Advanced Bayesian Neural Network Classifiers of Head-movement Directions for Severely Disabled People

by

Son Thanh Nguyen

Submitted to the Faculty of Engineering in partial fulfilment of the requirements for the degree of Doctor of Philosophy at the University of Technology, Sydney

Sydney, August 2006

CERTIFICATE OF AUTHORSHIP/ORIGINALITY

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of the requirements for a degree, except as fully acknowledged within the text.

ŝ

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Signature of Candidate

Production Note: Signature removed prior to publication.

Acknowledgements

First of all, I am very grateful to my supervisor, Professor Hung Tan Nguyen, for giving me the valuable opportunity to work with assistive technologies and for his expert guidance. I have greatly benefited from his continuous support, including his knowledge and spirit.

I greatly appreciate Philip Taylor's assistance during the phase of data collection. I would also like to thank Leslie King for his help in setting up the hardware system.

Many thanks to Pat Skinner for her great help in editing this thesis.

Finally, I would like to dedicate this thesis to my mother, my older brother, my sister-in -law, my nephew, and niece, who always encouraged me during my stay in Sydney.

Son Nguyen

Sydney, August 2006

Contents

Nomen	clature	vii
List of	Figures	x
List of	Tables	xiii
Abbrev	viations	xv
Abstra	ct	xvii
Chapte	er 1. Introduction	1
1.1	Problem statement	1
1.2	Objectives of the thesis	4
1.3	Thesis contributions	4
1.4	The structure of the thesis	6
1.5	Publications related to the thesis	8
Chapte	er 2. Literature Review	9
2.1	Introduction	9
2.2	Neural networks enhancing the adaptability of assistive devices	10
2.3	Standard neural networks	12
2.4	Bayesian neural networks	13
2.5	Developed hands-free wheelchair control methods	15
	2.5.1 Speech-based control	15

	2.5.2	Chin-based control	17
	2.5.3	Gesture-based control	17
		2.5.3.1 Face direction	18
		2.5.3.2 Head movement	20
		2.5.3.3 Eye wink	21
	2.5.4	Brain-signal-based control	21
2.6	Assistiv	ve wheelchairs	22
	2.6.1	Recent and current developments	22
	2.6.2	Basic components of assistive wheelchairs	24
	2.6.3	Multiple operating modes in assistive wheelchairs	25
2.7	Discuss	sion	27

Chapter	· 3. N	Aobility Assistance after Spinal-cord Injury Using Neural	
	N	letworks	29
3.1	Introdu	iction	29
3.2	Spinal-	cord injury	30
	3.2.1	The type of injury	30
	3.2.2	The location of the injury	31
		3.2.2.1 Cervical injuries	32
		3.2.2.2 Thoracic injuries	32
		3.2.2.3 Lumbar and sacral injuries	32
3.3	Functio	onal restoration of upper extremities after spinal cord injury	34
3.4	Hands-	free device access	35
3.5	Neural	networks	36
	3.5.1	Artificial neurons	38
	3.5.2	Network architectures	39
		3.5.2.1 Feed-forward networks	39
		3.5.2.2 Feedback networks	39
		3.5.2.3 Multi-layer networks	40
	3.5.3	Perceptrons	41
	3.5.4	Network learning	42
		3.5.4.1 The type of training	42

		3.5.4.3 Generalisation and regularisation	43
	3.5.5	Two-layer perceptron classifiers	45
		3.5.5.1 Forward propagation	45
		3.5.5.2 Error functions	47
		3.5.5.3 Network regularisation	49
		3.5.5.4 Error gradient	49
		3.5.5.5 The Hessian matrix	52
		3.5.5.6 Adjusting the weights and biases	55
3.6	Discus	sion	56
Chap	ter 4.	A Bayesian Neural Network for Detecting Head-movement	
	(Commands	58
4.1	Introdu	action	58
4.2	The Ba	ayesian neural network classifier	61
	4.2.1	Prior weight distribution	61
	4.2.2	Posterior weight distribution	62
	4.2.3	Posterior probability of the hyperparameters	63
	4.2.4	The Gaussian approximation to the evidence	64
	4.2.5	Determination of the hyperparameters	65
4.3	Advan	ced optimisation training algorithms for Bayesian neural	
	networ	rk classifiers	66
	4.3.1	Line search	68
		4.3.1.1 Bracketing the minimum	68
		4.3.1.2 Locating the minimum itself	69
	4.3.2	Conjugate-gradient training algorithm	70
	4.3.3	Scaled conjugate-gradient training algorithm	72
	4.3.4	Quasi-Newton training algorithm	74
	4.3.5	Training time	76
4.4	Trainin	ng Bayesian neural networks	77
	4.4.1	Data acquisition	78
	4.4.2	Network specifications	82
	4.4.3	Experiment 1	82
	4.4.4	Experiment 2	87

