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ABSTRACT

Evolutionary algorithms are based on the principles of biological evolution (Bre-

mermann et al., 1966; Fraser, 1957; Box, 1957). Genetic algorithms are a class

of evolutionary algorithm applicable to optimisation of a wide range of problems

because they do not assume that the problem to be optimised is differentiable

or convex. Potential solutions to a problem are encoded by allele sequences

(genes) on an artificial genome in a manner analogous to biological DNA. Popu-

lations of these artificial genomes are then tested and bred together, combining

artificial genetic material by the operation of crossover and mutation of genes,

so that encoded solutions which more completely optimise the problem flourish

and weaker solutions die out.

Genetic algorithms are applied to a very broad range of problems in a va-

riety of industries including financial modeling, manufacturing, data mining,

engineering, design and science. Some examples are:

• Traveling Salesman Problems such as vehicle routing,

• Scheduling Problems such as Multiprocessor scheduling, and

• Packing problems such as Shipping Container Operations.

However, relative to the total volume of papers on genetic algorithms, few have

focused on the theoretical foundations and identification of techniques to build

effective genetic algorithms. Recent research has tended to focus on industry

applications, rather than design techniques or parameter setting for genetic
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algorithms. There are of course exceptions to these observations. Nevertheless,

the exceptions generally focus on a particular parameter or operator in relative

isolation and do not attempt to find a foundation, approach or model which

underpins them all.

The objective of this Thesis is to establish theoretically sound methods for es-

timating appropriate parameter settings and structurally appropriate operators

for genetic algorithms. The Thesis observes a link between some fundamental

ideas in information theory and the relative frequency of alleles in a population.

This observation leads to a systematic approach to determining optimum values

for genetic algorithm parameters and the use of generational operators such as

mutation, selection, crossover and termination criteria. The practical signifi-

cance of the Thesis is that the outcomes form theoretically justified guidelines

for researchers and practitioners.

The Thesis establishes a model for the analysis of genetic algorithm be-

haviour by applying fundamental concepts from information theory. The use of

information theory grounds the model and contributions to a well established

mathematical framework making them reliable and reproducible. The model

and techniques contribute to the field of genetic algorithms by providing a clear

and practical basis for algorithm design and tuning.

Two ideas are central to the approach taken. Firstly, that evolutionary

processes encode information into a population by altering the relative frequency

of alleles. Secondly, that the key difference between a genetic algorithm and

other algorithms is the generational operators, selection and crossover. Hence

the model maximises a population’s information as represented by the relative

frequency of solution alleles in the population, encourages the accumulation of

these alleles and maximises the number of generations able to be processed.
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Information theory is applied to characterise the information sources used

for mutation as well as to define selection thresholds in ranked populations. The

importance of crossover in distributing alleles throughout a population and in

promoting the accumulation of information in populations is analysed, while the

Shannon–McMillan theorem is applied to identify practical termination criteria.

The concept of ideal alleles as being those symbols in the appropriate loci,

which form an optimal solution and the associated solution density of the pop-

ulation is central to this analysis. The term solution density is introduced to

refer to the relative frequency of ideal alleles in the population at a particular

generation. Solution density so defined represents a measure of a population’s

fitness.

By analysing the key genetic operators in terms of their effect on solution

density, this Thesis identifies ten contributions.

• A model for the analysis of genetic algorithm behaviour inspired by infor-

mation theory.

• A static selection threshold in ranked populations.

• A dynamic selection threshold in ranked populations.

• A maximum limit on the number of loci participating in epistasis is iden-

tified whereby more epistatic loci degrade directed search.

• A practical limit to the amount of useful crossover is identified as sufficient.

• An optimal crossover section length is found.

• A cumulative scoring method for identifying solution density.

• An entropy profile of ranked lists is described.

• A practical termination criteria of most probable individuals based on the

Shannon–McMillan theorem is provided.
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• An alternative genome representation which incorporates job–shop sched-

ule problem knowledge in the genome rather than the algorithm’s gener-

ational operators is developed.

Each of these contributions is validated by simulations, benchmark problems

and application to a real–world problem.



1. INTRODUCTION

Evolutionary algorithms are based on the principles of biological evolution (Bre-

mermann et al., 1966; Fraser, 1957; Box, 1957). Genetic algorithms (GAs) are

a class of evolutionary algorithm applicable to optimisation of a wide range of

problems because they do not assume that the problem to be optimised is dif-

ferentiable or convex. Potential solutions to a problem are encoded by allele

sequences (genes) on an artificial genome in a manner analogous to biological

DNA. Populations of these artificial genomes are then tested and bred together,

combining artificial genetic material by the operation of crossover and mutation

of genes, so that encoded solutions which more completely optimise the problem

flourish and weaker solutions die out.

Genetic algorithms are applied to a very broad range of problems in a va-

riety of industries including financial modeling, manufacturing, data mining,

engineering, design and science. Some examples are:

• Traveling Salesman Problems such as vehicle routing,

• Scheduling Problems such as Multiprocessor scheduling, and

• Packing problems such as Shipping Container Operations.

Genetic algorithms are well suited to classes of difficult problems where an

analytical or algebraic solution has not been identified or is computationally

infeasible. Research into a better understanding of genetic algorithms to im-

prove their configuration and performance is important because improvements
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in the underlying algorithm can lead to significant improvement in the size and

difficulty of problems being solved in these industries.

However, relative to the total volume of papers on genetic algorithms, few

have focused on the theoretical foundations and identification of techniques

to build effective genetic algorithms. Recent research has tended to focus on

industry applications, rather than design techniques or parameter setting for

genetic algorithms. Safe et al. (2004) observe that

“Although in practice GAs have clearly proved to be efficacious and

robust tools for the treatment of hard problems, the theoretical fun-

damentals behind their success have not been well–established yet.”

Safe continues

“There are very few studies on key aspects associated with how a

GA works, such as parameter control and convergence analysis.”

Jansen et al. (2005) concurs

“Finding appropriate settings is a difficult task. The influence of

these parameters on the efficiency of the search performed by an

evolutionary algorithm can be very high. But there is still a lack of

theoretically justified guidelines to help the practitioner find good

values for these parameters.”

There are of course exceptions to these observations. However, in general

the exceptions focus on a particular parameter or operator in relative isolation

and do not attempt to find a foundation, approach or model which underpins

them all.

The objective of this Thesis is to establish theoretically sound techniques

for estimating appropriate parameter settings and structurally appropriate op-

erators for genetic algorithms. The Thesis observes a link between some fun-
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damental ideas in information theory and the relative frequency of alleles in a

population. This observation leads to a systematic approach to determining op-

timum values for genetic algorithm parameters and generational operators such

as mutation, selection, crossover and termination criteria. The practical signif-

icance of the Thesis is that the outcomes form theoretically justified guidelines

for researchers and practitioners.

The Thesis establishes a model for the analysis of genetic algorithm be-

haviour by applying fundamental concepts from information theory. The use of

information theory grounds the model and contributions to a well established

mathematical framework making them reliable and reproducible. The model

and techniques contribute to the field of genetic algorithms by providing a clear

and practical basis for algorithm design and tuning.

Information theory is applied to characterise the information sources used

for mutation as well as to define selection thresholds in ranked populations. The

importance of crossover in distributing alleles throughout a population and in

promoting the accumulation of information in populations is analysed, while the

Shannon–McMillan theorem is applied to identify practical termination criteria.

The concept of ideal alleles as being those symbols in the appropriate loci,

which form an optimal solution and the associated solution density of the pop-

ulation is central to this analysis. The term solution density is introduced to

refer to the relative frequency of ideal alleles in the population at a particular

generation. Solution density so defined represents a measure of a population’s

fitness.
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By analysing the key genetic operators in terms of their affect on solution

density, this Thesis identifies ten contributions. These contributions are first

listed and then explained below.

• A model for the analysis of genetic algorithm behaviour inspired by infor-

mation theory.

• A static selection threshold in ranked populations.

• A dynamic selection threshold in ranked populations.

• A maximum limit on the number of loci participating in epistasis is iden-

tified whereby more epistatic loci degrade directed search.

• A practical limit to the amount of useful crossover is identified as sufficient.

• An optimal crossover section length is found.

• A cumulative scoring method for identifying solution density.

• An entropy profile of ranked lists is described.

• A practical termination criteria of most probable individuals based on the

Shannon–McMillan theorem is provided.

• An alternative genome representation which incorporates job–shop sched-

ule problem knowledge in the genome rather than the algorithm’s gener-

ational operators is developed.

Each of these contributions is validated by simulations, benchmark problems

and application to a real–world problem.

A model of genetic algorithm behaviour.

A model of genetic algorithm behaviour inspired by information theory is estab-

lished. Two ideas are central to the model. Firstly, that evolutionary processes
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encode information into a population by altering the relative frequency of al-

leles throughout the population. Secondly, that the key difference between a

genetic algorithm and other algorithms is the generational operators, selection

and crossover. This suggests that genetic algorithms benefit from maximising

the number of generations processed. Hence the model presented maximises a

population’s information as represented by the relative frequency of ideal alleles

in the population, encourages the accumulation of these alleles and maximises

the number of generations able to be processed.

A static selection threshold in ranked populations.

When individuals containing L loci are ranked by the number of ideal alleles they

contain, then a static threshold (k0 : 0 ≤ k0 ≤ L) exists, whereby individuals

with more than k0 ideal alleles have a solution density (ρg) greater than that

of the information source used to generate the initial population. Section 3.2

shows that deleting any individual from above this static threshold results in

lost information that cannot be easily recovered using the information source.

Similarly, applying mutation to any individual above this threshold will, on

average, decrease the solution density of the population rather than increase it.

This static threshold is identified as k0 = Lρ0.

A dynamic selection threshold in ranked populations.

A second threshold (kg | kg ≥ k0) exists which is associated with replacement

of individuals by randomly selected parents. Unlike the first threshold, this

second threshold is dynamic because the solution density of the surviving popu-

lation increases over generations. Replacing individuals between the static and

dynamic thresholds with individuals drawn from above the dynamic threshold

results in the accelerated accumulation of information by the genetic algorithm.

The dynamic threshold is identified in Section 3.3 as kg = Lρg.
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A maximum limit on the number of loci participating in epistasis.

The resolution of the objective function in the vicinity of the static selection

threshold is critical for a genetic algorithm to decide which individuals to retain

and which to discard. This is interesting as it indicates a maximum practical

bound for the number of loci participating in epistasis. Epistasis is a form of

non–linearity which leads to local optima and can ‘deceive’ genetic algorithms to

find a false optima. Section 3.1.4 shows that when there are more than Lρ0 loci

participating in epistasis, finding the ideal solution becomes increasingly due to

chance rather than the ability of the genetic algorithm to direct the search.

Sufficient crossover and optimal crossover section length.

Sufficient crossover is defined in Section 3.4 as a limit to the number of crossover

operations, whereby any additional crossover has negligible affect on the dis-

tribution of ideal alleles in a population. Sufficient crossover is estimated in

Section 3.4 as approximately three times the population size and the impor-

tant discovery that a crossover section length of Y = L/2 results in the fastest

re–distribution of ideal alleles through a population.

A cumulative scoring method for identifying solution density.

The scaled raw scores of individuals, normalised by the frequency of their alleles

in the population, is accumulated in an A vs L matrix Ia,l. This can be used to

identify the major schema and hence estimate the solution density. The major

schema of the population is defined by Chapter 5 to be the genome comprising

the highest scoring allele in Ia,l. This major schema represents the best estimate

of the ideal individual at generation g. However, it is not necessarily an actual

individual from the population. Nevertheless, it is possible to ‘engineer’ an
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individual from the major schema which, when then scored, is often superior to

the best individual in the population.

An entropy profile of ranked lists.

The entropy profile of a list of N alleles in a locus across a population is a

sequence of N − 2 entropy measures: the entropy of the entire list, the entropy

of the list without the last allele, the entropy of the list without the last two

alleles, and so on until the entropy of the only remaining two alleles are found.

If this is repeated for all loci in the population, it is the entropy profile of

the population. A means for quantifying the information content of objective

(ranking) functions and a way of comparing various techniques for extracting

this information is to compare the entropy profile of a ranked population to

the entropy profile for the same population ordered randomly. Additionally, a

comparison of entropy profiles for ranked vs random populations may provide

a means to accurately determine selection thresholds.

A termination criteria based on the Shannon–McMillan theorem.

A practical termination criteria is a direct consequence of the Shannon–Mac-

Millan theorem since the population reaches a point where its entropy defines

the most probable individuals that can be generated by crossover from that

point on. Section 3.6 applies the Shannon–McMillan theorem to show that the

number of most probable individuals corresponding to this population entropy

occurs well before population convergence. Hence, a useful criteria is identified

to decide when to terminate the genetic algorithm and exhaustively search the

remaining space.
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An alternative representation of job–shop schedule problems.

