SEISMIC STRENGTHENING OF
ADOBE-MUDBRICK HOUSES

By
Dominic Dowling

A thesis submitted in fulfilment
of the requirements for the degree of
Doctor of Philosophy

Faculty of Engineering
University of Technology, Sydney

August 2006
EXECUTIVE SUMMARY

This thesis presents the research and development of a low-cost, low-tech reinforcement system to improve the earthquake resistance of adobe mudbrick houses. The outcome of this research project is a reinforcement system which can be readily implemented by rural homeowners in developing countries using locally available resources (materials, tools and skills), without the need for ongoing external support. The proposed reinforcement system incorporates bamboo poles placed vertically against the walls, and connected with through-wall string ties, and strands of wire running horizontally. A continuous timber ring beam is placed on top of the walls. The system can be used for new-build constructions, as well as for the retrofit-strengthening of existing dwellings. The system has the potential to substantially and sustainably reduce the vulnerability of traditional adobe houses around the world.

This thesis describes the multi-disciplinary approach undertaken for this project, which includes field research in El Salvador, review of literature, extensive experimental testing, Experimental Modal Testing and Analysis (EMTA) and the development of dissemination and implementation initiatives. A number of further research needs are also identified.

Field research in El Salvador

In early 2001, the small Central America nation of El Salvador was rocked by two major earthquakes, registering M_w 7.7 and M_w 6.6. The earthquakes claimed almost 1,200 lives and affected over 1.6 million people. More than 110,000 adobe houses were destroyed.

The field research component of this thesis has involved a variety of post-earthquake relief, research and reconstruction activities in El Salvador since 2001. The following aspects are presented in this thesis:

- Case study of adobe in El Salvador, including a discussion of the history and use of adobe housing, as well as some of the common features and deficiencies in traditional adobe houses.
• Evaluation of the features and effects of the 2001 El Salvador earthquakes, with a particular focus on the impacts to adobe housing.

• A review of reconstruction activities and improved adobe initiatives (promotion, training and construction projects) one year after the earthquakes.

• The design and construction of an improved adobe child-care centre in a small rural community in El Salvador.

• A review of the general state of housing reconstruction and the housing deficit in El Salvador in 2005.

• An assessment of the challenges and opportunities for the widespread implementation and acceptance of safer adobe construction and retrofit-strengthening techniques.

Literature review

Substantial seismic adobe research has been undertaken in Peru, Mexico, the U.S.A. and Colombia since the 1970s. To date, experimental testing has tended to focus on qualitative results (observations). Research findings have been included in a variety of adobe guidelines and manuals. These research and dissemination activities have made a significant contribution to the current state-of-knowledge. Despite these efforts, however, there has been a lack of large-scale application and community-level acceptance of these practices. The main reason for this lack of broadscale uptake is that most of the proposed systems are too complex and/or too complicated to be widely used without sustained external intervention.

Experimental testing

The experimental testing component of this research project is divided into four main phases:

• Static testing of adobe prisms to determine characteristic material properties (compressive, shear and tensile bond strengths). It was found that significant improvements in the shear and flexural bond strength of adobe masonry can be practically achieved by: (i) wetting the surface of each brick prior to laying;
(ii) using a thin mortar joint; and/or (iii) applying a modest compressive load during curing.

- Shake table testing of eleven 1:2 scale u-shaped adobe wall units, representing traditional and improved adobe structures. Each specimen was subjected to a series of simulations, using a modified input time history from the El Salvador earthquake of January 13, 2001. For each specimen a unique ‘time scaling factor’ was determined, based on the relationship between the natural frequency of the specimen and the dominant frequency range of the input excitation. This factor was used to time scale the input spectra to ensure dynamic similitude (between specimens) and induce damaging near-resonance conditions. Qualitative and quantitative data from each test was collected and analysed, as discussed below.

- Shake table testing of a 1:2 scale model adobe house, which was retrofit-strengthened with external vertical bamboo, external horizontal wire, and a timber ring beam. Detailed analysis of results were undertaken, as discussed below.

- Detailed analysis of results from the shake table testing of the u-panel units and the model house. This included a review and comparative analysis of the qualitative results (observations, photographs, video footage) and quantitative results (displacement-time records, relative deformation, and vertical and horizontal flexure). Common crack patterns (vertical corner cracking, vertical midspan cracking, and horizontal and diagonal cracking) were observed. These damages were due to combinations of overturning, vertical flexure and horizontal flexure. The most successful improvement systems were seen to reduce movement in the wall units and enhance the overall strength of the structure. Such systems effectively delayed the onset of initial cracking, and reduced the severity of cracking during repeated high intensity simulations. Most importantly, collapse of reinforced structures was prevented in all tests. Results from the preparation and testing were used to develop a ‘specimen rating matrix’ which presents the seismic capacity, cost and complexity of each reinforcement system. The matrix highlights the important of considering the technical and practical aspects of any proposed reinforcement system. These factors could be incorporated in a detailed multi-criteria evaluation matrix,
which would be a useful tool in the planning and realisation of any construction and implementation project.

Experimental Modal Testing and Analysis (EMTA)

EMTA was undertaken in conjunction with the experimental testing of the u-shaped wall units and the model house. EMTA was used to determine the dynamic characteristics (natural frequencies, damping ratios and mode shapes) of specimens both prior to and during shake table testing. Results highlighted the discontinuities introduced by internal vertical reinforcement (increased damping, decreased stiffness) and the changes in dynamic properties during the strengthening process prior to shake table testing. The influence of penetrations (windows and doors) was clearly evident. EMTA during the shake table testing showed the progressive loss of stiffness, and the general increase in modal damping, of the specimens as the level of damage increased. The mode shapes matched the flexure graphs produced during the experimental testing. EMTA was demonstrated to be a useful tool to reflect the physical response and changes in dynamic characteristics of adobe structures. Results provide greater insight into the structural behaviour than observations alone, and may be a practical tool for damage detection and condition monitoring of adobe structures.

Dissemination and implementation

The framework of two initiatives for the dissemination and implementation of research findings are presented in this thesis. These initiatives are designed to transfer the outcomes of seismic adobe research and application activities to communities around the world where people continue to live in vulnerable adobe houses. These initiatives included:

- The World Adobe Forum: a website dedicated to the sharing of information about safer adobe construction.
- A sample implementation program designed to increase the desire, capacity and confidence of local homeowners and builders to retrofit and/or construct safer adobe houses.
Further research

A number of further research needs have been identified and presented in this thesis. These research needs relate to both technical and practical aspects of improved adobe, and include:

- Post-earthquake reconnaissance.
- Further experimental testing of adobe bricks, prisms, wall units and model houses (static, quasi-static and dynamic testing).
- Development of a reliable numerical model through nonlinear heterogeneous Finite Element (FE) modelling.
- Extensive parametric studies (using the validated FE model) to assess a broad range of design and construction variables and improvement systems, without the need for resource-intensive physical testing.
- Implementation and application activities, including an evaluation of the effectiveness of promotion and training programs, and the development of a comprehensive multi-criteria evaluation tool.

