchanged.

The category of emergent processes, on the other hand, is not well supported by

workflow management systems. In emergent processes, details of process structure and

of individual task goals may only be determined when the process is well underway, i.e.

theyemergeduring process execution. Such processes are thusimprovisationalin nature

(Moorman and Miner, 1998). They also tend to be highly knowledge-intensive, involv-

ing activities of knowledge sharing and creation, and may involve a considerable degree

of tacit knowledge which can be difficult to encode (Nonaka, 1994). Such processes

have been described in the literature as being “generally opportunistic in nature, result

in disconnected and parallel work that must nevertheless be guided to a common goal”

(Hawryszkiewycz, 1999b).

The features of emergent processes place unique demands on their support systems.

In the context of process management, (Debenham, 1999) suggests that, given the special

characteristics of emergent processes, any management system shouldsupport, rather

than attempt tocontrolemergent processes.

This research argues that the requirements of emergent processes are not met most

appropriately by current workflow management systems, but instead by a class of group-

ware systems referred to here ascollaboration systemsand discussed in more depth in

Section 2.2. In the context of collaborative research, a similar argument has been put

forward (Appelt, 1999). Such collaboration systems need to be highly flexible to allow

for evolution of the support provided along with the work carried out through them. As

pointed out in (Hawryszkiewycz, 1999b), team formation and governance, provision of

required knowledge sources, communication channels for geographically dispersed team

members, and general tools all need to be supported. However, and more importantly,

they must be supported in a way that facilitates flexible, easy evolution, thus aiding, and

indeed enabling, process emergence.

Finally, the property of process emergence is not exclusively, or even primarily, de-

pendent on certain features of the process itself, but includes the past experience of the

team performing the process. That is, what is an emergent process to one team may be

routine to another. When performed for the first time, the team may need to improvise

to discover how best to perform the process. The next time such a process needs to be
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performed again, its performance can be based on the team’s experience of the previous

time and would be much less emergent. Once the team starts performing the process

repeatedly, it becomes routine. That is, what started out as an emergent process has de-

veloped into a routine process, or conversely, a routine process may have started out as

an emergent process. Supporting such processes that develop from being more emergent

to being more routine thus puts additional demands on support systems.

2.1.2 Representing Virtual Collaboration Processes

Following the discussion of the kinds of virtual collaboration processes, this section in-

vestigates how such processes can be represented. Representing processes is important

in order to facilitate communication about them, to serve as guidance for process execu-

tion, and to enable their analysis and comparison. Different kinds of information related

to different aspects of processes can be represented. In the context of software develop-

ment processes, for instance, (Curtis et al., 1992) identified four perspectives of processes

which are commonly represented1:

1. Functional perspective:concerned with flows of information between tasks.

2. Behavioural perspective:concerned with aspects of the performance of processes

such as sequencing, iteration, conditions, etc.

3. Organizational perspective: concerned with the assignment of members of an

organization to tasks, the location of task performance, and the location for storing

of objects involved in tasks.

4. Informational perspective: concerned with the structure of, and relationships

(such as part-of, or version-of) between, informational entities (such as documents)

involved in a process.

Representing any of these perspectives of a process involves the construction of a

process model. A process model is defined as follows:

Definition 9 A process modelis an abstract description of an actual or

proposed process (Curtis et al., 1992).

2

1Note that the use of the term “task” used in the discussion that follows assumes the meaning as defined

in this thesis, while (Curtis et al., 1992) refers to tasks as “process steps”.
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When a process model refers to an actual process, i.e. an instance of a process as it is

being or has been executed, it is adescriptiveprocess model; on the other hand, when it

refers to a proposed process, it is aprescriptiveprocess model.

A process model involves a number of basicmodeling elements. A modeling element

is an abstract representation of a type of real world entity involved in the process being

modeled. Different process models may have different sets of modeling elements. For

example, (Curtis et al., 1992) suggest the three modeling elementsagent(a human or

machine performing a task),role (a set of tasks assigned to an agent), andartefact (a

product manipulated in a task). In the domain of virtual collaboration, however, usually

other modeling elements are included as well, as discussed below.

Much work has been done on process modeling. Examples include:Diplans, which

model coordination aspects of work processes (Holt, 1988; Holt, 1997);FUNSOFT nets,

a type of Petri net developed to model software processes (Emmerich and Gruhn, 1991);

the temporal logic-basedOBM approach for step-wise refinement of organizational pro-

cesses (Sa et al., 1993); and others. Recent years have seen an emphasis on the model-

ing of business processes, mostly in the context of business process re-engineering and

workflow management. Examples of this kind of process modeling include: theActor

Dependency Model, which models networks of dependencies among organizational ac-

tors in the context of business process re-engineering (Yu and Mylopoulos, 1993); the

DEMO approach which is based on Speech Act Theory and is used for business pro-

cess redesign (Dietz, 1994); theBPMATbusiness process model (Bhaskar et al., 1994),

used for analyzing and re-engineering processes; theEPC* model(Zukunft and Rump,

1996) for modeling of business processes for workflow support, which is based on the

EPC model (Keller et al., 1992); the goal-based business process modeling approach of

(Kueng et al., 1996); the event-based business process modeling approach of (Rohloff,

1996); and others.

However, the modeling ofvirtual collaborationprocesses has received very little at-

tention, and consequently there are much fewer published modeling approaches. What

sets collaboration processes apart from other types of work processes is that the inter-

actions between humans are essential components of the process. In process models

of face-to-face collaboration processes, where ample opportunity for such interactions

exists, they are usually not represented. For models of virtual collaboration processes,

however, these interactions need to be explicitly represented.

The remainder of this section introduces three modeling approaches which are con-

cerned with modeling collaboration processes, one of which is specifically intended for

modeling virtual collaboration processes. These include the following:
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1. The Collaborative Process Model (Sarin et al., 1991).

2. The SeeMe modeling method (Herrmann et al., 2000).

3. Collaborative business process models (Hawryszkiewycz, 2000).

For each of these, a brief overview is given, including an identification of the model-

ing elements, and an example of the modeling notation.

2.1.2.1 Example Process

The various representations that follow are illustrated with the following example pro-

cess, which deals with product concept development:

A manufacturing company finds its current product line is not performing as success-

fully in the market as it did in the past, and decides to develop new product concepts. A

number of people with unique expertise are involved in this endeavour, each occupying a

specific role in the overall process. They include product analysts who develop concepts

for new products, market analysts who carry out market studies to evaluate the potential

success of new product concepts, financial analysts who evaluate the financial feasibility

of new product concepts, and a coordinator who oversees the entire process. The process

involves these different roles in a number of tasks: an initial task of product brainstorm-

ing is followed by tasks of concept development, market study, and financial analysis,

culminating in the end in a task of final report preparation where the outcome of the en-

tire process is documented in a report that can later be submitted to upper management

for approval. These tasks produce or manipulate a number of artefacts (documents):

product ideas, product concepts, market analyses, product recommendations, financial

analyses, and a final report. This process does not exist in isolation, but is followed by

other processes, such as product design, manufacturing, etc.

2.1.2.2 The Collaborative Process Model

One of the earliest models explicitly concerned with modeling collaboration processes

was developed at Xerox in the early 1990’s (Sarin et al., 1991). In terms of Curtiset al.’s

classification, this model provides primarily functional and behavioural perspectives of

the processes modeled.

Collaborative Process Models representjobs(which in terms of the terminology used

here are the same as processes), where a job is defined as “a multi-person collaborative

activity with some goal”. A job includes users, documents, application tools, and other

resources. Each job is composed of multiple tasks, and has associated with it aworkspace
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Figure 2.2: Collaborative Process Model of a product concept development process

within which activity related with the job is situated. Tasks are related through finish-to-

start dependencies, which define a sequencing of task execution. Tasks may in turn be

broken down into sub-tasks, resulting in a hierarchy of work activities.

When modeling collaborative processes, the following modeling elements are in-

cluded, as defined in (Sarin et al., 1991):

1. Documents:“abstract data object[s] or resource[s] that [are] manipulated as a unit

from tasks in jobs.”

2. Roles: “place holders for users who can perform tasks in the job.”

3. Tasks: “units of work.”

To illustrate this, a Collaborative Process Model of the job corresponding to the prod-

uct concept development process described above is shown in Figure 2.2. Here, the whole

process is shown as a network of dependent tasks, in this case consisting of five tasks,

three of which are executed in parallel with some dependencies between them (the task

Concept Development is partially dependent on output produced by tasks Market Study

and Financial Analysis). The boxes at the top right and bottom right show, respectively,

the externally visible roles and documents involved in the process.

To show details of individual tasks, any task in the Collaborative Process Model may

be decomposed into sub-tasks, which are shown in a separate diagram. For instance,
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Figure 2.3: Decomposition of the Final Report Preparation task from the Collaborative

Process Model of a product concept development process

details of the Final Report Preparation task are shown in Figure 2.3. This task, as modeled

here, consists of four sub-tasks: first the different sections of the report are collated in

the proper sequence, then this draft version of the report is discussed, if necessary any

sections of the report are edited, and lastly the report is finalized. Note that the editing of

sections and discussing of the draft report may be repeatedly performed, in a loop.

While the Collaborative Process Model is intended to represent collaborative pro-

cesses, interactions among the actors involved in the collaboration are not represented.

Only the modeled dependencies among tasks imply the likelihood of interactions among

the task performers. Thus the model is very limited in its ability to represent highly

collaborative processes, and resembles more workflow-oriented process models.

2.1.2.3 SeeMe Models

SeeMe models describe semi-structured socio-technical systems. The SeeMe diagram-

ming technique was developed to aid requirements engineering and system design, and

to allow an element of vagueness, incompleteness and contradictions to be explicitly rep-

resented (Herrmann et al., 2000). In terms of Curtiset al.’s classification, SeeMe mod-

els can provide functional, behavioural, organizational, and informational perspectives.

Most commonly, however, the emphasis is on the functional and behavioural aspects of

processes.

SeeMe models are made up of following three basic modeling elements:

1. Roles: “a set of rights and responsibilities assigned to a person, a group or an

organizational unit” (Herrmann et al., 2000).

2. Entities: passive objects or things used as resources in activities.
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3. Activities: actions performed by people occupying roles, which act on entities.

Any type of modeling element can be related to any other type of modeling element

through default semantics. For instance, a role can be related to an activity, meaning that

the role carries out the activity. Another example is where an activity is related to another

activity meaning that one is followed by the other. However, these semantics are flexible

and can be extended as needed.

Any of the modeling elements can be at any desired level of granularity. For instance,

an entire process, a task, a sub-task, or a minute user action can all be represented as

activities. The same applies to entities and roles. Furthermore, hierarchical structuring

of any type of modeling element can be represented in a given model throughnestingof

the detail level inside the higher-level element. Finally, relationships between diagrams

can be represented inmetadiagrams. Thereby a complex process can be modeled as a

collection of separate diagrams, with one metadiagram establishing how these diagrams

are related to one another.

SeeMe models can also include conditions and branches to represent details of be-

haviour. In order to accommodate vagueness or ambiguity, certain notations exist to

indicate that information may be incomplete, may have been purposely omitted (such as

when it is deemed not to be relevant), or that its correctness is doubtful.

An illustration of the use of SeeMe models is given in Figure 2.4, which shows a

model of the product concept development process introduced earlier. Depicted are roles

in ovals, activities (in this case tasks) in boxes with rounded corners, and entities (docu-

ments) in rectangles. Arrows express relationships: arrows pointing from roles to activi-

ties mean that the role carries out the activity; arrows between activities signify sequenc-

ing; and arrows between activities and entities mean that the entity is used in, and/or

created/changed by the activity.

Nesting is applied in order to aggregate roles, activities, and entities, thereby sim-

plifying the diagram. When modeling elements are nested, any arrow connecting the

compound modeling element to another modeling element represents the same type of

arrow connecting each of its contained modeling elements with the other modeling el-

ement. Thus, for instance, the roles Market Analyst, Product Analyst, and Financial

Analyst are aggregated into the role Writer. This aggregated role carries out the Prod-

uct Brainstorming and Final Report Preparation activities, meaning that each of the three

roles contained in the role Writer is involved in these two activities. Similarly, the three

activities Market Study, Financial Analysis, and Concept Development are aggregated to

a compound activity which, as a whole, is successor to activity Product Brainstorming

and is followed by activity Final Report Preparation. This compound activity receives the
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Figure 2.4: SeeMe model of a product concept development process

entity Product Ideas, meaning that this entity is used by each of the compound activity’s

constituent activities. Finally, the four entities Market Analysis, Product Recommenda-

tions, Product Concept, and Financial Analysis are nested inside the entity Report Parts.

This compound entity is used in the activity Final Report Preparation, meaning that each

of the contained entities is used by this activity. Thus the nesting of modeling elements

enables a convenient shorthand in modeling relationships between these and other mod-

eling elements.

In the Final Report Preparation activity, an intended omission of detail is indicated by

the black filled semi-circle near its lower right corner: it denotes that more detail about

this activity is available but has not been included in the diagram, and has instead been

placed in another diagram. Figure 2.5 shows the detail of the Final Report Preparation

activity as a separate SeeMe model. It can be seen that the modeling of this task is very

similar to that of the entire process, i.e. again roles, activities and entities are represented,

and are linked through arrows signifying relationships among them. The diagram also

shows a condition, in the hexagon linking the Discuss Report and Edit Sections activities:

if in the Discuss Report activity a section of the report is found to require revision, the

Edit Sections activity is performed. This may be repeated any number of times, each time

updating the draft report, until no more revisions are required, at which time the Finalize

Report task is performed, producing the Final Report entity. As the entity Draft Report
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velopment process

is internal to the Final Report Preparation activity, it does not appear in the model of the

whole process in Figure 2.4.

SeeMe models are intended to provide a semi-formal, flexible notation that allows

vagueness inherent in socio-technical systems to be made explicit, rather than enforcing

completeness of specification. As stated by their authors, SeeMe diagrams are seen as

a modeling notation for the representation of cooperation and communication processes

(Herrmann et al., 2000). Given the inclusion of details on roles involved in activities,

SeeMe diagrams appear to be more appropriate for representing collaboration processes

than Collaborative Process Model diagrams.

2.1.2.4 Collaborative Business Process Models

A model for representing collaborative business processes was introduced in (Hawrysz-

kiewycz, 2000). In terms of Curtiset al.’s classification, this model provides primarily

functional and behavioural perspectives of the processes modeled.

The collaborative business process model is part of a methodology for the design of

collaborative applications. These applications are intended to be used by virtual teams

performing the modeled processes in a mode of virtual collaboration. Support for emer-

gent processes, and for the evolution of processes over time, are seen as key require-

ments. Thus, modeling represents processes in terms of main process elements and their
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relationships, rather than representing fine detail which is likely to change as processes

evolve.

Collaborative business process models contain following four modeling elements:

1. Roles: organizational roles with associated rights and responsibilities.

2. Artefacts: passive objects, such as documents, used or manipulated in activities.

3. Activities: tasks performed by people occupying roles, and affecting artefacts.

4. Discussions: communication channels between people, involving one or more

roles.

The first three modeling elements are similar to those of other modeling approaches.

The last one, discussions, however, is unique to collaborative business process models.

Discussions represent communicative interactions between people. In conventional pro-

cesses these need not be explicitly represented, as face-to-face settings provide ample

opportunity for communication between people, both formal and informal. However,

since this modeling approach specifically focuses on virtual collaboration, channels al-

lowing for the communication between people need to be explicitly represented.

Collaborative business process models include diagramming notations both for rep-

resenting the overall structure of virtual collaboration processes, and for representing de-

tails of individual tasks. Processes are represented in a notation calledRich Pictures. The

rich picture is a modeling tool originally introduced by the Soft Systems Methodology

(SSM) (Checkland, 1981). It captures relationships and connections between elements

of human activity. However, the modeling method of Hawryszkiewycz has proposed

a modified form of rich pictures, which constitutes both an augmentation, as well as a

simplification of the original form (Hawryszkiewycz, 2000). Unlike the original rich

pictures, it introduces standard symbols and has a defined syntax and semantics. An ex-

ample of a rich picture of the product concept development process presented earlier is

shown in Figure 2.6. Here roles are shown as stick figures, activities as clouds, and arte-

facts as boxes. Lines and arrows relate the different modeling elements to each other; for

instance, lines linking roles and activities represent involvement of roles in the activities,

while arrows between artefacts and activities represent the use or creation of the artefacts

in the activities.

Hawryszkiewycz-style rich pictures provide a functional perspective of the overall

process. As an augmentation to traditional rich pictures, the collaborative business pro-

cess modeling approach is complemented by so-calledtransition diagrams, which ex-

press sequencing of activities: transition diagrams capture the possible transitions be-

tween activities in a rich picture. For example, a transition diagram corresponding to the
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Figure 2.6: A Hawryszkiewycz-style rich picture of a product concept development pro-
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rich picture of Figure 2.6 is shown in Figure 2.7. These transition diagrams resemble

the task network of Collaborative Process Models, such as the one shown on page 23.

Each of the activities in a rich picture and its corresponding transition diagram repre-

sents one task. When tasks are very large, however, they may need to be decomposed

by modeling them as a collection of related sub-tasks. To allow the representation of

such sub-tasks, Hawryszkiewycz-style rich pictures can be expanded to multiple levels

of detail, much like data flow diagrams, by modeling details of one higher-level activity

as an entire lower-level rich picture consisting of sub-activities. Each such expansion is

accompanied by its own separate transition diagram.

The internal structure of tasks that are sufficiently small, i.e. which have been de-

composed to a level where further decomposition is not deemed necessary, is represented

using another modeling notation, the so-calledMOO diagram(Hawryszkiewycz, 2000).

A MOO diagram represents internals of activities as a combination of roles, artefacts,

and discussions. At this level, communicative interactions are made explicit. An exam-

ple MOO diagram corresponding to the Final Report Preparation task of Figure 2.6 is

shown in Figure 2.8. Here, the hexagon represents a discussion, ovals roles, and boxes

with rounded corners artefacts. Arrows represent involvement and use/creation, respec-

tively, as above with rich pictures.
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Compared with other modeling notations, collaborative business process models are

more abstract, as they are not intended to model a great level of detail of processes.

By outlining only general process elements and leaving open the actual implementation

of the process, this notation is particularly suited for representing partially planned and

emergent processes. Moreover, the explicit representation of communicative interactions

makes this modeling notation well suited for representing virtual collaboration processes.

The three presented process modeling approaches are an illustration of some of the ways

that collaborative processes can be represented. While all of them allow both processes

and their constituent tasks to be modeled, the modeling differs in terms of the modeling

elements that are included, the modeling notation, the amount of detail represented, and

whether or not communicative interactions are represented. In later chapters, some of

these notations are used for the representation of virtual collaboration.
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2.2 Collaboration Systems

The preceding section discussed virtual collaboration processes. The present section car-

ries on from there to investigate the systems through which these processes are supported

and carried out.

Physical collaboration takes place in physical space where all necessary tools, objects

and people are assembled for the task at hand. A product concept development process,

for example, may bring together experts comprising product analysts, market analysts, fi-

nancial analysts, as well as others; documents in various stages of development; product

catalogues, design manuals, company guidelines, various reference works, word process-

ing tools, calculators, etc. into a single office or a set of offices that are in reasonably close

proximity to one another to afford the opportunity of easy face-to-face interaction.

If face-to-face contact is not an available option, however, the carrying out of col-

laborative tasks, such as the ones involved in product concept development, becomes

challenging. Collaboration then becomes possible if it is mediated by technology, when

it is referred to asremote collaboration, or more commonlyvirtual collaboration (cf.

the definition of virtual collaboration on page 3). Moreover, different types of technol-

ogy provide different degrees of support and are suited to different kinds of collaborative

tasks.

For example, in the simplest case, the telephone can be used to support the collab-

orative team’s communication requirements, specifically synchronous communication,

while fax allows for primitive document exchange. Video-conferencing allows two or

more participants to communicate simultaneously, but can usually only be used effec-

tively among a limited number of participants. For asynchronous communication, elec-

tronic mail can be used, which also offers a somewhat more sophisticated document

exchange potential, when compared to the alternatives of fax or postal mail, through the

use of email attachments.

However, all of these technologies provide only partial support for the overall require-

ments of collaborative groups, which have been termed the three ‘C’s of group interac-

tion: communication, collaboration, and coordination (Ellis et al., 1991).

Systems which attempt to offer a more complete support for the different aspects

of virtual collaboration provide integratedenvironmentsin which collaboration can take

place, not merely a collection of separate tools. These kinds of environments have been

named differently in the literature:collaboration spaces(Farshchian and Divitini, 1997),

collaborative environments(Farshchian and Divitini, 1997; Simoff and Maher, 2000),

collaborative virtual environments(Benford et al., 1997),collaborative virtual workspa-

ces(Spellman et al., 1997),collaborative workspaces(Pankoke-Babatz and Syri, 1997),
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locales(Fitzpatrick et al., 1996),network places(Roseman and Greenberg, 1996),shared

workspaces(Dourish and Bellotti, 1992; ter Hofte et al., 1996),teamrooms(Roseman and

Greenberg, 1996),virtual collocation environments(Poltrock and Engelbeck, 1997),vir-

tual information spaces(Rhee, 1999), andworkspaces(Baker et al., 1999). Common to

research and development effort on such environments is the desire to provide the oppor-

tunity for bringing together required people, resources, and communication channels for

joint activity in a virtual place or set of places. For the remainder of this thesis, the term

collaboration spaceshall encompass these various terms, while a system that provides

collaboration spaces shall be referred to as acollaboration system. These two terms are

defined as follows:

Definition 10 A collaboration spaceis a virtual space which provides

the opportunity for bringing together people, artefacts, and communication

channels for individual or joint activity.

2

Definition 11 A collaboration systemis a software system which supports

virtual collaboration through the provision of collaboration spaces.

2

2.2.1 Structuring Metaphors

As the generality of collaboration systems aim to provide some kind ofenvironmentfor

collaboration, the question arises how this environment should be internally structured,

and what metaphors should be employed for representing and presenting the virtual en-

vironment.

Existing collaboration systems can be broadly divided into two general categories

with regard to the structuring metaphor employed: (1) systems which employ a spatial

metaphor; and (2) systems which employ an abstract metaphor.

The first category of systems conceive of some kind of virtual counterpart to a phys-

ical structure. For instance, some systems provide a set of rooms that are connected by

doorways (Roseman and Greenberg, 1996); different rooms are used for different tasks

or by different users, and users move from room to room to work on different tasks or

to interact with different users. Other systems extend this metaphor to entire buildings

which are organized into different floors, have corridors, and rooms for different pur-

poses. The way this spatial metaphor is represented to the user ranges from the very

simple, textual interface in the style of MUDs (multi-user domains) (Churchill and Bly,

1999); to the two-dimensional layout of objects in a “room”, with simple clickable lists
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of rooms or doorways to other rooms; to sophisticated three-dimensional virtual reality

worlds (Greenhalgh, 1999) in which the user may be represented by an avatar or other

representation (Çapin et al., 1999), and where navigation from room to room is visual-

ized as the actual action of walking out one door, down a corridor, and through another

door into a different room.

The second category of systems, the ones employing an abstract metaphor, do not bor-

row concepts from real-world structures. Instead, the virtual environment is presented as

a kind of abstract entity, a cyberspace with no connection to the physical world. These

environments may be referred to within the collaboration system asworkspaces, virtual

places, or other terms mentioned earlier. As with the systems based on spatial metaphors,

these systems too usually allow users to set up different environments for different tasks

or for use by different users. Navigation between different environments, however, here

follows different metaphors, such as that of a tree, or web. Representation of the environ-

ment to the user is typically as a screen within which objects such as documents and tools

are listed or displayed in textual and/or graphical form. Users are usually not represented

through embodiments in these systems, and the user perspective is thus more detached

from the virtual space when compared with the spatially-oriented systems.

There has been some discussion in the literature on the appropriateness of applying

spatial metaphors to virtual environments such as collaboration spaces, see for instance

(Harrison and Dourish, 1996). These authors emphasize the importance ofplacerather

thanspacein collaboration systems:“Space is the opportunity; place is the understood

reality” (Harrison and Dourish, 1996, p. 69). That is, what a placeis is not so much a

matter of its spatial features but rather what its usersdowithin it and which turns a space

into a place (this is similar to the difference between a house and a home). Thus it is

important that any collaboration space creates the opportunity for users to appropriate it

and turn it into a place for collaboration.

2.2.2 Awareness

Face-to-face collaboration affords the opportunity for a great amount of peripheral per-

ception, i.e. the ability to know what is “going on” around oneself without actively seek-

ing this knowledge. This includes knowledge about who is around, what they are doing,

who is currently working with whom, as well as overhearing and overseeing the conver-

sations and work of others. The importance of thisawarenessof the activities of others

in facilitating the individual’s work as part of an overall collaborative task becomes par-

ticularly evident when it is absent, such as in virtual collaboration settings. It has been

argued that the opportunity for casual interaction is of great importance in facilitating
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collaboration (Kraut et al., 1988). Awareness of others is a prerequisite for making such

opportunistic interactionspossible.

In the context of virtual collaboration, awareness has been defined as “an understand-

ing of the activities of others, which provides a context for your own activity” (Dourish

and Bellotti, 1992). As the kind of awareness afforded by face-to-face collaboration is

absent in the realm of collaboration spaces, a substitute has to be explicitly provided. The

earliest work on providing awareness in CSCW systems dates back to the early 1990’s

and the research of a group at Rank Xerox EuroPARC (Moran and Anderson, 1990;

Borning and Travers, 1991; Dourish and Bellotti, 1992; Dourish and Bly, 1992). There,

awareness was provided by maintaining audio and video links among a number of lo-

cations. The intention was to provide a constant stream of background information that

could be tapped into as and when needed. To quote from Moran and Anderson:

. . . people deal with a complex environment by not attending to most of it

most of the time. It is important not to saturate people with things they cannot

ignore. Our approach to using audio technology to provide a natural ambient

audio environment . . . illustrates the principle. On the other hand, people are

very aware of what goes on in their environment; without such awareness

they would feel isolated. The environment needs to be rich with many things

(including other people) that could be attended to. The environment needs

to signal the availability of these things by tapping on people’s ability to

peripherally process the non-attended parts of the environment so that they

can redirect their attention when appropriate. (Moran and Anderson, 1990,

p. 386)

It has been suggested that four different types of awareness can be distinguished

(Gutwin and Greenberg, 1995):

1. Informal awareness: knowledge of who is around and what they are doing.

2. Social awareness: knowledge of the social and conversational context.

3. Group-structural awareness: knowledge of people’s roles and responsibilities, as

well as group processes.

4. Workspace awareness: knowledge of others’ interactions with the virtual space and

its artefacts.

However, this list of types of awareness is far from exhaustive, and other types could

be distinguished; for instancecultural awareness, i.e. the knowledge of cultural norms of

the people involved in the collaboration, and thus expectations of how to behave.
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Out of the above list, the first three are general awareness categories that apply to both

face-to-face and virtual collaboration. The fourth category, however, applies exclusively

to virtual collaboration, and consequently CSCW research has put the greatest emphasis

on it.

Workspace awareness aims to assist users in acquiring knowledge on five aspects

of their collaboration space:who (is around),where(are they working, looking),what

(are they doing and working on),when(did something happen), andhow(did something

happen) (Gutwin and Greenberg, 2002). This kind of awareness knowledge is seen as

having following uses in collaboration (ibid.):

• simplification of communication

• coordination of actions and activities

• anticipation of events

• provision of assistance

• management of coupling

This research activity has contributed to a richer support of awareness in groupware

systems. Among the most active in this area, the University of Calgary’s Grouplab has

been investigating awareness and building prototypes, particularly in the realm of syn-

chronous collaboration, of a number ofawareness widgets(Gutwin et al., 1995). These

are interface components that contribute to a certain aspect of awareness. Navigation

of the virtual environment, for instance, is supported by awareness widgets that provide

secondary viewportsor miniature views; artefact manipulation is made visible through

action indicators; characteristics and progress of an action are shown throughaction an-

imationsandsound cues; andalternative view representationsprovide gestural commu-

nication and deictic references (Gutwin and Greenberg, 1998a; Gutwin and Greenberg,

1998b).

This work on awareness in synchronous collaboration has been extended by others

to include asynchronous modes of collaboration (Dourish, 1997). Dourish argues that

collaborative interaction progresses through repeated cycles of divergence and synchro-

nisation, aided by awareness information. The difference between synchronous and asyn-

chronous collaboration lies in the timescales of these cycles: seconds in the synchronous

case, versus hours or days in the asynchronous case. As a consequence, the focus of

awareness shifts: in synchronous collaboration the focus is mainly on other group mem-

bers and their actions, while in asynchronous collaboration the focus is on the artefact
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and its change over time. Awareness thus extends to cover the history of collaboration,

rather than only the here-and-now.

Recent work that has been aimed at providing richer resources for awareness and

collaboration has combined both synchronous and asynchronous awareness with com-

munication facilities and media spaces (Greenberg and Rounding, 2001). On the other

hand, the scope of awareness has been extended to refer to a knowledge of more general

features of the collaboration at hand, such as the collaboration’s goal, priorities, and mile-

stones, as well as a shared terminology relating to the collaboration (Hawryszkiewycz,

1999b).

This discussion on awareness has highlighted the importance of the concept in the

support of virtual collaboration. While most existing collaboration systems include sup-

port for awareness, they differ sometimes significantly in the extent to which they provide

this support, as well as the type of awareness they offer. In the review of a number of

collaboration systems that follows below, a discussion of their support of awareness is

included to explore this aspect further.

2.2.3 Review of Existing Collaboration Systems

Today, there exist a great many systems that can be referred to as collaboration systems,

according to the definition of the term given above (cf. p. 32). Originally, such systems

were the products of research laboratories and universities, however in recent years there

has been a proliferation of commercial collaboration systems, particularly those that are

web-based. The intention of this section is not to exhaustively review all of these sys-

tems, a near-impossible task considering the pace with which these systems appear on

the market, as well as vanish. Rather, the intention is to give a flavour of some of the

systems that have been developed, to highlight the variety of features with which these

systems attempt to support virtual collaboration. The emphasis here is on systems that

have come out of research and which are documented in the research literature. Some of

these, however, have since evolved into commercial products.

The following collaboration systems are reviewed, listed in chronological order of

their first mention (shown below in parentheses):

• BSCW (1995)

• CBE (1996)

• TEAMROOMS (1996)

• CVW (1997)
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• ORBIT (1997)

• L IVENET (1999)

In the following subsections, these systems are briefly introduced and their main fea-

tures discussed. One of these systems, LIVENET, is treated in slightly more detail, as

later chapters use this system for illustration.

2.2.3.1 BSCW

The BSCW system was developed in the mid-1990’s at the GMD in Germany, and has

since undergone continuous further development (Bentley et al., 1995; Bentley et al.,

1997; Appelt, 1999). It was originally conceived as “a means of supporting the work of

widely-dispersed work-groups, particularly those involved in large research and develop-

ment projects” (Bentley et al., 1995). The original motivation for developing the BSCW

system was the limitation of existing technologies such as email and ftp that only allow

informationexchange, while there was the perceived need for collaborative information

sharing. Information sharing is understood to involve not only the ability to access a

shared copy of a document, but also to make annotations, and to see details of changes

made by other users.

The BSCW system is web-based: a central web server is accessed by multiple clients

using standard web browsers. The user interface is primarily text-based, complemented

by a few graphical icons. The interface is similar to that of a file system browser, made up

of a hierarchy of folders containing objects (such as other folders or documents). A sam-

ple screen of a BSCW workspace is shown in Figure 2.9. Documents can be locked, mul-

tiple versions can be maintained, and annotations can be attached to documents. While

the emphasis of the system lies in (primarily asynchronous) information sharing, the use

of other collaboration tools is made possible through interfaces to external synchronous

conferencing or shared whiteboard applications. A built-in discussion facility for asyn-

chronous communication also exists, and newer versions of BSCW have added support

for simple project management and calendaring, as well as for stored searches of infor-

mation within BSCW and on the Internet.

Structuring Metaphor

BSCW uses an abstract structuring metaphor resembling that of a file system. Individual

collaboration spaces are referred to asworkspaces. Each workspace has aroot folder,

which may contain various objects such as documents, links (URLs), as well as other

folders. Those folders in turn may contain other folders, resulting in a tree-structured
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Figure 2.9: BSCW user interface

folder hierarchy. Other types of objects that may be contained in a folder are projects,

calendars, discussion forums, and stored searches.

Awareness Support

As BSCW is a system for primarily asynchronous collaboration, awareness is provided

in the form of a history of events. For instance, whenever an object is added to a folder,

or read or changed, this is shown in the user interface through icons indicating that such

events have transpired. The user can then click on the icon to obtain more information on

the event. In this way, a basic form of awareness about activities on the objects within the

current view of the user is provided. Additionally, users can choose to receive an emailed

daily report of events to become aware of what events have taken place in the workspace

as a whole during a given day.

Access Control

BSCW provides fine-level access control, where detailed access privileges can be as-

signed for every object and user in a workspace. This is complemented by role-based ac-
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cess control, allowing roles to be created, and access permission templates to be defined

for each role. When users are added to a specific role, they inherit all the permissions

which that role possesses.

2.2.3.2 CBE

CBE is a toolkit for creating extensible collaboration environments in Java, created at the

University of Michigan in 1996 (Lee et al., 1996). It is an outgrowth of the UARC (Up-

per Atmospheric Research Collaboratory) scientific collaboration system (Clauer et al.,

1995). Using CBE, collections of loosely-coupled tools can be assembled to support spe-

cific tasks. Its four main design components areapplets, users, applet groupsandrooms.

Applets are small client-side applications that may run in a web browser but could also

be local applications on the user’s computer. They may either offer general collaboration

services, such as shared whiteboards or multi-user chat; or be domain-specific, such as

scientific visualization tools. Applet groups consist of all instances of the same type of

applet belonging to users in the same room, among which data is shared. Both individual

applets, as well as entire applet groups can be dynamically transferred between rooms.

Individual and group work are supported through private and group rooms. As room state

persists across sessions, CBE can be used for both synchronous and asynchronous work.

By allowing users to create their own applets, CBE is user-extensible. Figure 2.10 shows

an example of a number of generic and domain-specific applets being used by a number

of collaborating users.

Structuring Metaphor

In CBE, shared workspaces calledroomsprovide the basic structuring construct. How-

ever, the term is used in a somewhat abstract sense, and is not intended to imply a strict

room-based metaphor. Rooms provide a space for users to meet, and rooms house the

applets which users use. A room thus constitutes the working environment for an indi-

vidual or a group of collaborating users. Rooms cannot be nested, but may be linked to

each other, resulting in a non-hierarchical network of collaboration spaces.

Awareness Support

Basic awareness is provided in the form of information about users who are present in a

room. In the case of synchronous collaboration, information about the actions of other

users may be provided by the applets used, but this is dependent on each such applet.
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Figure 2.10: CBE generic and domain-specific applets (figure used with permission,

courtesy of Hyong Sop Shim and Atul Prakash, Department of Electrical Engineering

and Computer Science, University of Michigan)

Access Control

CBE provides four predefined roles (administrator, member, observer, restricted), which

users may occupy. Associated with each room is an access control list which stores

access privileges for each role. In addition, access control can be enhanced using strong,

cryptographic security.

2.2.3.3 TEAM ROOMS

The TEAMROOMS collaboration system was developed at the University of Calgary’s

Grouplab in the mid-1990s (Roseman and Greenberg, 1996). It was subsequently com-

mercialized under the name TEAMWAVE WORKPLACE in 1996. The inspiration for

the system came from the observation of collaborating face-to-face business teams, who

come together and collaborate in team rooms that are furnished with tools and docu-

ments required for their joint tasks. The TEAMROOMSsystem aims to provide the virtual
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Figure 2.11: TEAMWAVE WORKPLACE user interface

equivalent of such team rooms to support the collaboration of virtual teams. It is place-

based, providing features characteristic of physical places: being long-lived, persistent,

providing a venue for communication, offering tools for collaboration and the possibil-

ity of bringing in special-purpose tools to customize the place. TEAMROOMS supports

both synchronous and asynchronous collaboration. A multitude of tools (termedap-

plets) serve as conversational props, such as shared whiteboards or noteboards, and other

generic or special-purpose tools for collaboration. TEAMROOMS supports both individ-

ual and group work through the use of private and team rooms. Figure 2.11 shows the

user interface of one room which is filled with a number of tools (the figure is of the

TEAMWAVE WORKPLACE commercial version of the system).

Structuring Metaphor

The collaboration spaces provided by TEAMROOMS are referred to asrooms. Upon

installation, one room, the “Foyer”, is provided as a starting point, but other rooms can

be created at any time. Rooms cannot be nested, thus there is no hierarchy among the
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collection of rooms in TEAMROOMS. Doorwayscan be placed in rooms and configured

to connect to other rooms—by clicking on a doorway, its associated room is entered.

Thus TEAMROOMSaims to mimic certain of the spatial features of physical team rooms.

Awareness Support

Awareness is provided through several means. In synchronous mode, displays of other

users in the same room, together with their idle times, give information on “who is

around” and how active they are. This is complemented by several “awareness widgets”,

such as tele-pointers (other users’ pointers appearing on one’s copy of the shared space),

and radar views (miniature displays of the whole room and the portion in the viewport of

different users). Moreover, a complete version history of each object in the shared space

is maintained, allowing participants in asynchronous collaboration to trace the changes

that have occurred in a room since they last left it.

Access Control

Access control in TEAMROOMS is room-based. Permissions such as entering a room,

adding tools, drawing on the whiteboard, etc. can be assigned to just the room owner,

or to everyone. Assigning certain access privileges to just some users and not to others,

however, is not possible. Thus access control is rather coarse-grained.

2.2.3.4 CVW

The Collaborative Virtual Workspace (CVW) was developed at Mitre Corporation in the

mid-1990s (Spellman et al., 1997) to overcome the limitations of other collaboration

tools which were seen as being either session-centric, such as video-conferencing tools,

or document-centric, such as document management/workflow system. It has since been

released into the public domain, where its development continues. CVW’s approach

is to beplace-based, meaning that persistent collaboration spaces are provided within

which applications, documents and people exist. It supports both synchronous and asyn-

chronous collaboration through a set of generic collaboration services. Figure 2.12 shows

a collection of tools in the CVW client’s user interface.

Structuring Metaphor

CVW providesroomsas collaboration spaces. These are arranged on floors and orga-

nized into buildings. Despite this strongly space-based terminology, however, rooms are
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Figure 2.12: CVW user interface (Figure is in the public domain, courtesy of the Mitre

Corporation)

presented to the user primarily in the form of abstract information spaces. Only “virtual

building floor plans” relate different rooms to each other spatially.

Awareness Support

CVW provides only rudimentary facilities for gaining awareness of others. The main one

is a list of online users with idle times, that is an indication of how long ago those users

have interacted with the system. This provides basic awareness of “who is around” and

how recently they have been active. In addition, the interface for each room similarly has

a list of users who are online in the room at that time.

Access Control

Access control is on a room level: access to a room can be restricted through an access

control list (ACL) attached to the room. In this case, only users listed in the ACL are

permitted to enter the room. Rooms without an ACL are public meaning that everyone

is permitted to enter them. Once inside a room, all its contents are accessible. To modify

or delete an object, however, requires special rights: usually only the object’s owner
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(or multiple owners) has this privilege, but it can also be assigned to others. Per-object

privileges, however, do not exist, thus the access control in CVW is rather coarse-grained.

2.2.3.5 ORBIT

The ORBIT system was developed at the University of Queensland and the CRC for Dis-

tributed Systems Technology (DSTC) in 1996, and has since evolved over a number of

years (Mansfield et al., 1997; Mansfield et al., 1999). Its design is based on a theory of

collaborative activity, Fitzpatrick’s locales framework (Fitzpatrick, 1998). The termlo-

caleis understood to refer to aplacein the sense of (Harrison and Dourish, 1996), and as

discussed above (cf. p. 33). ORBIT is meant to “provide a ‘ubiquitous collaborative desk-

top’ through which users will perform all shared and individual tasks” (Mansfield et al.,

1997). Users can share access to documents and various objects, and can participate in

multiple distinct activities at the same time with different degrees of intensity. Although

ORBIT is intended for both synchronous and asynchronous collaboration, it actually only

provides support for synchronous communication, through audio-video links and text-

based chat. Figure 2.13 shows the user interface of the ORBIT-GOLD client program.

Structuring Metaphor

The main structure in ORBIT is the locale, which constitutes an abstract information

space populated by people and furnished with documents and objects of relevance to the

activities of those people. The developers of ORBIT have purposely chosen this place-

based approach instead of utilizing spatial metaphors as others have done, seeing the

notion of place as resulting “in greater power and flexibility in CSCW environments”

(Mansfield et al., 1997). Locales are seen as places that afford interactions of social

groups. As different individuals may be members of different social groups, they conse-

quently may be members of multiple locales. This results in overlapping locales, where

some objects or members that exist in one locale can also be found in another locale. To

connect different locales whose members need to share objects, so-calledcourtyardscan

be created. Objects placed in a courtyard are then accessible from all connected locales.

Awareness Support

ORBIT provides a number of facilities for providing awareness. It displays which users

are in which locales, and the actions performed by these users on objects in the lo-

cales. Awareness is implemented through an event-based notification service which al-

lows users to choose the kinds of events they are interested in receiving. Thus awareness

is user-tailorable.
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Figure 2.13: ORBIT-GOLD user interface (Figure used with permission, courtesy of Tim

Mansfield, Distributed Systems Technology Centre, Sydney, Australia)

Access Control

Access control in ORBIT is locale-based. All members of a locale have full access to

all objects within the locale, while all non-members have no access at all to any of the

objects. No distinction of types of locale membership or roles exists, and this is perceived

to be a shortcoming to be addressed (Mansfield et al., 1997).

2.2.3.6 LIVE NET

The LIVENET collaboration system was developed at the University of Technology, Syd-

ney’s Collaborative Systems Laboratory in the late 1990’s (Hawryszkiewycz, 1999b), and

is still being actively developed further. It supports mainly asynchronous collaboration of

distributed groups of people, i.e. different-time, different-place interactions, while sup-

port for synchronous interactions is being added to the current version of the system.

A central server is accessed across the network through one of several client interfaces,
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Figure 2.14: LIVENET user interface (web interface)

most commonly through a Web interface (an example of which is shown in Figure 2.14).

L IVENET provides collaboration spaces calledworkspaces. These can be populated

with a number of different types of objects such as documents, discussion forums, tools,

and message channels. Across workspaces, most of these objects can be shared. For

each workspace, any number ofrolescan be defined, and users can be added to a work-

space asparticipantsoccupying roles. The same user can have different roles in different

workspaces, but can only occupy one role in each workspace.

For documents in a LIVENET workspace, two types of documents are distinguished:

on the one hand documents which form the object of the work performed in the work-

space (simply termeddocuments); and on the other hand documents which constitute

background material needed for the task (termedbackgrounds).

Discussion forums constitute the main means of communication. Internally, they
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are structured as aforum (one per workspace), which can have any number of discus-

sionblocks(named with the topic of discussion), each of which in turn can contain any

number of discussionstatements. Since statements may be replies to other statements,

the collection of statements is a threaded discussion structure like that of many popular

bulletin boards, such as Usenet news.