Most genetic algorithms applied to scheduling problems utilise generational

operators which incorporate some problem knowledge. While this keeps the

genome simple, the resulting operators have altered mathematical properties

which are incompatible with the Thesis model. To avoid altering the properties

of operators, this Thesis develops a genome representation which incorporates

the problem’s knowledge. This approach permits the use of the Thesis operators

without changing their properties. It also facilitates the comparison of the The-

sis operators with operators used by other job-shop schedule researchers. These

operators are incorporated in the HMXT algorithm developed in Chapter 5.

1.1 Thesis Outline

The Thesis begins by providing a background to genetic algorithms. A liter-

ature review is then presented in Chapter 2 covering related work in genetic

algorithms and some applications of information theory to the field. A model

of genetic algorithm behaviour is described in Chapter 3, first focusing on how

a problem may be represented and then on parameters influencing the main

genetic algorithm operators. A simulation is then used in Chapter 4 to test the

fidelity of the model and to validate the underlying assumptions. Chapter 5

applies a genetic algorithm using techniques suggested by the model to a se-

ries of optimisation benchmarks. Chapter 6 details a test of the Thesis genetic

algorithm where it is applied to a series of job shop scheduling problems of real–

world complexity. Key ideas are summarised throughout the Thesis ending with

conclusions and suggestions for future work in Chapter 7.



2. A REVIEW OF THE GENETIC ALGORITHM

LITERATURE

Genetic algorithms are a class of evolutionary algorithm whereby potential so-

lutions to a problem are encoded by allele sequences (genes) on an artificial

genome in a manner analogous to biological DNA. Populations of these ar-

tificial genomes are tested and genomes which more completely optimise the

problem are selected to have their genetic material combined in a subsequent

generation so that they increase in number while the weaker solutions die out.

Sometimes mutation is applied to randomly alter some alleles as may occur in

natural genomes.

Analysis of genetic algorithms is typically broken down into an examina-

tion of the structural parameters such as population size (N), allele cardinality

(A), genome length (L) and the operators: mutation, selection and crossover.

Operators such as gene translation and gene inversion are sometimes used if

movement of alleles within an individual genome is required.

Population size refers to the number of individual solutions to be tested be-

fore the genetic operators are applied. Allele cardinality refers to the number

of symbols in the alphabet used to represent alleles. This cardinality is usually

binary. Length is the number of loci that form an individual genome. Mutation

involves randomly changing the value of alleles in some loci of selected individ-

uals. A high rate of mutation does this more often per generation than a low

rate. Mutation is used by genetic algorithms to maintain diversity of alleles and

to prevent premature convergence to a sub–optimal solution.
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Selection is a genetic operator which retains part of the population for use

as ‘parents’ for generating a new population. Selection results in the accumu-

lation of fit genetic material (the genes) in the population by discarding less fit

individuals. If the selection operator is poor at distinguishing fit from unfit in-

dividuals, it will result in a significant, potentially catastrophic, loss of fit genes

from the population.

Crossover is a genetic operator where a section of genes in one parent is

exchanged with a corresponding section in another parent. The crossover op-

eration is akin to mitosis in biology where genes from each parent are passed

to the child. As selection increases the frequency of fit genes in the population,

the probability that crossover will construct highly fit children by combining fit

genes with other fit genes improves and the overall population fitness similarly

improves.

Translation is the movement of one or more alleles within an individual’s

genome. The individual is usually chosen at random but the alleles moved may

either be selected deliberately or randomly depending upon the problem require-

ment. Gene inversion is where a randomly selected section of an individual’s

genome is ‘flipped’ so that this sequence of alleles is reversed.

In addition to these parameters, the effectiveness of accurate rank ordering

for selection and appropriate termination criteria are also significant considera-

tions in genetic algorithm construction.

The basic flow of a genetic algorithm is illustrated in Algorithm 1 as follows:

The problem is defined and coded into a sequence of symbols (alleles) whose

value and loci position form ‘individuals’ which represent potential solutions to

the problem. A number of these individuals are randomly generated (line 1)

to form a population (lines 2 and 3) which is then tested against the problem

by means of an objective function which scores each individual depending upon
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Data: Population Size, Termination Criteria, Genome Length= L, Allele
Cardinality

Define information source using allele cardinality;1

for n=1 to Population Size do2

Generate Individual of length L using information source;3

repeat4

Score each individual in the population using the objective function;5

Select individuals to survive to next generation;6

Select individuals to generate replacement individuals (parents);7

Perform crossover between parent genomes to produce child genomes;8

Mutate alleles in selected loci;9

Translation or Inversion (if required);10

until termination criteria = true ;11

Algorithm 1: A Simple Genetic Algorithm.

how well it meets the problem criteria (line 5). A selection operator (line 6)

then selects certain individuals to be discarded and others to be retained for the

next generation. Some of these surviving individuals (line 7) are selected for

crossover (line 8) whereby sections of two or more individuals are exchanged in

a process similar to biological mating. Some randomly selected individuals have

some of their alleles randomly changed in a process akin to biological mutation

(line 9). Translation or inversion may be applied at this point if required by the

problem (line 10). The resulting individuals belong to the next generation and

the process is repeated (line 4) until termination criteria are met (line 11).

Genetic algorithms are relatively straightforward to program but under-

standing how they work is challenging and has been a major research goal for

some decades. The iterative nature of a genetic algorithm means that they are

best applied to problems which have no known closed form solution or where the

known solution takes too long to calculate for the number of variables required.

Such problems fit into the category of Polynomial Time (P) problems.1

1 The term ‘Polynomial time’ refers to the computation time of a problem where the time,
t(l) is no greater than a polynomial function of the problem size (l).
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Because a genetic algorithm evaluates many possible solutions in search of

solutions which are in some sense ‘better’, a means of judging this improvement

must be available. Optimisation problems have this characteristic in the form of

an ‘objective function’. In addition, the directed evaluation of possible solutions

by a genetic algorithm means that they are suited to the category of Non–

Deterministic problems. As a result of these characteristics, genetic algorithms

are used to solve Non–Deterministic Polynomial Time Problems (NP )2.

This review of the literature will group and discuss existing work in the field

of genetic algorithms by focusing on each of these concepts in turn. Because

this Thesis includes benchmarks and industry problems to test the key ideas

presented, some of the literature relevant to these fields is also reviewed.

2.1 The Genetic Algorithm Literature

Early work on evolutionary algorithms occurred in the late 1950s and early

1960s. Bremermann et al. (1966), Fraser (1957) and Box (1957) described artifi-

cial evolution systems. From the 1970s work on evolutionary algorithms acceler-

ated with the increasing availability of computers and diversified into a variety of

branches including genetic algorithms (Rechenberg, 1973; Holland, 1975; Gold-

berg, 1989; De Jong and Spears, 1991; Reeves, 1993; Whitley et al., 1995) which

represents problems as strings of symbols; genetic programming (Koza, 1992;

Poli, 2001b), which evolves computer programs rather than strings of symbols;

and real valued genetic algorithms (Rechenberg, 1973; Schwefel, 1981).

More recently a significant volume of research has examined genetic algo-

rithm operators in detail through Markov chain analysis (Poli et al., 2004),

groups (Rowe et al., 2002, 2004b, 2007), normed vector spaces (Rowe, 2001),

information theory (Toussaint, 2004; Borenstein and Poli, 2006) and other math-

2 ‘Non–Deterministic Polynomial time’ problems (NP ) are decision problems which can be
solved in polynomial time.
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ematical tools (Mitavskiy, 2004). Such analysis provides significant insight into

the structure of search spaces as well as the nature of genetic operators such as

crossover, mutation and selection.

The schema theorem and the building block hypothesis have also received

substantial attention in the literature and Goldberg’s ‘little models’ approach

(Goldberg, 2002) is useful in breaking down the complex analysis of genetic

algorithms.

However, even with this work, a rigorous approach to optimal genetic algo-

rithm design, akin to electronic circuit design has not been achieved (Jansen

et al., 2005). This Thesis provides guidance on how parameters should be set

to maximise the accumulation of information by a genetic algorithm.

2.1.1 Schema Theorem and Building Block Hypothesis

The schema theorem states that those schema which have above average fit-

ness will be allocated exponentially more trials each generation, where schema

define the common bit values in a set of genomes. The building block hypoth-

esis describes how, using crossover and selection, partial solutions of varying

fitness (building blocks) are assembled into an optimal solution (Holland, 1975;

Goldberg, 1989).

Stephens and Waelbroeck (1999a) analyse both the schema theorem and the

building block hypothesis using an exact schemata evolution equation which de-

scribes changes to, and accumulation of, schema from generation to generation.

They derive a schema theorem based on ‘effective fitness’ and determine that

the building block hypothesis is a natural consequence of the evolution equa-

tion as it shows how fit schemata are generated from fit sub–schema. Effective

fitness is where the survival of an individual’s descendants are included in the

measure of fitness. Stephens and Waelbroeck go on to show that where the

genetic algorithm is designed to avoid schemata disruption, large schemata are

favoured over short schemata, especially for non–epistatic problems.
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Poli (2000, 2001a,b) builds on the work of Stephens and Waelbroeck to

provide an exact schema theorem for genetic programming and links to it some

forms of crossover and the genetic programing concept of ‘bloat’, whereby non–

effective sections of code known as ‘introns’ proliferate. Nehab and Pacheco

(2004) generalise the concept of schema in a way that suits the continuous

domain and develop a schema theorem for real coded algorithms and arithmetic

genetic operators.

This Thesis will seek to identify the fit building blocks and assign these

to individual alleles through the use of non–binary genotype allele cardinality

avoiding schemata disruption in a manner similar to Stephens and Waelbroeck

(1999a). This use of non–binary allele cardinality simplifies the visual iden-

tification and discussion of fit building blocks and also ensures that they are

not disrupted by crossover between genotypes, even when significant crossover

is applied. Additionally, this assignment of binary building blocks with high

information to higher order symbols is similar to an approach in information

theory used to construct highly efficient codes. The tools used by information

theory to achieve this will be examined for insights into how a genetic algorithm

encodes information into the population structure.

2.1.2 Little Models

Goldberg (2002) proposes a ‘little models’ approach to genetic algorithm anal-

ysis and design similar to common practice in other fields such as aerodynam-

ics and fluid mechanics, where similarly complex, non–linear phenomena must

be understood. The term ‘little models’ is used because simplified situations

subject to clearly bounded criteria, where the observed behaviour is valid, are

defined by the model. The strict criteria within which the observations are

valid facilitate clear explanation and linking of the observed phenomena to the

defined characteristics.
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However, the loose definitions used by some researchers for mutation and

crossover inhibit this approach as phenomena valid for one definition of ‘muta-

tion’ will probably not be valid for a variant mutation operator. This ambiguity

restricts the effective analysis and the communication of insights into genetic al-

gorithm operators. For example, Nearchou (2003) provides an extremely useful

comparison of various ‘crossover’ and ‘mutation’ operators applicable to flow

shop scheduling problems. Unfortunately, the variations which ensure that

crossover and mutation suit the particular needs of scheduling, also produce

variations that significantly alter the operator’s mathematical properties.

This Thesis uses a little models approach to explore the behaviour of ge-

netic algorithm operators. At each stage the characteristics, both sought and

observed, are linked to some basic concepts from information theory (such as

information sources and entropy) to ‘ground’ them and facilitate categorisation

and comparison.

2.1.3 Population Size

Controlling the size of a genetic algorithm population is perhaps the most sig-

nificant structural parameter to be set by the designer as allele cardinality and

genome length are largely determined by the problem being described. The

population size is ultimately limited only by the computational power available.

However, too large a population will reduce the number of generations that

can be processed in the available time by any computer. This realisation focuses

debate on the relative merits of generational operators which define a genera-

tion change in the population, compared to ‘non–generational’ stochastic search

operators such as mutation. Examples of generational operators are crossover

and selection.

The major differentiator between a genetic algorithm and a stochastic search

is the genetic algorithm’s generational operators. Hence if a genetic algorithm
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is the chosen algorithm, it follows that the number of generations processed in

the available time must be maximised and therefore the population must be, in

some sense, minimum.

In his early work Holland, during a discussion on mutation (Holland, 1975),

p.110 introduces the idea that only a relatively small population is needed to

ensure that at least one copy of every allele is present at each loci. He goes

on to discuss the impact of losing this one allele and the role of mutation in

reintroducing it. Holland explains schemata as hyperplanes defined by the com-

mon bit values in a set of individual solutions and shows a clear link between

the number of available schemata and the population size. However, Holland

does not define what a minimum population might be, nor provide a means to

determine it.

Reeves (1993) examines the concept of small populations and demonstrates

that relatively small populations (30 to 50 individuals) are sufficient to ensure

that there is at least one instance of each allele in each locus. Reeves does not

examine the impact of allele loss on a small population whereby selection inad-

vertently removes important alleles from the population. If a selection operator

results in inadvertent allele loss, a minimal population may prematurely con-

verge as required alleles become unavailable in the population. Mitchell (1999)

states that there are no conclusive results on what works best in terms of pa-

rameters, including population size, and that most people use what has worked

well in the past. Empirical work in De Jong (1975) indicates a population size

of around N = 50 to 100 individuals are best. However, ‘best’ is not very well

defined.