This thesis highlights the importance of a multi-disciplinary approach which considers both the social and technical aspects of disaster mitigation activities. This approach is necessary to ensure the development of solutions which are socially-appropriate (low-cost and low-tech) and technically-sound (seismically safe). Such solutions have the opportunity to significantly reduce the vulnerability of adobe houses around the world.
CERTIFICATE OF AUTHORSHIP / ORIGINALITY

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

[Signature]

Dominic Dowling

August 2006
ACKNOWLEDGMENTS

I extend my deepest gratitude to the many individuals and organisations who have helped make this research project a reality. In particularly, I would like to thank:

- My supervisor, Professor Bijan Samali, for keeping the ship on course, and for his limitless support, wisdom, mentorship and guidance.
- My co-supervisor, Dr Jianchun Li, for his tireless contributions to so many aspects of this project, especially the shake table testing and data analysis.
- The University of Technology, Sydney (UTS), the Earthquake Engineering Research Institute (EERI), and the Australian Earthquake Engineering Society (AEES) for funding various components of this research project.
- The many individuals and organisations in El Salvador who have generously shared the realities of their lives, endeavours, struggles and successes.
- My mudbrick helpers: Elke, James, Joekarl, Sherrie, and especially Dan Hall.
- Earthways, Wollombi, and the Marist Farmhouse community at Mittagong, for their top-class mud, bamboo, hospitality and friendship.
- The UTS Engineering structures laboratory staff and students: Prof. Keith Crews, Rami Haddad, David Hooper, Laurence Stonard, Peter Brown, Dr Hasan Rahimi, Warwick Howse, Wolfgang Stengl, Zeid Shleef, Tai Lane, Hannah Price, Makoto Ukai, Joekarl Diaz, Setu Trivedi and Mario Benitez, for their extensive and willing assistance in all aspects of the experimental testing.
- My PhD friends and colleagues, especially Joko Widjaja, Fook-choon Choi, Ulrike Dackermann, Nassif Nassif, Yujue Wue and Debbie Marsh, for their ongoing support and friendship. Special thanks to Ulrike Dackermann for her extensive assistance with the EMTA and video processing.
- My proof-readers, Peter Brock, Laurie Dowling and Bijan Samali, who provided valuable input into the final manuscript, and left no semi-colon unturned;
- My Mansion-mates, Bron, Sal, Wilba, Ella and Joanna, for sharing this journey.
- All my family and friends, who have believed in this project, and encouraged me to live this dream.
- My parents, Laurie and Chris Dowling, for always being there, and for being two of the most positive and generous people I know.
- Simone, for her enduring love and patience.
PUBLICATIONS

The following publications have been generated as part of this research. Components from some of these publications have been reproduced in this thesis.

Books

Book chapters

Conference papers

(* indicates peer-reviewed publications)
TABLE OF CONTENTS

Executive Summary .. i
Certificate of Authorship / Originality .. vii
Acknowledgments .. ix
Publications .. x
Table of Contents .. xiii
List of Figures .. xxi
List of Tables .. xxxiii
Nomenclature .. xxxvii

1 Introduction .. 1
 1.1 Background .. 1
 1.2 Adobe .. 3
 1.3 Adobe performance in earthquakes ... 6
 1.4 Objectives and scope ... 8
 1.5 Thesis outline .. 11

2 Case Study: Adobe in El Salvador .. 15
 2.1 Introduction .. 15
 2.2 El Salvador .. 16
 2.2.1 Profile .. 16
 2.2.2 Adobe in El Salvador .. 17
 2.2.3 Traditional adobe construction in El Salvador ... 20
 2.3 The 2001 El Salvador earthquakes ... 23
 2.3.1 General .. 23
 2.3.2 Housing damage ... 27
 2.4 Damage patterns and failure mechanisms .. 30
 2.4.1 Vertical cracking at corners .. 30
 2.4.2 Vertical cracking and overturning of upper part of wall panel 31
 2.4.3 Overturning of wall panel ... 33
 2.4.4 Inclined cracking in walls ... 33
 2.4.5 Dislocation of corner ... 35
 2.4.6 Horizontal cracking in upper section of wall panel ... 36
 2.4.7 Displacement of roof structure .. 36
 2.4.8 Falling roof tiles .. 37
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4.9 Links to improved design and construction</td>
<td>37</td>
</tr>
<tr>
<td>2.5 ‘Lessons Learned Over Time’ investigation (2002)</td>
<td>38</td>
</tr>
<tr>
<td>2.5.1 Introduction</td>
<td>38</td>
</tr>
<tr>
<td>2.5.2 Earthquake reconstruction</td>
<td>38</td>
</tr>
<tr>
<td>2.5.3 Improved adobe initiatives</td>
<td>40</td>
</tr>
<tr>
<td>2.6 Child-care centre construction (2002)</td>
<td>45</td>
</tr>
<tr>
<td>2.7 El Salvador in 2005</td>
<td>56</td>
</tr>
<tr>
<td>2.7.1 Introduction</td>
<td>56</td>
</tr>
<tr>
<td>2.7.2 Housing statistics</td>
<td>57</td>
</tr>
<tr>
<td>2.7.3 Housing deficit</td>
<td>58</td>
</tr>
<tr>
<td>2.7.4 Improved adobe project re-visited</td>
<td>59</td>
</tr>
<tr>
<td>2.8 Challenges for improved adobe</td>
<td>61</td>
</tr>
<tr>
<td>2.9 Summary</td>
<td>63</td>
</tr>
<tr>
<td>3 Literature review</td>
<td>65</td>
</tr>
<tr>
<td>3.1 Introduction</td>
<td>65</td>
</tr>
<tr>
<td>3.2 PUCP, Peru</td>
<td>67</td>
</tr>
<tr>
<td>3.2.1 Material property tests</td>
<td>67</td>
</tr>
<tr>
<td>3.2.2 Static tests of wall panels</td>
<td>67</td>
</tr>
<tr>
<td>3.2.3 Tilting table tests of model adobe houses</td>
<td>69</td>
</tr>
<tr>
<td>3.2.4 Dynamic tests</td>
<td>69</td>
</tr>
<tr>
<td>3.3 UNAM, Mexico</td>
<td>77</td>
</tr>
<tr>
<td>3.4 Stanford University, U.S.A.</td>
<td>81</td>
</tr>
<tr>
<td>3.5 Getty Seismic Adobe Project, U.S.A.</td>
<td>86</td>
</tr>
<tr>
<td>3.6 Universidad de los Andes, Colombia</td>
<td>94</td>
</tr>
<tr>
<td>3.7 Adobe guidelines and manuals</td>
<td>98</td>
</tr>
<tr>
<td>3.7.1 International Association for Earthquake Engineering (IAEE)</td>
<td>99</td>
</tr>
<tr>
<td>3.7.2 REESCO adobe supplement, El Salvador</td>
<td>103</td>
</tr>
<tr>
<td>3.7.3 Equipo Maíz adobe manual, El Salvador</td>
<td>106</td>
</tr>
<tr>
<td>3.7.4 Other manuals</td>
<td>112</td>
</tr>
<tr>
<td>3.8 Summary</td>
<td>114</td>
</tr>
<tr>
<td>4 Brick fabrication and material property tests</td>
<td>115</td>
</tr>
<tr>
<td>4.1 Introduction</td>
<td>115</td>
</tr>
<tr>
<td>4.2 Brick fabrication</td>
<td>116</td>
</tr>
<tr>
<td>4.3 Compressive strength of adobe prisms</td>
<td>120</td>
</tr>
</tbody>
</table>
4.3.1 Specifications ..120
4.3.2 Test method ..122
4.3.3 Results ..123

4.4 Shear strength of adobe prisms ..129
4.4.1 Introduction ..129
4.4.2 Masonry joint shear tests and standards ..130
4.4.3 Numerical studies ..131
4.4.4 Test method ..132
4.4.5 Specifications ..134
4.4.6 Parameters tested ...134
4.4.7 Results ..137

