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Abstract

This thesis addresses the problem of coordination of a group of mobile robots to get into
and maintain a formation with a desired shape. Two issues of particular importance in
the coordination problem are formation initialisation and maintenance. Inter-robot
collision and communication bandwidth limitations raise certain difficulties and require
a thorough treatment. This thesis presents original contributions towards a solution to
the formation initialisation and maintenance for multiple mobile robots in an obstacle-

free environment.

In the context of robotic formation control, the commonly-used virtual robot tracking
combined with /-/ control has limitations in the establishment of a line formation, the
possibility of collision between robots, and the singularity cases involved. A new
approach called the Virtual Head Robot Tracking (VHRT) and Three Point [-I (3PLL)
control incorporated with reactive control schemes is presented. The approach
represents an appropriate solution to formation control for a group of three mobile

robots with singularities alleviated and inter-robot collision completely avoided.

For a group of more than three robots, a step-by-step procedure is proposed allowing the
robots in turn to participate in the process of formation initialisation, that is based on a

predefined control graph, while ensuring inter-robot collision avoidance.

An observed-based decentralised control approach 1s proposed to establish and maintain
a desired formation in the condition of a limited information exchange among robots in
the group. This suggests the capability of enlarging the size of the platoon of vehicles

in practice.

The theoretical work of the thesis is evaluated by extensive simulations of multiple
mobile robots based on their kinematic models. The results obtained are also

experimentally tested, in part, on a group of two Amigo mobile robots.
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1. Introduction 1

Chapter 1

Introduction

The research project reported in this thesis is devoted to the coordination of a group of
mobile robots to get into and maintain a formation with a desired shape. This chapter
presents an overview of the work covered in the project. An introduction to robotic
formation, which provides motivation for this research, is given in the first section of
this chapter. Section 1.2 then discusses issues relating to main problems in robotic
formation and defines the problems to be addressed in the thesis. Section 1.3 presents
robotic formation research categories. Thesis scope is described in Section 1.4. Section
1.5 summarises the principal contributions of the work. Finally, the chapter concludes

with an overview of the thesis organisation.

1.1 Robotic formation

Formation may have an essential role for activities of groups in both natural and
artificial world. In nature, formation behaviours, such as flocking and schooling,
benefit a group of amimals performing them in various ways. For example, each animal
in a formation herd may minimise its encounters with predators by increasing the
chance of detecting flock’s enemies. Birds, such as Canada geese, sometimes fly in
inverted V-formations, which provide them with aerodynamic advantages that enable

them to fly long distances with less fatigue [Bekey, 2005]. It has now been showed that
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when white pelicans are trained to fly in formation with proper spacing, their heart rates
(and hence energy expenditures) drop by about 30% [Weimerskirch er al., 2001].
Grouped animals also can combine their sensing capabilities to maximise the efficiency
of foraging for food. Examples of pattern formation in animals include bird flocking,

fish schooling, and ant forming chain [Camazine ef a/., 2001].

Studies of flocking and schooling show that these behaviours emerge as a combination
of a desire to stay in the group and to, simultaneously, keep a separation distance from
other members of the group. Since groups of artificial agents could similarly benefit
from formation tactics, robotic researchers and those in artificial life community have
been inspired with these biological studies to develop formation behaviours for both

simulated agents and robots.

Formation is also very important in many military applications where sensor assets are
limited as making a formation allows each robot to concentrate its sensing capability on
a portion of environment, while the other robots in the formation cover the rest. For
instance, fighter pilots direct their visual and radar search responsibilities depending on
their positions in a formation. Robotic scouts are also useful by directing their sensors
in different areas to ensure full coverage. Approaches to robotic formation problem are
of potential applications in many other fields, such as search and rescue operations,
agricultural coverage tasks, landmine removal, remote terrain and space exploration,

and also the control of satellites and unmanned aerial vehicles.

The concept of multiple autonomous unmanned vehicles-AUVs (land, air, or
underwater) operating in formation is emerging as a key technology in mobile robotics
that has been the focus of intense research effort over recent years. The formation
control approach has several advantages over the traditional monolithic agent control,
including overall system robustness, intelligence, enhanced performance (increased
instrument resolution, reduced cost), and flexibility (reconfigurable capability, fault
tolerance). Some typical applications include moving large objects [Donald ef al,
2000], exploration [Fox et al., 2000], surveillance [Feddema and Schoenwald, 2002],
search and rescue [Jennings et al, 1997], and deep space observation [Wang and

Hadaegh, 1996].
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With the development of powerful control techniques for single vehicles, recent
advances in sensors, energy storage devices, the explosion in computation and
communication capabilities, and the advent of miniaturisation technologies, it is
perceived that large groups of automated vehicles can now be coordinated in an
effective manner for a variety of tasks which are beyond the ability of individual

vehicles.

1.2 Robotic formation problems

Robotic formations are defined as groups of mobile robots establishing and maintaining
some predetermined geometrical shape by controlling the positions and orientations of
individual robots relative to the group, at the same time allowing the group to move as a
whole. According to Lemay et a/.(2004), that purpose requires to solve the following

1ssues:

1) How to initialise and establish a formation? Robots assemble at the arbitrary

starting points and/or establish the formation.

2) How to avoid inter-robot collision? When robots are used to perform tasks in a
shared workspace, each one becomes a mobile obstacle for the other. Inter-robot
collision avoidance consequently is an essential consideration for multi robot

coordination.

3) How to maintain formation shape while moving? Criteria like the stability while

moving in formation and robustness to robot failure are important.

4) How to change the shape of the formation? The group of mobile robots in a
formation sometimes has to change its shape to avoid obstacles or to fulfil required

tasks.

5) How to avoid obstacles? The group of mobile robots occasionally split/deform and

then re-establish the formation or preserve the shape of the formation.
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6) Is it possible to realise any types of formation? Some geometric conditions have to
be considered to guarantee formation feasibility given the individual robot

kinematics.

The above problems can be solved in simple cases, which involve spatial coordination
among robots, or in the more complex ones, which add temporal coordination of robots’

trajectories and roles.

In forming and maintaining the multi-robot pattern there is generally a trade-off
between precision and feasibility on one side, and between the necessity of global
information and communication capacity on the other side. Those systems that require
global information or broadcast communication may have a lack of scalability or high
costs of the physical set-up but allow for more accuracy in forming a large range of
geometrical shapes [Carpin and Parker, 2002; Sugihara and Suzuki, 1996]. On the
contrary, systems using only local communication and sensor data, while limited In
variety and precision of formations, tend to be more scalable, more robust, and easier to

build [Balch and Hybinette, 2000; Desai, 2001].

In the literature, there is not much research on the formation initialization issue in multi-
robot coordination. A solution that addresses mainly first three above issues of robotic
formation problems, which are how to establish and maintain a formation for a group of
mobile robot without collisions among them, is the subject of the research reported in
this thesis. Within the scope of the thesis, attention will be restricted to the coordination

of mobile robots in formations in the obstacle-free environment.

1.3 Robotic formation research categories

According to Michaud er a/.(2002), characteristics of the research in robotic formation

can be grouped into three categories: perceptual, shape and control.

1.3.1 Perceptual characteristics

Visibility of other robots Approaches may consider complete or limited visibility of

robots in the groups. This relates to two different classes of sensors have emerged for
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mobile robots: visual sensors, which use light reflected from objects in the environment
to reason about structure, and nonvisual sensors, which use various audio, inertial, and

other modalities to sense the environment.

Frame of reference Robots can use an absolute positioning system or their own
relative reference to decide and take their actions. An absolute positioning system uses
fixed and known beacons. To do so, it is necessary to cover the whole robot world with
a beacon system so that it can compute its position at any moment. Using a relative
position system, a robot defines by itself its references which are either characteristic

features of the environment or objects known with good accuracy.

Communication capabilities Either no communication, communication of global
information or of local information 1s possible. In addition, distinctions between
implicit and explicit communication are usually made, in which implicit communication
occurs as a side effect of other actions, or “through the world”, whereas explicit
communication is a specific act designed solely to convey information to other robots

on the team.
1.3.2 Shape characteristics

Types of formation This relates to the variety of geometrical shapes that an approach
can handle. Some regular formation types are circle, diamond, wedge, line, column,
triangle, rectangle, arrowhead, hexagon, tree, and lattice (hexagonal, rectangular or

triangular) (see Figure 1.1).
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Figure 1.1: Some types of formations: column, line, diamond, wedge.
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Position determination Three techniques exist: unit-centre-referenced, where the
average of the x and y position of all robots is computed and used as a common
reference; point-referenced, with each robot determining its position in relation to a
single point, which can be the leading robot or a “virtual” point; and neighbour-
referenced, in which each robot maintains a position relative to one or up two robots in

proximity (see Figure 1.2).

e e
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Figure 1.2: Techniques for position determination: unit-centre, point, and

neighbour-referenced

Structural constraints Formation can be rigid, 1.e., their shape must be preserved at all

time, or flexible.
1.3.3 Control characteristics

Decision process Based on the control process mvolved, there are two groups. The
first group includes approaches where the coordination is done by a centralised unit that
supervises the whole group and command the individual robots. Studies in the second
group use distributed methods for achieving the coordination. In those approaches, the
decision process can be either homogeneous if all robots follow the same decision rules,

or heterogenous if the robots have different reactions to make their decisions.

Dependence on temporal states The algorithm can be oblivious if its decisions are
determined only from the sensor information obtained at the time instant, or non-

oblivious if it exploits information from the past.

Control strategy 1t can be based on feedback control laws (involving for instance input-

output feedback linearization, observer-based decentralised control, etc.), robotic
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behaviours, or on hybrid platforms (i.e. involving a supervisory level and an execution

level).

Another perspective to categorize formations is distinguishability of mobile robots [Hsu
and Liu, 2005]. If robots in a formation can be distinguished from each other based on
their inner states, generally by identification (ID), we call these robots ID-robots and
call their formations ID-formations. In contrast, if robots cannot be distinguished, we
call such robots anonymous robots (marked as ANO-robots) and the formations

anonymous formation (marked as ANO-formation).
1.4 Thesis scope

The objectives of this research are to propose a new approach to initialise and maintain
a desired shape of a group of mobile robots. The group of three mobile robots will be
initialised to get into and maintain a desired formation using an algorithm, which
combines virtual head robot tracking and three point I-I control incorporated with a
reactive control scheme. This algorithm ensures that any desired formation can be
achieved for a group of three mobile robots without inter-robot collision while
satisfying the limitation of communication range. A step-by-step procedure will be
developed to extend this algorithm for a group of N mobile robots. In addition, to
accommodate the restriction in information exchange, a decentralized approach will
also be proposed to implement the global feedback controller for the robots moving in a
formation by using linear functional observers. This method seems to be an appropriate
solution for maintaining a desired formation in the condition of limited information
exchanged among robots in the group. The application of proposed approaches in this
thesis is restricted for the coordination of mobile robots in formations in the obstacle-

free environment.

Extensive simulations for a group of multiple mobile robots and laboratorial
experiments on Amigo mobile robots are carried out to validate the proposed

approaches.
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1.5 Thesis contribution

The main contribution of this thesis is the development of decentralised controllers to
initialise and maintain a desired formation of multiple mobile robots in an obstacle-free

environment. The specific contributions are:

e A new Virtual Head Robot Tracking (VHRT) control to establish any desired

configuration of two robots without collisions between them.

o Three Point [-] (3PLL) control to avoid collision among three mobile robots with

the singularity, which is a characteristic of /-/ control, entirely alleviated.

* A procedure to initialise a chosen robotic formation together with the use of

control graphs for a group of N mobile robots.

e An observed-based decentralised approach to deal with the communication

bandwidth limitations in the coordination control of multiple mobile robots.

There are some control laws used to establish a desired configuration of two mobile

robots such as /—y control [Desai et al., 1998], separation-bearing control [Fierro et

al., 2001; Fierro et al., 2002]. The Virtual Robot Tracking (VRT) control, proposed in
[Jongusuk and Mita, 2001], could be used for that purpose with the consideration of
inter-robot collision avoidance.  However this approach has limitations in the
establishment of a line configuration and the possibility of collisions between robots in
some cases. The VHRT control is proposed to overcome these circumstances and

obtain a desired leader-follower configuration of two mobile robots.

For a group of three mobile robots, a modified /-/ control is used for collision avoidance
among robots [Jongusuk and Mita, 2001]. This control law, as well as the original /-/
control [Desai er al., 1998] and separation-separation control [Fierro et al., 2001;
Fierro et al., 2002], subject to a singularity when three robots lie on the same line
connecting them. The 3PLL control is proposed to deal with this case. An algorithm

using VHRT and 3PLL control incorporated with a reactive control scheme then can be
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used to initialize and maintain a desired formation for a group of three mobile robots

without inter-robot collisions.

Extending the proposed algorithm for three mobile robots, a step-by step procedure is
proposed to initialise a formation for a group of N mobile robots. Under some
assumptions, the procedure ensures that a desired formation of multiple mobile robots

can be established from arbitrary robots’ positions without collisions among them.

Finally, using linearised models of robots around specific trajectories, an observed-
based decentralised approach is also proposed to establish and maintain a desired
formation in the condition of limited information exchanged among robots in the group.

This brings the capability of enlarging the size of the platoon of vehicles in practice.
Peer-reviewed publications resulted from this project include:
Conference papers

1. Ha, Q. P, Nguyen, A. D., and Trinh, H. "Simultaneous State and Input
Estimation with Application to a Two-Link Robotic System" Proc. The 5th
Asian Control Conference, Melbourne, Australia, pp. 322-328, 20-23 July, 2004.

2. Nguyen, A. D., Ha, Q. P, Huang, S., and Trinh, H.  "Observer-Based
Decentralized Approach to Robotic Formation Control" Proc. Australasian
Conference on Robotics and Automation, Canberra, Australia, pp. 1-8, 6-8

December, 2004.

3. Ngo, V. T., Nguyen, A. D, and Ha, Q. P. "Integration of planning and control
in robotic formations" Proc. Australasian Conference on Robotics and

Automation, Sydney, Australia, pp. 1-8, 5-7 December, 2005.

4. Ha, H. M., Nguyen, A. D, and Q.P. Ha, “Controlling formation of multiple
mobile robots with inter-robot collision avoidance” Proc. Australasian
Conference on Robotics and Automation, Sydney, Australia, pp. 1-8, 5-7
December, 2005.
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5. Ngo, V.T., Nguyen, A.D., and Ha, Q.P. “Toward a generic architecture for
robotic formations: planning and control” Proc. International Conference on
Intelligent Technologies, Phuket, Thailand, pp. 89-96, 14 -16 December, 2005
(Best Paper Award).

6. Nguyen, A. D., Ha, Q. P., and Nguyen, H. T. "Virtual Head Robot Tracking and
Three-Point 1-1 Control for Multiple Mobile Robots" Proc. IEEE Workshop on

Distributed Intelligent Systems, Prague, Czech Republic, pp. 73-78, 14-16 June,
2006.

7. Nguyen, A. D., Kwok, N. M., Ngo, V. T., and Ha, Q. P. "Collision-Free
Formations with Reactively-Controlled Virtual Head Robot Tracking" Proc.
IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing,
China, pp. 2509-2514, 9-15 October, 2006.

Journal papers

1. Nguyen, A. D., Ngo, V. T,, Ha, Q. P., and Dissanayake, G. “Robotic Formation:
Initialisation, Trajectory Planning, and Decentralised Control” International

Journal of Automation and Control (1JAC), accepted February 2006.

2. A.D. Nguyen, V.T. Ngo, N. M. Kwok and Q.P. Ha, “Formation Initialisation
using Virtual Head Robot Tracking and Three-Point /-/ Control,” International

Transactions on Systems Science and Applications (ITSSA), submitted August
2006.

A citation on our work can be found in [Lee et al., 2005].

1.6 Organisation of the thesis

A short description of the chapters following this introduction is given below.

Chapter 2: Robotic formation control: a short survey
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This chapter reviews models of mobile robots widely used for control analysis and
design and related work in the field of robotic formation. Through the review, existing

techniques are examined with their advantages and disadvantages.
Chapter 3: Virtual head robot tracking control

A new virtual head robot tracking control to establish a desired configuration between
two robots considering inter-robot collision avoidance is presented in this chapter. The

[ -y, separation-bearing, and virtual robot tracking control are described and

analysed. A new approach with the capability of establishing a desired configuration

without inter-robot collisions is validated by simulations with a group of two robots.
Chapter 4: Three point /-/ control for formation control

This chapter proposes a new three point [-1 control for collision avoidance in a group of
three mobile robots. The original /-/; separation-separation, and modified /-/ control
with their singularity are described. An algorithm, which combines VHRT and 3PLL
incorporated with a reactive control scheme, is also proposed to establish and maintain
formations of a group of three mobile robots taking into account the requirement of
collision avoidance among them. Simulations with a group of three mobile robots are

used to demonstrate the validity of the proposed approach.
Chapter 5: Formation initialisation for a group of N mobile robots

Chapter 5 proposes a step-by-step procedure to establish formations for a group of
mobile robots. Under some assumptions, the procedure ensures that a desired formation
of multiple mobile robots can be obtained without inter-robot collisions. The graph
concept is also used to model formations. Extensive simulations with five robots
validate the capability of establishing formations for a group of more than three robots

without collisions among them.
Chapter 6: Observer-based decentralized approach to robotic formation

To accommodate the restriction in information exchange, a new observer-based

decentralised control approach to robotic formation 1s proposed in this chapter. This



1. Introduction 12

method implements a global feedback controller for the robots in a formation using
linear functional observers. The proposed approach is tested through simulations and

experiments for the control of non-holonomic mobile robots.
Chapter 7: Thesis summary and conclusion

The final chapter of this thesis summarises the conclusions drawn from the research

reported here, as well as advancing a number of recommendations for future work.
Appendices

In the appendices, specifications of the testbed- Amigo Mobile Robot- are given. A
presentation of ARJA (Advanced Robotics Interface for Applications) C++ class, an
algorithm for Matlab-Simulink simulation and an organisation of the accompanying

CD-ROM for video clips are also included.
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Chapter 2

Robotic formation control: a short

survey

This chapter, reviewing the commonly-used models of mobile robots, summarises
control approaches in the literature available for analysis and design of robotic

formation.

2.1 Mobile robots and mathematical models

2.1.1 Mobile robots

Mobile robots simply refer to robots that can change their location through locomotion.
There are a number of different types of mobile robots. On the basis of application

domain, there are four main categories of mobile robots [Dudek and Jenkin, 2000]:

e Terrestrial: Robots that run or walk on the ground. They are designed to
operate on solid surface and take advantage of gravity. Terrestrial mobile robots
include wheeled, tracked, legged and some other kinds. Terrestrial robots are

also known as ground—contact robots.



2. Robotic formation control: a short survey 14

¢ Aquatic: Robots that operate in water or at water surface. Most aquatic robots
use water jets or propellers to move around. Aquatic robots are important in
various applications, especially in the ocean, as there are many resources in the

ocean waiting to be exploited.

e Airborne: Robots that mimic existing aircraft or birds, for instance, robotic
helicopters, controlled parachutes, fixed-wing aircraft. The issue of maintaining

enough energy to remain stationary is of importance with flying robots.

e Spatial: Space robots, as their name suggests, are designed to operate in outer
space. Two main classes of space robots are climbing robots and those that can

self-propel.

One issue that sets mobile robotics aside from other research areas such as manipulator
robotics, artificial intelligence or computer vision is the problem associated with the
understanding of large-scale space, or the working region that is larger than what can be
observed from any certain point. To deal with this problem implies dealing with
incremental acquisition of information, estimation of positional error, real-time
response. It is important that these functionalities are synchronized in a global manner,
in order to perform fundamental tasks of mobile robots, including moving through,

sensing about and reasoning about the working environment.

Mobile robots are well suited for tasks that exhibit one or more of the following

characteristics:
e Hostility: a task involving an inhospitable environment for human beings.

e Inaccessibility: a task involving a remote environment into which sending a
human operator would be too difficult or would take too long or an environment

inaccessible to humans such as microscopic environments.

e Human unsuitability: a task with high duty cycle or high fatigue factor, or a task

that is highly disagreeable to a human.
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Based on their locomotion mechanics, mobile robots can be classified into two main
groups: legged and wheeled [Siegwart and Nourbakhsh, 2004]. The wheel has been by
far the most popular locomotion mechanism in mobile robotics and in man-made
vehicles in general. Wheeled robots are mechanically simple, easy to construct, and
have a favourable weight-to-mechanism ratio. In addition, they are simpler to control,
pose fewer stability problems, use less energy per unit distance of motion, and can
travel with significant speed. Wheeled mobile robots, as in the majority of robotic

formation research, are concerned in this thesis.
2.1.2 Mathematical models of mobile robots

Mathematic models lie at the foundation of any science: physics, finance, electronics,
chemistry, and so on. They allow us to make an abstraction of a real world system and
use this abstraction to understand the system. The benefits of a model depend on two
factors: how well the model predicts the real world and how simple the model is. The

simpler, or less complicated, the better, and the more accurate, the better.

As some properties can be proven only in the context of a mathematical model, i.e.
given a set of assumptions some specific set of conclusions can be drawn, the
applicability of these conclusions to the real world is then depending on the accuracy of

the used mathematical model and the validity of the assumptions.

Some of the most common mathematical models of mobile robots will be presented in

the rest of this section.
Kinematic (first order) model
This simplest model describes a point-like robot moving around in the plane:

X =up,
. 2.1)
y:llz,

or zZ=u,
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where z,ueR?, z= (x,y)Tis the position and u = (u],uz)T is the input of the robot.
This model 1s called kinematic or first order as there is a maximum of one integration
from input to state. In many real configurations, the velocity is limited with an input

bound Hu” < Upax-

This model is simple but the main drawback is that it allows instantaneous velocity
changes; and hence it does not accurately describe inertial vehicles, particularly those

with a low power to weight ratio.
Dynamic (second order) model

The obvious fix of the “instant velocity changes” problem is to incorporate inertia into

the model. This corresponds to

x:VI,

y:v2>
v =u/m,

(2.2)

\./2 :Hz/m,
or Z=ul/m,

where m 1s the mass, z :(x,y)T e R? is the position, u =(ul,uz)T e R? is the input

(force) and (v ,vz)T e R? is the velocity. The one above is also referred to as a double
integrator in the plane, since the mapping from input to position involves integrating

the input twice. Here it is also natural to bound the input force | < u .

Taking into account normalisation given in the new input w’ =u/m one can obtain

7 =y with an input bound [ji/}| < tax-

This model was usually used for many types of robot, for example omni-directional
robots, i.e. robots can freely and equally well move in all directions from the standing-

still position. One of such real robot is the Nomadic XR4000 depicted in Figure 2.1.
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Figure 2.1: Nomadic XR4000 omni-directional mobile robot.
(Source: Global Dynamic Windows Approach Research
http://ai.stanford edu/~oli/gdw html, accessed May, 2006)

Models for the unicycle

The unicycle configuration is simple, therefore more common. [t is the wheel geometry
with two large independently actuated fixed wheels and one small free moving castor
wheel to keep the balance as can be seen with Pioneer Robot in Figure 2.2 with its

model schematically depicted in Figure 2.3.

Figure 2.2: ActivMedia’s Pioneer Robot P3-DX
(Source: ActiveMedia Robotics

http://www.activrobots.com/ROBOTS/p2dx.html, accessed May, 2006)
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Figure 2.3: The unicycle model.
Unicycle kinematic model

The kinematic model for the unicycle is described as [Canudas de Wit ez al., 1996]

X =vcosd,
y=vsind, (2.3)
0=w,

where z:(x,y)T is the centre point on the wheel axis, & € R is the orientation and

input v,w are the translational and angular velocities respectively.

This model describes many indoor robots as well as outdoor caterpillar-type and skid-
to-turn vehicles, but for outdoor vehicles, the errors are bigger since the centre of
rotation depends on the uncertain wheel-to-ground friction. It can also be used as a
coarse model of an aeroplane if one adds bounds on angular velocity w as well as a
lower positive bound on translational velocity v. This renders a speed dependent
minimal turning radius and is used to model unmanned aerial vehicles (UAVs) in

[Beard et al., 2002].

Throughout this thesis, this model is used with assumptions that robots satisfy pure-

rolling and non-slipping conditions, which lead to non-holonomic velocity constraints:

non-slipping xsinf—ycosf =0, (2.4)
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pure-rolling xcosd+ ysind=v. (2.5)

This model is also called as Knife edge model since the behaviour of a mobile robot is
similar to that of a thin knife. Some modifications of this model are Roller unicycle

model and Differential drive model.
Roller unicycle model

This 1s a modification to the knife edge model that adds the rolling angle ¢ of the wheel

as an additional degree of freedom. However, since the system can instantaneously
possess only two degrees of freedom, there are two velocity level constraints, which can

be represented as

xsinf —ycosd =0,
. - : (2.6)
xcosd+ ysinf—r, ¢ =0,

where r,, is the radius of the wheel. The first equation ensures that no sideways motion

of the unicycle will exist while the second equation ensures that the unicycle will roll

without slipping.

The model then can be described as

X =vcosd,

y=vsiné,

f=w @D
d=vir,.

Differential drive model

“Differential drive” refers the actuation of a mobile robot, which uses two
independently driven wheels to manoeuvre in a plane like the movement of a
conventional wheelchair. This model is an extension from the single knife edge model.
The state variables are still [x, y, 8] but the inputs are the left wheel rotational velocity

o, , and right wheel rotational velocity @,. The relationship between (@), ®,) and

(v,w) 1s
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W)+
v=—t 2,

wo
2 (2.8)
Wy — @
w = Fros
2b
where b is the half distance between the two wheels.
The model then can be described as
1
X = Erw cos 8w, + w, ),
R .
y:ErW sin 6’((01 +a)2), (2.9)
.
Unicycle dynamic model
Adding two more states to satisfy Newton’s law, the above kinematic model yields
X =vcosd,
y=vsind,
0=w, (2.10)
v=F/m,
w=r1lJ,

where z = (x,y)" is the position, & € R is the orientation, v, @ is the translational and

angular velocities, respectively, and the inputs are F'/m and r/J, in which F is the

force, 7 is the torque, m is the mass, and J is the moment of inertia of the robot.

Car-like vehicle model

A car-like mobile robot, for example Pioneer P3-AT in Figure 2.4, can be modelled

schematically in Figure 2.5



2. Robotic formation control: a short survey 21

Figure 2.4: ActivMedia’s Pioneer Robot P3-AT
(Source: ActiveMedia Robotics
http://www.activrobots.com/ROBOTS/p2at.html, accessed May, 2006)

Figure 2.5: The car-type vehicle model

The back axis configuration resembles a unicycle and thus the (x,y)r equations are

similar to (2.3). To understand the rotation control we assume the vehicle is moving

under a constant steering angle ¢,,. This makes the point (x,y)T trace out a circle with

. S . . v v v
radius p , which in turn gives the angular velocity as = —=——=—tang,,.
p Lp L
This gives the following equations:
X =vcosd,
y=vsind, (2.11)
. viang,



2. Robotic formation control: a short survey 22

There is a hardware bound on the steering angle, ¢, € [~5,,b,]. The appearance of v

in all three equations excludes the possibility to turn on the spot as the unicycle.
Newtonian dynamics can of course be incorporated in this model as well but it is rarely

used in robotic research.

2.2 Control techniques for robotic formation

The robotic formation studies can be broadly classified into two groups [Erkin er al.,
2003]. The first group includes cases where the coordination is done by a centralised
unit that supervises the whole group and commands the individual robots [Belta and
Kumar, 2002; Egerstedt and Hu, 2001; Koo and Shahruz, 2001; Kowalczyk, 2002].
Assumptions about the existence of a central unit with a communication channel
between it and individual robots make the centralised pattern formation strategies more
costly, less robust to failures, and less scalable to the control of a large number of
robots.  Studies in the second group use distributed methods for achieving the
coordination. This is the case when each control agent acts on the basic of local
information and decisions [Carpin and Parker, 2002; Lawton ef al., 2003; Yamaguchi e?

al., 2001].

While there are different approaches to the robotic formation control problem, the
common theme remains the global coordination of multi agents to accomplish
intelligently and/or autonomously some task objectives. Main design methods for
distributed formation control under different scenarios can be grouped into four
categories: behaviour-based and potential field, leader-follower, virtual structure, and

other control strategies [Chen and Wang, 2005].
2.2.1 Behaviour-based and potential field approaches

Behaviour-based approach and potential field approach are usually combined in the

application of formation control.

Suzuki and his colleagues developed a number of distributed formation algorithms

[Sugihara and Suzuki, 1990; Sugihara and Suzuki, 1996; Suzuki and Yamashita, 1994].
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In particular, they developed algorithms for multiple distributed mobile robots to form
circles, simple polygons, and line segments; to uniformly distribute robots within a
circle or a convex polygon; and to divide them into groups. Their research used models
of idealised robots, which are represented by points, able to move in any direction, and
equipped with range sensors that can determine the position of all other robots. The
basic idea of their algorithms is to let each robot execute a simple algorithm iteratively
and generate 1ts new location adaptively at each iteration, based on a given goal and the

positions of other robots.

In [Yun et al., 1997] the behavioural approach is used to modify existing algorithms and
propose some new algorithms for creating line and circle formations of a group of
robots that are subject to physical constraints. The authors used Robot Simulator from
Nomadic Technologies, Inc. Robots in Simulator realistically simulate the motion
behaviour and sensor system of Nomas 200 mobile robots, which have a synchronous
drive mechanism that enables them to translate, steer, and rotate (its turret)
independently. The robot’s sensor systems include tactile (bumper) sensors, infrared
sensors, ultrasonic sensors, and laser sensors. Motion control and collision avoidance in
the study are achieved by implementing a potential field algorithm. To each robot of
concern, the presence of other robots generates a repulsive force that keeps them apart,
and the goal position produces an attractive force. The proposed algorithms not only
achieve the goal of forming a line or a circle; they also uniformly distribute robots on a
line segment or a circle. Because the workspace is assumed to be obstacle-free, the
shape of robots is circular, and the goal position changes as other robots move, the local

minimum problem of the potential field method is rarely encountered in the simulation.