During a discussion on schemata, Goldberg (1989), p.20 uses a counting

argument to comment that even ‘moderate’ populations contain significant in-

formation. He expands this idea to include building blocks. The number of
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these building blocks is dependent on the population size and Goldberg hy-

pothesised that the success of genetic algorithms is due to the accumulation

of building blocks from generation to generation. Goldberg (1989) states that

other researchers have reported difficulties with small populations of N = 16.

However he doesn’t provide a means, method or guide on what a moderate (or

even adequate) population size might be. This situation changes in his later

work.

In Goldberg (2002), population sizing receives considerably more attention.

Here a variety of work is summarised to provide a model for population sizing

based on decision making grounds. His model shows that to contain sufficient

schemata, population size must be proportional to the schemata cardinality,

probability of error and noise. Goldberg further develops this method for a

variety of problems and selection operators and expands it to include building

block supply considerations. However, he makes no suggestions on appropriate

values, or techniques to select values, for these input parameters. Goldberg

(2002) therefore improves the theoretical understanding of factors which in-

fluence population sizing, but does not provide a practical basis to determine

population size.

Large populations require considerable processing time to test large numbers

of potential solutions (individuals). This was seen to place a significant demand

on memory available to process the genetic algorithm and reduces the number

of generations that can be processed in a given time. The Univariate Marginal

Distribution Algorithm (UMDA) designed by Muhlenbein and PaaB (1996) uses

the frequency of alleles from selected individuals to estimate the marginal dis-

tribution of those variables and from this to generate new individuals. The

approach seeks to identify linkages between variables to combat epistasis and

deception. However, the UMDA concept also introduces the important notion



2. A Review of the Genetic Algorithm Literature 18

of a distribution or vector to describe allele frequency in populations rather than

an instance or sample of the population.

A substantial amount of work from Illinois State University has focused on

population sizing in a number of circumstances (Sastry et al., 2004, 2007; Yu

et al., 2006). An important advance from this work is the use of a probabil-

ity vector describing the distribution of ideal alleles in a population in place of

a population itself. The compact genetic algorithm (Harik et al., 1998) uses a

probability vector to significantly reduce the memory requirements of genetic al-

gorithms and facilitate the construction of enormous (billion bit) genomes (Sas-

try et al., 2007). However, the use of Tournament Selection between two individ-

uals to modify the probability vector, limits the resolution of each generational

increment as the vector is amended by the contribution of one (winning) indi-

vidual at a time.

Large populations lead to a reduction in generations processed in a given

time, limiting the effectiveness of the evolutionary process which depends upon

the sequence of generational operators to identify the optimum. Efforts to coun-

teract the processing load of large populations, such as the compact genetic

algorithm, lead to less incremental change per generation. An alternative ap-

proach is taken in Jansen et al. (2005) who seeks improved performance through

the use of child populations larger than the parent population. Jansen seeks a

trade–off between this large population and a subsequent reduction in the num-

ber of generations required so that the total computational effort is reduced.

However Jansen’s approach will limit the number of times that generational

operators can act in a given period. Hence Jansen’s approach seems counter to

the desire to maximise the effect of evolutionary processes.

This Thesis builds on the work of Reeves with small populations by describ-

ing techniques to optimise population size based on clear, repeatable criteria.
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The objective is to maximise the number of generations that can be processed

in a given time by keeping the population small.

2.1.4 Allele Cardinality

A genetic algorithm uses an alphabet of alleles to represent variables describing

the problem. Using the Traveling Salesman Problem as an example, alleles

can represent the different cities visited. The alphabet from which the alleles

are drawn could be binary, octal, hexadecimal, or some other allele cardinality.

Historically genetic algorithms use binary allele cardinality (either Binary Coded

Decimal or a Gray code).

An appropriate choice of allele cardinality is critical to the efficient operation

of a genetic algorithm yet allele cardinality is not often debated in the literature.

Most researchers assume that binary, the default alphabet for computation, or

real coded algorithms are the only choices available. Some papers, such as

Whitley et al. (1996), compare the merits of Binary Coded Decimal (BCD) and

Gray codes, but very few examine alternative allele cardinalities. Exceptions

are Reeves (1993) who investigates the use of small population sizes in genetic

algorithms and comments on some benefits of high allele cardinality and Freitag

et al. (1999) who investigates quaternary coding.

Whitley and Rowe (Whitley et al., 1996; Whitley, 1999; Rowe et al., 2004a;

Whitley and Rowe, 2005) examine Gray and BCD codings over the course of

more than ten years, describing test functions for genetic algorithms, proofs

linking Gray codings to No Free Lunch theorems, proofs concerning Gray codes

and the locality of local search and other properties of Gray coding. Describing

the full breadth of this work is beyond the scope of this review. However, Gray

codes are shown to have important advantages over BCD encoding including in-

ducing fewer local optima than BCD and enabling the algorithm to escape local

optima through dynamic re-mapping to alternative Gray coded representations.
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A common theme throughout Whitley’s and Rowe’s work on Gray codings is

the critical importance of the chosen representation in reducing the difficulty of

the target problem.

Reeves (1993) reports that Holland (1975) and Goldberg (1989) support bi-

nary coding as it allows for the sampling of the maximum number of schemata

per individual (sub–sequences of alleles). Reeves points out that higher cardi-

nality coding requires significantly increased population sizes when compared

to an equivalent problem encoded in a binary alphabet.

Antonisse (1989) and Freitag et al. (1999), on the other hand, promote

the use of higher allele cardinality as a more powerful representation than bi-

nary. Antonisse (1989) argues that the schema theorem is misapplied in Hol-

land (1975) and rather than supporting the use of binary allele cardinality, the

schema theorem in fact indicates that higher allele cardinality takes advantage

of higher dimensionality. Antonisse’s argument relies on an interpretation of a

“don’t care” symbol as defining a set of strings sharing a sub–set of possible

values, rather than the single set of alternative individuals used by Holland.

Antonisse sets aside experimental results which do not support his interpreta-

tion, claiming that these experimental results exclude those cases where some

binary strings are not meaningful and that these results are misleading.

Antonisse (1989) is interesting but unpersuasive. The experimental results

discussed by Antonisse certainly exclude the inefficiencies of binary coding, but

Antonisse provides no link between his interpretation of “don’t care” and the

coding inefficiency raised. Furthermore, Antonisse’s interpretation of “don’t

care” alleles is clearly put, but too simple and poorly explained, so the reader

is left unconvinced that this interpretation is superior or more accurate. As a

result the prevailing view that binary is the optimum allele cardinality remains

largely unchallenged.
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Freitag et al. (1999) describe quaternary Gray codes and provide evidence

that some Gray code permutations provide superior results over other permu-

tations on certain objective functions. Freitag suggests that a goal of genetic

algorithms should be to search for improved Gray code mappings. Freitag’s

observation aligns with an observation in this Thesis in Section 5.5 that the

focus of genetic algorithms should be the search for improved genotype to phe-

notype mappings to counter the effects of epistasis. Unfortunately, Freitag does

not explore or explain what characteristic of the objective function resulted in

this suggestion. In addition, Freitag’s results show evidence of information loss

and premature convergence, indicating poorly targeted mutation or overzealous

selection thresholds (or both).

Real–coded genetic algorithms (Rechenberg, 1973) take allele cardinality to

extremes, essentially using the full range of a processor’s register size as the

allele cardinality. This extraordinary cardinality would result in an enormous

population size requirement to ensure that a sufficient number of these real–

coded alleles where present. However, by defining a geometry between each

allele so that alleles are considered ‘close’ when the difference between their

values is small, the population size can be significantly reduced. This geometry

also permits mutation to be defined as a ‘small incremental change’ in these

values, rather than a change in allele symbol as is used for non–real coded

algorithms (Lozano et al., 1998).

Allele cardinalities greater than binary introduce increased dimensionality

to the genetic algorithm. Mathematicians use increased dimensionality to over-

come non–linearity. Kubalik et al. (2006) identify dependencies between genes

and re–code the genome to capture mutual information 3 between these genes

and leverage this dimensionality.

3 Mutual information is a measure of the information shared by two independent variables.
It is a measure of how much our uncertainty about the value of one variable is reduced when
we know the value of the other.
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This Thesis will investigate the utility of increased allele cardinality to

minimise or control the effect of epistasis, a form of non–linearity which leads

to local optima and deception (Goldberg, 1989) in genetic algorithms.

2.1.5 Genome Length

The length of individuals in a genetic algorithm is essentially dictated by the

problem representation. For this reason there is very little literature on how

best to determine an appropriate genome length as it is usually assumed to be

fixed by the selected representation. However, work in Ramsey et al. (1998)

and Hutt and Warwick (2007) on variable length genomes show a strong re-

lationship between mutation rate and genome length. According to Ramsey’s

work, increasing mutation rate drives self–adaptation to higher genome lengths

in their variable length genetic algorithm. This result is explained as a response

to counteract the disruption caused by increased mutation. Rowe (2001) shows

a similar relationship between mutation and genome length through an analysis

of a normed space of genetic operators.

The fast and messy genetic algorithm introduced in Goldberg et al. (1993)

has a variable length as it permits both under and over specification of the

problem. However, the routine which interprets this genome understands the

problem representation and allows for the under (over) specification. This ap-

proach means that the genetic algorithm is searching for an optimal represen-

tation of the problem as it also searches for a solution to the problem. As such,

the effective genome length is specified by the problem, if somewhat inexactly.

Similarly, in Genetic Programming, where the structure of the algorithm

permits genome length to increase as the solution is evolved, a phenomenon

known as ‘bloat’ occurs whereby non–effective sections of code known as ‘introns’

become common. Banzhaf et al. (1998), states that introns contribute to an
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individual’s effective fitness by minimising the disruption to fit schema caused

by crossover. According to Banzhaf,

“The theoretical and experimental evidence supports the hypothesis

that introns emerge principally in response to the destructive effects

of genetic operators.”

This work suggests that if the genome length is based on the problem representa-

tion, then disruptive operators such as mutation and crossover must be matched

to this length and therefore are also related to the problem representation.

This Thesis manages the effects of disruptive operators by matching genome

length and cardinality to the problem representation.

2.1.6 Mutation

Mutation is the universally accepted technique for increasing diversity in a pop-

ulation. Yet it is not clear whether mutation is, on average, beneficial to the

efficient operation of a genetic algorithm or whether alternative methods of

maintaining diversity in the genetic algorithm may be superior.

Mutation is used by genetic algorithms to maintain diversity of alleles and

to prevent premature convergence to a sub–optimal solution. This premature

convergence occurs when, for example the selection operator (discussed in Sec-

tion 2.1.8) removes individuals from the population and therefore reduces the

diversity of individuals and their component alleles. An improved understanding

of mutation and its impact on the information content of a genetic algorithm,

will clarify the setting of mutation parameters so that premature convergence

can be avoided while diversity is maintained.

Since mutation is the result of random processes, it may be modeled using

information theoretic approaches. Information theory provides a language and

framework for understanding the source of symbols (alleles in this context) used

to generate populations and the effect of mutation on those populations.
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Holland (1975) p.111 focuses on the primacy of crossover and describes mu-

tation as a

“ . . . background operator, assuring that the crossover operator has

a full range of alleles so that the . . . (genetic algorithm) . . . does not

get trapped in local optima.”

However, Mitchell (1999) reports that many evolutionary strategies use muta-

tion alone and that the importance of mutation has been underestimated in the

genetic algorithm community.

Mutation rate represents the frequency with which mutation is applied to

the population. Considerable effort has gone into identifying optimal values for

mutation rate. The most commonly reported of these attempts are De Jong

(1975) and Gresfenstette (1986).

De Jong (1975) performed a series of experiments to determine how different

parameters effected the performance of a genetic algorithm, while Gresfenstette

(1986) used a genetic algorithm to optimise another genetic algorithm. Both

of these studies identified quite low mutation rates as optimal with De Jong

reporting a mutation rate of 0.001 per bit and Grefenstette a mutation rate of

0.01 per bit.

Schaffer et al. (1989) spent over a year of computer time systematically

testing a wide range of parameter combinations, including mutation rate, on

a small set of numerical optimisation problems (including some of De Jong’s

functions) and found that the best parameter settings are independent of the

problem in their test suite. Mitchell (1999) p.176 points out that in spite of this

result, it is unlikely that any general principles about parameter settings can

be formulated a priori in view of the variety of problem types, encodings and

performance criteria to which genetic algorithms are applied.
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Shipman et al. (2000) investigates neutral drift whereby mutation causes

neither loss nor gain and may allow larger areas of a search space to be explored

with no detriment. The merit of such an approach is open to question as there is

little control of how long the ‘drift’ will last and how many additional evaluations

may be required before a new path to the solution is discovered. Galvan-Lopez

and Poli (2006) examine neutrality and argue that it may be beneficial in some

cases, but not at the cost of an increased search space.

