Probiotic bacteria for hatchery production of Greenshell™ mussels, *Perna canaliculus*

Aditya Kesarcodi-Watson

Thesis submitted for the Degree of Doctor of Philosophy

April 2009
Certificate of Authorship / Originality

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Signature of Candidate

...
ACKNOWLEDGMENTS

During the course of my research, numerous people have helped me in various ways.

Initial mention should be made to my supervisors, Dr. Heinrich (Henry) Kaspar and Dr. Lewis Gibson. Henry allowed me freedom to explore my ideas and manage my time, yet maintained a constant eye on my progress which ensured things were moving forward throughout my research. He also supported my growth as a speaker at various conferences and supported my position at the Glenhaven Aquaculture Centre (GACL) where space and resources were often in demand by associate researchers. Lewis played the long-distance role of a Sydney-based supervisor in a New Zealand-based PhD. Although this was less than ideal, it was unavoidable. Nevertheless, Lewis’s input on aspects of microbiology was valuable during his visits to New Zealand. My ability as a writer of scientific articles has improved also as a result of his help.

The ongoing advice and help from Dr. Maria João (Josie) Lategan cannot be thanked enough. From our first meeting at an aquaculture conference in Sydney, Josie was a friendly and helpful figure throughout my research. She provided advice on many ideas and greatly helped my development as a researcher of probiotic bacteria. I truly value her contribution to my thesis.
During the initial stages, Dr. Rodney Roberts provided advice on the design of experiments which helped in the developmental stages. Nick King was a friendly associate who helped in many aspects of mussel rearing and setting up experiments in the hatchery. Additionally, Ellie Watts, Jonathan Morrish, Dr. Norman Ragg and Nicky Roughton helped during certain aspects of my hatchery experiments. Dan McCall and Andy Elliot are thanked for constantly supplying me with mussel larvae. For certain repairs to equipment, Henk Beek, Phil Spencer and David Read are all thanked. In addition to the aforementioned people at the hatchery, I would like to thank the other GACL staff for providing a great environment to work in, which was always a nice change to laboratory work.

Dr. Andrew Fidler is thanked for his help during the PCR work and GenBank familiarisation. Dr. David Harte was most helpful in sequencing of the 16S rRNA. Dr. Steve Webb is thanked for his help with the histopathology and Rasma Vilkens is thanked also for processing of the histological samples. A thank you goes to Kirsty Smith for teaching me how to construct phylogenetic trees using MrBayes.

Ron Fyfe is thanked for his help with many microbiology questions during the early stages. Additionally, staff in the Microbiology Department at Cawthron Institute are thanked for putting up with my using some of their equipment, sharing the autoclave and washing my dishes.
Throughout my research I have had too many flatmates to recall. All provided me with a world away from science which was valuable.

This thesis was supported by Foundation for Research Science & Technology (FRST, New Zealand) contract CAWX0303.
TABLE OF CONTENTS

Acknowledgments i
Table of contents iv
List of figures xi
List of tables xv
List of abbreviations xvii
Abstract xviii

Chapter 1
Literature review 1
1.1 Introduction 2
1.2 Probiotics: definition and principles 8
1.3 Probiotics in aquaculture 11
 1.3.1 Extended definition 11
 1.3.2 Modes of action 14
 1.3.3 Previous research and methodology 17
 1.3.4 Probiotic research in mollusc aquaculture 29
 1.3.5 Developing probiotics for aquaculture 33
1.4 Objective of the study 34
1.5 Aims of the study 35

Chapter 2
Development of a simple larval bioassay to enable screening for probiotics of Greenshell™ mussel larvae, Perna canaliculus 36
2.1 Introduction 37
2.2 Materials and methods 38
 2.2.1 Experimental animals 38
 2.2.2 TCD bioassay 40
 2.2.2.1 Larval survival in TCDs without food, aeration or water exchange (with and without additional bacterial inoculum) 41
2.2.2.2 Water quality effects in a system with GSM larvae and no aeration or water exchange (with and without additional bacterial inoculum) 43