These ideas are extended in [Chen and Luh, 1994] to the problem of controlling a
formation of mobile robots to transport objects. Once the robots have formed a
desirable pattern in accordance with the object they are to transport, a control method is
needed to coordinate the robots to maintain their geometric pattern while moving
toward a given goal location, which is specified by some human operator. A “leader-
following” coordination strategy was proposed. First, a suitable robot in the group is
selected as the group leader. Once the leader is selected, the rest of the robots are

considered as followers. During the course of transporting the object to its goal
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location, the leader computes its next position at a given time interval, based on its
relative position in the group and its knowledge about the goal location and orientation
of the object. The leader broadcasts its anticipated position to the followers before it
actually makes the move. Upon receiving the information regarding the leader’s new
position, the followers compute their corresponding new positions independently. They
generate their motion plans by enforcing constraint satisfaction (object’s orientation
remains unchanged or changes as specified). The leader and followers proceed to their

new locations after all the followers have completed their computations.

The behavioural approach 1s applied to the problem of maintaining a constellation of
satellites in an equally distributed ring formation in earth orbit [Mclnnes, 1995]. Simple
Lyapunov control functions are used to maintain distances and avoid collisions. The
method uses information of the inter-satellite spacing to generate low-thrust radial and
transverse control accelerations. Using the concept of potential functions, the uniform
ring is seen as a minimum energy configuration of the system. The control
accelerations ensure that the potential function of the entire system monotonically
decreases so that this minimum energy configuration 1s achieved from any initial
configuration. The application of the behavioural approach to aircraft flying in
formation is described in [Anderson and Robbins, 1998], where the control strategies
are derived to mimic the instinctive behaviour of birds and fish. The aircraft in the
formation are allowed to manoeuvre individually. However, the manoeuvre chosen by
each aeroplane stems from basic flocking instincts such as collision avoidance, obstacle

avoidance, and formation-keeping.

In [Balch and Arkin, 1998] each robot has basic motor schemas. Each schema
generates a vector representing the desired behaviour response to sensory input.
Possible motor schemas include collision avoidance, obstacle avoidance, goal seeking,
and formation keeping. The control action of each robot is a vector weighted average of
the control for each motor schema behaviour. Unit-centre tracking, leader tracking and
nearest neighbour tracking controls are also studied. Since competing behaviours are

averaged, occasionally strange and unpredicted behaviours may occur.

In [Cao et al., 2003] five primitive behaviours (move-to-goal, keep-formation, avoid-

obstacle, avoid-robot, and random) with a motion prediction model of moving obstacles
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are adopted. Parabola prediction model is used to predict the positions of moving
obstacles and its parameters are estimated by the recurrence least square algorithm with
restricted scale in case of datum saturation. The authors also designed a series of
generation functions to generate control parameters for behaviours' combination.
Relying on that, the adaptability of robots’ motion to the environment is improved. In
another work, Cao ef al. (2002) used Genetic Algorithm, which is widely known as
global optimization technique, to decide the control weights and choose the appropriate

behaviour for formation maintenance and obstacle avoidance.

In [Monteiro and Bicho, 2002], the behaviour-based formation control is modelled into
a non-linear dynamic system for trajectory generation and obstacle avoidance for a team
of three autonomous robots. In this approach, the level of modelling is at the level of
behaviours. A “dynamics” of behaviour is defined over a state space of behavioural
variables. The environment is also modelled in these terms by representing task
constraints as attractors (i.e. asymptotically stable states), or repellers (i.e. unstable
states) of behavioural dynamics. For each robot, attractors and repellers are combined
into a vector field that governs the behaviour. Simulation results show that the
generated trajectories are smooth. Flexibility is achieved in that as the sensed world
changes, the systems may change their planning solutions continuously but also

discontinuously (tunning the triangle formation versus split to avoid obstacles).

Fredslund and Mataric (2002) used local information to establish and maintain
formations of a group of mobile robots. Each robot in the group has a unique ID and a
designated friend robot, which it can see through a “friend sensor”. For that purpose,
each robot has a coloured cylinder on its structure so that other robots can recognise it.
In addition, a laser range finder is used to infer distance between robots. There is a
minimal communication between robots: heartbeat signals (i.e. robot broadcast their
IDs), swerve signals (changing direction to avoid obstacle), and formation messages.
Each robot can learn the number of robots in formation and the type of formation using
broadcast messages. In addition, for each formation, each robot has a locally calculated
angle, which determines the angle it should keep between its front direction and the
direction of its friend. This study accomplishes the task of forming and maintaining

formations using only local information and minimal communication. The possible
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formations however are limited to chain-shaped ones and cannot make a backward
curve. Switching formation is possible, but may require intermediate repositioning
depending on the formation to switch to. Also, if the robots in the group are initially in
a random position, the time required to initialise the formation shape may not to be

optimal.

Dudenhoeffer and Jones (2000) described a flexible architecture for modelling
thousands of autonomous agents simultaneously. Using this simulation tool, the
problem of hazardous material detection by thousands of micro-robots scattered around
a region is tackled. The agents’ behaviour is based on a subsumption architecture in
which individual behaviours are prioritized with respect to all others. The primary
behaviour explored in this work is a group formation behaviour based on social
potential fields [Reif and Wang, 1999]. Robots are desired to stay at specific distances
from others to obtain optimum coverage of the area. They are also required to wander
in this formation to scarch other parts. In this research, the social potential field method
is extended and evaluated in the presence of agent failure and imperfect sensory input.

The method uses only local information and is scalable to very large groups of robots.

In [Ge et al., 2004], the desired formation pattern and trajectory for the robot group are
presented by artificial potential tranches. First, formations are defined using the concept
of queues instead of nodes. This supports a large variety of different formations and
allows for the automatic scaling of formations according to changes in the overall size
of the robot team. A decentralised redistribution algorithm is used, which enables the
robots to redistribute themselves dynamically and efficiently amongst queues. Each
robot uses information gathered from the broadcast channel and the robot’s local
sensors. Artificial Potential Trenches, each associate with a queue, are then used. Each
robot will be attracted and move along the bottom of the “valley” created by the
potential field; and robots automatically distributed themselves along the trench. This
method addresses the issues of scalability, flexibility and stability, which are required
for the formation control of a large team of networked homogeneous robots with
explicit communication capabilities. In addition, the obstacle avoidance behaviour

considers the relative position and velocity, thus taking into account the presence of
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moving obstacles. Local minima problems due to deep crevices of obstacles and dead

end of narrow paths, are solved by the application of the instant goal method.

In [Yamaguchi and Arai, 1994] a distributed and autonomous control method called
Linear Autonomous System (LAS) is proposed for generating a shape of a group that
consists of multiple mobile robots. In this method, a decision of shape of the group is
attributed to designing a potential field that is spread on a space of relative distances
between mobile robots. With the potential filed, controllability of group shape can be
defined. Because each robot has parameters for designing the spread potential field, a
shape of the group can be adapted to various situations by means of changing the
parameters with respect to state of environment, for example, the position of a wall, a

velocity of an obstacle and so on.

Balch and Hybinette (2000a, 2000b) proposed a potential approach for robot formation
that is inspired from the way molecules form crystals. In this study, each robot has
several local attachment sites that other robots may be attracted to. This concept is

similar to molecular covalent bonding. Possible attachment site geometries include

shapes resembling ‘X’,”|’, or + where the robot is the centre of the shape and the
attachment sites are the ends of the line segments. Various robot formation shapes
result from usage of different attachment site geometries just as different crystal shapes
emerge from various covalent bond geometries. When a team of robots moving in a
formation, they avoid an obstacle by splitting around the obstacle and rejoining after
passing it. This approach is scalable to large robot teams since global communication is
not used and that local sensing is sufficient to generate effective formation behaviours

in large robot teams.

The analysis of the above research papers shows the advantages and disadvantages of
behaviour-based and potential field approaches. Their advantage rests in that it is
naturally intuitive to derive control strategies when agents have multiple competing
objectives. In addition, there exists an explicit feedback to the formation since each
agent reacts according to the position of its neighbours. Another advantage is that the
behavioural approach is naturally implemented in a decentralised manner. The primary
disadvantage is that group behaviours cannot be explicitly defined, rather a group

behaviour is said to “emerge”. Another weakness is that behavioural approaches are
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difficult to analyse mathematically and characteristics of formation (like stability)

cannot generally be guaranteed.
2.2.2 Leader-follower approaches

In leader-follower approaches, one or more agents are designated as leaders, with the
rest of the control agents designated as followers. The basic idea is that the followers
track the position and orientation of the leaders with some prescribed (possibly time-

varying) offsets.

One of the first studies on leader-following strategies is the work of Wang (1991) which
discusses formation control laws for mobile robots. In this study, each robot is
represented by a particle with a spherical effective spatial domain and a specified cone
of visibility. The global motion of each robot in the world space is described by the
equations of motion of the robot’s centre of mass. First, methods for formation
generation are discussed.  Then, simple navigation strategies (nearest-neighbour
tracking, multi-neighbour tracking, inertially referenced movements, and mixed nearest-
neighbour tracking and 1nertially referenced movements) for robots moving in
formation are derived. These strategies have features similar to those used by human in
steering land vehicles and aircrafts in formations. A sufficient condition is obtained for
the stability of the formation pattern for a fleet of robots, each equipped with a
particular type of navigation strategy. Simulation results show that the strategies based
on nearest-neighbour tracking are effective when inter-robot communication and
complete visibility of the neighbouring robot are maintained at all times. However,
collision-avoidance strategies have not been incorporated with the strategies for moving

in formations derived in the research.

The application of these ideas to spacecraft formations is described in [Wang and
Hadaegh, 1996], where explicit control laws for formation keeping and relative attitude
alignment based on nearest neighbour tracking are derived. Each microspacecraft is
modelled by a rigid body with fixed centre of mass. Several leader-following
techniques are discussed including leader tracking, nearest neighbour tracking,
barycenter tracking, and other free topologies. The necessary data, which must be

communicated between microspacecraft to achieve the effective control, are also
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examined. The paper concludes with a discussion of the implementation of the derived
control laws, and the integration of the microspacecraft formation coordination and

control system with a proposed inter-spacecraft communication/computing network.

In [Wang et al., 1999], these ideas are extended to account for actuator saturation and
are applied to the problem of controlling the formation to execute a continuous
rotational slew. Using a particle model for spacecraft formation dynamics and a rigid-
body model for spacecraft attitude dynamics, control laws are derived for rotating the
entire formation about a given axis and synchronising individual spacecraft rotation
with formation rotation in the absence of a gravitational field and disturbances. A
simplified control law suitable for implementation is also obtained. This shows that
under mild conditions the formation alignment error decays to zero exponentially with
time. In [Hadaegh ef al., 1998], adaptive control laws are added to the control derived

in [Wang and Hadaegh, 1996] in order to reject common space disturbances.

Spacecraft control using the leader-following concept is reported in [De Queiroz ef al.,
2000] for keeping satellite formation in earth orbit. Idealised scenario, where the
spacecraft actuators are capable of providing continuos-time control efforts, as opposed
to being of pulse-type, is considered. Specifically, the full nonlinear dynamics
describing the relative positioning of multiple spacecraft formation flying is used to
develop a Lyapunov-based, nonlinear, adaptive control law that guarantees global
asymptotic convergence of the position tracking error in the presence of unknown,
constant, or slow-varying spacecraft masses, disturbance forces, and gravity forces. In
the case when the parameters are exactly known, the proposed control strategy yields

global exponential convergence of the tracking errors.

In [Sugar and Kumar, 1998], the leader-follower strategy is used to control a group of
mobile robot to cooperatively move a box. First, the experimental prototype of a
mobile manipulator that consists of off-the-self mobile platforms equipped with a novel,
three degree-of-freedom parallel manipulator is described. Then in this proposed
architecture for coordinated control of multiple mobile platforms, a lead robot plans,
based on available sensory information, and follows a suitable trajectory. The other

robots follow a desired formation with respect to the leader while maintaining a stable
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grasp. The wireless network required for communication and rapid prototyping of real-

time control code is also presented.

Feedback linearization techniques are used in [Desai, 2001; Desai, 2002; Desai et al.,
1998; Desai et al., 2001] to derive tracking control laws for non-holonomic robots in a

formation that is described as a directed graph. The authors presented the terms /—y

and /—/ control to reflect whether the control laws are based on tracking the position
and orientation of the robot relative to a leader, or the positions relative to two leaders,

respectively. The shape of the formation is changed as graph structures are changed.

Three controllers, namely separation-bearing, separation-separation, and separation
distance-to-obstacle , in which first two are adopted from [Desai et al., 1998], are used
in [Fierro et al., 2001; Fierro ef al., 2002] to allow robots to control their positions and
orientations with respect to neighbouring robots or obstacles in the environment. The
authors also outlined a coordination protocol for automatically switching between
control laws to maintain a specific formation. Two simple trajectory generators, which
are derived from potential field theory, are proposed. The first allows each robot to plan
its reference trajectory based on the information available to 1t. The second scheme
requires sharing of information and enables a rigid group formation. The ideas are
extended in [Das ef al., 2002] with estimators that abstract the sensory information at
different levels, enabling both decentralised and centralised cooperative controls. The
approach is vision-based with each robot identified by a colour using omnidirectional
cameras. Because the formation, its leader and the allowed switch between formations
must be predetermined, the approach cannot be optimal depending if the environments
are known or not, or if it is possible or not to initialise the positions of the robots in a

good configuration for the desired formation.

In [Takahashi ef al., 2004] the concept of performance index that shows mobile robot
ability is presented. Specifically, maximum acceleration and maximum velocity of a
robot are defined by maximum admissible rotation and maximum continuous torque of
a motor. The performance index is quantified from arrival time on the destination using

the parameters. Based on that, new /—¢, /—/ controllers are suggested along with a

compliance controller using a virtual repulsion to avoid robots colliding with each other.
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A real-time system of multiple mobile robots with RT-Messenger is used as a platform
for simulations and experiments. RT-Messenger allows robots to transmit information

regarding their positions to each other in real time.

Yamaguchi and Burdick (1998) introduced a smooth time-varying feedback control law
to form group formations for multiple Hilare-type mobile robots. To control the
formation, each robot has its own coordinate system and it controls its relative positions
to its neighbouring robots. Particularly, it has a vector called “a formation vector”, and
the formation is controllable by the vectors. Its asymptotic stability is guaranteed in

mathematical framework, averaging theory.

A leader—follower approach applied in intelligent highways is addressed in
[Sheikholeslam and Desoer, 1992]. The overall system consists of N vehicles (the
platoon) where each vehicle is driven by the same input u and the state of the kth
vehicle affects the dynamics of the (k+7)th vehicle. Furthermore, the dynamics of each
vehicle is affected by its (local) state—feedback controller. This work proves that under
some general qualitative conditions on the dynamics of vehicle models, decentralised
controllers can achieve the design goals of the platoon concept: multiple vehicles

travelling down the highway at high speed and maintaining tight formations.

The investigation on the stability properties of mobile agent formations which are based
on leader following is presented in [Tanner et al., 2004]. The authors derived nonlinear
gain estimates that capture how leader behaviour affects the interconnection errors
observed in the formation. Leader-to-formation stability (LFS) can be used to gain
quantify error amplification, relate interconnection topology to stability and
performance, and offer safety bounds for different formation topologies. The notion is
based on input-to-state stability and its invariance properties under cascading. The
intuitive fact that performance deteriorates as the graph that represents the formation

interconnections increases in diameter, can now be formally justified.

The strength of leader-follower approaches is that group behaviour is directed by
specifying the behaviour of the leaders. The weakness, however, is that there is no
explicit feedback to the formation. In some cases, for example, the leader may be

moving too fast for the follower to track. Another weakness is that the leader is a single
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point of failure for the formation. The formation convergence depends on each follower
knowing the position, velocity and sometimes even acceleration of the leader. If this
information is not available, then no convergence can be guaranteed. This implies that a
large communication burden is usually necessary for leader-follower approaches. In
addition, due to communication latency and communication delays each robot will have
to figure out what the leader is doing with old information that it receives only every

couple of seconds.
2.2.3 Virtual structure approaches

The concept of virtual structure was firstly introduced in [Lewis and Tan, 1997; Tan and
Lewis, 1996]. The entire formation is treated globally as a single structure or so-called
virtual structure. If the desired dynamics of the virtual structure can be translated into
the desired motion of each robot then one can design local controllers to achieve global
performance. This approach is illustrated in Figure 2.6 with four stpes. In step | of the
figure, the robots are situated in a triangular virtual structure. A virtual force field
moves the structure (step 2), and then the robots compute trajactories and reposition
themselves with respect to the structure (step 3 and 4). The flow of control is actually
bidirectional: movement of the virtual structure causes the robots to reposition

themselves; movement of the robots can cause the virtual structure to reposition.

hioile
robois
. O~ O
| ~N | ~ N | N N
I Vi r} i N I N
| Sln:t(;;hw@ | O s | Q—»
/ Ve s
| P e | P e | P e
| |
G O O
Step 1 Step 2 Step 3 &4

Figure 2.6: Steps in the virtual structure control algorithm

The application of virtual structure techniques to formations of spacecraft in free space
is described in [Beard, 1998; Beard and Hadaegh, 1998]. The basic architecture used in

their research approaches is that of a constellation template, i.e. a virtual rigid body,
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with an inertial position and orientation that specifies the desired position and attitude of
each spacecraft within the constellation. Some algorithms are derived for four basic
constellation  manoeuvres: reorientation, rotation, expansion/contraction and
initialisation. A constellation reorientation manoeuvre requires the entire constellation
to change orientation while the individual spacecraft in the constellation maintain their
relative positions and orientations with respect to each other. A constellation rotation
manoeuvre is similar to a reorientation manoeuvre, except the constellation is rotated at
a constant rate about an axis in the constellation. A constellation expansion or
contraction manoeuvre requires the volume of the convex hull of the spacecraft to
uniformly increase over some time interval. Constellation initialisation is requiired
after lauch of the spacecraft. The difficulty with initialisation is that the spacecraft may
have a limited inter-spacecraft sensing and communication ability before they form into

the desired constellation.

The virtual approach can be implemented as a leader-follower control. We can treat the
N robots in the formation as followers and then designate one “virtual” robot as a
leader. If one chooses the dynamics of the virtual robot to evolve as a second order
system, the way that formation envolves can be chosen over time by appropriate picking

the system parameters of the virtual leader.

The coordination architecture that combines a virtual structure method with leader-
follower method and behaviour-based approach to formation control of multiple
spacecraft interferometer in deep space is presented in [Beard er al., 2001]. In this
study, to achieve global coordination, knowledge of the virtual structure states is shared
between each agent through dynamic coordination variables. Note that these variables
are similar to the action reference notion introduced in [Kang et al., 2000] or the
platoon-level functions given in [Stilwell, 2002]. This reserach demostrates the
application of the proposed architecture to the problem of synthesizing a deep-space,
free-flying, multiple sapcecraft interferometer. A constellation of three spacecraft will
firts be initialised into a formation. The formation will then be retargeted to point at a
star. Next, the formation will be controlled to cover several U-V interferometer points.

A high-precision station keeping manoeuvre is then perfomed at each U-V point.
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A similar idea is applied in [Ren and Beard, 2004]), where, decentralised formation
control strategies are introduced, which are appropriate when a large number of
spacecraft are involved and/or stringent inter-spacecraft communication limitations are
exerted. Each spacecraft in the formation instantiates a local copy of the formation
control, i.e. the coordination vector, and the local instantiation of the coordination
vector in each spacecraft, which represents the states of the virtual structure, is
synchronized by infrequent communication with its neighbours following a

bidirectional ring topology.

The strength of the virtual is that it is fairly easy to prescribe a coordinated behaviour
for the group. Futhermore, feedback to the virtual structure is naturally defined. The
disadvantage is that requiring the formation to act as a virtual structure limits the class
of potential applications of this approach. Another weakness is that the virtual structure
approach 1s naturally implemented in a centralised manner. This increases the

communication burden to a higher order beyond that of the leader-follower approach.
2.2.4 Other control strategies

Generalised coordinates

In (Spry and Hedrick, 2004], a control methodology based on generalized coordinates is
presented. These coordinates characterise the vehicle’s location (L), orientation (O) and
its shape (S) with respect to a formation reference point in the formation. The location
of the formation is defined as the location of a formation reference point (RFP). The
orientation of the formation is defined as the orientation of a formation reference frame
(FRP). The shape of the formation is defined as its configuration relative to the FRP.
The trajectories of the formation group can be specified in terms of L, O and S
coordinates. Both force-based and velocity-based controls then are developed for
asymptotic tracking of trajectories while maintaining a desired formation geometry. A
similar idea is presented in [Yamakita and Saito, 2004], where a control method for
formation control of child robots in a multiple mobile robot system called Super
Mechano Colony (consists of a single mother ship and multiple mobile robots that have
a parent-children relationship) is proposed using multiple coordinate systems, i.e.

physical coordinate system and shape coordinate system. Decentralised control in a
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physical coordinate system and centralised control in a shape coordinate system are
introduced and the combined control is proposed. The properties of the combined

control method are shown by numerical simulations and experiments.

In [Zhang et al., 2003] formations that contain a small number of robots are modelled as
controlled Lagrangian systems on Jacobi shape space. This allows a block-structured
control of position, orientation and shape of the formation. Feedback control laws are
derived using control Lyapunov functions. The controlled dynamics converges to the
invariant set where desired shape is achieved. Controllers are implemented in a layered
fashion via the extended motion description language (MDLe) system. Group MDLe

plans are constructed to allow structured controller design for formations.
Nonlinear servomechanism

Gazi (2003) showed that under some assumptions on the trajectories to be tracked by
the formation and the local formation dynamics, the problem of agents moving in a
formation can be approached in the framework of nonlinear output regulation
(servomechanism). The author considers a generic model for an agent with general
nonlinear dynamics. The agents are required to follow a virtual leader, determined by a
set of tracking constraints, and to keep a required formation, determined by a set of
formation constraints. The limitation of the framework is that the dynamics of the
virtual leader are required to be generated by a neutrally stable autonomous system.
Nevertheless, the class of reference trajectories that could be tracked is still large
enough and with practical interest (such as the trajectories of clusters of orbiting

satellites).
Genetic Algorithm and Reinforcement Learning

A switching algorithm between GA (Genetic Algorithm) based formation control and
RL (Reinforcement Learning) based obstacle avoidance is proposed for re-establishing
the formation of a multi-robot system in an environment with obstacles [Kobayashi et
al., 2003]. Each robot acquires its control rule for establishing the formation according
to neighbouring robots by GA and the action policies for avoiding obstacles by RL.

Then, each robot can switch between the formation control and obstacle avoidance
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according to own sensing information. The proposed method is evaluated in

simulations.
Model Predictive Control

In [Yan and Bitmead, 2003] Model Predictive Control (MPC) is used as a localised
control law to connect the overall formation control performance and the inter-vehicle
communication quality. The inaccurate inter-vehicle communication is modelled as
white noise. The working problem 1s a simple 1-D vehicle formation with noisy
channels. The measure of information quality is the covariance of the state estimates.
The interaction of the information quality in terms of estimate covariances with the
formation performance is investigated under this framework. The modified version of
MPC controller can incorporate the information quality into the control law and keep
the same framework while investigating different information structures with different

quality.
Geometric and dynamic tasks

In [Skjetne et al., 2002], for the control of a group marine-craft, the formation
maintenance and the trajectory tracking problem are decomposed into a geometric task
and a dynamic task. The geometric task ensures that the individual ship converges to
the position in the formation while the dynamic task will make sure that the ships travel
along the trajectory with the desired speed. The formation control problem is solved by
introducing a formation reference point (FRP) and designating each vessel a relative
position to that point. Using the manoeuvring design, the geometric and the dynamic
tasks ensure that the FRP converges to and follows a desired path £(&) with a specified
speed, where @ is the path parametrization variable. The desired motion of the FRP 1s
based on the states of all the vessels in the formation. The drawback here is the
centralised update law for & which needs full state information from all vessels in the
formation. Hence, for r vessels, each with » states, the number of communicated
signals is #n+1. In order to reduce the signal flow, the formation control problem was
solved as a decentralised scheme in [Skjetne ef al., 2003] by solving an individual

manoeuvring problem for each vessel with an individual path variable 8. Then, by
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synchronizing all the 8;, i=1.2,... the formation, represented by the FRP, will move
along the path & with the desired speed. Similar idea can be found in [Lee and Li,

2003] where a decomposition of the dynamics of multiple spacecraft includes two parts:
an average system which represents the overall motion of the group and a shape system
which governs the group formation structure. In addition, the decomposition has the
property that the sum of the energies of the average and the shape system equals the
energy of the original system. Thus, by designing suitable control laws for the average
and the shape system respectively, desired group manoeuvre and internal formation are

achieved.
Vision-based Follow-the-Leader

In [Cowan et al., 2003], the leader-follower approach is used for formation while the
navigation function is used for collision avoidance for the formation. The authors
derived the equations of motion of the leader in the image plane of the follower and
proposed two control schemes for the follower, which are either, string, leader-to-
formation, or locally stable depending on the sensing capabilities of the followers. The
first one is based on feedback linearization. The second one assumes a kinematic model
for the evolution of the leader velocities and combines a Luenberger observer with a

linear control law.
Fuzzy logic and neural network

Hong ef al. (2001) proposed an architecture of fuzzy system for each robot speed
control and fuzzy-neuro system for obstacle avoidance in a formation. The controller
adopts a simple reactive navigation strategy by combining repulsion from obstacles with
attraction to a goal. Robots can maintain formation with respect to unit-centre.
Simulation results show that the proposed strategy is effective for multi-robot to avoid

obstacles while maintaining a formation.
Visual servoing

In [Cowan ef al., 2003; Tan and Lewis, 1996; Vidal er al., 2003], the visual servoing

problem is considered for the application of formation conirol. Tan and Lewis (1996)
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used a vision-based tracking system (called V-GPS: Vision-based Global Positioning
System) to monitoring the position of each robot. Vidal er al. (2003) considered a
formation control scenario in which motion segmentation techniques enable each
follower to estimate the image-plane position and velocity of the other robots in the
formation, subsequently used for omnidirectional image-based visual servoing. Cowan
et al. (2003) considered non-holonomic robots equipped with central panoramic
cameras, assume a desired formation in the image plane and use omnidirectional visual
servoing for tracking. Moreover, flocking of mobile agents is investigated in [Tanner
et al., 2003a; Tanner ef al.,, 2003b], which consider the stability properties of a system
of multiple mobile agents with double integrator dynamics. In one paper, the topology
of the control interconnections between the agents in the group is fixed and time
invariant. Each agent regulates its position and orientation based on a fixed set of
“neighbour”. The other paper considers the topology that varies with time, 1.¢. the set of
neighbours may change in time, depending on the relative distances between the agent
and its flockmates. Flocking can be established when each agent reacts only to

flockmates within a limited neighbourhood around itself.

The advantage of these techniques in formation control is that they are usually
mathematically analysed and formation stability can be guaranteed in the most of
research. Techniques in artificial intelligence promise applications in robotic formation,
which is inspired from natural world. However, research in this category usually
validates its techniques by computer simulations and concerns only some of issues of
formation control problem under some assumptions. Common models of mobile robots

are rarely considered to derive control laws for real robots.

2.3 Conclusion

This chapter has reviewed some most common mathematical models of mobile robots
used in robotic research. Different models of ground-based mobile robots are used in
robotic research depending on real platforms for practice. Control techniques for

robotic formation are also surveyed, highlighting their advantages and disadvantages.
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The combination of these techniques may be required for practical scenarios of robotic

formation.

In the literature, although there are many different methods proposed for formation
control, the robotic formation problem, especially the initialization issue has not been
adequately addressed. It is one of the main objectives of this thesis to contribute to this

research topic.
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Chapter 3

Virtual head robot tracking control

3.1 Introduction

Wheeled mobile robots (WMRs) have been an active area of research and development
over several decades. Based on the wide range of applications of them in large
(potentially unstructured and hazardous) domains, it i1s clear that WMR research is
multidisciplinary by nature. For control of a WMR, there are two main problems:
regulation problem that considers how to force the actual position and orientation of a
WMR to a constant reference position and orientation, and tracking problem, whose
objective is to force the actual position and orientation of WMR to track a time-varying
reference trajectory. Several controllers have been proposed for the regulation and
reference robot tracking problem, especially Dixon ef al. (2001) proposed a new class of
unified differentiable, time-varying kinematic controllers to address both these

problems simultaneously. These existing controllers consider the control problem of a

single mobile robot.

In the scenario of multiple mobile robot coordination, as reviewed in Chapter 2,
approaches to formation control of a group of agents can be fundamentally categorized
into four board groups: behaviour-based and potential field, leader-follower, virtual
structure, and other control strategies. There are two main problems in leader-follower

approaches: leader tracking and collision avoidance. For tracking, Desai ef al. (1998)
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proposed two types of feedback controllers for maintaining formations of multiple
mobile robots: /-y controller and /-/ controller. Another approach used three types of
controllers (basic leader-following, leader-obstacle, and three-robot shape, which are
also called separation-bearing, separation distance-to-obstacle, and separation-

separation) to maintain a formation under appropriate assumptions on the motion of the

lead robot [Das et al., 2002]

In the above approaches, a simple leader-follower configuration is obtained by using a
basic /-y or separation-bearing controller. Virtual Robot Tracking (VRT) control
proposed in [Jongusuk and Mita, 2001] could be also used for that purpose with the
consideration of inter-robot collision avoidance. However this approach has limitations
in the establishment of a line configuration and the possibility of collisions between
robots in some cases. The Virtual Head Robot Tracking (VHRT) control will be

proposed in this chapter to overcome these circumstances.