The bistability phenomena described in Wright and Richter (2006), whereby

a dynamical system has two stable fixed points which cause an algorithm to

remain far from the optimum, is attributed to the disruptive effects of mutation

and crossover. In particular, Wright and Richter (2006) explains how, in a

binary genome, mutation drives allele frequencies towards 0.5 and that this

mutation pressure can overcome the effect of selection resulting in no progress

towards the optimal solution. The analysis in Section 3.2 of this Thesis agrees

with this finding by Wright.

While these researchers are clearly aware of the potential detrimental affect

of mutation and hence are unsurprised by the need for low levels of mutation,

none considered targeting mutation at specific individuals or classes of indi-

vidual in a way that might have minimised the probability of damage. Ochoa

(2006) introduced the concept of error threshold from molecular biology and ap-

plied it to mutation in genetic algorithms. The error threshold is the mutation

rate beyond which an error catastrophe occurs whereby genomic information

is irretrievably lost. Ochoa’s results verify that error thresholds exist in ge-

netic algorithms and ascribe the variation of this error threshold to changes in

population size, selection pressure, crossover and genome length.

Ochoa’s work provides a guide which assists in the setting of mutation rates

to maximise the beneficial affect of mutation. However, a clear means of cal-
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culating the most beneficial mutation rate is not provided. In addition, Ochoa

does not link the error threshold to the allele cardinality nor the information

source used to mutate alleles.

This Thesis shows that mutation targeted at low performing individuals

ranked below a critical threshold will avoid information loss and premature

convergence. Section 3.2 of this Thesis shows that even a low probability of mu-

tation applied to individuals above this critical threshold will lead to unrecover-

able information loss (what Ochoa (2006) refers to as the “error catastrophe”).

This critical threshold is described in Section 3.3 as the static selection thresh-

old and is closely related to the threshold sought by Ochoa (although Ochoa

expresses it in terms of a mutation rate). Unlike Ochoa, Section 3.3 identifies

the link between the static selection threshold and the information source used

for mutation. This insight provides a means of calculating the threshold inde-

pendently of population size, selection pressure and crossover, while revealing

the clear dependence on genome length (L) and the relationship to selection

pressure (Milton et al., 2005).

2.1.7 Crossover

Crossover is a genetic algorithm operation where a section of one individual is

exchanged with a corresponding section in another individual. This operation is

akin to mating where genetic material from each parent is present in the child. In

a genetic algorithm it is possible to copy the two parents, select randomly located

sections from corresponding positions of a given length and exchange those

sections, resulting in two children from a single ‘mating’. Common variations on

crossover are single point crossover, two point crossover and uniform crossover.

Single point crossover selects a locus on the parent genome’s at random

and exchanges the sections after the crossover position to form children. Sin-

gle point crossover suffers from a number of problems (Eshelman et al., 1989)
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including disruption of long building blocks, positional bias and the preserva-

tion of ‘hitchhikers’. ‘Hitchhikers’ are low performing alleles adjacent to high

performing alleles which survive selection.

Two point crossover selects two points at random and exchanges the section

between these points.

Uniform crossover exchanges alleles individually each with a set probabil-

ity (Syswerda, 1989) and parameterised uniform crossover exchanges alleles in-

dividually with a changing probability, usually between 0.5 and 0.8 (Spears and

De Jong, 1991). Because it is applied probabilistically to every loci, uniform

crossover can be highly disruptive to building blocks. Conversely it has supe-

rior search capacity precisely due to this disruption. This can be advantageous

when the population size is small (De Jong and Spears, 1991). In this context

it is interesting to note the observation in Deb and Agrawal (1998) that optimal

probabilities for crossover are largely dependent on the underlying coding.

Deb et al. (2002) and others have described multiparent and multidescen-

dant crossover which use more than two parents and produce more than two

children. This approach searches the region defined by the differences between

parents. Multiparent and multidescendant crossover is especially interesting to

memetic algorithms which augment genetic algorithms with local search capa-

bilities (Lozano et al., 2004).

A notable result in Culberson (1994) shows that, under certain Gray code

transformations, search by mutation and search by crossover are almost inter-

changeable. Deb and Agrawal (1998) argue that this result is unhelpful as it

does not mention anything about the cost of finding the necessary transfor-

mation. However, the fact that search using crossover or mutation are closely

related means that discoveries regarding mutation may be applied to crossover

and vice versa in the appropriate circumstances.
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The amount of crossover implemented in a genetic algorithm affects the

distribution of ideal alleles throughout the population and crossover is the key

operator facilitating the joining of sub–optimal partial solutions into improved

individuals and ultimately optimal solutions. Many ideas have been put forward

to explain the benefits of crossover, including the building block hypothesis and

the schema theorem. Yet while building blocks are a useful metaphor and may

well form an important function in genetic algorithm success, they are still not

universally accepted as the key characteristic of a genetic algorithm (Beyer,

1997; Stephens and Waelbroeck, 1999b; Whitley, 2001).

It has been suggested that high levels of crossover can sometimes be more

effective than limited crossover (Syswerda, 1989; Eshelman, 1991; Booker, 1992;

De Jong and Spears, 1991). These findings specifically undermine the building

block hypothesis, which relies upon the accumulation of ever larger ‘blocks’ of

solution alleles. De Jong and Spears (1991) analysed this effect and found that

disruption is advantageous in two circumstances: a) late in the process when

the population is fairly homogeneous and b) when the population size is too

small to provide the necessary sampling of the search space.

Toussaint (2003) analyses two simple genetic algorithms, one with mutation

only and the other with crossover only and compares them to Estimation–Of–

Distribution Algorithms (EDAs). Toussaint reports that crossover transforms

mutual information between loci into entropy and hence it can only decrease

mutual information. While an increase in entropy facilitates exploration, the

associated loss of mutual information removes an important source of informa-

tion about the problem that should be exploited to direct further exploration.

Toussaint shows this is not the case for EDAs as they can increase both entropy

and mutual information.
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For crossover to achieve growth in both mutual information and entropy,

Toussaint indicates that the crossover mask, that determines which correlations

are protected and which may be destroyed, would have to adapt dynamically

as the algorithm progresses. Kubalik et al. (2006) describes such a genetic al-

gorithm using a continuous chromosome reconfiguration. Kubalik’s algorithm

identifies pair–wise gene dependencies each generation and codes these depen-

dencies into the genome to capture problem structure in higher–order building

blocks.

The exploration of ‘bistability’ in Wright and Richter (2006) (outlined in Sec-

tion 2.1.6) showed that it arises when large amounts of crossover are combined

with weak selection and mutation. Crossover was observed to accelerate the

progress of the genetic algorithm towards the optimum, with speedups of a fac-

tor of 10 when compared to the same algorithm without crossover. Wright and

Richter report that other researchers (Suzuki and Iwasa, 1999) had observed

speedups of up to 70 for high levels of crossover compared to no crossover.

Wright and Richter conclude that the benefit of crossover is significant if bista-

bility is avoided. They further advise that a rank–based selection method would

provide sufficiently strong selection pressure to eliminate bistability, while bi-

nary tournament and truncation selection would not.

This Thesis seeks to minimise population sizes in order to maximise the

number of generations processed in a given time. Therefore, significant levels of

crossover will be applied as suggested in De Jong and Spears (1991) for small

populations. In fact this Thesis will use crossover between all individuals in

the surviving population to thoroughly mix alleles across the entire population.

With such an approach the concepts of ‘parents’ and ‘children’ are somewhat

ambiguous. In this way, high value alleles are accumulated at the population

level rather than the individual and it is the population which evolves not specific
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individuals, a concept well understood in biology but often overlooked in the

design of genetic algorithms.

To avoid the trap of bistability, the Thesis will identify selection thresholds

which maintain high levels of selection pressure in ranked populations as advised

in Wright and Richter (2006). Additionally, the lessons of Toussaint (2003)

and Kubalik et al. (2006) will be considered and problems will be encoded

into high cardinality alleles so that mutual information between multiple alleles

is captured. Because, crossover is computationally intensive, this Thesis will

identify the minimum amount of crossover that is sufficient to fully randomise

the distribution of ideal alleles throughout the population after selection.

2.1.8 Selection and Ranking

Ranking (loosely defined) and selection are inseparable as all selection schemes

either directly or indirectly rely on rank order to determine satisfaction or failure

against selection criteria. In some cases ‘rank order’ may simply go to ‘winner’

vs ‘loser’ and in other schemes it may be the absolute objective function score

driving selection. However, in all cases some judgment must be made regard-

ing ‘better’ and ‘worse’ individuals so that selection can be implemented. For

this reason any discussion about selection must also explain how the selection

decision is made and hence ranking must also be explained.

Selection retains part of the population for use as ‘parents’ in generating a

new population. The selection operator is implemented in a variety of ways.
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The most common implementations are:

• Direct Selection.

• Proportional Selection.

• Uniform Ranking.

• Linear Ranking.

• Tournament Selection.

• GENITOR.

Direct Selection deletes individuals who fail any constraints and then com-

pares the remainder based on the magnitude of the objective function F (n) with

individual n’s genes as input. Those individuals with the best returned value of

F (n) are selected to survive.

Proportional Selection modifies Direct Selection by transforming F (n) into

a selection probability F ′(n).

F ′(n) =
F (n)

∑N
n F (n)

Uniform Ranking (Schwefel, 1995) chooses the best individuals to survive with

probability 1/F (n) (for case of minimising F (n)). Linear Ranking (Baker, 1985)

selects the best individuals to survive with probability 1/rank(n) (where rank

is the rank of each individual (n)).

Tournament Selection (Blickle and Thiele, 1995) is similar to Linear Rank-

ing, except that individuals are chosen at random, x at a time with replacement.

The best individual is retained for the next generation while the rest are dis-

carded. The process is repeated until all places in the population are filled. Poli

(2005) notes that because of the replacement, Tournament Selection is prone to
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‘unintentional’ diversity loss as some individuals might not get sampled to par-

ticipate in a tournament at all. Sokolov and Whitley (2005) suggest a form of

unbiased tournament that avoids this by selecting tournaments without replace-

ment, thereby guaranteeing every individual at least one tournament round.

GENITOR (Whitley, 1989) is a steady–state selection method which selects

individuals according to Linear Ranking and replaces the worst individual in

the population one at a time to maintain a constant population size. Variations

on this apply crossover and mutation to the replacement individual.

With the exception of Direct Selection, each of these implementations de-

rive the probability of selection from the performance of an individual, rather

than using an absolute threshold performance. While this approach is biologi-

cally plausible, it leaves open the possibility of deleting individuals with more

information than can be easily recovered, for example using mutation. Direct

Selection focuses selection on the ‘best’ individuals, but how to find the thresh-

old separating best from the rest is arbitrarily set in the reviewed literature.

Whitley’s research that lead to GENITOR (Whitley, 1989) indicated that

rank based allocation of reproductive success is best. In this context Whitley

means the absolute rank of individuals, irrespective of the objective function

score that contributed to the rank of an individual. Whitley showed that early

opponents to ranking have made unjustified assumptions regarding the rela-

tionship between ranking and the schema theorem. He also persuasively argued

that ranking doesn’t discard information about the objective function, instead

it condenses it by relying on the relative magnitudes rather than the absolute

magnitudes of objective function scores. Importantly, Whitley illustrated how

ranking solves the ‘scaling problem’ encountered by schemes such as Propor-

tional Selection. In such schemes the objective function scores tend to converge

as the surviving individuals improve from generation to generation.
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Zhang and Kim (2000) compared the selection methods described above

(except Direct Selection) and reported that Tournament Selection, uniform and

Linear Ranking and GENITOR selection obtained comparable performance in

average fitness and are significantly better than Proportional Selection. Ranking

selection is best in convergence speed. In fact, ranking selection is three to four

times faster than Tournament Selection, which is twice as fast as Proportional

Selection. GENITOR selection is relatively fast for small size populations (N =

10), but it is very slow for the population sizes which Zhang and Kim (2000)

considered large (N = 50).

Zhang and Kim indicated that selection methods can be classified into two

categories based on convergence speed and solution quality: one category con-

taining Tournament Selection, Uniform Ranking and GENITOR and a second

containing only Proportional Selection. In summary, Tournament Selection and

ranking selection outperformed the Proportional Selection in terms of a com-

bined performance measure of solution quality and optimisation speed. GEN-

ITOR selection sometimes achieved good solutions but this usually required

significant processing time.

Teytaud and Gelly (2006) discuss the convergence rates of comparison based

algorithms, including genetic algorithms, and show that such algorithms can

only converge to the optimum linearly. They state that this finding does not

apply to algorithms using full ranking information of the population. Teytaud

and Gelly (2006) prove that, at least in some cases, super–linear convergence

can be achieved when the full ranking information of a population is used.