4.5 Flexural bond strength of adobe prisms ...142
4.5.1 Introduction ..142
4.5.2 Specifications ..142
4.5.3 Test method ..143
4.5.4 Results ..144

4.6 Shear strength and flexural bond strength: analysis ..147
4.7 Summary ..151

5 Shake table testing: input spectra and time history ..153
5.1 Introduction ..153
5.2 UTS shake table ...154
5.3 Selection and modification of input time history ..155
5.3.1 Proposed design spectrum ..155
5.3.2 Selection and verification of input time history ..156
5.3.3 Time scaling of input time history ...157
5.3.4 January 13, 2001 El Salvador earthquake ..160
5.3.5 Intensity scaling of input time history ...161
5.3.6 ‘Reverse’ time scaling and calibration of output (results)165

5.4 Comparison with other research approaches ...166
5.5 Summary ..167

6 U-shaped adobe wall units: preparation, testing and observations169
6.1 Introduction ..169
6.2 General description ...171
6.2.1 Rationale ..171
6.2.2 Specimen design and fabrication .. 172
6.2.3 Wall restraint .. 174
6.2.4 Instrumentation .. 175
6.2.5 Nomenclature ... 177
6.2.6 Specimen specifications and results summary 178

6.3 Specimen 3A .. 182
6.3.1 Specifications of 3A ... 182
6.3.2 Preparation of 3A ... 182
6.3.3 Testing and results of 3A ... 183

6.4 Specimen 3B .. 188
6.4.1 Specifications of 3B ... 188
6.4.2 Preparation of 3B ... 188
6.4.3 Testing and results of 3B ... 189

6.5 Specimen 3C .. 193
6.5.1 Specifications of 3C ... 193
6.5.2 Preparation of 3C ... 193
6.5.3 Testing and results of 3C ... 194

6.6 Specimen 3D .. 199
6.6.1 Specifications of 3D ... 199
6.6.2 Preparation of 3D ... 199
6.6.3 Testing and results of 3D ... 201

6.7 Specimen 3E .. 206
6.7.1 Specifications of 3E ... 206
6.7.2 Preparation of 3E ... 206
6.7.3 Testing and results of 3E ... 208

6.8 Specimen 3G .. 214
6.8.1 Specifications of 3G ... 214
6.8.2 Preparation of 3G ... 214
6.8.3 Testing and results of 3G ... 216

6.9 Specimen 3I .. 220
6.9.1 Specifications of 3I ... 220
6.9.2 Preparation of 3I ... 220
6.9.3 Testing and results of 3I ... 221

6.10 Specimen 3H .. 228
6.10.1 Specifications of 3H ... 228
6.10.2 Preparation of 3H ... 228
6.10.3 Testing and results of 3H ... 230
6.11 Specimen 3F ... 236
6.11.1 Specifications of 3F ... 236
6.11.2 Preparation of 3F ... 236
6.11.3 Testing and results of 3F ... 238
6.12 Specimen 3J ... 245
6.12.1 Specifications of 3J ... 245
6.12.2 Preparation of 3J ... 245
6.12.3 Testing and results of 3J ... 247
6.13 Specimen 3K ... 255
6.13.1 Specifications of 3K ... 255
6.13.2 Preparation of 3K ... 255
6.13.3 Testing and results of 3K ... 257
6.14 Summary .. 264
7 U-shaped adobe wall units: comparative analysis 265
7.1 Introduction ... 265
7.2 Data selection and results summary ... 268
7.2.1 Introduction .. 268
7.2.2 RMS and peak displacements ... 270
7.2.3 Absolute displacement ... 272
7.3 Relative displacement ... 275
7.3.1 Introduction .. 275
7.3.2 Simulation S6 (S75%) .. 278
7.3.3 Simulation S7 (S100%) .. 282
7.3.4 Simulation S8 (S125%) .. 285
7.4 Horizontal and vertical flexure .. 289
7.4.1 Simulation S6 (S75%) .. 291
7.4.2 Simulation S7 (S100%) .. 298
7.4.3 Simulation S8 (S125%) .. 306
7.4.4 Simulation S11 (S100% repeated) ... 313
7.5 Analysis of crack patterns and failure mechanisms 315
7.5.1 Introduction .. 315
7.5.2 Vertical corner cracking ... 316
7.5.3 Midspan vertical cracking ... 318
7.5.4 Horizontal and diagonal cracking .. 319
7.5.5 Contribution of improvement systems ... 320
7.6 Specimen rating matrix .. 322
7.7 Summary ... 325

8 U-shaped adobe wall units: Experimental Modal Testing and Analysis
 (EMTA) ... 327
 8.1 Introduction .. 327
 8.2 Modal testing ... 329
 8.2.1 Test procedure and instrumentation: impact hammer tests 329
 8.2.2 Test procedure and instrumentation: shake table testing 332
 8.3 Experimental Modal Analysis: theory ... 333
 8.4 EMTA of undamaged u-panels: impact hammer testing 335
 8.4.1 First natural frequencies of all u-panel specimens 335
 8.4.2 Dynamic properties of undamaged u-panels 3F, 3H, 3J & 3K 337
 8.4.3 Strengthening stages of u-panel 3J .. 340
 8.5 EMTA of u-panels 3H, 3J & 3K: shake table testing 344
 8.6 Summary ... 350

9 Model house 4A: preparation, testing, observations and analysis 353
 9.1 Introduction .. 353
 9.2 Design and preparation of model house 4A 355
 9.2.1 Specifications of model house 4A .. 355
 9.2.2 Design of model house 4A ... 355
 9.2.3 Construction of model house 4A ... 359
 9.2.4 Retrofit-strengthening of model house 4A 362
 9.2.5 Instrumentation of model house 4A 365
 9.2.6 Test procedure for model house 4A 368
 9.2.7 Video footage of model house 4A ... 370
 9.3 Testing and results of model house 4A .. 371
 9.3.1 Results summary .. 371
 9.3.2 Simulation S4 (S75%) .. 373
 9.3.3 Simulation S5 (S100%) .. 378
 9.3.4 Simulation S6 (S125%) .. 385
9.3.5 Simulation S7 (S100% repeated) ... 391
9.3.6 Simulation S8 (‘shakedown’) .. 395
9.4 Comparative analysis of results from model house 4A 398
9.5 Analysis of crack patterns and failure mechanisms 402
9.6 Summary .. 406
10 Model house 4A: Experimental Modal Testing and Analysis (EMTA) 407
10.1 Introduction .. 407
10.2 EMTA of undamaged model house 4A: impact hammer tests 408
10.2.1 Test procedure and instrumentation ... 408
10.2.2 Influence of impact point and penetrations .. 410
10.2.3 Strengthening stages of model house 4A .. 413
10.3 EMTA of model house 4A: shake table testing .. 420
10.3.1 Test procedure and instrumentation ... 420
10.3.2 Dynamic characteristics .. 421
10.4 Summary .. 426
11 World Adobe Forum website ... 427
11.1 Preamble .. 427
11.2 Introduction .. 427
11.3 Background ... 428
11.4 Objectives and benefits .. 429
11.5 Scope ... 430
11.6 Means and process .. 431
11.7 Stakeholders / participants ... 431
11.8 Outcomes .. 432
11.9 Summary .. 432
12 Implementation strategy .. 437
12.1 Introduction .. 437
12.2 Location criteria for implementation program .. 438
12.3 Context assessment and feasibility study ... 440
12.4 Program planning .. 440
12.5 Promotion and awareness building ... 441
12.6 Simple brochure .. 442
12.7 Retrofit training ... 445
12.8 Extended support, mentoring and monitoring .. 449
12.9 Apprenticeships, accreditation and job opportunities ... 450
12.10 Design and construction of a new community building 450
12.11 Resource requirements .. 451
12.12 Summary ... 452
13 Further research .. 453
 13.1 Introduction ... 453
 13.2 Post-earthquake reconnaissance .. 454
 13.3 Experimental testing and numerical modelling .. 455
 13.3.1 Introduction .. 455
 13.3.2 Background ... 455
 13.3.3 Approach .. 457
 13.4 Implementation and application ... 462
 13.5 Summary ... 463
14 Summary and conclusions .. 465
 14.1 General ... 465
 14.2 Issue identification ... 467
 14.3 Experimental testing .. 469
 14.4 Experimental Modal Testing and Analysis (EMTA) .. 472
 14.5 Dissemination and implementation ... 475
 14.6 Further research ... 476
 14.7 Concluding comments .. 477
15 Reference List .. 479
Appendices .. 493
LIST OF FIGURES