Section 3.2 presents models and problem formulation. An overview of /-y,
separation-bearing, and virtual robot tracking control is given in Section 3.3. To
overcome the limitations of virtual robot tracking control, a new VHRT control is
proposed. Details of the control design are presented in Section 3.4. Section 3.5
presents some simulation results to validate the proposed approach. A conclusion is

given in Section 3.6.
3.2 Model and problem formulation

3.2.1 A nonholonomic mobile robot model

A three-wheel mobile robot can be described by a common kinematic model as

presented in Chapter 2:

x=vcosb,
y=vsind, 3.1)

0 =w,
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where z :(x,y)T is the centre point on the wheel axis, 8 € R is the orientation and
input v, 1is the translational and angular velocities respectively. The nonholonomic

velocity constraints require that robots must satisfy strictly pure rolling and non-slipping

conditions.
3.2.2 Collision detection model

A simple technique used to detect the collision between any two robots can be applied

by modelling each robot to be covered with a circle centering at its control point on the
wheel axis. The radius ry,, of that circle can be determined by taking the real robot’s
dimensions into account with an additional distance as a safety margin. The distance p

between two robots can be denoted as the distance between their control points (see

Figure 3.1).

Figure 3.1: Collision detection

Consider two mobile robots, which are indexed by i and j respectively. A measure

describing the possibility of collision between them can be written as

fij =pP- 2r:afe . (3.2)



3. Virtual head robot tracking control 43

The value of fj; represents the possibility of collision between two robots:

Jii >0 —sdfe,

33
Jii €0 —unsafe. (3:3)

3.2.3 Assumptions
Let us introduce some assumptions:

e Assumption 1. Two robots (leader / and follower j) are of the same model as
described in (3.1) and strictly satisfy pure rolling and non-slipping conditions.

The possibility of collision between them can be assessed using function f;;.

e Assumption 2: Follower j can get any necessary information about its position
and orientation and information of leader / in a global coordinates from its

communication channel.

o Assumption 3: The leader follows a smooth trajectory and the workspace 1s flat

and obstacle-free.
3.2.4 Problem statement

The objective here is to design a controller for follower ; to achieve:
1. any desired configuration between leader i and follower j, and

2. no collision between two mobile robots.

3.3 l-y control, separation-bearing control, and virtual

robot tracking control

This section describes and analyses some existing control laws for robot tracking to

form a desired leader-follower configuration of two mobile robots.
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3.3.1 [-y control

This controller is originally proposed by Desai ef al. (1998) to maintain a desired length

1,? and a desired relative angle t,//,? between two robots.

System model

Figure 3.2 shows a system of two nonholonomic mobile robots separated by a distance

of /; between the centre of robot / and the front castor of the robot j. In this system,

each robot has two actuated degrees-of-freedom and two robots are not physically
coupled in any way. The distance between the castor and the centre of axis of the
wheels of each robot is denoted by D. Let us denote the coordinates of the centres of

axis of the wheels of robot / and robot j are (x;,y;) and (x;,y;) respectively. The

orientations of robot / and robot j are §; and @, respectively.

ﬂ ) Follower Robot j

Leader Robot i

Figure 3.2: Notation for /-y control
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The coordinates of the castor of robot j then can be written as

Xc/ :.XJ‘+DCOSQJ',

, (3.4)
Position errors between the castor of robot j and the centre of robot / are
AxU:xcj—xizxj+Dc?sﬁj—xi, (3.5)
Ay =y —yi=y;+Dsinb; -y,
It is clear from the notation in Figure 3.2 that
2
and 12 = (ax, P+ (ay, P (3.7)
Differentiating equation (3.7) with respect to time, one can obtain
4y = Oxy Axy + Ay Ay, (3.8)

The derivatives of position errors Ax,-j and Ayij can be obtained from (3.5) and model

(3.1):

Ar,.j:vjcosé’j—Da)jsinﬁj—v,-cosé’,-, (3.9)

Aylj :vj51n(9j +Da)j COS(9j—Vi81nt9i,

where (v;,w;) and (v;,w;)are the linear and angular velocities at the centres of axle of

robot 7/ and robot /, respectively.

By substituting Ax;j, Ayj; from (3.6), Ax,-j,Ay,-j from (3.9) into (3.8) and taking some
simple manipulations, one can obtain the kinematic equation of the distance between

two robots as follows.

]'I.j =V COS j; —V; COS Y, +Dw;siny;, (3.10)
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where y; =0, +y; -0,
Similarly, from (3.6), one has

W, +0; =arctan—=.

i

(Axij}z + (A)’/j)z ’

2
I

Therefore Wy + 6. =

(3.11)

By substituting Ax;;,Ay;; from (3.6), Ax,-j,Ay,»j from (3.9) into (3.11) and taking some
simple manipulations, one can obtain the kinematic equation of the angular between two
robots as follows.

: 1 . .
v :f("i siny; —v;siny; +Dw;cosy; -/

uy

0 (3.12)

In summary, in this system the kinematic equations for robot / (the leader) are given by
equations (3.1). The state of robot ; (the follower) is given by [/i/"‘//i/"ng with

kinematic equations:

lj=vjcosy;—vicosy,; +Dw;siny,;,

T
. 1 . :
Wi :T(Vi sinyy; —v;siny; + Daw;cos y; —lw;), (3.13)
if

Control law

Using standard techniques of I/O linearization [Asada and Slotine, 1986], a control law

that gives exponentially convergent solutions in the internal shape variables /; and y;

is given by
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COS}’,’j d . .
a)j = D (azl,]((//,j —(//U)—VI sin (//Ij +[lja)l+'ol_/ s }/Ul (3 14)
Vj:/Oij_Da)j tan 7y,
where
d
a\ls =1+ v, cos
oy = e =t )+ Vi (3.15)

cos ¥y

15, w,»j/ respectively are desired length and desired relative angle between two robots,

a;, a, are positive constants,

The above control law leads to the following dynamics in the / — variables:

Iy =y (5 = 1), .

vy = vl —vy).

It is proven in [Desai ef al., 1998] that for the motion of the leader robot following a

circular path: v;=K,, @;=K,, 6, is locally asymptotically convergent to

g:(1)+ (//g ~ 3, —arccos(K, / ), where

K5l + K| sin (//9’ ’ K cosx//»‘-i ’ K cosy/-‘v’
B = 2y " Jg Y , [, =arctan k. —|.
D D Koly + Kysiny |

Consequently, if the leader robot follows a straight line (w; = K, =0), 8; converges

exponentially to the initial orientation of the leader at the beginning of the motion

6,(0) (for the leader it is maintained as a constant throughout the motion since

a),' = O — gl(t) = 01(0) )
Remarks

I. If cos y; =0, the control law is given by
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d

/ Dsin y;; ’

: d
o Vi sin y; —1,-ja),- —azl,-j((//,-j — V)
/ sin y;; '

2. The optimal point-to-point paths of a nonholonomic car with constraints on the
turning radius were shown to be composed of straight lines and circular arcs
[Reeds and Shepp, 1990]. The convergence of above solutions has been

obtained without placing any restrictions on translational velocity K, and
angular velocity K, of the leader robot. Thus, the /-y controlled robot can

track, with exponential convergence, any straight line, circular arc, or rotate in
place motion of the leader robot thereby following the optimal trajectory

generated by the leader.
3.3.2 Separation-bearing control

Adopted by the original /-y control, separation-bearing controller proposed in [Fierro et

al., 2001] could be also used for robot j to follow robot i with a desired separation ll-ja./

and desired relative bearing (//,?. The control velocities for the follower are given by

V; =5 COs ¥y —l,«j sin yij-(bij- +a)ij-)+v,~ cos (6, —Qj),

(3.17)

1 : .
w; = B[Sij sin y; +I,~j cos 7,~j(bl~j + ;) + v; sin (6.0 ‘)],

where D is the distance from the wheel axis to a reference point on the robot (it can be a

castor or another point), and

s;=a, (8 =1),
y =y =y (3.18)

d
by =a (Wi —vi)

The closed-loop linearised system
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/ d

vy =i —wy), (3.19)

(9j :a)j,

is proven to be stable , that is relative distance and bearing reach their desired values

asymptotically, and the internal dynamics of robot ; are stable [Fierro ez al., 2002].
3.3.3 Virtual robot tracking control

This approach offers a tracking control with arbitrary clearance between two robots

[Jongusuk and Mita, 2001]. The model of this control is described in Figure 3.3.

| Leader i
g
ﬁ L - ?,_ﬂ S

D
<

N

7N
Q{ VRof
v

,41
/ Follower j
/\)

/

Follower j

Figure 3.3 Virtual robot tracking model
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System model

In order to separate follower from leader robot avoiding collision, a concept of Virtual
Robot (VR) is defined with additional objective to force error parameters to zero when

system approaches final time.

Definition 3.1 Virtual robot (VR) is a hypothetical robot, whose orientation is identical
to that of its corresponding follower robot, but position is placed apart from by the

predefined r—I[clearances. The symbols [, v denote longitudinal clearance and

clearance along rear wheel axis, respectively.

Let us use some notations: [x,,y,-,&-]r refers to leader i, [xj,yj,é?j]T refers to follower
j,and [xvj,yvj,é’vj}T is for VR of follower ;.

The relation between VR and its host (i.e. follower ;) in terms of positions and

orientation is as follows.

xvj :xj—rsirl@j +/COSl9j,
yy =y +rcosd; +lsing;, (3.20)

From (3.20), we can derive the kinematic model of VR:

xvj cos (9j —rc?s Hj- —/sin ¢9j v, ij
vaj =!sin@; -rsing; +/cosd, 4 |= uj, (3.21)
9‘,]- 0 1

where
0, -rcos@;—Isinf; V; ‘
B, = 0%y rc. / /1 and wu; = /1 denotes velocity vector of
Y |sin@; ~—rsin@;+Ilcosb; ey
follower ;.

A control law for robot j is designed such that its virtual robot can track leader i with

the position errors decreasing exponentially. The error model can be derived as
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. ij—x,
Ey; = ) =Bu; —by, (3.22)
v/ i

: : : cos6;
where v; is the translational velocity of leader i, and b, =| = '|.
sin 6,
Control law

A standard I/O linearization technique is used to generate the control law:

u; =B (byi—AE,;), (3.23)
A 0. . o :
where A = 0 A, is a positive —definite diagonal matrix.

The solution of this controlled system is

€y =X, —X; = eX(O).e”'l",
(3.24)
ey :yvj —Vi= ey(o)_e—ﬂa”

which demonstrate exponential convergence to zero.

This control law ensures a desired r—/ configuration of leader i and follower ; as
t = oo. Zero dynamics given in term of &; are also proven to be stable to guarantee the

use of control law (3.23) [Jongusuk and Mita, 2001]. However, there are some

limitations of this approach.
Limitations
L. Difficulty in forming a line configuration

/ is designed not to be zero in order to matrix B,; is non-singular. This implies that the

real robot cannot be parallel to its VR. Therefore, the line configuration between two

robots cannot be obtained directly by using this approach.
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2. Failure to form some desired configuration without inter-robot collision.

The zero dynamics given in term of &; are proved to be stable, but the convergent value
of ¢9j is not analysed. In some cases the orientation of the VR (and it host) cannot

converge to that of the leader. We will show some of these cases.

Applying the proposed control law, one has

. -y, . ~ e, +v;sind;
a)j.:ej:(ﬂlex j’cose’jsin0j+[ fat - ’]cosej. (3.25)

Consider simple cases when robot / runs on a linear trajectory, 1.e. w; =0. Let us

assume, without loss of generahty, thatg;(0) =0. Therefore: ,(1) =0.

Equation (3.25) becomes

. —v. - Ae
9}. {AL{“—)smej +[ }? y]cosﬁj, (3.26)
or
;= Ksin(€; +¢), (3.27)
1
with K = m’\/(;{lex ‘Vi)2 + (—ﬂzey)z’
] —v.
arctan 2% if [Ale”’ Vi j >0
'{lex -V !
and Q= e le. —v
arctan 2 Nex if( 16x ’j< 0.
1€x — Vi !
Ayt

Remember here that ¢, =e, (0).e ™ ande, = ey(O).e—i’l’ . Hence, when ¢ large enough,

‘/llexl and‘ﬂfzey} are small enough compared to‘vi‘, we can estimate
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K =1,
0 if <0
and Q= v[
7 if >0
[
Hence,
. P
_ Ksinf;, if +<0
6~ v/ (3.28)
—Ksing; if +>0.
[
In general cases, since K > 0, equation (3.28) shows that
T if 2o
6, > v{ (3.29)
0 if 7’ > 0.

For examples, Figure 3.4 and Figure 3.5 depict the orientation of the follower in two

different cases of sign of(% ).

For both cases, we use Matlab to solve (3.25) with the following parameters:

v =5,0;=0,6,(0)=0,¢,(0) = 20, ¢,(0) =30, = 1,2, = 2,1 =[0,60],8,(0) = [0, 27].

The clearance / used for Figure 3.4 is / =10 and for Figure 3.5is / =-10.

As the above analysis, in Figure 3.4 with%= 0.5,8; > 0(or2x), while in Figure 3.5

with %:—0,5, 0, — (or3n).
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Solution of the Follower's Orientation

Orientation of the Follower

Initial orientation time t

Vi _

Figure 3.4: Orientation of follower j in the case o 05>0

Solution of the Follower's Orientation

T
|
)
]

Orientation of the Follower

60

Initial orientation time t

Figure 3.5: Orientation of follower j in the case %: -0.5<0
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Moreover, in the special case e,(0)=¢,(0)=0, and sind;(0)=0(i.e. 0;(0)=0 or
0;(0)=r), if the leader has w; =0, 6,(0)=0 (i.e.6;(1)=0), from (3.25) one has
W, :6’j =0. It is clearly that the orientation of the follower (and of its VR) do not

always equal to 6;(t)=0. For examples: if 6;(0)=0 then 0;(1)=0,butif 6,(0)=7

then Qj(t):ﬂ.

When the orientation of VR (and its host) converges to a value different from that of the

leader, the desired r—/configuration of leader i and follower j cannot be obtained

(e.g. see Figure 3.6) and collisions between them may happen.

= Followerj

rwulil
!

VR of |:—r—' .
= follower j | !‘:x = Leader i

fomaal

ST V>0 : A I : veo
Leaderi [+ W J—-—>] L~ ~]<0 +—A— —\— >

D . r O T
[ien) o]
':r'—_—' i VR of ‘:‘F’

i | follower j

i |

!

[ *|<0 P __¢_ __\%_ -4

|

m— Follower j

Desired configuration Obtained configuration

Figure 3.6: An example of impossibility to obtain a desired configuration.

3.4 Virtual head robot tracking control

As above analysis, the virtual robot tracking control has some limitations including the
impossibility to establish a desired configuration (including line configuration) in some
cases and possibility of collision between robots. The following Virtual Head Robot
Tracking (VHRT) model, motivated by the ideas of virtual robot in [Jongusuk and Mita,

2001] and virtual reference point (x;,y;) in [Gustavi and Hu, 2005] is proposed to

remedy these circumstances.
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3.4.1 System model

Let us firstly redefine the concept of VR as follows [Nguyen ez al., 2006b].

Definition 3.2 Virtual robot (VR) is a hypothetical robot whose orientation is identical
to that of its host robot, but position is placed apart from the predefined R-L clearances.
The symbols L and R denote respectively the longitudinal clearance and clearance

along rear wheel axis.

The relation between VR and its host in terms of positions and orientation can be

written as

X,; =X; +Rsin&; — Lcos b,
Yvi =Y —Rcos@; - Lsinb, (3.30)
0, =6,

where (x;,y,,6;) and (x,,»,,6,;) are respectively coordinates of the host (robot /
itself) and its virtual robot. It is noted that R and L here are defined to be strictly
positive for the case VR is located in the right-bottom corner of its host, as shown in
Figure 3.7. Figure 3.8 describes signs of R, L regarding the relative position of the VR

with respect to its host.

Definition 3.3 Head robot (HR) is a hypothetical robot whose orientation is identical

to that of its host, but position is placed at distance d > 0 ahead from its host,

The relation between HR and its host can be written as

X/U- :Xj +dCOS€j
Yy =y, +dsing; (3.31)

where (x;,y;,0;) and (xy;,yp;,0) denote coordinates of the host (robot ;) and its

head robot, respectively. Note that HR is designated to serve as a virtual robot of the
follower with d to be chosen adequately small as a tracking margin. HR is identical

with its host when d =0.
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Figure 3.8: Signs of R, L regarding the relative position of the VR with respect to
its host
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Position errors between VR of leader i and HR of follower j are

{exj,. =xp = X,; =(x; +dcos8;)—(x; + Rsing, - Lcosb,) (3.32)

€yj,- :yhj _yvi =(yj +d51n01)_(y1 —RCOSQI‘ —LSin@i).

A control law for follower robot ; is designed such that its head robot can track the

virtual robot of leader i with the position errors decreasing monotonically. The control

law should ensure a desired R-L configuration of leader / and follower ; with position

errors smaller or equal the chosen margin d, as t — .

From (3.1) and (3.32) an error model can be derived as

Eji = rsz}
€yji
—COSQJ- ~dsing; v;
where B, =| . JUj = (3.34)
Lsmé’j dcosd, @,
b "cosf; Rcos6, +Lsind, v;
;- y UI' = .
' |sing;, Rsing;—Lcosb, w;
3.4.2 Control law
A standard /O linearization technique is used to generate the control law:
-l

/ 0 4

A O] . . . .
where A= is a  positive—definite  diagonal = matrix  and
j2

o1 {dcosﬁj dsiné’/}

B~ == .
J d —smﬁj cosd,;

Time responses of the controlled system errors are then
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eyi = exj,-(O).e_lf”
(3.36)

€ ji yjI (O) e s

which demonstrate exponential convergence to zero. The control u; can always be

defined if d >0 is chosen such that matrix B; is non-singular.
3.4.3 Zero dynamics
By applying (3.35), the differential equation for ¢; can be obtained as
6, =d ' [(Ae,; —vi cos8)sin 0, +(= dye,; + visin6l)cos ], (3.37)

where

v = \/viz + (Ra)i )2 + (La),- )2 +2Rv,w;,
6! = atan2(X,Y),

(3.38)
X =v,sinf; +(Rsin6; — Lcos b, Jw,,
Y =v,cost; + (Rcos@; + Lsiné, Jw,.
Equation (3.37) is then rewritten as
B.j:AjCOS(Qj'I‘ﬂj), (339)

- , i 2
where A;=d ]\/(ﬂ,lexj,- ~vicosd)’ + (—Ae,; +vising])”, and
B = atan2(-Aey; +v; cost;, —Aey; + vising}).

By assigning the right hand side of (3.39) to a steady-state angular velocity w,; and

linearising (3.39) along the solution 6,° =~4; +arccos(w,;/ 4;), one can obtain

60, =—A;sin(6; + g e 89 == A -’80, (3.40)

which implies the stability of zero dynamics.
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3.4.4 Critical area

The control law ensures there is no collision between two robots iand ; if at the

beginning the centre of leader i 1s not found in the “critical area”, determined by initial
positions of the two robots as illustrated in Figure 3.9, where the safe distance referred
to the centre of any robot in the group for avoidance of collision with others 1s defined

as

Dy =d +2ry4p, . (3.41)

It is clear from the expression of Bj~l that the margin d cannot be chosen too small as

this will involve very high angular velocity of robot ;.

Figure 3.9: Critical area of possible collision

If the condition for collision avoidance is not satisfied, a reactive control scheme will be
applied as detailed in the next chapter. In addition, there shall be a parameter constraint

which can be described as

R2+12-d>>(2r, P (3.42)
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which ensures the establishment of the desired configuration between two robots under

VHRT control.
3.5 Simulation results

We present here two simulations to validate the capability of the VHRT control to
remedy limitations of VRT control. The first simulation shows that in the same initial
conditions of a group of two robots, the VHRT control can be used to obtain a desired
leader-follower configuration while applying the VRT control a collision may happen.
The second simulation shows a similar case while the VHRT control is useful for
obtaining a desired configuration, the group with the VRT control although can avoid

collisions but cannot obtain that desired configuration.
3.5.1 Simulation 3.1: Collision avoidance

To compare the VHRT and VRT control and illustrate the capability of the VHRT to
obtain a desired configuration without collisions between robots in a group, let us
consider the case of two mobile robots: robot 1 is the leader, robot 2 1s the follower.

Parameters and conditions used in this simulation were set as in Table 3.1.

Figures 3.10 and 3.11 show the time responses of position X, Y, orientation & and the
trajectories of two mobile robots in the global coordinates with VRT control. Figures
3.12, 3.13 show corresponding results with VHRT control. Considering the safe

distance between two robots 27, = 26(cm), a VRT controller can cause a collision at

t=0.25s and the follower cannot continue to reach its desired position. In this case

with i:%(s‘l)<0, as analysed above, robot 2 (the follower) changed its

orientation to the opposite one of the leader (robot 1) and followed an unpredictable
trajectory in the transient stage. In the same initial conditions and with the similar
control parameters, VHRT control can be used to obtain a desired configuration without
collisions between robots. The follower (robot 2) when applying VHRT control seems

to go directly to its desired position with respect to the leader (robot 1)
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Table 3.1: Parameters and Conditions for Simulation 3.1

Simulation Parameters Robot1 | Robot2
x(0) (cm) 0 -20
»(0) (cm) 0 -50
Initial Conditions 8(0) (rad) 0 1
v (cm/s) S
w (rad/s) 0
Safe distance between any two robots 2r s (cm) 26 26
Parameters for VR in VRT control v (em) 30
/(cm) -40
R
Parameters for VR in VHRT control (em) 30
L (cm) -40
Tracking margin for head robot in VHRT control d (cm) ]
X ']
Parameters for VHT control 6 !
A (s 2
A (s |
Parameters for VHRT control
A (s 2

3.5.2 Simulation 3.2: Desired configuration

This simulation demonstrates the case the VRT control cannot be used to obtain a
desired configuration while VHRT control can achieve a desired response. Again we
consider a group with leader robot 1 and follower robot 2. Parameters and conditions

used in this simulation were set as in Table 3.2

Figures 3.14 and 3.15 show the time responses of position X, Y, orientation & and the
trajectories of two mobile robots in the global coordinates with VRT control. Figures
3.16, 3.17 show corresponding results with VHRT control. Using the same parameters
and conditions as in Simulation 3.1, except the initial position and orientation of robot
2, 1t can be seen that VRT control although can avoid collisions between two robots, the
desired configuration cannot be obtained. Because the initial position of robot 2 is quite
far from robot 1, the change in orientation of robot 2 (the follower) compared to robot 1
(the leader) although could not cause inter-robot collisions, but it make the group
impossible to obtain the desired configuration. At the same condition, VHRT control

can achieve a desired response with the similar group behaviours as in Simulation 3.1.
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Figure 3.15: Simulation 3.2 results, case of VRT control - 0 orientation and
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Figure 3.16: Simulation 3.2 results, case of VHRT control - X, Y position
a) X position b)Y position
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Figure 3.17: Simulation 3.2 results, case of VHRT control - 8 orientation and

trajectories: a) 6- orientation b) Trajectories
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Table 3.2: Parameters and Conditions for Simulation 3.2

Simulation Parameters Robot 1 | Robot 2
x(0) (cm) 0 -50
»(0) {(cm) 0 -40
Initial Conditions 6(0) (rad) 0 2
v (cimy/s) 5
w (rad/s) 0
Safe distance between any two robots 20 (€M) 26 26
30
Parameters for VR in VRT control r(em)
!/ (cm) -40
i R (cm) 30
Parameters for VR in VHRT control
L (cm) -40
Tracking margin for head robot in VHRT control d(cm) 1
Ar(s™ ]
Parameters for VHT control
A (s 2
A (s ]
Parameters for VHRT control
A (s 2

3.6 Conclusion

This chapter has presented a new virtual head robot tracking control to establish any
desired leader-follower configuration between two mobile robots. This controller can
be used as a basic controller in leader-follower strategies to solve the robotic formation
problems. Some limitations of virtual robot tracking control have been overcome. The
contribution of this control law is the capability of forming a desired configuration of
two mobile robots from an arbitrary initialisation conditions and maintaining its
collision-free shape. A desired formation of a group of multiple mobile robots can be
obtained using these basic controllers by letting robots be controlled in appropriate

chains of leader—follower relationships.

Using standard 1/O feedback linearization technique, the main disadvantage of this
controller is that the robustness cannot be guaranteed in the presence of parameter
uncertainty or unmodeled dynamics. Moreover, information of position and orientation
of two concerning robots is needed for the follower. Accumulated errors in sensor

readings (for example getting by encoders) can cause an undesired behaviour of the
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follower, especially when initial positions of robots are far from their desired positions.
It makes experiments difficult with real mobile robots and requires further navigation

assistive algorithms for robot localization.

Using the proposed control approach, collisions between robots may be avoided in most
of the circumstances, except cases when the leader is initially located in “critical area”
as analysis in Section 3.4.4. A reactive control scheme using 3PLL control may be used
to deal with those cases. These control and scheme will be described in the next

chapter.
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Chapter 4

Three point /-/ control for formation

control

4.1 Introduction

From the previous chapter, it 1s demonstrated that for a group of three mobile robots, a
desired formation can be established by using two virtual head robot tracking
controllers to obtain an appropriate leader-follower configuration. The problem as to
how to avoid collisions among simultaneously three robots in the group or collisions
between the follower and leader, which is initially located in “critical area” (Figure 3.9),

remains however questionable, and will be the subject of this chapter.

A modified /-/ control proposed in [Jongusuk and Mita, 2001] could be used for
collision avoidance among robots in these circumstances. Notably, this control law, as
well as the original /-/ control [Desai et al., 1998] and the separation-separation control
[Fierro et al., 2001; Fierro et al., 2002], are subject to a singularity when the reference
points of three robots lie on the same line connecting them. This chapter describes a
new technique, called Three Point I-I (3PLL) control, to deal with this problem. In
order to ensure inter-robot collision avoidance, a reactive control scheme is proposed.

Finally, an algorithm that combines VHRT and 3PLL control techniques incorporated
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with the reactive control scheme is then suggested to initialize and maintain a desired

formation for a group of three mobile robots.

Section 4.2 presents the problem formulation. An overview of such control techniques
as [ =1, separation-separation, and modified /-/ control is given in Section 4.3. Details
of the 3PLL control design are presented in Section 4.4. Section 4.5 describes the
reactive control scheme. Section 4.6 presents the proposed algorithm combining VHRT
and 3PLL control for initialisation and establishment of formations for a group of three
mobile robots. Simulation results and discussion are presented tin Section 4.7. A

conclusion is given in Section 4.8.
4.2 Model and problem formulation

4.2.1 A nonholonomic mobile robot model and collision detection

model

The kinematic model is used here as in previous chapter for a three-wheel mobile robot:

X =vcosé,
y=vsind, 4.1)
0=w,

where z =(x, y)T is the centre point on the wheel axis, & € R is the orientation and

input v, is the translational and angular velocities respectively.

The possibility of collision between any two mobile robots i and j is also measured by

using function as in (3.2) and (3.3).

y
4.2.2 Assumptions

Let us introduce some assumptions:

e Assumption 1: All robots are of the same model as described in (4.1) and

strictly satisfy pure rolling and non-slipping conditions. ~ Function f;; for
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assessing the possibility of collision between any two robots / and j is always

available.

e Assumption 2: Each robot is indexed by a number indicating the priority level
according to its role in the group. The lower the index, the higher the priority,
with 1 being the leader’s index. The follower always follows one or two others

which have lower indices.

e Assumption 3: Each robot can get any necessary information about its position
and orientation and information of its leader in a global coordinates from its

communication channel.

e Assumption 4: The leader follows a smooth trajectory and the workspace is flat

and obstacle-free.
4.2.3 Problem statement

The objective here is to design controllers for robots in a group of three mobile robots to

achieve:
1. any desired formation,
2. no collision between any two mobile robots, and
3. group motion satisfying the limitation of communication range.

4.3 Original /-l control, separation-separation control,

and modified /-/ control

This section describes the /-/ based control laws for a group of three mobile robots.

4.3.1 Original /-/ control

This control law was proposed by Desai e al.(1998). Figure 4.1 shows a system of

three nonholonomic mobile robots. The aim is to stabilize the distance of the third
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robot from the other two robots. The state of the third robot therefore is specified by
three independent variables, in this case they are chosen as [/;,/53,6, ]T. Distances are

measured from the centre of the axle of the first two robots to the castor of the third

robot which is offset by D from its axle.

Rog,

7%,

8,

}{ e l23
\\
2

Figure 4.1: Notation for /-/ control

The goal of the feedback controller is to maintain the desired lengths, lf'; and /513 of the

third robot from its two leaders. The kinematic equations for the system is given by

equation (4.1) for robot 1 and robot 2, and

l;3 = vy 08 ; —v; €08 Y3 + Doy sin y,
123 =V3 COoS Vo=V COS l//23 +Da)3 sin 72, (42)

9.3 = Wy,

for the third robot; where y; =6 +w;; —6; (i=1,2). Note that, first two equations in

(4.2) describe relationships in terms of distance between robot 3 and robot I, robot 2

respectively as in /- control (see Section 3.3.1).
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The /O linearization is used to generate a feedback control law:

d
_ a (I3 =1j3)€0S o + V| COS /)3 COS ¥ —a2(15’3 ~153)COS ¥} =V, COS /53 COS 7,
Dsin(y, = 73)

3

3

J ' (4.3)
b2 @iz =li3)+v cos yyy — Dassin
’ cos 7, ’
where «; and a, are positive constants.
This gives exponential convergence for the controller variables:
y=a (/1d —13),
13 =3 =43 (4.4)

Iy = oy (I35~ Lp3).