2.2.3 Pre-treatment of larvae with antibiotics prior to experimentation 44

2.2.4 Data analysis 45

2.3 Results 46

2.3.1 Larval survival in TCDs without food, aeration or water exchange (with and without additional bacterial inoculum) 46

2.3.2 Water quality effects in a system with GSM larvae and no aeration or water exchange (with and without additional bacterial inoculum) 48

2.3.3 Pre-treatment of larvae with antibiotics prior to experimentation 50

2.4 Discussion 52

Chapter 3

Two pathogens of Greenshell™ mussel larvae, *Perna canaliculus*: *Vibrio splendidus* and a *V. coralliilyticus/neptunius*-like isolate 56

3.1 Introduction 57

3.2 Materials and methods 57

3.2.1 Isolation, storage and preparation of bacteria 57

3.2.2 Greenshell™ mussel larvae 58

3.2.3 TCD bioassay screening for pathogens 59

3.2.4 The effect of water parameters on larval mortality during bioassays 60

3.2.5 Identification of bacterial pathogens 61

3.2.6 Phylogenetic analysis 62

3.2.7 Histopathology 62

3.2.8 Testing Koch’s postulates 63
Chapter 4
Infection of Greenshell™ mussel larvae, *Perna canaliculus*, using two *Vibrio* pathogens: a hatchery model

4.1 Introduction

4.2 Materials and methods
 4.2.1 Experimental animals
 4.2.2 Culture and harvest of bacteria
 4.2.3 Experimental design
 4.2.4 Data analysis

4.3 Results
 4.3.1 Dose response
 4.3.2 Bacteriology

4.4 Discussion

Chapter 5
Screening probiotics of Greenshell™ mussel larvae, *Perna canaliculus*, using a larval challenge bioassay

5.1 Introduction

5.2 Materials and methods
 5.2.1 Isolation, culture and storage of bacteria
 5.2.2 Experimental animals
Chapter 6
Alteromonas macleodii and Neptunomonas sp. 0536, two novel probiotics for Greenshell™ mussel larvae, Perna canaliculus: protection in a hatchery facility during pathogen-challenge with Vibrio splendidus and a Vibrio coralliilyticus/neptunius-like isolate

6.1 Introduction
6.2 Materials and methods
 6.2.1 Experimental animals
 6.2.2 Culture and harvest of bacteria
 6.2.3 Identification of probiotic strains
 6.2.4 Phylogenetic analysis
 6.2.5 Experimental design
 6.2.6 Bacterial monitoring for probiotics and pathogens
 6.2.7 Data analysis
6.3 Results
 6.3.1 Identification of probiotic strains
 6.3.2 Pathogen-challenges of GSM larvae with/-out probiotics
6.3.3 Bacterial examination of challenged larvae and tank water 128

6.4 Discussion 130
6.4.1 Probiotic identities 131
6.4.2 Probiotic effects 132

Chapter 7
Effects of administering a probiotic bacterium, *Alteromonas macleodii* 0444, during routine hatchery production of Greenshell™ mussel larvae, *Perna canaliculus* 137

7.1 Introduction 138

7.2 Materials and methods 139
7.2.1 Culture of probiotic 139
7.2.2 Experimental animals 139
7.2.3 Experimental design 139
7.2.4 Probiotic effects on larval performance and settlement 140
7.2.5 Probiotic persistence in GSM larvae and on-grown mussels 142
7.2.6 Data analysis 143

7.3 Results 143
7.3.1 Visual observations 143
7.3.2 Larval survival 144
7.3.3 Larval feed consumption 145
7.3.4 Larval size 145
7.3.5 On-going probiotic presence 147

7.4 Discussion 148

Chapter 8
Performance of two probiotic strains, administered in combination, during hatchery production of Greenshell™ mussel larvae, *Perna canaliculus*, including exposure to pathogen challenges 151

8.1 Introduction 152

8.2 Materials and methods 153
Chapter 8

8.2.1 Experimental animals 153
8.2.2 Culture and harvest of bacteria 154
8.2.3 Experimental design 154
8.2.4 Larval feed consumption 156
8.2.5 Larval size 156
8.2.6 Bacterial examination of challenged larvae and tank water 156
8.2.7 Data analysis 157