Figure 1-1 Earthquake damage to adobe houses... 1
Figure 1-2 Total destruction of adobe house, El Salvador, 2001 (López, UES/EERI)........2
Figure 1-3 Modern adobe home (Earthways, Wollombi, Australia). 4
Figure 1-4 Global maps: (a) earthen architecture; (b) seismic hazard......................... 5
Figure 2-1 Map of El Salvador (United Nations). ... 16
Figure 2-2 Housing distribution in El Salvador: housing material, number of houses and proportion of total housing stock (DIGESTYC, 1999).. 18
Figure 2-3 Typical adobe house, La Paz, El Salvador ... 21
Figure 2-4 Timber columns with unrestrained adobe walls, Usulután, El Salvador.......22
Figure 2-5 Severely affected village, El Salvador (López, UES/EERI)......................... 23
Figure 2-6 Housing destruction and landslides (López, UES/EERI).............................. 25
Figure 2-7 Completely destroyed adobe house, El Salvador (López, UES/EERI)........25
Figure 2-8 Damaged adobe hospital, El Salvador (López, UES/EERI)......................... 26
Figure 2-9 Damaged adobe church, Apastapeque, El Salvador 26
Figure 2-10 Flowchart of affected houses (Data from DIGESTYC, 1999 & 2001).........27
Figure 2-11 Completely destroyed adobe house (López, UES/EERI)............................. 29
Figure 2-12 Vertical corner cracking due to (a) shear failure; and (b) tearing failure..31
Figure 2-13 Typical damage patterns: vertical cracking, corner dislocation, spalling of render (El Salvador)... 31
Figure 2-14 (a) Overturning of upper part of wall; (b) Vertical cracking and overturning of wall panel ... 32
Figure 2-15 Typical damage patterns: inclined cracking, overturning of wall panels, vertical corner cracking, displacement of roof tiles, El Salvador (López, UES/EERI). ... 32
Figure 2-16 Inclined cracking in wall due to (a) ‘bulging’; and (b) in-plane shear........34
Figure 2-17 Sequence leading to corner dislocation... 35
Figure 2-18 (a) Corner dislocation (López, UES/EERI); (b) Horizontal cracking in upper section of wall panel ... 36
Figure 2-19 (a) ‘Day house’ (partially repaired adobe house); (b) ‘Night house’ (temporary shelter).. 39
Figure 2-20 (a) Concrete foundation and plinth; (b) Bamboo reinforcement.............. 41
Figure 2-21 (a) Reinforced ring beam; (b) Improved adobe model house. 42
Figure 2-22 Improved adobe house (FUNDASAL project)................................. 44
Figure 2-23 Improved adobe house (Atlas project).. 44
Figure 2-24 Child-care centre under construction (2002).............................. 45
Figure 2-25 Community training by Don Adán... 46
Figure 2-26 Preliminary design of child-care centre showing plinth, pilasters, door
openings and vertical reinforcement.. 47
Figure 2-27 Site prior to commencement of work.. 49
Figure 2-28 Site clearing and excavation... 49
Figure 2-29 Block fabrication and drying.. 49
Figure 2-30 Construction of (a) plinth; and (b) adobe walls.......................... 51
Figure 2-31 Adobe walls under construction, including plinth, pilasters, vertical and
horizontal reinforcement, plastic rain covers.. 51
Figure 2-32 Adobe walls under construction.. 52
Figure 2-33 Ring beam channel blocks and reinforcement............................ 52
Figure 2-34 (a) Roof frame under construction; (b) Roof cover and verandah area... 52
Figure 2-35 Child-care centre in use (S. Oates, Shell International).................... 55
Figure 2-36 Working with the local community.. 55
Figure 2-37 Child-care centre (2005).. 55
Figure 2-38 Lamina tin house, El Salvador (2005).. 56
Figure 2-39 Precarious housing, El Salvador (2005)....................................... 58
Figure 2-40 (a) Lintel and wall, with ‘keys’ for render; (b) Cracking above lintel, and
deteriorated timber door frame.. 59
Figure 2-41 (a) Insect protection of timber (submersion in used engine oil);
(b) Deteriorated timber column (supporting roof)..................................... 60
Figure 2-42 a) Freshly applied render; b) Deteriorated render....................... 60
Figure 3-1 Static tests of adobe wall panels: a) out-of-plane flexure; b) in-
plane shear (PUCP).. 68
Figure 3-2 Tilting table tests of model adobe houses: (a) unreinforced;
(b) reinforced (PUCP).. 68
Figure 3-3 U-shaped wall panels (PUCP)... 71
Figure 3-4 Plan and elevation of adobe houses tested at PUCP (Blondet et al, 2006b) 72
Figure 3-5 Model adobe houses on shake table at PUCP............................... 72
Figure 3-6 Preparation of model adobe houses at PUCP: (a) internal cane
reinforcement; (b) external polymer mesh reinforcement............................. 75
Figure 6-29 Specimen 3E: absolute displacement of shake table (ST) and midspan-top of wall (L3) for simulation S7 (S100%). ... 211
Figure 6-30 Specimen 3E: absolute displacement of shake table (ST) and midspan-top of wall (L3) for simulation S7 (S125%). ... 212
Figure 6-31 Mud render on model adobe house. ... 213
Figure 6-32 Specimen 3G prior to testing.. 214
Figure 6-33 Layout and configuration of bricks, poles and mesh for specimen 3G... 215
Figure 6-34 Specimen 3G after simulation S3 (U200%) .. 217
Figure 6-35 Specimen 3G: absolute displacement of shake table (ST) and midspan-top of wall (L3) for simulation S3 (U200%). ... 218
Figure 6-36 Specimen 3I prior to testing.. 220
Figure 6-37 Specimen 3I after simulation S14 (S100% repeated)......................... 223
Figure 6-38 Specimen 3I: absolute displacement of shake table (ST) and midspan-top of wall (L3) for simulation S7 (S100%). ... 224
Figure 6-39 Specimen 3I: absolute displacement of shake table (ST) and midspan-top of wall (L3) for simulation S8 (S125%). ... 225
Figure 6-40 Specimen 3I after simulation S8 (S125% intensity). 226
Figure 6-41 Specimen 3H prior to testing.. 228
Figure 6-42 Specimen 3H: ring beam – wall restraint connection......................... 229
Figure 6-43 Specimen 3H after simulation S12 (S100% repeated). 231
Figure 6-44 Specimen 3H after simulation S8 (S125%). .. 232
Figure 6-45 Specimen 3H: absolute displacement of shake table (ST) and midspan-top of wall (L3) for simulation S7 (S100%). ... 233
Figure 6-46 Specimen 3H: absolute displacement of shake table (ST) and midspan-top of wall (L3) for simulation S8 (S125%). ... 234
Figure 6-47 Specimen 3F prior to testing.. 236
Figure 6-48 Specimen 3F: preparation of string and holes 237
Figure 6-49 Specimen 3F: prior to testing.. 237
Figure 6-50 Specimen 3F after simulation S12 (S100% repeated)......................... 239
Figure 6-51 Specimen 3F: snapped wire during simulation S9 (S75% repeated). 240
Figure 6-52 Specimen 3F: absolute displacement of shake table (ST) and midspan-top of wall (L3) for simulation S7 (S100%). ... 241
Figure 6-53 Specimen 3F: absolute displacement of shake table (ST) and midspan-top of wall (L3) for simulation S8 (S125%). ... 242