4.5	Discuss	ion	90
Chapte	r5. 0	ptimal Adaptive Bayesian Neural Network Classifiers	91
5.1		ction	91
5.2	Evaluat	ing the evidence	95
	5.2.1	The Occam factor for the weights and biases	
	5.2.2	The Occam factor for the hyperparameters	
	5.2.3	Combining the terms of evidence	98
5.3	Adaptiv	ve Bayesian neural networks	99
	5.3.1	Head-movement data	99
	5.3.2	Training Bayesian neural networks on high-performance	
		computational clusters	99
	5.3.3	The optimal network architecture	101
	5.3.4	Head-movement classification	105
		5.3.4.1 Experiment 1	105
		5.3.4.2 Experiment 2 (Adaptive network training)	107
5.4	Discuss	sion	109
Chapte		Iternative Frameworks for Improving the Accuracy of	
		etecting Head-movement Commands	
6.1		ction	
6.2		um evidence of early stopping of neural networks	
	6.2.1	The evidence for neural networks	
	6.2.2	Prior weight distribution	
	6.2.3	The data-set likelihood	
	6.2.4	Evaluating the evidence	115
	6.2.5	Training neural networks for detecting head-movement	
		commands	
		6.2.5.1 The use of data	
		6.2.5.2 Network architecture	
		6.2.5.3 Network training	
6.3	The Mo	onte Carlo methods for Bayesian neural network training	121
	6.3.1	The Monte Carlo methods	121

iv

	6.3.2	The Metropolis-Hasting algorithm	122
	6.3.3	Training Bayesian neural networks for detecting head-	
		movement commands	126
6.4	Combin	ing the performances of independent Bayesian neural network	
	classifie	rs	128
	6.4.1	Bayes' rule of combination	129
	6.4.2	Dempster-Shafer theory of combination	131
	6.4.3	Combining two Bayesian neural network classifiers	133
		6.4.3.1 Experiment 1 (Bayes' rule of combination)	134
		6.4.3.2 Experiment 2 (Dempster-Shafer theory of	
		combination)	136
6.5	Discuss	ion	138
Chapte	r 7. C	onclusions and Future Work	139
Append	lix A. Po	ower Wheelchairs	144
A.1	Overvie	w of power wheelchairs	144
A.2	Power w	vheelchair components	145
	A.2.1	Joystick and alternative control	145
	A.2.2	Wheelchair battery	147
	A.2.3	Wheelchair motors	147
	A.2.4	Motor drive	149
	A.2.5	Drive train	150
	A.2.6	Control module	150
Append	lix B. A	DXL202EB-232A Evaluation Board	153
B.1	Hardwa	re	153
B.2	Softwar	e	154
B.3	Applica	tions	154
Append	lix C. G	PSB Wheelchair Direction-Control Device	155

V

Appendix D. National Instrument USB-6008 Multifunction Data				
	Acquisition Module	157		
D.1	Hardware	157		
D.2	Software	163		
D.3	Applications	163		
Append	lix E. The Advanced Bayesian Neural Network Toolbox for Matlab	164		
Append	lix F. Implementation of the Bayesian Neural Network based Real-			
	Time Head-Movement Command Detection	244		
Append	lix G. Publications related to The Thesis	253		
Bibliog	raphy			