Desai et al. (1998) also proved that for a straight line parallel motion of the first two

robots (i.e. constant velocity v, =v, =K, o, =w, =0 and 6,(0)=6,(0)=6,), the
orientation of robot 3 @ locally converges exponentially to 6y =6, and

w13(1) =13(0), wa3 (1) =wH3(0).
Remarks

1. Equation (4.4) shows that the convergence of the system states is asymptotical

but not established within a finite time.

2. The singularity sin(y,—y,)=0 happens when the reference points of three

robots lie on the same line connecting them.

3. If cosy; =0, sin(y; —y,) # 0, the control law is given by

o = al(lf‘g —113)COS ¥y + V| COS W3 COS ¥y =y (153 —123)€0OS y| =V, COS /53 COS ¥
’ Dsin(7; ~7>)

3

d .
vy = ay(ly3 =1p3) +vp cos Wy —Daysiny,

Cos ¥,
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4.3.2 Separation-separation control

By adopting the original /-/ control, Fierro et al. (2001) proposed separation-separation

controllers for robot 3 to follow robot 1 and robot 2 with desired separations 1{‘3 and

1%, , respectively. In this case the control velocities for the follower robot become

vy = S13 SIN Y5 =853 81N ¥ +V; COS /3 SIN ;) =V, COS 53 SIN ¥
sin(y2 = 71)

>

4.5
w _—Sl3COS}/2+523COS}/1—VlCOSl//13COS}/2 +V2(:OSI//23COS}/1 ( )
3= . )
Dsin(y, —71)
where D is the distance from the wheel axis to a reference point on the robot, and
S|y =0 (/d ~13),
3= Iz’ 13) 4.6)
s23 = (I3 = 113).
The closed-loop linearised system
; d
lis =a1(li3 = 13),
; d
lyy = ay(l3 = 1y3), 4.7)

03 = 0)3,

is proven to be stable, that is relative distances reach their desired values asymptotically,

and the internal dynamics of robot 3 are stable [Fierro ef al., 2002].

4.3.3 Modified /- control

This control proposed by Jongusuk and Mita (2001) is used as collision avoidance

controller, which requires safe distances between considered robots must be established

within a finite time.

Equation (4.2) can be rewritten as
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s _|cosy, Dsiny | v V| COSY/ |3
[23 cosy, Dsiny, | w; V5 COSYW o3
:Buu3 Vs (48)

03 :a)3,

where
{cosyl Dsin }’1} {vﬂ {v, cos %3}
BL{ = . , Z,{3 = s VLI = B
cosy, Dsiny, W3 Vv, COS /3

Let us firstly present some mathematical preliminaries on terminal attractor
Terminal attractor

Dynamical systems that come from applications tend to be dissipative: if it were not for
some driving force the motion would cease. The dissipation may come from internal
friction, thermodynamic losses, or loss of material, among many causes. The
dissipation and the driving force tend to combine to kill out initial transients and settle
the system into its typical behaviour. The part of the phase space of the dynamical

system corresponding to the typical behaviour is the attracting set or attractor [Barhen et

al., 1989; Zak, 1989].
At equilibrium, the fixed points of an N-dimensional, dissipative dynamical system

X, = [ (X, %2,..,%,) =0, (4.9)

for n=1,2,...,N, are defined as its constant solution x, (). If the real parts of the
eigenvalues 4, of the Jacobian matrix M, :[an/axm] at a fixed point are all
negative, that is, Re{y§}< 0, then these points are locally asymptotically stable. Such

points are called regular attractors, since each motion along the phase curve that gets

close enough to (o), that is, enters a so-called basin of attraction, approaches the

corresponding constant value as a limit when ¢ tends to infinity.

Typically, dynamical systems such as (4.9) obey the Lipschitz condition
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|of,, 1 6x,,| < o, (4.10)

which guarantees the existence of a unique solution for each initial condition x(0).

Theoretically, the system relaxation time to an attractor is infinite, because the transient
solution cannot intersect the corresponding solution to which it tends. Figure 4.2a
shows the temporal evolution of such an attractor with a simple system: x =-x from

different initial conditions.

In contrast, the notion of terminal attractor is based on violation of the Lipschitz
condition at equilibrium points. As a result of this violation, a fixed point becomes a
singular solution enveloping the family of regular solutions, while each regular solution

approaches the terminal attractor in finite time.

For example, the following simple one-dimenstional system

X=-x"", 4.11)

has an attracting equilibrium point at x =0 which violates the Lipschitz condition,

i/ =|~1/3x7| > 0, when x >0,
The attractor is termed terminal, since from any initial condition xy # 0, the dynamical
system in (4.11) reaches the equilibrium point x =0 in a finite time,
x—0
lg=— J.x"]”dx = (3/2)x§/3.

Xo

The behavior of this terminal attractor is shown in Figure 4.2b with deferent initial

conditions.

A more general case is

for which the relaxation time for the attractor 1s
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- if k=i : Regular attractor

=—— ifk=
1-k 2i+1

where ie N* and N* = N\{0}.

We now present some results on terminal attractor.

Proposition 4.1 The origin of a differential equation
2 =—sign(z(0)AzP'9, A>0
is a terminal attractor, with a finite reaching time

P

7, = sign(zo) 20

A0-2)
g

where (p,q) € Q) with

Q:{(p,q)}p:2m,q=2n—l,m<n,m,neN+}ana’ N™ = N\{0}

Proof

We consider the initial value of z at 1 =0.

e If z(0)<0, equation (4.12) shows that z>0 if z=0. Therefore

and reaches to 0.

: Terminal attractor,

(4.12)

(4.13)

Increases

o If z(0)>0, equation (4.12) shows that 2<0 if z=0. Therefore z decreases

and reaches to 0.

o If z(0)=0, the system maintains z =0, V.
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x=0 - Regular attractor

o \ i

|
|

-3 L L L 1 L
0 05 1 1.5 2 25 3 3.5 4 4.5
time,
a)

x=0: Teminal attraclor

b)
Figure 4.2: Temporal evolution of attractors

. . . . . 1/
a) Regular attractor with x = —x b) Terminal attractor with x =-x 3
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Hence z =0 is the attractor of the system (4.12). Moreover, it is easy to check that the

Lipschitz condition is violated. Therefore z =0 is a terminal attractor.

Equation (4.12) can be written as

P
sign(z(ONAdt =~z 9dz . (4.14)
Direct integration of (4.14) from 0 to ¢ yields
-2 -2
q _ q P
z(t) T =2z(0) 7 -(1-=)sign(z(0))Ar. (4.15)
q

Requiring z(7,) =0 implies formula (4.13).

Now, the terminal attractor can be applied to obtain a modified /-/ control law.

Required that the controlled variables /3 and /,; monotonically converge to l,d3 and

15’3 , Tespectively, within finite time 7, , we consider z as /g —l5,i=1,2 and set

bl
Pfg—]’w]:{az O} (I =13) (4.16)
i-hs] |0 o A

G

which is identical to a terminal attractor model where (p,q) can be, for example, set to

(2,3).

P

a 0] UG- | .
]:{ 1 *} (]3 l3)p = ']e’ (417)

jl3

Therefore ; 0
az —

(155~ 1)

I3

where
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2
e lay 0 14 1.3
o z{ ! J = Ui3 13)2
(153 =13)?

By arbitrary setting reaching time 7,, we obtain a formula for finding al*,a; as

follows.

|
x T, T,
o = (/,"3 —213(0))3 /[ ; j— s:gn(l23 123(0)‘3 /{?J
| (4.18)
: T. T,
a = ([513 —123(0))3 /[ 3 ]— sign(l3y —123(0))i[23 ]23(0)’3 /(—3—}
where functions sign(.) and | : | are used to avoid complex solutions.
From (4.8) and (4.17) we can generate a feedback control law as follows.
u; =B, '(v,+a’ 1), 0<t<T,, (4.19)
. 1 {D siny, —Dsin 7/‘}
where , = .
Dsin(y, —y,)| —cosy,  cosy,
The solution of the system is
b )

which monotonically converges to desired value 19 within a finite time T} .
Zero dynamics in term of &5 can also be proven to be stable [Jongusuk and Mita, 2001].

Remarks

1. We can find out other alternatives to choose p and g. Let us firstly present

another proposition on a terminal attractor model similar to the one above.
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Proposition 4.2 The origin of a differential equation

=-2z"7, A>0 (4.21)

is a terminal attractor, with a finite reaching time

-2
r 20" (4.22)
2(1-2y
q

where (p,q) € Q with

Q={(p,q)’p=2m—l,q=2n—1,m<n,m,neN+}and NT = N\{0}

The proof of this proposition is similar to the one of Proposition 4.1.

Now we can set

L

by i_jer 0 G -h)? | ey
123 0 a; 2 ¢

(155~ 1,31

where (p,q) canbe, for example, set to (1,3), hence

!
. o 0 1% ~13)3
a :{0‘1 } I, = (3 13)l

(155 ~153)3

In this case, by arbitrary setting reaching time 7, we obtain

)

j 1113—113«))]3 /[

ay = (113 “113(0)F /[

a = (’23 —123(0)ﬁ /{

)

j {123 —[23(O)~3 /[
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The control law (4.19) give the solution of the system

i=12, (4.23)

(/,-‘é —l3) = [(lg ‘/1'3(0)Ti -

w \3
2?" z} , 0<e<T

which also ensure that /;; monotonically converges to desired value 1,% within a

finite time 7, .

2. As in the original /-/ control, a singular case is found when

y2=yy=kr, (keZ). This is the case when matrix B, Is singular, and the

three robots lie on the same line connecting their reference points.

The above-mentioned control laws all have a singularity when the three robots lie on the
same line connecting them (see Figure 4.3). This singularity makes existing controllers
unable to completely solve the initialisation problem in formation control for a group of
mobile robots. A new approach will be proposed in the next section to deal with the

singularity.

Robot 1

Robot 2

i

Robot 3

=

Figure 4.3 Singularity in /-/ control
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4.4 Three-point /-/ control

To deal with the singularity problem, three /-/ controllers are proposed here, taking into
account the distances to robot 1 and robot 2 from three virtual points. These points are
located around the centre of robot 3 to form a certain triangle. An appropriate /-/

controller shall be chosen in the case of singularity.

Let us firstly introduce a proposition about velocities of a virtual robot [Nguyen ef al.,

2006b].

Proposition 4.3 (Virtual Robot velocities) A virtual robot of robot i, having predefined

values of R = R",L =0, can be considered apparently as an “independent” robot with

-, * . .
velocities v; =v; + R w; and w; = w;, where v; and w; are velocities of robot i.

Proof

Indeed, by considering a virtual robot of robot i/ with pre-defined clearances

R= R*,L =0, one has from (3.30)

xv,- = X; + R* Sin 9[
yw' = y, - R* cos 9, (424)
6, =0

vi i

and hence,
’).CW. = (VI' + R*a)i )COS 61
Vi = (v,- + R*a),- )sin o; (4.25)

\9‘/[' = 91' = Cl)l'.

The virtual velocities of robot i given in Proposition 4.3 can then be obtained by

comparing (4.25) to model (4.1).
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Consider now the case when distances to robot 1 and robot2 are from point K, which is
different from the centre of robot 3 and determined by distances ry,/g, as shown in
Figure 4.4. Here, K is considered as a head point located, along the longitudinal axis, at
distance /g from the centre of a virtual robot Ry3 of robot 3, defined withR=rg, L =0.

According to Proposition 4.3, the velocities of virtual robot Rys:

V3 = V3 + @
{ v3 3TIK®S (426)
w,3 = Ws.
Figure 4.4: [-/ control with respect to virtual point K
The kinematic model for R,3 under /-/ control is
Ik | _|cosyix  Igsinyik _’{M J{Vl cosy 3k }
[23K “lcosyak g sinyak | @z [vacos¥asg (4.27)

= BuKuv3 ~VuK »

and 0,3 =m,3, (4.28)
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where B _[003711( [ siny g I % y Vi COSY 3k
uk — : 4 vl — s K = .
COS 721( IK Sin }/2]( a)v3 . V2 CcOS !//23](

Therefore, similarly to the law proposed in [Jongusuk and Mita, 2001], one can apply

the following control law for virtual robot R.3:

v, _ %
l(v3 z\:a):sjl:B“K ](VL/K +aK./eK),OSfSTr; (429)
v3

Vik =0 +ying —05,(i=12)
p

I = ([%K_ZBKE ’a;;:[al*K 0 1

0 a, J
2t 2K
where b5t P (4.30)

]
* . by Tr
arx =sign(lfs g —1131<(0))‘/|a§/< —1131<(0)~3 /[—3—]

]
* . 5 ’I;
asy = sign(lsg "123K(0))‘[g3[< "/23K(0)‘3 /(—3 J

and B}

ukK

_ 1 [/KSin}’zk —lKSin71K1
lesin(yy —7ix)| —cosy,x cosyix |

From (4.26), the control law in terms of velocities for robot 3 can be calculated as

— P @
e = i W T k@ . (431)
’ s W,3

As stated, the three /-/ controllers are to be switched correspondingly, for example, to
three virtual head points of robot 3, namely A, B, and C, selected to form the shape of a
triangle, as shown in Figure 4.5. By that way, the singularity problem associated with /-
/ control, i.e. when the head point of robot 3 is aligned with the line connecting two
other robots, can be completely overcome. Triggering the switching in practice depends
on the level of sensitivity of the robot actuator control voltage with respect to

singularities.
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%

o %y

Figure 4.5: Switching among three /-/ controllers

Note that for the proposed 3PLL control, there shall be a parameter constraint which can

be described as:
U2~ +12)> (2 f) 1212 Ke{4,B,C) (4.32)
where 27, is the safe distance between two centre points of two robots.

Condition (4.32) allows for a safe distance between the robots under 3PLL control.
Furthermore, the reference distances ng and 15/3 in /-/ control should be designed in

order to satisfy that the group motion is accomplished in a restricted area that is limited

by the communication range among robots

4.5 Reactive control scheme

In the tracking phase, if the safe distance given (3.41) is not preserved, VHRT control
cannot ensure the collision avoidance between two concerning robots. A reactive
control scheme is then proposed for this purpose, based on the general notice that 3PLL
control should be used for the robot of lower priority in the case of potential collision

detected, to drive the follower to diverge but head to target position so that collision will
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most likely not happen after switching back to tracking control. In this case the
follower, robot 3, must refer to two leaders: robot 1, which is the robot of higher priority
as the first leader, and robot 2, which is the virtual robot of robot | as the second leader.

The wvirtual robot’s predefined clearances with respect to its host are then

R=2rpp +Dpax O R==(2r54p + Dray) and L=0, where Dy, is the largest

distance from one of three head points of robot 3 to its centre. The sign of clearance R
is decided such that the second leader should be close to the target position of robot 3.

To illustrate, Figure 4.6 depicts the case R =—(2ry,z + Doy ) and L =0, where robot 3
of the lowest priority is to switch to 3PLL control, robot 1 is the first leader, and its

virtual robot, robot 2. The control parameters lfg and 1513 are designed as follows,

1% = 2700 + Dinax + 61,

max

) (4.33)
123 = 52.

&

Figure 4.6: Case R = —(27,,, + Dpay) With 3PLL control
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When using 3PLL control, the distances from one of three head points of robot 3 to the

centres of its leaders are taken into account, lf‘; has to be therefore increased by D, .

Margins &), and &, are deliberately augmented to /{‘(3 and /5’3 to ensure the distance
between centres of robot 1 and robot 3 to be strictly greater than 2rep - These together

will help to drive robot 3 closer to the virtual robot 2 while going around a safe

boundary of robot 1, which is a circle with centre of robot 1 and radius 2safe-

Note that this reactive control scheme is similar to the ones proposed in [Ha et al.,
2005] but the velocities of the virtual robot can be easily determined based on those of

robot 1 according to Proposition 4.3. They are required for the /-/ control for robot 3

4.6 Proposed algorithm for combination of VHRT and
3PLL control

A simple algorithm is used here to combine the VHRT and 3PLL control (see Figure
4.7).

Let us consider robot i (/ =2,3) in the group. First, parameters of controllers must be

initialised for formation establishment, taking into account the desired position of this
robot in relation to its leader, and for collision avoidance control, considering safe
distances to its two nearest robots. Then possibility of collision is checked between two
followers (robot 2 and robot 3). If potential collision is detected, the robot compares its
priority level to that of the other follower. Upon a lower priority level (higher index),
i.e. i =3, it has to change to the 3PLL control for collision avoidance. If no possibility
of collision exists or the priority level is higher than that of the relevant robot (i.e.

i =2), robot i will use VHRT control to form and maintain the required formation.

Note that in the tracking phase if there is a possibility of collision between the robot and
its leader (i.e. the leader is found in “critical area” at the beginning of this phase),

proposed reactive control scheme will be used firstly for collision avoiding. After
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avoiding collision by using the reactive control scheme, the robot will switch back to

VHRT control to eventually establish the desired configuration.

Start
Prepare initial parameters for robot i (i=2,3)

;

—» Detecl collision belween followers

No
Yes
Higher Cqmgare Lower
priorities
\
Formation Control . .
. Collision avoidance control
(VHRT cont;zlr;fss)chve control (3PLL control)

!

No

Yes

l
(=

Figure 4.7: Algorithm to combine VHRT and 3PLL control
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The check of possibility of collision should be repeatedly done in a sufficiently small
sampling time to guarantee that any potential collision can be detected and avoided in

time.

Path planning for the leader of the group (i.e. robot 1) should be performed considering
the predefined formation configuration and the given workspace but this problem is

beyond the scope of this thesis.
4.7 Simulation results

We present here two simulations. The first simulation illustrates the capability of
forming a line formation, whilst the second one shows the way 3PLL control is applied

for the case of singularities.

The number of occlusion in fact can be decreased by modifying 11‘13, 1;’3 and 7, in each

occurrence, here we simply use constant values for all circumstances.
4.7.1 Simulation 4.1: Line formation

To illustrate the capability of forming a line formation and avoiding collision among
robots in a formation, let us first consider the case of three mobile robots initialized
from arbitrary positions. Parameters and conditions used in this simulation were set as

in Table 4.1.

Figures 4.8 and 4.9 show the time responses of position X, Y, orientation & and the
trajectories of two mobile robots in the global coordinates. With these initial
conditions, potential collision could be observed at time point ¢ =0.2s between robot 3
and robot 2. At that time, robot 3 applied /-/ control with head point A to avoid
collisions and then switched back to VRTH control until the desired line formation 1s

obtained.

The simulation results illustrate that the three robots can successfully get into and

maintain a line formation without collision among them.
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Table 4.1: Parameters and Conditions for Simulation 4.1

Simulation Parameters Rolbot Rozbot Ro3bot
x(0) (cm) 70 20 40
y(0) (cm) 0 40 -30
Initial Conditions 8(0) (rad) 0 0 |
v {cm) S
w (rad/s) 0
Parameters for desired formation R (em) 40 40
L (cm) 0 0
Tracking margin for head robot d(cm) ] ]
Safe distance between any two robots 2ry. (cm) 26 26 26
A (s 1
Parameters for VHRT control ) !
IC) 2 2
rq(cm) 0
1, (em) 12
Parameters for /-/ control with point A T.(s) 3
)54 (cm) 100
/dng (CIT]) 100

4.7.2 Simulation 4.2: Case of singularities

To illustrate the capability of avoiding singularities and possibilities of collision among
robots in a formation, we choose the case of three mobile robots moving to form a
wedge formation to simulate. Parameters and conditions used in this simulation were

set as in Table 4.2,

Figures 4.10 and 4.11 show the time responses of position X, Y, orientation ¢ and the
trajectories of two mobile robots in the global coordinates. With these initial
conditions,  potential  collision could be observed at time  point
1=0.25;3.21s;6.33s;9.46sand 12.6s when using /-/ controller with head point A of
robot 3. It is observed that at f =9.46s , due to singularity, the system switched to the /-

[ controller with respect to head point B.

Our simulation results illustrate that the three robots can successfully get into and
maintain a wedge formation without inter-robot collision even in the presence of

singularities.
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Table 4.2: Parameters and Conditions for Simulation 4.2

Simulation Parameters ROIbOt Rozbot R03b0t
 x(0)(em) [ 30 0 20
»(0) (cm) 0 -50 -90
Initial Conditions 0(0) (rad) 0 0 1
v (cm) 5
w (rad/s) 0
Parameters for desired formation R (em) 40 40
L (cm) 30 30
Tracking margin for head robot d(cm) ] ]
Safe distance between any two robots 2rqp (Cm) 26 26 26
Parameters for VHRT control 40 (5) : :
(s 2 2
rs(cm) 0
L (ecm) 12
Parameters for /-/ control with point A T.(s) 3
154 (cm) 100
1334 (cm) 50
rg (cm) 0
lg (cm) 6
Parameters for /-/ control with point B TAs) 3
M35 (cm) 100
/dZJB (cm) 50

4.8 Conclusion

This chapter has presented a new three point [- control to avoid inter-robot collisions in
a group of three mobile robots with the capability of singularity alleviation. Combining
this control law with the VHRT one, which is presented in the previous chapter, a new
algorithm has been proposed incorporated with a reactive control scheme for formation

control of a group of mobile robots.

There is a trade-off in choosing of three virtual points A, B, C around the centre point of
robot 3. They should be separated from each other far enough to ensure that the
singularity can be overcome when switching among three concerning controllers. On

the other hand, they should be close enough to each other so that the switching does not
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cause any sudden change of velocities of robot 3. In addition, from equation (4.29) it is
clear that one should choose /("3, /§3 and T, appropriately, that is /]‘g, /§3 to be small

enough and 7, to be large enough, to alleviate the sudden change of velocities of robot

3 when switching from VHRT to 3PLL control.

The proposed approach in this chapter could be an appropriate solution to the
initialisation problem for a group of three mobile robots. For a group of more than three
robots, a formation can be established firstly for pre-defined three robots and then
enlarged gradually for other robots in the group. Such a step-by-step algorithm is
expected to reduce the possibilities of collisions among robots in the group. A
procedure for formation initialisation of a group of N mobile robots is the content of the

next chapter.
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Chapter 5

Formation initialisation for a group of

N mobile robots

5.1 Introduction

The formation initialisation problem involves the process of deploying mobile robots in
the group to assemble from arbitrary initial points to establish a desired formation.
Collision avoidance among robots and between robots and obstacles is always a great
challenge in robotic formation control, especially in the initialisation phase when the

group of mobile robots has not formed the desired geometrical shape.

In the robotics literature, there has been little effort paid to the formation initialization
issue in the research of multi-robot coordination. In [Sugihara and Suzuki, 1996], a
group of simulated robots formed approximations to circles and simple polygons, using
global knowledge of all robots’ positions. Each robot oriented itself to, e.g., the furthest
and nearest robot. In [Chen and Luh, 1994], a similar setup was presented, but group
motion was also considered, e.g., a matrix formation performing a right turn. A
formation is defined by a Virtwal Structure (VS) in [Lewis and Tan, 1997]. The
algorithm was iteratively used to command the VS to the current positions, displace the

VS in some desired direction, and update the robots’ positions.
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All above approaches require that all robots had global knowledge about the group. In
[Fredslund and Mataric, 2002] a general algorithm was proposed for N mobile robots to
establish and maintain some predetermined geometric shape using only local sensing
and minimal communication. The capability of forming stable, robust and switchable
formations however was usually demonstrated by extensive simulations and

experiments.

The simple algorithm proposed in the previous chapter, which combines VHRT and
3PLL control incorporated with a reactive control scheme, can be an appropriate
approach for initialization formation for a group of three mobile robots. For a group of
more than three mobile robots, collisions among robots may easily happen in the
initialization phase. In this chapter a step-by-step procedure incorporated VHRT, 3PLL
control with reactive control schemes will be proposed to ensure that a desired
formation of a group of N mobile robots can be established and maintained without

inter-robot collisions. We will also use graph concept to model formations.

Section 5.2 presents models and problem formulation. Some reactive control schemes
to avoid collisions among robots are presented in Section 5.3. A step-by step procedure
to initialise and maintain a desired formation for a group of N mobile robots is given in
Section 5.4. Section 5.5 describes control graphs for modelling formations and
enumerates all allowable graphs for a group of N mobile robots. Simulation results to
validate the proposed approach are presented in Section 5.6. A conclusion is given in

Section 5.7.

5.2 Model and problem formulation

The kinematic model (3.1) or (4.1) as in previous chapters is used here for a three-wheel

mobile robot.

The possibility of collision between any two mobile robots 7 and j is also measured by

using function f; asin (3.2) and (3.3).
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In addition to four assumptions presented in the previous chapter, a new one is required

to reduce the possibility of inter-robot collision in a group of N mobile robots.

e Assumption 5. Distance between any two robots in desired formations should
preserve a certain lower limit, which is double of the safe distance between

them, i.e. 4r, .

The objective here is to coordinate N mobile robots to achieve:
l. any desired formation which satisfies Assumption 5, and

2. no collision between any two mobile robots.

5.3 Reactive control schemes

A procedure is proposed here using VHRT control as a basic tracking controller for
forming a desired geometrical shape of a group of multiple mobile robots. Collisions
among robots in the group can be avoided by using 3PLL control with appropriate
reactive control schemes. The 1dea is that should collision occur among robots

according to the collision detection criteria described by function f;, 3PLL control will

be used to drive the lowest priority robot (i.e. robot with the highest index) among
concerning robots to diverge from them but still heading to target position so that

collision will most unlikely happen after switching back to VHRT control.

Generally, cases necessitating reactive control can be dealt with by using two following
schemes. The first scheme is the same to the one described in previous chapter and is

restated here for the sake of completeness.
5.3.1 Scheme 1: Potential collision between two robots

This scheme is used for a potential collision between any two robots, as illustrated in
Figure. 5.1. The lower priority robot, robot 3, will switch to 3PLL control with respect

to two leaders: the higher priority robot as the first leader (robot 1) and a VR of this

robot as the second leader (robot 2) with predefined clearances R = 2ry,, + D,y (robot
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27) or R=—(2ryp + Diyyy) (tobot 27) and L=0. Here, D, is the largest distance

from one of three head points of robot 3 to its centre, and the sign of clearance R (ie.
the choice robot 2 as robot 2° or robot 2”) is decided such that the second leader should

be close to the target position of robot 3.
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Figure 5.1: Reactive control scheme 1 with 3PLL control

The control parameters /f‘é and /20'3 can be designed as follows

+ 0y,

d
113:2rmfe+Dmax (5.1)

1?3 = 52.

Using 3PLL control with the above parameters will drive robot 3 closer to the VR
(robot 2) while going around the safe boundary of robot 1, which is a circle with centre

of robot 1 and radius 2r. This will obviously reduce the possibility of robot 3 to collide
with the other robots. The reason that lfé 18 2ryap + Dyax rather than 2r,,.1s that in

3PLL control, the distances from one of three head points of robot 3 to the centres of its

leaders is referred instead of the distances among their centres. Thus in order to ensure

collision avoidance, le3 has to be increased by the largest distance from one of three
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head points of robot 3 to its centre. Margins &, and &, are deliberately augmented to

lf"; and l% to ensure the distance between centres of robot 1 and robot 3 to be strictly

greater than 2ry,,, .

5.3.2 Scheme 2: Potential collision between three robots

This scheme is used when there is a possibility of collision between a robot and two

other robots. The lowest priority robot will then apply 3PLL control with respect to two
leaders, which are thc two other robots concerned. The control parameters /f‘g and 1513

are proposed as,

d

113 = 2rsafe +Dmax +5I’

J (5.2)
Iy = zrsafe + Dppax + 02,

where again, D_,., o, and §, are augmented to lf'; and 12"3 for the same reason as

explained above.
5.4 Formation initialisation procedure

A step-by-step procedure is proposed in this section for initialising a group of ¥ mobile
robots to enter a desired formation [Nguyen et al., 2006c]. At each step, robots in the
group are classified as active or inactive. Active robots will participate to establish the
formation while inactive robots stay at its initial position. The process of formation
initialisation will then run until all robots in the group become active and a desired
formation is obtained. In addition, in the proposed procedure, each robot can play the
role of a follower (tracking another robot) or of a leader (guiding another one). The

leader of the whole group is called the /ead robot and is indexed by 1 [Balch and Arkin,
1995].

We also assume that inactive robots are designated not to obstruct any active robot.
This condition can be satisfied by appropriately numbering and choosing robots to be

active at steps.



5. Formation initialisation for a group of N mobile robots 107

The proposed process of formation initialisation can now be performed with the

following algorithm (see Figure 5.2).

1.

All robots in the group are initially considered inactive. Choose the
lead robot, indexed by /=1, to guide the whole group. Let it become
active.

Index (or reindex) all inactive robots from (7+1) to 2V, based on their
initial position with respect to the motion of the /ead robot.

Let one or two 1nactive robots with smallest indices become active. Use
reactively-controlled VHRT-3PLL to get them into desired positions
while avoiding collision with other robots until all 7 active robots have

reached their positions in the group. Go to 2.

If there is no inactive robot left (or =M, the desired formation has

established.

Exit.

The formation initialisation phase is a multi-step process. Each step begins when one or

two inactive robots become active and finishes when all current active robots reach their

desired positions in the group. Steps are indexed by k with 1<k <N. The number of

steps 1, of the initialisation process satisfies the following inequalities

N -1

n, =1+ if N is odd and there are always two inactive robots to become

active at each step except at step 1 when only the /ead robot becomes active.

n, = N if only one inactive robot becomes active at each step.

After step (k —1) (with k > 1), there are i active robots. Inactive robots in the group can

be reindexed in order to choose one or two appropriate robots with smallest indices,

which will be active at step k. The implementation of step k will let one or two those

robots become active (i.e. increase i:=i+1 or i:=i+2, respectively).
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Figure 5.2: Procedure for formation initialisation for N mobile robots
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Note that all robots in the group become active in turn from robot 1 to robot N. Thus if

robot i becomes active at step k, robot j becomes active at step / and j>i then I >k .