Message channels constitute another means of communication. They are intended for

the somewhat more formal communication requirements, where defined lines of commu-

nication are known in advance. As message channels are uni-directional they are mostly

useful for notification purposes only, such as from the performer of one task to the per-

former(s) of another dependent task. Messages transmitted over message channels have

a pre-defined type, for example “proposal completed”, and a semi-structured message

body. Internally, a message channel is defined as amessage-rulespecifying source and

destination, as well as message type. Message types are separately defined, as are the

actual messages transmitted.

Finally, a facility is provided for sending electronic mail from within a workspace to

an external email address.

Structuring Metaphor

The structuring metaphor employed in LIVENET is an abstract one: the collaboration

space is referred to as aworkspace, and the collection of workspaces is referred to as a

workspace network. All workspaces form a tree hierarchy with parent workspaces and

subworkspaces, where each workspace has exactly one parent workspace, except for the

root of the tree which is parent-less.

Workspaces are grouped together intoworkgroups. Each workgroup has its own tree

of workspaces, and therefore its own root workspace. Besides workspaces, a workgroup

also has a collection of users. Only users who are members of a workgroup can be added

as participants to workspaces in that workgroup. In this way, workspaces associated with

different groups of users can be kept separate from other groups. However, the same user

may be a member of multiple workgroups.

Awareness Support

Awareness facilities in LIVENET can be divided into two categories. On the one hand,

notificationof certain defined events is provided, which is sent by ordinary email to the

user’s mailbox, i.e. outside the system. The set of events that can trigger a notification can

be configured and includes such events as: uploading of a document to a folder, addition

of a new user to a workspace, posting of a statement in a discussion forum, etc. The other
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awareness facility in LIVENET is rather unique when compared to other collaboration

systems, and consists of a set of pages with general task-related information, including:

goals, news, surprises, milestones, terminology, and FAQs (frequently asked questions).

These aim to assist the user in gaining awareness of the more general aspects of the

overall collaboration.

Access Control

Access to the various facilities provided in LIVENET is controlled by access rules. Two

sets of rules are provided: the first set of rules applies to the level of workgroups and

defines whether a user has permission to add users to and remove users from a work-

group. Users with these privileges have the status of workgroupleader. The second set

of rules applies to individual workspaces and defines general permissions, such as cre-

ating, modifying and deleting workspaces, adding and removing participants, roles and

documents, the use of communication facilities, etc. While the first set of rules applies

to individual users directly, the second set of rules applies to roles, and thus indirectly to

the users occupying those roles. The access control model in LIVENET is thus a hybrid

of user-based and role-based access control.

2.2.3.7 Summary and Comparison

The preceding pages have briefly reviewed six collaboration systems that have emerged

from research within the past decade, giving a flavour of some of the variety of the sys-

tems in existence. These systems differ in a number of ways, both in terms of their imple-

mentation and in their support for virtual collaboration. Table 2.1 presents an overview

comparing these collaboration systems in terms of seven attributes: architecture, struc-

turing metaphor, support for synchronous or asynchronous collaboration, communication

facilities, document sharing facilities, awareness facilities, and access control.

Architecture

In terms of architecture, three main approaches can be distinguished: pure web-based,

web-based Java applets, and client-server. While client-server systems typically pro-

vide the richest feature sets and user interfaces, they are the most difficult to deploy as

they require installation on each client computer, and typically do not work through fire-

walls. Therefore, many systems adopt the web-based architecture where no installation

of client-side software is required (except for a web browser, which is a standard software

on today’s office computers). The disadvantage, however, is the much less sophisticated
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user interface, as well as the slower response time since practically all user actions re-

quire a request to be sent back to the server. Also, pure web-based systems (i.e. with an

HTML-only interface) typically only support asynchronous collaboration well, because

of the difficulty of providing synchronous communication facilities through such an in-

terface. A few systems therefore adopt an approach that lies in between the client-server

and the pure web-based approach, using web-based Java applets that connect back to

the collaboration system’s server through their own network connection (such as a sep-

arate socket connection, or using Java remote method invocation). This enables them

to provide a more sophisticated user interface than pure web-based systems, including

synchronous communication tools. It also facilitates deployment to client computers

by avoiding having to install the software on those computers—the applets are simply

downloaded and started from the web whenever a specific web page is opened. The dis-

advantages, however, are the longer time required to download the applets, limitations

on applet communication back to the server when firewalls need to be crossed, and the

poorer stability—applets tend to crash more easily than traditional client-server applica-

tions. Thus in terms of architecture there is no ideal solution, with each alternative hav-

ing its own advantages and disadvantages, and consequently several different approaches

may co-exist.

Structuring Metaphor

All the reviewed systems employ a more or less abstract structuring metaphor. Some

are completely abstract, such as the BSCW and LIVENET systems, while others draw

on the terminology of physical spaces. For example, CBE, TEAMROOMS, and CVW

provide “rooms”, while ORBIT makes “courtyards” available. In CVW, “virtual building

floor plans” show maps of rooms in spatial relation to each other, however the spatial

metaphor is not employed elsewhere in the system. Thus on the whole, the collaboration

space itself constitutes an abstract information space in all the reviewed systems.

Synchronous/Asynchronous Support

Both synchronous and asynchronous collaboration depend on suitable communication fa-

cilities. For instance, audio/video conferencing is suitable for synchronous collaboration,

but not for asynchronous collaboration, as it requires all parties to be present at the same

time. On the other hand, a discussion forum may be suitable for asynchronous collabor-

ation, but does not support synchronous collaboration very well. In addition, the support

of suitable awareness facilities is a further requirement for both modes of collaboration.

In the case of synchronous collaboration, awareness of users in the collaboration space
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is important, while in asynchronous collaboration awareness of the event history of the

collaboration space is of importance. The provision of these communication and aware-

ness facilities, however, is largely dependent on the collaboration system’s architecture.

Consequently, pure web-based systems are limited to providing support for asynchronous

collaboration only, while client-server systems and web-based Java applets have the op-

portunity for providing support for both synchronous and asynchronous collaboration. In

the case of web-based systems, synchronous communication facilities can be optionally

provided through the use of Java applets or external third-party applications, such as with

the BSCW system which supports both of these approaches.

Communication Facilities

Communication facilities provided by collaboration systems can be divided into two main

categories, as mentioned above: those supporting synchronous collaboration, and those

supporting asynchronous collaboration. Communication facilities for synchronous col-

laboration typically include text-based chat and audio/video channels. For asynchronous

collaboration, they include discussion forums and notice boards, message channels, and

email (which consists of facilities for sending of email only).

Document Sharing Facilities

The sharing of documents is important for most collaborative endeavours, regardless of

the mode of collaboration, and consequently document sharing facilities are typically

provided. In the simplest case, they allow documents to be uploaded to a server and

shared with others, while more sophisticated facilities include versioning, locking, and

annotation capabilities. Some systems, such as CBE, do not provide document upload

functions but instead enable the sharing of their tools’ data. Thus a tool may load and dis-

play some data, which may then be viewed by the other members of the virtual team. The

same principle applies for shared whiteboards where drawings made on the whiteboard

by a team member are visible to other members.

Awareness Facilities

As mentioned earlier, awareness facilities provided by collaboration systems differ de-

pending on whether the system aims to support synchronous or asynchronous collab-

oration. For synchronous collaboration, typically a list (possibly including pictures) of

users in a collaboration space is provided. This may be supplemented by information

such as the users’ idle time to give an indication as to their involvement in the work of
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that collaboration space. More sophisticated awareness of the activities of others is pro-

vided through telepointers and radar views such as by the TEAMROOMS system. For

asynchronous collaboration, awareness is usually provided in the form of the history of

events that has transpired in the collaboration space, particularly those which affect ob-

jects (such as object creation/modification/deletion). In the case of the LIVENET system,

additional awareness of general aspects of the collaboration is provided.

Access Control

All collaboration systems provide some form of control over access to collaboration

spaces and the objects they contain. In some cases, this control is very fine-grained,

allowing particular types of access to individual objects in specific collaboration spaces

to be defined separately for each user, such as in the case of the BSCW system. In other

cases, the control is much more coarse-grained, allowing either all or no access permis-

sions for specific users, such as in the case of ORBIT; or allowing access to all or no users

(besides the collaboration space’s owner), such as in the case of TEAMROOMS. The other

way in which access control differs among systems is in whether access is assigned to

individual users directly, or to roles and thereby indirectly to users occupying those roles.

Most systems support either one or the other type of access control, but some systems

support a combination of both user-based and role-based access control, such as BSCW

and LIVENET.

This comparison has highlighted the differences between different collaboration systems

in terms of a number of attributes. At the same time it has become evident that considered

collectively, all these systems share certain characteristics: all of them support virtual

collaboration; all provide more or less abstract collaboration spaces; all provide commu-

nication and document sharing facilities, awareness, and access control. These shared

characteristics define collaboration systems as a separate class of software systems, apart

from other classes of software systems such as, say, office productivity applications, or

middleware software. Chapter 3 revisits this class of software systems, showing how

their information can be modeled.

2.3 Organizational Memory

This research is concerned with obtaining and retaining observations of virtual collabora-

tion from collaboration systems. Such observations constitute records of the activities of

the organizations where the virtual collaboration takes place. Records of organizational
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activity can be regarded as being part of anorganizational memory(OM). This section

reviews what organizational memory is and what the issues in the OM field are.

For more than a decade, the concept of organizational memory has received con-

siderable attention in the fields of information systems, CSCW, management science,

organization science, and various others. The idea underlying the concept is that orga-

nizations, like individuals, can be regarded as having a memory. In the simplest view,

this memory is the sum of the memories of the individuals making up the organization.

More complex views accommodate other elements, as is discussed later on. The notion

implies that the organization as a whole “knows” something, as long as it can obtain that

knowledge from within its memory.

Knowledge of past actions and decisions is intended to inform present decision-

making, as well as to fuel processes of organizational learning. The latter is understood

to consist of information processing which affects organizational behaviour and decision

making. As defined by (Huber, 1996, p. 126): “An entity learns if, through its pro-

cessing of information, the range of its potential behaviors is changed”. In this context,

organizational memories are seen as critical for organizational learning: only when an

organization has the ability to recall that which it has learned and stored in its memory

can it use its learning (Huber, 1996, p. 150).

The problem related to organizational memory is that “organizations frequently do

not know what they know” (Huber, 1996, p. 149). Organizations are found to be “rein-

venting the wheel”, and “have serious limitations in transferring previous learning to

current problems” (Conklin, 1993, pp. 561–2). That is, while the required knowledge

may reside somewhere within the organization, such as in the heads of its employees,

it may not be accessible to other organizational members and consequently is of little

value. Moreover, sharing the knowledge of organizational members may be difficult,

particularly when the knowledge is tacit and thus not readily sharable (this is discussed

in more detail in Section 2.3.2). When these members leave the organization, part of the

overall organizational memory is lost.

This case of “organizational amnesia” has motivated researchers in the CSCW and

information systems fields to try to provide some sort of computer-based support that

can enable organizations to remember aspects of their past. Thus thenotion of orga-

nizational memory is translated intosystemsfor organizational memory. Such systems

should continually be updated with records of the decision stimuli and responses that

occur within the organization, to enable later “remembering” of what the organization

knows. In this vein, in Walsh and Ungson’s seminal paper on the issue, the behaviour of

organizations is characterized in terms of information processing activities of acquisition,

retention, and retrieval (Walsh and Ungson, 1991). To Walsh and Ungson, “...organiza-
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tional memory refers to stored information from an organization’s history that can be

brought to bear on present decisions” (Walsh and Ungson, 1991, p. 61). This view is

echoed by Huber: “Organizational memory is the means by which knowledge is stored

for future use” (Huber, 1996, p. 127). Some views on organizational memory, however,

are more narrow in scope, such as the one espoused by Conklin who sees organizational

memory as “the record of an organization that is embodied in a set of documents and

artifacts” (Conklin, 1993, p. 561). A similar view is expressed by Ackerman to whom or-

ganizational memory is “organizational knowledge with persistence” (Ackerman, 1994).

These artefact-oriented views stand in contrast to other more process-oriented ones such

as the following: “Organizational memory (OM) is a generic concept used to describe the

acquisition, retention, maintenance, search, and retrieval of knowledge within an organi-

zation” (Corbett et al., 1999). By and large, however, these different views agree that an

organizational memory supports the remembering of aspects of the organization’s past,

which exist in one form or another as pieces of information or knowledge.

2.3.1 Data, Information, Knowledge

Here, the meaning associated with the terms “data”, “information”, and “knowledge” is

clarified. These terms are frequently used with different meanings in different situations

by different authors. The definition of some of these terms is subject to much contro-

versy, such as the distinction between information and knowledge; a few attempts to

review and/or define the meaning of these terms in the context of information systems

are provided in (Tuomi, 1999; Spiegler, 2000; Nunamaker Jr. et al., 2001). An important

notion associated with these terms is that they constitute ahierarchy of increasing value

(Ackoff, 1996). That is, the value associated with information is higher than that of data,

and likewise the value of knowledge is higher than that of information. Value in this

context refers to potential usefulness—the more value something has, the more potential

it has to be useful (Nunamaker Jr. et al., 2001). Usefulness in turn is typically seen in the

extent to which something can influence and/or guide action. Thus knowledge, which in

this hierarchy has the highest level of potential usefulness, has been defined as “informa-

tion made actionable” (Vail III, 1999). This view is confirmed by (Spiegler, 2000) who

sees information as “knowing-that”, i.e. being concerned with facts; while knowledge

is seen as “knowing-how”, i.e. being concerned with the ability to turn information into

action.

The view taken here concurs with that of (Spiegler, 2000): “when we attempt to

capture, record or store knowledge it turns back into information or data”; while (Alavi

and Leidner, 1999) suggest that “information becomes knowledge once it is processed
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in the mind of an individual”. Thus that which is referred to as “knowledge” can only

ever reside in the minds of individuals. For the purpose of this thesis, the terms data,

information, and knowledge are defined as follows:

Definition 12 Data refers to uninterpreted raw facts.Information is in-

terpreted data, such that it is given meaning.Knowledgeis information made

actionable as a result of cognitive effort.

2

To illustrate this, “152”, “smith.pdf”, and “2002/06/22” are examples of items of

data. Without interpretation they do not convey meaning in and of themselves (although

of course the meaning can in some cases beguessed, but this then already constitutes an

interpretation, perhaps based on previous encounters with the same or similar data). Data

such as the one above is transformed into information by interpreting it and associating

meaning with it, such as by saying “paper submission number 152 has the name smith.pdf

and was created on June 22nd, 2002”. Each of the data items now has become meaning-

ful; moreover, relationships between the three pieces of data have now become evident:

they all refer to the same instance of a paper submission. Processing this information and

relating it to other information, knowledge can be produced. For instance, relating it to

the information “papers will be accepted until June 15th, 2002”, the knowledge “paper

152 should be rejected because it was submitted late” can be produced. In this way, the

original facts have become actionable knowledge.

2.3.2 Knowledge Creation

The knowledge which is the object of organizational memory can be divided into two

categories:explicit knowledge andtacit knowledge.

Explicit knowledge (as conceived of in the literature) has the property that it can be

codified, for example by writing it down or recording it in a form that enables its shar-

ing with others. Thus explicit knowledge can be transmitted between people, possibly

through an intermediary such as a computing system.

Tacit knowledge, on the other hand, resides in people’s minds and finds expression

through their actions and decisions. It is closely associated with experience and learning.

While explicit knowledge is relatively easily captured, stored and retrieved in an in-

formation system, tacit knowledge first needs to be converted to explicit knowledge be-

fore it can be thus handled. Nonaka has developed a theory that explains how this conver-

sion of knowledge takes place in organizations (Nonaka, 1994). According to this theory,
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Figure 2.15: Modes of knowledge conversion and the cycle of knowledge creation;

adapted from (Nonaka, 1994)

knowledge is created in iterations of four consecutive steps that he terms socialization,

externalization, combination, and internalization.

Socialization occurs when people share experiences with each other. The on-the-job

training of an apprentice by a master is a typical example of socialization. This creates

tacit knowledge in one person from the tacit knowledge in another person by enacting it.

Externalization happens when tacit knowledge is articulated and brought into an explicit

form. Combination creates knowledge by integrating existing information and knowl-

edge in new meaningful ways. Thus, explicit knowledge is created from other explicit

knowledge. Finally, internalization takes place when people apply explicit knowledge

through “learning by doing”, thus creating tacit knowledge. When performed iteratively,

a cycle of knowledge creation results, what Nonaka calls thespiral of organizational

knowledge creation. The four modes of knowledge conversion and the cycle of knowl-

edge creation are shown in Figure 2.15.

2.3.3 Locus of Organizational Memory

As an organizational memory contains the knowledge an organization possesses, the

question arises where this knowledge resides, i.e. where the locus of organizational mem-

ory is. Walsh and Ungson have proposed a framework of organizational memory that

suggests that the memory’s retention facilities are structured in terms of fiveretention

bins(Walsh and Ungson, 1991). These retention bins are:

1. Individuals, the members of an organization whose own memories contain a record

of what has transpired in the organization. Individuals use records and files as

memory aids.
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2. Culture, a “learned way of perceiving, thinking, and feeling about problems that is

transmitted to members in the organization” (Walsh and Ungson, 1991). Culture

influences decision-making in an organization and is mostly passed along orally.

3. Transformations, which take inputs and produce outputs, be they material or intan-

gible, embody a logic that can be regarded part of organizational memory.

4. Structures, expressed in terms of the roles that members of the organization oc-

cupy, have certain expected behaviours attached. However, it also extends to orga-

nizational structure, which contains information on how the organization views its

environment.

5. Ecology, referring to the physical structure of the organization and its workplace

arrangement, holds information about the organization and its members.

In addition to these five retention bins that are internal to the organization, a sixth one

is identified:external archives, including such things as data compiled by competitors or

government bodies, information held by former employees, stories prepared by the news

media, etc.

Walsh and Ungson’s framework is comprehensive, and is often quoted in the OM

literature. However, it is not without its critics. Bannon and Kuutti comment:

“The conceptual framework that is proposed by Walsh & Ungson is compre-

hensive, but it suffers from an attempt to include virtually everything, so that

one is left wondering what, within organizations, is not a part of organiza-

tional memory?” (Bannon and Kuutti, 1996)

This criticism seems only partly justified. While it is true that the framework is com-

plex, so is the reality it attempts to model. The problem seems to be not related to the

concept of organizational memory itself, but rather to the way it can be harnessed to

inform decision-making in the organization. Furthermore, while current OM systems

only support a small part of the above framework, this should be seen as a motivating

challenge to explore if and how information relating to other parts of the framework, that

have thus far been elusive, could possibly be obtained and made part of the organizational

memory. Chapter 4 again touches upon this question.

2.3.4 Levels of Organizational Memory

Organizations are collections of people, and arguably the most important repositories

of organizational memory are the minds of its people. However, organizations are also
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internally organized in smaller units, such as groups. When considering the different

groupings of people in different organizational units, the scope of the memory available

in those groupings can be identified. One model that attempts to represent levels of or-

ganizational memory has been proposed in (Anand et al., 1998). It identifies the three

levels of individual, group, andorganization. It then incorporates the concept oftrans-

active memoryto define the scope of organizational memory at each level. Transactive

memory is that portion of OM which does not reside in a particular individual, but which

that individual knows how to obtain from another individual, through a set of communi-

cation transactions.

Because of the notion of transactive memory, an organization’s memory can actually

include portions that lie outside the organization, namely through communication of a

member of the organization with an outside individual. Likewise, this communication

can involve entire outside groups and organizations. A simplified representation of this

arrangement is shown in Figure 2.16 (the original representation chosen by Anandet
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al. differentiates between access to only explicit, or both tacit and explicit knowledge;

these details have been omitted here for the sake of simplicity). The figure shows both

internal and external individuals and units. It shows that organizations are composed

of groups, which in turn are composed of individuals (composition is indicated by the

dashed lines). Thus an organization’s memory is the sum of the memories of its contained

groups, and in the same manner, the group’s memory is the sum of the memories of its

contained individuals. It can also be seen that groups internal to the organization may

include external individuals, and vice versa. The solid lines among pairs of individuals,

groups, and organizations indicate access to the others’ knowledge. Thus individualI5,

for example, is able to access knowledge of individualI8, by means of a communication

transaction.

OM systems have the potential to eliminate the need for some of the communica-

tion transactions among organizational members. This effectively broadens the scope of

availability of organizational memory by making it available even where no access to the

knowledge of others would have otherwise existed.

2.3.5 Declarative vs. Procedural Memory

Most discussions of organizational memory assume that its contents are records of what

an organization has done, i.e. decision stimuli and responses. However, this constitutes

only one kind of organizational memory, usually termeddeclarative memory. Another

kind of organizational memory, however, relates not towhat has been done, but tohow

something was done or should be done, and this is termedprocedural memory(Moorman

and Miner, 1998).

The termprocedural memorydescribes a broad category of organizational memory.

In terms of Walsh and Ungson’s framework, it encompasses elements ofindividuals(as

in “the way I do things”) andculture (as in “the way things are done around here”),

but particularly astransformations. As prescriptions for work, such transformations are

expressed as procedures, rules, and formalized systems (Walsh and Ungson, 1991, p. 65).

Early efforts at capturing organizational memory focused primarily on declarative

memory, such as the work on Answer Garden (Ackerman, 1994) and its successor An-

swer Garden 2 (Ackerman and McDonald, 1996), both of which facilitate the interactive

evolution of a body of declarative knowledge. On the other hand, the need for retaining

procedural aspects of work was already pointed out relatively early on (Conklin, 1993).

However, the cost of capture was seen as too high:

“The most immediate barrier to capturing more of the process of work and

making it part of organizational memory is that it seems to present an in-
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surmountable and onerous documentation burden on the people doing the

work.” (Conklin, 1993)

This is because it was expected that people carrying out the work would themselves

contribute records of what they were doing to the organizational memory. As doing so

usually benefited others more than the people contributing these records, there was very

little incentive to motivate such contributions. Also, making records of one’s work inter-

fered with the work itself, an undesirable situation. Conklin suggested that groupware

should be linked with organizational memory to ongoingly tap into the flow of interac-

tions between members of an organization, and to crystallize this into the organizational

memory. This has been echoed more recently in the context of virtual team effectiveness,

where the following “effectiveness dimension” has been proposed:

“The degree to which the team’s process and outcomes can be captured elec-

tronically, stored and retrieved as needed to contribute to increased levels of

organizational knowledge and learning for future teams.” (Furst et al., 1999,

p. 253)

Despite this support for the notion of capturing and retaining procedural memory,

there has to date been very little practical work in that direction. The issue of the capture

and retention of procedural memory is revisited in Chapter 4 where it is suggested how

such a memory can be created and maintained.

2.3.6 Remembering

In the context of organizational memory, remembering is usually understood as being

synonymous with query and retrieval. That is, if an organizational memory contains

some material, remembering that material means formulating a query for its retrieval.

This view of remembering considers memory as a passive store.

Drawing on early psychology research, Bannon and Kuutti have proposed an alterna-

tive view where memory is seen as a constructive act (Bannon and Kuutti, 1996). They

argue that:

“Each action of memorizing or storing information and each action of re-

calling and remembering take place in the context of an activity. If storing

context and recalling context are the same activity, the interpretation of the

material may not be problematic. But if remembering takes place in a differ-

ent activity where material has been stored, the material will be reinterpreted
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with respect to the new object or activity, and there is no automatic guaran-

tee that the material is relevant anymore in the same way than it was in the

context of storing it.” (Bannon and Kuutti, 1996)

So, an act of remembering is seen not as mere retrieval, but as constructing meaning

within a certain context. Removed from that context, some of the meaning of that original

material may well be lost. An organizational memory system thus needs to allow for the

interpretation and the shared assigning of meaning in the context of remembering if it is

to provide any benefit from knowledge of the past in present decision-making.

2.3.7 Forgetting

It has been suggested that an organizational memory system should have the ability to for-

get (Landry, 1999). This is justified by comparing the OM with human memory. Humans

need to forget in order to cope with overwhelming amounts of information, otherwise

they suffer information overload, and are bogged down with a deluge of mindless trivia.

The danger of not forgetting is the risk of being caught up in the past, without adapt-

ing to changed circumstances in the present, resulting in poor decision-making. On the

other hand, total amnesia is dangerous too, as it prevents learning from the past. Thus, a

“good” memory should combine the right amount of remembering with the right amount

of forgetting. The challenge then is “to build systems that are appropriately forgetful”

(Landry, 1999).

On the other hand, to compare OM with human memory and then conclude that an

OM should mimic human memory in every aspect seems to deny the shortcomings of

human memory. For forgetting not only frees us of “mindless trivia”, it also suffers us

to lose important information, sometimes with disastrous consequences. Landry’s claim

is that organizational forgetting is overall beneficial, that the instances when forgetting

jeopardizes the organization’s survival are outweighed by those when remembering leads

to poor decision-making.

The obvious alternative to forgetting in the context of OM systems isfiltering, that is,

the selective withholding of material. Landry briefly addresses, and dismisses, this pos-

sibility, however without offering any convincing reason why not to utilize it. Filtering

appears to be the most suitable solution for dealing with excessive amounts of informa-

tion. In the literature, however, this has been a relatively unexplored area, which seems

deserving of further research.
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2.3.8 Organizational Memory vs. Knowledge Management

Before closing this discussion on organizational memory, some words should be said

about its relationship to knowledge management (KM), which is often mentioned in the

context of, and sometimes seen as synonymous with, organizational memory. Because

most research into knowledge management has been relatively recent, its concepts and

terminology are still somewhat fluid and at times vague. Thus there is no universally

agreed-upon definition of knowledge management, or a clear distinction between it and

organizational memory. For instance, (Maier and Lehner, 2000) consider KM systems to

be a subset of OM systems; by implication, one should regard KM as being subsumed un-

der OM. However, others take the opposite view, such as (Katzy et al., 2000) who regard

the OM to be the knowledge repository of a KM system, thus OM being a subset of KM.

Others take a more process-oriented view, such as the following: “Organizational Mem-

ory (OM) can be defined as the way an organization applies past knowledge to present

activities. Knowledge Management (KM) addresses the process of acquiring, creating,

distributing and using knowledge in organizations” (Morrison and Olfman, 1999). This

definition of KM is strikingly similar to that of OM by (Corbett et al., 1999) presented

earlier. The difference between the two may indeed be a subtle one in terms of defini-

tion. However, it appears that by and large the focus of organizational memory is the

memory component itself, as a repository of the organization’s knowledge; while that

of knowledge management is the process of acquiring, representing, and disseminating

knowledge within the organization. Thus the distinction can be seen as that between an

entity and a process.

2.4 Summary

This chapter has provided an overview of the problem domain of this research work:

virtual collaboration processes, collaboration systems, and organizational memory.

Virtual collaboration processes are understood to be goal-directed collections of mul-

tiple tasks, involving multiple individuals, and performed without face-to-face interac-

tion. Several different types of such processes can be identified, which can be classified

according to a number of process attributes. Common among these classifications is the

attribute of predefinition, which can be used to broadly divide between production pro-

cesses and emergent processes. For modeling these processes, a number of modeling

methods and notations are available, and this chapter has reviewed several of them.

In order to carry out virtual collaboration, collaboration systems are employed. These

provide collaboration spaces structured according to some abstract or spatial metaphors.
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Collaboration spaces provide certain facilities to enable virtual collaboration, includ-

ing document sharing, communication, and awareness facilities, supporting synchronous

and/or asynchronous collaboration. Many such systems have been developed, and a num-

ber of them were reviewed in this chapter.

Finally, observations of virtual collaboration can be seen as belonging to an organiza-

tional memory. Such a memory contains knowledge of what the organization “knows”, in

terms of experience from its past which it can bring to bear on present decisions. Several

aspects relating to organizational memory were investigated, including its locus, multiple

levels, declarative and procedural content, remembering, and forgetting.

Having separately reviewed these areas in this chapter, the following chapters make

the connection between this research and these areas of the problem domain, relating and

integrating these areas.



Chapter 3

Modeling Patterns of Virtual

Collaboration

As stated in the previous chapters, this thesis is concerned with obtaining observations of

virtual collaboration. Since the observations are to be collected without requiring mem-

bers of virtual teams to document their own actions (and also without requiring others to

do so), the collaboration systems used by the virtual teams are the only practical infor-

mation sources. Thus, a given collaboration system needs to collect records from which

such observations can be made. The challenge, however, is that the records typically col-

lected by such systems on the one hand, and the observations that are sought on the other

hand, usually differ significantly in both the amount of detail contained and the scale of

the activity represented. To illustrate this, consider the records shown in Figure 3.1 which

originate from one particular collaboration system. The observations sought, on the other

hand, are more of the kind as shown in Figure 3.2 (cf. the discussion on MOO diagrams

on page 29 for a reminder of the notation). Here, the records in Figure 3.1 correspond

to only a small part of the overall task represented in Figure 3.2. In terms of the amount

of detail, the records in Figure 3.1 contain a large amount of detail, while the represen-

tation of the collaborative activity sought, as shown in Figure 3.2, contains much less

detail. In terms of the scale of the activity represented, the records from the collaboration

system shown in Figure 3.1 are of a very small scale, representing actions performed by

a single user in a given collaboration system; while the corresponding representation of

the collaborative activity shown in Figure 3.2 is of a much larger scale, representing an

aggregation of multiple actions performed by multiple users. To bridge from the former

to the latter is the object of this and the following chapter. As will be argued in these two

chapters, doing so involves the combination of two things: the modeling of information

about virtual collaboration, and the derivation of information about virtual collaboration.
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Figure 3.1: Records from a collaboration system

Discuss
Report

Coordinator

Writer Report−Parts

Final−Report

Figure 3.2: MOO diagram of a report preparation task

The current chapter deals with the former, the modeling and representation of informa-

tion about collaboration. The following chapter then carries on from there to deal with

the latter, the method for deriving the observations sought from a collaboration system’s

records.

3.1 Patterns

It is proposed that observations of virtual collaboration should be regarded aspatterns

that can be modeled, and then extracted, from data on collaboration. The MOO diagram

in Figure 3.2 is an example of a simple pattern of activity between two individuals. At

this point, some words are in order about what is meant by the term “pattern”.

Within the computing sciences, the term stands associated mainly with following two

concepts: on the one hand, a pattern is understood to be a structure existing in a body of

data (Fayyad et al., 1996); this is essentially the meaning which the term occupies in the

areas of data mining and pattern recognition. On the other hand, a pattern is understood

to be the specific combination of classes and objects for solving a certain type of design

problem (Gamma et al., 1995); this is the meaning which the term occupies in the area

of object-oriented software construction.
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The main distinction between these two concepts is this: in the former case, i.e. a

pattern as structure in a body of data, a pattern is understood to bedescriptivein that it

conveys something about a pre-existing body of data. In the latter case, however, i.e. a

pattern as a combination of classes and objects, a pattern is seen as beingprescriptivein

that it expresses how software should be constructed. A further distinction between these

two meanings of the term is that for the former, the descriptive pattern, thesourceof the

pattern is the body of data itself. That is, the pattern already pre-exists within the data

and is subsequently discovered. The latter, the prescriptive pattern, however, does not

exist of its own, but rather is the product of a human cognitive process, i.e. its source is

the tacit knowledge of a human expert, in this case a software designer.

The idea of patterns has been applied to the broad domain of collaboration by a num-

ber of researchers. For patterns in the prescriptive sense, some of the earliest work has

been by Coplien and his colleagues who have investigated the software development pro-

cess, compiling a collection of patterns of productive software organizations (Coplien,

1995; Harrison and Coplien, 1996). Within the domain of online learning, Wessner and

Pfister have suggested the concept ofPoints of Cooperation, which somehow seem sug-

gestive of patterns for cooperative interactions (Wessner and Pfister, 2000). Briggs and

his colleagues have created the notion ofthinkLetsas patterns of group facilitation within

the domain of Group Support Systems (GSS) (Briggs et al., 2001). In the domain of

workflows, the notion ofworkflow patternsas basic building blocks of workflows has

recently been proposed (van der Aalst et al., 2003). Finally, IBM has developed a set

of e-business patterns—architectural patterns used in the construction of e-business sys-

tems, including those facilitating collaboration—together with a methodology for apply-

ing them (Adams et al., 2001).

For patterns in the descriptive sense, on the other hand, Erickson has suggested the

use of pattern languages for making the results of workplace studies more easily reusable

(Erickson, 2000). In a similar vein, Martin and his colleagues at Lancaster University

have suggested the use of patterns of cooperative interaction to inform design, where the

patterns are drawn from ethnographic studies of work environments (Martin et al., 2001).

The patterns of virtual collaboration that are sought here are patterns in the descrip-

tive sense, i.e. structures within data. Structure within data refers to theinterrelationand

arrangementof individual units of data within a larger body of data; i.e. related units of

data placed together in a specific arrangement. A database record is an example of struc-

ture within data, as it constitutes an arrangement of multiple interrelated fields (where

each field typically represents an attribute of some entity, such as in a record consisting

of the name and address of a person).

Individual structures may be combined to form larger structures. The example of
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the records from a collaboration system shown in Figure 3.1 is a case in point: the two

records are units of data that are interrelated (recording actions performed by the same

user, in the same collaboration space) and arranged in consecutive order. Together these

are part of a larger structure, which is represented in an abstract form as the MOO diagram

of Figure 3.2. This abstract description is a pattern:

Definition 13 A pattern is an abstract description of the structure of a

body of data.

2

A pattern of virtual collaboration is therefore an abstract description of the structure

of a body of data related to virtual collaboration. It relates to users, collaboration spaces,

artefacts, etc., and to certain relationships among these. In order to get from a body of

data to a pattern, however, it is necessary to model the information of each one. The

following section deals with this issue in more detail.

3.2 The Information Pyramid of Virtual Collaboration

Patterns of virtual collaboration are obtained from a source body of data about virtual

collaboration. At the beginning of this chapter, the disparity in terms of the amount

of detail and the scale of the activity between the two was mentioned: the source data

provided by collaboration systems is typically very detailed and represents very small-

scale activity, while the patterns sought are of much larger scale activity and much less

detailed. Here it is suggested that this disparity is too great to be bridged in a single

giant step. Instead, information related to virtual collaboration should be considered

at a number of differentlevels of abstraction. Each of these presents a differentview

of the same information. Here, it is proposed to consider six different levels, named

infrastructure, system, user, collaboration, task, andprocesslevels, with six different

views, as shown in Figure 3.3.

Each of these levels consists of information about virtual collaboration. This infor-

mation is of two kinds: on the one hand there is information about the entities in collab-

oration spaces, as well as their combination into specific configurations; this is referred

to asstatic information. On the other hand there is information about the actions that

take place within a collaboration space; this is referred to asdynamicinformation. Static

information representsstructuresof virtual space, while dynamic information represents

behaviourassociated with those structures.

Static information consists ofobjectsprovided and maintained by the collaboration

system:
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Figure 3.3: Views of information about virtual collaboration at different levels of abstrac-

tion (left and centre) and the contents of each view (right)
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Definition 14 An object is a static entity provided and maintained by a

collaboration system. It consists of one or moreattributesthat describe it.

The set of values of an object’s attributes at a given point in time constitutes

the object’sstateat that time.

2

Examples of objects are collaboration spaces, documents, discussion forums, users,

messages, etc. Attributes are meta-data related to the object. Examples of the attributes

of an object, say a document, are its name, creator, creation timestamp, etc.

Dynamic information consists ofactionsthat occur within a collaboration system:

Definition 15 Anaction is a function or operation that can be performed

in a collaboration system. It consists of one or moreattributesthat describe

it.

2

Examples of actions are creating a collaboration space, opening a document for read-

ing, posting a statement to a discussion forum, etc. An example of the attributes of an

action, say for the action of creating a collaboration space, are the name of the new col-

laboration space, and the name of the user who is to be the new collaboration space’s

owner. Actions themselves arestateless. However, actions usually affect objects, and

may alter the state of one or more objects. Actions are performed byaction performers:

either humans (such as the users of a collaboration system), or software systems (such as

the collaboration system itself).

The definition of an action above isminimalin that it includes only attributes describ-

ing the action itself. However, the action performer, that which is being acted upon, the

location of the action, and the time of the action, are not among the attributes describing

an action, but rather form thecontextof the action. In order to fully describe an action

in any meaningful way, however, requires the inclusion of its context. Action context is

defined as follows:

Definition 16 An action contextis the set of information identifying the

subject, referent, location, and time of an action.

2

The subject is the action performer, which as mentioned above is either a human

user or a software system. Every action context must have at least one subject, but it is

possible for an action context to have multiple subjects in cases where more than one

subject participates in the performance of an action. The referent is that which is being
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acted upon, an object such as a collaboration space or discussion forum1. Not every

action context has a referent, depending on the action it relates to, while some action

contexts may have multiple referents. Location is the place where the action occurs, such

as a collaboration space. Every action context must have at least one location, but it is

possible for an action to take place in multiple locations simultaneously and thus for the

action context to identify multiple locations. Finally, time is the instant or period in time

when the action takes place, and this information must be present in every action context.

Subject, referent and location are objects, while time is a data value (in the case where

time is an instant) or a pair of data values (in the case where time is a period), identifying

any or all of year, month, day, hour, minute, second, and millisecond.

A given action may occur in many different action contexts. For example, the action

of posting a discussion statement could be performed by different subjects (users, roles);

have different referents (discussion forums); be performed in different locations (collab-

oration spaces); and take place at different times. Collections of similar actions can be

generalizedinto action patterns. Recall Definition 13 of patterns above: “a pattern is an

abstract description of the structure of a body of data.” Based on this definition, an action

pattern is defined as follows:

Definition 17 Anaction patternis a pattern describing an action together

with a particular action context.

2

That is, an action pattern combines an action and an action context. Whereas an action

refers to only the actual activity performed, and the action context refers to information

related to that activity but not including the activity itself, an action pattern brings these

two together.

As an action pattern describes an activity of virtual collaboration, the term “action

pattern” is synonymous with the term “pattern of virtual collaboration”: both mean the

same and may be used interchangeably.

An example of an action pattern is the one depicted in Figure 3.2 above, consisting of

action “Report Preparation” together with the action context consisting of subjects “Co-

ordinator” and “Writer”, referents being a discussion forum named “Discuss Report” and

two documents named “Report-Parts” and “Final-Report”, location being a collaboration

space “Report Preparation”, and time being the period 20/8/2000–12/9/20002.

1In grammar this is usually called theobject, however since this term is already being used here with a

different meaning (see Definition 14 above), the termreferentis used instead in order to avoid confusion.
2Note that the MOO diagram in Figure 3.2 does not show the location and time.
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In each of the six views of information of Figure 3.3, there are objects, actions, action

context, and action patterns. However, the views of information at different levels differ

in terms of both amount of detail and scale of activity, ranging from detailed information

about small-scale activity (infrastructure level) to abstract information about large-scale

activity (process level). The different views of information are as follows:

1. In the infrastructure view, information is seen from the point of view of the in-

frastructure underlying the collaboration system, consisting of files that contain

records of objects and actions.

2. In thesystem view, information is seen from the point of view of the collaboration

system, consisting of its information repositories, such as database tables and log

files that contain records of objects and actions.

3. In theuser view, information is seen from the point of view of the individual user,

consisting of the objects of the collaboration system which the user interacts with

using the actions provided by the collaboration system.

4. In thecollaboration view, information is seen from the point of view of multiple

users in collaboration with each other, consisting of the objects of the collaboration

system which these users interact with using the actions provided by the collabor-

ation system.

5. In thetask view, information is seen from the point of view of multiple users per-

forming tasks, consisting of multiple collaboration-level actions and objects be-

longing to these tasks.

6. In theprocess view, information is seen from the point of view of multiple users

performing processes, consisting of multiple related tasks belonging to these pro-

cesses.

Given these views of information at different levels of abstraction, all of which are

based on the same underlying objects and actions, it is proposed that a source body of

data can be transformed into high-level patterns of virtual collaboration through aseries

of increasingly abstract intermediate-level patterns. This abstraction implies a general-

ization from the specific detail of one view to less specific detail of another view. Based

on the views of information presented in Figure 3.3 above, here a model of informa-

tion consisting of six levels of patterns is proposed: theInformation Pyramid of Virtual

Collaboration, shown in Figure 3.4.
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Figure 3.4: Information Pyramid of Virtual Collaboration with different levels of infor-

mation

As with the views of information, at the bottom of the Information Pyramid is the

most small-scale, detailed information, while at the top is the most large-scale, abstract

information. This is expressed in the shape and colour of the figure. The shape of the fig-

ure suggests that the amount of information at higher levels is smaller, as it constitutes a

higher level of abstraction. The different colours suggest that information at higher levels

is denserthan that at lower levels, in the sense that each unit of higher-level information

corresponds to several units of lower-level information. From bottom up, the different

levels contain following information:

1. Infrastructure level: This is the level of the underlying software infrastructure

running “below” the collaboration system itself. In the case of a web-based collab-

oration system, for instance, the underlying infrastructure is a web server. At this

level, objects are recorded in the files under the control of the underlying system.

Actions are typically recorded as events occurring in the software infrastructure,

such as web server access requests recorded in a web server log. Another example

are records in the transaction log maintained by a database management system, in

the case where a collaboration system operates on top of such a system.

Action patterns at this level consist of actions and action context that correspond to

events in the software infrastructure.

2. System level:This is the level of the collaboration system itself, through which
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collaboration is carried out. Records of objects at this level are contained in the

application data of the collaboration system, typically residing in files or database

tables. Actions are the commands issued to the collaboration system.

Collaboration systems are typically structured as client-server systems, where mul-

tiple clients are served by one server. In this case, clients send service requests to

a server, which then performs the requested actions. Records of such service re-

quests, such as in a server log, constitute records of actions at this level. This

information is of a larger scale than the corresponding information on the infras-

tructure level, so a single object or action on the system level usually corresponds

to multiple objects or actions on the infrastructure level.

Action patterns at this level consist of action and action context that correspond to

operations performed by the collaboration system.

3. User level:This is the level on which individual users operate. These users perform

actions on objects residing in collaboration spaces. Objects at this level are the

collaboration spaces and other objects contained in them, while actions at this level

are the operations performed by users, such as for instance opening a document for

reading. Objects at this level are often abstractions of corresponding objects at the

system level. Likewise, actions at this level often correspond to multiple actions

on the system level; i.e. a single action performed by the user may require the

collaboration system to perform several system-level actions.

Action patterns at this level consist of action and action context that correspond to

operations performed by a single user.

4. Collaboration level: At this level, multiple users work in collaboration with each

other. Objects at this level, as on the user level, are the collaboration spaces and

other objects contained in them, while actions at this level are the operations per-

formed by multiple users. Objects at this level mostly correspond closely to those

at the user level. However, actions at this level are abstractions of multiple user-

level actions.

Action patterns at this level consist of action and action context that correspond to

operations performed by groups of users.

5. Task level: At this level, larger-scale activity involving several lower-level actions

takes place. Objects at this level are groupings of multiple lower-level objects,

while actions at this level are the tasks performed by multiple users. These tasks

consist of certain combinations of actions and objects from lower levels.
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Action patterns at this level consist of action and action context that correspond to

tasks performed by groups of users.

6. Process level:At this, the highest level of the Information Pyramid, collections

of tasks are performed by groups of users. These constitute work processes, i.e.

collections of related tasks. Objects at this level are combinations of multiple

lower-level objects involved in the process. Actions at this level are collections

of task-level actions.

Action patterns at this level consist of action and action context that correspond to

processes performed by groups of users.