8.3 Results 157
8.3.1 Larval survival 157
8.3.2 Larval size 162
8.3.3 Larvae to reach settlement 164
8.3.4 Larval feed consumption 165
8.3.5 Bacterial examination of challenged larvae and tank water 168

8.4 Discussion 169

Chapter 9

Synthesis 176
9.1 Synthesis 177
9.2 Conclusion 181
9.3 Future directions 182

Appendices 183
Appendix 1: Pilot study in the development of a TCD bioassay 184
Appendix 2: Bacterial growth curves and determination of bacterial concentrations by spectrophotometry 188
Appendix 3: Screening 11 potential probiotics for production of BLIS using agar diffusion tests 193
Appendix 4: Antibiotic resistance tests 202
Appendix 5: Continued rearing of GSM larvae until settlement, after pathogen challenge 205
| Publications originating from this thesis | 211 |
| References | 214 |
LIST OF FIGURES

Figure 1.1	Greenshell™ mussel, *Perna canaliculus*	2
Figure 1.2	Aquaculture production in New Zealand between 1984-2006	3
Figure 2.1	12-well tissue culture dishes (TCDs)	38
Figure 2.2	Banjo-filter flow-through water GSM larval culture system	40
Figure 2.3	Tissue culture dishes stacked in incubator	42
Figure 2.4	Live and dead larvae.	43
Figure 2.5	Survival (%) of larvae over a 13-day period following inoculation with bacterial isolates	47
Figure 2.6	Bacterial load (CFU ml⁻¹), pH, dissolved oxygen and larval survival at day 7 of flask cultures containing a bacterial inoculum (04287) or no inoculum, and with or without aeration	49
Figure 2.7	Percentage of samples below the bacterial detection limit (10¹ CFU ml⁻¹) for samples taken from TCD bioassays over a seven-day period following antibiotic treatment of GSM larvae	50
Figure 2.8	Day 7 larval survival (%) in control treatments (no bacterial inoculum added) during a range of experiments in TCD bioassays with and without antibiotic pre-treatment of larvae	51
Figure 3.1	Greenshell™ mussel hatchery tank set-up at GACL	65
Figure 3.2	Colony appearance of (A) 0529, green colonies, and (B) DO1 on selective media	66
Figure 3.3	Day 7 larval survival (%) in TCDs inoculated with various bacterial isolates	68
Figure 3.4	Percentage larval survival over seven days in isolates found to cause high mortality	69
Figure 3.5	Dissolved oxygen (% saturation), pH, total bacterial numbers (CFU ml⁻¹) and larval survival (%) in flask cultures of larvae inoculated with potential pathogenic bacteria or not (control)	71
Figure 3.6 Phylogenetic trees for GSM larvae pathogens

V. splendidus (0529) and *Vibrio* sp. DO1

Figure 3.7 Histopathology of GSM larvae: non-inoculated control (A), infected with *V. splendidus* (B) and infected with *Vibrio* sp. DO1 infected larvae (C)

Figure 3.8 Survival of GSM larvae four days following inoculation with the initial pathogenic strain, the re-isolated pathogen strain, and the non-inoculated controls

Figure 4.1 Time course of GSM larval survival when exposed to varying levels of pathogens

Figure 5.1 Colony appearance of (A) *Vibrio* sp. DO1 and (B) isolate 0444 on TSA-2%Sea

Figure 5.2 Day 7 larval survival in bioassays utilizing 20- or 2-hour pre-exposure of putative probiotic before pathogen addition

Figure 5.3 Mean GSM larval survival during three separate screenings for potential probiotic bacteria effective against two pathogen challenges

Figure 5.4 Bacterial levels (CFU ml⁻¹) over seven days during larval challenge experiments with 10⁶ CFU ml⁻¹ putative probiotic, 0444 (broken line), and pathogen, *Vibrio sp.* DO1 (solid line), at concentrations of (a) 10², (b) 10³ and (c) 10⁴ CFU ml⁻¹

Figure 5.5 Day 6 mean GSM larval survival during hatchery pilot tests of potential probiotic bacteria against two pathogen challenges