List of Figures

2.1	Block diagram of a voice recognition system	16
2.2	Face direction computation	19
2.3	The configuration of a head-oriented wheelchair control	20
2.4	Diagram of an eye-wink control interface	21
2.5	Functional diagram of assistive wheelchairs	24
3.1	The synergic controller for restoring elbow extension	35
3.2	Diagram of a typical hands-free user interface with the use of neural	
	networks	36
3.3	An artificial neuron	38
3.4	A feed-forward neural network	39
3.5	A feedback neural network	40
3.6	A perceptron	41
3.7	An illustration of neural network generalisation	44
3.8	A two-layer perceptron classifier	45
4.1	Block diagram of head-movement-based direction control of power	
	wheelchair using a Bayesian neural network	59
4.2	Dual-axis tilt sensor (ADXL202EB-232A)	60
4.3	LabVIEW real-time computer interface	60
4.4	Data-acquisition and direction-control devices	61
4.5	Golden section search	69
4.6	An illustration of the process of parabolic interpolation used to	
	perform line-search minimisation	70

4.7	Windowed samples of user 1 (able-bodied person)	79
4.8	Windowed samples of user 5 (C5-injury-level person)	80
4.9	Windowed samples of user 6 (C4-injury-level person)	81
4.10	Averaged network training time of the three training algorithms	84
4.11	Averaged convergence time of the three training algorithms	84
4.12	Cost-function value versus training cycle in Experiment 1	86
4.13	Cost-function value versus training cycle in Experiment 2	88
5.1	A common topology of PC clusters	100
5.2	Schematic of the clusters in Faculty of Engineering (UTS)	101
5.3	Log evidence versus number of hidden nodes	104
5.4	Test error versus log evidence	104
5.5	Cost-function value versus training cycle in Experiment 1	106
5.6	Cost-function value versus training cycle in Experiment 2	108
6.1	An illustration of the traditional early stopping in neural networks	113
6.2	Data error versus training cycle	119
6.3	Log evidence versus training cycle	119
6.4	An illustration of the Monte Carlo methods	124
6.5	The histogram of twenty samples points generated from the zero-	
	mean Gaussian distribution	125
6.6	Data error versus training cycle	127
6.7	Log evidence versus training cycle	127
6.8	Block diagram of a system for detecting commands through the	
	combination of three hands-free input signals	129
6.9	A two-classifier recognition system	130
6.10	A two-Bayesian neural network recognition system	133
A.1	A standard power wheelchair (Invacare Roller M1)	144
A.2	Functional block diagram of power wheelchairs	145
A.3	Schematic of the standard joystick with error checking circuitry	146
A.4	PMDC motor for power wheelchairs (Shihlin Electric manufacturer)	148
A.5	Block diagram of the motor drive	149

A.6	H-bridge configuration provides bidirectional rotation for the		
	wheelchair motor	149	
A.7	Velocity control for power wheelchairs	151	
B.1	ADXL202EB-232A evaluation board with RS232 connection cable	153	
C.1	GPSB device	155	
C.2	Functional block diagram of wheelchair direction and speed-control		
	using the GPSB device	156	
D.1	Key functional components of the NI USB-6008	158	
D.2	Signal label application diagram of the NI USB-6008	159	
E.1	Structure of the Advanced Bayesian Neural Network Classification		
	Toolbox for Matlab	165	

List of Tables

2.1	Some recent and current assistive wheelchair systems	23
3.1	Number of people living with spinal-cord injuries in Australia and the	
	United States of America	30
3.2	Spinal-cord injuries from trauma causes in Australia and the United	
	States of America	30
3.3	The spinal-cord map	33
3.4	Milestones in the development of neural networks	37
4.1	Numbers of extracted head-movement samples of the eight	
	wheelchair users	79
4.2	A relative comparison of the three training algorithms	85
4.3	The change of the hyperparameters according to five re-estimation	
	periods in Experiment 1	87
4.4	Confusion matrix of the trained network in Experiment 1	87
4.5	The change of the hyperparameters according to five re-estimation	
	periods in Experiment 2	89
4.6	Confusion matrix of the trained network in Experiment 2	89
4.7	Sensitivity and specificity of the trained networks in the two	
	experiments	89
5.1	Numbers of extracted head-movement samples of the eight users	99
5.2	The change of the hyperparameters according to five re-estimation	
	periods in Experiment 1	107