A broad categorization of levels in the Information Pyramid is shown by the labels

on the left hand side of Figure 3.4: micro level, meso level, and macro level. This

categorization is centred on the user level, for it is here that the actual actions performed

by users of the collaboration system take place. This level is designated as themeso level

in this categorization. At levels below the meso level, multiple smaller-scale operations

corresponding to each user action occur, thus the designationmicro level. On the other

hand, at levels above the meso level are aggregations of individual user actions into multi-

user actions, tasks, and processes, thus the designationmacro level.

Multi-layer models of data and/or information can be used to bridge disparities be-

tween desired and required levels of detail. A prominent example of such a multi-layer

model is the ISO OSI Reference Model for networking (Tanenbaum, 1988). In this

model, the desired level of detail is that of the communication between processes on

the model’s top layer, the application level. However, in order to bring this communica-

tion about, the required level of detail involves individual bits moving across a network

medium such as a wire, which takes place on the model’s bottom layer, the physical layer.

By modeling this communication in seven stacked layers, the communication is concep-

tually simplified. The same principle applies to the Information Pyramid. It too consists

of multiple layers with varying degree of detail. The desired level of detail is that of

collaborative tasks and processes, at the top levels of the model, while the required level

of detail is that of records of constituents of these tasks and processes, residing at the

bottom levels of the model. As in the case of the OSI model, the modeling in multiple

layers conceptually simplifies the mapping between the bottom and top layers.

Related work in the domain of workflow has been presented in (Weigand et al., 2000),

which applies linguistic theory, in particular speech act theory (Searle, 1969) and Haber-

mas’ theory of communicative action (Habermas, 1981), to the analysis of communica-

tion and conversation. Analysis is performed onworkflow patternson different levels of

abstraction.
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The levels of the Information Pyramid are illustrated later on in this chapter with an

example of information at each level. First, however, a graphical representation of action

patterns is introduced.

3.3 Graphical Representation of Action Patterns

To fully describe an action pattern requires the specification of its action and action con-

text, details of which are given in the following chapter. However, a simple graphical

notation can be useful in conveying main features of an action pattern. Such a notation

is presented here. The notation aims to both aid communication about the contents of an

action pattern, and to focus on only its main features.

The definition of collaboration spaces, given in Chapter 2 on page 32, identifies sev-

eral important concepts, namely: collaboration spaces, people, artefacts, communication

channels, and joint activity. These five concepts constitute the main features that need to

be represented in a graphical notation of action patterns.

In the review of representations of virtual collaboration processes in Chapter 2, the

notations of the Collaborative Business Process Model were introduced. These include

MOO diagramsfor representing tasks, andrich picturesfor representing processes (Haw-

ryszkiewycz, 2000). These notations have representations for roles, actions, interactions,

and artefacts, thus being close to the requirements for the notation needed here. The

representation of action patterns can thus largely utilize these notations. Only the MOO

diagramming notation needs to be slightly extended.

Here, theextended MOO diagram, or EMOO diagram for short, is introduced,

which forms an extension of the original MOO diagramming notation of (Hawryszkie-

wycz, 2000). The following are the extensions to the original MOO diagramming nota-

tion added by the EMOO diagramming notation:

1. Defined defaults for actions.

2. Representation of collaboration spaces.

3. Refined representation for roles to distinguish between those occupied by a single

person vs. those occupied by multiple people (designated here assingleton roles

andmulti-roles, respectively).

4. Refined representation for artefacts (documents) to distinguish between those that

consist of a single item vs. those that consist of multiple ones (designated here as

singleton artefactsandmulti-artefacts, respectively).
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Figure 3.5: Modeling elements of EMOO diagrams

The distinction between singleton roles and multi-roles facilitates the description of

situations of virtual collaboration in which it is important to know whether a single person

or multiple people are involved, while the distinction between singleton artefacts and

multi-artefacts facilitates representation of situations of virtual collaboration involving a

large number of related artefacts which are to be treated as a collective entity. Graphical

symbols for these various modeling elements are shown in Figure 3.5. Descriptions of

the different modeling elements are listed below:

Role: An organizational role occupied by one or more people. A role occupied by only

one user of a collaboration system is termed asingleton roleand is represented

by a single oval, labeled with the name of the role. A role occupied by multiple

users of a collaboration system is termed amulti-role and is represented by three

overlapping ovals, the one in front being labeled with the name of the role.

Artefact: A passive object or collection of objects containing information. An artefact

consisting of only one object is termed asingleton artefactand is represented by

a single rectangle with rounded corners, labeled with the name of the artefact. An

artefact consisting of multiple objects is termed amulti-artefactand is represented

by three overlapping rectangles with rounded corners, the one in front being la-

beled with the name of the artefact. Examples of artefacts include text documents,

drawings, audio/video recordings, etc.

Communication channel: A facility for the exchange of messages, available to users of

a collaboration space. A communication channel is represented by a hexagon, la-
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Figure 3.6: Default meanings of actions in EMOO diagrams

beled with the name of the communication channel. Examples of communication

channels include discussion forums, text-based chat, audio or audio-video chan-

nels, etc.

Action: A function or operation that can be performed in a collaboration system. An

action is represented by a single- or double-headed arrow connecting a role (the

subject of the action) with an artefact or communication channel (the referent of

the action), and may optionally be labeled with the name of the action. If the arrow

is not labeled, a default meaning of the action is assumed (see below).

Collaboration space: A virtual space in which roles, artefacts, and communication chan-

nels may be placed, and in which actions may be performed. A collaboration space

is represented by a rectangle, and is labeled with its name shown in a small rectan-

gle placed flush left on top of the rectangle representing the collaboration space.

As mentioned above, the arrow representing an action may not be labeled. In this

case, the arrow connecting subject and referent of the action it represents is assumed to

take on a default meaning. Figure 3.6 shows the default meanings of different actions

involving the modeling elementsrole, artefact, andcommunication channel. The figure

only shows singleton roles and singleton artefacts, however the same meaning applies to

actions involving multi-roles and multi-artefacts, respectively.

A simple example of an EMOO diagram corresponding to the MOO diagram of Fig-

ure 3.2 is shown in Figure 3.7. It shows one collaboration space (“Prepare-Report”),

containing two roles (“Coordinator”, a singleton role, and “Writer”, a multi-role), two

artefacts (“Final-Report”, a singleton artefact, and “Report-Parts”, a multi-artefact), one

communication channel (“Discuss Report”), and five actions (the arrows connecting the

roles with the artefacts and the communication channel, all assuming default meanings).
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Figure 3.7: EMOO diagram of a report preparation action pattern

3.4 Example of Levels of Information

To illustrate the levels of the Information Pyramid, an example of patterns of virtual

collaboration on different levels is presented below. The example is based on data ob-

tained from the LIVENET collaboration system. As the main source of information in

L IVENET is on the system level, the example illustrates patterns of virtual collaboration

starting from that level up to the process level. The example is related to a specific virtual

collaboration process, concerned with product concept development, and shows patterns

of virtual collaboration of parts of that same process at different levels of the Information

Pyramid up to the process level where the process as a whole is shown. The example

is intended to illustrate the different information at different levels of the Information

Pyramid, and their correspondence across levels. It is specifically not concerned with

explaining how higher-level information is derived from lower-level information, as this

is the subject of the following chapter.

3.4.1 System Level

In the LIVENET system, actions performed by the LIVENET server are recorded in a

server log. Each log entry records the action performed by the LIVENET client, context

information including subject, referent, location, and time, and any other attributes of

the action that may be supplied. An example taken from the LIVENET log for three

consecutive system-level actions is shown below3:

3Identifying information, such as actual user and group names, have been changed in this and all fol-

lowing examples to preserve the anonymity of the users involved.
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Field Attribute

1 Log-Id

2 Timestamp

3 Session-Id

4 Workgroup

5 Workspace

6 Workspace-Owner

7 User

8 Role

9 Action

10 . . . 19 Action Attributes

Table 3.1: Fields in LIVENET’s system-level log records

[84989|2000.08.26 19:12:05.103|4325|Group3|Prepare-Report|John.Smith|

Mary.Lamb|Writer|get_block_tree|Prepare-Report_John.Smith|

Discuss-Report]

[84990|2000.08.26 19:12:05.514|4325|Group3|Prepare-Report|John.Smith|

Mary.Lamb|Writer|add_statement|1094|0|Reminder|Please upload your

part of the impact and activity change table before 9 PM tomorrow.

Please also download and review all others part before the meeting

on the coming Monday. We will have to complete the Milestone by

next Monday.|null]

[84991|2000.08.26 19:12:06.515|4325|Group3|Prepare-Report|John.Smith|

Mary.Lamb|Writer|get_block_tree|Prepare-Report_John.Smith|

Discuss-Report]

Each of these records consists of the fields shown in Table 3.1, where adjacent fields

are separated by a vertical bar (‘|’). Up to ten action attributes may be present, but the

actual number of attributes depends on the action.

The three records shown correspond to three actions performed by the LIVENET

server over a time period of about 1.5 seconds on 26/8/2000 (the actions with the log-

id numbers 84989–84991). The actions wereget block tree (an action for retrieving a

list of statements posted in a discussion forum), followed byadd statement(an action

for posting a statement in a discussion forum), followed by anotherget block treeaction.
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Figure 3.8: EMOO diagrams of three consecutive system-level action patterns

get block tree, add statementandget block tree

They were issued in session 4325 from within workgroupGroup3, in workspacePrepare-

Reportowned byJohn.Smith. The actions were performed byMary.Lamb, taking the

role of Writer in the given workspace. For each of these actions, a system-level action

pattern can be derived, including both information from the log record and from the

L IVENET application database (for information on actions and objects, respectively).

EMOO diagrams of these three system-level action patterns are shown in Figure 3.8.

The action patterns obtained from records of the collaboration system’s actions are

very detailed, but only represent very small-scale activity. On the next level of the Infor-

mation Pyramid, more abstract action patterns are derived therefrom.

3.4.2 User Level

A user-level action in LIVENET is an action performed by a single user. Examples of

this include: opening a document, entering a workspace, posting a discussion statement,
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Attribute Value

Session-Id 4325

Action-Number 4

Timestamp 2000.08.26 19:12:05

Begin-Action-Id 84989

End-Action-Id 84991

Workgroup Group3

Workspace Prepare-Report

Workspace-Owner John.Smith

User Mary.Lamb

Role Writer

Action Post-Discussion-Statement

Disc-Forum-Id 1094

Parent-Stmt-No 0

Table 3.2: Attributes of an instance of user-level action patternPost-Discussion-

Statement

etc. User-level actions and action patterns are not logged in LIVENET, thus they can only

bederivedfrom corresponding system-level actions and action patterns. Details of this

derivation process are presented in the following chapter; here an example of a derived

user-level action pattern is presented.

From the three system-level action patterns shown above, a single user-level action

pattern can be derived, as shown in Table 3.2. This action pattern shows that in session

4325, action number 4 took place at about 7:12PM on 26/8/2000. The user-level action

corresponds to system-level actions 84989 to 84991 (these are the three system-level

actions represented in the three system-level action patterns shown above). It took place

within workgroupGroup3, in workspacePrepare-Reportowned byJohn.Smith. The

user-level action was performed by userMary.Lamb, taking the role ofWriter in the

given workspace, and the action wasPost-Discussion-Statement. A number of action

attributes (Disc-Forum-IdandParent-Stmt-No) are also given.

The user actionPost-Discussion-Statementin this case corresponds to three system-

level action patterns, because the collaboration system, LIVENET, carries out three ac-

tions each time a statement is posted in a discussion forum: first it obtains a list of

statements in the discussion forum, then it adds the new statement, then it obtains an up-

dated list of discussion statements. The rationale for this particular sequence of actions is

unknown, and is not relevant. What matters is that anytime this sequence of actions takes
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Figure 3.9: EMOO diagram of user-level action patternPost-Discussion-Statement

place in the same session, a user-level action pattern can be derived which corresponds

to the user-level action of posting a discussion statement. That is, the given sequence of

system-level action patterns can betransformedto a single user-level action pattern.

The EMOO diagram in Figure 3.9 represents thePost-Discussion-Statementuser-

level action pattern presented in this example. It shows that the roleWriter (a multi-role)

is connected with the discussion forumDiscuss Reportthrough a posting action (shown

by the arrow pointing from the role to the discussion forum).

This action pattern is that of a single user at a single point in time. The next step of

abstraction is to consider collections of such action patterns.

3.4.3 Collaboration Level

A collaboration-level action in LIVENET is an action performed by a group of users. A

collaboration-level action pattern corresponds to a collection of user-level action patterns

with a (partially) shared action context. The part of the action context that is shared

may be time (actions taking place in temporal proximity), location (actions taking place

in spacial proximity, where the space is understood to be virtual), or some object being

affected by the action pattern (a document jointly worked on; a discussion forum where

a joint discussion takes place; etc.).

To continue the earlier example, a group of user-level action patterns within the

shared context of a given discussion forum (the action’s referent) together constitute the

collaboration-level action patternGroup-Discussion. It corresponds to a number of user-

level action patterns related to the given discussion forum. In the case of LIVENET, the

user-level action patterns which contribute to theGroup-Discussionaction pattern in-

cludePost-Discussion-Statement(posting a statement) andOpen-Discussion-Statement

(reading a statement). Attributes of the corresponding collaboration-level action pattern

are shown in Table 3.3.

This action pattern shows that the collaboration-level action with id 736 took place
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Attribute Value

Action-Id 736

Begin-Timestamp 2000.08.21 22:08:17

End-Timestamp 2000.11.01 16:58:23

Workgroup Group3

Workspace Prepare-Report

Workspace-Owner John.Smith

Users John.Smith, Mary.Lamb, Paul.Jones, Helen.Blake

Action Group-Discussion

Num-Posts 34

Num-Reads 84

Read-Post-Ratio 2.47

Posts-Per-Day 0.48

Reads-Per-Day 1.18

Avg-Thread-Size 1.82

Avg-Thread-Depth 1.73

Table 3.3: Attributes of an instance of collaboration-level action patternGroup-

Discussion

between the dates 21/8/2000 and 1/11/2000 within workgroupGroup3, in workspace

Prepare-Reportowned byJohn.Smith. The action was of typeGroup-Discussion, in-

volving the four usersJohn.Smith, Mary.Lamb, Paul.Jones, andHelen.Blake. Several

action attributes are included, in this casediscussion metrics: the total number ofPost-

Discussion-Statementactions (34); the total number ofOpen-Discussion-Statementac-

tions (84); the read/post ratio (2.47); the average number of messages posted per day

(0.48); the average number of messages read per day (1.18); the average size of discus-

sion threads, in number of statements (1.82); and the average discussion thread depth

(1.73), being the number of levels of replies in each thread.

Besides attributes about action context, such as time, location, etc., the inclusion of

discussion metrics in this record expresses something about the nature of the discussion

taking place among this particular group of users, such as the intensity of the discussion

(being a measure of the numbers of posts and reads per day); the depth of the discussion

tree (being a measure of thread depth); etc. These discussion metrics can provide addi-

tional information to help categorize different instances of theGroup-Discussionaction

pattern.

Figure 3.10 (b) shows an EMOO diagram of theGroup-Discussioncollaboration-
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Discuss
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(a) User-level action patterns

Group−Discussion:

Discuss
Report

Coordinator

Writer

Prepare−Report

(b) Collaboration-level action pattern

Figure 3.10: EMOO diagram of collaboration-level action patternGroup-Discussionas

an aggregation ofOpen-Discussion-StatementandPost-Discussion-Statementuser-level

action patterns involving rolesWriter andCoordinator
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level action pattern presented in this example. It shows that two roles are involved

in the discussion (of whichWriter is a multi-role). Both of the roles have read and

post access to the discussion forum, which thus forms an aggregation of several indi-

vidual Open-Discussion-StatementandPost-Discussion-Statementuser-level action pat-

terns. Part (a) of the figure shows the four individual user-level action patterns that are

aggregated into the collaboration-level action pattern.

3.4.4 Task Level

A task-level action in LIVENET is a larger-scale activity (compared to a collaboration-

level action) and is performed by a group of users. A task-level action pattern corresponds

to the combination of two or more collaboration-level action patterns.

An example of a task is that of joint report preparation. This is an activity which

involves several collaboration-level actions: it may start out with a discussion of the

format and structure of the report, followed by individual document preparation work.

This may then lead to document sharing and review, before integrating the separate report

pieces into the whole report document.

In terms of the action patterns involved, this task may consist of a combination of

Group-Discussion, Document-Sharing, and Document-Preparationcollaboration-level

action patterns. They are combined through the subjects (i.e. roles) involved in those

action patterns, linking the collaboration-level action patterns together into theFinal-

Report-Preparationtask-level action pattern. An EMOO diagram of this action pat-

tern, combining the earlierGroup-Discussionaction pattern from Figure 3.10 with a

Document-Sharingand aDocument-Preparationaction pattern, is shown in Figure 3.11.

Part (a) of the figure shows the constituent action patterns, while the task-level action

pattern itself is shown in part (b) of the figure. Here theDocument-Sharingcollaboration-

level action pattern involves both theCoordinator and Writer roles, and is mediated

through theReport-Partartefact (a multi-artefact, with one artefact for each report part).

Artefact access within theDocument-Sharingcollaboration-level action pattern differs

between the two roles: while theWriter role has both read and write access, theCoordi-

nator role has only read access. Lastly, theFinal-Reportartefact constitutes the task’s fi-

nal outcome, and is produced by theCoordinatorrole through theDocument-Preparation

action pattern.

3.4.5 Process Level

A process-level action is the largest-scale activity in the Information Pyramid, and is

performed by a group of users. A process-level action pattern consists of a number of
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Figure 3.11: EMOO diagram of task-level action patternFinal-Report-Preparationas

a combination of action patternsGroup-Discussion, Document-Sharing, andDocument-

Preparation.
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task-level action patterns.

Following on from the example of joint report preparation, this task may be part of a

process concerned with developing concepts for new products. The whole process may

consist of several tasks, including: brainstorming ideas for new products, market study,

financial analysis, development of a selected product concept, and finally preparation of

a report with the results of the individual tasks.

In terms of the action patterns involved, this process combines the five task-level

action patternsProduct-Brainstorming, Market-Study, Financial-Analysis, Concept-De-

velopment, andFinal-Report-Preparationwhich was already shown above. Each of these

task-level action patterns takes place in its own collaboration space and involves a number

of roles, communication channels and artefacts. All roles are involved in more than

one task-level action pattern, as are most of the artefacts. EMOO diagrams of these

five task-level action patterns are shown in Figure 3.12 (a). Together these task-level

action patterns constitute the process-level action patternProduct-Concept-Development,

shown in the form of a rich picture in Figure 3.12 (b).

The above example has illustrated the different levels of the Information Pyramid of Vir-

tual Collaboration, from the system level up to the process level, showing instances of

action patterns at each of these levels. The example showed that action patterns on a

given level (with the exception of the lowest level) are aggregations of action patterns on

the level below. Thus an instance of a higher-level action pattern corresponds to multiple

instances of lower-level action patterns. In this way there is achain of correspondences

of action patterns from the lowest level to the highest level of the Information Pyramid.

This bridges the disparity mentioned at the beginning of this chapter, in terms of amount

of detail and scale of the activity between the source data and the patterns of virtual col-

laboration sought. In the case of the above example, the chain of corresponding action

patterns across levels is shown in Figure 3.13. It shows the correspondence of two ac-

tion patterns on the system level (addstatement and getblock tree) to the user-level ac-

tion pattern Post-Discussion-Statement (the correspondence being represented by the line

connecting the names of two action patterns). In turn, there is a correspondence of two

user-level action patterns (Post-Discussion-Statement and Open-Discussion-Statement)

to the collaboration-level action pattern Group-Discussion. This chain of correspon-

dences continues step-by-step until it reaches the process level, and the action pattern

Product-Concept-Development.
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Figure 3.12: EMOO diagrams of five task-level action patterns and rich picture of the

corresponding process-level action patternProduct-Concept-Development
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Document−Preparation Document−Sharing

Post−Discussion−Statement Open−Discussion−Statement

Market−Study Financial−Analysis

Action PatternLevel

Figure 3.13: Chain of correspondences of action patterns from system level to process

level of the Information Pyramid

3.5 Summary

This chapter has discussed the modeling of patterns of virtual collaboration. It started by

considering what a pattern is, providing a definition of the term.

Next, the Information Pyramid of Virtual Collaboration was proposed as a model

of information related to collaboration systems and the virtual collaboration carried out

through them. This information model suggests that information about virtual collabor-

ation can be considered at six different levels of abstraction, presenting a differentview

of information at each level, ranging from small-scale activities to entire tasks and pro-

cesses. In this model, two main kinds of information exist,objectsandactions. An action

extended by anaction contextis anaction pattern, which describes an activity of virtual

collaboration.

The graphical notation of EMOO (extended MOO) diagrams was proposed to rep-

resent action patterns. This was followed by an illustrative example of action patterns

at the different levels of the Information Pyramid of Virtual Collaboration for an actual

collaboration system.

The next chapter carries on from here to deal with the representation of information

and the pattern derivation process in more detail.



Chapter 4

Deriving Patterns of Virtual

Collaboration

The previous chapter has introduced the notion ofpatterns of virtual collaboration, and

proposed a multi-level model of information, the Information Pyramid of Virtual Collab-

oration (cf. Figure 3.4 on page 72). The present chapter carries on from there to consider

how patterns of virtual collaboration can be obtained from information on lower levels of

the Information Pyramid and be transformed onto progressively higher levels.

This thesis argues that the successful derivation of patterns of virtual collaboration

relies on the combination of both of these: an information model for representing pat-

terns of virtual collaboration, namely the Information Pyramid presented in the previous

chapter; and a process for modeling and deriving these patterns, namely the methods and

framework presented in the current chapter.

4.1 Information Derivation

The extraction of patterns of virtual collaboration is crucially dependent on the availabil-

ity of information related to this collaboration, namely about objects, actions, and action

context (cf. the discussion in Section 3.2). As the source of this information is data col-

lected by the collaboration systems themselves, these systems need to collect sufficient

data to enable the extraction of patterns. The issue of designing data collection for col-

laboration systems is explored in more detail in Section 4.5. For now, however, it shall be

acknowledged that different existing systems may collect source data on different levels

of the Information Pyramid.

Conceptually, the Information Pyramid consists of six levels. However, not every col-

laboration system will collect data on all of the levels, and most will usually only collect
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Process level

Task level

Collaboration level

User level

System level

Infrastructure
level

Figure 4.1: Information Pyramid for two actual collaboration systems, LIVENET (left)

and TEAMROOMS (right)

data on one or two levels. For instance, a traditional client-server collaboration system

may only collect data on the system level, but not on the infrastructure level. On the other

hand, a web-based collaboration system may collect data on the infrastructure level and

the system level. In yet another case, the collection of higher-level data may have been

considered during the design of a collaboration system, and it may collect data at the user

level. In most cases, however, the data source is at the micro level of the Information

Pyramid, while meso and macro level data is usually absent. As an example, consider the

situation of the LIVENET and TEAMROOMSsystems, illustrated in Figure 4.1. LIVENET

is a web-based system and thus the web server records infrastructure-level events, while

the LIVENET server records system-level events. In addition, the system level holds the

application data in the form of a workspace database. The meso and macro levels of the

Information Pyramid, however, are absent. The TEAMROOMSsystem, on the other hand,

is not web-based but is a conventional client-server system. Its only data source thus is

at the system level, consisting of application data, while the infrastructure level as well

as meso and macro levels are absent.

However, as mentioned before in Chapter 3, information on upper levels can bede-

rived from information on lower levels, producing an Information Pyramid that is com-

plete from the level of the data source up to the top level.

Here it is proposed that performing derivations of higher-level information involves

two main steps:

1. Describing information at a given level.

2. Performing a mapping which takes information on one level and converts it to a

form on the next-higher level.
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Figure 4.2: Related and identical concepts on different levels of the Information Pyramid

The first step entailsmodel building, i.e. the specification of a representation of a set

of entities, namely the information about virtual collaboration. For this, the definition

of information in collaboration systems from Section 3.2 provides the basis. The second

step entailsmodel transformation, i.e. the specification of mappings between instances of

models in different forms. Principles for mapping models are developed in this chapter.

4.1.1 Ontologies

In order to describe and map between different levels of the Information Pyramid of

Virtual Collaboration, it is necessary to utilize a set of common, well-definedconcepts.

This set of concepts needs to express entities and actions associated withall levels of the

modeled collaboration system, for following two reasons: firstly, as many concepts on

one level are related to concepts on a neighbouring level, it follows that all levels need to

be included to allow such relationships of concepts to be expressed. For instance, it was

seen earlier that collections of instances of one or more action patterns on a given level

may map to an instance of an action pattern on the next-higher level. This is illustrated in

Figure 4.2 (a), showing a number of concepts on three different levels of the Information

Pyramid being related to one another (this corresponds to the example presented earlier

in Figures 3.8, 3.9 and 3.10). Secondly, as certain concepts are used across two or more

levels, it is necessary that a single representation of the concepts exists, so as to avoid

problems of both synonyms and homonyms, and thereby to ensure semantic consistency.

For instance, the concept of a role may be used on multiple levels, yet have the same

meaning. This is illustrated in Figure 4.2 (b), where the conceptRole is present on four

levels of the Information Pyramid.
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It is suggested here that these requirements can be suitably satisfied by defining a

meta-model, orontologyof these concepts. Ontologies have been used in the field of

artificial intelligence for over a decade, for knowledge sharing and reuse. In that context,

the term ontology has been defined as “an explicit specification of a conceptualization”1

(Gruber, 1993). Another definition is given in (Sowa, 2000):

The subject ofontologyis the study of thecategoriesof things that exist or

may exist in some domain. The product of such a study, calledan ontology,

is a catalog of the types of things that are assumed to exist in a domain of

interestD from the perspective of a person who uses a languageL for the

purpose of talking aboutD.

More recently, ontologies have found application in various other areas of the com-

puting sciences (Gruninger and Lee, 2002).

Every ontology describes a certaindomain, theuniverse of discourse. Collaboration

systems have over the past decade emerged as a separate class of CSCW systems. The

concepts supported by this class of systems, and the information provided by them, con-

stitute the universe of discourse under investigation here. By specifying this universe of

discourse in the form of an ontology, it becomes possible to bridge a number of separate

conceptual realms. It was seen earlier that the Information Pyramid of Virtual Collabora-

tion spans six levels, each having its own view of the information comprised within it, i.e.

its own conceptual realm (cf. Figure 3.3 on page 68). Each of these could conceivably be

specified in its own terms; for instance, the system level could be specified as an entity-

relationship diagram of the database structure, accompanied by an event model of the

system events. Other levels could similarly have their own specification, using their own

modeling notations. However, relating concepts across levels, which as mentioned above

is an important requirement, would then not be possible without employing some kind

of intermediary mapping level or other approach to bridge these separate representations.

The approach of using an ontology, on the other hand, makes it possible to specify, and

then relate concepts from, all levels using a common notation and terminology.

Within the computing sciences today, ontologies are being used in mainly three ca-

pacities: for communication, for computational inference, and for reuse and organization

of knowledge (Gruninger and Lee, 2002). In the present context, ontologies are mainly

used in the first and third capacity: to communicate meaning, and to reuse and organize

knowledge (although, in line with the meanings of these terms defined earlier, here the

term “information” is used, rather than “knowledge”).

1The term “ontology” was originally coined in philosophy, where it means “the theory or study of being

as such; i.e., of the basic characteristics of all reality”. (Source: Encyclopædia Britannica)
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Figure 4.3: Modeling method for deriving information in the Information Pyramid

4.1.2 Modeling Method

For creating models and mappings between models for a given collaboration system, the

following method is proposed, as illustrated in Figure 4.3:

Step 1: Identify the highest-level source of information available. This will constitute

thebase levelof the Information Pyramid for the given collaboration system.

Step 2: Model the base level by modeling its static and dynamic concepts.

Step 2.1: Identify objects.

Step 2.2: Identify actions.

Step 2.3: Identify action patterns.

Step 2.4: Specify concepts.

Step 3: Model the next-higher level in the same manner; the modeling of concepts on

higher levels may be based on corresponding concepts on lower levels.

Step 3.1: Identify unchanged/modified/new objects.
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Step 3.2: Identify unchanged/modified/new actions.

Step 3.3: Identify unchanged/modified/new action patterns.

Step 3.4: Specify concepts.

Step 4: Define mappings between concepts on the two levels just modeled.

Step 4.1: Identify source and target concepts and attributes.

Step 4.2: Identify mapping constraints.

Step 4.3: Specify mappings.

Step 4.4: Define mapping functions.

Steps 5 and above:Repeat steps 3 and 4 until the top level is reached.

Each of the models and mappings adds to an evolving ontology, until the resulting

ontology covers all levels of the Information Pyramid from the base level up, as well as

the mappings between them. This is illustrated in Figure 4.4: while a different model

and a different mapping is needed for different levels, a common ontology is used for

representing all of the models and mappings.

4.1.3 Knowledge Model of the Ontology

Before entering into details on how the ontology for the models and mappings is speci-

fied, a few explanatory words about ontologies and their representation are in order.

The principal components of an ontology areconceptsand theirrelationships. Con-

cepts correspond to the entities that make up the universe of discourse, while relation-

ships establish how these entities are related to one another.Properties, or attributes,

capture detailed aspects of the concepts. Ontologies may also make use of various other

constructs to specify certain aspects of the universe of discourse:constraints, axioms,

functions, etc. (for further detail refer to (Gruber, 1993)).

To express an ontology, it is usual to employ aknowledge model. A knowledge model

provides certain constructs to enable the specification of the universe of discourse that is

the subject of the ontology. For the representation of the concepts related to the In-

formation Pyramid of Virtual Collaboration, an existing knowledge model is employed.

This is the knowledge model of Protéǵe-2000, an integrated knowledge-base develop-

ment and management system (Noy et al., 2000); this knowledge model is similar to the

widely-used OKBC knowledge model (Chaudhri et al., 1998). Protéǵe-2000 ontologies

are specified in an extended form of the CLIPS language, a Lisp-like language which is
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Figure 4.4: Models and mappings for deriving information in the Information Pyramid
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part of the CLIPS expert system shell (Giarratano and Riley, 1998). Protéǵe-2000 uses

an object-oriented representation of concepts which employs following main modeling

constructs:

Classesrepresent entities in the universe of discourse, i.e. concepts. For instance,

the classUser may be used to represent the concept of a collaboration system’s user, i.e.

a person involved in collaboration on the computer. Classes can havespecializations,

i.e. subclasseswhich inherit from their superclass, or in the case of multiple inheritance,

from all their superclasses. Thus the set of classes in a given ontology forms ataxonomic

hierarchy. A class whose instances are themselves classes is called ametaclass. Each

class has arole, which indicates how the class may be used:abstractclasses cannot be

instantiated directly, whileconcreteclasses may be instantiated.

Instances, then, are instantiations of a class. Classes and instances are thus similar to

types and variables in programming languages: classes are like types, while instances are

like variables of a given type. To follow the previous example, one instance of theUser

class could represent the user with the nameJohn Smith. Instances inherit all attributes

of the class they instantiate, as well as all of that class’s ancestors (i.e. its superclass(es),

recursively to the root of the class hierarchy).

Slots are attributes of classes and instances. They contain the details of the rep-

resented concepts. For example, the classUser could have a slotemail-address to

hold the value(s) of the user’s email address(es), while the instance of this class rep-

resenting userJohn Smith could have, say, the two valuesjohn.smith@xyz.com and

john@yahoo.com in this slot.

Facetsare simple constraints imposed on slots. They can specify minimum and max-

imum cardinalities of the slot, as well as limit the range of allowable values. For instance,

the slotemail-address could have a facet that specifies the minimum cardinality to be

0 and the maximum to be unbounded, thus making it optional for a user to have an email

address, but allowing multiple addresses.

Constraints, finally, are limitations or rules imposed on concepts and attributes in

the ontology. As opposed to facets which are simple rules on the allowed values of

a slot, constraints in the general sense allow the specification of complex conditions,

such as involving multiple slots from different classes. For instance, a constraint may be

specified that requires users who are owners of workspaces to have an email address that

has the domain namexyz.com.

The above example of the conceptUser is illustrated in Figure 4.5, which also in-

troduces the graphical notation used for representing these modeling concepts. The box

with the rounded corners represents a class, while the box with sharp corners represents

an instance. The two boxes are divided into two parts: for classes, the upper part identi-
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name [1:1]

User

email−address [0:?]

User_0217

John Smith
(john.smith@xyz.com,

john@yahoo.com)

instance−of

Figure 4.5: Part of an ontology, showing a class, instance, slots, and facets for represent-

ing users in a collaboration system

fies the class, while the lower part identifies any slots (and cardinality facets, if any); for

instances, the upper part identifies the instance (by its class name and an instance number

suffix), while the lower part shows values of slots. Here, the slotemail-address of class

User has the facet[0:?], which specifies the slot’s cardinality constraint (lower bound

0, no upper bound); while the shown instance of this class has two values for this slot.

4.1.4 Notation for Ontology Specification

The modeling concepts of ontologies just introduced are used in specifying concepts

in the target domain. These are typically represented in textual notation, and may be

supplemented with a graphical notation to facilitate understanding, such as the one just

introduced. A number of textual notations are available; many of these employ a Lisp-

like syntax, while more recently XML (the Extensible Markup Language) has been used

for this purpose too. Here a slightly simplified form of the notation used by Protéǵe-2000

is adopted. This notation is Lisp-like, i.e. it uses nested lists with expressions, such as

predicates or functions, in a prefix notation.

An example of the specification of classUser, which was shown in graphical form in

Figure 4.5, is given below (note that the line numbers shown to the left are not part of the

class specification):

1 (defclass User "A user of a collaboration system."

2 (is-a :THING)

3 (role concrete)

4 (single-slot name
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5 (type STRING)

6 (cardinality 1 1))

7 (multislot email-address

8 (type STRING)

9 (cardinality 0 ?VARIABLE)))

Here, on line 1,defclass is a function that defines a new class,User is the name

of the new class, and the quoted string that follows is documentation of the class. The

remainder of the class definition consists of the definition of four slots. On line 2, the

first slot(is-a :THING) identifies the superclass of the new class, in this case a system-

defined class called:THING which encompasses every concept in the ontology. On line 3,

the second slot(role concrete) identifies the role of the new class as concrete, mean-

ing that it may be instantiated. On lines 4–6, the third slot defines the attributename.

Being asingle-slot, it may contain only one value (as opposed to amultislot which

may contain multiple values). This slot has two facets that constrain values of the slot.

The first facet(type STRING) constrains the data type of its value to character strings.

The second facet(cardinality 1 1) is a cardinality specification which prescribes

that each instance ofUser must have both at least and at most one (in other words,

exactly one) value in this slot. Finally, the slot on lines 7–9 defines another attribute,

email-address. This slot is similar to the previous one, with following two exceptions:

firstly, it is amultislot, thus it can contain multiple values; and secondly, its cardinality

ranges from zero to a variable (i.e. unlimited) upper bound.

Given this definition of classUser, instances may be created. An instance of the class

corresponding to the one shown in Figure 4.5, is specified below:

1 ([User_0217] of User

2 (name "John Smith")

3 (email-address

4 "john.smith@xyz.com"

5 "john@yahoo.com"))

Here, on line 1,[User_0217] identifies the instance, and the keywordof indicates

which class this instance instantiates (in this case the classUser). Lines 2–5 specify slot

values for the indicated slots.

Finally, a notation for the specification of general (i.e. non-facet) constraints is needed.

Since those constraints need to express a desired state of a given body of data, a declar-

ative notation such as predicate logic is appropriate. The notation used here is PAL, the

Prot́eǵe Axiom Language that is employed within the Protéǵe-2000 system. An exam-
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ple of a constraint corresponding to the one mentioned in Section 4.1.3 above, where

owners of workspaces must have an email address ending inxyz.com, is shown below

(it is assumed that the classWorkspace has been previously defined, and that this class

includes a slotowner which holds a reference to an instance of the classUser who owns

the workspace):

1 (defrange ?ws :FRAME Workspace)

2 (defrange ?em :FRAME User email-address)

3 (forall ?ws

4 (exists ?em

5 (and (email-address (owner ?ws) ?em)

6 (suffix-of "xyz.com" ?em))))

Thedefrange function in line 1 defines a variable?ws, which ranges over the frame

(instance or class)Workspace. Similarly, line 2 defines another variable,?em, which

ranges over the slotemail-address, a multi-slot of classUser. The remaining lines

state a constraint involving the two previously defined variables?ws and?em. The con-

straint starts on line 3 with the universal quantifierforall which is applied to variable

?ws, thereby applying to all instances of theWorkspace class. On line 4, the existential

quantifierexists is applied to the variable?em, thereby applying to email addresses in

instances of classUser. Lines 5–6 state the conjunction of a condition that must hold

for the quantified variables: theemail-address of theowner of a Workspace must be

equal to the value of?em, and that value of?em must end inxyz.com. When applied to

instances ofWorkspace andUser in the ontology, the constraint will evaluate to either

true or false; it will be true if and only if all instances ofWorkspace are owned by users

whose email address ends inxyz.com, and will be false otherwise. Using this constraint

language, arbitrarily complex constraints can be specified.

4.2 Ontology Specification

The ontology for a given collaboration system consists, as described above, of two parts:

on the one hand, a set of models for each layer of the Information Pyramid; on the

other hand, a set of mappings between these models. These are specified in a bottom-up

fashion according to the modeling method outlined earlier. Here, further details of the

specification of these two parts are given.
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Figure 4.6: Taxonomic hierarchy of common classes of the ontology of collaboration

systems

4.2.1 Common Classes

The previous chapter has given a definition of the basic units of information from col-

laboration systems which are related to the derivation of patterns of virtual collaboration.

These are: objects, actions, and action patterns. Furthermore, these basic units of infor-

mation exist at each level of the Information Pyramid. Thus, a basic structure ofcommon

classesneeded by the ontology of any collaboration system can be defined. These are

defined as follows: a set of abstract classes defines the basic units of information them-

selves, and a set of abstract subclasses of these classes defines units of information for

specific levels of the Information Pyramid.

Figure 4.6 shows the taxonomic hierarchy of common classes of the resulting ontol-

ogy. Note that class names are printed in italics to signify that the classes are abstract,

that is, they are not intended to be directly instantiated. The three most fundamental con-
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cepts of the ontology areObject, Action, andAction-Pattern (each being a subclass of the

ontology’s root concept:THING). Each of these has six subclasses, one for each level of

the Information Pyramid. Classes corresponding to concepts of a specific collaboration

system are then subclasses of these classes.

For instance, the conceptUser, representing a collaboration system’s user, specified

on the system level of a given collaboration system would be a subclass of theSys-Lvl-

Object class, since it is an object and it resides on the system level. The relevant class

specifications for this concept, as well as for its superclassSys-Lvl-Object and for that

class’s superclassObject, are shown below:

(defclass Object

(is-a :THING)

(role abstract))

(defclass Sys-Lvl-Object

(is-a Object)

(role abstract))

(defclass User "A user of a collaboration system."

(is-a Sys-Lvl-Object)

(role concrete)

(single-slot name

(type STRING)

(cardinality 1 1))

(multislot email-address

(type STRING)

(cardinality 0 ?VARIABLE)))

It can be seen that the classesObject andSys-Lvl-Object are defined as abstract,

while the classUser is defined as concrete. The part of the taxonomic hierarchy of

classes involved here (and also including the ontology’s root class:THING) is shown in

Figure 4.7.

Other classes defining all of a given collaboration system’s objects, actions, and ac-

tion patterns are specified in a similar manner.

4.2.2 Sessions

As discussed in the previous chapter, collections of actions occurring on a given level of

a collaboration system’s Information Pyramid can often be mapped to a single action on
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Figure 4.7: Taxonomic hierarchy of four levels of classes in a given collaboration sys-

tem’s ontology

the next-higher level of the Information Pyramid. One example of this is the mapping

of multiple instances of thePost-Discussion-StatementandOpen-Discussion-Statement

action patterns to the single action patternGroup-Discussion, shown in Figure 3.10 on

page 84. Mappings such as these are possible when the lower level’s instances of action

patterns share certain parts of their action context, such as subject (which user or role

performed the action), referent (on which object the action was carried out), or location

(in which collaboration space the action took place).

However, in some cases of mappings between action patterns, these parts of an action

pattern’s action context are not sufficient, and the additional context information of the

action pattern’ssessionis required. A session is defined as follows:

Definition 18 A sessionis a sequence of actions performed by the same

user over a given period of time, with a defined starting and ending point.

2

Starting and ending points are actions or events that occur in the collaboration system

and that it can recognize as delimiting the start and end of a session. These are system-

dependent, but common ones include the following:

• Login/logout: In some collaboration systems, users login in order to use the sys-

tem, and logout when finished. In this case, the login and logout actions act as
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delimiters of a session. That is, the sequence of actions starting with a login action

and including all actions until the following logout action constitute a given session

in this type of collaboration system.

• Connect/disconnect:Some collaboration systems do not require user login, and

may instead simply serve requests from any connecting client software. In this

case, when the client software connects to the server this marks the start of a ses-

sion, and when it disconnects from the server it marks the session’s end. The

sequence of actions occurring between the client software’s connection and dis-

connection then constitute a given session in this type of collaboration system.

• Timeout: Some collaboration systems do not maintain their connection with the

client software from one action to the next, and instead open and close a new

connection for each action. In this case, the starting and ending of a session may

not be marked by specific events, but instead the end of a session is marked after a

specific time period during which no action has been performed, i.e. after a timeout

period2. The sequence of actions occurring between one timeout and the following

timeout then constitute a given session in this type of collaboration system.

To give an example of a mapping of action patterns in which it is necessary to con-

sider the session which the action patterns belong to recall the sequence of the three con-

secutive system-level action patternsget block tree, add statement, andget block tree

(shown earlier in Figure 3.8 on page 80). This sequence maps to a single user-level ac-

tion patternPost-Discussion-Statement(shown earlier in Figure 3.9 on page 82). This

mapping, however, is only valid if the three system-level action patterns take place in the

same session. Examples of two sequences of action patterns where only the first one can

be mapped are shown in Figure 4.8.

Part (a) of the figure shows an extract of a sequence of actions recorded by a collab-

oration system. Part (b) of the figure shows a case where all the seven actions shown

belong to one session (Session 1). Finally, part (c) of the figure shows a different case

where only the first three actions belong to one session (Session 1), and the remaining

four actions belong to a separate session (Session 2). Assume that actions 3, 4, and 5 are

the consecutive system-level actionsget block tree, add statement, andget block tree.

In the case shown in part (b) of the figure these three actions occur in the same session,

and it is therefore possible to map the sequence of these three actions to the user-level

action patternPost-Discussion-Statement. On the other other hand, in the case shown in

2Such a timeout is system-defined and thus varies from one system to another; however, timeout values

of around 10–30 minutes are common.
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Figure 4.8: A sequence of actions belonging to one or more sessions

part (c) of the figure this is not possible, because the three actions do not belong to the

same, but to two different sessions. The session thus extends the action context of the

involved actions, and constitutes part of an action’s location: alogical location.

Sessions are modeled as special kinds of objects. Sessions are composite objects

consisting of some general information about the session itself, and a set of actions that

belong to the session. Below is the definition of a classSession which models the

session and consists of a numeric session identifier and a set of actions belonging to the

session:

(defclass Session

(is-a Object)

(role concrete)

(single-slot SessionID

(type INTEGER)

(range 1 ?VARIABLE)

(cardinality 1 1))

(multislot Session-Actions

(type INSTANCE)

(allowed-classes Action)

(cardinality 1 ?VARIABLE)))

A diagram of the relevant part of the ontology is shown in Figure 4.9. Here two

different kinds of class relationships are shown: theis-a relationship where one class
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Figure 4.9: ClassSession for representing sessions in a collaboration system’s ontology

subclasses another class; and thereferences relationship where one class references an-

other class through one or more of its slots.