Figure 6.1 Colony appearance of (A) 0444, and (B) 0536 on selective media

Figure 6.2 Phylogenetic tree for GSM larvae probiotics

Alteromonas sp. (0444) and *Neptunomonas* sp. (0536)

Figure 6.3 Mean GSM larval survival on the fourth day following pathogen exposure
Figure 6.4 Mean day 6 GSM larval size (μm) of different treatments during a probiotic pathogen-challenge experiment 127
Figure 6.5 Growth of putative Vibrio spp. on TCBS selective agar during a probiotic pathogen-challenge experiment involving Neptunomonas sp. 0536 and V. splendidus 130
Figure 7.1 Guide for visual assessment of larval GSM gut colour 141
Figure 7.2 Guide for visual assessment of larval GSM lipid levels 141
Figure 7.3 Observations of GSM larvae throughout the larval period 144
Figure 7.4 Microalgae consumption (cells larva⁻¹ day⁻¹) of GSM larvae administered probiotic, A. macleodii 0444, and non-treated larvae throughout the duration of the larval period 145
Figure 7.5 Proportion (%) of GSM larvae which were retained on a 178 μm screen during the first and second settlement screens 146
Figure 7.6 Mean percentage of larvae successfully settled on coir after the larval period 147
Figure 8.1 GSM larval survival (%) during a probiotic pathogen-challenge experiment utilising probiotics in single-strain administration or in dual-combination 160
Figure 8.2 Mean day 17 GSM larval size (μm) of different treatments during a probiotic pathogen-challenge experiment utilising probiotics in single-strain administration or in dual-combination 163
Figure 8.3 Proportion (%) of GSM larvae which were retained on a 178 μm screen by the second settlement screen (day 19) 165
Figure 8.4 Microalgae consumption (cells larva⁻¹ day⁻¹) of GSM larvae in different treatments during a probiotic/pathogen challenge experiment utilising probiotics in single-strain administration or in dual combination 166
Figure A1 Survival rates of GSM larvae over 24 days when inoculated with different concentrations of 0444, and when non-inoculated 185
Figure A2.1 Growth curves of Vibrio splendidus (isolate 0529) 189
Figure A2.2 Growth curves of Vibrio sp. DO1 (isolate DO1) 190
Figure A2.3 Growth curves of Alteromonas macleodii (isolate 0444) 191
Figure A2.4 Growth curves of Neptunomonas sp. 0536 (isolate 0536) 192
Figure A3 Apparent inhibition of Vibrio sp. DO1 and V. splendidus by potential probiotics using agar diffusion tests (stab method and diametric streak method) 196
Figure A5 GSM larval survival on days 6, 8 and 16 in a challenge experiment involving probiotic Alteromonas macleodii 0444 and Vibrio sp. DO1 207
LIST OF TABLES

Table 1.1 Summary of research towards probiotics for aquaculture 22
Table 2.1 Mean values (± 95% confidence intervals) of parameters measured upon day 7 of the flask experiment 49
Table 2.2 Day 7 larval survival (± 95% confidence intervals) following antibiotic treatment regimes 51
Table 3.1 Measurements of water parameters, bacterial levels and larval survival during larval challenge with potential pathogens (± 95% confidence intervals) 71
Table 3.2 Biochemical, morphological and physiological characteristics of GSM larvae pathogens: Vibrio sp. DO1 and V. splendidus 73
Table 4.1 GSM larval survival from four experiments involving pathogen-challenges with Vibrio sp. DO1 (day 4 post-infection) 88
Table 4.2 GSM larval survival from four experiments involving pathogen-challenges with V. splendidus (day 4 post-infection) 88
Table 5.1 Putative probiotic isolates identified in TCD bioassay screening experiments 104
Table 6.1 Biochemical, morphological and physiological characteristics of GSM larvae probiotics; 0444 and 0536 122
Table 6.2 Statistical analysis of GSM larval survival on the fourth day following pathogen exposure 125
Table 6.3 Day 6 survival of GSM larvae during probiotic/pathogen challenge repeat experiments; pathogen challenge was on day 2 126
Table 6.4 Mean day 6 GSM larval size (μm) of different treatments during two separate probiotic pathogen-challenge experiments 127
Table 6.5 Detection of test isolates from treatments during probiotic pathogen-challenge experiments 129
Table 7.1 Mean size (μm ± 95% confidence intervals) of GSM larvae in different treatments throughout the larval period 146
Table 7.2 Detection of probiotic, *A. macleodii* 0444, in GSM larvae and mussels on-grown in the Marlborough Sounds 148