Assumption 5 ensures, at each step, the exclusion of the case when a new active robot
(i.e. a robot becomes active at that step) could detect possibilities of collisions
concurrently with more than one previous active robots. In addition, there are at most
two robots become active at each step, therefore in the initialisation process, a robot

cannot detect possibilities of collisions concurrently with more than two robots.

In practice, in order to implement the proposed procedure, there should be a centralised

unit that oversees the whole group and

e chooses an appropriate shape and internal topology of formations based on the

constraints in the environment and initial positions of robots
e indexes or reindexes robots if necessary, and
o decides when a step finishes and a next one begins.

The internal topology of a formation can be represented by a weighted digraph called
control graph as discussed in the next section. All allowed control graphs can be

enumerated, saved in a library and available for choosing by a centralised unit.

By applying the proposed procedure, a large group of mobile robots can be controlled to

form and maintain a desired formation without inter-robot collision.

5.5 Modelling formations

A formation of N robots has one designated /ead robot, which is indexed by 1, that
directly or indirectly controls all other (N-l) follower robots in the formation. Within

the formation, the follower robots will be dependent on other robots for their motion.
We term these robots as leaders to designate that they lead other follower robots, but
distinguish them from unique /ead robot 1. For example, using node / to represent robot
i and an arrow to describe the relation from a leader to its follower, in Figure 5.3 the

group of six robots has robot 1 is the /ead robot, robots 2, 3, 4, 5 are all leaders. Note
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that a robot can be a follower (tracking another robot) and simultaneously a leader

(guiding another one) such as robots 2, 5 in Figure 5.3.

Figure 5.3: An example graph for a group of six mobile robots
5.5.1 Control graph

A formation can be made up of two components:
1. The shape variables /7, that describe the formation internal state

2. A directed relational graph structure, the control graph or digraph, H, that

represents the internal topology of the formation.

In our framework a formation could be established through the step-by-step procedure,
therefore inspired by [Desai, 2002], we use a weighted digraph to model a group of

mobile robots in formation. The definition of control graph is as follows.

Definition 5.1: Control Graph

The internal topology of a formation of N mobile robots can be represented by a

weighted digraph H such that:
e Node i represents robot i,

o An edge ij, which is directed from node i to node j, represents a relation between

leader robot i and follower robot j,

o Ifrobot i becomes active at step k and robot j becomes active at step | then edge

ij is assigned a weight wy; =1—-k.
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Note that in our procedure, the /ead robot, which is indexed by 1, becomes active at step
1. Robot 2 becomes active at step 2 and always follows the /ead robot. Therefore, there
is always an edge 12 with the weight w;; =1 in the control graph. In addition an edge

is always connected from a leader to its follower, which is becomes active later, thus

lSwy<m -1<N-1.

For example, Figure 5.4 describes a weighted digraph representing an internal topology
to establish a formation for the group in Figure 5.3. Each edge is presented with its
weight included. In this example, lead robot 1 becomes active at step 1, robot 2 and
robot 3 become active at step 2 and follow the lead robot, robot 4 and robot 5 become
active at step 3 (the former follows robot 2 while the later follows robot 1). Finally,

robot 6 becomes active at step 4 and follows robot 5.

Figure 5.4: A weighted digraph for a group of six mobile robots

One possible way of representing a digraph is through an adjacency matrix. We define

an adjacency matrix for a weighted digraph below.
Definition 5.2: Adjacency matrix

An adjacency matrix G (N x N) can be used to represent a control graph H of N mobile

robots with following features.
o Rows and columns of G are presented by nodes which represent the robots,

o The (i, j) element represents the weight of directed edge ij from node i to node J,
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Element G, =0 if there is no edge uv in the graph H.

For example, matrix G’ representing the digraph in Figure 5.4 is

*
O O O O O O
—_ O O O O

o O O O O =
O O O O o -
o O O O == O
O O O O O N

0]

There are some characteristics of the control graph and its adjacency matrix

representing a formation, which is established by following our step-by-step procedure.

A follower always follows a leader with higher index. Therefore there is an

edge ij only if i < j and the adjacency matrix is always upper-triangular.

The lead robot does not follow any other robots so elements in the first column

of the adjacency are identically zero.

Every robot in the group, except the lead robot, has one and only one leader.
This implies that there are no two edges directing to the same node and there is
one and only one element different from zero in each column, except the first

column, of the adjacency matrix.

At each step of the initialisation procedure there are at most two inactive robots
become active. Thus there are at most two edges with the same weights and
begin from the same node. Consequently, in the adjacency matrix there are at

most two identical elements different from zero in the same row.

If there are s rows identically zero, there are (N-s-7) leaders in the group and one

lead robot. For example, there are two leaders (robot 2 and robot 5) in the graph

in Figure 5.4 since the third, fourth and sixth rows in G are identically zero.

Depending on the types of sensors used, it may be difficult for a robot to follow its

leader when the leader is far way from the follower. In fact, when the sensors are of a
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line-of-sight type, such as optical or acoustic sensors, the restrictions are more severe.

The follower must be able to “see” the leader in the formation.

The formation can be changed, and this includes changes in the control graph and/or the
shape of the formation. In those situations, it may be necessary to guarantee the “line of
sight arrangement” between the leader and its followers. In general, such sensor

constraints may be quite complex and are usually specific to applications.

In the following section we will prove the expression for the total number of allowable
control graphs for given indexed N mobile robots. That proof implies the way to

enumerate all control graphs of the group.
5.5.2 Enumeration of graphs

Consider a group of given indexed N mobile robots with lead robot 1 and (N—l)

follower robots.

Let S;(N) be the set of allowable control graphs of the group in which at the final step
there is one robot to become active (i.e. robot N), S,(N) be the set of allowable control

graphs of the group in which at the final step there is two robots to become acrive (1.c.

robot (V-71) and robot N).

Define S(N)to be the set of all allowable control graph of the group. It is clear that

SI(NYUS,(N)=S(N),

(5.3)
S| (NN SH(N)=0.

The Cardinal numbers or numbers of elements (graphs) of S{(N), S(N), and S(N)
are denoted as Card(S,,N), Card(S,,N), and Card(S,N), respectively. Thus
Card(S,N) = Card(S,,N)+Card(S,,N). (5.4)

We will state and prove the following proposition for the total number of allowable

control graphs for given indexed N mobile robots.
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Proposition 5.1 The numbers of allowable control graphs of groups of (N > 1) mobile

robots including the lead robot and (N-1) follower robots establish recursive sequences

Card(S|,N) and Card(S,,N) with the relation:

For N=2:
Card(S,,2) =1,
Card(S,,2) =0,
? (5.5)
For N >2:

Card(S,,N) = (N =1)(Card(S,,N =1)+Card(S,,N ~1)),
Card(Sy,N) = (N =2).Card(S;,N - 1).

Proof

For N =2, it is clear that there is just one possible control graph for a group of two

mobile  robots and this graph belongs to the set §(2), ie.

Card(8,,2) =1; Card(S,,2) = 0(see Figure 5.5)

gﬁ

Figure 5.5: Control graph for two mobile robots
For N >2: Consider a group of N mobile robots.

Graphs in the set S;(V) can be created from graphs in the set S(N —1) by letting robot

N follow one of robots 1, 2,..,{N —1) at the final step. Therefore the number of graphs

in the set S\ (V) 1s
Card(S,,N)=(N -1).Card(S,N -1) =(N ~D){Card(S;,N -1)+ Card(S,,N -1)).

Graphs in the set S,(N) can be created from graphs in the set S;(N-1) by letting

robot N follow one of robots 1, 2,..,(N-2) at the final step. Note that, robots, which
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become active at the same step, cannot be the leader- follower of each other (i.e. robot N

cannot follow robot (N —1)). Therefore the number of graphs in the set S,(n) is

Card(S,,N)=(N=2).Card(S,,N -1).

For example, the number Card(S,N) of allowable graphs for N mobile robots can be

calculated as follows.

N=2:
Card(5,,2) =1,
Card(S,,2) =0,
Card(S,2) = Card(S;,2)+ Card(S,,2) =1+0=1.
=3:
Card(S,,3)=2.Card(§,2)=2.1=2,
Card(S,,3)=1.Card(S,2)=1.1=1,
Card(S,3) = Card(S;,3) +Card(S,,3)=2+1=3.
=4:
Card(S,,4) =3.Card(S,3)=3.3=9,
Card(S,,4)=2.Card(§,3)=22=4,
Card(S,4) = Card(S,,4)+ Card(S,,4) =9+4 =13.
=3

Card(S,,5) =4.Card(S,4) =4.13 =52,
Card(S,,5)=3.Card(S,,4)=3.9 =27,

Card(S,5) = Card(S,,5)+ Card(§,,5) =52 + 27="19.



5. Formation initialisation for a group of /N mobile robots 116

Card(S,,6) = 5.Card(S.5) = 5.79 = 395,
Card(S,,6) = 4.Card(S,,5) = 4.52 = 208,

Card(S,6) = Card(S,,6) + Card(S,,6) = 395 + 208 = 603.

One can obtain these patterns

N 2, 3, 4, 5 6.

Card(S,,e) I, 2, 9, 52, 395..
Card(S,,) : 0, 1, 4, 27, 208..
Card(S,e) 1, 3, 13, 79, 603...

Figure 5.6 and 5.7 show all allowable control graphs for N=3 and N=4 respectively.
There are 3 control graphs for a group of three mobile robots and 13 control graphs for a

group of four mobile robots.

S4(3): 2 graphs S2(3): 1 graphs

N

d . @'/ /Cf @’p\b
© o

Figure 5.6: Control graphs for three mobile robots

1

The above proof implies the way to enumerate all allowable control graphs of a group
of N mobile robots. During the process of enumerating the allowable control graphs, a
library of the control graphs can be created. Each control graph could be recalled based
on the constraints in the environment, positions of robots in the group and the motion of

the lead robot.
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S4(4): 9 graphs

S,(4): 4 graphs

; o |
@Pi éﬁ@ ?‘@&

Figure 5.7: Control graphs for four mobile robots
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5.6 Simulation results

We present here some simulations to illustrate the capability of using different control

graphs to initialise various types of formations for a group of five mobile robots from

arbitrary positions.

5.6.1 Simulation 5.1;: Line formation

To illustrate the procedure proposed for a group of robots to enter a formation, we chose

typically the case of five mobile robots moving to form a line formation to simulate.

Parameters and conditions used were set in Table 5.1

Table 5.1: Parameters and Conditions for Simulation 5.1 and Simulation 5.2

. . Robot | Robot | Robot | Robot | Robot
Simulation Parameters
1 2 3 4 5
x(0) (cm) 30 0 10 60 30
»(0) (cm) 0 0 50 80 -130
Initial Conditions 6(0) (rad) 0 0 0 2 3
v (cm) 5
w (rad/s) 0
P ters for desired f . R (cm) 60 -60 60 -60
arameters for desired formation L (em) 0 0 0 0
Tracking margin for head robot d(cm) 1 1 1 1
Safe distance between any two robots 2ty (€M) 22 22 22 22 22
2 (s 1 ! I I
Parameters for VHRT control 1
A:(s7) 2 2 2 2
rys(cm) 0 0
Li(cm) 5 5
Parameters for /-/ control with point A T,(s) 3 3
51 (Cm) 2 2
J; (cm) 2 2
mobile

The corresponding control graph (one of 79 allowable control graphs for five

robots) is described in Figure 5.8
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Figure 5.8: Control graph of Simulation 5.1

Following the proposed procedure, in the two first steps, three robots 1, 2, 3 formed a
part of the desired formation (a “small” line). These steps took 30 seconds. At the third

step, robot 4 tracked robot 2 and robot 5 tracked robot 3 to form the desired line shape.

Figures 5.9 and 5.10 show the time responses of position X, Y, orientation § and the
trajectories of five mobile robots in the global coordinates. It is observed that robot 5
could possibly collide with robot 4 at 1 =30.52s . After avoiding collision by using the
proposed reactive control scheme 1, robot 5 again could possibly collide with robot 2 at
t=33.56s, with robot | at r=36.64s, and with robot 3 at r=39.7ls. At those
instances, robot 5 also used proposed reactive control scheme | to avoid collision and

then switched back to tracking control to eventually establish the desired formation.

Applying reactive control schemes for collision avoidance, there may be abrupt changes

in velocities of the follower (i.e. robot 3 of concerning robots). As mentioned in the
previous chapter, the choices of 1("3, 1513 and 7, should be carefully concerned to

alleviate the sudden changes of velocities of the follower when switching from VHRT

to 3PLL control.

This simulation demonstrates the capability of avoiding collision and forming a desired

formation for a group of multiple mobile robots.
5.6.2 Simulation 5.2: Line formation — No collision

This simulation used the same parameters and conditions as in the Simulation 5.1 (see
Table 5.1) but with a different control graph. The control graph used for this simulation

is described in Figure 5.11.
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Figure 5.11: Control graph of Simulation 5.2

As in previous simulation, in the two first steps, three robots 1, 2, 3 formed a part of the
desired formation (a “small” line). These steps took 30 seconds. At the third step, only
robot 4 became active and tracked robot 2. This step took 10s seconds. Finally, at the
fourth step, robot 5 became active and tracked robot 3 to form the desired line

formation.

Figures 5.12 and 5.13 show the time responses of position X, Y, orientation € and the
trajectories of five mobile robots in the global coordinates. By letting robot 5 become

active after robot 4 does, there is no possibility of collisions in this simulation.

This simulation illustrates that an appropriate choice of the control graph can lessen

possibilities of collisions among robots in the group.
5.6.3 Simulation 5.3: Diamond-like formation

We considered the case of five robot moving to form a diamond-like formation.
Parameters and conditions used were set in Table 5.2 with the control graph described

in Figure 5.14.

Three robots 1, 2, 3 formed a part of the desired formation (a wedge) in the first two
steps by following the proposed procedure. After that, at /=30s, the third step began

with robot 4 and robot 5 tracking robot 1 to form the desired diamond shape.
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Table 5.2: Parameters and Conditions for Simulation 5.3
Simulation Parameters Robot | Robot | Robot | Robot | Robot
1 2 3 4 5
x(0) (cm) 30 0 10 150 150
¥(0) (cm) 0 0 50 180 -150
Initial Conditions 8(0) (rad) 0 0 0 2 /2
v (cm) S
@ (rad/s) 0
Parameters for desired formation £ (em) 83 -85 0 0
L (cm) 40 40 40 80
Tracking margin for head robot d (cm) 1 1 1 1
Safe distance between any two robots 2rsap (cm) 20 20 20 20 20
A (s7h ] 1 1 1
Parameters for VHRT control ‘
A:(s) 2 2 2 2
rq(cm) 0 0
14 {cm) S S
Parameters for /-/ control with point A 7,(s) 3 3
5/ (Cm) 2 2
d, (cm) 2 2

O O

Figure 5.14: Control graph of Simulation 5.3 and Simulation 5.4

Figures 5.15 and 5.16 show the time responses of position X, Y, orientation & and the

trajectories of five mobile robots in the global coordinates. [t is observed robot 5 could

possibly collide with robot 2 at ¢=30.22s, and robot 4 with robot 3 at r=30.45s.

After avoiding collision by using the proposed reactive control schemes, robot 4 and

robot 5 could switch back to tracking control to eventually establish the desired

formation.
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Our simulation results show the validity of our proposed framework to initialise and

establish a desired formation for a group of mobile robots while ensuring inter-robot

collision avoidance.

5.6.4 Simulation 5.4: Wedge formation

In this simulation, we chose five robots to form a wedge formation. The control graph

of this simulation is the same as the one of Simulation 5.3 and is described in Figure

5.14. Parameters and conditions of robots were set in Table 5.3

Table 5.3: Parameters and Conditions for Simulation 5.4

. . Robot | Robot | Robot | Robot | Robot
Simulation Parameters
1 2 3 4 5
x{0) (cm) 30 0 10 S0 330
y(0) (cm) 0 0 50 80 -140
Initial Conditions 8(0) (rad) 0 0 0 2 3
v (cm) S
w (rad/s) 0
p for desired fi p R (cm) 50 -50 50 -50
arameters for desired formation L (om) 50 50 100 100
Tracking margin for head robot d (cm) ] ] | ]
Safe distance between any two robots 2rsa (€M) 22 22 22 22 22
A (s™) | ] I |
Parameters for VHRT control |
A2(s7) 2 2 2 2
ry(cm) 0 0
/A (Cm) S 5
Parameters for /-/ control with point A T.(s) 3 3
d; (cm) 2 2
52 (cm) 2 2

After first two steps of the initialisation procedure as in the Simulation 5.3 to form a

small wedge, at 7 =30s, robot 4 and robot 5 began to track robot 1 to join the group.

Figures 5.17 and 5.18 show the time responses of position X, Y, orientation @ and the

trajectories of five mobile robots in the global coordinates.
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It is observed the possibility of collision between robots 5 and robot 1 at 1 =31.08s. At
that moment reactive control scheme 1 was used to avoid the collision. However, when
robot 5 switched back to tracking control, the possibilities of collision between it and
robot 3 could be observed again at 1 =34.475,37.56s and 40.7s. Therefore robot 5 had

to switch between tracking and collision avoiding controls several times before it can

reach to the desired position in the group’s formation.

This simulation demonstrates that in some cases the reactive control schemes have to be

applied several times to avoid collisions among robots

5.7 Conclusion

This chapter has presented a framework for initialization formation for a group of N
mobile robots. The proposed framework includes a step-by-step procedure incorporated
with some reactive control schemes based on VHRT and 3PLL control laws. Weighted
digraphs are used to model the formations established by the step-by-step procedure.
We also have stated and proven a proposition, which is useful for enumerating all
allowable control graphs for a group of given indexed N mobile robots. Under some
assumptions as in the case for a group of three mobile robots together with the new one
of desired formations, a group of multiple mobile robots may be initialized and

established desired formations without inter-robot collisions by using this framework.
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Chapter 6

Observer-based decentralised

approach to robotic formation

6.1 Introduction

Control of a group of mobile robots in a formation requires not only environmental
sensing but also communication among vehicles. Enlarging the size of the platoon of
vehicles causes difficulties due to communications bandwidth limitations.
Decentralized control may be an appropriate approach in those cases when the states of

all vehicles cannot be obtained in a centralised manner.

In [Beard et al., 2001], a control architecture for formation flying is proposed using
formation and supervisor units in a centralized manner, and local controllers are
designed to estimate the states of the local instantiations of these units. However,
interconnections between formation and the local agents, interactions between the
supervisor unit and behaviours are not introduced, and also the observer design
mentioned in local control is not detailed. A framework for decentralized control of
autonomous vehicles is proposed in [Stilwell and Bishop, 2000], using nonlinear
observers to estimate the complete system state with minimal explicit communications

between agents. The examples therein illustrate an autonomous platoon with a very
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simple model for the vehicle dynamics. A specific communication network topology is
examined later in [Stilwell, 2002], where platoon-level functions representing global
features that can be measured by an exogenous system. To implement these results in a
realistic setting, a separate controller would be designed for each of a series of
trajectories, and then the controllers would be gain scheduled as the vehicles move

along the trajectories.

In moving toward a suitable architecture for multi-agent system control, this chapter,
motivated by [Stilwell, 2002] and [Ha and Trinh, 2004], is devoted to the decentralized
implementation of a global state-feedback controller for a platoon of mobile robots in a
formation under a decentralized information structure. The multi-agent system
comprises generally N robots, cach with a local control station. The control input for
the ith station is calculated from the information contained in its local input and output
signals only. Decentralised observers are also proposed here but unlike the approach by
[Stilwell and Bishop, 2000], no explicit flow of information takes place among the
control stations. It should be pointed out that nonlinearity, under-actuation and
complexity of the formation model would make it difficult to implement any
decentralised control strategies for a large number of robots unless they have been
properly initialised. 1t is expected therefore that the robots formation motion mentioned
in this Chapter has passed an initialisation phase by using a technique described

previously in Chapters 3-5, and also the formation trajectories are linear.

This chapter is organised as follows. After the introduction, Section 6.2 presents the
system description and formulates the problem. The main development of the proposed
approach is detailed in Section 6.3. The design procedure is illustrated in Section 6.4
with simulation and experimental results included for a group of mobile robots. The

conclusion is given in Section 6.5.

6.2 Modelling

6.2.1 Model of a nonholonomic mobile robot

A mobile robot can be described by a common kinematic model as:
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X=vcosd,
y=vsing, (6.1)
6 = w,

where (x,y) is the centre point on the wheel axis, 8 € R is the orientation and inputs v

and @ are the translational and angular velocities respectively.

By linearising around a specific trajectory with v=g=const and & =b =const the
corresponding velocities are x=acosb, y=asinb, and §=0. By sclecting new

variables

x—(acosb).t

=| y—(asinb) |, [;J:{v;a} (6.2)
6-b

D < x|

one can obtain a linear time-invariant system for the robot as:

X 0 0 -asinb|lXx cosb O] _
51=10 0 acosh |7 |+!sinp 0 [i} (6.3)
gl loo o |a|]| o 14

Note that this linearised model is valid when the motion of a robot in formation is near a

specified trajectory [Stilwell, 2002].
6.2.2 Modelling a group of mobile robots in a formation

Consider a system composed of N mobile robots, uncoupled and modeled by (6.1).
Each robot has a local controller that generates the local control signals based on local

measured signals and signals broadcast exogenously.

The states of the whole system can be described by:
X=[xs » 6], (6.4)

where x5 =[x xz...xN]T, ys = yz...yN]T, 05 =16, (92...9N]T, and where x;,y;,0;

are positions and orientation of the i-th robot. The control input 1s u = [vs 5], where
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T T . : :
sz[vl v2...vN] and a)zz[a)l a)z...a)N] , With v,,@; being respectively the

translational and angular velocities of the j-th robot, j = 1,2,...,N.

Globally, there are features of the platoon that can be measured exogenously. These
features such as the vehicle average position are referred to as action reference [Kang et
al., 2000], dynamic coordination variables [Beard er al, 2001], or platoon-level
functions [Stilwell, 2002]. 1In this chapter, they are denoted h(.X), a function of the
entire platoon state, assumed to be linear and differentiable, broadcast to all robots. In
the control of a group of N mobile robots in a formation the state variables and platoon-
level functions characterize the state of the overall system with respect to a global
objective (i.e. getting into and maintaining a formation pattern). Thus, the model of the

platoon can be written as:
S(t) = AS(t) + Bu(r), (6.5)

y()=CS@), (6.5b)

where S(1)=[X h]T € R™ is the state vector, which is the augmentation of the global
system state variables under consideration X with the platoon level functions A,

u(tye R™ and p(¢f)e R™ are the input and output vectors, respectively. Under the

. . .o . . X X
linearised conditions, matrices A€ R Be R"™ ™ and C e R'®*™ are real constant.

Centralized control can be implemented if full information of S is made available to
individual robots from a central unit. [t becomes however very difficult when the size
of the system is quite large. Following the approach proposed in [Stilwell, 2002], where
the platoon-level functions representing integrated error signals are broadcast from an
exogenous system, an alternative technique to the robotic formation control problem is

proposed in this chapter by using observer-based decentralized controllers (see Figure

6.1).
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6.3 Observer-based decentralised control

Consider a linear time-invariant multivariable system described by (6.5). Without loss
of generality, it 1s assumed that the triplet (4, B,C) is controllable and observable. Let

N denotes the number of local control stations for NV robots of the platoon.

Exogenous Unit
N/ t AN
Platoon level functions

Robot 2 > Robot N

Robot 1

|

Controller 1 ; Controller 2 ; Controller N 9
- -t

Figure 6.1: Decentralised control model

Let the elements of the input vector u(¢) and output vector y(¢) be arranged so that
u(t) =[uf (0), u3 (D), ufy (O (6.62)
YOy =[] (), 3 (sees YN OT (6.6b)

where u;(f)e R™ and y;(1)e R" (i=12,...,N) are respectively the input and output

vectors of the i-th agent (e.g., u; =[v a),]T ). Accordingly, the system (6.5) can be

rewritten as

N
S =AS@) + Y Bu; (1), (6.7a)

i=1

yi()=C;S(1), i=12,..,N, (6.7b)
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where B; e R™™ and C; e R"™ are respectively sub-matrices of B and C,

determined according to equations (6.6).
6.3.1 Assumptions
Let us first introduce some assumptions.

e Assumption 1. The global system (A4, B,C) is controllable and observable.

e Assumption 2: There exist no decentralised fixed modes [Wang and Davison,

1973] associated with triplets (B; A4,C;), or if existing, they are assumed to be

stable.

e Assumption 3: Information available to the ith control station, J;(¢)includes

only the local output and control of the ith station:
3,0 ={y(0,u;(0)}, i=1,2,..,N. (6.8)

e Assumption 4: A satisfactory global state feedback control law has been found

of the form

u(t) = FS(1), (6.9)

where F e R”™" | by using any standard state feedback control method to obtain

the satisfaction of some system performance index.

e Assumption 5. Incidents for obstacle and inter-robot collision have been

avoided.

6.3.2 Problem statement

Taking into account the constraint of the decentralised information structure (6.8), the

objective here is to design decentralised controllers of the form
ui (1) = f{Si (0.0}, 1=12,. N, (6.10)

using only information available to local control stations, 1.e. J;(¢) such that the multi-

robot system (6.7) is stable with satisfactory performance as prescribed in the global
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control law (6.9). To achieve the control objective the global control (6.9) will be
constructed dynamically via decentralised linear functional observers that receive only

3;(1) as their inputs.
Let the global controller (6.9) be partitioned as

w, ()= FS(1); i=12,.., N, (6.11)

where F, e R™™ ™ | The decentralised controllers (6.10) are proposed to have the

observer-based form:
u; (1) =(K,L; + W;,C)S(t) = K;z;(t) + W, y; (1), (6.12a)

where F; = K;L; + W,C;

! [~

z; = L;S(t) e R”" is the state vector of system (6.12); and real

constant matrices K; e R™*Pi| L. e RPP™ W, e R™, E; e RV and G; e RV

are to be determined.
6.3.3 Observer development

Let us assume, without loss of generality, that matrix C; has full row rank, ie.

rank(C;) =r;, and takes the following canonical form

C,=[I, 0], (6.13)
where /, is an identity matrix of dimension r;.
Let the global control input matrix B be partitioned as

B=[B, B,), (6.14)

where B, € R=xUms=mi) A ccordingly, (6.5) can be expressed as
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.QO=AﬂQ+BmKO+Rﬁ%UL (6.15)

yi)y=C;S(), i=12,.,N, (6.16)

where u,. (1) contains (N —1) input vectors of the remaining (N —1) control stations

from other robots in the system.

Let an error vector ¢;(¢) be defined as
e(t)=z;,()-L;S(); i=12,..,N. (6.17)
By some simple manipulations, the following error equation is obtained

(6.18)
= Eie; (1) +(G,C, - LiA+ E;L)S(1) ~ LiB,.u,. . (1).

Therefore, (6.12b) can act as a decentralized linear functional observer for system (6.15-

6.16), provided that matrix E; is chosen to be asymptotically stable and matrices G;

and L; fulfill the following constraints

LB, =0, (6.20)
F,=K,L +WC,. (6.21)

Matrix E; can be chosen according to the desired dynamics of the observer to be
constructed. There are thus four unknown matrices (G;, L;, K; and W,) in equations

(6.19)-(6.21) to be solved for.

Using (6.13), equations (6.19) and (6.21) can be expressed as

I
Gi:(LiA—EiLi)[(;jI’ (6.22a)
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0
(L,-A—E,Li){] JzO, (6.22b)
(ng—1;)
and
I,
W, = (F; —K[Li)I: O'J, (6.23a)
0
(F;-K,L)) } =0. (6.23b)
Lng 1)
]

It is clear from equations (6.22a) and (6.23a) that matrices G; and W, can be directly

!

derived, once matrices K; and L; are obtained. It remains therefore to solve equations

(6.20), (6.22b), and (6.23b) for matrices K; and L;.

Let matrices F; and L; be partitioned as follows

F=li fr -

i

| fr,-+] fri+2 fﬂz]? (624)

and

Li:[/l /2 [r- | 1r—+l /I‘+2 /”Z]’ (625)

where  f, =/ foy o fu ] € R =l gty T € RP (G =120mg) are

respectively the jth column of matrices F; and L;.

Incorporating equations (6.24) and (6.25) into equation (6.23b) and after some

rearrangement gives the following matrix-vector equation:

ol=f, (6.26a)
where D = [O{m/(nz‘ri)}X(Piri) QJ, (6.26b)

Q = diag {K,} € R™i\me el (6.26¢)
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/:[/]T Lo ]TeRPf"Z, (6.26d)

fTa fhe o SET ermos, (6.26¢)

i

7=l

In equation (6.26b), O{ IS a zero matrix of dimension

m; (ng=r; )} pit;)

{m;j(ng —r)yx(pir;) .

Let us now consider cquation (6.22b). With E; € RP”# chosen to have a desired stable

eigenstructure and by some simple rearrangement, (6.22b) can be put in a matrix-vector

form as

Yi=0, (6.272)

where matrix W € R7"=7%Pi {g given by

E))

(a],r,-ﬂjp,- a2,l‘,+11p, (ari+1,r,-+11pi - Ei) anz——l,r,-+11p,~ anz,r,-+l]p1
aypoly,  rpadp o : . A rv2dp,
¥ =
al,nz—l[p,- aypedp - . (arnz_l)nz_llpl -L;) anz’nz_llp,_
] a,,nzlpi "2,/72117, ariﬂ)ﬂzlp’_ A 1 [P; (anz,"sz,' -
(6.27b)

and a,;, denotes the (J,k)-element of matrix 4. Similarly, (6.20) can be put in a

matrix-vector form as

/=0, (6.28a)

bl,l[p; bZJIP; b”f,»]]pi W

! b, »f (s —im; ) I
where O= blxszi bz»z i 15,20 pi ER{p:(m): %)) (p,'”E), (628b)

L_blv(’”Z‘mi)]Pf bz»(”t"’%)].l’i b”):»(”?z"”:)lpij

and b; , denotes the (/,k) -element of matrix B, .
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The problem is thus concluded in that of finding a feasible solution to equation:

O A
¥ li=]0|. (6.29)
® 0

Note that {m;(ng —r)+ p;(ng —r)+ p;(mg —m;)} linear simultaneous equations with

p;ns unknowns can be exactly solved if

{mij(ng =r)+ pi(ng =r)+ p;(mg —m;)} < pins (6.30)

m;(ny = r;)

the observer order p, should therefore be chosen such that p, > If an

}"I' + m[ — My
exact solution to (6.29) is obtained then with £, selected to be Hurwitz, error vectors
e;(t) asymptotically approach zero. The local control laws (6.12a) will therefore

reproduce asymptotically the global control (6.9).