Using this class, an actual session can be represented by creating an instance of

Session and filling itsSession-Actions slot appropriately with the actions that make

up the session, in the sequence of their occurrence.

4.2.3 Specification of Concept Mappings

Initially, after concepts of the ontology of virtual collaboration have been specified, the

result are separate sets of concepts on different levels of the Information Pyramid. How-

ever, many of these concepts on different levels are related. To be able to map concepts

on a lower level to concepts on the next-higher level, it is necessary to identify how these

concepts are related, and then to specify this. However, this specification of the mapping

of concepts depends on the type of relationship between the concepts involved. Here,

following three main types of relationships are distinguished:

1. Unmodified one-to-one correspondence

2. One-to-one correspondence with modifications

3. Many-to-one correspondence

The specification of mappings for each of these types of relationships is considered

next.

4.2.3.1 Unmodified One-To-One Correspondence

Unmodified one-to-one correspondence means that two concepts on adjacent levels are

identical in terms of all their slots and facets. This is the simplest of all cases as no

explicit mapping is required (or rather, the mapping in this case is the identity function).

However, the lower-level concept is specified as a subclass of its level’s type of class



Chapter 4. Deriving Patterns of Virtual Collaboration 107

(e.g. as a system-level object). This marks the class as belonging to that level. In order to

indicate that the same class also represents an identical concept on a different level, the

class specification needs to be extended by adding the appropriate superclass to itsis-a

slot.

Consider the case of a class representing users of a collaboration system (only the

first two lines of the class specification are shown):

(defclass User "A user of a collaboration system."

(is-a Sys-Lvl-Object)

...

This class specification is for an object on the system level, indicated by its superclass

Sys-Lvl-Object. If the same concept also exists on the user level in unmodified form,

the class specification can simply be extended to the following:

(defclass User "A user of a collaboration system."

(is-a Sys-Lvl-Object User-Lvl-Object)

...

Here, theis-a slot is now extended by a second superclass,User-Lvl-Object. The

remainder of the class specification, however, remains unchanged. This now indicates

that the classUser is an object that belongs to both the system and user levels, and has

an identical definition on both levels.

4.2.3.2 One-To-One Correspondence With Modifications

One-to-one correspondence with modifications means that for a given concept on one

level, there exists a corresponding concept on the level above it, but with a different

definition of its slots and facets. In this case it is not possible to simply add the upper

level’s superclass to theis-a slot of the lower-level class, as the class definitions are

not identical. Instead, there are two separate classes whose correspondence is explicitly

expressed in the form of a mapping. This mapping establishes which slot belonging to

the lower-level class maps to which slot belonging to the upper-level class.

For instance, consider the two classesUser andPerson. The former belongs to the

system level and records such information as userid, password and user name, while the

latter belongs to the user level and consists only of userid and username, that is, it does

not include the password. The two class definitions are shown below:
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Figure 4.10: Mapping of object classUser to object classPerson

(defclass User "A user of a collaboration system."

(is-a Sys-Lvl-Object)

(role concrete)

(single-slot userid

(type STRING)

(cardinality 1 1))

(single-slot password

(type STRING)

(cardinality 1 1))

(single-slot username

(type STRING)

(cardinality 1 1)))

(defclass Person "A person using a collaboration system."

(is-a User-Lvl-Object)

(role concrete)

(single-slot userid

(type STRING)

(cardinality 1 1))

(single-slot username

(type STRING)

(cardinality 1 1)))

Here, the slotsuserid andusername from theUser class appear in the definition

of thePerson class. What is required is to establish that these slots map across the two

classes. In the form of a diagram, the mapping between these two classes is shown in

Figure 4.10.

This mapping maps from theUser class to thePerson class. In a mapping of classes,

that which is being mapped from is called thesource class, and that which is being

mapped to is called thetarget class.



Chapter 4. Deriving Patterns of Virtual Collaboration 109

Simple slot mappings

In the figure, a mapping construct between classesUser andPerson establishes corre-

spondence of slots. This mapping construct is defined here in the form of special mapping

classes. The first one,Class-Mapping, represents the mapping to a target class:

(defclass Class-Mapping

(is-a :THING)

(role concrete)

(single-slot Target-Class

(type SYMBOL)

(allowed-parents :THING)

(cardinality 1 1))

(multislot Slot-Map

(type INSTANCE)

(allowed-classes Slot-Mapping)

(cardinality 1 ?VARIABLE)))

It identifies the target class that is being mapped to and consists of one or more slot

mappings (the source class(es) being mapped from are identified inside the slot map-

pings). The second mapping class,Slot-Mapping, represents the mapping to a slot

in the target class. Because there are several different ways that slots can be mapped,

the Slot-Mapping class is defined as abstract and concrete subclasses are defined for

the different kinds of mappings to slots. Below are definitions of the abstract class

Slot-Mapping and of one subclass,Simple-Slot-Mapping, which maps a slot from

a source class to a slot in the target class:

(defclass Slot-Mapping

(is-a :THING)

(role abstract)

(single-slot Target-Class

(type SYMBOL)

(allowed-parents :THING)

(cardinality 1 1))

(single-slot Target-Slot

(type INSTANCE)

(allowed-classes :STANDARD-SLOT)

(cardinality 1 1)))
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(defclass Simple-Slot-Mapping

(is-a Slot-Mapping)

(role concrete)

(single-slot Source-Class

(type SYMBOL)

(allowed-parents :THING)

(cardinality 1 1))

(single-slot Source-Slot

(type INSTANCE)

(allowed-classes :STANDARD-SLOT)

(cardinality 1 1)))

The slots holding source and target classes in these two class definitions are con-

strained to the class:THING, meaning that any classes can be mapped (since:THING is

the root of the class hierarchy). Similarly, the source and target slots are constrained

to instances of:STANDARD-SLOT, which is the superclass of all slots in the ontology,

thereby allowing any slot to be mapped. BecauseSimple-Slot-Mapping is a subclass

of Slot-Mapping, it inherits the two slotsTarget-Class andTarget-Slot from its

parent class.

Using theClass-Mapping andSimple-Slot-Mapping classes as mapping tools, it

is now possible to specify mappings of slots for any corresponding classes across levels

of the Information Pyramid. This is done by creating instances of the mapping classes

and setting slot values appropriately.

Aggregated slot mappings

In some cases it may not be sufficient to simply map slots from one class to another, that

is, to map a single slot value from a single instance of a source class to a slot in a target

class. Instead, sometimes anaggregationof slot values from instances of a source class

to a slot in a target class is required.

Consider the example of a collection of versioned documents where each member

of the document collection constitutes a different version of the same document. On

one level, say the user level, the classDocument may represent an individual docu-

ment in the collection, while on the next-higher level, the collaboration level, the class

Versioned-Document may represent the collection of all individual documents that

make up the versioned document. In this case, the classDocument may be mapped to the

classVersioned-Document, this mapping too being of the type “one-to-one correspon-

dence with modifications”. That is, when considering the mapping on the level of classes,
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Figure 4.11: Mapping of object classDocument to object classVersioned-Document

a single source class is mapped to a single target class. This is shown in Figure 4.11.

When considering this mapping on the level of instances however, multiple instances

of the source class are mapped to a single instance of the target class. Here, values of the

source class’s instances areaggregatedinto a single value of a slot in the target class. In

the example given here, the value of the target slotcreation-date represents the date of

the creation of the first version of the document. It can be obtained by getting the smallest

value of the slotcreation-date from all corresponding instances ofDocument. On the

other hand, the value of the target slotmodification-date represents the date of the

latest modification of the versioned document, which is the date of the creation of the

latest version of the document. This can be obtained by getting the largest value of the

slot creation-date from all corresponding instances ofDocument. Finally, the target

slot version-count holds the number of versions of the document collection. It can

be obtained by counting the number of instances of the source class, or by counting the

number of values of a given slot in the source class. In the example, a count of all values

of the slotcreation-date yields the count of versions of the document.

Specifying mappings of slots which are obtained through aggregation requires the

specification of anaggregation functionfor the source slot. A number of such aggregation

functions can be defined, including the following:

• all: given a set of values, returns the whole set of all values

• any: given a set of values, returns any one of the values

• avg: given a set of numerical values, returns the average, i.e. the arithmetic mean,

of those values

• count: given a set of values, returns a count of the values, i.e. the cardinality of the

set

• max: given a set of values, returns the largest value

• min: given a set of values, returns the smallest value
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• sum: given a set of numerical values, returns the sum of all values

Another subclass of theSlot-Mapping class is defined here for the specification of

aggregated slots, namely the classAggregated-Slot-Mapping shown below:

(defclass Aggregated-Slot-Mapping

(is-a Slot-Mapping)

(role concrete)

(single-slot Source-Class

(type SYMBOL)

(allowed-parents :THING)

(cardinality 1 1))

(single-slot Source-Slot

(type INSTANCE)

(allowed-classes :STANDARD-SLOT)

(cardinality 1 1))

(single-slot Aggregation-Function

(type SYMBOL)

(allowed-values all any avg count max min sum)

(cardinality 1 1)))

Since this class is a subclass of the classSlot-Mapping, it inherits its slotsTarget-

Class andTarget-Slot. One of its own slots,Aggregation-Function, identifies the

aggregation function to be performed on all instances’ source slot. Allowed values for

this slot are the seven functions mentioned above, but this facet could be extended to

allow for other aggregation functions as needed.

4.2.3.3 Many-To-One Correspondence

Many-to-one correspondence means that two or more concepts on one level correspond

to a single concept on the next-higher level. In this case, the slots of the upper-level class

originate from the lower-level classes. Again, this needs to be expressed in the form of a

mapping.

An example of this is shown in Figure 4.12. This example concerns a shared white-

board for writing and drawing. On one level this is represented as an instance of the class

Board for each whiteboard, which contains references to one or more instances ofPage,

the pages of the whiteboard. On the next-higher level, however, the whiteboard is repre-

sented by a single class,Whiteboard, which contains the information that is relevant at

that level, in this case the name of the board and a list of users who have drawn on it (i.e.
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Figure 4.12: Mapping of object classesBoard andPage to object classWhiteboard

its contributors). The first attribute,Name is mapped from the slotBoardname of class

Board (note that the mapping of slots does not require the source and target slots to have

the same names). The second attribute,Contributors, is mapped from the slot with the

same name in the classPage.

To realize these mappings once again requires the specification of mappings of the

class and its slots, for which the mapping classesClass-Mapping andSimple-Slot-

Mapping, defined above, are used. That is, the mapping of concepts for the case of one-

to-one correspondence with modifications, and the case of many-to-one correspondence

is achieved in the same manner. However, in order to achieve a valid mapping in the

case of many-to-one correspondence, the specified mapping needs to beconstrained, to

ensure that only pages which are part of the whiteboard being mapped are included in the

mapping. Thismapping constraintis expressed in Figure 4.12 through the arrow from

slot Pages in classBoard to classPage. When writing functions to map instances of

concepts across levels, this constraint needs to be considered. This is discussed below in

Section 4.2.4.

Instance mappings

The examples of mapping slots across classes shown above assumed that the target slot

of a target class can be mapped from a specific source slot of a source class. However,

this may not always be the case. In some cases, for instance, a class may exist at one

level, but may not be referenced in any slot of any class on that level. If an instance of

this class has to be mapped to a target slot in a class on the next-higher level, the mapping

classes shown above can not be used, as they require any instance that is to be mapped

to exist as the value of a slot in some class (i.e. the instance is referenced by that slot).

Instead, another kind of mapping is needed that takes an instance of a source class and

directly maps it to a target slot in a target class.

To illustrate this, consider the case of an objectBrainstorming-Room which repre-
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Figure 4.13: Mapping of instances of object classesWhiteboard and Versioned-

Document to object classBrainstorming-Room

sents a virtual “room” for brainstorming. This “room” may be equipped with an elec-

tronic whiteboard, which is an instance of object classWhiteboard, on which people in

the room write or draw their ideas; as well as with a versioned document, which is an

instance of object classVersioned-Document, to record the outcomes of the brainstorm-

ing that takes place in the virtual room, including its history, for which multiple versions

of the document are maintained. Given that no class on this level contains references to

instances of the two classesWhiteboard andVersioned-Document, a mapping to class

Brainstorming-Room requires entire instances to be mapped. This example is illus-

trated in Figure 4.13. Here, the first slot ofBrainstorming-Room, the slotWhiteboard,

is mapped from an instance of the class with the same name (Whiteboard), while the

second slot,Outcome, is mapped from an instance of classVersioned-Document.

To specify this kind of mapping requires a different kind of mapping class. For this

purpose the mapping classInstance-Slot-Mapping is defined:

(defclass Instance-Slot-Mapping

(is-a Slot-Mapping)

(role concrete)

(single-slot Source-Instance

(type INSTANCE)

(allowed-classes :THING)

(cardinality 1 1)))

This mapping class is a subclass ofSlot-Mapping and thus inherits its slotsTarget-

Class andTarget-Slot. In addition, it contains the slotSource-Instancewhich holds

a reference to the instance to be mapped. This slot is constrained to instances of the class

:THING, meaning that any class can be mapped.
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Figure 4.14: Mapping of sequence of action classesLock-Board, Draw-On-Board, and

Unlock-Board to action classLocked-Draw

Action/action pattern sequence mappings

The case of mapping of multiple actions (and action patterns) is another special case that

has to be considered. Just as with objects, multiple actions and action patterns on one

level can also correspond to ones on the next-higher level. Thus the correspondence of

slots can be specified in the same manner as was shown for objects above. However,

actions occur in a temporal sequence, and this sequence may be of importance in deter-

mining correspondence of actions across levels. For instance, the sequence of actions

Lock-Board, Draw-On-Board, andUnlock-Board may occur on one level of the Infor-

mation Pyramid whenever a user performs a drawing operation on a shared whiteboard

with concurrency control implemented through locking. This specific sequence of actions

may correspond to the single actionLocked-Draw on the next-higher level, as shown in

Figure 4.14. However, if the sequence of actions on the lower level were changed, the

correspondence would no longer be valid. Thus for correspondences of multiple actions

on one level to a single action on the next-higher level, it is important to not only specify

mappings of slots, but also the specific sequence of actions.

Action (and action pattern) sequences can be expressed using another mapping con-

struct, the classSequence-Mapping, the definition of which is shown below:

(defclass Sequence-Mapping

(is-a :THING)

(role concrete)

(single-slot Mapping-Target

(type SYMBOL)

(allowed-parents Action Action-Pattern)

(cardinality 1 1))
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(multislot Sequence-Elements

(type SYMBOL)

(allowed-parents Action Action-Pattern)

(cardinality 1 ?VARIABLE)))

Here, the slotMapping-Target identifies the target action or action pattern of the

mapping, such as the classLocked-Draw mentioned in the example above. The multi-

slotSequence-Elements holds the classes of actions or action patterns, in the sequence

in which they are to be mapped to the target. Thus for theLocked-Draw action tar-

get, theSequence-Elements slot would contain the three action classesLock-Board,

Draw-On-Board, andUnlock-Board, in that sequence.

Given on the one hand specifications of action sequences, expressed through instances

of Sequence-Mapping, and on the other hand specifications of sessions containing ac-

tions in the sequence in which they actually occurred, through instances ofSession,

makes it possible to identify higher-level actions within sessions. This involves the

matching of action sequences in the session with action sequence mappings.

To summarize, this section has proposed the mapping constructClass-Mapping for the

specification of mappings of classes from one level to the next-higher level; together with

following four mapping constructs for the mapping of slots and instances from one level

to the next-higher level:

1. Simple-Slot-Mapping: Map one slot from one instance of one class to one slot

in another class; applicable to both objects and actions/action patterns.

2. Aggregated-Slot-Mapping: Map one slot from multiple instances of one class to

one slot in another class, performing some aggregation on the multiple slot values;

applicable to both objects and actions/action patterns.

3. Instance-Slot-Mapping: Map an instance of one class to a slot in another class;

applicable to both objects and actions/action patterns.

4. Sequence-Mapping: Map a sequence of instances of classes to an instance of

another class; applicable to actions/action patterns only.

Illustrations of these four mapping constructs are shown in Figure 4.15. For each of

the four example mappings, the left-hand side shows one or more instances of classes to
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slot a: [ value 1 ]

Class A: Instance 1

slot a −> slot x

Simple−Slot−Mapping

slot x: [ value 1 ]

Class X: Instance 1

(a) Simple-Slot-Mapping: map one slot of one instance of one class to one slot of another

class

slot a: [ value 2 ]

Class A: Instance 2

slot a: [ value 3 ]

Class A: Instance 3

slot a: [ value 1 ]

Class A: Instance 1

f(slot a) −> slot x

Aggregated−Slot−Mapping

slot x: [ value y ]

Class X: Instance 1

(b) Aggregated-Slot-Mapping: map one slot of multiple instances of one class to one slot of

another class

slot a: [ value 1 ]

Class A: Instance 1

Class A −> slot x

Instance−Slot−Mapping

slot x: [ Class A: Instance 1 ]

Class X: Instance 1

(c) Instance-Slot-Mapping: map one instance of one class to one slot of another class

slot b: [ value 2 ]

Class B: Instance 1

slot c: [ value 3 ]

Class C: Instance 3

slot a: [ value 1 ]

Class A: Instance 1

Sequence−Mapping

Class A, Class B, Class C
−> slot x

Class X: Instance 1

Class A: Instance 1,
Class B: Instance 2,
Class C: Instance 3 ]

slot x: [

(d) Sequence-Mapping: map a sequence of instances of classes to an instance of another class

Figure 4.15: Mapping constructs used for mapping slots and instances across levels
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be mapped, the middle shows the mapping construct, and the right-hand side shows an

instance of the resulting mapped class.

The list of mapping constructs proposed above is for some of the more obvious types

of class mappings, rather than being a complete list of all possible class mapping con-

structs. However, when other types of class mappings are needed, other mapping con-

structs can be defined in a similar manner as the ones above. Moreover, certain types of

mappings may be subject to constraints that need to be satisfied. In this case, the spec-

ification of mappings needs to include these constraints. This is discussed further in the

following section, and is illustrated in Chapter 5.

4.2.4 Definition of Mapping Functions

The specification of concept mappings above has identified how concepts on one level of

the Information Pyramid map onto concepts on the next-higher level. Given this informa-

tion about mappings, it is now possible to map actualinstancesof these concepts across

levels. Doing so involves taking instances of those classes which appear as source classes

of a given class mapping, retrieving slot values according to the specified slot mappings

and subject to any identified constraints, and using these to construct new instances of

the target class. In order to facilitate this mapping of instances,mapping functionsare

defined.

A mapping function is a function that creates instances of a specific target class.

The function receives input parameters holding references to instances of the concept

mapping’s source class(es), and produces instances of the target class. An example of

a mapping function,create-whiteboard, for the mapping of instances ofBoard and

Page to Whiteboard is shown below. In pseudocode this function is defined as follows3:

FUNCTION create-whiteboard (board)

IF board is an instance of class Board THEN

initialize the list of contributors to an empty list;

FOR all pages of board DO

add the contributors of the page to the list of contributors;

END_FOR

create an instance of class Whiteboard using the value of

Boardname of board and the list of contributors;

END_IF

END_FUNCTION

3The pseudocode notation employed here and in the rest of this chapter is based on the Program Design

Language of (Easteal and Davies, 1989).
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For use in the Protéǵe-2000 system this function can be implemented using the func-

tion deffunction, as follows4:

(deffunction create-whiteboard (?board)

(if (and (instancep ?board)

(eq (class ?board) Board))

then

(bind $?contrib (create$))

(foreach ?page (slot-get ?board Pages)

(bind $?contrib

(union$ $?contrib (slot-get ?page Contributors))))

(make-instance of Whiteboard

(Name (slot-get ?board Boardname))

(Contributors $?contrib))))

This function,create-whiteboard, takes one input parameter?board which holds

a reference to the instance ofBoard to be mapped. It then performs input validation,

testing whether?board is actually an instance (using predicateinstancep), and whether

its class isBoard (using predicateclass to obtain the instance’s class, then testing for

equality with predicateeq). If these conditions are satisfied, an instance ofWhiteboard

can be created. First the set of contributors is obtained by iterating over all instances

of Page held in the slotPages of Board (retrieved using the functionslot-get which

returns the value of a given slot), and retrieving the value of the slotContributors

of each instance ofPage. These sets of values are joined together using the set union

function union$, then bound to the variable$?contrib. Finally, the new instance of

Whiteboard is created using functionmake-instance, with the name taken from the

slotBoardname of Board, and the set of contributors being the one previously constructed

and stored in variable$?contrib.

The function thus implements the mapping of the two lower-level classesBoard and

Page to the upper-level classWhiteboard corresponding to the specification of its class

and slot mappings. The constraint identified earlier, namely that instances ofPage to be

mapped need to be elements of the multi-slotPages of the instance ofBoard involved in

the mapping, is implicitly satisfied, as the mapping function only involves a single input

parameter referencing the instance ofBoard, and any instances ofPage are obtained

through the slotPages of that instance ofBoard.

4This and all following functions are defined in the language of Jess (Friedman-Hill, 2001), an expert

system shell that has the ability to manipulate ontologies in the Protéǵe-2000 system through the JessTab

software (Eriksson, 2001).
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Once defined, mapping functions are added to, and become an integral part of, a

collaboration system’s ontology.

4.3 Extraction of Patterns of Virtual Collaboration

After the ontology of virtual collaboration for a given collaboration system has been

specified, including specifications of concepts and concept mappings as well as mapping

functions, patterns of virtual collaboration can be extracted from data collected by that

collaboration system. Two types of pattern extraction can be distinguished: extraction of

patterns directly from the data collected by the collaboration system, and extraction of

patterns through derivation from other patterns. Each of these is detailed below.

4.3.1 Base Level Pattern Extraction

Data at the base level of the Information Pyramid of Virtual Collaboration forms the

source for the extraction of the lowest-level patterns of virtual collaboration. This data is

of two types:

1. Data on objects maintained by the collaboration system.

2. Data on actions performed in the collaboration system.

As discussed in Section 3.2, the former is commonly stored in files or database tables,

while the latter is typically stored in the form of some type of server log file that records

actions that have been performed.

The extraction of action patterns initially requires that the source data on objects and

actions recorded by the collaboration system be transformed into a form that is amenable

to subsequent pattern extraction. Each collaboration system typically has its own unique

format in which it stores records of objects and actions. For each object record, an in-

stance of the corresponding object class (as specified in the ontology) is created, which

then can be added to the ontology. The same applies to action records.

In pseudocode, the creation of instances of object classes is expressed as follows:

FOR all object records DO

lookup ontology definition of corresponding object class;

create instance of object class with values from object record;

add object instance to ontology;

END_FOR
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Instances of action classes are created in a similar fashion, with details obtained from

records of actions. As a result, representations of objects and actions in the format of the

ontology of virtual collaboration exist. This then makes the extraction of action patterns

possible. For each action instance, a corresponding action pattern instance is created.

As instances of action pattern classes contain details that are also obtained from action

records, for example attributes that belong to an action’s action context, the extraction of

action pattern instances is performed together with the creation of action instances. This

is shown in the following pseudocode:

FOR all action records DO

lookup ontology definition of corresponding action class;

create instance of action class with values from action record;

add action instance to ontology;

lookup ontology definition of corresponding action pattern class;

identify related object instances from action record;

create action pattern instance referencing action instance and

identified object instances;

add action pattern instance to ontology;

END_FOR

The entire extraction process is illustrated in Figure 4.16. At the bottom of the figure

the data sources are shown, namely records of objects and actions in the format of the

collaboration system from which they were obtained. The upper part of the figure shows

the ontology of virtual collaboration, containing classes and instances of objects, actions,

and action patterns. The data sources are transformed into instances of objects and actions

(indicated by the left and right thick upward-pointing arrows). These instances become

part of the ontology of virtual collaboration, being instances of the corresponding object

and action classes, respectively. Finally, instances of action patterns are extracted from

actions, objects, and information contained in action records (indicated by the three thick

arrows pointing to the central section of the ontology).

For instance, to continue the whiteboard example given above in Section 4.2.3.3,

a collaboration system’s object records may include records of whiteboards and their

pages, while action records may include records of actions performed on the white-

boards’ pages. To extract action patterns from these records, firstly instances of the

objects are created and added to the ontology, in this case instances of the object classes

Board andPage. This is followed by creation of instances of the action classes, such

as theLock-Board, Draw-On-Board, andUnlock-Board action classes shown earlier



Chapter 4. Deriving Patterns of Virtual Collaboration 122

..

.

..

.

action 1

action 5

action 2

action 3

action 4

Object Classes Action ClassesAction Pattern Classes

instance−of

references

Action Instances

referencesreferences

Object Instances Action Pattern Instances

Object Records

instance−of instance−of

instance−of

instance−of

Ontology of Virtual Collaboration

Action Records

Figure 4.16: Extraction of instances of action patterns from object and action records at

the collaboration system’s base level, via object and action instances

(cf. Figure 4.14). Finally, for each instance of these action classes, an instance of a cor-

responding action pattern class is produced. Thus an instance of action pattern class

Lock-Board-Pattern (an action pattern corresponding to theLock-Board action) is

created from instances of the objectBoard and the actionLock-Board, as well as ac-

tion context information obtained from the collaboration system’s action record. In like

manner, instances of other action patterns are produced.

Once all object and action records have been processed, and instances of the cor-

responding object and action classes have been created, and instances of action pattern

classes have been extracted from these, the extraction of base-level action patterns is

complete. This is followed by the extraction of higher-level action patterns, detailed

next.
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4.3.2 Higher-Level Pattern Extraction

Patterns on higher levels of the Information Pyramid (i.e. higher than the base level) are

extracted by exclusively using classes and instances in the ontology of virtual collabor-

ation, without having to refer to object and action records of the collaboration system.

That is, instances of higher-level object, action, and action-pattern classes are created

from corresponding lower-level instances in the ontology. The process of pattern ex-

traction resembles that at the base level: first object instances are created, next action

instances are created, and finally action pattern instances are extracted from object and

action instances. For each of these, i.e. objects, actions, and action patterns, instances are

created through (previously defined) mapping functions.

Object instances for a given level are created by iterating all object mapping functions

over all possible input objects on the level below. Thus if an object mapping function

creates instances of an object class, sayX, from instances of another object class, sayY,

the object mapping function is invoked for each such possible instance of object classY.

The resulting instances of object classX are then added to the ontology. This is shown in

the pseudocode below:

FOR all object mapping functions DO

FOR all possible input object instances DO

call mapping function to create instance of target object class;

add object instance to ontology;

END_FOR

END_FOR

Instances of actions are created in a similar fashion: action mapping functions iterate

over all possible input actions to create instances of action classes on a given level. This

is shown in the pseudocode below:

FOR all action mapping functions DO

FOR all possible input action instances DO

call mapping function to create instance of target action class;

add action instance to ontology;

END_FOR

END_FOR

Finally, instances of action patterns are extracted. These reference previously created

instances of objects, actions, and action patterns. This is shown in the pseudocode below:
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Figure 4.17: Extraction of instances of leveln+1 action patterns from leveln+1 objects

and actions and leveln action patterns

FOR all action pattern mapping functions DO

FOR all possible input action pattern instances DO

call mapping function to create instance of target action pattern

class;

add action pattern instance to ontology;

END_FOR

END_FOR

This extraction process is illustrated in Figure 4.17. It shows the ontology of virtual

collaboration, including two adjacent levels (the upper and lower half of the box). At each

level there are classes and instances of objects, actions, and action patterns. The thick

arrows represent the mapping of instances of these classes from one level to the level
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above (performed, as mentioned above, by mapping functions), and finally the extraction

of instances of action patterns from instances of objects and actions on the same level, as

well as from instances of action patterns on the level below.

To continue the above whiteboard example, instances of theWhiteboard object class

(which in the ontology of Figure 4.17 would reside at leveln+ 1) are created from in-

stances of theBoard object class (which in the ontology of Figure 4.17 would reside

at leveln) by applying the mapping functioncreate-whiteboard (shown on page 119

above). Other mapping functions are used to create instances of leveln+1 action classes

from their leveln source classes. For example, an instance of (leveln+ 1) action class

Locked-Draw is created from the sequence of (leveln) actionsLock-Board, Draw-On-

Board, andUnlock-Board (corresponding to the mapping shown in Figure 4.14 above).

Finally, instances of action patterns are created, referencing related instances of object

and action classes. Thus an instance of the (leveln+1) Locked-Draw-Pattern action

pattern class (an action pattern corresponding to theLocked-Draw action) is created from

instances of the (leveln+1) Whiteboard object class andLocked-Draw action class, as

well as action context information obtained from instances of the (leveln) action pat-

tern instancesLock-Board-Pattern, Draw-On-Board-Pattern, andUnlock-Board-

Pattern. Instances of other action pattern classes are created in a corresponding manner.

The mapping of object and action instances, and the extraction of action pattern in-

stances, continues one-by-one on all levels of the Information Pyramid above the base

level, until it finally reaches the highest level. The result is an ontology that is complete

with classes and instances of all objects, actions, and action patterns across all levels.

4.4 Visualization of Patterns of Virtual Collaboration

The modeling method for producing models and mappings of different levels of the Infor-

mation Pyramid that was proposed earlier in this chapter presented a bottom-up approach

for the derivation of patterns of virtual collaboration. This approach takes fine-grained

low-level information and transforms it into successively more high-level representations

of collaborative activity. On the highest level, the process level, combinations of collab-

oration spaces specially configured to support specific processes are identified.

One way in which the modeling of action patterns differs across the different levels is

in thesourcefrom which patterns are obtained. Two main sources can be distinguished:

on the one hand thecollaboration systemitself, on the other hand the collaboration sys-

tem’susers.

The lowest-level patterns, such as those from the Information Pyramid’s micro level,

relate to events generated by the system at that level. Therefore, the source of the pat-
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terns is entirely the collaboration system itself. Thus by inspecting the set of commands

that the collaboration system makes available, patterns involving those commands are

identified and specified, without having to observe the system in use.

The highest-level patterns, on the other hand, such as those at the task and process

levels, relate to tasks and processes performed by the collaboration system’s users. The

source of these patterns is necessarily the group of users of the system who perform these

tasks and processes. In order to be able to identify and specify patterns at these levels,

it is necessary to refer to records of actual tasks and processes that have been performed

through the system.

Finally, on intermediate levels the source of patterns may consist of a combination of

both the collaboration system and its users. For example, the system provides basic ob-

jects and actions that can be performed on these objects, while the users provide specific

configurations or combinations of these objects and actions.

To illustrate this, consider the example of the levels of information given in Chapter 3.

Figure 3.8 (page 80) showed examples of system-level action patterns. Here, the source

of the action patterns is exclusively the collaboration system itself: without observing

the system in use, i.e. without any user input, it is possible to determine the constituent

elements and structure of an action pattern such asadd statementshown in the figure. On

the other hand, for process-level action patterns such asProduct-Concept-Development

shown in Figure 3.12 (b) (page 88), the source of the action pattern is the group of users:

the specific combination of task-level action patterns that makes up the process-level

action pattern is entirely dependent on the way that the collaboration system’s users have

combined these tasks together. Finally, Figure 3.10 (b) (page 84) shows an example of

an intermediate-level action pattern, in this case the collaboration-level action pattern

Group-Discussion. Its source is a combination of system and users: on the one hand, the

basic objects and action patterns (in this case, objectsRoleandDiscussion-Forumand

action patternsOpen-Discussion-StatementandPost-Discussion-Statement) are given by

the collaboration system; on the other hand, their specific combination into the action

patternGroup-Discussionis performed by the collaboration system’s users.

Dependent on the source, the specification of the set of action patterns at a particular

level of the Information Pyramid can be more or lesscomplete, meaning that all possible

action patterns are specified. Where the collaboration system is the source, the set of

all possible action patterns can be feasibly determined in advance by inspecting the set

of objects and actions provided by the system. Because a collaboration system provides

only a finite number of actions, corresponding action patterns too are finite in number,

making it possible to completely specify all possible valid action patterns at a given level

of the Information Pyramid.
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Figure 4.18: Completeness of specification versus scale of activity for the six levels of

the Information Pyramid

On the other hand, where the source of action patterns is the group of users, combin-

ing objects and actions in specific ways into action patterns, the number of all possible

patterns is infinite, because any number of any actions and objects can be combined in

any desired way to produce a new, unique action pattern. Thus the specification of the set

of action patterns at that level of the Information Pyramid is incomplete and open-ended5.

This is illustrated in Figure 4.18, which shows how completeness of specification (on the

vertical axis) is related to the scale of activity (on the horizontal axis).

In order to obtain patterns at the highest two levels, the task and process levels, there-

fore requires inspection of the particular combinations of objects and actions created

by the system’s users, and their inter-relationships. Doing so, however, is not always

straightforward. A given collaboration system may contain a large number of collabora-

tion spaces, each of which may in turn contain a large number of objects, related to one

another in multiple and possibly complex ways. Thus, these patterns are often not easily

discernible(in the sense that they can not be readily assimilated by the human observer),

5This is not to say that an individual action pattern may be only partially specified. Each action pattern,

regardless of the level of the Information Pyramid and the source of action patterns, is always completely

specified. However, thesetof all possible action patterns at a given level of the Information Pyramid may

be incomplete, in that some of the (infinitely many) possible action patterns have not been specified.
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requiring time-consuming analysis of large amounts of information.

Here it is proposed that for the identification of patterns at the task and process lev-

els of the Information Pyramid, the mentioned bottom-up approach be complemented

through visual analysis and exploration of the objects and actions directly on those lev-

els, using techniques ofinformation visualization.

Information visualization aims to reveal patterns and structures in a body of informa-

tion. Its advantage over the direct analysis of raw data is that it supports a more “rapid

assimilation of information”, thereby “reducing the time cost of information access and

increasing the scale of information that a user can handle at one time” (Robertson et al.,

1993). This is achieved by shifting part of the process of identifying patterns to the

human perceptual system, and thus relieving the cognitive system.

Because information objects are abstract, often lacking physical representations, the

challenge is to find suitable metaphors for making objects and their relationships visible

(Gershon and Page, 2001). The notation used to represent information objects usually

depends on the type of information that is to be visualized. Shneiderman identifies seven

different basic types: 1-D, 2-D, 3-D, Temporal, Multi-Dimensional, Tree, and Network

(Shneiderman, 1998, p. 524).

In the case of information about virtual collaboration, a possibly large number of

objects may be related to multiple other objects. Such information can therefore be most

appropriately considered to be of the network type. For instance, in the task-level patterns

shown in Figure 3.12 (a) on page 88, the information items are the instances of roles,

discussion forums, and documents, most of which are related to several objects of one or

two other types.

For network structures, the most common forms of visualization are thenode-and-

link diagram, which represents information items as nodes connected by links repre-

senting relationships between items, and which focuses on making these relationships

between items visible; and thesquare matrixwhere the values of a selected link attribute

for pairs of items are represented in the row-column positions of a matrix and which fo-

cuses on making specific attribute values visible (Shneiderman, 1998, p. 534). Given that

in the search for task and process patterns, thestructureof the configuration of objects

and actions is sought (i.e. the inter-relation and arrangement of items, cf. the discussion

on structure in Section 3.1), a suitable representation is the node-and-link diagram. Such

diagrams take the general form like the example shown in Figure 4.19: nodes, shown here

as square boxes, represent information items; and links, shown here as connecting lines,

represent relationships between these information items. Each pair of distinct nodes in

the graph may be connected by one (or possibly several) link(s). This type of diagram

may be used to represent an individual task, with nodes representing its constituent roles,



Chapter 4. Deriving Patterns of Virtual Collaboration 129

Figure 4.19: Example of a node-and-link diagram

discussion forums, documents, etc., and links representing relationships among these

items. It may also be used to represent an entire process, with nodes corresponding to

individual tasks and links representing inter-task relationships.

4.4.1 Measures of Collaboration Spaces

Identifying which collaboration spaces to investigate for pattern extraction itself can be

non-trivial when there are many collaboration spaces. Another situation is where a num-

ber of collaboration spaces have a similar structure, and it is not immediately obvious how

those collaboration spaces differ from one another. In both of these cases it can be helpful

to obtain additional information about the collaboration spaces in order to facilitate their

comparison.Measuresof collaboration spaces provide such additional information.

A measure of a collaboration space is a quantitative attribute which expresses some-

thing about a certain characteristic of a collaboration space, usually an aspect of its com-

plexity. Such a measure may be derived, or computed, from information related to the

collaboration space. In order to illustrate the notion of measures of collaboration spaces,

some examples of such measures are given below:

1. Collaboration space density:a measure of how many objects are contained in a

single collaboration space. This measure can give a first indication of the complex-

ity of the work carried out in the collaboration space, where more complex work

usually involves a larger number of objects.

2. Document exchange intensity:a measure of how often documents are exchanged
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in a collaboration space through create/read document actions per unit of time,

calculated as an average over the history of the collaboration space. This measure

can give an indication of the intensity of the work carried out in the collaboration

space.

3. Document exchange recency:a measure of the number of “recent” document

exchanges in a collaboration space. Recency is the number of actions (in this case

document exchanges) during a fixed time interval up until the time of observation,

for example the past fortnight or the past month. This measure expresses how

strongly users in a collaboration space are presently exchanging documents, which

can suggest the extent to which the work in the collaboration space is currently

progressing.

4. Communication intensity: a measure of the number of statements exchanged

through discussion forums in a collaboration space per unit of time, calculated as

an average over the history of the collaboration space. This measure can give an

indication of the intensity of the work carried out in the collaboration space.

5. Communication recency: a measure of the number of statements “recently” ex-

changed through discussion forums in a collaboration space, again for a pre-defined

time interval such as a fortnight or a month. This measure expresses how strongly

users in a collaboration space are presently communicating, which can suggest the

extent to which work in the collaboration space is currently progressing.

6. Evolution intensity: a measure of how strongly the structure of a collaboration

space is subject to change, in terms of change actions per unit of time, calculated

as an average over the history of the collaboration space. This measure can suggest

the extent to which the work carried out in the collaboration space is emergent.

7. Evolution recency: a measure of how strongly the structure of a collaboration

space has “recently” been subject to change, again for a pre-defined time interval.

This measure expresses the extent to which the work in the collaboration space is

still actively evolving.

The above list of measures is by no means intended to be exhaustive but rather to be

suggestive of some (largely arbitrarily selected) measures that can be useful in highlight-

ing differences when comparing a collection of collaboration spaces. Other measures can

be defined by considering other information related to collaboration spaces and express-

ing it quantitatively.
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4.4.2 Requirements of Visualization Tools

The visualization of task and process patterns in a given collaboration system requires a

visualization tool which needs to access data from that system and represent it in terms

of information items and their relationships. Some functional requirements for a visual-

ization tool are proposed here:

• Multiple node/link types: The ability to represent different types of information

items and different relationship types differently, so as to be able to distinguish

between these different types when they are contained within the same diagram.

• Task/process visualization:The ability to visualize networks of information at

different levels of detail, corresponding to the visualization of tasks and processes.

• Navigation: The ability to navigate a (possibly large) network of information and

focus on only a portion of the network that is of interest.

• Filtering: The ability to filter out information from the visible portion of a given

network of information that is not of interest.

• Comparison: The ability to visualize measures of collaboration spaces to enable

their comparison.

An example of a visualization tool that satisfies these requirements is introduced in

Appendix A.

4.5 Framework for Pattern Extraction and Feedback

The preceding sections have discussed details of the modeling, specification, and deriva-

tion of patterns of virtual collaboration at different levels of the Information Pyramid.

However, the ability to extract patterns of virtual collaboration from the data collected by

a collaboration system is something that depends on what and how much data that system

collects and makes available, which is something that can be planned and designed for.

This section therefore considers the larger context of pattern extraction in the develop-

ment and ongoing use of collaboration systems. It also considers how extracted patterns

can be maintained and eventually fed back into ongoing use.

This involves a number of relevant topic areas: (1) collaboration systems, (2) col-

laboration data, (3) pattern extraction, and (4) organizational memory. Here, aFrame-



Chapter 4. Deriving Patterns of Virtual Collaboration 132

Collaboration
Memory

Collaboration
Systems

Collaboration
Data

Patterns
Topologies and

Design
System

Modeling
DataStructural

Level

Collaboration
Understanding

System
Utilization

Data
Collection

Collaboration
Level

Pattern
Specification

Derivation
Pattern Recognition

Pattern

Pattern Extraction

Mappings
Ontology and Data

Understanding
Conceptual

Level
Domain

Understanding

Figure 4.20: Framework integrating collaboration memory, collaboration systems, col-

laboration data, and pattern extraction

work for Pattern Extraction and Feedbackis proposed that integrates these four different

strands into a cohesive fabric6. The two primary goals of the framework are:

1. To influence the design of collaboration systems so as to provide the data necessary

for the extraction of patterns of virtual collaboration.

2. To feed extracted patterns back into the use of collaboration systems.

Because of the pivotal role of high-quality data for pattern extraction, data design

and design of the collaboration system are seen as complementary and parallel activities,

affording the opportunity to more greatly control the extent and quality of data collec-

tion. Moreover, patterns extracted from collaboration data can themselves contribute to

the ongoing design of a collaboration system. A number of related research efforts are

underway in the direction of controlled data collection, carried out mainly in the field of

e-commerce and Web data mining (Ansari et al., 2000; Spiliopoulou and Pohle, 2001).

A graphical depiction of the framework is shown in Figure 4.20. It includes four

major groups of inter-woven components:

6This framework is based on earlier joint work of the present author and Dr. Simeon J. Simoff (Biuk-

Aghai and Simoff, 2001).
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1. Collaboration Systems:concerned with the analysis, design, implementation, and

utilization of the core collaboration support technology.

2. Collaboration Data: concerned with the analysis, design, and collection of data

related to collaboration.

3. Pattern Extraction: concerned with the analysis of data, recognition and extrac-

tion of patterns, and derivation and specification of progressively higher-level pat-

terns.

4. Collaboration Memory: concerned with maintaining concepts and making avail-

able patterns of collaboration at various levels of abstraction.

Moreover, the three components appearing in the upper part of the figure consist of

three parts, at different levels of abstraction:

1. Conceptual Level: related to elementary concepts.

2. Structural Level: related to designs and structures intended for use.

3. Collaboration Level: related to actual collaboration instances.

Between the different parts, shown as rectangular boxes in the figure, arrows indicate

flows of data and/or information. Below, each of the components of the framework is dis-

cussed in more detail, starting from the centre (Collaboration Systems), then continuing

clockwise throughCollaboration DataandPattern Extractionto Collaboration Memory.

4.5.1 Collaboration Systems

The first major component of the framework is related to collaboration systems, the sup-

port systems through which collaboration is performed. When a new collaboration sys-

tem is designed and developed, certain decisions are made as to the basic features of

the collaborative work domain it should support. Such basic features may include, for

instance, synchronous vs. asynchronous work, formal vs. informal collaboration, loosely

vs. tightly coupled work, etc. Designing and developing a collaboration system, there-

fore, should entail obtaining an understanding of such domain-dependent requirements

for the system.