Table 8.1 Experimental treatments for trialling the use of dual-probiotic combinations against pathogen challenges 155

Table 8.2 Cumulative GSM larval survival in different treatments of a dual-probiotic administration experiment 159

Table 8.3 Detection of test isolates from treatments during probiotic combination experiments 169

Table A3 Results of BLIS production tests 195

Table A4 Antibiotic resistance profiles, for probiotic strains 0444 and 0536, using the disc diffusion method 203

Table A5.1 GSM larval survival on days 6, 8 and 16 in a challenge experiment involving probiotic *Alteromonas macleodii* 0444 and *Vibrio* sp. DO1 209

Table A5.2 Detection of test isolates from treatments during continued cultivation of GSM larvae until settlement following a pathogen challenge 209
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td>Antibiotic</td>
</tr>
<tr>
<td>AD</td>
<td>Antimicrobial drug</td>
</tr>
<tr>
<td>ARB</td>
<td>Antibiotic resistant bacteria</td>
</tr>
<tr>
<td>ATCC</td>
<td>American Type Culture Collection</td>
</tr>
<tr>
<td>BLIS</td>
<td>Bacteriocin-like inhibitory substance</td>
</tr>
<tr>
<td>CFU</td>
<td>Colony forming unit</td>
</tr>
<tr>
<td>DO</td>
<td>Dissolved oxygen</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>ETOH</td>
<td>Ethanol</td>
</tr>
<tr>
<td>EU</td>
<td>European Union</td>
</tr>
<tr>
<td>GACL</td>
<td>Glenhaven Aquaculture Centre Limited</td>
</tr>
<tr>
<td>GIT</td>
<td>Gastrointestinal tract</td>
</tr>
<tr>
<td>GSM</td>
<td>Greenshell™ mussel</td>
</tr>
<tr>
<td>H+E</td>
<td>Haematoxylin eosin</td>
</tr>
<tr>
<td>LAB</td>
<td>Lactic acid bacteria</td>
</tr>
<tr>
<td>MB</td>
<td>Marine broth</td>
</tr>
<tr>
<td>MIC</td>
<td>Minimum inhibitory concentration</td>
</tr>
<tr>
<td>TSA</td>
<td>Tryptone soy agar</td>
</tr>
<tr>
<td>TSB</td>
<td>Tryptone soy broth</td>
</tr>
<tr>
<td>MEPD</td>
<td>Minimum effective pathogenic dose</td>
</tr>
<tr>
<td>MH</td>
<td>Mueller-Hinton</td>
</tr>
<tr>
<td>NZ</td>
<td>New Zealand</td>
</tr>
<tr>
<td>ONPG</td>
<td>o-Nitrophenyl-β-D-galactopyranoside</td>
</tr>
<tr>
<td>R & D</td>
<td>Research and development</td>
</tr>
<tr>
<td>RDP</td>
<td>Ribosomal Database Project II</td>
</tr>
<tr>
<td>TCBS</td>
<td>Thiosulphate citrate bile sucrose</td>
</tr>
<tr>
<td>TCD</td>
<td>Tissue culture dish</td>
</tr>
<tr>
<td>US</td>
<td>United States of America</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
</tr>
<tr>
<td>vs</td>
<td>Versus</td>
</tr>
</tbody>
</table>
ABSTRACT

The Greenshell™ mussel (GSM), *Perna canaliculus*, industry in New Zealand (NZ) is the largest aquaculture sector in the country. In 2006, the export earnings were valued at US$145 million which represented 65% of NZ aquaculture earnings. Historically, and at present, GSM production involves the capture of wild mussels on ropes followed by on-growing of these animals to market size (approximately 14 months). However, hatchery production of GSM has been developed in recent years. Hatchery production will alleviate the seasonal uncertainties of current techniques and allow the benefits of selective breeding programs. To date, efforts to produce commercial quantities of GSM in hatcheries have been hampered by unreliable larval rearing. These problems were often alleviated by antibiotic use, which implied bacterial pathogens as the cause. Yet, the ongoing use of antibiotics is not sustainable because of increasing legislative restrictions on their use and the possible emergence of antibiotic resistant bacteria. Hence, the identification and use of novel probiotics was investigated as an alternative.