This Thesis will identify techniques to rank individuals by the number of

ideal alleles present. Such a ranking will facilitate the identification of a selec-

tion threshold which minimises information loss and therefore supports the use

of small populations. In addition the concept of an entropy profile of ranked
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populations is defined and described in Section 3.5. The lower entropy of ranked

populations when compared to the same population randomly ordered suggests

that entropy profiles may provide a means for quantifying the information con-

tent of objective functions and a way of comparing various techniques for ex-

tracting the full fitness information of a population.

2.1.9 Termination Criteria

Termination (or stopping or halting) criteria have received little attention in

the literature. Indeed few papers have addressed the problem of clearly defined

termination criteria. Quoting Aytug and Koehler (2000)

“All of the steps of a GA are well defined except the stopping cri-

terion. Many practitioners use stopping rules like ‘stop when there

is no significant improvement during the last ten iterations’ or ‘stop

after k generations’.”

The most commonly used termination criteria identified in the literature

are termination on full population convergence to a single solution, termination

at a predefined termination generation and termination when fitness does not

change by a pre–defined amount. A variation on full population convergence

is termination when the variance of allele symbols in the population reaches a

specified minimum limit.

Termination at convergence is typically used where a metric such as ‘time

to convergence’ is needed to compare the relative performance of alternative

genetic algorithm designs. The difficulty with a ‘time to converge’ criteria is

that time varies from processor to processor. As has been noted (Safe et al.,

2004), a better basis for comparison is the number of evaluations of the objective

function required to converge as this metric is processor independent.
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Termination at a predefined generation count or at a predefined limit of

objective function variance are usually used by genetic algorithms focused on

solving problems for industry. Pre–defined generation counts simplify the visual

comparison of results between algorithms as the graphs used have the same max-

imum horizontal dimension (the fixed generation count). However, a pre–defined

maximum generation count requires a priori information about the algorithm

performance on each problem and may lead to too few, or too many, evaluations

being completed (Safe et al., 2004).

The better criteria for optimisation is termination at a pre–defined limit on

variance in fitness, diversity or similar metric. Such a criteria can incorporate

rational metrics without problem knowledge. For example, when 90% of the

alleles present in a genome are the same across a population, then the population

has converged. Similarly, business knowledge can be used to identify when

improvement in objective function score has declined below useful levels.

Aytug and Koehler (2000) use Markov chain analysis to specify bounds on

the number of evaluations by establishing when all individuals are evaluated at

least once with specified probabilities. Safe et al. (2004) provides a critical anal-

ysis of termination criteria using Markov chain analysis, specifically criticising

the work of Aytug and Koehler (2000) as theoretically correct but of little prac-

tical benefit. Unfortunately, Safe et al. (2004) does not improve on Aytug and

Koehler (2000) by providing an alternative and practical termination criteria.

Safe et al. (2004) goes on to observe that,

“There are very few studies on key aspects associated with how

a GA works, such as parameter control and convergence analysis.

More specifically, the answers to the following questions concerning

GA design remain open and constitute subjects of current interest.

How can we define an adequate termination condition for an evo-
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lutionary process? Given a desired confidence level, how can we

estimate an upper bound for the number of iterations required to

ensure convergence?”

Teytaud (2008) proposes a rule for slowly increasing population size to

achieve a desired level of confidence that the optimum will be found when the al-

gorithm converges. Teytaud does not explain all of the variables in his analysis,

making it very difficult to follow and use.

This Thesis will use information theory to identify improved criteria which

balance the likely benefit of further evaluations against the effort already ex-

pended by drawing on well understood concepts in information theory. Specifi-

cally, the entropy of a surviving population is used to define a practical termi-

nation criteria via application of the Shannon–McMillan theorem.

2.1.10 Representations and Mapping

In his thesis, (Sharp, 2000) refers to work in Vose and Liepins (1991) where

Vose showed how any rank based fitness function could be represented in a

way that makes it equivalent to a simple Mt. Fuji landscape. Vose and Liepins

also show that when selection is done according to rank ordering, rather than

specific fitness values, then all fitness functions must have a representation in

which the fitness function is essentially the same as counting the number of ones

in a binary string. In other words, there exists a Mt. Fuji representation for all

fitness functions.

Sharp points out that these arguments show that for a given NP–hard prob-

lem, finding the Mt. Fuji representation must be an NP–hard task by itself.

Otherwise an NP–hard search problem could be used to solve all NP–complete

decision problems in P time. This would contradict the widely held assumption

that P 6= NP .
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Similarly, Weinberger (1991) explains how random neighbour NK problems

(see Section 2.3) are NP–complete while adjacent neighbour NK problems are

in P (although this may not be as generally applicable as first thought (Gao

and Culberson, 2002)). Yet the only difference between adjacent and random

neighbor problems is the mapping of genotype loci to phenotype. Again, unless

P = NP , the problem of finding the appropriate mapping of randomly located

K epistatic loci into adjacent loci must be a problem in NP . There is however

an interesting and useful consequence to these considerations.

The preceding line of reasoning suggests that the source of difficulty is the

problem representation rather than the problem itself. Indeed the well known

‘No Free Lunch’ Theorem of Wolpert and Macready (1997) shows that for an

algorithm to have better than average performance, some knowledge of a prob-

lem is required to match the algorithm to the class of problem. This problem

knowledge can be coded into an efficient genome representation or built into

the genetic algorithm operators themselves. These observations are supported

by a number of researchers including Reeves and Wright (1995), Whitley (2001)

and Rowe et al. (2004a). More evidence supporting this observation is discussed

in Section 5.5.

Throughout this Thesis a recurring observation is the relationship between

representation and problem difficulty.

2.2 Information Theory Applied to Genetic Algorithms

In 1924, H. Nyquist published an article regarding the transmission of characters

over a transmission line with maximum speed and without distortion, although

Nyquist did not use the term ‘information’. R. V. L Hartley first tried to define

a measure of information in 1928. However, the founder of information theory

is generally considered to be Claude E Shannon who published an article titled

‘a mathematical theory of communication’ in 1948 (Van der Lubbe, 1997).
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Information theory is characterised by a quantitative approach to the notion

of information. It provides a framework to understand how information can be

transmitted and stored compactly and the maximum quantity of information

that can be transmitted through a channel. Information theory introduces the

ideas of information measure, information sources, entropy and rate of trans-

mission. Information theory deals with the syntactic aspects of information to

provide a measure for information and explain the fundamental limits on the

amount of information which can be transmitted, compressed and how to build

information processing systems which approach these limits (Van der Lubbe,

1997).

The language used to describe information sources and the symbols they

generate provide a new perspective on a genetic algorithm population and the

dynamics at work as the population becomes structured and accumulates in-

formation. In particular, basic concepts from information theory allow the

characterisation of how much of a problem is solved each generation by each

individual. Information theory provides insights into the flow of alleles though

a population and the differences in structure of the information between ranked

and unranked populations.

Information theory is frequently used in genetic algorithm literature to de-

scribe and analyse the problem to be optimised and many genetic algorithm

researchers have been influenced by ideas derived from information theory as ev-

idenced by the large number of references to information theory texts (eg. Skalak

(1993); Juntti et al. (1997); Ngo and Li (1998); Mitra et al. (1998); Noda et al.

(1999); Duly and McNelis (2001)). However of greater interest to this Thesis are

those who apply an information–theoretic approach to the analysis of genetic

algorithm parameters and operators such as population size, genome length,

mutation, selection and crossover.
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Some of the early work by Bala, Mori, de Arujo and Harik applies informa-

tion theory to genetic algorithm design. Bala et al. (1995) uses an independent

ranking of each genome feature with an information theory based entropy mea-

sure (infomax) to estimate the most discriminating features. Mori et al. (1995)

propose a thermodynamic selection rule to avoid premature convergence. The

work of de Araujo et al. (1999) employs a distance measure for fitness evaluation

derived from information theory while Harik (1999) uses information theoretic

measures of gene linkage.

More recently, Borenstein and Poli (2006) draw a connection between Kol-

mogorov complexity and optimisation algorithms with a technique that deter-

mines the information content of fitness functions. Their analysis shows that

Kolmogorov complexity of fitness functions provides a measure of the best per-

formance an algorithm can have when optimising that particular function. They

proved that groups of functions are associated with an entropy which bounds

their expected difficulty.

A population sizing model derived from the analysis of mutual informa-

tion has been developed in Yu et al. (2006) while information geometry and

Kullback–Leibler divergence are used in Toussaint (2004) to describe how the

crossover operator manipulates the search space. The relationships described

provide a new perspective on the action of crossover on the distribution of infor-

mation in the population. However, how to apply these insights in a practical

sense is left unclear.

Card and Mohan (2008) apply information theory to rigorously define met-

rics for quantifying information flows through an evolutionary algorithm and

they identify mutual information as a fitness indicator, conveying how much a

population reveals about the target data. They recommend that the gain or

loss of information be explicitly considered in evolutionary algorithm theory,
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operator and representation design practice. They show that this is especially

the case when fixing or adapting population sizes to maintain diversity.

The use of information theory by all of these researchers establishes their

contributions on firm mathematical foundations. This provides greater certainty

in their results and benefits genetic algorithm research more than is possible with

empirical evidence alone.

This Thesis uses some foundation concepts of information theory, from

the definition and characteristics of information sources and entropy through to

theorems such as the Shannon–McMillan theorem for most probable messages.

These concepts from information theory provide a strong theoretical foundation

for the key contributions of the Thesis and suggest avenues for exploration.

2.3 Genetic Algorithm Benchmarks

The genetic algorithm community has developed a number of test suites over

a substantial period of time with the objective of discovering the underlying

characteristics of genetic algorithm operation through evaluating algorithm per-

formance on test functions with differing characteristics. This work has the ad-

ditional benefit of providing a means of comparing different variants of genetic

algorithm, genetic algorithms with other search algorithms and with differences

in operator implementation within algorithms.

Originally, it was believed that these test suites could be made to represent

the characteristics of real–world problems under controlled conditions. How-

ever, it has been found that in fact they bear little resemblance to real world

problems (Sharp, 2000). Nevertheless, they are useful in the early stages of de-

veloping a new genetic algorithm to understand if the new approach has merit

when compared to existing algorithms.
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This Thesis uses four classes of benchmark problem to determine the

merit of the models developed herein. Beginning with the Royal Road prob-

lem (Mitchell et al., 1992), they gradually get more difficult by incorporat-

ing deceptive bit–traps (Harik, 1999), whereby a local maxima is more easily

discovered than the global maxima, NK Landscapes (Kauffman, 1993) where

non–linear relationships between groups of bits result in a complex search space

and lastly, a variety of simple and multi–objective function generators selected

from Schwefel (1981), Rastrigin (1974), Ackley (1987) and Back et al. (1997).

In a Royal Road problem the fitness of an individual is the number of alleles

with the value of 1 in the individual. The Building-Block Hypothesis implies

that such a landscape should lay out a ‘Royal Road’ for the GA to reach strings

of increasingly higher fitnesses.

The bit–trap problem is a “deceptive” version of the counting ones problem.

In the bit–trap problem the fitness of an individual is the number of 1s it

contains, unless it is all 0s, in which case the individual’s fitness is L + 1 (One

more than the genome length). The problem is deceptive because the algorithm

is rewarded incrementally for each 1 it adds to individuals, but the optimum

solution consists of all 0s.

NK fitness landscapes were developed in Kauffman (1993) to explore the

effects of epistasis on the ruggedness of a landscape and the degree of interaction

between symbols. Kauffman labels the number of loci in a genome with N while

the number of epistatic symbols is labeled K (hence NK landscape). This K

adjusts the degree of ruggedness of the landscape and, as shown in Skellett

et al. (2005), also increases the expected value of the global optimum which

is located amongst many low lying peaks. NK landscapes come in two broad

varieties: adjacent neighbourhood and random neighbourhood. In adjacent

neighbourhood NK landscapes each of the K epistatic loci lie one after the
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other, while for random neighbourhood landscapes each of the K epistatic loci

are randomly distributed throughout the genome.

2.4 Problems in Industry

The theoretical benchmarks discussed in the previous section are contrived to

test genetic algorithms. These are useful to test hypotheses, but to really un-

derstand if a technique is of practical use one must apply an algorithm to a

real–world problem of use to industry. There are many such problems which

are known to be suitable to heuristic techniques like genetic algorithms as they

are related to problems in mathematics that are known to be in NP .

Some examples are:

• Traveling Salesman Problems such as vehicle routing,

• Scheduling Problems such as Multiprocessor scheduling, and

• Packing problems such as Shipping Container Operations.

However the wide variety of real world problems means that some specific

instances are much harder than others of the same type. Hence a good result in

a specific instance is not necessarily evidence of an advance in algorithm design.

For this reason researchers supporting these industries have standardised on

libraries of real problems of known difficulty and in some cases with a known

optimal solution. This provides the benefit of being able to compare algorithms

while knowing the problem is of real–world complexity.