The activities from conception to implementation and use of the collaboration system

are shown in the vertical dimension of the box labeledCollaboration Systemsin Fig-

ure 4.20, proceeding top-down from the abstract (Domain Understanding) through the

intermediate-level (System Design) to the concrete (System Utilization):
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4.5.1.1 Domain Understanding

Domain understanding (the top box in the figure) refers to the study of the domain of

collaboration to be supported by the new collaboration system, i.e. the basic features

of collaborative work touched upon above. In terms of software development, this cor-

responds to the step of requirements analysis. Decisions made at this stage determine

what kind of collaboration system will result from the development process. Some fun-

damental features to be supported by the system may also be laid down at this stage as

requirements, including: the structuring metaphor to be employed, navigation facilities,

representation of people and their abilities, provision of awareness information, access

to various information sources and tools, etc. When completed, this step contributes to

an understanding of the domain of collaborative work, its concepts, activities, objects

involved, etc. Together with feedback from the step ofData Understanding(discussed

later), this understanding of the domain is specified in the form of a multi-level ontology

corresponding to the Information Pyramid, as well as mappings between levels.

4.5.1.2 System Design

The conceptual modeling phase is followed by the design phase (the centre box in the

figure) where the identified requirements are translated into software designs. At this

phase, decisions are made about the details of the implementation of each conceptual

element, and how each requirement is to be satisfied in the new system. If not already

fixed during the previous phase, decisions are made on the type of interface and interac-

tion mode (such as textual vs. graphical, web-based vs. client-server), representations of

collaboration spaces and of all conceptual elements in the collaboration space, abilities

and affordances these conceptual elements are to be furnished with and the relationships

they can have with one another, layout and detailed structuring of the collaboration space,

navigation paths, etc. After the design has been finalized, it is implemented as a working

collaboration system.

System design, however, extends even beyond software design and implementation.

Collaboration systems, including all those surveyed in Chapter 2, offer their users the

ability to configure and customize their collaboration spaces. This may be as simple a

matter as adding a few documents and users into a collaboration space, or as complex as

designing entire processes consisting of multiple tasks spread across several collaboration

spaces and involving multiple users, communication channels, and artefacts each. Thus

even in the finished collaboration system, a certain amount of “system design” is carried

on continuously. This second type of system design creates the structures within which

actual collaboration takes place. Different collaboration requirements, as well as working
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styles and personal preferences, and not least of all familiarity with the system, influence

the way these collaboration spaces are set up, i.e. what virtual structures users create.

While the collaboration system itself provides users with virtual “spaces”, it is through

the appropriation of these spaces, their configuration, and by populating them with the

necessary props that they become “places” for collaboration, to use the terminology of

(Harrison and Dourish, 1996).

4.5.1.3 System Utilization

Once a collaboration system has been created, and collaboration spaces have been set up

and configured, these are utilized for collaboration (the lower box in the figure). At this

time, users enter the collaboration spaces and carry out the activities for which these were

designed. During this phase, it is possible that changes may be made to collaboration

spaces in response to changes in the processes carried out in them. That is, in highly

emergent processes, the activity of design of collaboration spaces may be ongoing into

their utilization, and the two activities may be interleaved with one another throughout

the collaboration space’s existence. In other cases, where a collaboration process is more

stable and predictable, the collaboration space may be utilized with no or little change

throughout its existence.

4.5.2 Collaboration Data

The second major component of the framework, shown in the right hand portion of Fig-

ure 4.20, is related to collaboration data. Within the framework, collaboration data is

understood to be that portion of data related to concepts within the domain of the collab-

oration system. This includes data on the objects and actions provided by the collabor-

ation system. Some of this data is of direct use within the collaboration system, while

other data exists solely for the purpose of facilitating later pattern extraction.

Traditionally, the majority of collaboration systems have only maintained a small

portion of what is here referred to as collaboration data, namely “internal data” needed for

their own operation. However, for purposes of pattern extraction, this portion of data is

almost always insufficient—either by lacking data on some of the concepts of interest, by

lacking sufficient detail, or by lacking enough contextual information to enable different

data items to be related during pattern extraction.

To remedy this deficiency and to emphasize the importance of collaboration data, the

status of design and collection of collaboration data is elevated by treating it as a separate

component within the framework. The activities related to collaboration data proceed, as

shown in the vertical dimension of the right hand portion of the figure, from the abstract
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(Data Understanding) through the intermediate-level (Data Modeling) to the concrete

(Data Collection):

4.5.2.1 Data Understanding

Data understanding is the first activity in the sphere of collaboration data. Its purpose is

to obtain an understanding of the main data elements required in a collaboration system.

Data understanding thus essentially consists of conceptual data modeling. However, the

framework does not impose a specific modeling method, so the outcome of this activ-

ity may be an E-R model, an object model, or whatever output the modeling method

produces.

The activity of data understanding goes hand-in-hand with the corresponding activ-

ity on the conceptual level of collaboration systems, i.e. withDomain Understanding.

While domain understanding leads to the identification of concepts in the domain un-

der investigation, data understanding leads to the identification of data elements needed

to represent these concepts. This relationship is represented by the information flow

betweenDomain UnderstandingandData Understanding. On the other hand, the ac-

tivity of data understanding may also advance domain understanding, for instance by

identifying details of concepts or relationships previously not considered, perhaps even

suggesting the inclusion of additional concepts. This is represented by the reverse flow,

from Data Understandingto Domain Understanding.

4.5.2.2 Data Modeling

Once data understanding is complete, the initial data requirements are transferred to the

next stage,Data Modeling. More specifically, this activity is equivalent to the step of log-

ical, and subsequently physical, data modeling. As before, this activity too goes hand-in-

hand with the corresponding activity of collaboration systems on the same level, i.e. with

the structural-level activitySystem Design. While in the collaboration systems’ sphere

decisions relating to every aspect of the collaboration system are made, the parallel activ-

ity of data modeling makes decisions on details of collaboration data, their relationships,

and representation. This includes such aspects as the data model employed (relational,

object-oriented, hierarchical, etc.); details of all data elements, including fields, data type

and size; relationships among data elements; storage organization and file formats; etc.

4.5.2.3 Data Collection

Finally, once the data model has been completed, and subsequently implemented, the col-

laboration system is put to use and data is collected. Once again, the activity at this level,
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Data Collection, works in parallel with the corresponding collaboration systems activity,

System Utilization, with data transfer from the latter to the former. That is, utilization of

the collaboration system generates data which is transferred for data collection, shown

by the flow fromSystem Utilizationto Data Collection.

Minimally, data collection simply involves storing data in a certain form, such as in a

database or in flat files. However, it may also involve some simple processing of the data.

Such processing may be performed in preparation for subsequent pattern extraction. This

may involve sorting, grouping, or other operations. These processing steps are driven by

the decisions made during the data modeling phase, indicated by the arrow betweenData

ModelingandData Collectionin Figure 4.20. The aim of data collection is thus not only

to make data available, but ideally to make data available in a form which is ready for

pattern extraction without the need for additional pre-processing.

4.5.3 Pattern Extraction

The third major component of the framework is related to pattern extraction, shown as

the horizontal box at the bottom of Figure 4.20. Pattern extraction is concerned both

with identifying new patterns of virtual collaboration, as well as with obtaining instances

of those patterns from collaboration data, using the methods described earlier in this

chapter. It consists of three activities, shown right to left in the box labeledPattern

Extraction, proceeding fromPattern Recognition, throughPattern Derivation, to Pattern

Specification:

4.5.3.1 Pattern Recognition

The first activity related to pattern extraction is the recognition of patterns in the source

body of data (shown as the right-most box in the figure). The data that forms the input

to this activity is obtained from the collaboration system, which collects it (in activity

Data Collection) in a form as previously designed during the activity ofData Modeling.

This source data is analysed to first identify instances of elementary concepts, i.e. objects

and actions at the base level of the Information Pyramid. Once instances of these objects

and actions have been recognized in the data, instances of action patterns involving these

objects and actions are extracted. The recognition of instances of objects and actions,

and the extraction of action patterns, draws upon the corresponding classes previously

identified and specified during the activity ofDomain Understandingand provided by

Ontology and Mappings(discussed later).
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4.5.3.2 Pattern Derivation

Once instances of patterns at the base level of the Information Pyramid have been recog-

nized, these provide the input for deriving instances of higher-level patterns (represented

by the arrow fromPattern Recognitionto Pattern Derivation). That is, from instances of

base-level action patterns identified duringPattern Recognition, instances of action pat-

terns on the next-higher level may be derived. These instances of derived patterns may

then in turn be used to identify instances of patterns on the next-higher level, and so on

up to the top level of the Information Pyramid.

Besides deriving instances of patterns, this activity may also identify new classes of

action patterns not previously observed. While action patterns on the micro and meso

levels of the Information Pyramid can be completely specified, it is not possible to com-

pletely specify all possible action patterns on the macro levels of the Information Pyra-

mid, as these are infinite in number (cf. the discussion in Section 4.4). Particularly in the

case of collaborative processes that are emergent, new configurations of collaboration

spaces, and networks of related collaboration spaces, are created by the collaboration

system’s users. These may be identified by drawing upon and analysing instances of

lower-level objects, actions, and action patterns. As discussed earlier, in Section 4.4, this

activity can be supported through information visualization. The outcome are new classes

of action patterns on the macro levels of the Information Pyramid which contribute to an

ever-growing ontology of the given collaboration system.

Both the derivation of instances of action patterns, as well as the identification of

new classes of action patterns draws upon definitions of classes of the concepts involved,

as well as definitions of mapping functions, both of which, as above in the case of the

Pattern Recognitionactivity, are provided byOntology and Mappings(discussed later).

4.5.3.3 Pattern Specification

The last step of pattern extraction is the representation of the discovered patterns in a form

corresponding to the specification of the related classes in the ontology. This consists of

the specification of both discovered instances of patterns, as well as newly derived classes

of patterns. The input to this activity is produced by the activitiesPattern Recognition

(for instances of patterns) andPattern Derivation(for both instances and new classes

of patterns). As with these earlier two activities, pattern specification draws upon the

existing specification of elementary classes (namely of objects and actions, which are the

basic building blocks of action patterns), as well as that of other action pattern classes.

Extracted patterns are deposited inCollaboration Memory: newly discovered pattern
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classes feed intoTopologies and Patterns, while discovered instances of patterns feed

into Collaboration Understanding(this is discussed in more detail below).

4.5.4 Collaboration Memory

The final major component of the framework is the box labeledCollaboration Memory,

shown in the left hand portion of Figure 4.20.

Chapter 2 discussed organizational memory as one of the core areas which constitute

the problem domain of this research. There, the distinction between declarative and

procedural memory was made, and the need for capturing more of the procedural aspect

of organizational work processes was pointed out (cf. pp. 59–60). Applied to virtual

collaboration, this suggests that there is value in retaining and later drawing on historical

records of such collaboration. Such records may be referenced when setting out on new

virtual collaboration, to “see how others have done it”, and perhaps to reuse and re-

enact parts of others’ experience. They also help provide awareness on what has been

“going on” during collaboration. In this way, they have the potential to help address the

challenges posed in Chapter 1 (cf. pp. 6–8).

Here, the notion of acollaboration memoryis proposed, building upon the suggestion

of Conklin to link groupware with organizational memory (Conklin, 1993). Collabora-

tion memory is defined as follows:

Definition 19 A collaboration memoryconstitutes one part of an organi-

zational memory, consisting of records of procedural aspects of collaborative

activity.

2

That is, an organizational memory is understood to consist of multiple parts (cf. also

(Ackerman and Halverson, 2000)), of which collaboration memory is but one. These dif-

ferent parts of organizational memory each capture different aspects of an organization’s

activity and outcomes, and should be regarded as complementary. That is, while some

parts of the overall organizational memory may contain declarative descriptions of, say,

a problem and the resulting solution that was devised for it, the collaboration memory

complements this with a procedural description of the collaboration that brought about

the solution. In the case of virtual collaboration, these procedural descriptions are the

patterns of virtual collaboration discussed in this and the preceding chapter.

Each of the parts of collaboration memory in this framework is discussed below,

proceeding top-down fromOntology and Mappings, throughTopologies and Patternsto

Collaboration Understanding:
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4.5.4.1 Ontology and Mappings

The first part of the collaboration memory is related to maintaining the ontology of ele-

mentary concepts on the different levels of the Information Pyramid, and mappings be-

tween these levels. This consists of specifications of objects and actions, which form the

basic “building blocks” for more complex entities such as action patterns. These objects

and actions are specified using information on these basic concepts that is obtained from

the activity ofDomain Understanding(this is indicated by the arrow from that activity to

Ontology and Mappings).

The ontology of these elementary concepts and mappings, as well as patterns (dis-

cussed below), feeds into each activity belonging toPattern Extraction. That is, pattern

recognition, derivation, and specification rely on these concepts and mappings in order

to recognize instances of these concepts in the source data, to map lower-level concepts

to higher-level concepts, and to finally specify extracted patterns in a form according to

the ontology’s definition of the concepts involved. This is indicated by the arrows from

Ontology and Mappingsto each of the three boxes inPattern Extraction.

4.5.4.2 Topologies and Patterns

The second part of the collaboration memory is related to maintaining definitions of

classes of patterns of virtual collaboration. These are expressed in terms of the elemen-

tary concepts of objects and actions deposited in theOntology and Mappingspart of the

collaboration memory (this is indicated by the arrow from that part toTopologies and

Patterns). Thus, as seen in the discussion of action patterns in Chapter 3, a given action

pattern class usually contains references to multiple object and action classes. In this part

of the collaboration memory, onlyclassesof patterns are deposited, not actual instances

of these classes.

Patterns deposited at this level can be of use in the design of new collaboration spaces.

That is, when a new collaborative task or process is being embarked on, existing patterns

of the same or similar tasks or processes can be referenced to aid in the setup of the new

collaboration space(s) (this is indicated by the arrow fromTopologies and Patternsto

System Design). These retained patterns thus constitute certain reusabletopologiesof the

structure of collaboration spaces.

Together with elementary concepts of objects and actions from the part ofOntology

and Mappings, the patterns in this part of the collaboration memory feed into the activi-

ties ofPattern Extraction—as was discussed above. Again, this is indicated by the arrows

from Topologies and Patternsto each of the three boxes inPattern Extraction.

On the other hand, duringPattern Extractionnew classes of patterns may be dis-
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covered. Once these are specified in the appropriate form, referencing the elementary

concepts of the objects and actions involved, these feed back into the collaboration mem-

ory in the part ofTopologies and Patterns, thus becoming available for later use.

4.5.4.3 Collaboration Understanding

The third part of the collaboration memory is related to maintaining instances of patterns

of virtual collaboration. These are expressed as instances of the relevant pattern classes

that are deposited in theTopologies and Patternspart of the collaboration memory (this is

indicated by the arrow from that part toCollaboration Understanding). These instances

express how collaboration is actually being performed, by capturing actual values for the

attributes of the collaboration that make up the corresponding pattern classes. This may

also includederived attributesthat characterize features of the collaboration, such as the

attributes measuring properties of group discussion shown in the example in Table 3.3 on

page 83.

The source of these instances of patterns of virtual collaboration is the block of activi-

ties ofPattern Extraction. There, these instances of patterns are extracted from the source

data and specified in the form of instances of the corresponding classes of patterns. This

is indicated by the arrow fromPattern Specificationto Collaboration Understanding.

The instances of patterns contained in this part of collaboration memory can provide

an understanding of the collaboration to those requiring it—members of the virtual teams

themselves, or other stakeholders such as management. For example, it can identify what

main types of activities were conducted within a collaboration space, how the activi-

ties were carried out over time, what differences exist in the activity of different people

within the collaboration space, etc. Thus they have the potential to serve as an awareness

resource within the collaboration spaces from which they originated. This is indicated by

the arrow fromCollaboration Understandingto System Utilization.

4.6 Summary

This chapter has elaborated on the extraction and derivation of patterns of virtual collab-

oration from the data collected from a collaboration system.

It was proposed that this process of pattern extraction and the derivation of higher-

level patterns requires an ontology of concepts and mappings related to each level of the

Information Pyramid to be specified. A modeling method for creating such an ontol-

ogy step-by-step, starting from the lowest level and working its way up to the top level,

was presented. In order to actually specify the ontology, both a textual and a graphical
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notation were introduced.

Details of several issues related to the specification of the ontology were given. Re-

gardless of the actual collaboration system for which an ontology is to be created, a set of

common classes can be defined, thus forming abasefor the new ontology. When iden-

tifying patterns of virtual collaboration according to the specifications contained within

the ontology, it may be necessary to distinguish between differentsessionswithin which

the patterns’ constituent actions take place. For the mapping of the ontology’s concepts

across levels of the Information Pyramid, principles and mechanisms were developed

which distinguish between three different kinds of correspondences of concepts. Once

correspondences have been identified,mapping functionsare specified which transform

concepts across levels.

The degree of completeness that can be achieved in the specification of patterns de-

pends on the level of the Information Pyramid being specified, decreasing from bottom

to top level. This is paralleled by a shift of the source of patterns from the collaboration

system to its users. To facilitate the recognition of patterns on the highest levels of the

Information Pyramid, it is proposed to employ techniques ofinformation visualization.

Finally, a Framework for Pattern Extraction and Feedback was proposed which places

the activity of pattern extraction and derivation in the larger context of the development

and utilization of collaboration systems. Moreover, the framework suggests how discov-

ered patterns can be retained in a special type of organizational memory termedcollab-

oration memory, as well as how these retained patterns can feed back into the design and

use of collaboration spaces.

Having detailed the modeling and transformation of information about virtual col-

laboration in this and the preceding chapter, the following chapter goes on to apply the

proposed concepts and methods to the extraction of patterns of virtual collaboration from

an actual collaboration system.



Chapter 5

Case Study: Modeling and Pattern

Extraction in L IVE NET

The previous two chapters have detailed the concepts and methods involved in modeling

and extracting patterns of virtual collaboration. It was shown that this involves on the one

hand the specification of an ontology of concepts in the domain of collaboration and for

the particular collaboration system that constitutes the source of data; and on the other

hand the specification of mappings for correspondences between concepts on different

levels of abstraction. Given these two, the models and the mappings, it is possible to

transform source data that represents detailed, small-scale activity through successive

mappings into abstract representations of large-scale collaborative activity, in the form of

patterns of virtual collaboration.

This chapter demonstrates the use of the concepts and methods by means of a case

study, providing some degree of validation of their plausibility and applicability. The

given case study involves student users engaged in the collaborative preparation of re-

ports, using a particular collaboration system, LIVENET, and the data collected by it

(L IVENET was first introduced in Chapter 2, pp. 45–48). Since its initial development,

this system has evolved over several versions; the material in this chapter is based on

L IVENET version 2.4. LIVENET has been used over the course of several semesters to

support courses involving hundreds of users, including students and faculty at the Uni-

versity of Technology, Sydney as well as other institutions. The testing and on-going de-

velopment of LIVENET that has led up to version 2.4 have produced a well-functioning

system that is a reliable source of data for use in this case study.

As presented in the previous two chapters, both the concepts and methods proposed

are generic and are not limited to any specific collaboration system, type of users, or ac-

tivity. As is the case in any case study, the application of concepts and methods here is
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naturally specific to the particular collaboration system, users, and activities that are the

subject of this case study. However, this specific application of concepts and methods

in the given case study should not be regarded as implying any limitation in their appli-

cability to cases similar to the one presented here. On the contrary, since the concepts

and methods developed in this thesis are generic by design, they can be equally applied

in other collaboration systems, with other types of users, as well as with other types of

activities.

The following two sections concentrate, respectively, on the specification of the LIVE-

NET ontology, and on the application of the ontology to actual data collected from the

L IVENET system.

5.1 Specification of the LIVE NET Ontology

The first step in the process leading to the extraction of patterns of virtual collabora-

tion consists of modeling the concepts of the Information Pyramid for the collaboration

system that is the source of data, in this case the LIVENET system. This produces an on-

tology consisting of specifications of classes of concepts, as well as mappings between

corresponding classes across levels. The method followed is the one described in Chap-

ter 4, and briefly outlined below:

1. Identify the base level of the Information Pyramid for the given system.

2. Model the base level.

3. Model the next-higher level.

4. Define mappings between the two levels just modeled.

5. Repeat the previous two steps until the top level of the Information Pyramid is

reached.

For the modeling of the LIVENET system, each of these steps is carried out below.

However, as a complete specification of the ontology for LIVENET would fill many pages

and would go beyond the scope of this thesis, specification is mainly illustrated in the first

few steps below, while detailed specification is omitted in later steps. The specifications

of concepts that are shown lead from detailed ones on lower levels up to a final action

pattern of manuscript preparation at the process level.
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5.1.1 Step 1: Identifying the Base Level

In the case of the LIVENET collaboration system, a number of information sources exist

(the level of each of these is shown in parentheses):

• Web server log(infrastructure level): the LIVENET system is web-based, and so

records of user interactions are maintained in the web server log. These records

contain mostly dynamic information, and only to some extent static information.

However, both dynamic and static information are expressed in terms of web page

accesses, and as the requested pages are themselves dynamically produced, it is

difficult to relate this information to system-level entities.

• Database transaction log(infrastructure level): the LIVENET system’s applica-

tion data is stored in a database management system (DBMS), and so the trans-

action log of the DBMS constitutes a record of dynamic information. This log

contains great detail, however its focus are the operations accessing or manipulat-

ing data contained in the LIVENET database, rather than the data itself.

• Database tables(system level): LIVENET application data is stored in a relational

database. Information on different kinds of entities, such as users, documents,

workspaces, etc., are stored in separate database tables. This information reflects

the current state of each LIVENET entity, but not its history.

• L IVE NET server log (system level): LIVENET is implemented as a client-server

system, with the server receiving requests (commands) from the client, which it in

turn carries out. These client requests are recorded on the server side in the form

of a server log. It contains details about the types of requests, as well as references

to relevant LIVENET entities such as workspaces, users, etc. The server log thus

constitutes a detailed source of system events.

Given that both static and dynamic information are available on the system level

(contained in application data and system events, respectively), it is not necessary to make

use of the infrastructure level data sources. Therefore the base level of the Information

Pyramid for LIVENET is thesystem level.

5.1.2 Step 2: Modeling the Base Level (System Level)

Given that the system level has been identified as the base level, its concepts can now

be modeled. As described in Section 4.1.2 (pp. 94–95), this consists of the steps of

identifying objects, actions, and action patterns, and specifying these concepts.
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5.1.2.1 Step 2.1: Identifying Objects

On the system level, information related to objects in LIVENET is deposited in a rela-

tional database consisting of 16 tables. These contain information on following 18 types

of objects, most of which are stored in separate database tables:

Object Name Description

Action a tool for performing some action, callable from within a

workspace

Background similar to a document, but containing information that is intended

as “background material” for a given task

Block a collection of discussion statements

Discussion a reference to a discussion forum, as visible to the user

Document an artefact containing information, residing on a network server

Forum an internal representation of a discussion forum

Message a semi-structured message routed between workspaces according

to a pre-defined message rule

Message-Rule a rule defining routing of messages between workspaces, based on

their message type

Message-Type a defined type of a message in a workspace

Notification-Rule a rule specifying which user to notify by external email when a

statement is posted in a discussion forum

Object a thing of a particular type residing in a workspace; Document,

Background, Action, and Discussion are types of objects

Participant a user occupying a particular role in a particular workspace

Role an organizational role occupied by users in a workspace

Statement a statement posted in a discussion forum

User a person registered in the system

User-Group a collection of users

Workgroup a conceptual entity grouping together users and workspaces

Workspace a collaboration space

Each of these entities needs to be modeled as an object concept in the system-level

part of the ontology.
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5.1.2.2 Step 2.2: Identifying Actions

System-level dynamic information is contained in a server log file consisting of log

records. These capture information on commands performed (i.e. actions), and contain

references to system-level objects involved. In the case of LIVENET, technical documen-

tation of all server commands exists, making the identification of the set of system-level

actions trivial1. In total, LIVENET has 70 different commands, thus corresponding to 70

actions, listed in brief below:

Action Name Description

Add-Block Add a new block to a forum

Add-Forum Add a new forum

Add-Group-User Add a user to a group

Add-Message Add a message

Add-Msg-Rule Add a new message rule to the current workspace

Add-Msg-Type Add a new message type to the current workspace

Add-Notify Add a notification email address

Add-Object Add an object to the current workspace

Addparticipant Add a new participant to the current workspace

Add-Role-Object Assign an object to a role

Add-Statement Add a new statement to a block

Add-User Create a new user

Change-Path Change the path of an object

Change-Type Change the type of an object

Create-Workgroup Create a workgroup

Create-Workspace Create a workspace

Delete-Block Delete a block from a forum

Delete-Forum Delete a forum

Delete-Group-User Delete a user from a group

Delete-Message Delete a message

Delete-Msg-Rule Delete a message rule from the current workspace

Delete-Msg-Type Delete a message type from the current workspace

Delete-Notify Delete a notification email address

Delete-Object Delete an object from the current workspace

Deleteparticipant Delete a participant from the current workspace

continued...

1For other collaboration systems which do not have such documentation, the set of commands has to

be discovered through examination of the server log.
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Action Name Description

Deleterole Delete a role from the current workspace

Delete-Statement Delete a statement

Delete-User Delete a user

Delete-Workgroup Delete a workgroup and all workspaces in the

workgroup

Delete-Workspace Delete a workspace

Edit-Statement Edit an existing statement

Edit-User Edit an existing user

Exe-External Launch an external program

Get-All-Objects Get all the objects of the current workspace

Get-All-Workgroups Get all the workgroups in the system

Get-Block-Tree Get the statement tree of a block

Get-Led-Workgroups Get workgroups of which the current user is a leader

Getlogin Get login information of the specified user

Get-Msg-Rules Get the message rules of the current workspace

Get-Msg-Types Get the message types of the specified workspace

Getmyworkspaces Get workspaces of which the current user is a

participant

Get-Namevalues Get server configuration parameters

Get-Own-Workspaces Get workspaces of which the current user is the owner

Getparticipants Get all participants of the current workspace

Get-Role-Messages Get all the messages the current user can access

Get-Role-Objects Get the objects that a specific role can access

Getroles Get roles of a given workspace

Get-Role-Templates Get roles and their permission templates of a given

workspace

Get-Statement Get a statement

Getstatistics Get server statistics

Get-User-Email-Homepages Get all users’ email addresses and homepage URLs

Get-User-Emails Get all users’ email addresses

Get-User-Names Get all users’ names

Get-User-Profiles Get all users’ profiles

Get-Users Get all users’ information

Get-Users-In-Group Get all the users in a given group

continued...
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Action Name Description

Get-Users-In-Mygroups Get all the users in the groups of which the current

user is a leader

Get-Workspace-Tree Get workspace tree

Get-Ws-Objects Get objects owned by the current user

Give-Ownership Change the owner of the current workspace to another

user

Login Log a user in

Logoff Log a user off

Modify-Workspace Modify an existing workspace

Newrole Create a new role in the current workspace

Open-Object Open an object in the current workspace

Remove-Role-Object Remove an object from a role

Send-Email Send email

Set-Role-Template Set a role’s permission template

Set-Role-Url Set a role’s URL

Setworkspace Enter a workspace

Most of these actions take one or more action attributes (some take as many as ten).

Action attributes may provide information needed for the execution of the action, and

may also identify objects in the LIVENET database that are involved in the action.

5.1.2.3 Step 2.3: Identifying Action Patterns

To identify action patterns involving the actions identified above, the specific action con-

text involved in each action has to be identified too. This can be discovered by inspecting

the source data and determining the action context associated with each action.

According to Definition 16 (p. 69), “an action context is the set of information identi-

fying the subject, referent, location, and time of an action.” In the case of the commands

recorded in the LIVENET server log, information on context is included in each log

record. An example of three log records was shown earlier, in Section 3.4.1 (p. 78), and

the structure of each log record was shown in Table 3.1 (p. 79). The four parts of the

action context provided in LIVENET’s server log records are:

Subject: identification of the action performer

• user performing the action

• role of the user performing the action
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Referent: that which is being acted upon

• reference to the object being affected by the action

Location: identification of the logical/virtual location of the action

• workgroup in which the action occurred

• workspace in which the action occurred

• session in which the action occurred

Time: moment in time of the action’s performance

• timestamp of the action

The detailed content of each action context depends on the action which it belongs to.

For instance, theAdd-Statement action, which adds a discussion statement to an object

of type Block, takes a reference to theBlock to which the statement is being added as

its referent (all other parts of the action context are as described above). On the other

hand, theLogin action, which logs a user into the LIVENET system, has no referent (no

object is being affected by the login action), no subject (because at the time the action is

performed, no reference to the performing user exists yet), and besides a session identifier

no location information.

Thus in order to identify action patterns for LIVENET’s system-level actions, the

action context has to be identified for each action individually. However, all actions have

structurallyonly one possible context. That is to say, if a given type of action includes,

for example, a role as its subject and a discussion forum as its referent, that same type of

action will always include those two types of objects in those parts of the action context,

and cannot be used, say, without a discussion forum or with two roles.

Thus the action patterns can be identified in a straightforward manner by identifying

the object types involved in the action context of each action type. Consequently there

are 70 action patterns corresponding to the 70 actions identified earlier.

5.1.2.4 Step 2.4: Specifying Concepts

The object, action, and action pattern concepts identified above now need to be specified.

This specification can be based on the common classes defined in Section 4.2.1 (p. 101).

Thus the classes can be created as subclasses of the common classesSys-Lvl-Object,

Sys-Lvl-Action, andSys-Lvl-Action-Pattern. Below, this is illustrated for the

objectStatement and actionAdd-Statement, as well as the action patternAdd-Statement-

Pattern involving both this object and this action.
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The first class,LN-Statement, models the object conceptStatement, a statement in

a LIVENET discussion forum:

(defclass LN-Statement "A statement posted in a discussion forum."

(is-a Sys-Lvl-Object)

(role concrete)

(single-slot Block

(type INSTANCE)

(allowed-classes LN-Block)

(cardinality 1 1))

(single-slot StatementNo

(type INTEGER)

(cardinality 1 1))

(single-slot Type

(type STRING)

(cardinality 0 1))

(single-slot Originator

(type INSTANCE)

(allowed-classes LN-User)

(cardinality 1 1))

(single-slot ParentStmt

(type INSTANCE)

(allowed-classes LN-Statement)

(cardinality 0 1))

(single-slot Heading

(type STRING)

(cardinality 1 1))

(single-slot Text

(type STRING)

(cardinality 0 1))

(single-slot ArtefactLink

(type STRING)

(cardinality 0 1))

(single-slot DateTimeSent

(type INTEGER)

(cardinality 1 1)))

The class name has the prefixLN- to indicate that it models a LIVENET concept.
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LN−Statement

Block [1:1]
StatementNo [1:1]

Originator [1:1]

DateTimeSent [1:1]

ParentStmt [0:1]
Heading [1:1]

Type [0:1]

Text [0:1]
ArtefactLink [0:1]

Figure 5.1: System-level object classLN-Statement

Using such a naming convention effectively establishes a separate namespace for each

collaboration system modeled. The class subclasses theSys-Lvl-Object class, thereby

establishing that it represents a system-level object type. It has a number of slots which

can be filled with values; in this case, these are all single-slots, meaning that they can

contain only a single value. Some of these slots are intended to contain instances of

other classes, such as theOriginator slot whose value is constrained to an instance of

theLN-User class (a class representing LIVENET users). Moreover, each slot specifies

the allowed cardinality, in this case being either 0. . .1, meaning that a value for this

slot is optional, or 1. . .1, meaning that a value for this slot is required. A graphical

representation of the class is shown in Figure 5.1.

Next, the classLN-Add-Statement is specified, modeling the action conceptAdd-

Statement which adds a discussion statement to a discussion forum:

(defclass LN-Add-Statement "An action that adds a statement to a

discussion forum."

(is-a Sys-Lvl-Action)

(role concrete)

(single-slot Heading

(type STRING)

(cardinality 1 1))

(single-slot Text

(type STRING)

(cardinality 0 1)))

This action is very simple, having only two attributes, the statement heading and text

which are being added to the discussion forum. In graphical form, this action class is
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LN−Add−Statement

Heading [1:1]
Text [0:1]

Figure 5.2: System-level action classLN-Add-Statement

shown in Figure 5.2.

When this action is performed in LIVENET, it is situated within a context that in-

cludes a subject consisting of the user and role carrying out the action; a referent that

identifies the block to which the new statement is to be added; a location identifying

the workgroup and workspace, as well as the session, in which the action occurs; and a

timestamp for the moment when the action is performed.

When modeling the action pattern corresponding to this action, both the action itself,

as well as all elements of its context need to referenced. Below is the specification of class

LN-Add-Statement-Pattern corresponding to action pattern conceptAdd-Statement-

Pattern:

(defclass LN-Add-Statement-Pattern "An action pattern that adds a

statement to a discussion forum."

(is-a Sys-Lvl-Action-Pattern)

(role concrete)

(single-slot Action-Instance

(type INSTANCE)

(allowed-classes LN-Add-Statement)

(cardinality 1 1))

(single-slot User

(type INSTANCE)

(allowed-classes LN-User)

(cardinality 1 1))

(single-slot Role

(type INSTANCE)

(allowed-classes LN-Role)

(cardinality 1 1))

(single-slot Block

(type INSTANCE)

(allowed-classes LN-Block)

(cardinality 1 1))
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Pattern

Action−Instance [1:1]

LN−Add−Statement−

Session−Instance [1:1]
Workspace [1:1]
Workgroup [1:1]

User [1:1]
Role [1:1]
Block [1:1]

Timestamp [1:1]

Figure 5.3: System-level action pattern classLN-Add-Statement-Pattern

(single-slot Workgroup

(type INSTANCE)

(allowed-classes LN-Workgroup)

(cardinality 1 1))

(single-slot Workspace

(type INSTANCE)

(allowed-classes LN-Workspace)

(cardinality 1 1))

(single-slot Session-Instance

(type INSTANCE)

(allowed-classes Session)

(cardinality 1 1))

(single-slot Timestamp

(type INTEGER)

(cardinality 1 1)))

Here the class’s first slot references an instance of the action of typeLN-Add-State-

ment, while all remaining slots constitute the action’s context. This class is shown in

graphical form in Figure 5.3.

Specified classes in the ontology usually are related to other classes. This was seen in

the specification of theLN-Add-Statement-Pattern class which references instances

of seven other classes. Represented graphically, the relationships between the action pat-

tern and its action on the one hand, and all involved objects on the other hand become

visible. This is shown in Figure 5.4 which shows the action patternLN-Add-Statement-

Pattern together with actionLN-Add-Statement and six related objects (arrows sym-

bolize thereferencesrelationship).
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LN−Add−Statement

Heading [1:1]
Text [0:1]

LN−Block

BlockID [1:1]
ForumName [1:1]

BlockType [1:1]
SourceGoal [1:1]
BlockGoal [1:1]

Owner [1:1]

BlockName [1:1]

DateTimeCreated [1:1]
FirstStatement [0:1]

Name [1:1]

LN−Workspace

Owner [1:1]
DateCreated [0:1]
Workgroup [1:1]

ParentWorkspace [0:1]
WorkspaceType [0:1]

Goals [0:1]
WsOptions [0:1]
Milestones [0:1]
Surprises [0:1]

Terminology [0:1]
Plans [0:1]

WorkspaceAgent [0:1] Name [1:1]

LN−Workgroup

Workspace [1:1]

LN−Role

Name [1:1]
DateCreated [0:1]
RoleAgent [0:1]
RoleType [0:1]

Permissions [0:1]

Name [1:1]
Password [1:1]

Email [0:1]

LN−User

DateJoined [0:1]

Pattern

Action−Instance [1:1]

LN−Add−Statement−

Session−Instance [1:1]
Workspace [1:1]
Workgroup [1:1]

User [1:1]
Role [1:1]
Block [1:1]

Timestamp [1:1]

Session

SessionID [1:1]
Session−Elements [1:?]

Figure 5.4: Action pattern classLN-Add-Statement-Pattern and related action and

object classes

The above specifications of one object, one action, and one action pattern are illus-

trative of the specifications of all other of LIVENET’s system-level concepts, which are

specified in the same manner. Once all these concepts have been specified, modeling of

the base level is complete.

5.1.3 Step 3: Modeling the User Level

Modeling of the user level proceeds in the same manner as modeling of the system level.

The first step is the identification of objects, actions, and action patterns, followed by their

specification. However, unlike on the system level, which is the base level, modeling of

the user level may not have to model every concept on this level in detail. Indeed, some

concepts on this level may be identical to those on the lower level. Others may resemble

those on the system level, but may differ only in some details, and may thus need to be

modified for this level. However, some concepts may be entirely new on this level and

thus need to be fully specified.
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5.1.3.1 Step 3.1: Identifying Objects

In L IVENET, user-level objects correspond in large part to those on the system level.

However, the objects on this level are those as seen through the user view, i.e. as they are

perceived by the user. For some object types, this view does not necessarily correspond

to that on the system level. For instance, for implementation reasons the system level

has three objects to capture different aspects of a discussion forum (objectsDiscussion,

Forum, andBlock). In the user view, however, no such separation exists, and a discussion

forum is therefore a single object. Identifying the objects on this level thus consists of

examining the collaboration system from the user’s point of view and determining what

objects are present in this view. These objects then need to be compared with those on

the system level to determine if they are unchanged or modified.

Identifying unchanged objects

The following ten system-level objects are unchanged on the user level:

• Action

• Background

• Document

• Message

• Message-Rule

• Message-Type

• Role

• User

• Workgroup

• Workspace

Identifying modified objects

As mentioned earlier, the objects related to discussions differ to some extent between the

system and user levels. On the system level, discussions were represented as a discussion

object, with an associated forum, which in turn has an associated block, which in turn

contains a number of discussion statements. This arrangement is shown in Figure 5.5 (a).
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Discussion

Forum

Block

Statement

belongs−to

belongs−to

references

(a) System-level discussion

Discussion−Forum

Statement

belongs−to

(b) User-level discussion

Figure 5.5: Different views of discussions on system and user levels

On the user level, i.e. as perceived through the user view, discussions are much sim-

pler: to the user there are simply discussion forums consisting of discussion statements.

This arrangement is represented in Figure 5.5 (b). Thus the objectsDiscussion, Forum,

andBlock are replaced with a single objectDiscussion-Forum. The objectStatement, on

the other hand, remains, but it now contains a reference to theDiscussion-Forum which

it belongs to, whereas on the system level it referred to theBlock it belonged to.

Thus the modified concept on this level is the objectStatement. Although the mean-

ing of this concept remains unchanged, its details differ slightly from the level below.

Identifying new objects

As the preceding discussion mentioned, the objectsDiscussion, Forum, andBlock are re-

placed by the objectDiscussion-Forum. This therefore constitutes the only new concept

on this level:

Discussion-Forum: a forum for the posting of discussion statements

In summary, of the 18 objects represented in the system-level part of the ontology, ten

remain unchanged on the user level, and one is slightly changed. Seven objects, most of

which are “internal” to the operation of LIVENET, and which thus do not appear in the
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user view of the system, are omitted from the user level; these are:Block, Discussion,

Forum, Notification-Rule, Object, Participant, andUser-Group. On the other hand, one

new object,Discussion-Forum, has been introduced.

5.1.3.2 Step 3.2: Identifying Actions

User-level actions are primarily identified through exploration of the user interface: an

interface function that can be performed by the user constitutes a user-level action. Thus

by exhaustively exploring every function in the user interface, the set of actions can be

determined.

As with objects, the user level’s actions too differ from the system level. However,

in the case of actions the difference is greater, as the commands which form the set of

actions on the system level are all “internal”, i.e. they are not exposed to the user view.

While there is some correspondence between certain user-level and system-level actions,

most user-level actions correspond not just to one, but to a sequence of several system-

level actions. Moreover, the number of action attributes which are associated with a

user-level action usually differs from the corresponding one on the system level, as some

of these are too detailed to be of interest at this level, and are thus omitted. As a result,

the set of user-level actions is for the most part disjoint from the corresponding set of

system-level actions.

All in all, L IVENET has following 73 user-level actions:

Action Name Description

Add-Discussion-Forum-Notification Add a notification email address to a

discussion forum

Add-Background Add a background to a workspace

Add-Document Add a document to a workspace

Add-User-To-Workgroup Add a new user to a workgroup

Add-User-To-Workgroup-And-Workspace Add a new user to a workgroup and a

workspace

Add-User-To-Workspace Add a user to a workspace

Add-Workflow-Rule Create a workflow rule

Assign-Action Assign an action to a user

Assign-Background Assign a background to a user

Assign-Discussion-Forum Assign a discussion forum to a user

Assign-Document Assign a document to a user

Copy-Workspace Copy a workspace

continued...
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Action Name Description

Create-Action Create an action

Create-Discussion-Forum Create a discussion forum

Create-Message-Type Create a message type

Create-Role Create a role

Create-Subworkspace Create a workspace under the current one

Create-Workgroup Create a workgroup

Deassign-Action Deassign an action from a user

Deassign-Background Deassign a background from a user

Deassign-Discussion-Forum Deassign a discussion forum from a user

Deassign-Document Deassign a document from a user

Delete-Action Delete an action from a workspace

Delete-Background Delete a background from a workspace

Delete-Current-Workspace Delete the current workspace

Delete-Discussion-Forum Delete a discussion forum from a

workspace

Delete-Document Delete a document from a workspace

Delete-Message Delete a message from a workspace

Delete-Message-Rule Delete a message rule from a workspace

Delete-Message-Type Delete a message type from a workspace

Delete-Other-Workspace Delete a workspace other than the current

one

Delete-Role Delete a role from a workspace

Delete-Workgroup Delete a workgroup

Edit-Discussion-Statement Modify a discussion statement

Edit-Role-Description Edit the description of a role

Edit-Role-Permissions Edit the permissions of a role

Edit-Workspace Edit the properties of a workspace

Enter-User-Administration Invoke the user administration function

Enter-Workspace Enter a workspace

Invoke-Action Invoke an action

List-Workflow-Rules Show a list of workflow rules

Login Login to the system

Logoff Logoff from the system

Open-Background Open a background

Open-Discussion-Forum Open a discussion forum

continued...
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Action Name Description

Open-Discussion-Statement Open a discussion statement

Open-Document Open a document

Open-Message Open a message

Open-Subworkspace Open a workspace under the current one

Post-Discussion-Statement Post a statement to a discussion forum

Refresh-Action-List Redisplay the action list

Refresh-Background-List Redisplay the background list

Refresh-Discussion-List Redisplay the discussion statement list

Refresh-Document-List Redisplay the document list

Refresh-Message-List Redisplay the message list

Refresh-Participant-List Redisplay the participant list

Refresh-Role-List Redisplay the role list

Refresh-Subworkspace-List Redisplay the subworkspace list

Refresh-Workflow-Rule-List Redisplay the workflow rule list

Remove-Discussion-Forum-Notification Remove a notification email address from

a discussion forum

Remove-User-From-Workgroup Remove a user from a workgroup

Remove-User-From-Workspace Remove a user from a workspace

Replace-Background Replace a background with a new one

Replace-Document Replace a document with a new one

Send-Email Send an email

Send-Message Send a message

Switch-Workspace Switch to another workspace

Update-User-Info Update user information

Upload-Background Upload a background

Upload-Document Upload a document

View-Incoming-Messages Display a list of received messages

View-Workflow-Rule-List Display a list of workflow rules

View-Subworkspace-List Display a list of subworkspaces

Identifying unchanged actions

The following four system-level actions are unchanged on the user level:

• Create-Workgroup

• Delete-Workgroup



Chapter 5. Case Study: Modeling and Pattern Extraction in L IVENET 161

• Logoff

• Send-Email

Identifying modified actions

The following two system-level actions are modified on the user level:

• Delete-Message

• Login

Although the semantics of both of these actions are the same as on the system level,

they have slightly different or fewer action attributes on this level. For instance, while on

the system level theLogin action includes a user-id and password, on the user level the

password is not included among its action attributes.