Exact solutions to (6.12) may not always, however, be found, especially if low orders

p; of the observers (6.12b) are preferred. Alternatively, an approximate solution is
procedure for solving matrices K; and L; [Ha and Trinh, 2004]. The procedure using

the Moore-Penrose inverse and singular value decomposition of matrices involves the
formulation and solution of an optimisation problem, which will minimise the norm of
the error between the two sides of equation (6.26) and (6.27). It is shown that the error
norm of these two cquations will determine the overall closed-loop stability of the

system. The advantages of the approach include

o the observers are completely decentralised in that each local control station uses
locally available information only to generate the local control input signal, and

hence, no information transfer among the local controllers required; and

e the order of the each local observer can be selected from a lowest value.



6. Observer-based decentralised approach to robotic formation 143

6.4 Design illustration and results

6.4.1 Modelling

For the illustration purpose let us consider a simple case of two mobile robots controlled
in a 2-D formation parallel to the horizontal axis with a common absciss and a given

average ordinate in a global Cartesian coordinate system. Here, the formation can be
: _ Yityy —h. -
described by x; =x,, ——2——0, and 6, =6, =0, where (x},,,0,) and (x;,,,0,)

are respectively the position and orientation of robot 1 and robot 2.

The global state vector of the form (6) is chosen as S:[glé—‘zhl /727, where
6,=6,,0,=0,, and the platoon level functions are h =x, —x,+a(6, —6,)and
hy=y, +y,+ (6, +6,). Here functions s and h, contain respectively the global

information of the horizontal distance error between the robots, and the average value of

the formation vertical position, and «, f represent the level of perturbation in distance

measurements due to the robot orientation

Linearising about the formation trajectory with v=2,6 =0, one can obtain the system

equation of the form (6.15):
S = AS + By + Byus, (6.31)

where the local control inputs are

u = s Uy = ,
W Wy

(vi,@) and (v,,w,) are the translational and angular velocities of robot 1 and robot 2

respectively, and
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0 0 00 [0 17 o 07
00 0 0 0 0 0 1
A= , B = . B, = .
00 0 0 ‘ a 2721 —a
2 2 0 0] 0 4 0 B

Here the decentralized information structure of the form (6.8) includes y, =[6, i hz]T

and y, =[0, iy )
6.4.2 Observer design

The global controller can be designed by using any available techniques in the control
theory [Nguyen ef al., 2004]. For example, with @ =0.2, 4 =0.5, placing the closed-
loop eigenvalues at ~ {-1.5-1.5i; -1.5+1.51; -0.8; -0.5} for the feedback control u = FS
yields

{0.0098 —-0.1411 -0.25 -0.0568
' -1.1826 ~-0.1268 0  —0.7958
T1-0.0098 01411 025 0.0568 |
~1.0851 -1.5376 0  —1.3638

By applying the proposed method, observer-based decentralized observers of the form

~4 0
(6.12) can be obtained with the chosen matrix E; :{ 0 J ;

-4
Robot 1
p 70.07055 0.07055 L 0 2 0 -1
'71 00634 00634 " [0 2 0 -1
[—0.25 -0.339 0.0098 0 8 4
PV]: 5 Gl: .
0 -1.0494 -1.1826 0 8 4

Robot 2
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™ 0.0049 0.0049J [0 2 0 —1}
2= P 2= s

~0.054255  0.54255 020 -1

0.25 0.0372  0.1411 0 8 4
W, = , Gy =
0 -3.534 -1.5376 0 8 4

6.4.3 Simulation results

The objective of the simulation is to validate the proposed approach for two mobile

robots based on the model presented in Section 6.4.1.

With the specified formation, the desired positions and orientations are

Xig = X245 V14 + V24 =0,6,, =6,,=0. The following initial condition is chosen in our

simulation:

x;(0) ==6(cm) X5(0) =15(cm)
Robot 1: | y;(0) =1(cm) |, Robot2: | y,(0)=9(cm)
6,(0) =1(rad) 6,(0) = 2(rad)

To compare, Figure 6.2 depicts the trajectories of robots with centralized and
decentralized controllers. The global states (6,,6,,h,,h,) of the systems are shown in
Figure 6.3, when controlled in both centralized and decentralized manner. Figures 6.4
presents some snapshots over the time scale [0 15sec] of the multi-agent system with
indices denoting the time points and dash lines representing the desired trajectories of

the robots in the formation.

Simulation has been conducted for three robots moving in wedge or parallel
line/column formations. Fig. 6.5 shows the trace of three robots in various formations,
where changes are observed from a column to circular lines, circular to prismatic lines,

and then back to the column formation.

It is clear from simulation results that the multi-robot system with the proposed
decentralized controllers can form and maintain this simple desired formation. For
controlling a more complicated formation, a piecewise linearization technique would be
required. Experimental work has been conducted to verify the proposed technique, as

reported in the next section.
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6.4.4 Experimental results

Experimental platforms used for testing are the Amigobots. A photograph of the two
mobile robots when maintaining a line formation is shown in Figure 6.6. Range-finding
is handled by eight sonars mounted on the side of the robot, six in the fron and two in
the back. Shaft encoders track its local position. By using differential drive and the
nearly holonomic design, the robot mobility is acceptable over carpet edges and small
sills. Information of sensing, motor and power monitoring and control is sent in packets
over the wireless or tethered RS232 serial connection to PCs [Nguyen ef al., 2006a].

Specifications of the testbed- Amigo Mobile Robot- are given in Appendix A.

As described in the simulation, the objective of our experiments is to demonstrate the
decentralized control algorithm for two Amigobots in entering and maintaining a simple
formation, from an arbitrary initial condition. Here, the control actions together with
platoon level functions were computed from local information transferred from robots
to the PC. The control inputs (translational and angular velocities) of each robot were
computed in a decentralized manner. These signals were sent back through the wireless
network to each robot. The control algorithm was programmed in C++ using ARIA
(Advanced Robotics Interface for Applications) class. More details of ARIA class are

given in Appendix B.

Figures 6.7 and 6.8 show the time responses of position X, Y, orientation ¢ and
trajectories, in the global coordinates of the two Amigobots forming a line from initial

conditions:

%,(0) = =400mm, y,(0) = =500mm, 6,(0) =90°,
x,(0) = —600mm, y,(0) = 600mm, 6,(0)=0°,

respectively for Robots 1 and 2, where the formation was successfully established after

2.5 minutes with a line length of 0.8 metre.

In our experiments, the line formation for the two robots was two symmetrical straight

trajectories parallel to the horizontal axis, as in the simulated results shown in Figures
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6.2 - 6.4. The two robots should enter the formation parallel trajectories, located

equidistantly to the horizontal axis.

A column formation can also be formed from an arbitrary location of Robots 1 and 2,

say from:

x,(0) = ~400mm,  y,(0) = =500mm, 6,(0)=90°,
x(0) ==600mm,  y,(0)=600mm, 6,(0)=0°,

as shown in Figures 6.9 and 6.10, where the column width of 0.9 metre was maintained

after 160 seconds.

Experimental results show that these simple robotic formations are formed and
maintained successfully with two Amigobots. However, a small trajectory tracking
errors may occur due to errors in position information, transferred from the encoders to
the PC through the wireless communication. Tracking accuracy can be improved by
using better sensors and by incorporating further navigation assistive algorithms for

robot localization.

6.5 Conclusion

This chapter has presented a solution to the problem of controliing a platoon of robots in
a formation under a complete decentralized information structure. The proposed
approach exploits decentralised linear functional observers to implement a suitable
global feedback control law. Each local controller takes some global information of the
formation from an exogenous unit and only local output measurements. The design
technique is illustrated through the control of groups of mobile robots with simulation
results provided. Experimental results reported illustrate the validity of the proposed

technique for two Amigo robots in entering and maintaining simple formations from an

arbitrary initial position.
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Chapter 7

Thesis summary and conclusion

7.1 Introduction

This chapter summarises the work presented throughout the thesis and draws its
conclusions. In Section 7.2 the contents of each chapter are summarised, whilst the
contributions of the thesis are reviewed in Section 7.3. Some future research issues are

suggested in Section 7.4. A conclusion of the thesis is given in Section 7.5

7.2 Chapter summary

Chapter 1 presents the aim of this thesis: the development of decentralised controllers to
initialise and maintain a desired formation of multiple mobile robots in an obstacle-free

environment. An overview of the work covered in this project is also included.

Together with the review of the commonly-used models of mobile robots, a short

survey of control approaches available for analysis and design of robotic formation is

given in Chapter 2.

The design of controllers to establish and maintain a desired leader-follower
configuration between two mobile robots is concerned in Chapter 3. After reviewing

some existing control laws: [—y , separation-bearing, and virtual robot tracking
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control, a new virtual head robot tracking control is proposed. This proposed controller
can overcome limitations of virtual robot tracking control in forming a line formation
and 1n completely collision avoiding between robots. A standard [/O linearisation

technique is used to generate a control law for follower robot j such that its head robot

can track the virtual robot of leader i with the position errors decreasing monotonically.
This controller can be used as a basic controller in leader-follower strategies to solve the
robotic formation problems. Circumstances of possibility of collisions between robots
concerning the “critical area” are also analysed. Collisions in those cases can be
avoided by using a reactive control scheme with 3PLL control, which will be developed
in Chapter 4. Simulation results show some cases the new proposed controller can
remedy shortcomings of virtual robot tracking controller to obtain a desired

configuration between two mobile robots.

Chapter 4 deals with the problem of collision avoidance in a group of three mobile
robots. Some control laws for formation control, which have a capability of collision
avoidance, such as original /-/, separation-separation, and modified /-/ control are
described with their singularity. Three point I-I control is proposed to alleviate the
singularity. The idea is when the singularity happens, an appropriate controller shall be
chosen among three /-/ controllers related to three virtual points around the centre of the
concerning robot. Finally, an algorithm combining virtual head robot tracking and
three point -l control incorporated with a reactive control scheme is proposed for
formation control of a group of three mobile robots without inter-robot collisions.
Simulations with a group of three mobile robots are used to demonstrate the validity of

the proposed approach.

Formation initialisation for a group of N mobile robots is concerned in Chapter 5.
Firstly, two reactive control schemes to deal with potential collisions between two and
three mobile robots are presented using three point I-I control. Based on the reactively
controlled VHRT-3PLL, a step-by-step procedure is proposed to initialise a desired
formation for a group of N mobile robots. Robots in the group sequentially participate
to the process of formation initialisation so that collision avoidance among them can be
guaranteed. Weighted, directed graphs are used to model formations established

through the step-by-step procedure. A method to enumerate all allowable control
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graphs for given indexed N mobile robots is also presented. Each control graph could
be recalled based on the constraints in the environment, positions of robots in the group
and the motion of the lead robot. Extensive simulations with five robots validate the

capability of forming formations for a group of more than three robots without

collisions among them.

To accommodate the restriction in information exchange, a new observer-based
decentralised control approach to robotic formation is proposed in Chapter 6. The
proposed solution is based on the design of functional observers to estimate
asymptotically the global state-feedback control signals by using the corresponding
local output information and some exogenous global functions. The proposed technique
is tested through simulation and experiments for the control of groups of Amigo mobile

robots.

7.3 Thesis contribution

7.3.1 Virtual head robot tracking control

The first contribution of this thesis is the development of virtual head robot tracking
control to establish a desired configuration between two mobile robots. Motivated by
existing tracking control laws in leader-follower strategies for robotic formation, the
proposed controllers can be applied to obtain leader-follower configurations as
foundations of desired formations. Collisions between robots could be avoided in most
of circumstances, except cases related to “critical area” which can be dealt by using an

appropriate reactive control scheme with three point (-] control.

7.3.2 Three point I-/ control and an algorithm for formation control of

a group of three mobile robots

The next contribution of this thesis is the development of three point I-I control to avoid
collisions among robots. In fact, existing /-] -based control laws all subject to a
singularity when three concerning robots lic on the same line connecting them. Three

point -1 control can deal with this singularity by switching among three designed /-/
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controllers. Based on virtual head robot tracking and three point I-I control, an
algorithm for formation control of a group of three mobile robots is proposed with the
capability of establishment any desired formation without inter-robot collisions. This
approach can be thought as an effective solution to formation problem for a group of

three mobile robots in an obstacle-free environment.
7.3.3 Formation initialisation for a group of NV mobile robots

A step-by step procedure for the process of formation initialisation has been proposed.
Classifying robots in a group into active and inactive sub-group, this procedure under
some assumptions can lessen possibilities of collisions among robots. Two proposed
reactive control schemes are useful when the possibility of collision among robots can
be detected. In addition, weighted digraphs have been used to model group formations
which are established by following the proposed procedure. A library of allowable
control graphs can be created and used for choosing an appropriate graph to deal with

the change in the environment or in motion of the lead robot.
7.3.4 Observer-based decentralised control approach

Finally, to accommodate the restriction in information exchange, a decentralized
approach is proposed to implement the global feedback controller for the robot moving
in the formation by using linear functional observers. In this decentralised control
model, each local controller takes some global information of the formation from an
exogenous unit and only local output measurements. This approach gives a group of
mobile robots in formation the scalability, i.e. the flexibility to add robots into a
formation to a large number of members, in the condition of communications bandwidth
limitations. Both simulation and experimental results conducted on Amigo mobile

robots confirm the validity of the proposed technique.

7.4 Future work

From the research reported in this thesis, the following aspects are suggested for further

investigation:
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Robotic formation control with learning capabilities: It is proposed in the thesis
that virtual head robot tracking and three point I-I control laws can be suggested
to establish and maintain a desired formation of multiple mobile robots without
inter-robot collisions. However, when initial errors between real and desired
positions of robots are quite large, the calculated velocities may exceed the
maximum admissible velocities of real mobile robots. To implement the
proposed control laws into practice, it is necessary to consider the dynamical
interactions of real robots with environment by introducing schemes for control
structures and tuning control parameters. The selection and learning of tuning

parameters is open issue for further investigation.

Assigning desired positions in formations: Under some assumptions, a step-by-
step procedure can be followed to initialise formations for N indexed given
mobile robots. An algorithm to assign desired positions in formations for robots
in a group is worthy of further investigation to lessen possibilities of collisions
among robots in the process of formation initialisation in general practical
scenarios. Better knowledge of the environment and global coordinates of

robots would significantly help for such algorithm’s performance.

Obstacle avoidance:  Following the proposed step-by-step procedure for
formation initialisation, at each step inactive robots, which do not participate to
the process of forming desired geometrical shape, can play the roles of static
obstacles. Therefore the main problem on obstacle avoidance in the framework
of multi-robot coordination should be examined. Behaviour-based and potential

filed techniques would be suitable in the present work for this purpose.

Decentralised control with nonlinear models of mobile robots: The proposed
observer-based decentralised control in Chapter 6 used linearised models of
mobile robots around specific trajectories. The main disadvantages are the
difficulties to determine the initial condition range of the robots from that the

desired formation can be obtained. This problem may be overcome with the

following considerations:
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- To construct a nonlinear model of a group of mobile robots in a

formation.
- To design nonlinear centralized controller for this group

- To design nonlinear-functional observers to estimate control inputs for

each robot

A thorough examination of nonlinear control for multi agent systems is needed

for that research.

7.5 Conclusion

This thesis presents original contributions towards a solution to the problem of
formation initialisation and maintenance for multiple mobile robots in an obstacle-free
environment with a careful consideration paid to the problem inter-robot collision
avoidance. Once initialised, the formation can be controlled using an observer-based
decentralised technique to satisfy communication bandwidth limitations.  The
theoretical work of the thesis is evaluated by extensive simulation of multiple mobile
robots based on their kinematic models. The results obtained are also experimentaily

tested, in part, on a group of two Amigo mobile robots.

Formation control in an environment with possible incidents of obstacle collision will

be an interesting research topic for future work.
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Appendix A

AmigoBot - Specifications

Physical characteristics

Length 33 cm

Width 28 cm

Height (body) 13 cm

Body clearance 3cm

Weight 3.6Kg

Payload 1 Kg
Construction

Body Molded polycarbonate

Chassis ].6mm CNC fabricated aluminium

Assembly Allen hex screws (metric)
Power

Battery 12V lead-acid

Charge 24.2 watt-hr

Run time 3+ hours
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Recharge time (trickle)

Recharge time (fast)

Mobility

Drive wheels

Wheel diameter
Wheel width
Steering

Gear ratio

Swing radius

Turn radius
Translate speed max
Rotational speed max
Traversable step max

Traversable terrain

Sensors

Sonar

Position encoders

8 hrs

3 hrs

2 solid rubber, with caster balance

10 cm

3cm
Differential
19.5:1

33cm

0cm

750 mmysec
300 degrees/sec
I.5cm

All wheelchair accessible

8 total

1 each side
4 forward
2 rear

2 (one each motor)

9,550 ticks per wheel revolution

30 ticks per mm
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Electronics

Processor

Position inputs
Sonar inputs
Digital I/O

A/D

Digital timer inputs
Comm port

FLASH

RAM

Controls and ports

Main Power
Charge

RESET
MOTORS/TEST
Radio

Speaker

Serial ports

20 MHz Hitachi H8/2357

4

1 x 8 (multiplexed)

6 digital 10 logic ports

5 @ 0-5 VDC, 12-bit resolution
6 @ lpsec resolution

3 RS-232 serial

64 KB pP

IM external

16 KB uP

Robot/accessortes power ON/OFF

System power/battery recharge
Warm reboot/download
Motors/download/self-tests
Power and serial

8-ohm

2 x RS232 (Control and System)

I TTL (AUX)
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Appendix B

ARIA - Advanced Robotics Interface
for Applications

B.1 ARIA overview

B.1.1 Introduction

Written in the C++ language, ARIA is client-side software for easy, high-performance
access to and management of the robot server, as well as to the many accessory robot
sensors and effectors. Its versatility and flexibility makes ARIA an excellent foundation

for higher-level robotics applications.

ARIA can be run multi- or single-threaded, using its own wrapper around Linux
pthreads and WIN32 threads. Use ARIA in many different ways, from simple
command-control of the robot server for direct-drive navigation, to development of

higher-level intelligent actions (behaviours).

New versions of ARIA can be downloaded from http://robots.activmedia.con/ARIA

B.1.2 ARIA-robot client-server relationship

The mobile robot servers, embodied in the Pioneer and AmigoBot Operating System
software (ARCOS, AROS, P20S, AmigOSs, etc.) and found embedded on the robot's
microcontroller, manage the low-level tasks of robot control and operation, including

motion, heading and odometry, as well as acquiring sensor information (sonar and
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compass, for example) and driving accessory components like the PTZ camera, TCM2
compass/inclinometer, and the Pioneer 5-DOF Arm. The robot servers do not, however,

perform any high-level robotic tasks.

Rather, it is the job of an intelligent client running on a connected PC to perform the full
gamut of robotics control strategies and tasks, such as obstacle detection and avoldance,
sensor fusion, localization, features recognition, mapping, intelligent navigation, PTZ
camera control, Arm motion, and much more. ARIA's role is on that intelligent client

side.

Nearest the robot, ARIA's ArDeviceConnection class, at the behest of an application
code, establishes and maintains a communication channel with the robot SErver,
packaging commands to (ArRobotPacketSender) and decoding responses
(ArRobotPacketReceiver) from the robot in safe and reliable packet formats

(ArRobotPacket) prescribed by the client-server protocols.

At its heart, ARIA's ArRobot class collects and organizes the robot's operating states,
and provides clear and convenient interface for other ARIA components, as well as
upper-level applications, to access that robot state-reflection information for assessment,
planning, and ultimately, intelligent, purposeful control of the platform and its

accessories.

ArRobot's heart metaphor is particularly apt, too, since one of its important jobs is to
maintain the clockwork cycles and multi-threaded rhythms of the robot-control system.
Keyed to the robot's main information-packet cycle (hence, no longer a fixed timing
cycle), ArRobot's syncronous tasks (ArSyncTask) include the robot server-information
packet handlers, sensor interpreters, action handlers, state reflectors, user tasks, and
more. And a software may expand, replace, remove, and rearrange the list of
synchronized tasks through ArRobot's convenient sensor interp
(ArRobot::addSensorInterpTask) and user task (ArRobot::addUserTask) related

methods.

Through its Action class, ARIA provides a flexible, programmable mechanism for

behaviour-level control of the robot server. An associated Resolver class lets one
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organize and combine actions, for coordinated motion control and intelligent guidance.

With ARIA actions, one easily develop integrated guarded-teleoperation and colour-

blob tracking applications, for example.

ARIA also includes clear and convenient interface for applications to access and control
ActivMedia Robotics accessory sensors and devices, including operation and state

reflection for sonar and laser range finders, pan-tilt units, arms, inertial navigation

devices, and many others.
B.1.3 Robot communication

One of the most important functions of ARIA, and one of the first and necessary things
that an application must do, is to establish and manage client-server communications

between an ARIA-based software client and the robot's onboard servers and devices.

Note that some accessories, such as the P2 Gripper, PTZ camera, P2 Arm, compass, and
others, which attach to the robot's microcontroller AUX serial port, are controlled
through the client-side device connection with the robot. Use different methods and
procedures other than ArDeviceConnection to communicate with and manage those

devices through ARIA
Connecting with a robot or the simulator - the easy way

One can use a convenience class called ArSimpleConnector to do the connection for
him/her. ArSimpleConnector can also parse command line arguments so that one does
not need to recompile to change where he/she want to connect. Among other benefits,
an ArSimpleConnector will first try to connect to a simulator if one is running,
otherwise it'll connect to a serial port... so one does not have to recompile his/her

program for either mode, just don't have a simulator running, or have one running.
Connecting with a robot or the simulator - the hard way

ArDeviceConnection is ARIA's communications object; ArSerialConnection and
ArTcpConnection are its built-in children most commonly used to manage

communication between an ActivMedia robot or the robot simulator, respectively.
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These classes are not device-specific, however, so use ArSerialConnection, for

Instance, to also configure a serial port and establish a connection with a robot

accessory, such as with the SICK laser range finder.

Opening the connection

After creating and opening a device connection, associate it with its ARIA device
handlers, most commonly with ArRobot::setDeviceConnection for the robot or the

simulator.

For example, early in an ARIA program, specify the connection device and associate it

with the robot:

ArTcpConnection con;
ArRobot robot;

Later in the program, after initializing the ARIA system (Aria::init(); is mandatory), set
the Connection port to its default values (for TCP, host is "localhost" and port number is

8101), and then open the port:

con.setPort();

if (lcon.openSimple())

{
printf("Open failed.");
Aria::shutdown();
return 1;

}

TCP and Serial connections have their own implementation of open which is not
inherited, but has default arguments that make the generic open work for the all default
cases. And open returns a status integer which can be passed to the re-implemented and
inherited ArDeviceConnection::getOpenMessage in order to retrieve related status
string, which is useful in reporting errors to the user without having to know about the

underlying device.

Robot client-server connection
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After associating the device with the robot, now connect with the robot's servers,
ArRobot::blockingConnect or ArRobot::asyncConnect, for example, to establish the
client-server connection between ARIA ArRobot and the ActivMedia robot

microcontroller or robot simulator. The blockingConnect method doesn't return from

the call until a connection succeeds or fails:

robot.setDeviceConnection(&con);

if (‘robot.blockingConnect())

{
printf("Could not connect to robot... Exiting.");
Aria::shutdown();
return 1,

}

The previous examples connect with the simulator through a TCP socket on a PC. Use
tcpConn.setPort(host, port) to set the TCP hostname or IP address and related socket
number to another machine on the network. For instance, use tcpConn.setPort("bill",
8101); to connect to the simulator which is running on the networked computer "bill"

through port 8§101.

Replace ArTcpConnection con; with ArSerialConnection con; to connect with a
robot through the default serial port (/dev/ttySO or COM1), or another one specify with
ArSerialConnection::setPort(), such as con.setPort("COM3");.

At some point, one may want to open the port with the more verbose con.open().

Connection read, write, close and timestamping

The two main functions of a device connection are ArDeviceConnection::read and
ArDeviceConnection::write.  ArDeviceConnection::close also is inherited and
important. One probably won't use direct read or write to the robot device, although he
could. Rather, ArRobot provides a host of convenient methods that package his/her
robot commands, and gather and distribute the various robot information packets, so

that he/she does not have to attend those mundane details.

All  ArDeviceConnection  subclasses  have  support for  timestamping

(ArDeviceConnection::getTimeRead). With the robot connection, timestamping
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merely says what time a robot SIP (Server Information Packet) came in, which can be

useful for interpolating the robot's location more precisely.

B.1.4 ArRobot

As mentioned earlier, ArRobot is the heart of ARIA, acting as client-server
communications gateway, central database for collection and distribution of state-
reflection information, and systems synchronization manager. ArRobot is also the
gathering point for many other robot tasks, including syncTasks, callbacks, range-

finding sensor and Actions classes.
Client commands and server information packets

Client-server communications between applications software and an ActivMedia robot
or the Simulator must adhere to strict packet-based protocols (in this context, the client
is the software using ARIA to operate a robot, and the server is the robot's
microcontroller.) ArRobot handles the low-level details of constructing and sending
client-command packets to the robot as well as receiving and decoding the various

Server Information Packets from the robot.

Packet handlers

Server Information Packets (SIPs) come from the robot over the robot-device
connection and contain operating information about the robot and its accessories.
Currently, there are two types of SIPs: the standard SIP and extended SIPs. The
standard SIP gets sent by the robot to a connected client automatically every 100
(default) or 50 milliseconds. It contains the robot's current position, heading,
translational and rotational speeds, freshly accumulated sonar readings, and much more.

These data ultimately are stored and distributed by ArRobot's State Reflection

Extended SIPs use the same communication-packet protocols as the standard SIP, but
with a different "type" specification and, of course, containing different operating
information, such as I/O port readings or accessory device states like for the Gripper.

And, whereas the standard SIP gets sent automatically once per cycle, a client controls
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extended packet communications by explicitly requesting that the server send one or

more extended SIPs.

ArRobot's standard SIP handler automatically runs as an ArRobot synchronized task.
Other SIP handlers are built in, but a client must add each to the connected robot object,

and hence to the SIP handler sync task list, for it to take effect.

One also may add his/her own SIP handler with ArRobot:;:addPacketHandler.
ArListPos keeps track of the order by which ArRobot calls each handler. When run, a
packet handler must test the SIP type (ArRobotPacket::getID) and return true after
decoding the packet type or return false, leaving the packet untouched for other

handlers.
Command packets

From the client side going to the robot server, an ARIA program may send commands
directly, or more commonly, use ARIA's convenience methods (Motion Commands and
others) as well as engage Actions which ARIA ultimately converts into Direct
Commands to the robot. At the ARIA-robot interface, there is no difference between
Action- or other ARIA convenience-generated commands and Direct Commands.
However, upper-level processes aren't necessarily aware of extraneous Direct or Motion
Commands a client may send to the robot. Motion Commands in particular need special

attention when mixing with Actions.

Once connected, an ARIA client may send commands to the robot server nearly at will,
only limited by communication speeds and other temporal processes and delays.
Similarly, the server responds nearly immediately with a requested SIP, such as a
GRIPPERpac or [Opac which describe the P2 Gripper or Input/Output port states,

respectively.

However, general information from the robot server about its odometry, current sonar
readings, and the many other details which comprise its "standard" SIP automatically
get sent to the ARIA client on a constant 100 or 50 millisecond cycle. This requires

some synchronization with ArRobot.
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Robot-ARIA synchronization

ArRobot runs a processing cycle: a series of synchronized tasks, including SIP
handling, sensor interpretation, action handling and resolution, state reflection, and user
tasks, in that order. By default, ArRobot performs these sequenced tasks each time it
receives a standard SIP from the robot. Its cycle is thereby triggered by the robot so

that the tasks get the freshest information from the robot upon which to act.

To begin ArRobot's processing cycle, call ArRobot::run() to enter the cycle
synchronously, or ArRobot::runAsync() to run the cycle in a new background thread.

ArRobot::stopRunning() stops the processing cycle.

Of course, syncTasks runs without a connection with a robot, too. It has its own default
cycle time of 100 milliseconds which one may examine and reset with
ArRobot::getCycleTime and ArRobot::setCycleTime, respectively. ArRobot waits

up to twice that cycle time for a standard SIP before cycling automatically.

ArRobot's synchronization task list is actually a tree, with five major branches. If a
particular task is not running, none of its children will be called. Each task has an
associated state value and a pointer to an ArTaskState::State variable, which can be
used to control the process, by turning it on or off, or to see if it succeeded or failed. If
the pointer is NULL, then it is assumed that the task does not care about its state, and a

local variable will be used in the task structure to keep track of that tasks state.
For each branch, tasks get executed in descending order of priority.

ARIA provides convenient methods to add one’s own sensor-interpretation and user
tasks. Create an ARIA function pointer (Functors) and then add his/her sensor
interpreter (ArRobot::addSensorInterpTask ) or user task (ArRobot::addUserTask)
to the list of syncTasks. These tasks can be removed; use
ArRobot::remSensorInterpTask or ArRobot::remUserTask to remove sensor

interpreter or user tasks, respectively, by name or by functor.