Because of a lack of previous work, it was necessary to investigate the bacterial pathogenesis of GSM larvae in the initial stages and, hence, to determine the cause of disease against which the probiotics would be active. Twenty-two bacterial strains, isolated from compromised larvae, were screened for larval toxicity using a larval bioassay. Two strains were identified as potential pathogens. Sequencing of the 16S rRNA gene identified *Vibrio splendidus* and *Vibrio* sp. DO1, a *Vibrio coralliilyticus/neptunius*-like isolate, as pathogens of GSM larvae. These strains had the
ability to cause 83 and 75% GSM larval mortality *in vitro* respectively, at a concentration 10^2 CFU ml^{-1}. Histopathology indicated the route of infection was via the digestive system. Using healthy larvae as target hosts, Koch’s postulates were confirmed for the two isolates.

Although two bacterial pathogens were identified, the successful design and implementation of protective measures in the hatchery still required an understanding of the dynamics of the infection process. Developing an *in situ* experimental model for infection was therefore paramount. The minimum effective pathogenic dose (MEPD) of *V. splendidus* (10^5 CFU ml^{-1}) and *Vibrio* sp. DO1 (10^6 CFU ml^{-1}) was demonstrated for GSM larvae during hatchery production. In a flow-through water hatchery system, larvae given 1-2 hours of static water exposure with these pathogen doses, after which flow-through processes resumed, averaged 58% and 69% cumulative mortality, respectively, on the fourth day following pathogen exposure. Larvae exposed to a dosage one order of magnitude greater than the MEPD, had higher mortalities of 73% and 96% for *V. splendidus* and *Vibrio* sp. DO1 respectively. These four levels of mortality were significantly greater than those of the non-exposed control larvae, averaging 23% in the experiments involving *V. splendidus* and 35% with *Vibrio* sp. DO1. Experiments were repeated four times to establish reproducibility. The infection models were reproducible and provided a tool to assess measures for the protection of GSM larvae against infection in the hatchery environment.
A bioassay was developed to screen and select bacterial strains as potential probiotics for GSM larvae. Sixty-nine isolates originating from a GSM hatchery environment were tested for probiotic activity in larval pathogen-challenge bioassays conducted in tissue culture dishes (TCDs). *Vibrio* sp. DO1 and *V. splendidus* were the tested pathogens. Forty of the tested isolates afforded larval survival significantly greater than pathogen controls (p < 0.05). The bioassay technique achieved a 58% success rate in searching for putative probiotics and highlighted the benefit of including the host animal in the first stage of the screening procedure. The time of inoculation of putative probiotic strains prior to pathogen challenge influenced the outcome of the assay. A pre-exposure period of 20 hours revealed a greater number of potential probiotics than a two-hour pre-exposure period. Pilot challenge tests, under normal hatchery conditions, confirmed the usefulness of the TCD screening method in recognising effective probiotics.

Following hatchery pilot trials, two probiotic strains were chosen for further study, namely strains 0444 and 0536. Sequencing of the 16S rRNA gene and phylogenetic analysis identified the strains as *Alteromonas macleodii* 0444 and *Neptunomonas* sp. 0536. Both probiotics were evaluated separately in a GSM hatchery facility during routine larval rearing and when the larvae were challenged with a high and low pathogenic dose of *Vibrio* sp. DO1 and *V. splendidus*. In all experiments, probiotic application significantly improved larval survival, if administered prior to pathogen exposure. Across all experiments, larvae that were exposed to the high and low dosages of pathogens averaged 14% and 36% survival respectively on the fourth day following pathogen exposure. If the probiotics were administered prior to pathogen challenge, larval
survival averaged 50% and 66% respectively. Non-inoculated control larvae and larvae administered the probiotic alone demonstrated 67% and 79% survival respectively. In a repeat experiment, these benefits were reproduced, with the exception of *A. macleodii* 0444 trialled against *V. splendidus*. *Neptunomonas* sp. 0536 appeared to suppress naturally occurring vibrios in the culture environment of healthy GSM larvae. This was the first time *A. macleodii* and *Neptunomonas* sp. were demonstrated as probiotic bacteria.