Identifying new actions

All remaining 67 actions identified above are new on this level.

Thus, in summary, of the 70 system-level actions four remain unchanged on this level,

two exist in modified form on this level, and the remaining 64 actions do not exist on the

user level. On the other hand, 67 user-level actions, based on combinations of system-

level actions, are new on this level.

5.1.3.3 Step 3.3: Identifying Action Patterns

As on the system level, for each of the actions identified above, there is one corresponding

action pattern, since each action again has structurally only one possible action context.

The basic components of the action context are the same as before:

Subject: User, Role

Referent: depends on the action involved

Location: Workgroup, Workspace, Session

Time: timestamp of the action

Once the precise action context is identified for each of the 73 actions on the user

level, the 73 user-level action patterns too can be identified.
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Identifying unchanged action patterns

Corresponding to the actions identified above, the following four system-level action

patterns are unchanged on the user level:

• Create-Workgroup-Pattern

• Delete-Workgroup-Pattern

• Logoff-Pattern

• Send-Email-Pattern

Identifying modified action patterns

The following two system-level actions are modified on the user level:

• Delete-Message-Pattern

• Login-Pattern

Identifying new action patterns

Action patterns for all remaining 67 actions identified above are new on this level.

Thus the situation for action patterns is the same as for actions: four action patterns are

unchanged, two are modified, and 67 are new.

5.1.3.4 Step 3.4: Specifying Concepts

Having identified object, action, and action pattern concepts, these can now be specified.

This again resembles the way that concepts were specified on the system level. On the

user level, classes are specified as subclasses of the common classesUser-Lvl-Object,

User-Lvl-Action, andUser-Lvl-Action-Pattern. Below, this is illustrated for un-

changed, modified, and new concepts.

Specifying unchanged concepts

Static and dynamic entities, i.e. objects, actions, and action patterns, which remain un-

changed across levels do not need to be re-specified on the higher level. However, the

original specification of the concept on the lower level created its class as a subclass of

that level’s class of objects (e.g. an object on the system level is defined as a subclass of
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Sys-Lvl-Object). This marked the class as belonging to, and being available on that

level.

Therefore, in order for the same concept to be available on the higher level, its class

specification needs to be extended by adding the higher level’s class of objects as a su-

perclass (this is the case ofunmodified one-to-one correspondencementioned in Sec-

tion 4.2.3.1, p. 106). The resulting multiple inheritance of the class marks it as belonging

to, and being available on, both levels.

For instance, the system-level classLN-Workgroup remains unchanged on the user

level. Its specification can now be extended to includeUser-Lvl-Object as its su-

perclass, as shown below (where theis-a slot in the third line now lists both of its

superclasses):

(defclass LN-Workgroup "A conceptual entity grouping together users

and workspaces."

(is-a Sys-Lvl-Object User-Lvl-Object)

(role concrete)

(single-slot Name

(type STRING)

(cardinality 1 1)))

The remainder of the class, however, is unchanged compared with its system-level

specification. The definition of other classes corresponding to unchanged user-level ob-

jects are extended in the same manner, and the same applies to unchanged user-level

actions and action patterns.

Specifying modified concepts

Modified concepts do not need to be specified anew in their entirety, as usually only some

detail of the existing definition has changed. Therefore, specification of these concepts

can be based on the existing definition and only needs to identify and modify those details

that require change.

This raises the question how the modified class should be created. It is obvious that

the original class cannot be changed to express the modified concept, as this would affect

both levels and thus a modified class specification which would be valid on the higher

level would be invalid on the lower level. Therefore the modified concept has to be

specified as a new class. It would be easiest to create the new higher-level class as a

subclass of the existing lower-level class, only overriding those slots which differ, but

this too is problematic: doing so would imply that instances of the higher-level class are
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some kind of specialization of the lower-level class, and that some instances of the latter

are also instances of the former. But this is not the case; instead, every instance of the

higher-level classcorresponds(but is notequal) to an instance of the lower-level class.

Thus the specification of a modified concept has to be made as a new class, necessarily

also with a different name than before, and directly sub-classing its own level’s common

base class.

An example of a modified concept isStatement which has, as mentioned earlier, the

same meaning on the system and user levels, however differs slightly in detail between

these two levels. Thus, while on the system level the classLN-Statement, which imple-

ments this concept, has a slotBlock to indicate theBlock and thus theForum andDiscus-

sion it belongs to, on the user level these three concepts do not exist, as they have been

replaced by the new conceptDiscussion-Forum. Instead, a different slot,Disc-Forum, is

needed to identify theDiscussion-Forum which theStatement belongs to. Copying the

existing specification ofLN-Statement (given above in Section 5.1.2.4, p. 150) as a base,

the corresponding slot can be changed to produce the new class specification below:

(defclass LN-Discussion-Statement "A statement posted in a discussion

forum."

(is-a User-Lvl-Object)

(role concrete)

(single-slot Disc-Forum

(type INSTANCE)

(allowed-classes LN-Discussion-Forum)

(cardinality 1 1))

(single-slot StatementNo

(type INTEGER)

(cardinality 1 1))

(single-slot Type

(type STRING)

(cardinality 0 1))

(single-slot Originator

(type INSTANCE)

(allowed-classes LN-User)

(cardinality 1 1))

(single-slot ParentStmt

(type INSTANCE)

(allowed-classes LN-Discussion-Statement)
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(cardinality 0 1))

(single-slot Heading

(type STRING)

(cardinality 1 1))

(single-slot Text

(type STRING)

(cardinality 0 1))

(single-slot ArtefactLink

(type STRING)

(cardinality 0 1))

(single-slot DateTimeSent

(type INTEGER)

(cardinality 1 1)))

Note that the definition of the slotParentStmt has also been modified as a result

of the re-specification of this class for the user level, as this particular slot contains a

self-reference, i.e. it now needs to refer to an instance ofLN-Discussion-Statement.

Modified user-level actions and action patterns are specified in a similar manner. For

instance, it was already mentioned that the user-level actionLogin differs slightly from

the corresponding system-level action by omitting the password action attribute. Thus

the specification of the user-level concept for this action is obtained by re-specifying the

class for this level, in the same manner as for the specification of objectLN-Discussion-

Statement above.

Specifying new concepts

The specification of new concepts on higher levels in general parallels that of the specifi-

cation of new concepts on the base level: the required classes have to be specified in full,

from scratch. However, in some cases new concepts are related to existing lower-level

concepts, and in these cases some parts of those existing definitions can flow into the new

specifications.

For instance, as identified earlier, the user-level conceptLN-Discussion-Forum is

new on this level and thus needs to be specified in full. However, this concept is related

to the conceptsLN-Discussion andLN-Forum, and in fact some of the slots of those

two classes are also needed in the new classLN-Discussion-Forum. Thus the class

LN-Discussion-Forum can reuse the specification of those slots, as shown below:

(defclass LN-Discussion-Forum "A forum for the posting of discussion
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statements."

(is-a User-Lvl-Object)

(role concrete)

(single-slot Name

(type STRING)

(cardinality 1 1))

(single-slot Creator

(type INSTANCE)

(allowed-classes LN-User)

(cardinality 1 1))

(single-slot DateCreated

(type INTEGER)

(cardinality 0 1)))

Here, the specification of the slotName is taken from classLN-Discussion, while

specifications of slotsCreator andDateCreated are taken from classLN-Forum.

New user-level actions need to be specified in full too, while again building on some

of the specification of system-level classes. An example of a class representing the user

actionPost-Discussion-Statement is shown below:

(defclass LN-Post-Discussion-Statement "An action that posts a

statement to a discussion forum."

(is-a User-Lvl-Action)

(role concrete)

(single-slot Heading

(type STRING)

(cardinality 1 1))

(single-slot Text

(type STRING)

(cardinality 0 1)))

With the inclusion of action context, as in the case of the system level, the corre-

sponding action pattern can be specified as follows:

(defclass LN-Post-Discussion-Statement-Pattern "An action pattern

that posts a statement to a discussion forum."

(is-a User-Lvl-Action-Pattern)

(role concrete)
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(single-slot Action-Instance

(type INSTANCE)

(allowed-classes LN-Post-Discussion-Statement)

(cardinality 1 1))

(single-slot User

(type INSTANCE)

(allowed-classes LN-User)

(cardinality 1 1))

(single-slot Role

(type INSTANCE)

(allowed-classes LN-Role)

(cardinality 1 1))

(single-slot Discussion-Forum

(type INSTANCE)

(allowed-classes LN-Discussion-Forum)

(cardinality 1 1))

(single-slot Workgroup

(type INSTANCE)

(allowed-classes LN-Workgroup)

(cardinality 1 1))

(single-slot Workspace

(type INSTANCE)

(allowed-classes LN-Workspace)

(cardinality 1 1))

(single-slot Session-Instance

(type INSTANCE)

(allowed-classes Session)

(cardinality 1 1))

(single-slot Timestamp

(type INTEGER)

(cardinality 1 1)))

This specification resembles that of the system-level classLN-Add-Statement-Pat-

tern, with the exception of the slotsAction-Instance andDiscussion-Forum which

now refer to classes that are new on the user level2.
2However, as the discussion about the mapping of concepts across levels below will show, the concepts

differ more than in only this respect.
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Once all user-level objects, actions and action patterns have been specified in this

manner, the specification of this level is complete, and the next step, mapping of concepts,

follows.

5.1.4 Step 4: Defining Mappings Between System Level and User

Level

The previous two steps have created specifications of concepts on the system level and

user level, respectively. However, these concepts stand separate from each other. Thus

it is, for instance, not possible to tell from the specification that the user-level object

LN-Discussion-Forum is related to, and can be derived from, the system-level ob-

jects LN-Discussion and LN-Forum; or that the user-level action patternLN-Post-

Discussion-Statement-Pattern is related to, and can be derived from, the system-

level action patternLN-Add-Statement-Pattern. These relationships and mappings

across the specified classes need to be explicitly defined in the current step, in order to

enable the transformation of information from one level to the next higher level.

Section 4.2.3 (p. 106) discussed three different types of relationships between con-

cepts on adjacent levels, and how to map between them. The simplest type,unmodi-

fied one-to-one correspondence, was already encountered above in the specification of

system-level concepts that are unchanged on the user level. Since the other two types of

correspondences are similar (they both require the identification and specification of map-

pings of slots across classes), a single case is presented below which illustrates the map-

ping in detail for the action pattern classLN-Post-Discussion-Statement-Pattern.

5.1.4.1 Step 4.1: Identifying Source and Target Concepts and Attributes

The previous step identified and specified concepts on the user level. One of these was

the actionPost-Discussion-Statement. This is a new concept on the user level, which

does not exist in that form on the system level. However, this action corresponds to the

sequence of three system-level actions, namelyGet-Block-Tree, Add-Statement, followed

again byGet-Block-Tree. This is the example that was shown in Figure 3.8 on page 80.

Now the mapping of these action concepts is shown.

To map from the system-level classes to the user-level class, first it is necessary

to identify the source of each of the slots of the target classLN-Post-Discussion-

Statement. There are two slots, and consequently two slot mappings:
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No. Source class Source slot Target slot

1 LN-Add-Statement Heading Heading

2 LN-Add-Statement Text Text

In this case, both slots of the target class are mapped from the same source class.

5.1.4.2 Step 4.2: Identifying Mapping Constraints

For the mapping of actions, the sequence of source actions being mapped to the target

action constitutes a constraint. In this case, a sequence of three source actions needs to

be mapped to a single target action:

Seq.No. Source action Target action

1 LN-Get-Block-Tree

2 LN-Add-Statement LN-Post-Discussion-Statement

3 LN-Get-Block-Tree

5.1.4.3 Step 4.3: Specifying Mappings

Specifying slot mappings

Source classes need to be mapped to target classes according to the identified slot map-

pings. This means creating instances of theClass-Mapping andSimple-Slot-Mapping

classes. The following are instances representing the mapping identified above:

([Class-Mapping_02] of Class-Mapping

(Target-Class LN-Post-Discussion-Statement)

(Slot-Map

[Simple-Slot-Mapping_04]

[Simple-Slot-Mapping_05]))

([Simple-Slot-Mapping_04] of Simple-Slot-Mapping

(Target-Class LN-Post-Discussion-Statement)

(Target-Slot [Heading])

(Source-Class LN-Add-Statement)

(Source-Slot [Heading]))

([Simple-Slot-Mapping_05] of Simple-Slot-Mapping

(Target-Class LN-Post-Discussion-Statement)

(Target-Slot [Text])
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(Source-Class LN-Add-Statement)

(Source-Slot [Text]))

The first instance is of classClass-Mapping, identifying the target class,LN-Post-

Discussion-Statement. It contains references to the two instances of classSimple-

Slot-Mapping that follow. These in turn specify the slot mappings identified in Step 4.1

above.

Specifying action sequence mappings

For the mapping of actions, a sequence of actions on one level needs to be mapped to

a single action on the next higher level. For this purpose, the classSequence-Mapping

was defined in Chapter 4. This class now needs to be instantiated in order to represent

the mapping of the sequence identified in Step 4.2 above. The corresponding instance is

shown below:

([Sequence-Mapping_01] of Sequence-Mapping

(Mapping-Target LN-Post-Discussion-Statement)

(Sequence-Elements

LN-Get-Block-Tree

LN-Add-Statement

LN-Get-Block-Tree))

5.1.4.4 Step 4.4: Defining Mapping Functions

Having specified the mapping of slots, and the mapping of action sequences for the given

target class, it is possible to determine how to construct instances of the target class when

the action sequence is encountered in a session. As discussed in Section 4.2.4 (p. 118),

this involves defining amapping function.

For the given case of mapping to the user-level actionLN-Post-Discussion-State-

ment, the mapping functioncreate-ln-post-discussion-statement can be defined,

as follows:

(deffunction create-ln-post-discussion-statement

(?session ?pos)

(if (and (instancep ?session)

(eq (class ?session) Session)

(integerp ?pos)

(eq (class (nth$ ?pos
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(slot-get ?session Session-Actions)))

LN-Get-Block-Tree)

(eq (class (nth$ (+ ?pos 1)

(slot-get ?session Session-Actions)))

LN-Add-Statement)

(eq (class (nth$ (+ ?pos 2)

(slot-get ?session Session-Actions)))

LN-Get-Block-Tree))

then

(bind ?addstmt (nth$ (+ ?pos 1)

(slot-get ?session Session-Actions)))

(make-instance of LN-Post-Discussion-Statement

(Heading (slot-get ?addstmt Heading))

(Text (slot-get ?addstmt Text)))

(return (+ ?pos 3))

else

(return ?pos)

)

)

This function receives two input parameters,?session which holds an instance of

a session, and?pos which identifies the first action, or starting position, in the session

from where to start mapping actions. The function then performs some input validation

and tests whether from the given starting position, a sequence of actionsLN-Get-Block-

Tree, LN-Add-Statement, andLN-Get-Block-Tree can be found. If all conditions are

satisfied, an instance ofLN-Post-Discussion-Statement is created with slot values

taken from the corresponding slots of the instance ofLN-Add-Statement occurring in

the session. Finally, the function returns the position in the session after the matched

action sequence: if the sequence was successfully matched, the new position is the old

position plus three (for the three actions in the matched sequence), to give a new starting

position for a subsequent matching of the remaining action sequences in the session;

if the sequence was not matched, the old position is returned so that another function

can be called to attempt to match it. In this way, repeatedly cycling through all matching

functions for a session will eventually map all system-level action sequences to user-level

actions.

Mapping functions for other action mappings are created in the same manner: slot

mappings and action sequences for a given mapping of actions are identified and speci-
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fied, then a mapping function is defined.

When all such functions have been specified, the step of mapping between system

level and user level is complete.

5.1.5 Step 5: Modeling the Collaboration Level

On the collaboration level, larger units of activity involving two or more users, as well

as involving other objects, are modeled. The main distinguishing feature of this level

compared with the user level is that actions on this level are less detailed, and are for

the most part summaries of those on the level below. For instance, the example of group

discussion shown in Figure 3.10 (p. 84) is a case in point: the collaboration-level action

Group-Discussion is a summary of multiple instances of multiple kinds of user-level ac-

tions. These and other group actions are modeled on this level. As before, the modeling

of this level is performed by modeling its objects, actions, and action patterns.

5.1.5.1 Step 5.1: Identifying Objects

Objects on the collaboration level are those as seen through the collaboration-level view.

As mentioned before, this level differs from the one below in that it considers collab-

orative actions, i.e. actions involving multiple people. The objects appearing in the

collaboration-level view are thus largely the same as the ones appearing in the user-level

view. However, some user-level objects are too detailed for consideration at this level,

and are thus not represented. For instance, whileDiscussion-Forum is an object which

is involved in collaborative activity between two or more users, the discussion that takes

place within it is considered only at an aggregated level, not at the level of individual

instances ofStatement. Thus, discussion statements do not appear in the collaboration-

level view. Similarly, the objectsMessage, Message-Type andMessage-Rule are too de-

tailed constructs, and are only considered collectively in the form of aMessage-Channel

object.

Identifying unchanged objects

The following eight user-level objects remain unchanged on this level:

• Action

• Background

• Discussion-Forum
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• Document

• Role

• User

• Workgroup

• Workspace

Identifying modified objects

No objects from the user level are modified on this level.

Identifying new objects

The objectMessage-Channel is new on this level, encapsulating the three separate user-

level objectsMessage, Message-Rule andMessage-Type:

Message-Channel: a communication channel from a user to a role

5.1.5.2 Step 5.2: Identifying Actions

Actions on the collaboration level involve multiple people. In the case of LIVENET,

where users always perform actions in a certainrole, collaborative actions may thus in-

volve: (1) multiple users occupying the same role; or (2) multiple users each occupying

a different role; or (3) a combination of the two.

Identifying the set of collaborative actions on this level is performed by examining

which user-level action conceptsconnecttwo or more users. Users can be connected

in two different ways: (1)direct connection, where a user-level action performed by

one user is directed at another user; or (2)indirect connection, where a user-level action

performed by one user affects an object which is subsequently accessed by another user,

thus mediatingthe effect of one user’s actions on the other user. Collections of such

user-level actions constitute collaboration-level actions. Therefore, there is no one-to-

one correspondence between user-level actions and collaboration-level actions. For this

reason there are no unchanged or modified actions on this level, instead all actions on

this level are new.
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Actions directly connecting users

For an action that directly connects users, there has to exist at least one user-level action

that is explicitly directed at another user (or role). In the case of LIVENET, there are

two such actions, both related to communication:Send-Email andSend-Message. Both

of these are initiated by one user and send a message to another user, either by external

email, or internally according to a workflow rule. Upon receipt of an internal message,

the message is read by the receiver through the user-level actionOpen-Message3. The

corresponding collaboration-level action isMessage-Exchange: for each pair of users,

any user-level actions of typeSend-Email, Send-Message, or Open-Message involving

those two users as either sender or recipient, taken collectively constitute an instance of

Message-Exchange.

Actions indirectly connecting users

Actions indirectly connecting users involve objects accessed by other users. Identifying

these actions consists of identifying user-level actions which operate on objects that are

subsequently accessed by other users using the same or related user-level actions.

An example of this was mentioned above: group discussion. A user performs the

Post-Discussion-Statement action, thereby posting a statement to a discussion forum.

Subsequently, another user performs theOpen-Discussion-Statement action, reading the

statement that was posted earlier. This user can then in turn post statements which are

read by other users, etc. In this case, the related user-level actions arePost-Discussion-

Statement andOpen-Discussion-Statement. The connecting objects are the discussion

forum and the statements posted in it. The collaboration-level actionGroup-Discussion

thus corresponds to the aggregation of all the related user-level actions for posting and

opening discussion statements in a given discussion forum.

Another example is related to the exchange of documents. Documents are frequently

used in collaborative activity to share information among a group of users. The related

user-level actions involved areAdd-Background, Add-Document, Open-Background,

Open-Document, Replace-Background, Replace-Document, Upload-Background, and

Upload-Document. The connecting objects are the documents and backgrounds being

added, opened, replaced, or uploaded in a workspace. The collaboration-level action

Artefact-Exchange corresponds to the aggregation of these user-level actions within a

given workspace.

Two other collaboration-level actions exist:Workspace-Setup, which refers to the

3External email messages are opened with an external email application, of which no record exists in

the LIVENET log, thus they cannot be considered within the Information Pyramid.
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collaborative configuration and setup of a workspace, aggregating such user-level actions

as Create-Role, Add-User-To-Workspace, Create-Discussion, etc. The other collabor-

ation-level action isContent-Management, which refers to the management of content

such as documents and backgrounds in a workspace, aggregating such user-level actions

asAssign-Document, Deassign-Document, Delete-Document, etc.

In total there are thus following five basic collaborative actions in LIVENET:

Action Name Description

Artefact-Exchange Exchange of documents and/or backgrounds among a group

of users

Content-Management Rights management and removal of documents and/or

backgrounds, performed collaboratively by two or more

users

Group-Discussion Exchange of discussion statements among a group of users

Message-Exchange Asynchronous direct communication between a pair of users

through messages

Workspace-Setup Creation, setup and configuration of a workspace, performed

collaboratively by two or more users

This set of actions is small, much smaller than the corresponding sets on the lower

levels. The reason for this is that the sets of actions on the levels below arecomplete

in that they capture all possible actions on those levels, whereas on this level the set of

actions is not complete. The issue of completeness of specification was first addressed in

Section 4.4 (p. 125) in the context of visualization. When considering the system-level

set of actions, for instance, it corresponds to the set of LIVENET commands, with one

action for each command. For any given version of the system, this set of commands

is finite and fixed, and thus the set of corresponding system-level actions is complete.

Similarly for the user level: the set of actions here consists of all the functions provided

to the user through the LIVENET user interface. Again, for any given version of the

system, this set of functions is finite and fixed, and thus the set of corresponding user-

level actions is complete. On the collaboration level, however, the set of actions consists

of certain aggregations of certain subsets of user-level actions. Given different subsets

and different aggregations, different collaboration-level actions can be defined.

Thus the set of actions on this level is not complete, but isopen-endedandextensible,

by identifying different basic types of actions, or different sub-types of basic action types.
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5.1.5.3 Step 5.3: Identifying Action Patterns

The five collaboration-level actions identified above can be regarded as constituting a

set ofbasicactions for this level, while leaving open the possibility of defining different

subtypesof these actions. For instance, theGroup-Discussion action simply refers to the

posting and reading of statements in a discussion forum among a group of users. It does

not specify in what manner different users participate in this group discussion. However,

it is possible to distinguish between differentstylesof theGroup-Discussion action based

on, for example, the differences in use between different users. For instance, one style of

group discussion could bequestion and answer, where one user or role posts statements

that initiate new discussion threads (to ask questions), while another user or role posts

replies to those statements (answering the questions). This action still matches the same

basic characteristics of theGroup-Discussion action (a group of users posting and reading

discussion statements in a given discussion forum), but this style of discussion constitutes

a specialization, or subtype of the basic group discussion action. Another specialization

of theGroup-Discussion action is one where the discussion forum is used by one role to

post statements that are notices or announcements, while another role simply reads these

statements without posting any statements of their own. Figure 5.6 shows this in the form

of both an EMOO diagram and the structure of the concept represented: part (a) of the

figure shows the basic action patternGroup-Discussion-Pattern, while part (b) shows the

action patternNotice-Board-Pattern.

These two action patterns differ in that the first one,Group-Discussion-Pattern, pro-

vides for an arbitrary number of roles, while the second one,Notice-Board-Pattern, has

exactly two roles:Poster andReader, where the first one is the role that posts statements,

and the second one is the role that reads statements. Furthermore, thePoster role per-

forms both read and post actions (i.e. instances of theOpen-Discussion-Statement and

Post-Discussion-Statement actions), while theReader role performs only read actions.

Other specializations of this and other action patterns may similarly exist, and can be

identified by exploring the data collected from the collaboration system.

5.1.5.4 Step 5.4: Specifying Concepts

Having identified concepts, these can now be specified. As this parallels the specification

of concepts on lower levels, it is omitted here.

Once again, when the specification of objects, actions, and action patterns is complete,

the next step, mapping of concepts, can follow.



Chapter 5. Case Study: Modeling and Pattern Extraction in L IVENET 177

Role 1

Forum
Discussion−

Role 2

.

.

.

Pattern

Action−Instance [1:1]

LN−Group−Discussion−

Roles [1:?]
Discussion−Forum [1:1]

Workgroup [1:1]
Workspace [1:1]

Begin−Timestamp [1:1]
End−Timestamp [1:1]

(a) Group-Discussion-Pattern

Poster

Reader

Forum
Discussion−

Pattern

Action−Instance [1:1]

LN−Notice−Board−

Poster [1:1]

Discussion−Forum [1:1]
Workgroup [1:1]
Workspace [1:1]

Begin−Timestamp [1:1]
End−Timestamp [1:1]

Reader [1:1]

(b) Notice-Board-Pattern

Figure 5.6: Different types of action patterns based on actionGroup-Discussion

5.1.6 Step 6: Defining Mappings Between User Level and Collabor-

ation Level

As with the previous mapping, it is again necessary to define how concepts on the two

levels just modeled are related.

On the collaboration level, most objects were found to be unchanged from the user

level, so that no mappings need to be defined for these. Only one new object was in-

troduced (Message-Channel) which needs to be mapped, in the same manner as other

objects on lower levels. The main focus of mapping on this level, however, is the map-

ping of actions. The mapping of the five basic collaboration-level actions is quite similar,

and is illustrated below for theGroup-Discussion-Pattern action concept.

5.1.6.1 Step 6.1: Identifying Source and Target Concepts and Attributes

Similar to the mapping on the lower levels, again the sources of each target slot in each

class to be mapped need to be identified. On the collaboration level, however, the type
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of correspondence to the lower level is different than on the level below: here it is an

aggregationof multiple instances of lower-level classes, as opposed to a direct corre-

spondence of slot values across levels. Therefore not all target slots can be mapped

from some given source slots, and some may instead need to becomputed. For the class

LN-Group-Discussion-Pattern, the mapping of slots is identified below4:

No. Source class Source slot Target slot

1 LN-Post-Disc-Stmt-Pat.
all(Role) Roles

LN-Open-Disc-Stmt-Pat.

2 LN-Post-Disc-Stmt-Pat.
Discussion-Forum Discussion-Forum

LN-Open-Disc-Stmt-Pat.

3 LN-Post-Disc-Stmt-Pat.
Workgroup Workgroup

LN-Open-Disc-Stmt-Pat.

4 LN-Post-Disc-Stmt-Pat.
Workspace Workspace

LN-Open-Disc-Stmt-Pat.

5 LN-Post-Disc-Stmt-Pat.
min(Timestamp) BeginTimestamp

LN-Open-Disc-Stmt-Pat.

6 LN-Post-Disc-Stmt-Pat.
max(Timestamp) EndTimestamp

LN-Open-Disc-Stmt-Pat.

Some notes on a few special mappings: the first slot,Roles, a multislot, is mapped by

aggregating all of the values (indicated by the aggregation functionall) of the single-slot

Role of the instances of the given source classes. The last two slots,BeginTimestamp

andEndTimestamp, are also mapped through an aggregation by obtaining, respectively,

the minimum and maximum values of theTimestamp slot from all instances of the two

indicated source classes.

5.1.6.2 Step 6.2: Identifying Mapping Constraints

For the mapping to theLN-Group-Discussion action, the only constraint is that the

instances of the source classes need to share the same values for the context attributes

Workgroup, Workspace andDiscussion-Forum. This can be expressed as follows:

4Note that in the table the names of source classesLN-Post-Discussion-Statement-Pattern and

LN-Open-Discussion-Statement-Pattern have been shortened toLN-Post-Disc-Stmt-Pat. and

LN-Open-Disc-Stmt-Pat., respectively.
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Constraint

(and (eq (slot-get ?PostStmt Workgroup)

(slot-get ?OpenStmt Workgroup)

?Workgroup)

(eq (slot-get ?PostStmt Workspace)

(slot-get ?OpenStmt Workspace)

?Workspace)

(eq (slot-get ?PostStmt Discussion-Forum)

(slot-get ?OpenStmt Discussion-Forum)

?Discussion-Forum))

Here,?Workgroup, ?Workspace, and?Discussion-Forum are variables referring,

respectively, to instances of the workgroup, workspace, and discussion forum that form

the shared context, while?PostStmt and ?OpenStmt are variables ranging over all

instances of theLN-Post-Discussion-Statement-Pattern and LN-Open-Discus-

sion-Statement-Pattern classes, respectively.

5.1.6.3 Step 6.3: Specifying Mappings

The previously identified source and target classes and slots need to specified in the form

of a class mapping and multiple slot mappings. As on other levels, this again means

creating instances of theClass-Mapping andSimple-Slot-Mapping classes. In addi-

tion, for a number of slots instances ofAggregated-Slot-Mapping need to be created.

Details of this are omitted here for the sake of brevity.

5.1.6.4 Step 6.4: Defining Mapping Functions

Once again, having identified mappings of slots, as well as mapping constraints, it is

possible to define a mapping function that can transform instances of the source classes

to instances of the target class.

For the given case of mapping to the collaboration-level action pattern classLN-

Group-Discussion-Pattern, the mapping function to be defined follows the same

principles as the functioncreate-ln-post-discussion-statement defined in step

4.4. Again, for the sake of brevity, details are omitted here.

When this and all other functions have been specified, the step of mapping between user

level and collaboration level is complete.
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5.1.7 Step 7: Modeling the Task Level

The task level contains information about larger units of activity, typically composed of

a number of lower-level actions, configured in certain ways so as to support the perfor-

mance of certain tasks. Once again, the modeling of this level considers objects, actions,

and action patterns.

5.1.7.1 Step 7.1: Identifying Objects

As with the levels below, information at the task level is perceived through its own view,

the task view. In this view, activity typically consists of not just one, but of several actions

in combination. The objects involved in the activity remain the same as on the previous

level, i.e.:

• Action

• Background

• Discussion-Forum

• Document

• Message-Channel

• Role

• User

• Workgroup

• Workspace

Thus, none of the objects on the task level are modified or new.

5.1.7.2 Step 7.2: Identifying Actions

Actions on the task level consist of combinations of actions from lower levels, for the

most part from the collaboration level. These are combined in such a way as to facili-

tate the performance of certain tasks. Being combinations of lower-level actions, these

actions are thus all new on this level.

Identifying the set of tasks on this level is performed by examining how collaboration-

level actions areconnectedwith each other. When the same objects, such as roles, doc-

uments, discussion forums, etc. exist in two or more collaboration-level actions, they
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Figure 5.7: EMOO diagram of theDouble-Blind-Review task-level action belonging to

the publishing domain

are considered to be connected. An example of this was shown in Figure 3.11 (p. 86):

collaboration-level actionsGroup-Discussion andDocument-Sharing are connected, be-

cause the rolesCoordinator andWriter exist in both. “Plugging together” such connected

action patterns from the collaboration level produces the resulting task-level action pat-

tern.

What was mentioned on the collaboration level about the open-endedness of the set of

actions is even more so the case on the task level. Because any new combination of lower-

level action patterns produces a new task-level action pattern, the number of such action

patterns is virtually unlimited. However, unlike the level below which contained general-

purpose action patterns such as for group discussion, document exchange, or peer-to-peer

messaging, the action patterns on the task level usually are more or lessdomain-specific.

The example of Figure 3.11, for instance, belongs to the domain of report writing, which

is still a fairly generic domain. However, other task-level action patterns can belong

to far more specialized domains. For instance, the domain of publishing involves tasks

related to manuscript preparation. A task in this domain could beManuscript-Layout or

Chapter-Review. The configuration of these tasks is specific to the publishing domain:

they involve domain-specific roles and artefacts, combined in a domain-specific way.

An example is the task of reviewing a manuscript in preparation for publication. A

domain-specific form of review is thedouble-blind reviewwhere authors and reviewers

are kept unaware of each other’s identities. This is illustrated by the EMOO diagram

shown in Figure 5.7. The task involves roles specific to the domain:Author, Editor, and
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Reviewer; as well as artefacts:Manuscript andReviews. The double-blind review is re-

alized through two separate discussion forums:Discuss Manuscript for the editor and

reviewer roles to discuss a manuscript submitted by an author; andDiscuss Reviews for

the editor and author roles to discuss any reviews submitted by the reviewers. Specific

access configurations complete the setup of the action pattern: all roles have post/read

access to the discussion forums, and read access to the three artefacts. Only the author

role, however, has write access to the manuscript, while only the reviewer role has write

access to the reviews. This particular combination of lower-level objects and actions thus

constitutes a task-level action pattern specific to the domain of publishing. Other task-

level action patterns from the same and other domains are made up in a similar fashion.

The specific set of task-level action patterns for a given system and a given domain has

to be gleaned from usage data collected from the system. The use of information visual-

ization for the identification of such action patterns can greatly facilitate this process, as

was discussed in Section 4.4.

5.1.7.3 Step 7.3: Identifying Action Patterns

Actions on the task level, beingcombinationsof several lower-level actions rather than

aggregations(as was the case on the lower levels), are not performed by a single user

or at a single time. Instead they extend over a period of time and involve multiple users

and/or roles. For this reason, the kind of information associated with the actions them-

selves, such as action attributes, is very limited, and most information belongs to the ac-

tion context. Therefore, action patterns involving these actions contain most or all of the

information associated with the tasks represented. Thus for the task represented in Fig-

ure 5.7, no action attributes can be identified, while all the relevant components, namely

the collaboration-level action patterns involved (instances ofGroup-Discussion-Pattern

andArtefact-Exchange-Pattern) as well as information about location and time are kept

in a corresponding action pattern,Double-Blind-Review-Pattern. Figure 5.8 shows the

structure of the classLN-Double-Blind-Review-Pattern representing this task-level

action pattern.

Just as with this example, likewise for other actions their action patterns need to be

identified so as to capture the relevant information.

5.1.7.4 Step 7.4: Specifying Concepts

Having identified concepts, these can now be specified. As this parallels the specification

of concepts on lower levels, it is omitted here.
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Figure 5.8: Task-level action pattern classLN-Double-Blind-Review-Pattern

Once again, when all objects, actions, and action patterns have been specified, the mod-

eling of the task level is complete, and the mappings from collaboration to task level can

be defined.

5.1.8 Step 8: Defining Mappings Between Collaboration Level and

Task Level

As with the previous mapping, it is again necessary to define how concepts on the two

levels just modeled are related.

In the case of the task level, no object concepts need to be mapped as all objects

remain unchanged from the level below. Action and action pattern concepts, on the other

hand, being all new on this level, require mapping.

5.1.8.1 Step 8.1: Identifying Source and Target Concepts and Attributes

Just as with previous mappings, again the sources of any slots in target classes need to

be identified. To map to a task-level action pattern, its constituent collaboration-level

action patterns need to be identified. Often, entire instances are mapped from the lower

level to a slot on the higher level. This is illustrated below for the mapping to target class

LN-Double-Blind-Review-Pattern5:

No. Source class Source slot Target slot

1 LN-Group-Disc-Pat. instance() AuthorDiscussion

continued...

5Note that in the table the names of source classesLN-Group-Discussion-Pattern and LN-

Artefact-Exchange-Pattern have been shortened toLN-Group-Disc-Pat. and LN-Artef-Exch-

Pat., respectively.
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No. Source class Source slot Target slot

2 LN-Group-Disc-Pat. instance() ReviewerDiscussion

3 LN-Artef-Exch-Pat. instance() Manuscript-Exchange

4 LN-Artef-Exch-Pat. instance() Review-Exchange

5 LN-Group-Disc-Pat.
Workgroup Workgroup

LN-Artef-Exch-Pat.

6 LN-Group-Disc-Pat.
Workspace Workspace

LN-Artef-Exch-Pat.

7 LN-Group-Disc-Pat.
min(BeginTimestamp) BeginTimestamp

LN-Artef-Exch-Pat.

8 LN-Group-Disc-Pat.
max(EndTimestamp) EndTimestamp

LN-Artef-Exch-Pat.

Here, the first four slots are mapped frominstancesof the source classes to the target

slots. The next two slots are straightforward mappings of slot values. Finally, the last

two slots are mapped through aggregation by obtaining, respectively, the minimum and

maximum values of the indicated timestamp values in the source classes.

5.1.8.2 Step 8.2: Identifying Mapping Constraints

For the mapping to the action pattern classLN-Double-Blind-Review-Pattern, the

constraints that need to be satisfied are that the instances of the source classes need to

share the same values for the action context attributesWorkgroup andWorkspace, and

that the individual collaboration-level action patterns are connected through the shared

rolesEditor, Author, andReviewer. This can be expressed as follows:

No. Constraint

1 (and (eq (slot-get ?GroupDisc1 Workgroup)

(slot-get ?GroupDisc2 Workgroup)

(slot-get ?ArtefExch1 Workgroup)

(slot-get ?ArtefExch2 Workgroup))

(eq (slot-get ?GroupDisc1 Workspace)

(slot-get ?GroupDisc2 Workspace)

(slot-get ?ArtefExch1 Workspace)

(slot-get ?ArtefExch2 Workspace)))

continued...
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No. Constraint

2 (exists ?Role

(and (eq (slot-get ?Role Name) Editor)

(member$ ?Role (slot-get ?GroupDisc1 Roles))

(member$ ?Role (slot-get ?GroupDisc2 Roles))

(member$ ?Role (slot-get ?ArtefExch1 Roles))

(member$ ?Role (slot-get ?ArtefExch2 Roles))))

3 (exists ?Role

(and (eq (slot-get ?Role Name) Author)

(member$ ?Role (slot-get ?GroupDisc1 Roles))

(not (member$ ?Role (slot-get ?GroupDisc2 Roles)))

(member$ ?Role (slot-get ?ArtefExch1 Roles))

(member$ ?Role (slot-get ?ArtefExch2 Roles))))

4 (exists ?Role

(and (eq (slot-get ?Role Name) Reviewer)

(member$ ?Role (slot-get ?GroupDisc2 Roles))

(not (member$ ?Role (slot-get ?GroupDisc1 Roles)))

(member$ ?Role (slot-get ?ArtefExch1 Roles))

(member$ ?Role (slot-get ?ArtefExch2 Roles))))

Here,?GroupDisc1 and?GroupDisc2 are variables ranging over instances of the

LN-Group-Discussion-Pattern class, one for each of the two group discussions in-

volved in this task-level action pattern. Similarly,?ArtefExch1 and?ArtefExch2 are

variables ranging over instances of theLN-Artefact-Exchange-Pattern class, for the

two artefact exchanges involved in this task-level action pattern. Finally,?Role is a vari-

able ranging over instances of theLN-Role class.

The first constraint states that the two instances ofLN-Group-Discussion-Pattern

and ofLN-Artefact-Exchange-Pattern must reside in the same workgroup and work-

space. The second constraint requires theEditor role to be present in both group dis-

cussions and both artefact exchanges. The third constraint requires theAuthor role to be

present in the first group discussion, and not in the second one, and also to be present in

both artefact exchanges. Lastly, the fourth constraint requires theReviewer role to be

present in the second group discussion, and not in the first one, and again in both arte-

fact exchanges. In this way, the requirement of mutual anonymity between author and

reviewers can be ensured.
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5.1.8.3 Step 8.3: Specifying Mappings

The previously identified source and target classes and slots need to be specified in the

form of a class mapping and multiple slot mappings. As on other levels, this again means

creating instances of theClass-Mapping andSimple-Slot-Mapping classes. For some

slots, instances ofAggregated-Slot-Mapping andInstance-Slot-Mapping need to

be created. Details of this specification are omitted here.

5.1.8.4 Step 8.4: Defining Mapping Functions

Once again, having identified mappings of slots, as well as mapping constraints, it is

possible to define a mapping function that can transform instances of the source classes to

instances of the target class. In this case, the mapping function needs to take instances of

some of the source classes and place references to these instances in the target classLN-

Double-Blind-Review-Pattern. Apart from this difference, however, the mapping

function required resembles the example shown earlier in Step 4.4, and is omitted here

for brevity.

Mapping functions for other action mappings need to be created in the same manner:

slot mappings and constraints need to be identified and specified, then a mapping function

needs to be defined.

When all such functions have been specified, the mapping step for the task level is

complete.

5.1.9 Step 9: Modeling the Process Level

The process level is the highest level in the Information Pyramid, containing information

about processes, the largest units of activity. Processes are collections of tasks and inter-

task relationships. As before, modeling of this level considers objects, actions and action

patterns.

5.1.9.1 Step 9.1: Identifying Objects

Once again, on the process level information is perceived through its own view, the pro-

cess view. This is a high-level view in which only tasks appear, and in which the objects

involved in those tasks are not of concern. Thus no objects need to be modeled at this

level.
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5.1.9.2 Step 9.2: Identifying Actions

As just mentioned, the only information appearing at this level is related to the combina-

tion of collaborative tasks into processes.

Process-level action patterns can be identified by examining information flows be-

tween tasks. An information flow exists, for example, when one task creates a document

and another task subsequently accesses that document. Information flows such as these

always involve two tasks, one being an information producer, the other an information

consumer. The example in Figure 2.6 (p. 29) showed several instances of such infor-

mation flows between tasks (represented by an artefact between two tasks and an arrow

pointing from a task to it and from it to another task). By looking for pairs of tasks that are

linked through information flows, and for the tasks linked from those tasks, recursively,

it is possible to identify a whole network of tasks that are thus related.

5.1.9.3 Step 9.3: Identifying Action Patterns

As with the task level, the set of action patterns on this level is both open-ended and

domain-specific: any number of action patterns can be defined for any combination of

tasks into processes that serve the collaborative work of specific domains. Actual pro-

cesses can be obtained from the collaboration data, and information visualization can

help identify process-level action patterns within it, as was discussed in Section 4.4. For

instance, the task-level action patternDouble-Blind-Review-Pattern may be identified as

belonging together with other task-level action patterns in a process of manuscript prepa-

ration.

5.1.9.4 Step 9.4: Specifying Concepts

Once information on this level has been identified, the corresponding concepts can be

specified. On the process level, the only concepts to be specified are related to dynamic

information, all of which are new on this level. Thus no unchanged or modified concepts

need to be specified.

Process-level action patterns are the new concepts of this level. These action patterns

are mainly represented by the process’s tasks, together with a few attributes representing

the process’s action context. Thus specifications of process-level actions and action pat-

terns need to create classes that contain references to the tasks belonging to the process.

An example was the manuscript preparation process-level action pattern mentioned

above, which can be specified as the classLN-Manuscript-Preparation-Pattern,

shown in Figure 5.9. The class consists of four slots for four task-level action patterns that
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Figure 5.9: Process-level action pattern classLN-Manuscript-Preparation-Pattern

make up this process-level action pattern, and two action context attributes identifying

this action pattern’s time interval.

After all process-level actions and action patterns have been specified in this manner, the

modeling of the process level is complete. Only the mapping from the task level to the

process level remains in order to complete the Information Pyramid, which is discussed

next.

5.1.10 Step 10: Defining Mappings Between Task Level and Process

Level

As with the previous mapping, it is again necessary to define how concepts on the two

levels just modeled are related.

In the case of the process level, there are no objects to be mapped as the process level

view does not include objects. Process-level action patterns, however, being all new on

this level, require mapping.