xxvi
Figure 6-54 Specimen 3F after simulation S8 (S125%). ..243
Figure 6-55 Specimen 3J prior to testing ...245
Figure 6-56 Specimen 3J under construction ...246
Figure 6-57 Specimen 3J after simulation S12 (S100% repeated)248
Figure 6-58 Specimen 3J after simulation S8 (S125%) ...250
Figure 6-59 Specimen 3J: absolute displacement of shake table (ST) and midspan-top of wall (L3) for simulation S7 (S100%). ...251
Figure 6-60 Specimen 3J: absolute displacement of shake table (ST) and midspan-top of wall (L3) for simulation S8 (S125%). ...252
Figure 6-61 Specimen 3J: absolute displacement of shake table (ST) and midspan-top of wall (L3) for simulation S11 (S100% repeated)253
Figure 6-62 Specimen 3K prior to testing ...255
Figure 6-63 Specimen 3K: preparation of poles and bricks256
Figure 6-64 Specimen 3K after simulation S12 (S100% repeated)258
Figure 6-65 Specimen 3K: absolute displacement of shake table (ST) and midspan-top of wall (L3) for simulation S7 (S100%) ...260
Figure 6-66 Specimen 3K: absolute displacement of shake table (ST) and midspan-top of wall (L3) for simulation S8 (S125%) ...261
Figure 6-67 Specimen 3K after simulation S8 (S125%) ...262
Figure 7-1 Specimen 3A: peak and RMS of relative displacement at midspan-top of wall (L3-ST) for simulations S1 – S6 ...270
Figure 7-2 Specimen 3J: peak and RMS of relative displacement at midspan-top of wall (L3-ST) for simulations S1 – S8 ...271
Figure 7-3 Specimen 3K: peak and RMS of relative displacement at midspan-top of wall (L3-ST) for simulations S4 – S8 ...271
Figure 7-4 Specimens 3A and 3J: relative displacement at midspan-top of wall (L3) for simulation S6 (S75%) ...279
Figure 7-5 Specimens 3C and 3J: relative displacement at midspan-top of wall (L3) for simulation S6 (S75%) ...280
Figure 7-6 Specimens 3K and 3J: relative displacement at midspan-top of wall (L3) for simulation S6 (S75%) ...281
Figure 7-7 Specimens 3H and 3J: relative displacement at midspan-top of wall (L3-ST) for simulation S7 (S100%) ...283
Figure 7-8 Specimens 3K and 3J: relative displacement at midspan-top of wall (L3-ST) for simulation S7 (S100%). ... 284
Figure 7-9 Specimens 3F and 3J: relative displacement at midspan-top of wall (L3-ST) for simulation S8 (S125%). ... 286
Figure 7-10 Specimens 3H and 3J: relative displacement at midspan-top of wall (L3-ST) for simulation S8 (S125%). ... 287
Figure 7-11 Specimens 3K and 3J: relative displacement at midspan-top of wall (L3-ST) for simulation S8 (S125%). ... 288
Figure 7-12 Specimen and LVDT layout for (a) horizontal flexure and (b) vertical flexure. ... 290
Figure 7-13 Specimen 3A after simulation S6 (S75%). .. 291
Figure 7-14 Specimen 3A during simulation S6 (S75%): (a) horizontal flexure of top of ‘long’ wall; (b) vertical flexure at midspan of ‘long’ wall. 292
Figure 7-15 Specimen 3A during simulation S6 (S75%): (a) horizontal flexure of top of ‘long’ wall; (b) vertical flexure at midspan of ‘long’ wall. 293
Figure 7-16 Specimen 3C during simulation S6 (S75%): (a) horizontal flexure of top of ‘long’ wall; (b) vertical flexure at midspan of ‘long’ wall. 294
Figure 7-17 Specimen 3J during simulation S6 (S75%): (a) horizontal flexure of top of ‘long’ wall; (b) vertical flexure at midspan of ‘long’ wall. 295
Figure 7-18 Key specimens: RMS of relative displacement for vertical flexure for simulation S6 (S75%) [RMS: 0.1-1mm in linear scale]. 296
Figure 7-19 All specimens: RMS of relative displacement for horizontal flexure for simulation S6 (S75%) [RMS: 0.1-100mm in log scale]. 297
Figure 7-20 Key specimens: RMS of relative displacement for horizontal flexure for simulation S6 (S75%) [RMS: 0-1.1mm in linear scale]. 297
Figure 7-21 Schematic elevation of ‘wing’ wall and restraint. 299
Figure 7-22 Specimen 3F during simulation S7 (S100%): (a) horizontal flexure of top of ‘long’ wall; (b) vertical flexure at midspan of ‘long’ wall. 300
Figure 7-23 Specimen 3H during simulation S7 (S100%): (a) horizontal flexure of top of ‘long’ wall; (b) vertical flexure at midspan of ‘long’ wall. 301
Figure 7-24 Specimen 3J during simulation S7 (S100%): (a) horizontal flexure of top of ‘long’ wall; (b) vertical flexure at midspan of ‘long’ wall. 302
Figure 7-25 Specimen 3K during simulation S7 (S100%): (a) horizontal flexure of top of ‘long’ wall; (b) vertical flexure at midspan of ‘long’ wall. 303
Figure 7-26 Key specimens: RMS of relative displacement for vertical flexure for simulation S7 (S100%) [RMS: 0-3mm in linear scale]..........................304
Figure 7-27 All specimens: RMS of relative displacement for horizontal flexure for simulation S7 (S100%) [RMS: 0.1-100mm in log scale]..........................305
Figure 7-28 Key specimens: RMS of relative displacement for horizontal flexure for simulation S7 (S100%) [RMS: 0-3mm in linear scale]..........................305
Figure 7-29 Specimen 3F during simulation S8 (S125%): (a) horizontal flexure of top of ‘long’ wall; (b) vertical flexure at midspan of ‘long’ wall..........................307
Figure 7-30 Specimen 3H during simulation S8 (S125%): (a) horizontal flexure of top of ‘long’ wall; (b) vertical flexure at midspan of ‘long’ wall..........................308
Figure 7-31 Specimen 3J during simulation S8 (S125%): (a) horizontal flexure of top of ‘long’ wall; (b) vertical flexure at midspan of ‘long’ wall..........................309
Figure 7-32 Specimen 3K during simulation S8 (S125%): (a) horizontal flexure of top of ‘long’ wall; (b) vertical flexure at midspan of ‘long’ wall..........................310
Figure 7-33 Key specimens: RMS of relative displacement for vertical flexure for simulation S8 (S125%) [RMS: 0-7mm in linear scale]..........................311
Figure 7-34 All specimens: RMS of relative displacement for horizontal flexure for simulation S8 (S125%) [RMS: 0.1-100mm in log scale]..........................312
Figure 7-35 Key specimens: RMS of relative displacement for horizontal flexure for simulation S8 (S125%) [RMS: 0-7mm in linear scale]..........................312
Figure 7-36 Specimen 3J during simulation S11 (S100% repeated): (a) horizontal flexure of top of ‘long’ wall; (b) vertical flexure at midspan of ‘long’ wall......314
Figure 7-37 Schematic side elevation of specimen showing exaggerated overturning moment which generates tensile stresses at the corner intersection.................316
Figure 7-38 Schematic plan view of specimen showing exaggerated cyclic wall flexure and tension-compression stresses which contribute to vertical corner cracking. 317
Figure 7-39 Schematic plan view of specimen showing exaggerated cyclic wall flexure and tension-compression stresses which contribute to vertical midspan cracking. ...318
Figure 7-40 Schematic side elevation of specimen showing exaggerated vertical flexure and overturning which lead to horizontal cracking.319
Figure 8-1 U-panel specimens: test set up for the impact hammer tests.................330
Figure 8-2 Key components of the EMTA. ...330
Figure 8-3 U-panel specimens: location of accelerometers...............................331
Figure 8-1 U-panel specimens: test set up for the shake table tests.................................332
Figure 8-5 Phases of the modal analysis...333
Figure 8-6 Mode shapes and descriptions for Modes 1, 2 and 3 in different phases
(\(\alpha + \beta\)). ...334
Figure 8-7 Specimen 3J: dynamic characteristics prior to shake table testing
(undamaged)...338
Figure 8-8 Specimen 3K: FRF graph prior to shake table testing (undamaged).338
Figure 8-9 Specimen 3J: strengthening stages ‘b’ & ‘d’. ..40
Figure 8-10 Specimen 3J: natural frequency trend of Modes 1, 2 & 3 during
strengthening. ..341
Figure 8-11 Specimen 3J: trend of damping ratio of Modes 1, 2 & 3 during
strengthening. ..342
Figure 8-12 Specimen 3J: FRF graphs during strengthening stages.........................342
Figure 8-13 Specimens 3H, 3J and 3K: frequency trends of Mode 1 for shake table
tests ..44
Figure 8-14 Specimens 3H, 3J and 3K: modal damping trends of Mode 1 for shake
table tests. ...346
Figure 8-15 Specimen 3J: FRF graphs for simulations S2 – S8.................................348
Figure 8-16 Specimens 3H, 3J and 3K: MAC trends of Mode 1 for shake table tests349
Figure 9-1 Model house 4A prior to testing...354
Figure 9-2 Model house 4A: schematic drawing of unreinforced structure (view from
SE). ..356
Figure 9-3 Model house 4A: plan layout (a) odd courses, (b) even courses............357
Figure 9-4 Model house 4A: elevation of N wall showing configuration of
reinforcement..358
Figure 9-5 Model house 4A: base slab and shear pins prior to construction..........359
Figure 9-6 Model house 4A: under construction...360
Figure 9-7 Model house 4A: under construction (a) lintel detail, and (b) top of wall. 361
Figure 9-8 Model house 4A: curing of completed adobe walls............................361
Figure 9-9 Model house 4A: (a) drilling holes, and (b) injecting mud into holes.363
Figure 9-10 Model house 4A: with strings and timber ring beam.........................363
Figure 9-11 Model house 4A: (a) ring beam connection, and (b) fully retrofitted.....363
Figure 9-12 Model house 4A: details of vertical bamboo and horizontal wire
reinforcement..364
Figure 9-13 Model house 4A: fully retrofitted ... 364
Figure 9-14 Model house 4A: location of accelerometers ... 365
Figure 9-15 Model house 4A: location of LVDT displacement transducers 366
Figure 9-16 Model house 4A: instrumented and ready for testing 367
Figure 9-17 Nomenclature for specimens, simulations and locations 369
Figure 9-18 Test day: the house and its maker! (Evans, UTS, 2005) 370
Figure 9-19 Model house 4A: damage from simulation S4 (S75%) to E wall 373
Figure 9-20 Model house 4A: absolute displacement of L1, L3 and ST (shake table) for simulation S4 (S75%) ... 376
Figure 9-21 Model house 4A during simulation S4 (S75%): (a) horizontal flexure of top of N wall; (b) vertical flexure at midspan of N wall 377
Figure 9-22 Model house 4A: damage from simulation S5 (S100%) 379
Figure 9-23 Model house 4A: absolute displacement of L5, L13 and ST (shake table) for simulation S5 (S100%) ... 382
Figure 9-24 Model house 4A: absolute displacement of L1, L3 and ST (shake table) for simulation S5 (S100%) ... 383
Figure 9-25 Model house 4A during simulation S5 (S100%): (a) horizontal flexure of top of N wall; (b) vertical flexure at midspan of N wall 384
Figure 9-26 Model house 4A: damage from simulation S6 (S125%) 386
Figure 9-27 Model house 4A: absolute displacement of L1, L3 and ST (shake table) for simulation S6 (S125%) ... 389
Figure 9-28 Model house 4A during simulation S6 (S125%): (a) horizontal flexure of top of N wall; (b) vertical flexure at midspan of N wall 390
Figure 9-29 Model house 4A: damage from simulation S7 (S100% repeated) 392
Figure 9-30 Model house 4A: damage from simulation S7 (S100% repeated) 393
Figure 9-31 Model house 4A: damage from simulation S7 (S100% repeated) 394
Figure 9-32 Model house 4A: damage from simulation S8 (‘shakedown’) 396
Figure 9-33 Model house 4A: damage from simulation S8 (‘shakedown’) 397
Figure 9-34 Model house 4A: maximum and minimum of relative displacement of N ‘long’ wall – along top (L1-L5, top-left graph); at third-height (L6-L10, bottom-left graph) and at midspan (L3, L8, L11, right graph) for simulations S3 – S6 404
Figure 9-35 Model house 4A: RMS of relative displacement of N ‘long’ wall – along top (L1-L5, top-left graph); at third-height (L6-L10, bottom-left graph) and at midspan (L3, L8, L11, right graph) for simulations S3 – S6 405
Figure 10-1 Model house 4A, north wall: test set up for the impact hammer tests...
Figure 10-2 Model house 4A, south wall: test set up for the impact hammer tests...
Figure 10-3 Model house 4A, north wall – impact point A: dynamic characteristics at strengthening stage ‘a’ (unreinforced)
Figure 10-4 Model house 4A, north wall – impact point B: dynamic characteristics at strengthening stage ‘a’ (unreinforced)
Figure 10-5 Model house 4A, south wall – impact point C: dynamic characteristics at strengthening stage ‘a’ (unreinforced)
Figure 10-6 Model house 4A, south wall – impact point D: dynamic characteristics at strengthening stage ‘a’ (unreinforced)
Figure 10-7 Model house 4A: strengthening stages
Figure 10-8 Model house 4A: natural frequency trends during the strengthening process
Figure 10-9 Model house 4A, north wall – impact point A: dynamic characteristics during strengthening stages
Figure 10-10 Mode shapes and corresponding labels for impact hammer test prior to shake table testing (Model house 4A, and Tolles and Krawinkler, 1990)
Figure 10-11 Model house 4A: MAC trends for Modes 1 – 5 during the strengthening stages
Figure 10-12 Model house 4A, north wall: test set up for the shake table tests
Figure 10-13 Model house 4A: FRF stabilisation diagrams for simulations S1 (S10%) and S2 (S25%)
Figure 10-14 Model house 4A, north wall: mode shapes for simulations S1 (S10%) and S2 (S25%)
Figure 10-15 Model house 4A: FRF stabilisation diagrams for simulations S3 (S50%) and S5 (S100%)
Figure 10-16 Model house 4A: MAC trends of Modes 1 – 5 for simulations S1 (S10%) and S2 (S25%), with respect to the MAC at strengthening stage ‘c’
Figure 10-17 Model house 4A: MAC trends of Mode 1 to Mode 4 for shake table test stages S1 (S10%) and S2 (S25%), with respect to the MAC at S1 (S10%)
Figure 13-1 Typical 3-D nonlinear FE modelling of mudbrick adobe house (Cao and Watanabe, 2004)
LIST OF TABLES