The intrepid ARIA programmer can add or prune branches from the ArRobot task list,

as well as leaves on the branches. Do these things by getting the root of the tree with
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ArRobot::getSyncTaskRoot, and then using the ArSyncTask class to do the desired

manipulation.

One may disassociate ArRobot's syncTask from firing when the standard SIP is
received, through ArRobot::setCycleChained. But in doing so, he/she may degrade

robot performance, as the robot's cycle will simply be run once every

ArRobot::getCycleTime milliseconds.

State reflection

State reflection in the ArRobot class is the way ARIA maintains and distributes a

snapshot of the robot's operating conditions and values, as extracted from the latest

standard SIP.

The standard SIP also contains low-level sonar readings, which are reflected in
ArRobot and  examined with the methods: ArRobot::getNumSonar,
ArRobot::getSonarRange, ArRobot::isSonarNew, ArRobot::getSonarReading,
ArRobot::getClosestSonarRange, ArRobot::getClosestSonarNumber. This

information is more useful when applied to a range device.

ARIA's ArRobot also, by default, reflects in the State Reflection Robot-ARIA
Synchronization syncTask the latest client Motion Command to the robot server at a
rate set by ArRobot::setStateReflectionRefreshTime. [f no command is in effect, the
ArCommands::PULSE Direct Command gets sent. State reflection of the motion
command ensures that the client-server communication watchdog on the robot won't

time out and disable the robot.

One may turn the motion-control state reflector off in the ArRobot::ArRobot
constructor (set doStateReflection parameter to false). This will cause Motion
Commands to be sent directly to the robot whenever they are called. State Reflection
will send a PULSE command to the robot at
ArRobot::getStateReflectionRefreshTime milliseconds to prevent the watchdog from

fiming out.
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B.1.5 Range devices

Range devices (ArRangeDevice) are abstractions of sensors for which there are
histories of relevant readings. Currently, there are two ARIA RangeDevices: sonar
(ArSonarDevice) and the SICK laser (ArSick). All range devices are range-finding
devices that periodically collect 2-D data at specific global coordinates, so the

RangeDevice class should work for any type of two-dimensional sensor.

Attach a RangeDevice to a robot with ArRobot::addRangeDevice and remove it with
ArRobot::remRangeDevice. Query for RangeDevices with
ArRobot::findRangeDevice. ~ArRobot::hasRangeDevice will check to see if a
particular range device (the given instance) is attached to the robot. A list of range

devices can be obtained with ArRobot::getRangeDeviceList.

Note that sonar are integrated with the robot controller and that their readings
automatically come included with the standard SIP and so are handled by the standard
ArRobot packet handler. Nonetheless, one must explicitly add the sonar RangeDevice
with his/her robot object to use the sonar readings for control tasks. ARIA's design
gives the programmer ultimate control over their code, even though that means making
him/her do nearly everything explicitly. Besides, not every program needs to track

sonar data and there are some robots don't even have sonar.

Each RangeDevice has two sets of buffers (ArRangeBuffer): current and cumulative,
and each support two different reading formats: box and polar. The current buffer
contains the most recent reading; the cumulative buffer contains several readings over

time, limited by ArRangeBuffer::setSize.

Useful for collision avoidance and other object detection tasks, apply the
checkRangeDevices methods to conveniently scan a related buffer on all range devices

attached to the robot for readings that fall within a specified range.

Note that each range device also has a threading mutex (ArRangeDevice::lockDevice
and ArRangeDevice::unlockDevice) associated with it, so that sensors can be used in a

thread-safe manner. For example, if a laser device gets added that runs in its own
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thread, the checkRangeDevice functions on the robot lock the device so it can poke at

the laser device without running into any issues, unlocking the device when it is done.

B.1.6 Commands and actions

An ARIA client drives the robot and runs its various accessories through Direct and

Motion Commands, as well as through Actions.

Direct commands

At the very lowest level, one may send commands directly to the robot server through
ArRobot. Direct commands consist of a 1-byte command number followed by none or
more arguments, as defined by the robot's operating system (ARCOS, AROS, P20S,
AmigOs, etc.). For example, the command number 4 (ENABLE) enables the robot's

motors if accompanied by the argument 1, and disables the motors with the argument 0.

Direct commands to the robot come in five flavours, each defined by its command
argument type and length: use ArRobot::com for commands that have no argument,
such as PULSE; ArRobot::comInt for a 2-byte integer argument, signed or unsigned,
such as the motors ENABLE command; ArRobot::com2Bytes for when one want to
define each of the two bytes in the argument, such as the VEL2 command; and
ArRobot::comStr or ArRobot::comStrN for a null-terminated or defined-length (N
extra argument) string argument, respectively, such as the sonar POLLING sequencing

command.

The ArCommands class contains an enum with all the direct commands;
ArCommands::ENABLE, for example. Although identical in syntax and effect when
supported, not all Direct Commands are included with every ActivMedia robot.
Fortunately, unrecognized or otherwise malformed client commands are benign since

they get ignored by the server.

Motion commands

At a level just above ArRobot's Direct Commands are the Motion Commands. These

are explicit movement commands. Some have identical Direct Command analogues
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and act to immediately control the mobility of a robot, either to set individual-wheel, or
coordinated translational and rotational velocities (ArRobot::setVel2,
ArRobot::setVel, ArRobot::setRotVel, respectively); change the robot's absolute or
relative heading (ArRobot::setHeading or ArRobot::setDeltaHeading, respectively);

move a prescribed distance (ArRobot::move); or just stop (ArRobot::stop).

Be aware that a Direct or a Motion Command may conflict with controls from Actions
or other upper-level processes and lead to unexpected consequences. Use
ArRobot::clearDirectMotion to cancel the overriding effect of a Motion Command so
that an Action is able to regain control the robot. Or limit the time a Motion Command
prevents other motion actions with ArRobot::setDirectMotionPrecedenceTime.
Otherwise, the Motion Command will prevent actions forever, Use
ArRobot::getDirectMotionPrecedenceTime to see how long a Motion Command

takes precedence.
Actions

The best way to do non-trivial motion from ARIA is with its higher-level "Actions"
mechanism. Actions are individual objects that independently provide motion requests
which are evaluated and then combined each cycle to produce a final desired movement.

This allows one to build complex behaviour from simple building blocks.

Actions are defined by creating a subclass of the ArAction the base class.
ArAction::fire is the only function that needs to be overloaded for an action to work.

ARIA includes a number of action classes.

Actions are added to robots with ArRobot::addAction, including a priority which
determines its position in the action list. ArAction::setRobot is called on an action
when it is added to a robot. One can override this. For example, this would be useful to

add a connection callback, if there were some calculations he/she wished to do upon

connection to the robot.

Actions are evaluated by the resolver in descending order of priority (lowest priority
goes last) in each ArRobot syncTask cycle just prior to State Reflection. An action

resolver goes through the actions to find a single end actionDesired (an
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ArActionDesired object). Depending on its current state, each action contributes
particular actionDesired movement values and strengths to the final action desired.

After this final action desired has been calculated, it is stored and later gets passed to the

State Reflector and on to the robot as motion commands.

As the resolver is evaluating each action it passes in the current action desired of the
higher priority actions, this is the currentDesired. For example, a stall-recovery action
could be programmed not to exert its motion effects if it has been pre-empted by a stop
action, so this stall-recovery action would check and see if either the "strength” is "used
up" or if there is a maximum velocity, and if so it can reset its state. However, there is
no need for an action to pay attention to the currentDesired if not necessary (a resolver
could also simply pass a ArActionDesired.reset() to the actions if it did not want the

actions to know about its state.)
Action desired

ArActionDesired is the meat of actions. ArActionDesired objects should be reset

(ArActionDesired::reset()) before they are used or reused.
There are six action channels:
o velocity (ArActionDesired::setVel),
e relative heading (ArActionDesired::setDeltaHeading),
e absolute heading (ArActionDesired::setHeading),
e maximum forward translational velocity (ArActionDesired::setMaxVel),

e maximum reverse translational velocity (ArActionDesired::setMaxNegVel),

and
e maximum rotational velocity (ArActionDesired::setMaxRotVel).

An action gives each channel a strength between 0.0, the lowest, and 1.0, the highest.

Strengths are used by the resolver to compute the relative effect the actionDesired
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channel setting will have on the current translational velocity and heading of the robot,
as well as the speed limits for those movements. Note that deltaHeading and heading

are treated as the same channel for strength purposes, and that these are simply alternate

ways of accessing the same channel.

The maximum velocity, maximum negative velocity, and maximum rotational velocity

channels simply impose speed limits and thereby indirectly control the robot.

For more advanced usage, desired actions can be merged (ArActionDesired::merge)
and averaged (ArActionDesired::startAverage, ArActionDesired::addAverage,

ArActionDesired::endAverage).
Resolvers

ArResolver is the base action-resolver class. ArPriorityResolver is the default
resolver. ArResolver::resolve is the function that ArRobot calls with the action list
(actually ArResolver::ActionMap) in order to combine and thereby resolve the
actionDesired movement controls into State Reflection motion commands to the robot

Server.

There may only be one resolver per robot, which is set with ArRobot::setResolver.
However, a resolver could be created to contain within it multiple resolvers of its own.
Note that although a robot has one particular resolver bound to it, a resolver instance is
not tied to any robot. Thus, if one define a custom resolver, he/she could use one

instance to work for all robots in a program.

The resolver works by setting each of the currentDesired channels to the contributing
actionDesired values in proportion to their respective strenghts and priority, adjusting
each movement channel's currentDesired value until the individual strength becomes 1.0
or the list is exhausted. Same-priority actions get averaged together (if they are

competing) before being resolved with higher-priority results.

Predefined movement and limiting actions
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For programming convenience, ARIA has defined two useful types of actions:

Movement and Limiting. There are no classes for limiting or movement actions.

Built in movement actions have an ArAction prefix and act to set either or both the
translational velocity (setVel) and heading (setDeltaHeading and setHeading)
channels. Built in limiting actions are prefixed with ArActionLimiter and act to set

one or more of the maximum translational and rotational velocity channels.
B.2 Aria compound list

Here are the classes, structs, unions and interfaces with brief descriptions:
ArAction Action class, what typically makes the robot move

ArActionAvoidFront This action does obstacle avoidance, controlling both trans and

rot
ArActionAvoidSide Action to avoid impacts by firening into walls at a shallow angle
ArActionBumpers Action to deal with if the bumpers trigger

ArActionColorFollow ArActionColorFollow is an action that moves the robot toward

the largest blob that appears in it's current field of view
ArActionConstantVelocity Action for going straight at a constant velocity

ArActionDeceleratingLimiter Action to limit the forwards motion of the robot based

on range sensor readings

ArActionDesired Class used to say what movement is desired
ArActionDesiredChannel Class used by ArActionDesired for each channel, internal
ArActionGoto This action goes to a given ArPose very naively
ArActionGotoStraight This action goes to a given ArPose very naively

ArActionGroup Class for groups of actions to accomplish one thing
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ArActionGroupColorFollow Follows a blob of colour
ArActionGrouplInput Input to drive the robot
ArActionGroupRatioDrive Input to drive the robot
ArActionGroupRatioDriveUnsafe Input to drive the robot unsafely
ArActionGroupStop Stop the robot

ArActionGroupTeleop Teleop the robot

ArActionGroupUnguardedTeleop Teleop the robot in an unguarded and unsafe

manner
ArActionGroupWander Has the robot wander

ArActionInput Action for taking input from outside to control the robot
ArActionIRs Action to deal with if the [Rs trigger

ArActionJoydrive This action will use the joystick for input to drive the robot

ArActionKeydrive This action will use the keyboard arrow keys for input to drive the

robot

ArActionLimiterBackwards Action to limit the backwards motion of the robot based

on range sensor readings

ArActionLimiterForwards Action to limit the forwards motion of the robot based on

range sensor readings

ArActionLimiterTableSensor Action to limit speed (and stop) based on whether the

"table"-sensors see anything

ArActionMovementParameters This is a class for setting max velocities and accels

and deciles
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ArActionRatiolnput Takes input on how to drive a robot in a more speed independent

manner
ArActionRobotJoydrive This action will use the joystick for input to drive the robot
ArActionStaliRecover Action to recover from a stall

ArActionStop Action for stopping the robot

ArActionTriangleDriveTo  Action to drive up to a triangle found from an

ArLineFinder

ArActionTurn Action to turn when the behaviors with more priority have limited the

speed

ArACTS_1_2 Driver for ACTS

ArACTSBlob A class for the acts blob

ArAMPTU Driver for the AMPUT

ArAMPTUCommands A class with the commands for the AMPTU
ArAMPTUPacket A class for for making commands to send to the AMPTU
ArAnalogGyro Gyro plugin for the analog devices gyro

ArArg Argument class, mostly for actions, could be used for other things

ArArgumentBuilder This class is to build arguments for things that require argc and

argv
ArArgumentParser Class for parsing arguments
ArASyncTask Asynchronous task (runs in its own thread)
ArBasePacket Base packet class

ArBumpers A class that treats the robot's bumpers as a range device
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ArColor A class for holding colour information for ArDrawingData
ArCommands A class with an enum of the commands that can be sent to the robot
ArCondition Threading condition wrapper class

ArConfig Classes dealing with config files can inherit from this one
ArConfigArg Argument class for ArConfig

ArConfigGroup Container for holding a group of ArConfigs

ArConfigSection
ArConstFunctor1C<T, P1 > Functor for a const member function with 1 parameter

ArConstFunctor2C< T, P1, P2 > Functor for a const member function with 2

parameters

ArConstFunctor3C< T, P1, P2, P3 > Functor for a const member function with 3

parameters

ArConstFunctordC< T, P1, P2, P3, P4 > Functor for a const member function with 4

parameters

ArConstFunctorC< T > Swig doesn't like the const functors, ArFunctors for const

member functions, Functor for a const member function

ArConstRetFunctor1C< Ret, T, P1 > Functor for a const member function with

return value and | parameter

ArConstRetFunctor2C< Ret, T, P1, P2 > Functor for a const member function with

return value and 2 parameters

ArConstRetFunctor3C< Ret, T, P1, P2, P3 > Functor for a const member function

with return value and 3 parameters

ArConstRetFunctor4C< Ret, T, P1, P2, P3, P4 > Functor for a const member

function with return value and 4 parameters
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ArConstRetFunctorC< Ret, T > Functor for a const member function with return

value
ArDaemonizer Class that (in linux) will run the program as a daemon (ie fork it)
ArActionTriangleDriveTo::Data

ArDataLogger This class will log data, but one have to use it through an ArConfig

right now

ArDeviceConnection Base class for device connections

ArDPPTU Driver for the DPPTU

ArDPPTUCommands A class with the commands for the DPPTU
ArDPPTUPacket A class for for making commands to send to the DPPTU
ArDrawingData

ArFileParser Class for parsing files more easily

ArForbiddenRangeDevice Class that takes forbidden lines and turns them into range

readings

ArFunctor Base class for functors

ArFunctorl< P1 > Base class for functors with [ parameter

ArFunctorlC< T, P1 > Functor for a member function with | parameter
ArFunctor2< P1, P2 > Base class for functors with 2 parameters
ArFunctor2C< T, P1, P2 > Functor for a member function with 2 parameters
ArFunctor3< P1, P2, P3 > Base class for functors with 3 parameters
ArFunctor3C< T, P1, P2, P3 > Functor for a member function with 3 parameters

ArFunctord< P1, P2, P3, P4 > Base class for functors with 4 parameters
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ArFunctordC<T, P1, P2, P3, P4 > Functor for a member function with 4 parameters

ArFunctorASyncTask This is like ArASyncTask, but instead of runThread it uses a

functor to run

ArFunctorC<T > Functor for a member function

ArGlobalFunctor Functor for a global function with no parameters
ArGlobalFunctorl< P1> Functor for a global function with 1 parameter
ArGlobalFunctor2< P1, P2 > Functor for a global function with 2 parameters
ArGlobalFunctor3< P1, P2, P3 > Functor for a global function with 3 parameters
ArGlobalFunctord< P1, P2, P3, P4 > Functor for a global function with 4 parameters
ArGlobalRetFunctor< Ret > Functor for a global function with return value

ArGlobalRetFunctorl< Ret, P1 > Functor for a global function with 1 parameter and

return value

ArGlobalRetFunctor2< Ret, P1, P2 > Functor for a global function with 2 parameters

and return value

ArGlobalRetFunctor3< Ret, P1, P2, P3 > Functor for a global function with 2

parameters and return value

ArGlobalRetFunctord< Ret, P1, P2, P3, P4 > Functor for a global function with 4

parameters and return value

ArGripper A class of convenience functions for using the gripper
ArGripperCommands A class with an enum of the commands for the gripper
Aria This class performs global initialization and deinitialization

Arlnterpolation
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ArlrrfDevice A class for connecting to a PB-9 and managing the resulting data
ArIRs A class that treats the robot's Infareds as a range device
ArSoundsQueue::Item

ItemComparator

ItemComparator_OnlyData

[temComparator_PriorityLessThan

ItemComparator_TypeAndData

ItemComparator_ WithType
ItemComparator_WithTypePriorityLessThan

ArJoyHandler Interfaces to a joystick

ArKeyHandler This class will read input from the keyboard
ArSimpleConnector::LaserData Class that holds information about the laser data
ArLine This is the class for a line to do some geometric manipulation

ArLineFinder This class finds lines out of any range device with raw readings (ArSick

for instance)

ArLineFinderSegment  Class for ArLineFinder to hold more info than an

ArLineSegment

ArLineSegment This is the class for a line segment to do some geometric

manipulation
ArListPos Has enum for position in list
ArLog Logging utility class

ArLogFileConnection For connecting through a log file
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ArMap This is a class for maps made with ScanStudio and Mapper3
ArMapObject This is a class for objects within an ArMap

ArMath This class has static members to do common math operations

ArMode A class for different modes, mostly as related to keyboard input
ArModeActs Mode for following a colour blob using ACTS

ArModeCamera Mode for controlling the camera

ArModeGripper Mode for controlling the gripper

ArModeSonar Mode for displaying the sonar

ArModeTCM2 Mode for following a colour blob using ACTS

ArModeTeleop Mode for teleoping the robot with joystick + keyboard
ArModeUnguardedTeleop Mode for teleoping the robot with joystick + keyboard
ArModeWander Mode for wandering around

ArModule Dynamicly loaded module base class, read wamning in more
ArModuleLoader Dynamic ArModule loader

ArMutex Mutex wrapper class

ArNetServer Class for running a simple net server to send/recv commands via text
ArP2Arm Arm Control class

P2ArmJoint P2 Arm joint info

ArPose The class which represents a position

ArPoseWithTime A subclass of pose that also has the time the pose was taken

ArPriority Has enum for priority (mostly for ArConfig)
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ArPriorityResolver (Default resolver), takes the action list and uses the priority to

resolve

ArConfig::ProcessFileCBType

ArPTZ Base class which handles the PTZ cameras

ArRangeBuffer This class is a buffer that holds ranging information
ArRangeDevice The class for all devices which return range info (laser, sonar)
ArRangeDeviceThreaded A range device which can run in its own thread
ArRatiolnputJoydrive This action will use the joystick for input to drive the robot

ArRatiolnputKeydrive This will use the keyboard arrow keys and the

ArActionRatiolnput to drive the robot

ArRatiolnputRobotJoydrive This action will use the joystick on the robot to drive
ArRecurrentTask Recurrent task (runs in its own thread)

ArResolver Resolves a list of actions and returns what to do

ArRetFunctor< Ret > Base class for functors with a return value

ArRetFunctorl< Ret, P1 > Base class for functors with a return value with |

parameter

ArRetFunctor1C< Ret, T, P1 > Functor for a member function with return value and

| parameter

ArRetFunctor2< Ret, P1, P2 > Base class for functors with a return value with 2

parameters

ArRetFunctor2C< Ret, T, P1, P2 > Functor for a member function with return value

and 2 parameters
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ArRetFunctor3< Ret, P1, P2, P3 > Base class for functors with a return value with 3

parameters

ArRetFunctor3C< Ret, T, P1, P2, P3 > Functor for 2 member function with retum

value and 3 parameters

ArRetFunctor4< Ret, P1, P2, P3, P4 > Base class for functors with a return value

with 4 parameters

ArRetFunctor4C< Ret, T, P1, P2, P3, P4 > Functor for a member function with

return value and 4 parameters

ArRetFunctorC< Ret, T > Functor for a member function with return value
ArRingQueue< T >

ArRobot The important class

ArRobotConfigPacketReader This class will read a config packet from the robot
ArRobotJoyHandler Interfaces to a joystick on the robot's microcontroller

ArRobotPacket Represents the packets sent to the robot as well as those received from

it

ArRobotPacketReceiver Given a device connection it receives packets from the robot

through it

ArRobotPacketSender Given a device connection this sends commands through it to

the robot

ArRobotParams Contains the robot parameters, according to the parameter file

ArRunningAverage This is a class for computing a running average of a number of

elements

ArSectors A class for keeping track of if a complete revolution has been attained

ArSensorReading A class to hold a sensor reading, should be one instance per sensor
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ArSerialConnection For connecting to devices through a serial port

ArSick The sick driver

ArSickLogger This class can be used to create log files for the laser mapper
ArSickPacket Represents the packets sent to the sick as wel| as those received from it

ArSickPacketReceiver Given a device connection it recejves packets from the sick

through it

ArSignalHandler Signal handling class

ArSimpleConnector This class simplifies connecting to the robot and/or laser
ArSocket Socket communication wrapper

ArSonarDevice A class for keeping track of sonar

ArSonyPacket A class for for making commands to send to the Sony
ArSonyPTZ A class to use the Sony pan tilt zoom unit

ArSoundPlayer This class provides a cross-platform interface for playing short sound

samples (currently implemented for Windows and Linux)

ArSoundsQueue This class manages a queue of items to play as WAV files or as text

to speak using a speech synthesizer
ArSpeechSynth Abstract interface to speech synthesis

ArStringInfoHolder This class holds information about strings (helper for other

things)

ArStringInfoHolderFunctions This class just holds some helper functions for the

ArStringlnfoHolder

ArSyncTask Class used internally to manage the functions that are called every cycle
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ArTaskState Class with the different states a task can be in
ArTCM2 This class will get extra information that the tcm2 supplies
ArTcpConnection For connection to a device through a socket
ArThread POSIX/WIN32 thread wrapper class

ArTime A class for time readings

ArTransform A class to handle transforms between different coordinates
ArTypes Contains platform independent sized variable types

ArUtil This class has utility functions

ArVCC4 Driver for the VCC4

ArvCC4Commands A class with the commands for the VCC4
ArVCC4Packet A class for making commands to send to the VCC4

ArVersalogiclO
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Appendix C

Algorithm for Matlab-Simulink

simulation

A proposed algorithm for Matlab-Simulink simulation is described in Figure C.1. The
main Matlab program file (.m file) will prepare all initial parameters for robots in a
group and call sub-program files with respect to steps (for example, program step2.m

for step 2 of the formation initialisation procedure as presented in Chapter 5).

For example, the main program formation5/.m for Simulation 5.1 in Chapter 5 1s as

follows.

% Formation control for 5 mobile robots
% Written by Anh Duy Nguyen - 1/2006

global collision;

% Initial conditions of robots
Xi1=30; Yi1=0; Oi1=0;
Xi2=0; Yi2=0; 0i2=0;
Xi3=10; Yi3=50; 0i3=0;
Xi4=60; Yi4=80; Qi4=2,
Xi5=30; Yi5=-130; Qi5=3;

% Speed of the Lead
vt1=[0 5]; va1=[0 O];

% Parameters for Tracking Control

R2=60; L2=0; 12=1; lamda21=1; lamda22=2;
R3=-60; L3=0; 13=1; lamda31=1; ilamda32=2;
R4=60: L4=0; 14=1; lamda41=1; lamda42=2,
R5=-60; L5=0; I5=1: lamda51=1; lamda52=2;

% Parameters for Collision avoidance
Tr=[0 3];0d=[0 22];collision=0;
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%Begin

% t: Final Simulation time

% tr: Simulation time of each step

% a: string variable to record the switching between VHRT-3PLL
t=0; tr=0,i=0; a=";

% Final states of robots
xyo1f=[]; xyo2f=[]; xyo3f=[};xyo4f=[];xyo5{=(];

while t<30
step2;

end

while ((t>=30)&&(t<70))
step3;

end
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Figure C.1: Algorithm for simulation
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Jormation51.m calls step2.m and step 3.m, which are written at the end of this appendix

Time lLimit for step / (#) is chosen large enough to ensure the part of desired formation

can be established at the end of the step. For example, in the above simulation
1, =30s . Similarly, time limit for the whole process (75 ) should be chosen so that after

tracking and collision avoidance phases in steps, the ultimate desired formation can be

obtained. In this simulation ¢y = 70s .

For the sake of simplicity, tracking and collision avoidance phases can be simulated
using Simulink models. For example, Step2 RL.mdl for tracking phase at step 2,
Step312 4153.mdl for collision avoidance between robot I1-robot 4 and robot 3-robot 5
(if necessary) at step 3 of Simulations 5.1 and 5.2 (Chapter 5). The immediate state of
each robot at each step is recorded in an array variable (for example, xyo! for robot 1).

The final states of robots for the whole initialisation process are combined in variables

xyoif with i =1, N (e.g. xyolf for robot 1).

