INDUCTION OF DRUG RESISTANCE AND DIFFERENTIATION IN HUMAN LEUKAEMIA CELL LINES

Denese Marks

PhD
1994
Acknowledgements

I gratefully acknowledge my supervisors, Dr. Mary Davey for her guidance, most valuable advice and discussions and Dr. Antony Kidman for providing the support which made this project possible.

I also wish to thank Dr. Ross Davey and the staff of the Bill Walsh Cancer Research Laboratory of Royal North Shore Hospital for their guidance and helpful discussions. Also thanks to the Prof. R. Raison, and Stuart Tangye of the Immunobiology Unit, UTS, for their valuable advice and use of the flow cytometer.

Most of all I wish to dedicate this Thesis to Murray.
ABSTRACT

The ability of low, clinically relevant levels of the chemotherapeutic drugs epirubicin and vinblastine to induce drug resistance was examined in the K562, U937, KG-1a and HEL human leukaemia cell lines. Treatment with epirubicin and vinblastine induced the MDR phenotype and P-glycoprotein expression in K562 and U937 cells. However this treatment had no effect on drug resistance in the P-glycoprotein expressing KG-1a and HEL cells. In the U937 cells, drug resistant cells were not only MDR but were also resistant to other drugs including cisplatinum and chlorambucil which are not normally associated with MDR. The drug resistant U937 sublines were also sensitised to doxorubicin, cisplatinum and chlorambucil by buthionine sulphoximine (BSO), suggesting that glutathione-related mechanisms also contributed to resistance in these sublines. The U937 sublines also had an increased DNA content and an increased ability to recover from DNA damage, as determined by cell cycle analysis, indicating that the broad cross-resistance exhibited by these cells was due to the co-existence of multiple resistance mechanisms. Drug treatment induced changes in expression of differentiation associated antigens in all four cell lines.

Treatment with inducers of differentiation (TPA, sodium butyrate, granulocyte-macrophage colony-stimulating factor; GM-CSF). Treatment of K562 and K562/E15B cells with TPA induced megakaryocytic differentiation, with increases in drug resistance, and increased P-glycoprotein expression in the K562/E15B subline. TPA induced monocyctic differentiation in the U937 cells but not the U937/E15 subline, with increased P-glycoprotein expression and function in the U937/E15 cells but not the U937 cells. Staurosporine, an inhibitor of PKC, inhibited differentiation in these cell lines, but did not inhibit increases in P-glycoprotein expression, suggesting drug resistance was not mediated by PKC.

Sodium butyrate induced erythroid differentiation, and increased P-glycoprotein expression in the K562/E15B cells. However at a higher concentration (15 mM) this was not accompanied by increased drug resistance. Granulocyte monocyte colony stimulating factor (GM-CSF) did not induce differentiation in the K562 cells or K562/E15B subline, although the K562/E15B cells became more drug resistant after treatment with GM-CSF. Treatment with GM-CSF induced differentiation in the U937/E15 subline but did not change drug resistance in either the U937 cells or the U937/E15 subline.