An area where this approach is mature is the scheduling field where libraries

of problems of various sizes are readily available. One such library is the Op-

erational Research Library originally described in Beasley (1990). This library

contains a large number of different benchmarks for a variety of operational re-

search problems, including benchmarks in flow, job, and open shop scheduling

first described in Taillard (1993).
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The Taillard benchmarks (Taillard, 1993) are widely used as they are repre-

sentative of real world scheduling problems in respect of both size and difficulty.

In addition, Taillard provided a straightforward means of generating each of the

260 benchmarks and the Operational Research Library maintains a listing of

the best found result for each of these problems from a variety of researchers.

This Thesis applies a selection of Taillard benchmarks as a final test of

the genetic algorithm developed using the ideas and concepts described by this

Thesis.

2.4.1 Genetic Algorithms Applied to Industry Problems

Genetic algorithms are applied to a very broad range of problems in differ-

ent industries. These industries include: financial modeling (Lux and Schorn-

stein, 2005; Tucci, 2002; Duly and McNelis, 2001; Ye and Papavassiliou, 2001;

Schlottmann et al., 2005), manufacturing (Wiers, 1997; Liang and Lewis, 1995),

data mining (Skalak, 1993; Noda et al., 1999; Araujo et al., 2000; Dhaeseleer

et al., 2000), engineering (Twardoswski, 1994; Ngo and Li, 1998; Mitra et al.,

1998), design (Surkan and Khuskivadze, 2002) and science (Hartley and Kon-

stam, 1993; Kavian et al., 1997; Vinterbo and Ohno-Machado, 1999; Voigt et al.,

2002; Cristofor and Simovici, 2002; Fisza et al., 2005; Gesu et al., 2005).

Genetic algorithms are particularly well suited to the most difficult prob-

lems where an analytical or algebraic solution has not been identified or is

computationally infeasible. Improvements in the underlying genetic algorithm

potentially lead to significant improvement in the size and difficulty of problems

being solved in the above industries.

Many problems in industry have the property that only one occurrence of

each allele is permitted in each genome representing a potential solution. The

job shop schedule problem chosen as the final test for this Thesis is a problem

of this type. This presents a difficulty for a standard form of genetic algorithm
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as the crossover and mutation operators alter the allele frequency per genome.

Hence they may cause alleles to be repeated. Genetic algorithm researchers

working with industry problems of this type commonly incorporate altered ge-

netic algorithm operators to eliminate the possibility of repeated alleles per

genome or repair schemes to ‘correct’ non–sense genomes (Liang and Lewis,

1995; Liaw, 2000; Prins, 2000; Ye and Papavassiliou, 2001; Pongcharoen et al.,

2002; Nearchou, 2003; Puente et al., 2004; Wu et al., 2004). Such alterations

introduce problem knowledge into the algorithm by changing the properties of

the operators.

This Thesis provides comparison of the operators described in the Thesis

to operators in a control algorithm. To ensure that the comparison is fair, it is

imperative that neither algorithm incorporates problem knowledge. Instead an

alternative representation of job shop schedules will be adopted on which both

Thesis and control algorithms can function.

Because best practice schedule representation is a complex field in its own

right, the job shop schedule representation developed by this Thesis may not

be capable of producing optimal schedules. This is considered less important

than a clear comparison of the operators as the purpose of the Thesis is the im-

provement of genetic algorithms and not the design of a best practice scheduling

algorithm.

2.5 Summary of Contributions

This Thesis builds on the work of Reeves (1993) with small populations by

describing techniques to optimise population size based on clear, repeatable

criteria. The objective is to maximise the number of generations that can be

processed in a given time by keeping the population small.
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Therefore, significant levels of crossover are applied as suggested in De Jong

and Spears (1991) for small populations. In fact this Thesis uses crossover

between all individuals in the surviving population to thoroughly mix alleles

across the entire population. With such an approach the concepts of ‘parents’

and ‘children’ are somewhat ambiguous.

In this way, high value alleles are accumulated at the population level rather

than by the individual and it is the population which evolves not specific indi-

viduals. Unfortunately, crossover is computationally intensive. The minimum

amount of crossover that is sufficient to fully randomise the distribution of ideal

alleles throughout the population after selection is identified to minimise the

computational effort.

Fit phenotype sub–schemata assigned to individual genotype alleles through

the use of non–binary genotype allele cardinality as described in Stephens and

Waelbroeck (1999a) ensures that sub–schemata are not disrupted by crossover,

even when significant crossover is applied. The high cardinality genotype alle-

les capture the mutual information between multiple phenotype symbols in a

fashion similar to that advised in Toussaint (2003) and Kubalik et al. (2006).

This increased allele cardinality is used to minimise the effect of epistasis and

deception in the Thesis genetic algorithm.

To avoid the trap of bistability described in Wright and Richter (2006), the

Thesis will identify selection thresholds which maintain high levels of selection

pressure in ranked populations. Mutation is targeted at low performing individ-

uals ranked below a critical threshold to avoid information loss and premature

convergence. Techniques to rank individuals by the number of ideal alleles

present are described. Such a ranking facilitates the accurate identification of

selection thresholds which minimise information loss and therefore support the

use of small populations.
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This Thesis uses some foundation concepts of information theory, from the

definition and characteristics of information sources and entropy through to

proven theorems such as the Shannon–McMillan theorem (Van der Lubbe, 1997)

for most probable messages. These concepts are used to suggest avenues for

exploration and to provide a strong theoretical foundation for key contributions

of the Thesis, particularly the selection thresholds and termination criteria.

Throughout the Thesis a ‘little models’ approach as recommended in Gold-

berg (2002) is used to explore the behaviour of genetic algorithm operators

under controlled circumstances. At each stage the characteristics, both sought

and observed, are linked to basic concepts from information theory (such as

information sources and entropy) to ‘ground’ them and facilitate categorisation

and comparison.



3. A MODEL OF GENETIC ALGORITHM BEHAVIOUR

INSPIRED BY INFORMATION THEORY

This chapter introduces and develops a model of genetic algorithm behaviour

inspired by information theory. Two ideas are central to this approach. Firstly,

that evolutionary processes encode information into a population by altering

the relative frequency of alleles throughout the population. Secondly, that the

key difference between a genetic algorithm and other algorithms is the genera-

tional operators: selection and crossover. This suggests that genetic algorithms

benefit from maximising the number of generations processed. Hence the model

presented here will seek to maximise a population’s information as represented

by the relative frequency of ideal alleles in the population, encourage the ac-

cumulation of these alleles and maximise the number of generations able to be

processed.

The chapter is structured into six sections:

• Population Construction (Section 3.1),

• Mutation (Section 3.2),

• Selection Thresholds (Section 3.3),

• Crossover (Section 3.4),

• Ranking (Section 3.5), and

• Termination Criteria (Section 3.6)
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The chapter first discusses population construction, including considerations

regarding the choice of allele cardinality (A) and the genome length (L) used to

encode each individual to be tested. The interaction of these parameter settings

with the objective function is then described. In particular Section 3.1 describes

the effect of different choices for A and L values on the resolution of objective

functions. An approach to population sizing is discussed and a population size

(N) which maximises both the search space defined by the population and the

number of generations which can be processed in a given time is calculated.

Having provided guidance on population construction the chapter turns next

to the three primary operators used by genetic algorithms: mutation, selection

and crossover. Sections 3.2, 3.3 and 3.4 describe the effect of each of these

operators on genetic algorithm dynamics using a framework derived from some

basic ideas in information theory. Techniques for targeting mutation, setting

selection thresholds and determining the degree of crossover which will increase

the probability that information will accumulate in the population are explained

in detail.

The examination of selection thresholds will reveal the importance of pop-

ulation ranking. Section 3.5 investigates ranking and defines the new concept

of entropy profile. The entropy profile is shown to be different between ranked

and unranked populations of the same individuals. A similar, although smaller

difference is shown to exist when different ranking techniques are applied. This

difference between entropy profiles is linked to information ‘extracted’ from the

objective function. Finally, algorithm termination is discussed in Section 3.6 and

again information theory provides guidance on a sensible termination criterion.

Key ideas are summarised section by section and the chapter concludes with

a discussion of the findings and their relationship to each other.
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3.1 Population Construction

The population of individuals used by a genetic algorithm has three main pa-

rameters which must be determined. The allele cardinality (A) and genome

length (L) depend on how the objective function is represented in the genome.

The third parameter is the population size (N). Some considerations when

setting values for these parameters will be examined.

3.1.1 Allele Cardinality

Most genetic algorithms represent individuals as binary strings. These genetic

algorithms have binary allele cardinality (A = 2), however higher cardinality

(A > 2) is possible. While binary is the allele cardinality of choice for most

researchers, higher cardinality may be helpful in some circumstances.

Higher allele cardinality is useful where a problem seeks to represent objects

(eg cities) with symbols (φ ∈ Φ) and the number of these objects (|Φ|) is not

a power of two. For example if five cities (|Φ| = 5) need to be encoded in a

binary genome (A = 2), a code length (λφ) of three bits per city are necessary

(λφ = 3), yet such a representation is capable of encoding eight cities. As only

five cities are needed, three combinations of bits would have no meaning. If

instead a pentary allele cardinality such as A, B, C, D, E was used (A = 5,

λφ = 1) then all alleles would have meaning.

Such a representation makes the genome more compact and ‘dense’ in infor-

mation as there are fewer combinations of alleles which make no sense or which

may be interpreted ambiguously. These non–sense alleles must be managed

or removed, wasting valuable processing time. Information theory provides a

means of measuring this through the concept of the efficiency of binary repre-

sentations.
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Information theory, (Van der Lubbe, 1997) p 43–49, says that the efficiency

of a uniquely decodeable code is defined as

η =

|Φ|
∑

i=1

pφi log2(pφi)

λφ log2(A)
(3.1)

where λφ is the symbol length, pφi is the probability of symbol φi ∈ Φ occurring

(not to be confused with the probability of an allele), |Φ| is the number of

possible symbols and A is the cardinality of the alphabet used to represent Φ.

Assuming that each symbol φ ∈ Φ is equally likely, Figure 3.1 shows the

efficiency of binary allele cardinality as |Φ| increases. Note that binary is only

100% efficient where the number of alleles per symbol are powers of two. Also,

the worst efficiency occurs when the number of alleles is one more than a power of

two (ie. |Φ| = 3, 5, 9 etc.). This observation is true in general for any cardinality

of A. When the number of symbols in the set Φ is an integer power of the allele

cardinality A, coding efficiency will be maximised. Hence, if the magnitude of

the symbol set |Φ| to be encoded by a genome is not a power of two, then the

use of an allele cardinality which is a factor of |Φ| will improve the efficiency of

the problem representation. Note however that the inefficiency is greatest for

small |Φ| and improves in the limit, but never reaches 100%, for large |Φ|. As

indicated above, a genome with higher coding efficiency will have fewer alleles

which may have no meaning or which may be interpreted ambiguously.

To simplify analysis, this Thesis will assume a suitable, fixed and finite allele

cardinality throughout a genome for a given problem unless stated otherwise.

3.1.2 Solution Density

Section 3.1.1 introduced the idea of how ‘dense’ with information a population

might be. To use this idea to study genetic algorithm behaviour and perhaps to

build an illustrative model of this behaviour, the idea of ‘information density’
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Fig. 3.1: Coding Efficiency for Binary (A = 2) allele cardinality as the Number of
Possible Symbols (|Φ|) increases.

must be linked to a defined mathematical construct. One of the foundation ideas

in information theory is the concept of an information source which produces

symbols at a given rate. This concept can be applied to genetic algorithms, for

example when using such an information source to generate alleles in the initial

population.

Borrowing from information theory, an information source is defined as an

algorithm, which generates symbols in a stationary1 stochastic sequence. A

memoryless information source is one where the symbols are statistically in-

dependent (Van der Lubbe, 1997). Generally, both mutation and the initial

population of a genetic algorithm use a memoryless information source to ran-

domly generate alleles and place them into positions (loci) of individuals ranging

from position 1 to L. This definition gives the initial population and mutation

1 Stationary means probability of symbol generation does not change with time.
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Fig. 3.2: An unranked population of ten individuals (rows) having ten loci
(columns) with each ideal allele indicated in grey from the solution
(A,C,C,D,D,C,D,B,A,B).

specific mathematical properties which can be used to measure the density of

information in a population.

To measure this information, first consider an initial population, such as

in Figure 3.2, formed of individuals. Each individual in this initial population

represents a possible solution to a problem.

