An Inquiry Into PBNM System Performance Required For Massive Scale Telecommunication Applications

Shane Magrath
Doctorate of Philosophy (Engineering)
Year of Submission: 2006

Institute of Information and Communications Technology
School of Engineering
University of Technology, Sydney
Australia
Contents

1 Introduction 14
 1.1 Problem Statement ... 14
 1.2 Aim ... 14
 1.3 Overview of the Study .. 15

2 Background 17
 2.1 Introduction .. 17
 2.2 Policy-Based Network Management 17
 2.2.1 Ontology ... 17
 2.2.2 Policy Specification and Languages 21
 2.2.2.1 Ponder ... 22
 2.2.2.2 PDL ... 23
 2.2.2.3 P-CIM .. 24
 2.2.3 Policy Conflict .. 26
 2.2.4 Policy Refinement ... 27
 2.2.5 Policy Systems ... 27
 2.2.5.1 IETF, COPS and P-CIM 27
 2.2.5.2 Ponder ... 29
 2.2.5.3 APMS .. 32
 2.2.6 PBNM Applications ... 32
 2.2.6.1 QoS .. 32
 2.2.6.2 VPN ... 32
 2.2.6.3 Access Control 33
 2.2.6.4 Service Level Management 33
 2.2.7 Operational Studies ... 33
 2.3 Expert Systems ... 34
 2.3.1 Single Agent Systems 35
 2.3.2 Pattern Matching Algorithms 35
 2.3.3 Performance and Benchmarking 38
 2.4 Conclusion ... 38
 2.4.1 PBNM Status ... 38
 2.4.2 IETF ... 39
 2.4.3 PBNM System Performance 40
CONTENTS

3 Theory 42

3.1 Policy System Architectures 42

3.1.1 Important Differences 43

3.2 Performance 44

3.2.1 Concepts 44

3.2.2 Analytical Model 45

3.2.3 Performance Requirements 47

3.3 The Rete Algorithm 49

3.3.1 Description 50

3.3.2 Atomic Operators 51

3.3.3 Expression Parsing 57

3.4 The MatchBox Algorithm 58

3.4.1 Description 58

3.4.2 MatchBox Operations 61

3.4.3 PDN 62

3.4.4 Negation 64

3.4.5 Problems with MatchBox 64

3.5 The JukeBox Algorithm 65

3.5.1 Description 65

3.5.2 Bindspace 67

3.5.3 Relational Subspace Intersections 70

3.5.4 Correct MatchBox and BindSpace Operations 72

3.6 Conclusion 77

4 Experimental Design 78

4.1 Engineering Epistemology 78

4.2 Research Methods 79

4.3 Aim 81

4.4 Method 81

4.4.1 Research Hypotheses 81

4.4.2 Experimental Apparatus 82

4.4.3 Procedure 88

4.4.4 Sources and Control of Experimental Errors 88

4.5 H1: Dominance Hypothesis 91

4.5.1 Refinement 91

4.5.2 Operational Hypothesis ($H_{1,1}$) - Low Level Policy Test 91

4.5.3 Operational Hypothesis ($H_{1,2}$) - High Level Policy Test 91

4.5.4 Justification 91

4.5.5 W&M Testing Procedure 92

4.5.6 B1 Test Specification 92

4.5.7 B2 Test Specification 94

4.6 H2: Complexity Hypothesis 96

4.6.1 Refinement 96
CONTENTS

B.7 JukeBox and Negation ... 170
B.8 Parenthetical Expressions 172

C The JitterBug System .. 174
 C.1 JitterBug Measures ... 174
 C.2 Event Listeners ... 176
 C.2.1 Function .. 176
 C.2.2 Patterns .. 177
 C.2.3 Threading Model ... 177
 C.2.4 Management .. 178
 C.3 Event Management ... 179
 C.3.1 Function .. 179
 C.3.2 Patterns .. 179
 C.3.3 Threading Model ... 179
 C.3.4 Management .. 179
 C.3.5 Implementation .. 179
 C.4 Policy Inferencing Management 182
 C.4.1 Function .. 182
 C.4.2 Patterns .. 182
 C.4.3 Threading Model ... 183
 C.4.4 Management .. 183
 C.4.5 Implementation .. 183
 C.5 Executor Management .. 186
 C.5.1 Function .. 186
 C.5.2 UML ... 187
 C.5.3 Threading Model ... 187
 C.5.4 Management .. 187
 C.5.5 Implementation .. 187
 C.5.5.1 Executor ... 187
 C.5.5.2 Library ... 188
 C.5.5.3 Functions ... 189
 C.6 OAM ... 191
 C.6.1 Base TepMBeans Interface 191
 C.6.1.1 Attributes .. 191
 C.6.1.2 Operations ... 192
 C.6.1.3 JMX Naming .. 192