Therefore the P-glycoprotein expressing K562/E15B and U937/E15 sublines were more responsive to inducers of differentiation than the parental cell lines. Induction of differentiation therefore induced increases in P-glycoprotein expression and drug resistance, suggesting that expression of P-glycoprotein or a multidrug resistance phenotype was associated with differentiation.
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>AML</td>
<td>acute myeloid leukaemia</td>
</tr>
<tr>
<td>ALL</td>
<td>acute lymphocytic leukaemia</td>
</tr>
<tr>
<td>APAAP</td>
<td>alkaline phosphatase anti-alkaline phosphatase</td>
</tr>
<tr>
<td>BCIP</td>
<td>5-bromo,4-chloro,3-indolyphosphate</td>
</tr>
<tr>
<td>BSO</td>
<td>buthionine sulfoximine</td>
</tr>
<tr>
<td>CML</td>
<td>chronic myeloid leukaemia</td>
</tr>
<tr>
<td>CLL</td>
<td>chronic lymphocytic leukaemia</td>
</tr>
<tr>
<td>COL</td>
<td>colchicine</td>
</tr>
<tr>
<td>DMSO</td>
<td>dimethylsulfoxide</td>
</tr>
<tr>
<td>DNR</td>
<td>daunorubicin</td>
</tr>
<tr>
<td>DOX</td>
<td>doxorubicin</td>
</tr>
<tr>
<td>DTT</td>
<td>dithiothreitol</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylene diamine triacetic acid</td>
</tr>
<tr>
<td>EPR</td>
<td>epirubicin</td>
</tr>
<tr>
<td>GM-CSF</td>
<td>granulocyte-macrophage colony-stimulating factor</td>
</tr>
<tr>
<td>GSH</td>
<td>glutathione (reduced)</td>
</tr>
<tr>
<td>GST</td>
<td>glutathione-S-Transferase</td>
</tr>
<tr>
<td>h</td>
<td>hour</td>
</tr>
<tr>
<td>IDA</td>
<td>idarubicin</td>
</tr>
<tr>
<td>MDR</td>
<td>multidrug resistance</td>
</tr>
<tr>
<td>min</td>
<td>minutes</td>
</tr>
<tr>
<td>MTT</td>
<td>3-4,5-dimethylthiazol-2,5 diphenyl tetrazolium bromide</td>
</tr>
<tr>
<td>NBT</td>
<td>nitro blue-tetrazolium</td>
</tr>
<tr>
<td>PAGE</td>
<td>polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>PI</td>
<td>propidium iodide</td>
</tr>
<tr>
<td>PBS</td>
<td>phosphate buffered saline</td>
</tr>
<tr>
<td>PKC</td>
<td>protein kinase C</td>
</tr>
<tr>
<td>Rh123</td>
<td>rhodamine 123</td>
</tr>
<tr>
<td>SDS</td>
<td>sodium dodecyl sulphate</td>
</tr>
<tr>
<td>STP</td>
<td>staurosporine</td>
</tr>
<tr>
<td>TBS</td>
<td>tris buffered saline</td>
</tr>
<tr>
<td>TEMED</td>
<td>tetramethylethylenediamine</td>
</tr>
<tr>
<td>topo II</td>
<td>topoisomerase II</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Name</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>TPA</td>
<td>12-O-tetradecanoylphorbol-13-acetate</td>
</tr>
<tr>
<td>VCR</td>
<td>vincristine</td>
</tr>
<tr>
<td>VER</td>
<td>verapamil</td>
</tr>
<tr>
<td>VLB</td>
<td>vinblastine</td>
</tr>
<tr>
<td>VP-16</td>
<td>etoposide</td>
</tr>
</tbody>
</table>
PUBLICATIONS

ABSTRACTS AND PRESENTATIONS

TABLE OF CONTENTS

Acknowledgementsi
Abstractii
Abbreviations .. ii
Publications, abstracts and presentations .. v

INTRODUCTION
1 Characteristics of P-glycoprotein and Multidrug Resistance 1
 1.1 Putative Structure of P-glycoprotein .. 1
 1.2 Detection of P-glycoprotein ... 2
 1.3 The mdr genes ... 4
 1.3.1 Regulation of the mdr1 gene ... 4
 1.3.2 The mdr3 gene ... 5
 1.3.3 Functional Studies Using mdr1 and mdr3 Mutants 5
 1.4 Post-translational Modifications of P-glycoprotein 5
 1.4.1 Glycosylation of P-glycoprotein ... 5
 1.4.2 Phosphorylation of P-glycoprotein: The Role of Protein Kinase C ... 6
 1.5 P-glycoprotein Function .. 6
 1.5.1 Drug Binding Sites ... 6
 1.5.2 ATPase Activity of P-glycoprotein .. 6
 1.6 Reversal of MDR ... 7
 1.6.1 Verapamil .. 7
 1.6.2 Other Agents ... 8
 1.6.3 Clinical Trials with Modulators of MDR 8
 1.7 Physiological Role of P-glycoprotein .. 9
 1.7.1 Tissue Distribution of P-glycoprotein 10
 1.7.2 Physiological Function of P-glycoprotein 10

2 P-glycoprotein Expression and Prognosis in Leukaemia 11
 2.1 P-glycoprotein and Cell Surface Antigens as Prognostic Markers in Leukaemia . 12

3 Other Mechanisms of Drug Resistance .. 12
 3.1 Overexpression of Glutathione and GST ... 13
 3.2 Altered Intracellular Transport ... 14
 3.3 The Multidrug-Resistance associated Protein, MRP 15
 3.4 Other Membrane Proteins Associated with Drug Resistance 15
 3.5 Drug Detoxification Mechanisms .. 15
 3.6 Methotrexate Resistance ... 16

4 Outline of Thesis ... 17

MATERIALS AND METHODS
1 Chemicals ... 19
2 Cell Culture ... 19
 2.1 Generation of Drug Resistant K562 Sublines 20
 2.2 Generation of Drug Resistant U937 and HEL Sublines 20
 2.3 Generation of Drug Resistant KG-1a Sublines 20
3 Cytotoxicity Assays ... 20
 3.1 The MTT Assay ... 21
4 Effect of Verapamil .. 21
5 Effect of BSO ... 21
6 Detection of P-glycoprotein ... 21
 6.1 Western Blot Analysis .. 21
 6.1.1 Isolation of Plasma Membrane Fractions 21
 6.1.2 Electrophoretic Separation of Plasma Membrane Fractions 22
 6.1.3 Detection of P-glycoprotein ... 22
 6.2 Immunocytochemistry .. 23
6.3 Flow Cytometry ... 23
7 Determination of P-glycoprotein Function Using Rhodamine 123 24
8 Expression of Cell Surface Antigens ... 24
9 Treatment with TPA ... 24
10 Treatment with Sodium Butyrate .. 25
11 Treatment with GM-CSF ... 25
12 Cell Cycle Analysis .. 25