5.1.10.1 Step 10.1: Identifying Source and Target Concepts and Attributes

As before, target concepts need to be mapped from corresponding source concepts, by

mapping slots across classes. In the case of process-level action patterns, most informa-

tion consists of specifications of the collections of tasks involved, but usually a few slots

of context information are also included which need to be mapped. An example of such

a mapping is shown below, for classLN-Manuscript-Preparation-Pattern6.

6Note that in the table the names of source classes have been shortened by abbreviating thePattern

suffix in the class name toPat.
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No. Source class Source slot Target slot

1 LN-Create-Proposal-Pat. instance() Create-Proposal

2 LN-Plan-Manuscript-Pat. instance() Plan-Manuscript

3 LN-Acquire-Chapters-Pat. instance() Acquire-Chapters

4 LN-Double-Blind-Review-Pat. instance() Review-Manuscript

5 LN-Create-Proposal-Pat.

min(BeginTimestamp) BeginTimestamp
LN-Plan-Manuscript-Pat.

LN-Acquire-Chapters-Pat.

LN-Double-Blind-Review-Pat.

6 LN-Create-Proposal-Pat.

min(EndTimestamp) EndTimestamp
LN-Plan-Manuscript-Pat.

LN-Acquire-Chapters-Pat.

LN-Double-Blind-Review-Pat.

TheLN-Manuscript-Preparation process-level action pattern involves four task-

level action patterns:LN-Create-Proposal-Pattern, LN-Plan-Manuscript-Pat-

tern, LN-Acquire-Chapters-Pattern, and LN-Double-Blind-Review-Pattern.

The corresponding target slots are mapped from instances of the four task-level action

patterns (indicated by theinstance() keyword). The begin and end timestamp values of

the process-level action pattern are mapped through aggregation, by obtaining the cor-

responding minimum and maximum values from these four task-level action patterns,

respectively.

5.1.10.2 Step 10.2: Identifying Mapping Constraints

Given that the mapping to process-level action patternLN-Manuscript-Preparation-

Pattern is very simple, there are no mapping constraints.

5.1.10.3 Step 10.3: Specifying Mappings

The specification of mappings of process-level action patterns parallels that of the levels

below; in the interest of brevity it is therefore not shown here.

5.1.10.4 Step 10.4: Defining Mapping Functions

Mapping functions need to receive a collection of task-level action patterns as their input

and produce instances of process-level action patterns. This corresponds to the way that

mapping functions on lower levels are implemented. For example, for the mapping to
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Figure 5.10: Horizontal and vertical links between some of the concepts in the LIVENET

ontology on different levels of the Information Pyramid

process-level action patternLN-Manuscript-Preparation-Pattern, a mapping func-

tion needs to receive four instances of task-level action patterns (one for each of the four

classes involved). It then needs to produce an instance of the target class with references

to these task-level action pattern instances, and needs to derive the overall begin and end

timestamp values of the process-level action pattern from the instances of the task-level

action patterns, as identified in Step 10.1 above.

Once all processes and their mappings have been specified, the Information Pyramid

is complete, allowing the derivation of highest-level action patterns from lowest-level

information.

5.1.11 Relationships Between Concepts in the Completed Ontology

Once the ontology of a particular collaboration system has been completely specified,

such as the one for LIVENET that has been illustrated on the preceding pages, specifica-

tions of a large number of concepts exist. These concepts do not exist in isolation, but

instead most of them are related to one another in different ways. For instance, some

concepts may reference other concepts on the same level. Other concepts may be ab-

stractions of one or more concepts on a lower level. Thus the completed ontology can be

thought of as consisting of multiple levels (corresponding to the levels of the Information

Pyramid), withhorizontal and vertical linksrelating concepts within and across levels,

respectively. This is illustrated in Figure 5.10.

The figure shows a few of the concepts that were discussed in the specification of the
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L IVENET ontology on the preceding pages, with one example each of an action, an action

pattern, and an object, on the five levels from system level up to the process level (recall

that the system level was identified as the base level, which is why the infrastructure

level is absent in the ontology; moreover, since on the process level there are no object

concepts, the corresponding space in the figure is empty).

The horizontal lines linking concepts represent references from one to another con-

cept. Thus, for example, the system-level conceptAdd-Statement-Pattern, an action pat-

tern concept, is related to the action conceptAdd-Statement and the object conceptBlock

on the same level, because the action patternAdd-Statement-Pattern involves the action

Add-Statement, and an instance ofBlock is the referent of this action. Similar comments

apply on the other four levels.

On the other hand, the vertical lines linking concepts represent relationships between

sources and targets of mapped concepts, where the higher-level concept is an abstraction

of the lower-level one. Thus, for example, the user-level action conceptPost-Discussion-

Statement is an abstraction of the system-level action conceptAdd-Statement, and is

mapped from it. On the other hand,Post-Discussion-Statement is itself mapped to a

higher-level concept, namely collaboration-level action conceptGroup-Discussion. The

same applies to other concepts related through vertical links.

It can also be seen that some concepts appear on more than one level, such as the

object conceptDiscussion-Forum which exists on the user, collaboration, and task levels.

This is due to the fact that this concept appears unaltered in the respective views of

those levels (i.e. the user, collaboration, and task views). It was seen that this concept is

specified as belonging to all these levels by including the relevant levels’ common classes

as its superclasses.

Thus a completed ontology of a given collaboration system consists of amatrix of

inter-related concepts that makes it possible to relate information obtained from collab-

oration data, and to derive progressively higher-level information from it.

5.2 Pattern Extraction from L IVE NET Data

The preceding section has demonstrated the specification of an ontology of concepts

related to the LIVENET collaboration system. The present section carries on from there

to illustrate the use of this ontology in the extraction of patterns of virtual collaboration

from data collected by the LIVENET collaboration system.

This process makes use of the LIVENET Workspace Visualizer, an information vi-

sualization tool developed for this purpose which assists in the identification of highest-
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level action patterns in the Information Pyramid. Details of this tool are given in Ap-

pendix A.

5.2.1 Data Collection

The extraction of patterns of virtual collaboration requires a body of data from which to

extract the patterns. This in turn requires data collection facilities, and a source of data.

Both of these are discussed below.

5.2.1.1 Data Collection Facilities

The extraction of patterns of virtual collaboration from a collaboration system requires

that system to collect collaboration data. In the case of the LIVENET collaboration sys-

tem, it was originally designed to only maintain a database of objects, but not to record

any actions. In order to collect information on actions and thereby to make pattern ex-

traction possible, a logging facility was added to LIVENET. This records details of all

system-level actions taking place in the system.

Figure 5.11 shows the components involved in the data collection in LIVENET. L IVE-

NET is a client-server system, with multiple clients connected to a single server. Clients

send requests to the server, which in turn services these requests. The requests sent by

L IVENET clients are actions to be performed by the server, usually (but not necessar-

ily) involving L IVENET objects such as workspaces, documents, discussion forums, etc.

When a LIVENET client (shown as the box on the top right) sends a request to perform

an action to the LIVENET server (shown as the box on the top left), the server’s logging
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subsystem records the action in an action log file. The LIVENET server then performs the

action, which may result in the creation or modification of objects, which are stored in

a database managed by a relational database management system with which the LIVE-

NET server interacts. Thus information on both objects and actions can be obtained from

L IVENET by accessing the object database and the action log.

5.2.1.2 Data Source

To extract patterns of virtual collaboration, data originating from actual users of the

L IVENET system needed to be obtained. At the time of writing, most of the users of

L IVENET are students and academics at the University of Technology, Sydney (UTS),

as well as a few other universities. Students of the postgraduate-level course “Conduct-

ing Business Electronically” at UTS were selected as the source of data. These students

were going to use the LIVENET system as part of their course, to design collaboration

spaces and also to facilitate their own work of preparing group assignments, therefore

they constituted a suitable user group for obtaining data. The students were asked for

permission to use the data generated by their use of LIVENET. A total of 129 out of 232

students, about 56% of the class, consented to the use of their data. Data was collected

for three months, from 10th August to 9th November 2000, which was the time period

during which the students were using the LIVENET system. About half a million action

records were collected in the action log, while the object database contained more than

600 workspaces created during the data collection period.

To illustrate the extraction of action patterns from this data, the data from one stu-

dent group consisting of five members was chosen for pattern extraction. This group,

designated as “Group 9”, used LIVENET for facilitating the preparation of their group

assignments. This work took place in one workspace,cbe-group-09 Master, referred

to below as the group’s “master workspace”. The action log contained 2737 system-level

actions performed by members of Group 9 in their master workspace during the data

collection period.

The extraction and mapping of action patterns for Group 9 is shown in the remain-

der of this section; for details about the number of system-level actions per session, the

number of sessions per day, and a count of different system-level actions performed,

interested readers may refer to Appendix B .

5.2.2 Pattern Extraction

Once the data was collected, action patterns were extracted from it. This involved the

use of both automated tools as well as manual extraction using database query facilities.
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Moreover, the LIVENET Workspace Visualizer described in Appendix A was used in the

identification of task-level action patterns. Identification and extraction of action patterns

was guided by the previously specified ontology. The individual steps were:

1. Import of action log to a database. To facilitate the querying and manipulation

of records in LIVENET’s action log, the action log was imported into a relational

database. A program specially written for this purpose created one row in a log

database table for each log record contained in the action log file. The total number

of such action log records for Group 9 was 2737. The program also performed

some validation of the log data. These log records constitute the base-level (i.e.

system-level) actions.

2. Derivation of user-level actions. Given the system-level actions in the log database

table, user-level actions were derived according to the specifications of the LIVE-

NET ontology, through simple matching of sequences of system-level actions. This

was performed by another specially written program. A total of 909 user-level ac-

tions were derived from the 2737 system-level actions of Group 9.

3. Derivation of action patterns at the collaboration level. From the user-level ac-

tions, actions and action patterns at the collaboration level were derived. At this

level, action patterns are more easily identifiable, and data volume is smaller, so

this task was performed manually using SQL queries against the database of user-

level action records. Once again, the higher-level actions and action patterns were

derived according to the mappings specified in the LIVENET ontology.

4. Identification of action patterns at the task level. Given the collaboration-level

action patterns, the LIVENET Workspace Visualizer was used to aid in the identi-

fication of task-level action patterns.

The records of actions mentioned above were complemented by records of objects

contained in LIVENET’s object database.

5.2.2.1 Mapping Action Patterns from System Level to User Level

The extraction and mapping of action patterns from the collected data is illustrated on

one particular subset of data for one particular session involving one member of Group

9. The detailed action log records of this session (with session number 4228) are shown

in the Appendix in Section B.2.4.

The session consists of a total of 38 system-level actions, as shown in the left half of

the table below:
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System-level actions User-level actions

1 Getmyworkspaces 1 Login

2 Setworkspace 2 Enter-Workspace

3 Get-Led-Workgroups

4 Get-Workspace-Tree

5 Get-Role-Objects

6 Get-Role-Objects

7 Get-Role-Objects

8 Get-Role-Objects

9 Getroles

10 Getparticipants

11 Get-Role-Messages

12 Get-Msg-Types

13 Get-User-Email-Homepages

14 Add-Object 3 Add-Document

15 Get-Role-Objects

16 Add-Object 4 Add-Document

17 Get-Role-Objects

18 Open-Object 5 Open-Document

19 Open-Object 6 Open-Document

20 Open-Object 7 Open-Document

21 Open-Object 8 Open-Document

22 Delete-Object 9 Delete-Document

23 Get-Role-Objects

24 Add-Object 10 Add-Document

25 Get-Role-Objects

26 Open-Object 11 Open-Document

27 Add-Object 12 Add-Document

28 Get-Role-Objects

29 Add-Object 13 Add-Document

30 Get-Role-Objects

31 Add-Object 14 Add-Document

32 Get-Role-Objects

33 Get-Block-Tree 15 Open-Discussion-Forum

continued...
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System-level actions User-level actions

34 Get-Block-Tree 16 Post-Discussion-Statement

35 Add-Statement

36 Get-Block-Tree

37 Normal-Close 17 Logoff

38 Logoff

For the given data of each of these actions, a corresponding system-level action

pattern was extracted. For instance, from the sequence of system-level actions 34–36

(Get-Block-Tree, Add-Statement, Get-Block-Tree) the corresponding system-level

action patternsLN-Get-Block-Tree-Pattern, LN-Add-Statement-Pattern andLN-

Get-Block-Tree-Pattern were extracted, containing values for all slots of those action

patterns. In the case of theLN-Add-Statement-Pattern action pattern, for example,

several instances of objects are referenced, including one each ofLN-User, LN-Role,

LN-Block, LN-Workgroup, LN-Workspace, andSession, as well as the actionLN-Add-

Statement (this corresponds to the modeling of these concepts on the system level of

the LIVENET ontology; refer to Figure 5.4 on page 155). Represented in the form of an

EMOO diagram, the sequence of these three action patterns is depicted in Figure 5.12.

Having extracted system-level actions and action patterns from the source data, these

were mapped to the user level according to the specified mappings in the LIVENET

ontology. This mapping is shown in the right half of the table above. A sequence of

one or more system-level actions were mapped to a single corresponding user-level ac-

tion. The 38 system-level actions of session 4228 were thus mapped to 17 user-level

actions. For example, the sequence of system-level actions 34–36 (Get-Block-Tree,

Add-Statement, Get-Block-Tree) was mapped to user-level action 16 (Post-Dis-

cussion-Statement). An EMOO diagram showing an instance of the resulting user-

level action patternPost-Discussion-Statement-Pattern is shown in Figure 5.13.

5.2.2.2 Mapping Action Patterns from User Level to Collaboration Level

Once action patterns were mapped to the user level, the next step was to map user-level

action patterns to the next-higher level, the collaboration level. Once again, this was

performed based on the definitions of mappings contained in the LIVENET ontology.

To illustrate this for Group 9, the mapping of discussion-related action patterns shown

above is continued here. As mentioned in Section 5.1.6, the user-level action patterns

involved arePost-Discussion-Statement-Pattern andOpen-Discussion-State-

ment-Pattern. Group 9 has performed a total of 118 such action patterns in 36 distinct
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Get−Block−Tree−Pattern

Get−Block−Tree−Pattern

Add−Statement−Pattern

Discuss
Milestone

Member

Discuss
Milestone

Member

Discuss
Milestone

Member

Figure 5.12: EMOO diagrams representing a sequence of instances of system-level action

patternsGet-Block-Tree-Pattern, Add-Statement-Pattern, and Get-Block-Tree-Pattern,

performed on discussionDiscuss Milestone by a user of Group 9 occupying roleMember

Post−Discussion−Statement−Pattern

Discuss
Milestone

Member

Figure 5.13: EMOO diagram representing an instance of user-level action patternPost-

Discussion-Statement-Pattern, performed on discussionDiscuss Milestone by a user of

Group 9 occupying roleMember
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sessions, namely 19 instances of thePost-Discussion-Statement-Pattern action

pattern and 99 instances of theOpen-Discussion-Statement-Pattern action pattern,

as shown in the table below:

SessionId Posting actions Opening actions

527 1 1

673 2 5

981 0 2

1209 2 4

1316 0 4

1616 0 4

1627 0 3

1643 1 1

1701 1 9

1702 0 6

2039 0 1

2049 1 0

2362 0 1

2571 1 4

2732 0 4

2742 1 2

2862 2 2

3006 1 5

3190 0 5

3250 1 4

3960 0 4

4207 1 5

4228 1 0

4457 0 2

4478 0 1

4784 0 7

5232 0 2

5539 0 1

6527 0 2

7165 1 0

7919 0 1

continued...
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Group−Discussion−Pattern

Discuss
Milestone Member

Figure 5.14: EMOO diagram representing an instance of collaboration-level action pat-

ternGroup-Discussion-Pattern, performed on discussionDiscuss Milestone by the users

of Group 9 occupying roleMember

SessionId Posting actions Opening actions

8815 1 1

8870 0 2

8946 1 1

9218 0 1

10015 0 2

Total 19 99

These action patterns were all performed by the same role (Member) on the same

discussion forum (Discuss Milestone) in the same workspace (the group’s master work-

space). Therefore, all of these action patterns were mapped to one and the same instance

of collaboration-level action patternGroup-Discussion-Pattern. Represented in the

form of an EMOO diagram, this action pattern is shown in Figure 5.14.

Besides these discussion-related action patterns, there were also document-related

action patterns that took place in the master workspace of Group 9. The action patterns

involved (and their count) over all sessions of Group 9 areOpen-Background-Pattern

(10),Open-Document-Pattern (179),Upload-Background-Pattern (1), andUpload-

Document-Pattern (38). Because they all took place in the same workspace, and were

performed by the same role (Member), they were all mapped to a single collaboration-

level action pattern, namelyArtefact-Exchange-Pattern. An EMOO diagram repre-

senting this action pattern is shown in Figure 5.15. The artefacts involved are shown as a

multi-artefact,Report Components, made up of components of the various reports which

the group was preparing.
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Artefact−Exchange−Pattern

Member
Report

Components

Figure 5.15: EMOO diagram representing an instance of collaboration-level action pat-

ternArtefact-Exchange-Pattern, performed on multi-artefactReport Components by the

users of Group 9 occupying roleMember

5.2.2.3 Mapping Action Patterns from Collaboration Level to Task Level

The previous mapping step has established that there were primarily two collaboration-

level action patterns that took place in the master workspace of Group 9: an instance

of Group-Discussion-Pattern and an instance ofArtefact-Exchange-Pattern. To

assist in the mapping to the next-higher level, the task level, the LIVENET Workspace

Visualizer was used.

A basic intra-workspace map of the master workspace of Group 9 is shown in Fig-

ure 5.16. It shows two roles:Member (at the top) andOwner (at the bottom). The

Member role was occupied by six users:cbe-janr, cbe-shane, clehmann, ggold, imckean,

andmalibaba. The first five of these were the actual members of Group 9, while the sixth

user was the course tutor assigned to this group. TheOwner role was occupied by the

userdesnet-manager, which was the user id used by the course instructor.

The centre of the map is made up of 16 documents, all of which were accessible to

both theMember andOwner roles. Moreover, one discussion forum,Discuss Milestones,

was also accessible to both of these roles.

In the version of LIVENET from which the data was obtained, every newly created

object is accessible to the role of the user who created it, as well as to theOwner role.

This explains why all the documents and the discussion forum were accessible to both the

Member andOwner roles. However, no action performed by theOwner role operating on

documents or the discussion forum was recorded, and therefore this role can be ignored

in the identification of any task-level action patterns.

Given that the two collaboration-level action patterns found in the master work-

space of Group 9,Group-Discussion-Pattern andArtefact-Exchange-Pattern,

are connected through a common object, the multi-roleMember, these two action pat-

terns were mapped to a single task-level action pattern. In this case, given that both the

collaboration-level action patterns involved were performed by a single role and involved
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Figure 5.16: Intra-workspace map of the master workspace of Group 9

all members of Group 9, a task-level action pattern of “collaborative report preparation”

was defined as corresponding to the task performed by the group. Represented in the

form of an EMOO diagram, this action pattern is shown in Figure 5.17.

5.2.2.4 Mapping Action Patterns from Task Level to Process Level

After having identified the task-level action patternCollaborative-Report-Prepara-

tion-Pattern, the next step was to investigate whether this task was part of a larger

process. This involved identifying information flows to or from other tasks. To aid in

this, the LIVENET Workspace Visualizer was once again used. An information flow ex-

ists when two workspaces have a shared document, background, discussion, or message
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Collaborative−Report−Preparation−Pattern

Discuss
Milestone Member

Report
Components

Figure 5.17: EMOO diagram representing an instance of task-level action patternCol-

laborative-Report-Preparation-Pattern, involving multi-role Member, discussion forum

Discuss Milestones, and multi-artefactReport Components

rule (the only way that information can flow from one workspace to another in LIVE-

NET). An inter-workspace map involving the master workspace of Group 9, and showing

all workspaces of the workgroupcbe-group-09 of which it was a part, as well as visual-

izing inter-workspace relationships of shared documents, backgrounds, discussions, and

message rules, is shown in Figure 5.18. It can be seen that the entire workgroup only con-

sisted of two workspaces, the master workspace and another workspace,Milestones4&5.

Moreover, no shared documents, backgrounds, discussions, or message rules existed (the

only link that exists between the two shown workspaces is a parent-child link). Therefore

theCollaborative-Report-Preparation-Pattern task-level action pattern was not

part of a larger process, and the mapping of action patterns stopped at this point.

5.2.3 Discussion

The pattern extraction shown above for Group 9 started with records at the base level

of the Information Pyramid of the system through which the virtual collaboration was

conducted—in this case the LIVENET system—and has through successive steps ex-

tracted progressively larger-scale patterns of virtual collaboration from it. In the end, a

task-level action pattern of collaborative report preparation was identified, which consti-

tutes the largest unit of activity for the given case.

Extracted patterns of virtual collaboration do not exist in isolation from one an-

other. Rather, they are related with each other within and across levels of the Infor-

mation Pyramid. Thus, given a specific instance of collaboration-level action pattern

Group-Discussion-Pattern for example, it is possible to determine which instances

of lower-level action patterns it aggregates (in this case, instances ofPost-Discussion-

Statement-Pattern andOpen-Discussion-Statement-Pattern); on the other hand,

it is also possible to say in which instances of higher-level action patterns this collabora-

tion-level action pattern is involved (in this case, in an instance ofCollaborative-
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Figure 5.18: Inter-workspace map of workgroupcbe-group-09

Report-Preparation-Pattern). Knowing these relationships among instances of ac-

tion patterns on different levels makes it possible to both abstract away details of individ-

ual users’ actions in order to obtain a “big picture” of the virtual collaboration at hand;

and to “drill down” into more detail of a specific action pattern whenever such informa-

tion is required. Thus the result of pattern extraction is anetworkof related instances of

patterns of virtual collaboration that can be traversed in any direction to obtain the infor-

mation sought (on the level of instances, this corresponds to the horizontal and vertical

links among concepts in the LIVENET ontology as shown in Figure 5.10 on page 190).

There is a parallel between the models and methods presented here and those of the

well-known Unified Modeling Language, UML. In UML, different modeling notations

exist for representing different aspects of a system, nine types of diagrams in total (Booch

et al., 1999). Three of these can be regarded as similar to those used in this thesis: UML

class diagrams, object diagrams, and use case diagrams. UML class and object diagrams

represent details of classes and objects, respectively. These correspond more or less di-

rectly to the class and object diagrams introduced in Section 4.1.3 and used throughout
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this chapter. These diagrams model structural aspects of the concepts in an ontology. On

the other hand, UML use case diagrams can to some extent be compared to the EMOO

diagrams introduced in Section 3.3 that have also been used in this chapter. The parallel,

however, extends beyond the notation only. As in the case of UML, the class, object and

EMOO diagrams proposed in this thesis are mutually related: objects instantiate classes,

and classes are the constituents of EMOO diagrams. Moreover, EMOO diagrams are

somewhat more abstract representations, hiding the detail contained in class diagrams.

The same is true in the case of UML use case diagrams which hide the detail of UML

class diagrams. However, there is a major difference in the modeling process in UML

and that proposed in this thesis, namely the method of deriving one type of diagram from

another: in UML, first use cases are modeled and represented in use case diagrams. From

these, other diagrams are then produced, including class diagrams but also other diagrams

not mentioned here. These models usually begin at a high level of abstraction and subse-

quently become increasingly detailed as modeling progresses. The method defined in this

thesis, however, is the exact reverse: the starting point in modeling is detailed data from

which classes are modeled. These classes are then abstracted to EMOO diagrams, and

both class and EMOO diagrams become increasingly abstract as modeling progresses.

Thus while there are parallels between the modeling methods and notations of UML and

this thesis, the modeling approach is fundamentally different.

Pattern extraction, such as the one illustrated above, over time results in a large num-

ber of instances of different patterns of virtual collaboration at different levels of abstrac-

tion. When fed into a collaboration memory, as proposed in Section 4.5, these provide

a ready resource that can be tapped into to obtain information related to the procedural

aspects of the work of virtual teams. These patterns thus form the observations of vir-

tual collaboration referred to at the beginning of this thesis, which help address the two

challenges posed in Chapter 1: how to know how to carry out collaboration virtually; and

how to know what is, and has been, “going on” during virtual collaboration.

In relation to the first challenge, consulting such a collaboration memory containing

patterns of virtual collaboration it is possible to learn from the experience of others that

is enshrined in these patterns. For instance, before setting out on an activity of virtual

collaboration, one may refer to a number of patterns originating from those whom one

knows to be more experienced in collaborating virtually, thereby drawing on their experi-

ence. A collaboration system with an integrated collaboration memory component could

make patterns of virtual collaboration available for instantiation, possibly involving a first

step of tailoring these patterns to suit the specific needs of those who are to use them. In

this regard the use of information visualization can be useful in observing initial patterns,

as was demonstrated above. It can also facilitate referencing and looking up patterns
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from the collaboration memory. Moreover, a collaboration system could also provide fa-

cilities for combining several separate patterns (“plugging” them together, as suggested

earlier in this chapter), thereby effectively using these patterns as basic building blocks

for creating the collaboration support required for specific collaborative endeavours.

In relation to the second challenge, those who require information about the activities

of virtual teams can similarly reference records of the virtual collaboration deposited in

the form of patterns of virtual collaboration in a collaboration memory. The informa-

tion within these patterns then provides insights into the procedural aspects of a virtual

team’s collaboration. This makes it possible to determine the kinds of collaborative ac-

tivities performed, the involvement of different team members in these activities, and the

development of the virtual work over time.

By using the methods proposed in the preceding chapters of this thesis, these obser-

vations of virtual collaboration are obtained without requiring virtual teams to explicitly

document their own actions, thereby addressing the research problem posed in Chap-

ter 1. The preceding case study has thus provided basic validation of the plausibility and

applicability of the proposed concepts and methods.

5.3 Summary

This chapter has presented a case study demonstrating the application of the concepts

and methods introduced in the preceding two chapters.

The basis for being able to extract patterns of virtual collaboration from a body of data

is a clear understanding of the concepts and their relationships represented by that data,

as well as the abstractions that can be derived from these concepts. These are specified in

the form of an ontology for a given collaboration system. An example of the specification

of such an ontology for the LIVENET collaboration system was given in the first part of

this chapter. Because of space considerations, this specification was illustrated by several

representative examples rather than a full specification of all details.

The ontology, as specified for LIVENET, was used in the second half of this chapter in

the extraction of actual instances of patterns of virtual collaboration from real usage data

obtained from the LIVENET collaboration system. This illustration showed the extraction

and mapping of patterns of virtual collaboration from the system level up to the task

level, resulting in a network of inter-related instances of patterns of virtual collaboration

that enables both abstraction and drilling down to obtain the required level of detail of

information about the virtual collaboration.

Having presented and demonstrated the concepts and methods proposed in this thesis
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in this and the preceding chapters, the following chapter carries on from here to provide

a summary and conclusions of this thesis.



Chapter 6

Summary and Conclusions

The preceding chapters have presented and illustrated all the elements this research has

been concerned with. The current chapter concludes the thesis by providing a summary

of the main points, listing the major contributions of this research, outlining areas for

future work, and offering concluding remarks.

6.1 Summary

This thesis began with the observation that recent changes in the organizational setting

have lead to an increase in virtual collaboration, understood to consist of acts of working

together without face-to-face interaction, enabled by technology. Virtual collaboration

is challenging, including the challenges of knowing how to carry out collaboration vir-

tually, and knowing what is and has been “going on” during virtual collaboration. It

was suggested that observation of virtual collaboration, both past and present, can help

meet these challenges, but that this brings up what constitutes the problem motivating

this research: how to obtain these observations without requiring those involved in the

collaboration to document their own actions.

It was then suggested that the solution to this problem involves three components:

firstly, the availability of records of events transpiring during virtual collaboration; sec-

ondly, conceptual modeling of the information of the computer-based systems through

which virtual collaboration is conducted; and thirdly, the derivation of abstract represen-

tations of the virtual collaboration.

After a review of the main areas of the problem domain of this research in Chapter 2,

the main body of the thesis, Chapters 3 and 4, presented details of the problem solution.

The main conceptual element proposed is that of apattern of virtual collaboration,

which is understood to refer to a structure existing within a body of data about virtual
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collaboration, and which represents both a particular setup of a virtual space and the

actions performed within it. Patterns of virtual collaboration can exist at different levels

of abstraction, ranging from highly detailed expressions of parts of a specific user action

to abstract representations of entire work processes. The thesis proposed a layered model

of information, theInformation Pyramid of Virtual Collaborationwhich consists of six

levels covering this range. Collaboration systems constitute the source of information,

providing information which typically belongs to the lowest one or two levels of the

Information Pyramid. On the other hand, the observations of virtual collaboration that

are sought usually reside on the highest two levels of the Information Pyramid.

In order to bridge from the information source (the input) to the observations sought

(the output), information at the different levels needs to be transformed to successively

higher levels in the Information Pyramid. This requires two steps of (1) modeling of

information, and (2) transformation of models of information from one level to another.

Information from a given collaboration system is specified in the form of an ontology,

capturing concepts and their relationships. This ontology of just one level of the Infor-

mation Pyramid is extended by adding concepts corresponding to the higher levels of the

Information Pyramid, and by defining mappings between concepts on adjacent levels.

The resulting ontology defines how information on higher levels can be obtained from

that at lower levels. The actual transformation of information across levels is performed

by mapping functions.

To aid the identification of patterns on the highest two levels of the Information Py-

ramid, the use of information visualization was proposed. Networks of related objects

are visualized as node-and-link diagrams, whilemeasures of collaboration spacesare

visualized in order to aid comparison of different collaboration spaces by certain derived

properties.

A Framework for Pattern Extraction and Feedbackwas proposed, which considers

the extraction of patterns of virtual collaboration in the larger context of the development

and utilization of collaboration systems. The framework includes four areas: collabora-

tion systems, collaboration data, pattern extraction, and collaboration memory. The lat-

ter, collaboration memory, was proposed as a particular kind of organizational memory,

consisting of patterns of collaboration.

Finally, the presented concepts and methods of modeling and derivation of patterns

of virtual collaboration were demonstrated on an actual collaboration system, LIVENET.

6.2 Contributions of this Research

Following are the main contributions of the research presented in this thesis:
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1. Introduction of the concept ofpatterns of virtual collaboration, as abstractions of

collaborative activities at different levels of granularity.

2. The Information Pyramid of Virtual Collaboration, which provides views of in-

formation related to virtual collaboration on six layers with different degrees of

abstraction.

3. A method for deriving abstract representations of virtual collaboration, given only

detailed, fine-grained usage data from collaboration systems.

4. The notion ofmeasures of collaboration spaceswhich allow different collaboration

spaces to be compared based on certain derived properties.

5. A Framework for Pattern Extraction and Feedbackwhich suggests ways in which

collaboration systems can provide the data needed for extraction of patterns of vir-

tual collaboration, and how these patterns can feed back into use of these systems.

6. The use of anontology-based notationfor the representation of patterns of virtual

collaboration.

7. The notion ofcollaboration memory, as part of an organizational memory, which

contains records of procedural aspects of collaborative activity.

6.3 Future Work

The research presented in this thesis has proposed ways how to both model and derive

patterns of virtual collaboration from a given collaboration system. Building on this

work, a number of questions arise which future research should address:

• Rigorous empirical testing: The previous chapter has provided some extent of val-

idation of the plausibility of the concepts and methods proposed in this thesis. In

order to demonstrate their robustness, rigorous empirical testing should be carried

out. Such testing should apply these concepts and methods to a wider range of

situations, involving different collaboration systems, different types of users, and

different kinds of work activities.

• Transferability of patterns: The proposed method of pattern extraction is capable of

producing patterns of virtual collaboration from a given collaboration system. An

interesting problem to investigate is whether it is possible to transfer these patterns

across different collaboration systems, and what would be involved in doing so.
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That is, if a pattern of virtual collaboration were obtained from SystemX, could

that pattern be transferred and utilized in SystemY, and if so, how? Making it

possible to transfer patterns across different collaboration systems would vastly

broaden the applicability of these patterns, and thus the opportunity to benefit from

the experience of others enshrined in these patterns.

Approaching this problem, the specification of ontologies for different collabor-

ation systems, as described in this thesis, would be a required first step toward

enabling transferability of patterns. Separate ontologies would, however, need to

be reconciled with each other. That is, a given concept, say “Collaboration Space”,

may have a certain meaning and have associated with it certain functional char-

acteristics, which may differ from one collaboration system to another. Thus the

identification, and resolution, of such conceptual incongruities would likely be one

of the requirements for transferring patterns across different collaboration systems.

Other obstacles to the transferability of patterns may exist and will need to be in-

vestigated.

• Accommodation of individual/group preferences: Patterns of virtual collaboration

that are obtained from a collaboration system and deposited in collaboration mem-

ory are available for instantiation, and thus reuse, by others. However, because

different individuals and/or groups may have different preferred ways of working,

and thus different ways of structuring their virtual working environment, the in-

stantiation of a given pattern may not provide the best possible support for a given

user or group, and may therefore need to be manually customized.

An approach for providing instantiations of patterns of virtual collaborations that

are more congruent with the individual and group preferences could involve adap-

tation of patterns based onuser and group profiles. Such profiles could be ob-

tained through observation of the way that collaboration spaces are typically set

up. The way in which patterns are typically adapted before use could provide an-

other source of information for the creation of such profiles.

• Evaluation of patterns of virtual collaboration: The patterns of virtual collabor-

ation extracted from collaboration systems and retained in collaboration memory

may include a wide range of patterns for different purposes as well as preferences.

However, it may be difficult to know which of these patterns are best suited for a

given work activity. Some patterns may facilitate a given work activity more than

others, while some patterns may even encumber work. Thus a problem that exists

with regard to the patterns contained in a collaboration memory is that of evalua-
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tion of their usefulness. Its solution could require a manual approach, such as that

of recommender systems (Resnick and Varian, 1997), or it could involve methods

of automatically evaluating patterns. The solution to this problem should be the

subject of further investigation.

6.4 Concluding Remarks

Virtual collaboration has become part of professional practice in many organizations,

and it is likely for this trend to continue, and indeed to increase, for the foreseeable fu-

ture. The goal of many researchers is to eventually create realistic, three-dimensional,

life-size virtual teleconferencing, where life-size images of other participants are pro-

jected into one’s own working environment1. Once such technology matures and be-

comes widespread, it will be possible to realistically emulate face-to-face collaboration

across a distance, combining the advantages of collaboration in the physical world with

those that virtual collaboration has to offer.

At the present time, however, the technological support for virtual collaboration is

still very rudimentary, and carrying out virtual collaboration is challenging—as was dis-

cussed in Chapter 1. To help meet these challenges, it was suggested that observations of

virtual collaboration can be utilized. Addressing the problem of how to obtain observa-

tions of the activities involved in virtual collaboration without requiring virtual teams to

document their own actions, this thesis has suggested a possible solution.

Collaboration is a complex phenomenon, involving multiple actors, organizations,

activities, artefacts, etc., related to one another in multiple and often complex ways. A

complex phenomenon such as this may be regarded as asystem, in the sense of systems

theory (Ackoff, 1971). As defined by Ackoff, a system is a “set of inter-related ele-

ments” (ibid.). Based on general systems theory, systems analysis approaches common

in the information systems field (Avison and Fitzgerald, 1988) facilitate individual com-

ponents of systems to be examined and critically reviewed. Decomposing a system into

its constituent parts facilitates both the understanding of each part, as well as increasing

understanding of the whole. That is what this thesis has done: the concepts presented—

patterns of virtual collaboration and the multi-layered Information Pyramid—allow vir-

tual collaboration to be examined in terms of (at least some, if not all, of) its constituent

elements. The methods for derivation of higher-level patterns assist in unearthing yet

more elements of the overall collaboration. Each of these constituent elements of the
1Early prototypes of what may be predecessors of such systems have already been developed. For

an example oftele-immersionsee (Sadagic et al., 2001), and for one ofaugmented reality conferencing

see (Billinghurst and Kato, 2002).
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overall collaboration can be examined in order to understand that one element, as well as

contributing to the understanding of the overall complex phenomenon which is the virtual

collaboration itself. Whereas obtaining acompleteunderstanding of the complexities of

virtual collaboration may be difficult or even impossible, the contributions made by this

thesis assist in obtaining at least some degree of understanding.

Furthermore, it is important to realize that obtaining an understanding of virtual col-

laboration is limited by, among other factors, the degree to which collaboration is carried

out virtually. Activities of virtual collaboration are usually embedded within a larger

context of work in an organization, and may indeed only constitute a small part of the

overall work activities of that organization. It may be complemented by other forms

of collaboration, including face-to-face encounters, and may involve technologies other

than collaboration systems. Therefore, insights into virtual collaboration that are ob-

tained through the aid of the contributions made by this thesis should be complemented

by insights obtained from other sources, such as from one’s physical (i.e. non-virtual)

work environment.

Much further work still lies ahead, some of which has been outlined in the preceding

section. It is hoped that through the contributions made by this research some progress

toward overcoming the challenges of collaborating virtually, which were identified in the

introduction of this thesis, has been made.
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L IVE NET Workspace Visualizer

In Chapter 4, the use of information visualization was proposed for assisting the identifi-

cation of action patterns at the task and process levels of the Information Pyramid. Some

basic functional requirements of a visualization tool were presented, and thenode-and-

link diagram type was identified as suitable for visualizing patterns of virtual collabora-

tion at the task and process levels.

For visualizing task- and process-level action patterns in the LIVENET collaboration

system, theWorkspace Visualizertool was developed1. This tool implements the func-

tional requirements proposed in Chapter 4 (cf. p. 131), and employs thenode-and-link

diagram type in its visualizations.

Task- and process-level action patterns in LIVENET exist either in individual work-

spaces (as is the case for most task-level action patterns), or span a network of workspaces

(as is the case for most process-level action patterns). Thus, the Workspace Visualizer

provides two basic types of diagrams: one that displays the internal structure of a work-

space, and the other that displays the relationships among a network of workspaces. The

following sections introduce the visualizations of the Workspace Visualizer for each of

these types of diagrams.

A.1 Intra-Workspace Maps

The most basic kind of visualization is the so-calledintra-workspace map. This makes

the internal structure of a workspace visible. The internal structure is made up of the

objects contained in the workspace, and the relationships between these objects. As this

1This tool was developed by the present writer as an 8600+ line-of-code Java program consisting of

over 40 classes and interfaces. About 5% of the code is based on (now heavily modified) code produced

by Sun Microsystems, Inc.
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Figure A.1: Intra-workspace map of workspaceBook-Review showing users (pink),

roles (yellow), documents (blue) and discussion forums (green)

visualization focuses on thestructureof the workspace, it draws on static information

obtained from the LIVENET database. However, since the relationships between roles

and other objects also imply certain actions, the visualized structure does to some extent

give an indication of the behaviour, or dynamic aspects, supported by the workspace.

An example of an intra-workspace map is shown in Figure A.1. The map is a node-

and-link diagram in which objects are visualized in the form of nodes, and relationships

between objects are visualized as links between nodes. Differenttypesof nodes are dis-

played with different background colours; in the example, participants (users) are shown

in pink, roles in yellow, documents in blue, and discussion forums in green. Other types

of objects that an intra-workspace map may contain are actions, backgrounds, message

rules, and message types.

Two types of relationships are represented by links between nodes: a link connecting

a participant node and a role node indicates that the participant occupies the role. A

link connecting a role node and any other kind of node (action, discussion, document,
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Figure A.2: Intra-workspace map with popup menu for filtering objects by type

background, message rule, or message type) indicates that the role has access to that

object.

A.1.1 Filtering

For workspaces that contain many different objects, intra-workspace maps may contain

a large number of nodes and links. This may make it difficult to discern the task-level

action patterns contained in those workspaces. The example of Figure A.1 contains only

a relatively small number of objects: four users, three roles, four documents, and two

discussion forums. Yet even in this simple map there are some crossing links. For maps

containing a much larger number of objects, the number of crossing links would be much

greater, which can make it difficult to identify which nodes are connected by which links.

In order to facilitate the identification of patterns of virtual collaboration in workspa-

ces, it is therefore often necessary tofilter out some objects, i.e. to remove some objects

from view, so that other objects can be more easily discerned. For the intra-workspace

maps of the Workspace Visualizer, objects can be filtered out according to theirtype.

This is shown in Figure A.2: the popup menu allows each of the eight types of objects

listed in the upper part of the menu to be excluded from the map. By default all types of

objects are included, but by unchecking the checkbox next to an object type, all objects

of that type, as well as all links attached to it, are hidden.
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Figure A.3: Intra-workspace map with only role and discussion forum objects visible

Figure A.3 shows a visualization of the same workspace where all objects except for

roles and discussion forums are filtered out. The resulting map is much clearer than the

original one that contained all objects. For instance, it is now clearly visible that there

are two separate instances of group discussions involving two roles each, with one of the

roles present in both group discussions.

Similar filtering can be performed to leave only roles and documents visible. This

allows instances of document exchanges among roles to be identified. Figure A.4 shows

an example of such an intra-workspace map.

A.2 Inter-Workspace Maps

The intra-workspace maps presented above allow details of individual workspaces to be

investigated. However, in order to identify process-level action patterns, it is necessary

to examine not only single workspaces in isolation but groups of workspaces that are

related in some way. For instance, examining a workspace such asBook-Review shown

in Figure A.1 may lead to the identification of a task-level action pattern. Consequently

other workspaces related to this one may be investigated to identify other related task-

level action patterns, as well as to identify a process-level action pattern which these task-

level action patterns belong to. To facilitate this, it is necessary to visualizenetworksof
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Figure A.4: Intra-workspace map with only role and document objects visible

workspaces, and tonavigatebetween them. The Workspace Visualizer supports this in

the form ofinter-workspace maps.

An inter-workspace map shows several workspaces together in a node-and-link dia-

gram, with nodes representing workspaces and links representing relationships between

workspaces. Workspaces may be related in different ways. For instance, if a given doc-

ument is included in two or more workspaces, these workspaces are related by partici-

pating in the sharing of the document. Other types of relationships according to shared

objects can be similarly identified. Moreover, in LIVENET workspaces are related in a

hierarchical structure in the form of a tree: with the exception of one workspace at the

root of the tree, every workspace has a parent workspace, or conversely, workspaces may

have child workspaces. Thus the visualization of workspace relationships in a collec-

tion of LIVENET workspaces consists of a tree of parent-child workspace relationships,

overlaid by a network of shared-object relationships.

An example of a basic inter-workspace map, showing only the tree structure of parent-

child workspace relationships, is shown in Figure A.5. Here, nodes with a yellow back-

ground are parent workspaces, i.e. workspaces which have child workspaces, while nodes

with a white background are leaf nodes in the tree which have no child workspaces. The

node at the top of the map is the root workspace, having no parent workspace.
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Figure A.5: Inter-workspace map of a collection of workspaces, showing parent-child

workspace relationships

A.2.1 Workspace Relationship Types

Besides parent-child relationships, a number of other types of relationships can be vi-

sualized. In the Workspace Visualizer, these are represented by different link colours.

Figure A.6 shows the Workspace Visualizer’s control panel with which the desired work-

space relationships can be selected. Here, in the section of the control panel titled “Edge

Pull / Visibility”, up to eight different workspace relationship types can be made visible.

The colour field to the left of each relationship type label corresponds to the colour of the

link shown in the map. The relationship types are:

1. Parent/Child: parent-child relationships between workspaces.

2. Goal: relationships between workspaces which support the same goal. In LIVE-

NET, “goal” is one attribute of a workspace referring to a description of its goal.