Define ideal alleles as those symbols in the appropriate loci, which form

an optimal solution. If more than one optimal solution to the problem exists,

arbitrarily choose one of these solutions to represent the optimal solution. The

concept of ideal alleles is used throughout this Thesis to simplify the explanation

of ideas and observations. It is understood that ideal alleles cannot be easily

identified in real problems, but methods to estimate their relative frequency in

individuals will be described in Section 3.5.
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The term solution density is introduced to refer to the relative frequency of

ideal alleles in the population at a particular generation and is denoted as ρg

for generation g. Solution density is a measure of a population’s fitness. Unless

the information source has special knowledge of the problem which biases it to

produce ideal alleles at a greater rate than other alleles, these ideal alleles will

occur at the rate 1/A in the initial population. Thus, the solution density of

the initial population can be given as

ρ0 =
1

A
(3.2)

The population at generation g has an entropy given by

Hg = −
L
∑

l=1

A
∑

a=1

pa(l, g) log2 pa(l, g) (3.3)

where pa(l, g) is the relative frequency of each allele a in loci l of the population.

Weaver and Shannon (1949) p.20 describe entropy as a measure of uncer-

tainty and information received as the difference between the uncertainty at

the ‘receiver’ before and after the arrival of a signal. In the context of a ge-

netic algorithm, the population is the ‘receiver’ while the ‘signal’ is provided by

the selection operator. Therefore the difference in the entropy of the popula-

tion from generation to generation can be used to measure the accumulation of

information by a population.

Because it is produced by a memoryless information source, the initial popu-

lation has the most uncertainty of any population that can be generated. As the

selection operator discards low performing individuals, alleles will be lost and

the diversity of alleles in the population will decrease. Generally this causes the

relative frequency of high performing individuals and their constituent alleles to

increase. Some of these constituent alleles will be ideal alleles and therefore the



3. A Model of Genetic Algorithm Behaviour Inspired by Information Theory 54

solution density of the population will rise. This change in the relative frequency

of alleles in the population reduces uncertainty so that

H0 > Hg (3.4)

and the information encoded into the population at generation g by the action

of the algorithm is given by

Rg = H0 −Hg (3.5)

the difference between the uncertainty in the initial population and the uncer-

tainty in the population at generation g.

The ‘density’ of this information at any generation is given by

H0 −Hg

H0
(3.6)

Clearly, changes to population entropy can be used to measure the accumulation

of information by a genetic algorithm. However, the calculation of entropy for

a population every generation can slow the implementation speed of a genetic

algorithm. For an algorithm which relies on processing as many generations as

possible this is a significant constraint.

Fortunately solution density is the relative frequency of ideal alleles in the

population at a particular generation. If selection increases the relative fre-

quency of ideal alleles so that max {pa(l, g)} is the relative frequency of ideal

alleles in loci l at generation g, solution density is related to the information

density by via

ρg =
1

L

L
∑

l=1

max {pa(l, g)} (3.7)

and Equation (3.3). This means that solution density is positively correlated

with the information density.
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Solution density is easier to visualise, faster to calculate and, unlike infor-

mation density, is a parameter which can be directly applied to distribution

functions. As a result the solution density (ρg) can be used to model informa-

tion accumulation by a genetic algorithm.

3.1.3 Individual Length

To use a genetic algorithm in solving a problem, the form taken by solutions

must be mapped to a genome consisting of a sequence of L loci containing alleles

a ∈ A. The choice of L affects the choice of A and vice versa (if A is set first).

For example, in a traveling salesman problem, an allele may represent a city and

its loci the city’s place in the tour. Alternatively, an allele may represent a city’s

place in the tour while the loci position represents the city. It just depends on

the representation and subsequent interpretation of the genome. For this reason

allele cardinality (A = |A|) and individual (genome) length (L) are ‘dual’.

For a given problem, choosing to increase A leads to a reduction in L. Be-

cause mutation can only act within the alphabet A and crossover acts by ex-

changing loci, the balance between A and L affects the relative importance

and influence of mutation versus crossover. To illustrate this, consider a set of

symbols (φ ∈ Φ) where each symbol (φ) represents a city. Now encode these

symbols so that a single allele a ∈ A is used to represent each symbol φ. With

this representation, crossover can only affect the sequence of symbols (cities),

and then only if those symbols are already represented somewhere in the pop-

ulation. To see this, consider Figure 3.2. If each allele (A, B, C, D) represent

cities, then the fourth city in the sequence (Figure 3.2, loci four) can only be

city C if mutation creates a C there. Crossover alone cannot place a C in loci

four as the population does not contain a C in loci four.

Now consider an alternative representation where symbols are encoded by a

combination of alleles in two or more loci. In this case, crossover can also act
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within the symbol and generate a new symbol which is not already represented

in the current population at that point. Again using Figure 3.2 for illustration, if

the allele combination BC represents a single city φ, even though the population

shown does not include the city BC as the first city, crossover between any

individual with a B allele in loci one (ie. individual one) with an individual

with a C allele in the second loci (ie. individual eight) can produce the city BC

in first place in the symbol (city) sequence. If the code is inefficient as described

in Section 3.1.1 then no–sense symbols could also be created by crossover in this

way.

This ‘alternative’ situation is common when low cardinality alleles are used

to represent a problem. Indeed when more than two alleles are used to encode a

symbol, then the problem representation contains more crossover points within

symbols than between them and the function of crossover becomes more like

mutation and less associated with the re–sequencing of symbols in the problem

representation.

When deciding how to represent a problem and choosing allele cardinality

versus genome length, genetic algorithm practitioners need to consider the ef-

ficiency as suggested in Section 3.1.1 and the degree of influence sought for

crossover searching within symbols compared to between them in the represen-

tation.

3.1.4 Resolution

Some real world problems are not well formed because understanding of the

problem may not be clear or may contain ambiguity. Indeed, a genetic algorithm

which tests a large number of potential solutions may be required for this very

reason. Unfortunately, the objective function used to test the solutions may

suffer from the ambiguous representation of the problem. Hence the objective

function is a ‘lens’ through which the problem is observed and this lens may

distort how the problem is viewed.
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The solution space of a problem is searched by a genetic algorithm as it

evaluates individuals through the ‘lens’ of the objective function. Hence the

objective function is all that can be used to identify the overall fitness of an

individual and the properties of the solution space at the location of the in-

dividual. This has two outcomes: distortion, which reduces the fidelity of the

objective function to the actual problem, and resolution, the minimum change in

gene which results in a measurable change in objective function result. There is

little that can be done about distortion, unless an alternative representation can

be found. While resolution can be difficult to improve, a good understanding of

the ambiguities it causes can improve genetic algorithm design.

This Thesis identifies three forms of ambiguity which arise from the resolu-

tion used to represent an objective function:

• Ambiguity 1, ambiguity at the boundary between sense and non–sense,

• Ambiguity 2, ambiguity at the boundary where change in gene results in

no measurable change in objective function result, and

• Ambiguity 3, ambiguity at the boundary where change in objective func-

tion result cannot be captured by the minimum change in gene.

Ambiguity 1 occurs when the syntax of the objective function requires loci

to produce a meaningful result. For example in Traveling Salesman Problems,

a solution tour with a repeated city is a ‘non–sense’ solution as repeated cities

are not allowed.

Ambiguity 2 occurs where slightly different individuals have identical results.

For example, a gene with the allele sequence 110 and a gene with allele sequence

111 may both evaluate to the same result (ie. the surface is flat). This occurs

in job shop scheduling problems where many different schedules have the same

makespan (the time from schedule commencement to the end of the last job).



3. A Model of Genetic Algorithm Behaviour Inspired by Information Theory 58

Ambiguity 3 occurs when the surface ‘looks’ flat because narrow peaks are

not captured. An example is where a binary representation must be converted

to a higher cardinality such as decimal for evaluation. In this case 4 bits per

decimal digit can only represent a few decimal places. As a result small changes

in objective function score may not be able to be captured. Alternatively, large

changes in the value of objective function that are very close may not be cap-

tured.

The second and third ambiguities described have equivalent appearance, but

their cause differs and hence so do the options for dealing with them.

Dealing with Limited Resolution

Researchers and practitioners deal with the first ambiguity in a number of ways.

A common approach is to apply criteria which check for non–sense and either

discard such individuals or correct the non–sense portion using rules developed

from an understanding of the characteristics of a problem. Essentially such an

approach incorporates additional ‘problem knowledge’ in the algorithm. While

this approach does not directly increase the population size of a genetic algo-

rithm, or the number of individuals evaluated, it does increase the complexity

of the algorithm in proportion to the number and complexity of the criteria

applied.

The second ambiguity arises when the number of ideal alleles required to

differentiate between individual scores causes many different individuals in the

population to have the same score. If Tournament Selection is used, this results

in unresolved tournaments. Indeed for all types of selection operator this form

of ambiguity adversely effects selection.

The selection thresholds to be described in Section 3.3 are defined in terms of

the number of ideal alleles in individuals (their solution density). This selection

technique is sensitive to ambiguity in the vicinity of the static selection threshold
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as this can result in poor individuals being retained and good individuals being

discarded. Ambiguity elsewhere in the ranked population has no effect as it does

not change the result of the selection decision. Tournament Selection is more

strongly affected as ambiguity anywhere can result in unresolved tournaments.

Section 3.3 identifies the static selection threshold at L/A ideal alleles per

individual. Hence, the number of alleles per individual required to differentiate

between scores cannot be greater than L/A. If the objective function is such

that individuals must possess more than L/A ideal alleles before their score

differs from other individuals, then the genetic algorithm will not be able to

decide between individuals which contain more compared to less ideal alleles.

Individuals which do contain sufficient ideal alleles to be distinguished will occur

rarely (especially in the initial population) and will only be encountered in very

large populations or by chance.

These considerations illustrate why a problem consisting of an isolated nee-

dle (Shapiro, 2006) cannot on average be solved by a genetic algorithm faster

than by a random search. In the case of a needle, the score resolution re-

quired is L, the full length of the individual. Hence, the solution cannot be

constructed by a genetic algorithm and must be found only by chance. This

reasoning bounds the maximum number of loci participating in epistasis (the

epistasis group) which a genetic algorithm can defeat. For example if epistasis

in a binary individual exists between L/2 loci, then this exceeds the allele res-

olution required in the vicinity of the selection threshold and hence the correct

decision on which individuals to retain and which to discard becomes a matter

of chance.

The third ambiguity, where the surface ‘looks’ flat because narrow peaks are

not captured by the minimum possible change in gene, can be countered by

increasing the number of bits used to represent the higher cardinality symbol.
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For example using 16 bits instead of 4 bits per symbol to represent to desired

decimal digit. However this increases the cardinality of the problem or the

genome length and hence the population size grows leading to increased evalu-

ation times (see next Section 3.1.5). McLay and Goldberg (2005) reverse this

thinking and seek an optimum resolution which minimises computation time

yet finds an acceptable optimum.

3.1.5 Population Size

The last parameter to be determined when constructing a genetic algorithm is

population size (N). Larger populations are often more successful than small

populations. This occurs because highly fit individuals are more likely to be

present in the population and any information lost by selection is more likely

to be duplicated elsewhere in a large population.

However, large populations will reduce the number of generations able to be

processed in a given time as more individuals must be evaluated each generation.

This means that any beneficial effect of crossover or selection will also be reduced

as there are fewer generations processed in the time available. Therefore, a large

population is biased towards an exhaustive search and away from a directed

search.

These considerations suggest that using the biggest population a processor

can possibly manage is not particularly important and may in fact be detrimen-

tal. It is more important to calculate the probability that all alleles are present

in the initial population. In this case the researcher’s choice of population size

(N) is driven by a desire to ensure the presence of at least one ideal allele in

each loci and each individual with some defined (albeit arbitrary) confidence.

To set population size in a way that ensures that all alleles are present in suffi-

cient numbers with some specified confidence, recall that the initial population

is generated by a memoryless information source. A memoryless information
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source will ensure that events which generate a specific allele will be distributed

binomially. This means that the probability that loci in the initial population

will have no ideal alleles is given by the binomial probability

Q(0) =
N !

0!(N − 0)!

[

ρ0(1 − ρ)N−0
]

(3.8)

where ρ = 1/A, the frequency of alleles in the initial population.

Equation (3.8) does not consider the genome length, so a population of

sufficiently long genomes (large L) will contain some loci with no ideal alleles. To

limit this occurrence to a specified confidence, consider the binomial probability

B(0) =
L!

0!(L− 0)!

[

p0(1− p)L−0
]

(3.9)

and set p = Q(0) so that B(0) is the probability that the event corresponding

to Q(0) does not occur after L trials (loci). Hence

B(0) = (1 −Q(0))L

= (1 − (1− ρ)N )L (3.10)

As B(0) is henceforth used by the Thesis only as a measure of confidence, it will

be abbreviated to B for brevity. Applying this change and rearranging gives

N =
log(1−B1/L)

log(1− 1
A )

(3.11)

Equation (3.11) gives the population size N of individuals with genome length

L having at least one ideal allele in every loci with a confidence of B.