D The Jive! Language and Compiler 193
 D.1 Example ... 193
 D.2 Compiler Design ... 194
 D.2.1 SableCC .. 194
 D.3 Jive! Grammar .. 195
 D.4 Unit Tests ... 198
 D.4.1 Introduction ... 198
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>D.4.2 Unit Tests</td>
<td>198</td>
</tr>
<tr>
<td>E Geneva: The Elvin Event Generator</td>
<td>214</td>
</tr>
<tr>
<td>E.1 Purpose</td>
<td>214</td>
</tr>
<tr>
<td>E.2 Operation</td>
<td>214</td>
</tr>
<tr>
<td>E.3 Design</td>
<td>215</td>
</tr>
<tr>
<td>F Session Traffic Generation Model</td>
<td>217</td>
</tr>
<tr>
<td>G Experimental Output Files</td>
<td>221</td>
</tr>
<tr>
<td>G.1 TepData.dat</td>
<td>221</td>
</tr>
<tr>
<td>G.2 TepOutput.dat</td>
<td>221</td>
</tr>
<tr>
<td>G.3 TepLatency.dat</td>
<td>222</td>
</tr>
<tr>
<td>G.4 Matlab .M files</td>
<td>222</td>
</tr>
<tr>
<td>G.4.1 TepJitterBug.m</td>
<td>222</td>
</tr>
<tr>
<td>G.4.2 TepH1.m</td>
<td>223</td>
</tr>
<tr>
<td>G.5 Measurement Procedure</td>
<td>225</td>
</tr>
</tbody>
</table>
List of Figures

1.1 Suggested Reading Path ... 16
2.1 PBNM Research Program .. 18
2.2 Simplified UML of P-CIM ... 25
2.3 COPS Architecture ... 28
2.4 Ponder Structural Architecture ... 30
2.5 Rule Discrimination Structure ... 36
3.1 Policy System Architecture ... 43
3.2 Simple Queue - One Server ... 45
3.3 Response Time of a Single Server for Various Loads 49
3.4 Example PDN and Policy Condition .. 50
3.5 Conjunctive Matching Example (AND node) 54
3.6 MatchBox vs Rete PDNs .. 63
3.7 MatchBox vs Rete from Lee & Cheng ... 65
3.8 Example: Forming a 2-Dimensional Bindspace 66
3.9 Example 2-Dimensional Sparse Store 71
4.1 Experimental Configuration ... 82
4.2 Geneva .. 84
4.3 JitterBug GUI ... 87
4.4 PDNs for B1 and B2 Tests .. 93
4.5 PDNs for B3 and B4 Tests .. 98
4.6 PDNs for H3 Tests ... 102
5.1 PDNs for B1 and B2 Tests .. 107
5.2 H1 PDN Latency Results .. 108
5.3 H1 Total System Latency Results .. 109
5.4 H1 PDN Occupancy Results .. 110
5.5 PDNs for B3 and B4 Tests .. 116
5.6 H2 PDN Latency Results .. 117
5.7 H2 Total System Latency Results .. 118
5.8 H2 PDN Percentage Occupancy ... 119
5.9 PDN for B6 Tests ... 124
5.10 H3 Low-Level (B5) PDN Latency 125
5.11 H3 High-Level (B6) PDN Latency 126

A.1 Example PDN .. 147
A.2 UML Class Diagrams of PDN Nodes 149
A.3 Conjunct (And) Node PDN .. 152
A.4 Conjunction with Variable Number of Join Tests 153
A.5 PDN For Simple Negation .. 156
A.6 Complex Negation ... 157
A.7 Variable Scope and Sub-Expressions 160
A.8 Complex Negation Example .. 161

B.1 Two dimensional bindspace example 165
B.2 Example JukeBox PDN Call Graph 168
B.3 Example 2-Dimensional Sparse Store 170
B.4 Simple Negation PDN ... 172

C.1 JitterBug System .. 175
C.2 Listener Relay Pattern ... 178
C.3 Listener JMX Management Pattern 178
C.4 Monitor Pattern .. 180
C.5 Event Sub-System Design ... 181
C.6 Policy Sub-System ... 182
C.7 JMX OAM Design for the Policy Sub-System 184
C.8 Class Diagram for the Executor 187
C.9 JMX Architecture ... 191

E.1 Geneva Configuration Console 215
E.2 Geneva UML Class Diagram .. 216
List of Tables

2.1 Benchmark Applications Maintained by Miranker ([84]) 38

3.1 Offered Load of DIFFSERV Traffic for Variously Sized Networks 48

5.1 H1 Statistics
111

5.2 H2 Statistics
120
Certificate of Authorship/Originality

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of the requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Signature of Candidate
Statement of Contribution

Contributions to Knowledge

We have proposed and tested three hypotheses about policy system performance in massive-scale applications:

- The *dominance* hypothesis which claims “PBNM system performance in large domains is dominated by the latency contribution of the inferencing sub-system”.