Table 1-1 Major earthquakes in regions where adobe housing commonly exists. 6
Table 2-1 Common housing materials used in El Salvador................................. 19
Table 2-2 Factors influencing urban and rural construction............................ 19
Table 2-3 Features of El Salvador earthquakes, 2001.................................... 24
Table 2-4 Child-care centre design and construction specifications.................. 47
Table 2-5 Key housing statistics for 2000 and 2004 (UNDP, 2005a). 57
Table 3-1 Model adobe house testing at PUCP: specifications and results.......... 73
Table 3-2 Peak accelerations and displacements for the original and modified
 earthquake records, UNAM (Hernández et al, 1981). 78
Table 3-3 Model adobe house testing at UNAM: specifications and results......... 79
Table 3-4 Model adobe house testing at Stanford University: specifications and results
 (Tolles and Krawinkler, 1988 & 1990)... 83
Table 3-5 GSAP test sequence and parameters... 87
Table 3-6 GSAP model adobe house testing: specifications and results (Tolles et al,
 2000). ... 88
Table 3-7 Shake table test sequences for scale model adobe houses #1, #2 and #3,
 Universidad de los Andes (Yamin et al, 2003). 95
Table 3-8 Model adobe house testing at Universidad de los Andes: specifications and
Table 3-9 Specifications from IAEE guidelines (1986). 100
Table 3-10 Specifications from RESESCO adobe supplement (1997).................. 104
Table 3-11 Specifications of Equipo Maiz adobe manual (2001). 108
Table 3-12 Recommended soil proportions for adobe bricks. 113
Table 4-1 Brick and soil characteristics. .. 119
Table 4-2 Specifications of compression prisms. .. 120
Table 4-3 Results from compression tests of adobe prisms.............................. 123
Table 4-4 Compressive strength of adobe prisms from this and other sources..... 127
Table 4-5 Shear prisms: specimen and test specifications.............................. 134
Table 4-6 Shear test results. ... 138
Table 4-7 Bond wrench prisms: specimen specifications............................... 142
Table 4-8 Flexural bond strength test results. .. 145
Table 5-1 UTS shake table specifications... 154
Table 5-2 Peak displacement and peak acceleration of the shake table for each
simulation .. 162
Table 6-1 U-panels: specimen specifications... 179
Table 6-2 Summary of testing sequence and resultant damage grades* for all u-shaped
adobe wall units ... 180
Table 6-3 Classification of damage to buildings (IAEE, 1986) ... 181
Table 6-4 Testing sequence and observations for specimen 3A .. 183
Table 6-5 Testing sequence and observations for specimen 3B .. 189
Table 6-6 Testing sequence and observations for specimen 3C .. 194
Table 6-7 Testing sequence and observations for specimen 3D .. 201
Table 6-8 Testing sequence and observations for specimen 3E .. 208
Table 6-9 Testing sequence and observations for specimen 3G .. 216
Table 6-10 Testing sequence and observations for specimen 3I .. 221
Table 6-11 Testing sequence and observations for specimen 3H .. 230
Table 6-12 Testing sequence and observations for specimen 3F .. 238
Table 6-13 Testing sequence and observations for specimen 3J .. 247
Table 6-14 Testing sequence and observations for specimen 3K .. 257
Table 7-1 U-panels: specimen specifications ... 267
Table 7-2 All specimens: peak absolute displacement (mm) at midspan-top of wall (L3)
and ratio of peaks with respect to peak shake table (L ST) displacement for
simulations S6, S7 and S8 ... 273
Table 7-3 All specimens: RMS of absolute displacement (mm) at midspan-top of wall
(L3) and ratio of RMS with respect to RMS of shake table (L ST) for simulations
S6, S7 and S8 ... 274
Table 7-4 All specimens: peak relative displacement* (mm) at midspan-top of wall
(L3-ST) and ratio of peaks with respect to benchmark specimen 3J (shaded) for
simulations S6, S7 and S8 ... 276
Table 7-5 All specimens: RMS of relative displacement* (mm) at midspan-top of wall
(L3-ST) and ratio of RMS with respect to benchmark specimen 3J (shaded) for
simulations S6, S7 and S8 ... 277
Table 7-6 Rating matrix for seismic capacity, complexity and cost for u-shaped adobe
wall units ... 324
Table 8-1 Specimen specifications and first natural frequency (Mode 1) ... 336
Table 8-2 Specimens 3F, 3H, 3J and 3K: natural frequencies (f) and damping ratios (ζ) prior to testing ... 337