5.3	Confusion matrix of the trained network in Experiment 1	107
5.4	The change of the hyperparameters according to five re-estimation	
	periods in Experiment 2	109
5.5	Confusion matrix of the trained network in Experiment 2	109
5.6	Sensitivity and specificity of the trained networks in the two	
	experiments	109
6.1	Numbers of extracted head-movement samples of the eight users	117
6.2	Network training time measured over the training runs	120
6.3	Confusion matrix of the best trained network	121
6.4	Sensitivity and specificity of the best trained network	121
6.5	Confusion matrix of the best trained network	128
6.6	Sensitivity and specificity of the best trained network	128
6.7	Confusion matrix of Bayesian neural network classifier 1	135
6.8	Confusion matrix of Bayesian neural network classifier 2	135
6.9	Confusion matrix of the combination of two Bayesian neural network	
	classifiers	135
6.10	Sensitivity and specificity of the classifiers	136
6.11	Confusion matrix of Bayesian neural network classifier 1	137
6.12	Confusion matrix of Bayesian neural network classifier 2	137
6.13	Confusion matrix of the combination of two Bayesian neural network	
	classifiers	137
6.14	Sensitivity and specificity of the classifiers	138
C.1	Specifications of the GPSB device	156
D.1	Analog terminal assignments of the NI USB-6008	160
D.2	Digital terminal assignments of the NI USB-6008	161
D.3	The signals available on the I/O connectors of the NI USB-6008	162
E.1	List of the functions in the toolbox	166
E.2	List of the demonstrations in the toolbox	167

xiv

Abbreviations

ANN	Artificial neural network
ADC	Analog to digital converter
BNN	Bayesian neural network
BCI	Brain computer interface
DGF	Direction of greatest freedom
EWCI	Eye-wink control interface
EEG	Electroencephalogram
EMG	Electromyography
FNS	Functional Neuromuscular Stimulation
IDDM	Insulin-Dependent Diabetes Mellitus
MLP	Multi-layer perceptron
PCA	Personal-care assistance
SCI	Spinal-cord injury
SNN	Standard neural network

Abstract

Assistive technologies have been dedicated to providing additional accessibility to individuals who have physical or cognitive difficulties, impairments and disabilities. Various types of assistive technology products are also available on the market today. However, there are still a significant number of disabled people who are unable to use commercial assistive devices due to their high level of injury.

For severely disabled people with quadriplegia resulting from high-level spinal-cord injuries or cerebral palsy, hands-free control methods have become extremely beneficial for them to reducing their dependence level in daily activities. In this control mode, head movement has been shown to be a very effective, natural and comfortable way to access the device. The need to exactly detect intentional head movements of various forms of disabled people has led to the use of neural networks. Recently, Bayesian neural networks have been proposed for developing neural network applications with finite and/or noisy training data.

In assistive technologies, power wheelchairs are a means of providing independent mobility. This thesis explores the useful properties of Bayesian neural networks in developing an optimal head movement-user interface for hands-free power wheelchair control systems. In such systems, a trainable Bayesian neural network is used to detect head movement commands. This kind of user interface can conveniently be used by various disabled users. The thesis also proposes the techniques for developing the adaptive Bayesian neural network for head movement classification, including the determination of the optimal architecture and the most effective on-line training algorithm for the network. The experimental results obtained in the thesis show that a Bayesian neural network can be used to detect head movements accurately and consistently. After on-line training, the network is able to adapt well to the head movements of new users. The substantial contributions of the thesis can briefly be summarised as follows:

- Standard methods of neural network training usually require intensive search for network parameters or require the use of a validation set separated from the available training data. In contrast, in this thesis all the available training data have been used to train the network for detecting head movements. As the network could be trained on all the data from a group of different individuals, it is able to classify their new head movements with a very high accuracy, of 99.38%.
- The thesis strongly focuses on advanced training algorithms suitable for Bayesian neural network head-movement classifiers. Especially, the quasi-Newton training and scaled conjugate gradient algorithms have been found to be the most effective, as they can result in the shortest training time for the network.
- In general, the determination of the best network architecture is very difficult and is traditionally based on ad hoc methods. However, this thesis utilises the property of the maximum evidence, which is available in Bayesian neural networks, to select the optimal network architecture. Specifically, the networks containing three hidden neurons are appropriate for successful head-movement classification.
- The thesis also provides a novel method of early stopping in neural networks. In this method, the maximum evidence can be seen as a good criterion to terminate the training process before the network overfits the data. In addition, the use of a validation set for monitoring the generalisation error is no longer needed. Moreover, this thesis shows that the combination of independent Bayesian neural networks can significantly improve the head-movement classification accuracy.