- The *complexity* hypothesis which claims “Policy *complexity* as measured by PDN depth is a more significant factor in degrading performance than the *number* of policies in the system, in large domains.”

- The *bindspace* hypothesis which claims “A novel bind-space conjunctive matching algorithm known as JukeBox will produce superior performance when compared to the current state of the art *assertion-space* algorithm known as Rete, for large domains.”

All three hypotheses were *refuted* and the implications of these findings worked out as new knowledge about policy system performance.

In the course of examining these hypotheses, the following contributions were also made:

- Policy server *IO*, both network and file, is a significant performance issue and serves to limit the possible achievable performance of the system. This finding is at variance with the literature which assumes the inferencing algorithm is the cause of poor system performance.

- The *fanout* (outdegree) of a node within the policy discrimination network is a significant performance issue to policy server performance and is more important than the total number of policies installed in the system, their apparent complexity and whether conjunctive matching is employed or not.

- In general, it does not appear possible that a pure bindspace conjunctive matching algorithm can outperform an assertion-space algorithm such as hashed-equality Rete. This finding is at variance with the literature.

- We have discovered, documented and implemented a pure bindspace, unconstrained inferencing algorithm for conjunctive match which we called JukeBox. This algorithm is based on Perlin’s MatchBox algorithm but does not have the significant limitations of his algorithm.
• We have identified and corrected an important error in Perlin’s original and published Match-Box algorithm. This error prevented the matchbox operations from being generally correct.

• We have discovered, documented and implemented a method for using a binary-tree abstract data type as an efficient sparse store of N-dimensional data.

• We have provided a benchmarking procedure for measuring the performance of policy systems in a visible and repeatable manner. This process allows for the characterisation of the policy server’s performance in terms of average latency and its variance.

• We have proposed the simple heuristic of $\lambda = 0.6\mu$ as a useful dimensioning tool for policy system performance planning. This relation is based on a simple consideration of the Pollaczek-Khinchine result from Queueing theory.

• We have provided an open experimental policy system and tool-set that facilitates the research into policy system performance. This tool-set consists of:
 (a) the Jive! language for policy specification,
 (b) an optimising compiler for Jive! policies,
 (c) the JitterBug policy enforcement system and
 (d) Geneva - a configurable policy event generator.

Related Publications

• Autonomics in Telecommunications Service Activation, IEEE Workshop on Autonomic Communication for Evolvable Next Generation Networks, 7th International Symposium on Autonomous Decentralized Systems, 2005

• Scalable Policy Enforcement and PBNM Benchmarking, Ninth IFIP/IEEE International Symposium on Integrated Network Management (IM 2005), 2005 - poster session

Abstract

PBNM systems have been proposed as a feasible technology for managing massive scale applications including telecommunication service management. What is not known is how this class of system performs under carrier-scale traffic loads. This research investigates this open question and concludes, subject to the considerations herein, this technology can provide services to large scale applications.

An in depth examination of several inferencing algorithms is made using experimental methods. The inferencing operation has been implicated as the major source of performance problems in rule based systems and we examine this. Moreover, these algorithms are of central importance to current and future context-aware, pervasive, mobile services. A novel algorithm, JukeBox, is proposed that is a correct, general and pure bindspace conjunctive match algorithm. It is compared to the current state of the art algorithm - Rete. We find that Rete is the superior algorithm when implemented using the hashed-equality variant.

We also conclude that IO is an important cause of PBNM system performance limitations and is perhaps of more significance than the implicated inferencing operations. However, inferencing can be a bottleneck to performance and we document the factors associated with this.

We describe a generally useful policy system benchmarking procedure that provides a visible, repeatable and measurable process for establishing a policy server’s service rate characteristics. The service rate statistics, namely μ and σ, establish the limitations to policy system throughput. Combined with the offered traffic load to the server, using the statistic λ, we can provide a complete characterisation of system performance using the Pollaczek-Khinchine function. This characterisation allows us to make simple design and dimensioning heuristics that can be used to rate the policy system as a whole.