Table 8-3 Specimen 3J: natural frequencies (f) and damping ratios (ζ) during strengthening process .. 341

Table 9-1 Model house 4A: testing sequence, intensity, and peak displacement and acceleration of the shake table (ST) .. 368

Table 9-2 Model house 4A: testing sequence and summary of observations 371

Table 9-3 Classification of damage to buildings (IAEE, 1986) 372

Table 9-4 Model house 4A: observations from simulation S4 (S75%). 373

Table 9-5 Model house 4A: simulation S4 (S75%) - peak and RMS of absolute displacement, and ratio of peaks and RMS with respect to shake table displacement (ST). .. 374

Table 9-6 Model house 4A: observations from simulation S5 (S100%). 378

Table 9-7 Model house 4A: simulation S5 (S100%) - peak and RMS of absolute displacement, and ratio of peaks and RMS with respect to shake table displacement (ST). .. 380

Table 9-8 Model house 4A: observations from simulation S6 (S125%). 385

Table 9-9 Model house 4A: simulation S6 (S125%) - peak and RMS of absolute displacement, and ratio of peaks and RMS with respect to shake table displacement (ST). .. 387

Table 9-10 Model house 4A: observations from simulation S7 (S100% repeated). ... 391

Table 9-11 Model house 4A: observations from simulation S8 ('shakedown'). 395

Table 9-12 Model house 4A: peak displacement (mm) for all LVDT displacement sensors and ratio of peaks with respect to peak shake table (L ST) displacement (shaded) for simulations S2 - S6 ... 400

Table 9-13 Model house 4A: RMS of displacement (mm) for all LVDT displacement sensors and ratio of RMS with respect to RMS of shake table (L ST) displacement (shaded) for simulations S2 - S6 .. 401

Table 10-1 Model house 4A: natural frequencies (f) and modal damping ratios (ζ) during the strengthening process .. 414

Table 10-2 Model house 4A: natural frequencies (f) and damping ratios (ζ) for shake table testing .. 421
Table 10-3 Model house 4A: mode shape descriptions for simulations S1 (S10%) and S2 (S25%)..........................424
Table 11-1 World Adobe Forum: sample template for experimental testing and analysis. ..433
Table 11-2 World Adobe Forum: sample template for field research.434
Table 11-3 World Adobe Forum: sample template for application / implementation. 435
NOMENCLATURE