Many studies document probiotic application in aquaculture under conditions of pathogen attack, yet few describe the use of probiotics during routine production. The effects of administering the probiotic, *A. macleodii* 0444, during routine GSM larvae production, were compared against larvae from the same cohort that were not treated with the probiotic. The probiotic was administered daily for the first 11 days of the larval period and was provided at two concentrations, 10^7 CFU ml$^{-1}$ and 10^8 CFU ml$^{-1}$. Measures of larval swimming activity, gut colouration, lipid levels, larval survival, larval size and settlement success were recorded. There were minimal differences in all parameters between larvae provided the probiotic and control larvae. Probiotic treated larvae consumed more food and had higher lipid levels at the end of the larval period, but these were not statistically significant. All treatments completed the larval phase and settled successfully after metamorphosis. Survival at the end of the larval period was 37.2%, 38.8%, and 34.8% for control, 10^7 CFU ml$^{-1}$ and 10^8 CFU ml$^{-1}$ treatments respectively. The probiotic was still detected in larvae seven days after the final addition to the tanks.
Animals were further grown in the field at a commercial farm. The probiotic was not detected in mussels at four months after leaving the hatchery.

Combination use of the two probiotics, *A. macleodii* 0444 and *Neptunomonas* sp. 0536, was investigated to determine whether additive protection against pathogen attack with *Vibrio* sp. DO1 and *V. splendidus* was afforded to GSM larvae. The effects of combination administration were compared with larvae administered each probiotic as single strains and non-inoculated larvae. Additionally, two concentrations were tested for each probiotic, both singly and in combination, 10^7 and 10^8 CFU ml\(^{-1}\). Larvae were administered probiotics daily for the first six days, challenged with pathogens on the third day and then reared until settlement (day 19). Although protection against pathogen attack was observed in combination treatments, when compared with single-strain administration, additive protection was not apparent. Administration of 10^8 CFU ml\(^{-1}\) levels of probiotics, both singly and in combination, afforded larval survival slightly better than 10^7 CFU ml\(^{-1}\) levels, although this was rarely statistically significant. On the other hand, the higher levels of probiotic led to smaller larvae and lower feed rates for the majority of the 19-day trial. At the end of the study, larval sizes were smaller in the treatment applied a combination of probiotics at 10^8 CFU ml\(^{-1}\) than those of the other treatments. Additionally, towards the end of the larval period, feed consumption in the combination 10^8 CFU ml\(^{-1}\) treatment was similar to that witnessed in the other probiotic treatments one day previously. This suggested that either the larvae were compromised or they were growing slower. Despite a lack of additive protection against a single strain pathogen attack being demonstrated, the potential benefit of multi-strain probiotics, as
prophylactic measures against every-day microbial encounters in larviculture, would
remain. Although 10^8 CFU ml$^{-1}$ levels appeared to protect against pathogen attack
slightly better, they were also potentially detrimental to normal larval rearing when
administered in combination. Following the successful completion of the larval period
and pathogen protection afforded with a combination of probiotics at 10^7 CFU ml$^{-1}$, this
level was recommended as the best concentration of each probiotic where combination
administration would be applied.

The work presented in this thesis supports the use of *A. macleodii* 0444 and
Neptunomonas sp. 0536 in the routine rearing of GSM larvae. The ability to produce
settled juvenile mussels, equal in numbers to those produced in normal healthy
conditions, plus the benefits against pathogen attack led to the recommendation of their
use on a routine prophylactic basis in GSM larval rearing. Their use for this purpose is
intended in the near future. A provisional patent has been prepared and will be submitted
shortly. It is anticipated that future work will continue with these probiotic strains to
determine their potential benefit for other aquaculture species.