RESULTS AND DISCUSSION
1 DEVELOPMENT AND CHARACTERISATION OF DRUG RESISTANCE IN K562 CELLS ... 26
1.1 Introduction .. 26
 1.1.1 Cytotoxic Mechanisms and Pharmacokinetics of Epirubicin and Vinblastine ... 26
 1.1.2 K562 Cells as a Model of Haematopoietic Differentiation 28
 1.1.3 Outline .. 28
1.2 Characterisation of Drug Resistance 28
1.3 P-Glycoprotein Expression ... 29
 1.3.1 Western Blot Analysis ... 29
 1.3.2 Immunocytochemistry .. 30
 1.3.3 Flow Cytometry .. 30
1.4 Cloning .. 32
1.5 Reversal of Resistance .. 32
1.6 Rhodamine 123 Accumulation ... 32
1.7 Expression of Antigens Associated with Differentiation 33
 1.7.1 Expression of CD13 ... 33
 1.7.2 Glycophorin A ... 34
 1.7.3 Others Antigens ... 34
1.8 Cell Morphology .. 34
1.9 Discussion .. 34

2 DEVELOPMENT AND CHARACTERISATION OF DRUG RESISTANCE IN U937 CELLS ... 39
2.1 Introduction .. 39
2.2 Characterisation of Drug Resistance 39
2.3 P-glycoprotein Expression ... 40
2.4 Reversal of Resistance .. 40
2.5 Effect of Buthionine Sulphoximine ... 42
2.6 Rhodamine 123 Accumulation .. 43
2.7 Cell Morphology .. 44
2.8 Effects of VP-16 on Cell Cycle ... 44
2.9 Expression of Antigens Associated with Differentiation 45
2.10 Discussion ... 45

3 DEVELOPMENT AND CHARACTERISATION OF DRUG RESISTANCE IN THE KG-1a AND HEL CELLS 51
3.1 Introduction .. 51
3.2 The KG-1a Sublines ... 51
 3.2.1 Development of Drug Resistance 51
 3.2.2 P-glycoprotein Expression and Function 51
 3.2.3 Differentiation Markers .. 53
 3.2.4 Cell Morphology of KG-1a sublines 53
3.3 The HEL Sublines .. 53
 3.3.1 Development of Drug Resistance 53
 3.3.2 P-glycoprotein Expression and Function 53
 3.3.3 Differentiation Antigens .. 54
3.3.4 Cell morphology of HEL sublines ... 54
3.4 Discussion .. 54

4 INDUCTION OF DIFFERENTIATION IN K562 AND K562/E15B CELLS 56
4.1 Introduction ... 56
4.2 Induction with TPA ... 59
 4.2.1 The Effect of TPA on Differentiation 59
 4.2.2 The Effect of TPA on Drug Resistance 60
 4.2.3 The Effect of TPA on P-glycoprotein Expression 60
 4.2.4 The Effects of TPA on Rh123 Accumulation 61
4.3 Induction with Sodium Butyrate ... 61
 4.3.1 The Effect of Sodium Butyrate on Differentiation 61
 4.3.2 The Effect of Sodium Butyrate on Drug Resistance 61
 4.3.3 The Effects of Sodium Butyrate on P-glycoprotein Expression 62
 4.3.4 The Effect of Sodium butyrate on Rh123 Accumulation 62
4.4 Induction with GM-CSF ... 63
 4.4.1 The Effect of GM-CSF on Differentiation 63
 4.4.2 The Effect of GM-CSF on Drug Resistance 63
4.5 Discussion .. 63
 4.5.1 Induction with TPA ... 63
 4.5.2 Induction With Sodium Butyrate .. 65
 4.5.3 Induction with GM-CSF .. 66

5 INDUCTION OF DIFFERENTIATION IN U937 AND U937/E15 CELLS 68
5.1 Introduction ... 68
5.2 Induction with TPA ... 68
 5.2.1 The Effect of TPA on Differentiation 68
 5.2.2 The Effect of TPA on Drug Resistance 69
 5.2.3 The Effect of TPA on P-glycoprotein Expression 69
5.2.4 The Effect of TPA on Rh123 Accumulation 69
5.3 Induction with GM-CSF ... 69
 5.3.1 The Effect of GM-CSF on Differentiation 69
 5.3.2 The Effect of GM-CSF on Drug Resistance 70
5.4 Discussion .. 70
 5.4.1 Induction with TPA ... 70
 5.4.2 Induction with GM-CSF .. 73

CONCLUSIONS .. 74

BIBLIOGRAPHY .. 77