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS</td>
<td>Australian Standard</td>
</tr>
<tr>
<td>ASIA</td>
<td>Asociación Salvadoreña de Ingenieros y Arquitectos (Salvadoran Association of Engineers and Architects) [El Salvador]</td>
</tr>
<tr>
<td>ASTM</td>
<td>American Society for Testing and Materials [U.S.A.]</td>
</tr>
<tr>
<td>b</td>
<td>Breadth / width</td>
</tr>
<tr>
<td>BSSC</td>
<td>Building Seismic Safety Council [U.S.A.]</td>
</tr>
<tr>
<td>CAFOD</td>
<td>Catholic Agency for Overseas Development (NGO) [United Kingdom]</td>
</tr>
<tr>
<td>CIA</td>
<td>Central Intelligence Agency [U.S.A.]</td>
</tr>
<tr>
<td>COEN</td>
<td>Comité de Emergencia Nacional (National Emergency Committee) [GOES]</td>
</tr>
<tr>
<td>COSMOS</td>
<td>Consortium of Organizations of Strong-Motion Observation Systems</td>
</tr>
<tr>
<td>CoV</td>
<td>Coefficient of Variation</td>
</tr>
<tr>
<td>d</td>
<td>Depth</td>
</tr>
<tr>
<td>DIGESTYC</td>
<td>Dirección General de Estadísticas y Censos (General Office of Statistics and Censuses) [GOES]</td>
</tr>
<tr>
<td>DIN</td>
<td>Deutsches Institut für Normung [Germany]</td>
</tr>
<tr>
<td>E</td>
<td>East</td>
</tr>
<tr>
<td>ECLA/CEPAL</td>
<td>Economic Commission for Latin America and the Caribbean / Comisión Económica para América Latina y El Caribe [UN]</td>
</tr>
<tr>
<td>EERI</td>
<td>Earthquake Engineering Research Institute [U.S.A.]</td>
</tr>
<tr>
<td>EGPA</td>
<td>Estimated peak ground acceleration</td>
</tr>
<tr>
<td>EMTA</td>
<td>Experimental Modal Testing and Analysis</td>
</tr>
<tr>
<td>f</td>
<td>Frequency</td>
</tr>
<tr>
<td>F</td>
<td>Force</td>
</tr>
<tr>
<td>f_c</td>
<td>Compressive strength</td>
</tr>
<tr>
<td>FE</td>
<td>Finite Element</td>
</tr>
<tr>
<td>FEMA</td>
<td>Federal Emergency Management Agency [U.S.A.]</td>
</tr>
<tr>
<td>FRF</td>
<td>Frequency Response Function</td>
</tr>
<tr>
<td>FUNDASAL</td>
<td>Fundación Salvadoreña de Desarrollo y Vivienda Mínima (Salvadoran Development and Minimum Housing Foundation) [NGO, El Salvador]</td>
</tr>
<tr>
<td>g</td>
<td>Acceleration due to gravity (9.81 ms$^{-2}$)</td>
</tr>
<tr>
<td>GDP</td>
<td>Gross Domestic Product</td>
</tr>
<tr>
<td>GOES</td>
<td>Gobierno de El Salvador / Government of El Salvador</td>
</tr>
<tr>
<td>GSAP</td>
<td>Getty Seismic Adobe Project [U.S.A.]</td>
</tr>
<tr>
<td>Hz</td>
<td>Hertz</td>
</tr>
<tr>
<td>IAEE</td>
<td>International Association for Earthquake Engineering</td>
</tr>
<tr>
<td>ISO</td>
<td>International Standards Organisation</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>IZIIS</td>
<td>Institute of Earthquake Engineering and Engineering Seismology, Skopje, Macedonia.</td>
</tr>
<tr>
<td>kg</td>
<td>Kilograms</td>
</tr>
<tr>
<td>kPa</td>
<td>Kilopascals</td>
</tr>
<tr>
<td>L</td>
<td>Length</td>
</tr>
<tr>
<td>LSM</td>
<td>Low Strength Masonry</td>
</tr>
<tr>
<td>LVDT</td>
<td>Linear Variable Differential Transformer (displacement transducers)</td>
</tr>
<tr>
<td>m</td>
<td>Metres</td>
</tr>
<tr>
<td>MAC</td>
<td>Modal Assurance Criterion</td>
</tr>
<tr>
<td>MDOF</td>
<td>Multi-degree-of-freedom</td>
</tr>
<tr>
<td>MIF</td>
<td>Mode Indicator Function</td>
</tr>
<tr>
<td>mm</td>
<td>Millimetres</td>
</tr>
<tr>
<td>MPa</td>
<td>Megapascals</td>
</tr>
<tr>
<td>MSJC</td>
<td>Masonry Standards Joint Committee [U.S.A.]</td>
</tr>
<tr>
<td>n</td>
<td>Number of specimens</td>
</tr>
<tr>
<td>N</td>
<td>Newtons</td>
</tr>
<tr>
<td>N</td>
<td>North</td>
</tr>
<tr>
<td>NC</td>
<td>Not Captured</td>
</tr>
<tr>
<td>NGO</td>
<td>Non-Governmental Organisation</td>
</tr>
<tr>
<td>NISEE</td>
<td>National Information Service for Earthquake Engineering</td>
</tr>
<tr>
<td>NR</td>
<td>Not Reported</td>
</tr>
<tr>
<td>°C</td>
<td>Degrees Celsius</td>
</tr>
<tr>
<td>P</td>
<td>Maximum load</td>
</tr>
<tr>
<td>p.a.</td>
<td>Per annum</td>
</tr>
<tr>
<td>PUCP</td>
<td>Pontificia Universidad Católica del Perú (Catholic University of Peru)</td>
</tr>
<tr>
<td>RESESCO</td>
<td>Reglamento Para la Seguridad Estructural de las Construcciones (Regulation for the Structural Security/Safety of Constructions) [El Salvador]</td>
</tr>
<tr>
<td>RMS</td>
<td>Root Mean Square</td>
</tr>
<tr>
<td>s</td>
<td>Seconds</td>
</tr>
<tr>
<td>S</td>
<td>South</td>
</tr>
<tr>
<td>S.A.</td>
<td>Surface Area</td>
</tr>
<tr>
<td>SD</td>
<td>Standard Deviation</td>
</tr>
<tr>
<td>SDOF</td>
<td>Single-degree-of-freedom</td>
</tr>
<tr>
<td>ST</td>
<td>Shake table</td>
</tr>
<tr>
<td>t</td>
<td>Time</td>
</tr>
<tr>
<td>TRS</td>
<td>Test Response Spectrum</td>
</tr>
<tr>
<td>UCA</td>
<td>Universidad Centroamericana ‘José Simeón Cañas’ [El Salvador]</td>
</tr>
<tr>
<td>UES</td>
<td>Universidad de El Salvador (University of El Salvador)</td>
</tr>
</tbody>
</table>
UN United Nations
UNAM *Universidad Nacional Autónoma de México*
UNDP United Nations Development Program
USGS United States Geological Survey [U.S.A.]
UTS University of Technology, Sydney, Australia
VMVDU *Vice-Ministerio de Viviendas y Desarrollo Urbano* (Vice-Ministry of Housing and Urban Development) [GOES]
W West
w.r.t. with respect to
τ Shear strength
ζ Damping ratio
To the people of El Salvador, whose indefatigable spirit and courage endures and inspires, despite a history of war, oppression, corruption, and natural disasters.