When the value of this attribute is identical for a pair of workspaces, a goal rela-

tionship exists.
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Figure A.6: Control panel allowing features of the visualization to be controlled
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3. Document: relationship between workspaces which share one or more documents.

4. Background: relationship between workspaces which share one or more back-

ground materials.

5. Discussion:relationship between workspaces which share one or more discussion

forums.

6. Action: relationship between workspaces which share one or more actions.

7. Message Rule:relationship between workspaces where a message channel from

one workspace to the other exists.

8. Participant: relationship between workspaces which have one or more partici-

pants in common.

A given collection of workspaces can potentially have a very large number of such

relationships. To illustrate this, an inter-workspace map of the same collection of work-

spaces as shown in Figure A.5, but showing all eight types of workspace relationships,

is shown in Figure A.7. As can be seen, the number of inter-workspace relationships is

confusingly large. Therefore, the same principle should be applied as with the visualiza-

tion of intra-workspace maps: namely to filter out information so that only the subset of

information of interest is visible. To this end, three techniques are applied in the Work-

space Visualizer. The first one, which filters workspace links, consists of the selection of

types of relationships to be visualized, and has already been introduced. The other two,

which filter workspace nodes, arenode expansionandfocusing, and are introduced next.

A.2.2 Node Expansion

Node expansion refers to the selective making visible of a workspace’s child workspaces.

Thus when the Workspace Visualizer displays an inter-workspace map, it first displays

only the workspace at the root of the tree. Through a user interface action (double-

clicking the mouse pointer on the workspace node), the workspace node isexpanded

to reveal its child workspaces. This can in turn be repeated on those child workspaces

which are themselves parent workspaces of the next level, etc. On the other hand, the

same user interface action on an already expanded workspace nodecollapsesthat node,

i.e., hides the node’s child workspaces and any lower-level workspaces for which the

collapsed node is an ancestor2. Thus a large workspace tree can benavigatedthrough

2An ancestorworkspace is a workspace which is either another workspace’s parent workspace, or is its

parent’s ancestor workspace.
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Figure A.7: Inter-workspace map of a collection of workspaces, showing all types of

workspace relationships

a sequence of node expansion actions. An example of this is shown in Figure A.8. At

first only the top-most workspace node is visible. The node is then expanded, revealing

the four child workspaces shown in box 1. Next, one of these child workspaces is ex-

panded, revealing another three workspaces, shown in box 2; lastly another one of these

is expanded, revealing one more workspace, shown in box 3. In this fashion, only a rel-

atively small subset of all workspaces in the entire graph is made visible, hiding other

workspaces which are of no interest.

A.2.3 Focusing

Focusing, on the other hand, refers to a different kind of filtering of the inter-workspace

map. Focusing places the focus of the visualization on a single workspace by only mak-

ing that workspace and its directly related workspaces visible. The set of directly related

workspaces depends on the selected types of workspace relationships. For instance, Fig-

ure A.9 shows examples of focusing on a workspace node. Part (a) of the figure shows
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Figure A.8: Navigation of a workspace tree through a sequence of node expansion ac-

tions; workspace nodes appear in the inter-workspace map after expansion of their parent

workspace, in the shown sequence (1, 2, 3).

(a) “Visible subgraph” link visibility (b) “Entire graph” link visibility

Figure A.9: Focused workspace with parent-child and message rule relationships



Appendix A. L IVENET Workspace Visualizer 223

the workspace at the centre being focused on. This is indicated by the brackets around

the node’s corners. Only that workspace, its parent, and its child workspace are visible in

the map. Part (b) of the figure shows the same workspace being focused on, but this time

includes several more related workspaces. In both cases, the workspace relationships to

visualize include the parent-child and the message rule types. However, the two maps dif-

fer in thescopeof the visibility of workspace relationships. The scope can be controlled

in the lower part of the control panel’s “Edge Pull / Visibility” section; it can be limited to

just the currently visible subgraph, or can be set to apply to the entire graph. For instance,

if a given subset of the graph such as the one in Figure A.9 (a) is currently visible, and the

Message Rule relationship type is being made visible in the “Apply to visible subgraph”

scope, the corresponding links will only be shown if they connect already visible work-

space nodes. In this way, relationships among a set of currently displayed workspaces

can be explored by switching the visibility of different link types on and off. On the other

hand, if the Message Rule relationship type is being made visible in the “Apply to entire

graph” scope, the corresponding links will be shown for all workspace nodes which are

connected to the already visible ones, including those workspace nodes which were not

previously visible. This is useful for identifying all related workspaces for a given set

of workspaces. This is the case in Figure A.9 (b) where five more workspaces are now

visible. These workspaces are related to the focused-on workspace through a message

rule link, but are not among its parent or child workspaces.

A.2.4 Clustering

A large inter-workspace map containing dozens of workspaces may contain hundreds of

workspace links. In order to identify sets of workspaces which are closely related and

may belong to the same process, it can be useful to arrange these in close proximity to

each other in the map. Doing so is referred to asclusteringof workspace nodes.

To understand how clustering works, it is necessary to understand how the maps are

drawn. Inter-workspace maps are drawn using a force-directed animated visualization

algorithm, similar to that of (Huang et al., 1998). With this algorithm, nodes and links

in the graph behave similar to round magnets connected by springs: the magnets can

be imagined to have the same magnetic pole on the outside so that they repel each other,

while the force of the springs pulls the magnets to a position where the springs are at their

“natural” length (i.e. their length when at rest). This is illustrated in Figure A.10, which

corresponds to an inter-workspace map with one root node (the circle at the top), and

three child nodes (the other three circles). The four outward-pointing arrows correspond

to the repelling forces of the magnets, while the arrows next to the springs correspond to
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Figure A.10: Magnets-and-connecting-springs model on which the force-directed ani-

mated visualization algorithm is based

the spring forces which contract the springs to their natural length, and which counter-act

the magnets’ repelling forces. Other forces such as gravity are assumed to be absent.

When the forces are in equilibrium, the magnets and springs are motionless. However,

when one node is moved, thereby extending or contracting any connecting springs, other

springs and nodes will also move until equilibrium is once again established. This effect

is modeled in the visualization algorithm, where nodes repel each other, while links con-

tract to their natural length. The natural length of links is equal for all links and can be

set in the control panel’s “Edge Length” section.

An extension of the algorithm of (Huang et al., 1998) in the Workspace Visualizer is

the introduction of the notion of springs whose spring force can be disabled. The effect is

that such a spring behaves like an infinitely stretchable string: when a magnet is attached

to it and is repelled from other nearby magnets, the spring is simply extended as far as

necessary. In the Workspace Visualizer, this feature is utilized in selectively enabling and

disabling the spring force for different types of workspace relationship links (this feature

is enabled by checking the “Edge Pull” checkbox next to a type of relationship link in the

control panel). Thus, for instance, all shared-document links can be made springs that

have a spring force, while the spring force of other links is disabled. The effect is that

all pairs of workspace nodes which have shared documents are pulled together into close

proximity (the distance being approximately that of the natural length of the link). In a

large network of workspaces, this results inclustersof related workspaces to emerge.

An example of clustering is presented in Figure A.11. Part (a) of the figure shows

an inter-workspace map with the spring force enabled only on parent-child links (the

default setting). Several groups of workspaces can be identified that are related through
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(a) Spring force only on parent-child links

(b) Spring force on all links

Figure A.11: Clustering of workspace nodes in an inter-workspace map with parent-

child, shared document, shared background, and shared discussion forum links
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shared objects. The extent to which workspaces within these groups are related, however,

is not clearly discernible. Part (b) of the figure shows the same inter-workspace map

but with the spring force enabled on all links, including the shared object links. The

spring force has caused the groups of workspaces to contract into tight clusters. This is

particularly evident for the four larger clusters in the upper part of the map. The shape

of these clusters, close to that of regular polygons, indicates that the workspaces in those

clusters share objects with every other workspace in the same cluster, for otherwise the

combination of spring force and repulsion force would drag the cluster apart into a less

regular shape. In contrast, the cluster in the lower right corner indicates just such a case.

Here there appear to be two inter-woven sub-clusters: one involving shared documents

and discussion forums (the lower left part of the cluster), and the other involving shared

documents and background material (the upper right part of the cluster). Thus clustering

can reveal not only which workspaces are related to one another, but also indicate the

regularity (or lack thereof) of the network of relationships within the cluster.

A.2.5 Workspace Measures

In Chapter 4, the notion ofmeasuresof collaboration spaces was proposed, and a list of

several such measures was presented as an illustration of this notion (cf. p. 129). In the

Workspace Visualizer, the majority of these measures have been implemented, and are

referred to asworkspace measures. It should be stressed that the choice of this particular

set of measures has been largely arbitrary, based purely on the observation that these

measures have proven useful in distinguishing between different workspaces, but without

claiming that these measures are in any way the “best” ones for comparing workspaces.

Workspace measures can be visualized in inter-workspace maps. This is done by se-

lecting an option from the control panel’s “Node Colouring” section. The default setting

is “Parent/Child” colouring, which corresponds to no workspace measure being visu-

alized, and where parent nodes appear in yellow and leaf nodes appear in white. The

remaining ten node colouring options correspond to workspace measures. Each mea-

sure is mapped to a colour scale which gradually extends from one colour to another,

for example from green through yellow to red. Low values of the measure are given a

colour at one end of the scale, while high values receive a colour at the opposite end.

The colour corresponding to the value of the measure is used as the background colour

of the workspace node, providing a simple and easily perceivable distinction among a

collection of workspaces. An example of node colouring in the Workspace Visualizer

is shown in Figure A.12. Here, the workspace measure being represented by the node’s

background colour is workspace density. Green corresponds to low-density workspaces,
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Figure A.12: Inter-workspace map of a collection of workspaces, with node colouring

indicating workspace density

while red correspond to those with a high density, with yellow ones lying in between. The

legend in the lower left corner of the map indicates the value of the measure associated

with each colour. The scale extends from a value of zero (pure green) to 38 (pure red).

It can be readily seen that there are significant differences in workspace density among

the 18 workspace nodes pictured: a few are deep red, i.e. very dense, while a number of

workspace nodes are bright green, i.e. have low density. In deciding which workspaces

to examine, one may for instance choose one each with low, average, and high density,

and then compare their internal structure.

For the workspace density measure, four different options are available in the control

panel: absolute, minimum, maximum, and mean workspace density. The inter-workspace

map in Figure A.12 displays absolute workspace density. This is an absolute measure of

the number of objects in the workspace. The other three types of workspace density

measures are calculated in terms of theperceiveddensity, as seen by the different roles

in the workspace. Because a different subset of objects can be visible to different roles,

each role may perceive a different workspace density. The minimum density is the small-
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est density value of all roles’ perceived density; similarly, the maximum density is the

highest value; and the mean density is the average of all roles’ perceived density values.

The evolution intensity, message intensity, and discussion intensity values are cal-

culated as the number of object additions, message postings, and discussion statement

postings per unit of time, respectively. Finally, the evolution recency, message recency,

and discussion recency values are calculated as the number of object additions, message

postings, and discussion statement postings in a defined recency period, respectively. In

the calculation of recency, more recent actions are given a greater weight than those fur-

ther back in the past. Adeflation factoris applied in the calculation to decrease the count

given for each action the further back in the past it lies. Thus workspaces in which activ-

ity has been most recent are displayed in a colour representing a higher value than those

where activity has been further back.

The ten workspace measures selectable in the Workspace Visualizer’s control panel

are calculated as follows:

A.2.5.1 Density measures:

There are four different workspace density measures. The basic one isabsolute work-

space density, Dabsw for workspacew, which is:

Dabsw = |Ow|

whereOw is the set of objects of type action, background, document, and discussion

in workspacew, and|Ow| is the cardinality ofOw.

For the other types of workspace densities, it is necessary to calculaterole densities

first. The role densityDrw of a given roler in workspacew is:

Drw = |Owr|

whereOwr is the set of objects of type action, background, document, and discussion

in workspacew which are visible to roler, and where|Owr| is the cardinality of this set.

For a given workspacew, let the set of all roles inw be denoted asRw, and the set of

all role densitiesDrw in w be denoted asDRw. The remaining three types of workspace

density measures are then:

Minimum workspace density, Dmin:

Dmin = min(DRw)

where the function min obtains the smallest value ofDrw from DRw.
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Maximum workspace density, Dmax:

Dmax= max(DRw)

where the function max obtains the largest value ofDrw from DRw.

Mean workspace density, Dmean:

Dmean= 〈DRw〉

where〈DRw〉 denotes the arithmetic mean of the values inDRw.

A.2.5.2 Intensity measures:

Intensity measures express the temporal clustering of a given set of action types in a

workspace. There are three intensity measures in the Workspace Visualizer:

Evolution intensity, Ievolw, measures the number of object additions to workspacew

since the time of its creation, over the agea of the workspace’s existence (in weeks):

Ievolw =
|Ow|

a

where|Ow| is the cardinality of the set of objects added to workspacew. Objects

included inO are: roles, participants, documents, backgrounds, discussions, actions,

message types, and message rules.

Message intensity, Imsgw, measures the number of message postings through message

channels in workspacew since the time of its creation, over the agea of the workspace’s

existence (in weeks):

Imsgw =
|Mw|

a

where|Mw| is the cardinality of the set of messagesM posted in workspacew.

Discussion intensity, Idiscw, measures the number of discussion statement postings

through discussion forums in workspacew since the time of its creation, over the agea

of the workspace’s existence (in weeks):

Idiscw =
|Sw|

a

where|Sw| is the cardinality of the set of discussion statementsS posted in workspace

w.
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Figure A.13: Weighted action countr for recency measures, with recency periodP = 30

A.2.5.3 Recency measures:

Recency measures express the temporal clustering of a given set of action types in a

workspace over a time period ending at the time of observation. In the calculation of

recency, youngest actions are given the greatest weight, which decreases with the ac-

tion’s age logarithmically from 1 (actions occurring on day of observation) to 0 (actions

occurring outside the recency period). In the Workspace Visualizer, the recency period

P is 30 days, including the day of observation and 29 days into the past. The weighted

action countr for this recency period is shown in Figure A.13. There are three recency

measures in the Workspace Visualizer:

Evolution recency, Revolw, measures the weighted number of object additions to

workspacew during recency periodP. For a workspace in whichn object additions

occurred within the recency periodP, it is calculated as:

Revolw =
n

∑
i=1

r i

where each value ofr corresponds to one object addition with agea, a≥ 0, in days

before the time of observation, and is calculated as:

r i = 1− ln(a+1)
ln(P)

(A.1)
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Message recency, Rmsgw, measures the weighted number of message postings through

message channels in workspacew during recency periodP. For a workspace in whichm

message postings occurred within the recency periodP, it is calculated as:

Rmsgw =
m

∑
i=1

r i

where each value ofr corresponds to one message posting with agea, a≥ 0, in days

before the time of observation, and is again calculated as in eq. A.1 above.

Discussion recency, Rdiscw, measures the weighted number of discussion statement

postings through message channels in workspacew during recency periodP. For a work-

space in whichl discussion statement postings occurred within the recency periodP, it

is calculated as:

Rdiscw =
l

∑
i=1

r i

where each value ofr corresponds to one discussion statement posting with agea,

a≥ 0, in days before the time of observation, and is again calculated as in eq. A.1 above.

A.3 From Inter- to Intra-workspace Maps

Through exploration of workspace maps, both of the inter-workspace and intra-work-

space type, structures of task- and process-level action patterns existing within LIVE-

NET’s collaboration data can be identified. This exploration is aided by various tech-

niques that were presented above, including a combination of filtering and clustering

techniques, as well as the visualization of workspace measures.

The process of visualization itself may be more or less targeted. In some cases, an

existing workspace is known to be of interest, in which case an intra-workspace map of

just that workspace can be produced for further inspection. At other times, the process

is more exploratory where the visualization can aid in the identification of workspaces

which appear of interest for further investigation. Such workspaces can then be examined

in more detail in a subsequent step by requesting intra-workspace maps for each one.

Thus the exploration usually involves both inter- and intra-workspace maps, and often

alternates between the two.

Using information visualization as provided by the Workspace Visualizer, the extrac-

tion of task- and process-level action patterns from workspaces can be greatly facilitated,

as compared to the direct analysis of large quantities of lower-level action patterns. An
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example of the application of the Workspace Visualizer to actual collaboration data ob-

tained from the LIVENET collaboration system was presented in Section 5.2.



Appendix B

Pattern Extraction Queries

This appendix shows the queries that were performed as part of the extraction of pat-

terns from LIVENET data, as well as the results of those queries. The source data was

generated through usage of the LIVENET collaboration system by a group of LIVENET

users, designated as “Group 9” (refer to the discussion of pattern extraction in Chapter 5,

beginning on page 191).

B.1 Database Structure

The queries that follow are issued against the relational database tableLogwhich contains

records of the LIVENET action log. This table has the structure shown in Table B.1.

B.2 Sessions

Group 9 performed 103 sessions with a total of 2737 actions per session, an average of

about 26 actions per session.

B.2.1 Number of Actions Per Session

The following SQL query obtained a list of session identifiers and corresponding number

of actions per session:

SELECT SessionId, COUNT(*) AS Num

FROM Log

WHERE SessionId IN (

SELECT DISTINCT SessionId

FROM Log
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Column Description

LogId Unique identifier of each log record

LogTimestamp Timestamp of the log record (date/time)

SessionId Unique identifier of the session which the action recorded in the

log record belongs to

Workgroup Workgroup in which the action occurred

Workspace Workspace in which the action occurred

Owner Owner of the workspace in which the action occurred

UserName Name of the subject (user) performing the action

RoleName Role occupied by the user performing the action

Action The action performed

Attrib1 Action attribute number 1

Attrib2 Action attribute number 2

Attrib3 Action attribute number 3

Attrib4 Action attribute number 4

Attrib5 Action attribute number 5

Attrib6 Action attribute number 6

Attrib7 Action attribute number 7

Attrib8 Action attribute number 8

Attrib9 Action attribute number 9

Attrib10 Action attribute number 10

Table B.1: Structure of database tableLog

WHERE Workspace = ’cbe-group-09_Master’

AND NOT UserName = ’desnet-manager’

)

GROUP BY SessionId

ORDER BY SessionId

The nested query is necessary because some actions, such assetworkspace, take

place before the session has entered a workspace. Using the subquery, all session ids are

identified, which then allows all actions belonging to those sessions to be counted. The

condition to exclude actions performed bydesnet-manager (the course instructor and

owner of the workspace) ensures that only actions performed by members of Group 9 are

considered. The graph in Figure B.1 summarizes the query result. The following output

is produced by the query:
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Figure B.1: Number of actions per session for Group 9

SessionId Num

--------------------

150 17

329 16

527 21

673 41

784 51

981 18

1198 30

1203 14

1209 59

1316 19

1616 20

1627 53

1643 24

1648 15

1701 42

1702 24

2039 16

2049 21

2058 18

2362 18

2501 16

2571 27
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2732 22

2742 21

2862 27

3006 25

3190 26

3250 23

3678 16

3960 22

4206 15

4207 27

4212 48

4228 38

4457 23

4478 17

4729 52

4770 16

4784 23

4808 15

4951 15

4979 14

4987 15

5122 19

5129 15

5232 26

5275 17

5281 59

5363 36

5390 54

5402 14

5404 45

5462 24

5539 18

5548 15

5564 14

5566 19

5580 14

5610 23
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5613 15

5703 14

5764 27

5768 29

5853 15

5874 15

6310 16

6312 14

6514 20

6527 81

6847 14

7068 15

7165 18

7394 16

7919 30

7955 19

8369 14

8752 20

8759 16

8815 25

8870 18

8946 22

9218 29

9640 16

9646 34

9987 14

9996 32

10015 17

10022 25

10039 40

10326 16

10341 18

10365 36

10374 17

10383 17

10416 14

10431 15
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10580 20

11370 14

11415 14

11931 103

11950 99

11952 138

20236 28

B.2.2 Sessions Per Day

The following SQL query obtained a list of the number of sessions of Group 9 per day

during the observation period:

SELECT CONVERT(CHAR(11), LogTimestamp) AS SessionDate,

COUNT(DISTINCT SessionId) AS Num

FROM Log

WHERE SessionId IN (

SELECT DISTINCT SessionId

FROM Log

WHERE Workspace = ’cbe-group-09_Master’

AND NOT UserName = ’desnet-manager’

)

GROUP BY CONVERT(CHAR(11), LogTimestamp)

As above, the nested query obtains all session identifiers for sessions performed by

members of Group 9. The graph in Figure B.2 summarizes the query result. The follow-

ing output is produced by the query:

SessionDate Num

-------------------------

Aug 11 2000 1

Aug 12 2000 1

Aug 13 2000 1

Aug 14 2000 1

Aug 15 2000 1

Aug 16 2000 4

Aug 17 2000 6

Aug 19 2000 3
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Figure B.2: Sessions of Group 9 per day, 11/Aug/2000–6/Nov/2000

Aug 20 2000 1

Aug 21 2000 3

Aug 22 2000 3

Aug 23 2000 4

Aug 24 2000 1

Aug 25 2000 1

Aug 26 2000 4

Aug 27 2000 3

Aug 28 2000 6

Aug 29 2000 13

Aug 30 2000 15

Aug 31 2000 2

Sep 4 2000 2

Sep 5 2000 1

Sep 6 2000 1

Sep 7 2000 2

Sep 11 2000 1

Sep 20 2000 2

Sep 27 2000 1

Oct 3 2000 4

Oct 4 2000 1
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Oct 6 2000 1

Oct 9 2000 2

Oct 10 2000 5

Oct 11 2000 7

Oct 12 2000 1

Oct 18 2000 2

Oct 22 2000 3

Nov 6 2000 1

B.2.3 System-Level Actions in All Sessions

A total of 35 different system-level actions were performed by Group 9. The following

SQL query obtained a ranked list of counts of actions:

SELECT Action, COUNT(*) AS Num

FROM Log

WHERE SessionId IN (

SELECT DISTINCT SessionId

FROM Log

WHERE Workspace = ’cbe-group-09_Master’

AND NOT UserName = ’desnet-manager’

)

GROUP BY Action

ORDER BY 2 DESC

As above, the nested query obtains all session identifiers for sessions performed by

members of Group 9. Output is sorted so that the most frequently performed actions are

listed first, and the least frequently ones last. The graph in Figure B.3 summarizes the

query result. The following output is produced by the query:

Action Num

----------------------------------

get_role_objects 683

open_object 189

getparticipants 158

setworkspace 157

get_user_email_homepages 152

getroles1 151
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get role objects · · · 683

openobject 189

getparticipants 158

setworkspace 157

get useremail homepages 152

getroles1 151

get msg types 149

get role messages 149

get led workgroups 149

get workspacetree 149

getmyworkspaces 130

logoff 106

get block tree 103

get statement 99

addobject 50

get usersin group 27

addstatement 20

deleteobject 20

normalclose 18

addparticipant 14

addblock 11

sendemail 10

addgroupuser 8

add role object 4

createworkspace 3

newrole 2

deleteworkspace 2

getroles 1

newrole1 1

edit user1 1

give ownership 1

createworkgroup 1

get role templates 1

removerole object 1

get usersin mygroups 1

Figure B.3: Ranked list of number of occurrences of system-level actions performed by

Group 9 in all sessions
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get_msg_types 149

get_role_messages 149

get_led_workgroups 149

get_workspace_tree 149

getmyworkspaces 130

logoff 106

get_block_tree 103

get_statement 99

add_object 50

get_users_in_group 27

add_statement 20

delete_object 20

normal_close 18

addparticipant 14

add_block 11

send_email 10

add_group_user 8

add_role_object 4

create_workspace 3

newrole 2

delete_workspace 2

getroles 1

newrole1 1

edit_user1 1

give_ownership 1

create_workgroup 1

get_role_templates 1

remove_role_object 1

get_users_in_mygroups 1

B.2.4 Session 4228

The following SQL query obtained all log entries for session 4228:

SELECT *

FROM Log

WHERE SessionId = 4228

ORDER BY LogTimestamp
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Table B.2 shows the occurrence of system-level actions in session 4228 over time.

The following output is produced by the query:

LogId LogTimestamp SessionId Workgroup Workspace Owner UserName

RoleName Action Attrib1 Attrib2 Attrib3 Attrib4 Attrib5

Attrib6 Attrib7 Attrib8 Attrib9 Attrib10

---------------------------------------------------------------------

---------------------------------------------------------------------

-----------------------------------------------------------

82905 "2000-08-26 14:06:53.773" 4228 null null null cbe-shane

null getmyworkspaces null null null null null null null null

null null

82906 "2000-08-26 14:06:57.586" 4228 null null null cbe-shane

null setworkspace cbe-group-09_Master desnet-manager null null

null null null null null null

82907 "2000-08-26 14:06:57.98" 4228 cbe-group-09

cbe-group-09_Master desnet-manager cbe-shane Member

get_led_workgroups null null null null null null null null

null null

82908 "2000-08-26 14:06:58.39" 4228 cbe-group-09

cbe-group-09_Master desnet-manager cbe-shane Member

get_workspace_tree cbe-group-09_Master desnet-manager null null

null null null null null null

82909 "2000-08-26 14:06:58.79" 4228 cbe-group-09

cbe-group-09_Master desnet-manager cbe-shane Member

get_role_objects DOCUMENT null null null null null null null

null null

82910 "2000-08-26 14:06:59.19" 4228 cbe-group-09

cbe-group-09_Master desnet-manager cbe-shane Member

get_role_objects BACKGROUND null null null null null null

null null null



Appendix B. Pattern Extraction Queries 244

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
32

33
34

35
36

37
38

ad
d

ob
je

ct
X

X
X

X
X

X

ad
d

st
at

em
en

t
X

de
le

te
ob

je
ct

X

ge
tb

lo
ck

tr
ee

X
X

X

ge
tl

ed
w

or
kg

ro
up

s
X

ge
tm

sg
ty

pe
s

X

ge
tm

yw
or

ks
pa

ce
s

X

ge
tp

ar
tic

ip
an

ts
X

ge
tr

ol
e

m
es

sa
ge

s
X

ge
tr

ol
e

ob
je

ct
s

X
X

X
X

X
X

X
X

X
X

X

ge
tr

ol
es

1
X

ge
tu

se
re

m
ai

lh
om

ep
ag

es
X

ge
tw

or
ks

pa
ce

tr
ee

X

lo
go

ff
X

no
rm

al
cl

os
e

X

op
en

ob
je

ct
X

X
X

X
X

se
tw

or
ks

pa
ce

X

Ta
bl

e
B

.2
:

O
cc

ur
re

nc
e

of
sy

st
em

-le
ve

la
ct

io
ns

in
se

ss
io

n
42

28
ov

er
tim

e



Appendix B. Pattern Extraction Queries 245

82911 "2000-08-26 14:06:59.59" 4228 cbe-group-09

cbe-group-09_Master desnet-manager cbe-shane Member

get_role_objects ACTION null null null null null null null

null null

82912 "2000-08-26 14:06:59.99" 4228 cbe-group-09

cbe-group-09_Master desnet-manager cbe-shane Member

get_role_objects DISCUSSION null null null null null null

null null null

82913 "2000-08-26 14:07:00.393" 4228 cbe-group-09

cbe-group-09_Master desnet-manager cbe-shane Member getroles1

null null null null null null null null null null

82914 "2000-08-26 14:07:00.793" 4228 cbe-group-09

cbe-group-09_Master desnet-manager cbe-shane Member

getparticipants null null null null null null null null null

null

82915 "2000-08-26 14:07:01.193" 4228 cbe-group-09

cbe-group-09_Master desnet-manager cbe-shane Member

get_role_messages null null null null null null null null

null null

82916 "2000-08-26 14:07:01.593" 4228 cbe-group-09

cbe-group-09_Master desnet-manager cbe-shane Member

get_msg_types null null null null null null null null null

null

82917 "2000-08-26 14:07:01.993" 4228 cbe-group-09

cbe-group-09_Master desnet-manager cbe-shane Member

get_user_email_homepages null null null null null null null

null null null

82918 "2000-08-26 14:07:46.236" 4228 cbe-group-09

cbe-group-09_Master desnet-manager cbe-shane Member add_object

DOCUMENT "1.0 Plan Preparation.doc" "http://livenet.maths.uts.edu.
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au/wsdocs/cbe-group-09_Master_desnet-manager/d/1.0 Plan Preparation.

doc" null null null null null null null

82919 "2000-08-26 14:07:46.64" 4228 cbe-group-09

cbe-group-09_Master desnet-manager cbe-shane Member

get_role_objects DOCUMENT null null null null null null null

null null

82949 "2000-08-26 14:14:33.943" 4228 cbe-group-09

cbe-group-09_Master desnet-manager cbe-shane Member add_object

DOCUMENT "1.0 Plan Preparation #2.doc" "http://livenet.maths.uts.

edu.au/wsdocs/cbe-group-09_Master_desnet-manager/d/1.0 Plan

Preparation #2.doc" null null null null null null null

82950 "2000-08-26 14:14:34.346" 4228 cbe-group-09

cbe-group-09_Master desnet-manager cbe-shane Member

get_role_objects DOCUMENT null null null null null null null

null null

82952 "2000-08-26 14:14:43.576" 4228 cbe-group-09

cbe-group-09_Master desnet-manager cbe-shane Member open_object

"1.0 Plan Preparation #2.doc" null null null null null null

null null null

82954 "2000-08-26 14:14:58.13" 4228 cbe-group-09

cbe-group-09_Master desnet-manager cbe-shane Member open_object

"1.0 Plan Preparation #2.doc" null null null null null null

null null null

82955 "2000-08-26 14:15:07.753" 4228 cbe-group-09

cbe-group-09_Master desnet-manager cbe-shane Member open_object

"1.0 Plan Preparation.doc" null null null null null null null

null null

82956 "2000-08-26 14:15:24.516" 4228 cbe-group-09

cbe-group-09_Master desnet-manager cbe-shane Member open_object

"1.0 Plan Preparation #2.doc" null null null null null null
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null null null

82957 "2000-08-26 14:15:31.036" 4228 cbe-group-09

cbe-group-09_Master desnet-manager cbe-shane Member delete_object

"1.0 Plan Preparation #2.doc" null null null null null null

null null null

82958 "2000-08-26 14:15:31.436" 4228 cbe-group-09

cbe-group-09_Master desnet-manager cbe-shane Member

get_role_objects DOCUMENT null null null null null null null

null null

83007 "2000-08-26 14:21:45.063" 4228 cbe-group-09

cbe-group-09_Master desnet-manager cbe-shane Member add_object

DOCUMENT "1.0 Plan Preparation 2.doc" "http://livenet.maths.uts.

edu.au/wsdocs/cbe-group-09_Master_desnet-manager/d/1.0 Plan

Preparation 2.doc" null null null null null null null

83008 "2000-08-26 14:21:45.466" 4228 cbe-group-09

cbe-group-09_Master desnet-manager cbe-shane Member

get_role_objects DOCUMENT null null null null null null null

null null

83009 "2000-08-26 14:21:49.17" 4228 cbe-group-09

cbe-group-09_Master desnet-manager cbe-shane Member open_object

"1.0 Plan Preparation 2.doc" null null null null null null

null null null

83045 "2000-08-26 14:45:37.513" 4228 cbe-group-09

cbe-group-09_Master desnet-manager cbe-shane Member add_object

DOCUMENT "2.0 Plan Monitoring.doc" "http://livenet.maths.uts.edu.

au/wsdocs/cbe-group-09_Master_desnet-manager/d/2.0 Plan Monitoring.

doc" null null null null null null null

83046 "2000-08-26 14:45:37.913" 4228 cbe-group-09

cbe-group-09_Master desnet-manager cbe-shane Member

get_role_objects DOCUMENT null null null null null null null
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null null

83063 "2000-08-26 14:59:26.736" 4228 cbe-group-09

cbe-group-09_Master desnet-manager cbe-shane Member add_object

DOCUMENT "3.0 Problem Identification.doc" "http://livenet.maths.

uts.edu.au/wsdocs/cbe-group-09_Master_desnet-manager/d/3.0 Problem

Identification.doc" null null null null null null null

83064 "2000-08-26 14:59:27.136" 4228 cbe-group-09

cbe-group-09_Master desnet-manager cbe-shane Member

get_role_objects DOCUMENT null null null null null null null

null null

83067 "2000-08-26 15:12:32.166" 4228 cbe-group-09

cbe-group-09_Master desnet-manager cbe-shane Member add_object

DOCUMENT "4.0 Propose Change.doc" "http://livenet.maths.uts.edu.au/

wsdocs/cbe-group-09_Master_desnet-manager/d/4.0 Propose Change.doc"

null null null null null null null

83068 "2000-08-26 15:12:32.556" 4228 cbe-group-09

cbe-group-09_Master desnet-manager cbe-shane Member

get_role_objects DOCUMENT null null null null null null null

null null

83069 "2000-08-26 15:12:49.71" 4228 cbe-group-09

cbe-group-09_Master desnet-manager cbe-shane Member

get_block_tree cbe-group-09_Master_desnet-manager "Discuss

Milestone" null null null null null null null null

83070 "2000-08-26 15:13:23.83" 4228 cbe-group-09

cbe-group-09_Master desnet-manager cbe-shane Member

get_block_tree cbe-group-09_Master_desnet-manager "Discuss

Milestone" null null null null null null null null

83071 "2000-08-26 15:13:24.43" 4228 cbe-group-09

cbe-group-09_Master desnet-manager cbe-shane Member add_statement

1104 0 "Documents Uploaded" "Hey there people check out the new
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documents, well its a start anyway. Ciao for now." null null null

null null null

83072 "2000-08-26 15:13:24.83" 4228 cbe-group-09

cbe-group-09_Master desnet-manager cbe-shane Member

get_block_tree cbe-group-09_Master_desnet-manager "Discuss

Milestone" null null null null null null null null

83073 "2000-08-26 15:13:37.77" 4228 cbe-group-09

cbe-group-09_Master desnet-manager cbe-shane Member

normal_close null null null null null null null null null

null

83074 "2000-08-26 15:13:37.98" 4228 cbe-group-09

cbe-group-09_Master desnet-manager cbe-shane Member logoff null

null null null null null null null null null



Glossary & Abbreviations

ACL abbrev. forAccess Control List.

action A function or operation that can be performed in a collaboration system. It con-

sists of one or moreattributesthat describe it.

action context A set of information identifying the subject, referent, location, and time

of an action (seesubject, referent, location, time).

action pattern A pattern describing an action together with a particular action context.

Synonymous withpattern of virtual collaboration(seepattern).

artefact A passive object or collection of objects in a collaboration system, containing

information.

awarenessAn understanding of the activities of others, which provides a context for

one’s own activity (Dourish and Bellotti, 1992).

base levelThe level of the Information Pyramid at which the collaboration system col-

lects data about virtual collaboration (seeInformation Pyramid).

class mapping A mapping that defines how an instance of a class representing a given

concept can be created from instances of other classes.

collaboration The act of working together on a common task or process.

collaboration level The fourth level of the Information Pyramid; this is the level on

which multiple users work in collaboration with each other (seeInformation Pyra-

mid).

collaboration memory One part of an organizational memory, consisting of records of

procedural aspects of collaborative activity.

collaboration process A process performed by two or more individuals working to-

gether.
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collaboration space A virtual space which provides the opportunity for bringing to-

gether people, artefacts, and communication channels for individual or joint ac-

tivity.

collaboration space densityA measure of how many objects are contained in a single

collaboration space (seemeasure of a collaboration space).

collaboration system A software system which supports virtual collaboration through

the provision of collaboration spaces.

collaboration view View of information as seen from the point of view of multiple users

in collaboration with each other, consisting of the objects of the collaboration sys-

tem which these users interact with using the actions provided by the collaboration

system (seecollaboration level).

communication channel A facility for the exchange of messages, available to users of

a collaboration space.

communication intensity A measure of the number of statements exchanged through

discussion forums in a collaboration space per unit of time, calculated as an average

over the history of the collaboration space (seemeasure of a collaboration space).

communication recency A measure of the number of statements “recently” exchanged

through discussion forums in a collaboration space, for a pre-defined time interval

(seemeasure of a collaboration space).

cooperation The joint operation or action toward a common goal or benefit.

CSCW abbrev. forComputer-Supported Cooperative (or Collaborative) Work.

data Uninterpreted raw facts.

document exchange intensityA measure of how often documents are exchanged in a

collaboration space through create/read document actions per unit of time, calcu-

lated as an average over the history of the collaboration space (seemeasure of a

collaboration space).

document exchange recencyA measure of the number of “recent” document exchanges

in a collaboration space, for a pre-defined time interval (seemeasure of a collabor-

ation space).
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dynamic information Information about the actions taking place in a collaboration

space, representing the behaviour associated with the collaboration space’s struc-

ture (seeaction).

EMOO diagram short forextended MOO diagram(seeextended MOO diagram).

evolution intensity A measure of how strongly the structure of a collaboration space

is subject to change, in terms of change actions per unit of time, calculated as an

average over the history of the collaboration space (seemeasure of a collaboration

space).

evolution recency A measure of how strongly the structure of a collaboration space has

“recently” been subject to change, for a pre-defined time interval (seemeasure of

a collaboration space).

extended MOO diagram An extended form of the MOO diagramming notation (see

MOO diagram).

goal The desired realization of a specific state of a portion of the world that an activity

is concerned with.

HCI abbrev. forHuman-Computer Interaction.

HTML abbrev. forHyperText Markup Language.

information Interpreted data, such that it is given meaning.

Information Pyramid short forInformation Pyramid of Virtual Collaboration(seeIn-

formation Pyramid of Virtual Collaboration).

Information Pyramid of Virtual Collaboration A six-layer model of information re-

lated to virtual collaboration.

infrastructure level The lowest (first) level of the Information Pyramid; this is the level

of the underlying software infrastructure running “below” the collaboration system

(seeInformation Pyramid).

infrastructure view View of information as seen from the point of view of the infras-

tructure underlying the collaboration system, consisting of files that contain records

of objects and actions (seeinfrastructure level).

inter-workspace map A visualization of the network of a collection of workspaces (i.e.

collaboration spaces in the LIVENET system), and the relationships between them.



Glossary & Abbreviations 253

intra-workspace map A visualization of the internal structure of a workspace (i.e. a

collaboration space in the LIVENET system).

KM abbrev. forKnowledge Management.

knowledge Information made actionable as a result of cognitive effort.

location The place where an action occurs (seeaction context).

macro level Levels of the Information Pyramid above the meso level; i.e. the collabor-

ation, task and process levels (seeInformation Pyramid, meso level, collaboration

level, task level, process level).

mapping function A function that creates instances of a specific target class (seetarget

class).

measure of a collaboration spaceA quantitative attribute which expresses something

about a certain characteristic of a collaboration space. Such a measure is derived,

or computed, from information related to the collaboration space.

meso levelThe user level of the Information Pyramid (seeInformation Pyramid, user

level).

micro level Levels of the Information Pyramid below the meso level; i.e. the infrastruc-

ture and system levels (seeInformation Pyramid, meso level, infrastructure level,

system level).

MOO diagram A diagramming notation for representing internals of a task belonging

to a collaboration process, showing roles, artefacts, discussions, and their relation-

ships.

multi-artefact An artefact consisting of multiple objects (seeartefact).

multi-role A role occupied by several people (seerole).

object A static entity provided and maintained by a collaboration system. It consists of

one or moreattributesthat describe it. The set of values of an object’s attributes at

a given point in time constitutes the object’sstateat that time.

OM abbrev. forOrganizational Memory.

pattern An abstract description of the structure of a body of data.

pattern of virtual collaboration Synonymous withaction pattern(seeaction pattern).
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process A collection of related tasks with a goal, such that the accomplishment of all

task goals brings about the process goal.

process levelThe highest (sixth) level of the Information Pyramid; this is the level on

which multiple users perform collections of related tasks corresponding to pro-

cesses (seeInformation Pyramid).

process modelAn abstract description of an actual or proposed process (Curtis et al.,

1992).

process viewView of information as seen from the point of view of multiple users per-

forming processes, consisting of multiple related tasks belonging to these processes

(seeprocess level).

referent That which is being acted upon by an action (seeaction context).

role An organizational role occupied by one or more people.

rich picture A diagramming notation for representing a collaboration process.

sessionA sequence of actions performed by the same user over a given period of time,

with a defined starting and ending point.

singleton artefact An artefact consisting of only one object (seeartefact).

singleton role A role occupied by only one person (seerole).

slot mapping A mapping that defines a correspondence between two slots.

source classIn a mapping of classes, the class which is being mapped from (seeclass

mapping).

source slot In a mapping of slots, the slot which is being mapped from (seeslot map-

ping).

SQL abbrev. forStructured Query Language, a language used for retrieving and manip-

ulating data in a relational database.

static information Information about the objects in a collaboration space, representing

the collaboration space’s structure (seeobject).

subject An action performer, such as a user or role or even a computational entity (see

action context).
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system levelThe second level of the Information Pyramid; this is the level of the collab-

oration system itself (seeInformation Pyramid).

system view View of information as seen from the point of view of the collaboration

system, consisting of its information repositories, such as database tables and log

files that contain records of objects and actions (seesystem level).

target class In a mapping of classes, the class which is being mapped to (seeclass map-

ping).

target slot In a mapping of slots, the slot which is being mapped to (seeslot mapping).

task A collection of activities with a common goal, performed by one or more individu-

als, such that the successful completion of all the activities brings about the task’s

goal.

task level The fifth level of the Information Pyramid; this is the level on which multiple

users perform activity corresponding to tasks (seeInformation Pyramid).

task view View of information as seen from the point of view of multiple users perform-

ing tasks, consisting of multiple collaboration-level actions and objects belonging

to these tasks (seetask level).

time The time when an action occurs (seeaction context).

URL abbrev. forUniform Resource Locator, the address of a resource residing on a

computer network.

user level The third level of the Information Pyramid; this is the level on which individ-

ual users operate (seeInformation Pyramid).

user view View of information as seen from the point of view of the individual user,

consisting of the objects of the collaboration system which the user interacts with

using the actions provided by the collaboration system (seeuser level).

virtual collaboration Collaboration which is conducted without face-to-face interac-

tion, enabled by technology (seecollaboration).

virtual collaboration process A collaboration process performed without face-to-face

interaction, enabled by technology (seevirtual collaboration).

virtual team A group of people who interact through interdependent tasks guided by

a common purpose, working across space, time, and organizational boundaries

(Lipnack and Stamps, 1997).



Glossary & Abbreviations 256

workspace Synonymous term forcollaboration spaceas used in the LIVENET system

(seecollaboration space).

web The World-Wide Web.

XML abbrev. forExtensible Markup Language.
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Prot́eǵe-2000: Combining interoperability and flexibility. In2nd International Con-

ference on Knowledge Engineering and Knowledge Management (EKAW‘2000),

volume 1937 ofLecture Notes in Computer Science, pages 17–32, Juan-les-Pins,

France. Springer-Verlag.

Nunamaker Jr., J. F., Romano Jr., N. C., and Briggs, R. O. (2001). A framework for col-

laboration and knowledge management. InProceedings of the Thirty-Fourth Hawaii

International Conference on System Sciences, pages 461–472, Maui, Hawaii, USA.

IEEE Computer Society Press.

Pankoke-Babatz, U. and Syri, A. (1997). Collaborative workspaces for time deferred

electronic cooperation. InProceedings of the International ACM SIGGROUP Con-

ference on Supporting Group Work, pages 187–196, Phoenix, Arizona, USA. ACM

Press.
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