The following scripts are the Matlab code of sub-programs step2.m and step3.m of the

Simulation 5.1 in Chapter 5

step 2.m

D11=[0 5]; D12=(0 2.5]; r3=[0 2.5];
113d=[0 60]; 123d=[0 907,
sim('Step2_RL");

i=i+1;

m=size(xyo1,1);

tr(i)=xyo1(m,1);

Xi1=xyo1(m,2); Yi1=xyo1(m,3); Oi1=xyo1(m,4)
Xi2=xy02(m,2); Yi2=xyo2(m,3); Oi2=xyo2(m,4)
Xi3=xyo3(m,2); Yi3=xyo3(m,3); Oi3=xyo3(m,4);
Xid=xyo4(m,2); Yid=xyod(m,3); Oi4=xyo4(m,4)
Xi5=xyo5(m,2); Yi5= xyo5(m 3); Oi5=xyo5(m,4)
xyo1(:, 1) xyo1(:,1)+t

xy02(:,1)=xy02(:,1)+t;

xyo3(:, 1) xyo3(:,1)+;

xyod(:,1)=xyo4(: 1)

xyo5(:,1)=xyo5(:,1)+t

xyo1f=[xyo1f; xyo1];
xyo2f=[xyo2f; xyoZ2];
xyo3f=[xyo3f; xyo3],
xyodf=[xyodf; xyo4];
xyo5f=[xyobf; xyob];

t=t+tr(i); a=[a ' T17;
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if tr(i)<30
collision=1;
else
collision=0;
end
112=1:
while collision== Y%while 1
while ((collision==1) && (112==1)) Y%while 2
D=D11; r=[0 0];
Xi3h=Xi3+r(2)*sin(Oi3)+D(2)*cos(Oi3);
Yi3h=Yi3-r(2)*cos(0i3)+D(2)*sin(0i3);
|130=sqr’(((Xi1~Xi3h)*(Xi1-Xi3h)+(Yi1-Yi3h)‘(Yi1-Yi3h));
I230=sqrt((Xi2-Xi3h)*(Xi2-Xi3h)+(Yi2-Yi3h)*(Yi2-Yi3h));
1130=[0 1130];
1230=[0 1230];
sim('Step2_LL12");
i=i+1;
m=size(xyo1,1);
tr(i)=xyo1(m,1);

Xi1=xyo1(m,2); Yi1=xyo1(m,3); Oil=xyo1(m,4);
Xi2=xyo2(m,2); Yi2=xyo2(m,3); Oi2=xyo2(m,4);
Xi3=xyo3(m 2); Yi3=xyo3(m,3); Oi3=xyo3(m,4);
xyo1(:,1)= xyo1(,1)+t

xyo2(:,1)=xyo2(;,1)+t

xyo3(:,1)=xyo3(: ,1)

xyo4(:,1)=xyod(:,1)+t

Xyo5(:,1)=xyo5(:, 1)+t

xyo1f=[xyo1f; xyo1];

xyo2f=[xyo2f; xyo2];

xyo3f=[xyo3f; xyo3];

xyodf=[xyodf; xyod],

xyobf=[xyo5f, xyo5];

t=t+tr(i), a=[a ' C17;

if tr(i}<Tr(2)
collision=1;

else
collision=0;

end

if ((collision==1) && (I112==1))
D=D12;r=[0 0];
Xi3h=Xi3+r(2)*sin(0i3)+D(2)*cos(0i3);
Yi3h=Yi3-r(2)*cos(0i3)+D(2)*sin(Oi3),
[130=sqrt((Xi1-Xi3h)*(Xi1-Xi3h)+(Yi1-Yi3h)*(Yi1-Yi3h));
1230=sqrt((Xi2-Xi3h)*(Xi2-Xi3h)+(Yi2-Yi3h)*(Yi2-Yi3h)),

1130=[0 1130];

1230=[0 1230];

sim('Step2_LL12");

i=i+1;

m=size(xyo1,1);

tr(i)=xyo1(m,1);

Xi1=xyo1(m,2); Yi1=xyo1(m,3); Oi1=xyo1(m,4);
Xi2=xyo2(m,2); Yi2=xyo2(m,3); Oi2=xyo2(m,4);
Xi3=xyo3(m,2); Yi3=xyo3(m,3); Oi3=xyo3(m,4);
Xid=xyod(m,2); Yid=xyod(m,3); Oid=xyo4(m,4);
Xi5=xyo5(m,2); Yi5=xyo5(m,3); Oi5=xyo5(m,4);

xyo1(:,1)=xyo1(:;, 1)+t
xyo2(:,1)=xyo2(;,1)+t
xyo3(:,1)=xyo3(;,1)+t
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Xyod(:,1)=xyod{:,1)+;
Xy05(:,1)=xyo5(:,1)+t
xyo1f={xyo1f; xyo1};
xyo2f=[xyo2f, xyo2];
xyo3f={xyo3f; xyo3];
xyodf=[xyodf; xyod];
xyob5f=[xyo5f, xyo5];
t=t+tr(i); a=[a ' C27,
if tr(i)<Tr(2)
collision=1;

else

collision=0;

end

if ((tr(i)==0) && (tr(i-1)==0))

in2=0;
end
end
end %while 2
if ((collision==1) && (I12==0))
D=D11; r=r3;

Xi3h=Xi3+r(2)*sin(0i3)+D(2)*cos(Qi3),
Yi3h=Yi3-r(2)*cos(0i3)+D(2)*sin(Qi3);
1130=sqrt((Xi1-Xi3h)*(Xi1-Xi3h)+(Yi1-Yi3h)*(Yi1-Yi3h)),
1230=5sqrt{(Xi2-Xi3h)*(Xi2-Xi3h)+(Yi2-Yi3h)*(Yi2-Yi3h));
1130=[0 1130];

1230=[0 1230];

sim('Step2_LL3");

i=i+1;

m=size(xyo1,1)

tr(i)=xyo1(m,1);
Xi1=xyo1(m,2); Yil=xyo1

,3); Oi1=xyo1(m,4);

(m,3 (m
Xi2=xyo2(m,2); Yi2z=xyo2(m,3); Oi2=xyo2(m,4 )
Xi3=xyo3(m,2); Yi3=xyo3(m,3); Oi3=xyo3(m,4)
Xid=xyod(m,2); Yid=xyo4(m,3); Oid=xyod(m, 4)
Xi5=xyo5(m,2); Yi5=xyo5(m,3); Oi5=xyo5(m,4);
xyo1(:,1)=xyo1(;, 1)+t
xy02(:,1)=xyo2(:, 1)+t
xy03(;,1)=xyo3(:,1)+t
Xyod(:,1)=xyo4(:, 1)+t

xyo5(:,1)=xyo5(:,1)+t
xyo1f=[xyo1f; xyo1];
xyo2f=[xyo2f; xyoZ2];
xyo3f=[xyo3f; xyo3];
xyodf=[xyo4df; xyod];
xyo5f=[xyo5f; xyob];
t=t+tr(i), a=[a ' C3');
if tr(i)<Tr(2)
collision=1;
else
collision=0;
end
1M2=1;
end
end % while 1
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step3.m

D2=5,9=2;
c=0;

sim('Step312_RL");

i=i+1;

m=size(xyo1,1);
tr(i)=xyot(m,1);

Xi1=xyo1
Xi2=xyo2
Xi3=xyo3
Xid=xyo4

Xyo2(:,1
Xyo3(:
(:

N
Xyod(:,1
]

):
):
):

(
(
(
(
(

m
m
m
m

(:, 1)+t
Xy02(:,1)+t;
xyo3(:, 1)+t
Xyo4(:,1)+t;

Xyo5(:,1)=xyo5(:,1)+t;
xyo1f=[xyo1f;, xyo1];
xyo2f=[xyo2f; xyo2];
xyo3f=[xyo3f; xyo3];
xyodf=[xyodf; xyod);
xyo5f=[xyo5f, xyo5];

2); Yil=xyo1
,2); Yi2=xyo2
,2); Yi3=xyo3
\2); Yid=xyo4d
Xi5=xyo5(m,2); Yi5=xyo5
xyo1(:,1)=xyo1

t=t+r(i); a=[a ' T27;

if tr(i)<40

collision=1;

else

collision=0;

end

while collision==
X4d=Xi2+R4*sin(0i2)-L4*cos(0i2);
Y4d=Yi2-R4*cos(0i2)-L4*sin(Qi2);
Xidh=Xi4+D2*cos(0Oi4);
Yidh=Yi4+D2*sin(Qi4);

Oit=xyo1(m,4);
Oi2=xyo2(m,4);
Oi3=xyo3(m,4);
Oi4=xyod(m,4);
Oib5=xyo5(m,4);

X5d=Xi3+R5*sin(0i3)-L5*cos(0i3);
Y5d=Yi3-R5*cos(0i3)-L5*sin(0i3);
Xi5h=Xi5+D2*cos(Qi5);
Yi5h=Yi5+D2*sin(Oi5);

Rleader_a=Dd(2)+D2; Rleader_b=-Rleader_a;

% Leader 2 for Robot1

X1leader_a=Xi1+Rleader_a*sin(Oi1
Y1leader_a=Yi1-Rleader_a*cos(Qi1
X1leader_b=Xi1+Rleader_b*sin
Y1leader_b=Yi1-Rleader_b*cos(Oi1

(
(
(
(

)
);
Qi)
).

testd_a=(X1leader_a - X4d)*(X1leader_a - X4d)+(Y1leader_a - Y4d)*(Y1leader_a - Y4d);

testd_b=(X1leader_b - X4d)*(X1leader_b - X4d)+(Y1leader_b - Y4d)*(Ylleader_b - Y4d);

iftestd_a >=test4d b
R41leader2=Rleader_b;
X41leader2=X1leader_b;



C. Algorithm for Matlab-Simulink Simulation 209

Y4 1leader2=Y1leader_b;
else

R41leader2=Rleader_a;

X41leader2=X1leader_a;

Y41leader2=Y1leader_a;
end

test5_a=(X1leader_a - X5d)*(X1leader_a - X5d)+(Y1leader_a - Y5d)*(Y1lleader_a - Y5d),
tests_b=(X1leader_b - X5d)*(X1leader_b - X5d)+(Y1leader_b - Y5d)*(Y1 leader b - Y5d),
if test5_a >= test5_b B
R51leader2=Rleader_b;
X51leader2=X1leader_b;
Y51leader2=Y1leader_b;
else
R51leader2=Rleader_a;
X51leader2=X1leader_a;
Y51leader2=Y1leader_a;
end

% Leader 2 for Robot2

X2leader_a=Xi2+Rleader_a*sin(0i2)
Y2leader_a=Yi2-Rleader_a*cos(0i2);
X2leader_b=Xi2+Rleader_b*sin(0i2);
Y2leader_b=Yi2-Rleader_b*cos(0Oi2),

’

testd_a=(X2leader_a - X4d)*(X2leader_a - X4d)+(Y2leader_a - Y4d)*(Y2leader_a - Y4d),
test4_b=(X2leader_b - X4d)*(X2leader_b - X4d)+(Y2leader_b - Y4dy(Y2leader_b - Y4d),
if testd_a >=test4_b

R42leader2=Rleader_b;

X42leader2=X2leader_b;

Y42leader2=Y2leader_b;
else

R42leader2=Rleader_a;

X42leader2=X2leader_a;

Y42leader2=Y2leader_a,
end

test5_a=(X2leader_a - X5d)*(X2leader_a - X5d)+(Y2leader_a - Y5d)*(Y2leader_a - Y5d);
tests_b=(X2leader_b - X5d)*(X2leader_b - X5d)+(Y2leader_b - Y5d)*(Y2leader_b - Y5d),
if tests_a >=test5_b

R52leader2=Rleader_b;

X52leader2=X2leader_b;

Y52leader2=Y2leader_b;
else

R52leader2=Rleader_a;

X52leader2=X2leader_a;

Y52ieader2=Y2leader_a;
end

% Leader 2 for Robot3

X3leader_a=Xi3+Rleader_a*sin(0i3)
Y3leader_a=Yi3-Rleader_a*cos(0Oi3)
X3leader_b=Xi3+Rleader_b*sin(Oi3);
Y3leader_b=Yi3-Rleader_b*cos(Oi3)

3

testd_a=(X3leader_a - X4d)*(X3leader_a - X4d)+(Y3leader_a - Y4d)*(Y3leader_a - Yad);
test4_b=(X3leader_b - X4d)*(X3leader_b - X4d)+(Y3leader_b - Y4d)*(Y3leader_b - Y4d);



C. Algorithm for Matlab-Simulink Simulation 210

if testd_a >=test4_b
R43leader2=Rleader_b;
X43leader2=X3leader_b;
Y43leader2=Y3leader_b;

else
R43leader2=Rleader_a;
X43leader2=X3leader_a;
Y43leader2=Y3leader_a;

end

tests_a=(X3leader_a - X5d)*(X3leader_a - X5d)+(Y3leader_a - Y5d)*(Y3leader_a - Y5d);
test5_b=(X3leader_b - X5d)*(X3leader_b - X5d)+(Y3leader_b - Y5d)*(Y3leader_b - Y5d);
if testS_a >=test5_b

R53leader2=Rleader_b;

X53leader2=X3leader_b;

Y53leader2=Y3leader_b;
else

R53leader2=Rleader_ag;

X53leader2=X3leader_a;

Y53leader2=Y3leader_a;
end

% Leader 2 for Robot4

Xdleader_a=Xi4+Rleader_a*sin(Qi4);
Y4leader_a=Yi4-Rleader_a*cos(Oid),
X4leader_b=Xi4+Rleader_b*sin(Oi4),
Y4leader_b=Yi4-Rleader_b*cos(Qi4);

test5_a=(X4leader_a - X5d)*(X4leader_a - X5d)+(Y4leader_a - Y5d)*(Y4leader_a - Y5d);
test5_b=(Xdleader_b - X5d)*(X4leader_b - X5d)+(Y4leader_b - Y5d)*(Y4leader_b - Y5d);
if tests_a >=tests_b

R54leader2=Rleader_b;

X54leader2=X3leader_b;

Y54leader2=Y3leader_b;
else

R54ileader2=Rleader_a;

X54leader2=X4leader_a;

Y54leader2=Y4leader_a;
end

% m=size(xyo1,1);
% tr(i)=xyo1(m,1);

if d41(m,1)<=Dd(2) c=41;,  end
if 442(m,1)<=Dd(2) ¢=42;  end
if d43(m,1)<=Dd(2) c=43;  end
if d51(m,1)<=Dd(2) c=51;  end
if 452(m,1)<=Dd(2) c=52;  end
if d53(m,1)<= Dd(2) c=53;  end
if d54(m,1)<=Dd(2) c=54;  end
if ((d471(m, 1)<=Dd(2))8&(d51(m,1)<=Dd(2))) c¢=4151;  end
if ((d41(m.1)<=Dd(2))&&(d52(m,1)<=Dd(2))) ¢=4152;  end
if ((d41(m.1)<=Dd(2))8&(d53(m,1)<=Dd(2))) ¢=4153;  end
if ((d41(m.1)<=Dd(2))&&(d54(m,1)<=Dd(2))) ¢=4154;  end
f ((d42(m,1)<=Dd(2))&&(d51(m,1)<=Dd(2))) c=4251;  end
if ((d42(m,1)<=Dd(2))&&(d52(m,1)<=Dd(2))) ¢=4252;  end
if ((d42(m,1)<=Dd(2))&&(d53(m,1)<=Dd(2))) c=4253;  end
if ((d42(m,1)<=Dd(2))&&(d54(m,1)<=Dd(2))) ¢c=4254;  end
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if ((d43(m,1)<=Dd(2))&&(d51(m,1)<=Dd(2))) ¢=4351; end
if ((d43(m,1)<=Dd(2))&&(d52(m,1)<=Dd(2))) c=4352; end
if ((d43(m,1)<=Dd(2))&&(d53(m,1)<=Dd(2))) c=4353; end
if ((d43(m,1)<=Dd(2))&&(d54(m,1 )<=Dd(2))) c=4354; end
if ((d51(m,1)<=Dd(2))&&(d54(m,1)<=Dd(2))) ¢=5154; end
if ((d52(m,1)<=Dd(2))&&(d54(m,1)<=Dd(2))) c=5254; end
if ((d53(m,1)<=Dd(2))&&(d54(m,1)<=Dd(2))) c=5354; end
switch ¢
case 41

R4leader2=R4 1leader2;

14130=sqrt((Xi1-Xi4h)*(Xi1-Xidh)+(Yi1-Yidh)*(Yi1-Yi4h));

14230=sqrt((X4 1leader2-Xi4h)*(X4 leader2-Xidh)+(Y41leader2-Yidh)*(Y4 lleader2-Yidh))
1413d=Dd(2)+D2+g;1423d=g;

sim('Step312_41'); a=[a ' 41";

case 42

Rdleader2=R42leader2;

14130=sqrt((Xi2-Xi4h)*(Xi2-Xi4h)+(Yi2-Yidh)*(Yi2-Yi4h));
14230=sqrt((X42leader2-Xi4h)*(X42leader2-Xi4h)+(Y42leader2-Yidh)*(Y42leader2-Yi4h));
1413d=Dd(2)+D2+g;l423d=g;

sim('Step312_42"); a=[a ' 42",

case 43

R4leader2=R43leaderz;

14130=sqrt((Xi3-Xi4h)*(Xi3-Xi4h)+(Yi3-Yi4h)*(Yi3-Yi4h));
14230=sqrt((X43leader2-Xi4h)*(X43leader2-Xi4h)+(Y43leader2-Yidh)*(Y43leader2-Yidh));
1413d=Dd(2)+D2+g;1423d=g;

sim('Step312_43'), a=[a'43];

case 51

R5leader2=R51leader?,;

15130=sqrt((Xi1-Xi5h)*(Xi1-Xi5h)+(Yi1-Yi5h)*(Yi1-Yi5h))
15230=sqrt((X51leader2-Xi5h)*(X51leader2-Xi5h)+(Y51leader2-Yi5h)*(Y51leader2-Yi5h));
1513d=Dd(2)+D2+g;|523d=g;

sim('Step312_51"); a=[a ' 517;

case 52

R5leader2=R52leader?;

15130=sqrt((Xi2-Xi5h)*(Xi2-Xi5h)+(Yi2-Yi5h)*(Yi2-Yi5h));
15230=sqrt((X52leader2-Xibh)*(X52leader2-Xi5h)+(Y52leader2-Yi5h)* (Y 52ieader2-Yish)),
1513d=Dd(2)+D2+g;!523d=g;

sim('Step312_52'); a=[a ' 527,

case 53

R5leader2=R53leaderz;

15130=sqrt({Xi3-Xi5h)*(Xi3-Xi5h)+(Yi3-Yi5h)*(Yi3-Yi5h)),
15230=sqrt({(X53leader2-Xi5h)*(X53leader2-XiSh)+(Y53leader2-Yi5h)*(Y53leader2-YiSh));
1513d=Dd(2)+D2+g;1523d=g;

sim('Step312_53'); a=[a' 537;

case 54

R5leader2=R54leaderz;

15130=sqrt((Xi4-Xi5h)* (Xi4-XiSh)+(Yi4-Yish)*(Yid-Yi5Sh));
I5230=sqrt((X54Ieader2-Xi5h)*(X54IeaderZ-Xi5h)+(Y54leader2-Yi5h)*(Y54Ieader2-YiSh));
1513d=Dd(2)+D2+g;|523d=g;

sim('Step312_54'); a=[a ' 54'];

case 4151

R4leader2=R41leader2;

14130=sgrt((Xi1-Xidh)*(Xi1-Xidh)+(Yi1-Yidh)*(Yi1-Yidh));
I4230=sqrt((X41Ieader2-Xi4h)*(X4‘lleaderZ-Xi4h)+(Y41Ieader2-Yi4h)*(Y41Ieader2-Yi4h));
1413d=Dd(2)+D2+g;l423d=g;

Rb5leader2=R51leader?;
15130=sqrt((Xi1-Xi5h)*(Xi1-Xi5h)+(Yi1-Yish)*(Yi1-Yi5h));
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15230=sqrt((X51leader2-Xidh)*(X51leader2-Xidh)+(Y51leader2-Yi5h)*(Y51leader2-Yi5h));
1513d=Dd(2)+D2+g;1523d=g;

sim('Step312_4151"); a=[a ' 4151"];

case 4152

R4leader2=R41leader?;

14130=sqrt((Xi1-Xi4h)*(Xi1-Xi4h)+(Yi1-Yidh)*(Yi1-Yi4h));

14230=sqrt((X4 1leader2-Xi4h)*(X41leader2-Xi4h)+(Y41leader2-Yidh)*(Y41leader2-Yi4h));
1413d=Dd(2)+D2+g;1423d=g;

R5leader2=R52leader?;

15130=sqgrt{(Xi2-Xi5h)*(Xi2-Xi5h)+(Yi2-Yi5h)*(Yi2-Yi5h));
15230=sqrt((X52leader2-Xi5h)*(X52leader2-XiSh)+(Y52leader2-Yi5h)*(Y52leader2-Yi5h));
1513d=Dd(2)+D2+g;I523d=g;

sim('Step312_4152"); a=[a '4152');

case 4153

R4leader2=R41leader?;

14130=sqrt((Xi1-Xidh)*(Xi1-Xidh)+(Yi1-Yidh)*(Yi1-Yidh));
14230=sqrt((X41leader2-Xidh)*(X41leader2-Xidh)+(Y41leader2-Yi4h)*(Y41leader2-Yi4h));
1413d=Dd(2)+D2+g;1423d=g;

R5leader2=R53leader?;

15130=sqrt((Xi3-Xi5h)*(Xi3-Xi5h)+(Yi3-Yi5h)*(Yi3-Yi5h));
15230=sqrt((X53leader2-Xi5h)*(X513eader2-Xi5h)+(Y53leader2-Yi5h)*(Y53leader2-Yidh)),
1513d=Dd(2)+D2+g;|523d=g;

sim('Step312_4153'); a=[a '4153;

case 4154

R4leader2=R41leader?;

14130=sqrt((Xi1-Xi4h)*(Xi1-Xi4h)+(Yi1-Yidh)*(Yi1-Yidh));
14230=sqrt((X41leader2-Xi4h)*(X41leader2-Xidh)+(Y41leader2-Yidh)* (Y4 1leader2-Yidh));
1413d=Dd(2)+D2+g;l423d=g;

R5leader2=R54leader2;

15130=sqrt((Xi4-Xi5h)*(Xi4-Xi5h)+(Yi4-Yi5h)*(Yi4-Yidh));
I5230=sqrt((X54Ieader2-Xi5h)*(X54|eader2-Xi5h)+(Y54Ieader2-Yi5h)'(Y54Ieader2—Yi5h));
1513d=Dd(2)+D2+g;1523d=g;

sim('Step312_4154'); a=[a '4154"];

case 4251

R4leader2=R42leader2;

|4130=sqrt((Xi2-Xi4h)*(Xi2-Xi4h)+(Yi2-Yi4h)*(Yi2-Yi4h));
I4230=sqrt((X42Ieader2-Xi4h)*(X42Ieader2-Xi4h)+(Y42Ieader2-Yi4h)*(Y42Ieader2-Yi4h));
1413d=Dd(2)+D2+g;1423d=g;

R5leader2=R51leader?2;

15130=sqrt((Xi1-Xi5h)*(Xi1-Xi5h)+(Yi1-YiSh)*(Yi1 -Yi5h));
15230=sqrt((X51leader2-Xi5h)*(X51 leader2-Xi5h)+(Y51leader2-Yish)*(Y51leader2-Yi5h));
1513d=Dd(2)+D2+g;1523d=g;

sim('Step312_4251"); a=[a ' 4251);

case 4252

R4leader2=R42leader?;

141 30=sqrt((Xi.’Z-X'|4h)*(Xi2-Xi4h)+(Yi2-Yi4h)*(Yi2-Yi4h)); '
I4230=sqrt((X42Ieader2—Xi4h)*(X42|eader2-Xi4h)+(Y42|eader2-Yi4h)*(Y42leader2-Y|4h));
1413d=Dd(2)+D2+g;|423d=g;

R5leader2=R52leaderz; ‘ -
|5130=sqrt((Xi2-Xi5h)'(Xi2-Xi5h)+(Yi2-Y|5h)*(Y|2-Y|5h)); ' .
I523O=sqrt((X52leader2-Xi5h)*(X52leader2-Xi5h)+(Y52Ieader2-Y15h)*(Y52Ieader2-Y15h));

1513d=Dd(2)+D2+g;1523d=g;
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sim('Step312_4252'); a=[a ' 4252,

case 4253

R4leader2=R42|eader?2;

14130=sqrt((Xi2-Xi4h)*(Xi2-Xi4h)+(Yi2-Yidh)*(Yi2-Yidh));
I4230=sqrt((X42Ieader2-Xi4h)*(X42Ieader2-Xi4h)+(Y42Ieader2-Yi4h)*(Y42leader2-Yi4h))
1413d=Dd(2)+D2+g;1423d=g;

R5leader2=R53leader2;

15130=sqrt((Xi3-Xi5h)*(Xi3-Xi5h)+(Yi3-Yi5h)*(Yi3-Yi5h));
15230=sqrt((X53leader2-Xi5h)*(X53leader2-Xi5h)+(Y53leader2-Yish)*(Y53leader2-Yi5h))
1513d=Dd(2)+D2+g;523d=g;

sim('Step312_4253'); a=[a ' 4253,

case 4253

R4leader2=R42leader2;

14130=sqrt((Xi2-Xi4h)*(Xi2-Xi4h)+(Yi2-Yidh)*(Yi2-Yidh));
14230=sqrt((X42leader2-Xi4h)*(X42leader2-Xidh)+(Y42leader2-Yidh)*(Y42leader2-Yi4h));
1413d=Dd(2)+D2+g;|423d=g;

R5leader2=R54leader?2;

15130=sqgrt((Xi4-Xi5h)*(Xi4-Xi5h)+(Yi4-Yi5h)*(Yi4-Yi5h));
15230=sqrt((X54leader2-Xi5h)*(X54leader2-Xi5h)+(Y54leader2-Yi5h)*(Y54ieader2-Yish));
1513d=Dd(2)+D2+g;1523d=g;

sim('Step312_4254'), a=[a ' 42547,

case 4351

R4leader2=R43leader?;

14130=sqrt((Xi3-Xi4h)*(Xi3-Xidh)+(Yi3-Yidh)*(Yi3-Yi4h));
14230=sqrt({X43leader2-Xi4h)*(X43leader2-Xi4h)+(Y43leader2-Yi4h)*(Y43leader2-Yi4h)),
1413d=Dd(2)+D2+g;l423d=g;

R5leader2=R51leader?;

15130=sqrt((Xi1-Xi5h)*(Xi1-Xi5h)+(Yi1-Yi5h)*(Yi1-Yi5h));
15230=sqrt((X51leader2-Xi5h)*(X51leader2-Xi5h)+(Y51leader2-Yi5h)*(Y51leader2-YiSh));
1513d=Dd(2)+D2+g;1523d=g;

sim('Step312_4351"); a=[a ' 43517,

case 4352

R4leader2=R43leader?2;

14130=sqrt((Xi3-Xi4h)*(Xi3-Xi4h)+(Yi3-Yidh)*(Yi3-Yi4h));
14230=sqrt((X43leader2-Xi4h)*(X43leader2-Xi4h)+(Y43leader2-Yidh)*(Y43leader2-Yidh)),
1413d=Dd(2)+D2+g;|423d=g;

Rb5leader2=R52leaderz;

15130=sqrt((Xi2-Xi5h)*(Xi2-Xi5h)+(Yi2-Yi5h)*(Yi2-Yi5h));
15230=sqrt((X52leader2-Xi5h)*(X52leader2-Xish)+(Y52leader2-Yish)* (Y 52leader2-YiSh));
1513d=Dd(2)+D2+g;1523d=g;

sim('Step312_4352'); a=[a ' 4352'];

case 4353

R4leader2=R43leader2;

14130=sqrt((Xi3-Xi4h)*(Xi3-Xi4h)+(Yi3-Yidh)*(Yi3-Yidh));
|4230=sqrt((X43leader2-Xi4h)*(X43Ieader2-Xi4h)+(Y43Ieader2-Yi4h)*(Y43Ieader2-Yi4h));
1413d=Dd(2)+D2+g;|423d=g;

R5leader2=R53leaderz;

15130=sqrt((Xi3-Xi5h)*(Xi3-Xi5h)+(Yi3-Yi5h)‘(Yi3-Yi5h)); ' .
I5230=sqrt((X53leader2-Xi5h)*(X53|eader2-Xi5h)+(Y53leader2-Y|5h)*(Y53Ieader2-Y|5h));
1513d=Dd(2)+D2+g;!523d=g;

sim('Step312_4353'); a=[a ' 4353];

case 4351
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R4leader2=R43leader?;

14130=sqrt((Xi3-Xi4h)*(Xi3-Xi4h)+(Yi3-Yidh)*(Yi3-Yidh)),

14230=sqrt((X43leader2-Xi4h)*(X43leader2-Xi4h)+(Y43leader2-Yidh)*(Y43leader2-Yidh)):

1413d=Dd(2)+D2+g;1423d=g;

R5leader2=R54leader2;

15130=sqrt((Xi4-Xi5h)*(Xi4-XiSh)+(Yid-Yi5h)*(Yid-Yi5h)):

15230=sqrt((X54leader2-Xidh)*(X54leader2-Xi5h)+(Y54leader2-Yi5h)*(Y54leader2-Yish));

1513d=Dd(2)+D2+g;|523d=g;
sim('Step312_4354"); a=[a ' 4354";
case 5154

15130=sqrt((Xi1-Xi5h)*(Xi1-Xi5h)+(Yi1-Yi5h)*(Yi1-Yi5h));
15230=5qrt((Xi4-Xi5h)*(Xi4-Xi5h)+(Yi4-Yi5h)*(Yid-Yi5h));

dis41=sqrt({Xi4-Xi1)*(Xi4-Xi1)+(Yid-Yi1)*(Yid-Yi1));

if dis41 >= 2*(Dd(2)+D2)
1513d=dis41-Dd(2)-D2+g;

else )
1513d=Dd(2)+D2+g;

end

1523d=Dd(2)+D2+g;

sim('Step312_5154'); a=[a ' 51547,

case 5254

15130=sqrt((Xi2-Xi5h)*(Xi2-Xi5h)+(Yi2-Yi5h)*(Yi2-Yi5h));
( J*(Xid-Xi5h)+(Yid-Yi5hy*(Yid-Yish));

15230=sqgrt({Xi4-Xi5h
dis42=sqrt((Xi4-Xi2)*(Xi4-Xi2)+(Yi4-Yi2)*(Yi4-Yi2));
if dis42 >= 2*(Dd(2)+D2)
1513d=dis42-Dd(2)-D2+g;
else
1513d=Dd(2)+D2+g;
end
1523d=Dd(2)+D2+g;
sim('Step312_5254"); a=[a ' 5254'];
case 5354

15130=sqrt((Xi3-Xi5h)*(Xi3-Xi5h)+(Yi3-Yi5h)*(Yi3-Yi5h));
15230=sqrt((Xi4-Xi5h)*(Xi4-Xi5h)+(Yi4-Yi5h)*(Yid-Yish));

disd3=sqrt((Xi4-Xi3)*(Xi4-Xi3)+(Yi4-Yi3)*(Yid-Yi3));
if dis43 >= 2*(Dd(2)+D2)
i513d=dis43-Dd(2)-D2+g;
else
1513d=Dd(2)+D2+g;
end
1523d=Dd(2)+D2+g;
sim('Step312_5354'); a=[a’ 53547,
end
i=i+1;
m=size(xyo1,1);
tr(i)=xyo1(m,1);

Xi1=xyo1(m,2); Yi1=xyo1(m,3); Qil=xyo1(m,4)
Xi2=xyo2(m,2), Yi2=xyo2(m,3); Oi2=xyo2(m.4)
Xi3=xyo3(m,2); Yi3=xyo3(m,3); 0i3=xy03(m.,4),
Xi4=xyo4(m,2); Yi4=xyo4(m,3); Otd=xyo4(m,4});
Xi5=xyo5(m,2); Yi5=xyo5(m,3); 0Qi5=xyo05(m,4);
xyo1(:,1)=xyo1(;,1)+t;
xyo2(:,1)=xy02(:,1)+t;
xyo3(:;,1)=xyo3(;, 1)*t;

(: A

(: (:,1)+t

)

xyo4(:,1)=xyod(,, 1)+,
xyo5(:,1)=xyo5(:;,1)+t;
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xyo1f=[xyo1f, xyo1];

xyo2f=[xyo2f; xyo2];

xyo3f=[xyo3f; xyo3];

xyodf=[xyodf, xyod];

xyo5f=[xyo5f, xyo5],

t=t+tr(i); collision=0;
end
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Appendix D

Organisation of the accompanying

CD-ROM for video clips

This appendix presents the organisation of the accompanying CD-ROM for simulation
and experimental video clips. Video clips are arranged in folders corresponding to the

chapters of the thesis.
Folder C3: Simulations in Chapter 3

e VRT31.avi: Simulation 3.1 — Case of VRT control, collision happens at
t=0.25s

e VHRT3I.avi: Simulation 3.1 — Case of VHRT control, no collision.

e VRT32.avi: Simulation 3.2 — Case of VRT control, impossible to obtain a

desired formation

e VHRT32.avi: Simulation 3.2 — Case of VHRT control, possible to obtain a

desired formation
Folder C4: Simulations in Chapter 4
e formation4l.avi: Simulation 4.1 — Line formation

o formationd2.avi: Simulation 4.2 — Case of singularities
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Folder C5: Simulations in Chapter 5
e formation51.avi: Simulation 5.1 — Line Formation
* Jformation52.avi: Simulation 5.2 — Line Formation — No possibility of collisions
e formation53.avi: Simulation 5.3 — Diamond-like formation
e formation54.avi: Simulation 5.4 — Wedge formation
Folder C6: Simulations and experiment in Chapter 6
e formation6_Cen.avi: Simulation 6.1 — Centralised Control
e formation6_Dec.avi: Simulation 6.1 — Decentralised Control
e formation_change.avi: Simulation 6.2 — Three robots in various formations

e Amigo2.avi: Experiment — Two Amigo Mobile robots
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