Figure 3.3 illustrates the effect of increasing allele cardinality (A) on the

population size (N), while Figure 3.4 illustrates how the length of individuals

(L) affects the population size.
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Fig. 3.3: Population Growth with Allele Cardinality (A) and a variety of Confidence
levels B that at least one ideal allele exists in each loci (L = 60).
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Fig. 3.4: Population Growth with Genome Length (L), Allele Cardinality (A = 64)
and a variety of Confidence levels B that at least one ideal allele exists in
each loci.
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3.1.6 Summary of Key Ideas

The success of a genetic algorithm is dependent on ‘generational operators’ such

as selection and crossover. An excessive population size limits the number of

generations that can be processed in a given time. Therefore, it is desirable to

use an allele cardinality which efficiently matches the problem representation to

facilitate the construction of a relatively small, information dense, population.

By ensuring that alleles are present with an acceptable level of confidence, a

population size can be set in a straightforward manner.

Changes to population entropy measures the accumulation of information

by a genetic algorithm. Since solution density (ρg) is proportional to the infor-

mation contained in a population, solution density can be used to model the

accumulating information. This is a useful result since solution density is easy to

visualise, much quicker to calculate than population entropy and is a parameter

which can be directly applied to distribution functions.

Resolving the objective function in the vicinity of the static selection thresh-

old is critical to the ability of a genetic algorithm to decide which individuals

to retain and which to discard. This indicates a maximum practical bound for

the number of loci participating in epistasis. Beyond the bound of L/A, finding

the optimum becomes increasingly due to chance rather than the ability of the

genetic algorithm to direct the search.

3.2 Mutation

Mutation involves randomly changing the value of alleles in some loci of selected

individuals. A high rate of mutation does this more often per generation than a

low rate. Mutation is used by genetic algorithms to maintain diversity of alleles

and to prevent premature convergence to a sub–optimal solution. Although

other approaches such as crowding, niches and co-evolution have sometimes been
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used (De Jong, 1975; Rietman, 1997; Morrison and Oppacher, 1998), mutation

remains the most common technique used to increase diversity in the population

of a genetic algorithm. Yet it is not clear whether mutation is, on average,

beneficial to the efficient operation of a genetic algorithm or whether alternative

methods of maintaining diversity in the genetic algorithm may be superior.

This section analyses the effect of two common forms of mutation, allele

replacement and allele “flipping” on the accumulation of information in a popu-

lation. Attention will be drawn to some differences in behaviour between these

two forms of mutation. The probability of mutation adding, deleting or hav-

ing no effect on a population’s information content will be examined and some

observations made regarding when the information is more likely to be accu-

mulated than to be lost. Each is analysed and an approach which increases the

likelihood of information gain over information loss is identified. This section is

drawn from work published in Milton et al. (2005).

3.2.1 Allele Replacement Mutation Analysed

Mutation is the result of random processes that may be modeled using informa-

tion theoretic approaches. One common form of mutation is to randomly select

a locus in a randomly selected individual and change that allele to any symbol

produced by the memoryless information source described in Section 3.1.2. The

probability of information loss or gain due to this type of mutation will now be

quantified.

To find the probability that a mutation operation, on a genome of length

L and with A alleles available to each locus, gains or loses information, first
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consider the probability of a gain in information, Pgain(g). The probability of

a gain in information is given by the joint probability of

• selecting an individual with λ ideal alleles (0 ≤ λ ≤ L),

• selecting a non–ideal allele for mutation, within that individual, and

• mutating this non–ideal allele to an ideal allele.

Section 3.1.2 described the relationship between a population’s accumulation

of information and its solution density ρg. The binomial distribution describes

the number of times a specific event occurs in a number of independent tri-

als, assuming the event has a constant probability of occurring in a single trial

(Kreyszig, 1983). Now since ideal alleles are generated by a memoryless infor-

mation source producing ideal alleles with a frequency of ρg at generation g,

then the probability of selecting for mutation an individual with λ ‘ideal’ alleles

at generation g, is described by the binomial distribution p(λ | L, ρg). Simi-

larly, the probability that an incorrect allele within this individual is selected

for mutation is described by (1− λ/L)

Because the initial information source of the population is the same as the

mutation source, and assuming that all loci have the same allele cardinality,

then the probability that the mutation source generates an ideal allele at any

loci is 1/A. Hence

Pgain(g) =

L
∑

λ=0

p(λ | L, ρg)

[

1− λ

L

]

1

A

=
1

A

L
∑

λ=0

p(λ | L, ρg)−
λp(λ | L, ρg)

L
(3.12)
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Noting that
∑L

λ=0 p(λ | L, ρg) = 1 and 1
L

∑L
λ=0 λp(λ | L, ρg) = ρg, gives

Pgain(g) =
1

A
[1− ρg] (3.13)

Pgain(g) is the probability that the number of ideal alleles in the mutated

individual will rise by 1 allele as a result of a single mutation event.

In addition to Pgain(g), there are two other transition probabilities. Ploss(g)

is the probability that the number of ideal alleles in the mutated individual will

fall by 1 allele and Pnone(g) is the probability for no change in the number of

ideal alleles. Ploss(g) is a joint probability that is found in a similar way as

Pgain(g). Hence, the probability of a loss in information is given by the joint

probability of

• selecting an individual with λ ideal alleles (0 ≤ λ ≤ L),

• selecting a ideal allele for mutation within that individual, and

• mutating this ideal allele to a non–ideal allele.

Assuming ideal alleles are randomly distributed, and ρg is the solution den-

sity of the population at generation g then the probability of selecting for mu-

tation an individual with λ ideal alleles at generation g, is described by the

binomial distribution p(λ | L, ρg). Similarly, the probability that an ideal allele

within this individual is selected for mutation is described by λ/L. Because the

initial information source of the population is the same as the mutation source,

and assuming that all loci have the same allele cardinality, then the probability

that the mutation source generates a non–ideal allele at any loci is 1 − 1/A.

Hence

Ploss(g) =
L
∑

λ=0

p(λ | L, ρg)
λ

L

[

1− 1

A

]

(3.14)
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and bringing the constants out of the summation gives

Ploss(g) =

[

1− 1

A

]

1

L

L
∑

λ=0

λp(λ | L, ρg)

=

[

1− 1

A

]

ρg (3.15)

Ploss(g) is the probability that the number of ideal alleles in the mutated indi-

vidual will fall by 1 allele as a result of a single mutation event.

Equations (3.13) and (3.15) are equal when the solution density of a pop-

ulation is equal to the solution density of the mutation source; that is when

ρg = 1/A. This occurs only during the initial generation or when strong se-

lection pressure returns the population’s solution density to the initial level of

ρ0.

Sometimes mutation will replace an incorrect allele with an incorrect allele

or an ideal allele with an ideal allele. The probability of such a mutation event,

which causes neither information loss nor information gain, is given by Pnone(g)

and is related to the neutral drift investigated in Shipman et al. (2000). Pnone(g)

transitions may allow larger areas of a search space to be explored with no

detriment, but may also represent a processing inefficiency as there is a danger

of prolonged periods of random drift.

To find Pnone(g), the following joint probabilities need to be calculated:

• selecting an individual with exactly λ ideal alleles,

• selecting a non–ideal allele for mutation, within that individual, and

• mutating this non–ideal allele to a non–ideal allele;

added to the joint probability of

• selecting an individual with exactly λ ideal alleles,
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• selecting an ideal allele for mutation, within that individual, and

• mutating this ideal allele to an ideal allele.

Taking these joint probabilities into account Pnone(g) is given by

Pnone(g) =

L
∑

λ=0

p(λ | L, ρg)

[

1− λ

L

] [

1− 1

A

]

+

L
∑

λ=0

p(λ | L, ρg)
λ

L

1

A

=

L
∑

λ=0

p(λ | L, ρg)

[

1− λ

L
− 1

A
+

λ

LA

]

+
1

LA

L
∑

λ=0

λp(λ | L, ρg)

=

[

1− 1

A

] L
∑

λ=0

p(λ | L, ρg) +

L
∑

λ=0

λp(λ | L, ρg)

[

1

LA
− 1

L

]

+
1

LA

L
∑

λ=0

λp(λ | L, ρg) (3.16)

Remembering that
∑L

λ=0 p(λ | L, ρg) = 1 and collecting the
∑L

λ=0 λp(λ | L, ρg)

terms, gives

Pnone(g) =

[

1− 1

A

]

+

L
∑

λ=0

λp(λ | L, ρg)

[

1

LA
− 1

L
+

1

LA

]

(3.17)

which simplifies to

Pnone(g) = 1− 1

A
+

[

2

A
− 1

]

ρg (3.18)

As all transition probabilities must sum to one, Equations (3.13), (3.15)

and (3.18) sum to one. Hence

Pgain(g) + Ploss(g) + Pnone(g) = 1

1

A
[1− ρg] +

[

1− 1

A

]

ρg + 1− 1

A
+

[

2

A
− 1

]

ρg = 1

1

A
− ρg

A
+ ρg −

ρg

A
+ 1− 1

A
+

2ρg

A
− ρg = 1 (3.19)
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For information to accumulate on average, Pgain(g)−Ploss(g) must be greater

than zero. Substituting the probabilities of gaining and losing information as

defined by Equations (3.13) and (3.15) then simplifying gives

1

A
− ρg > 0 (3.20)

Due to selection, when g > 0, the average solution density of the population

(ρg) will usually be greater than the solution density of the mutation source

(1/A). Therefore Equation (3.20) is not usually satisfied for g > 0 and, on

average, information accumulates only if the solution density of the population

falls below the solution density of the mutation source, for example when the

population has experienced strong selection pressure.

3.2.2 An Alternative Mutation Mechanism – Allele Flipping.

Another common form of mutation operator is allele flipping (bit flipping for

binary allele cardinality). This form of mutation replaces the current allele with

any allele other than the current allele. While this form of mutation is different

from the one described above, it does not produce ideal alleles at a higher

rate. The conditions for information gain here are the same as in Section 3.2.1.

However, the probability of mutating a non–ideal to an ideal allele is different.

In this case an incorrect allele is replaced with any allele other than itself. Hence

there are A− 1 choices (instead of A choices) in this mutation scheme and only

one of them is the ideal allele. Proceeding as before, the probability of gain is

Pgain(g) =

L
∑

λ=0

p(λ | L, ρg)

[

1− λ

L

]

1

A− 1

=
1

A− 1

[

1− 1

L

L
∑

λ=0

λp(λ | L, ρg)

]

=
1

A− 1
[1− ρg] (3.21)
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and a probability of loss

Ploss(g) =
1

L

L
∑

λ=0

λp(λ | L, ρg)

= ρg (3.22)

In the case of loss, there is no A term because ideal alleles are not replaced

with itself. So the probability that it is replaced with an incorrect allele is

one. Now calculating Pnone in a similar way to Section 3.2.1 and noting that

the Pnone term only occurs where a non–ideal allele is flipped to a different

non–ideal allele gives

Pnone(g) =

L
∑

λ=0

p(λ | L, ρg)

[

1− λ

L

] [

A− 2

A− 1

]

=
A− 2

A− 1

[

1− 1

L

L
∑

λ=0

λp(λ | L, ρg)

]

=
A− 2

A− 1
[1− ρg] (3.23)

As before the transition probabilities in Equations (3.21), (3.22), and (3.23)

sum to one.

Again, for information to accumulate on average, Pgain − Ploss must be

greater than 0. Substituting the probabilities of gaining and losing information

as defined by Equations (3.21) and (3.22) then simplifying gives

A

A− 1

[

1

A
− ρg

]

> 0 (3.24)

As noted in Section 3.2.1, after the first generation (ie. for g > 0), the average

solution density of the population (ρg) will usually be greater than the solution

density of the mutation source (1/A). Therefore Equation (3.24) is not usually
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satisfied for g > 0 and, on average, information accumulates only if the solution

density of the population falls below the solution density of the mutation source

1/A, for example when the population has experienced strong selection pressure.

3.2.3 Discussion

For mutation to provide an average gain in information, the solution density

of the mutation source 1/A must be greater than the solution density of the

population ρg. On average, there is no change in solution density when 1/A =

ρg, and an average loss when 1/A < ρg.

Comparing the two mutation operators can be done by inspection of Equa-

tions (3.20) and (3.24). As described above, both operators hinder the progress

of the genetic algorithm when the solution density ρg of the population exceeds

1/A. However, the information gain or loss due to allele flipping, is accelerated

by the term

A

A− 1
(3.25)

Hence, when compared to the allele replacement mutation operator (Sec-

tion 3.2.1), the allele flipping form of mutation has accelerated information gain

when ρg < 1/A and accelerated information loss when ρg > 1/A. The difference

is most pronounced for binary allele cardinality A = 2 and diminishes as the

allele cardinality is increased. As ρg > 1/A in fit populations, bit flipping is not

recommended as it causes greater information loss.

3.2.4 Why Use Mutation At All?

Mutation on average decreases a genetic algorithm’s solution density because, af-

ter the first generation, the average solution density of the population is greater

than that of the mutation source. Why then is mutation used in genetic algo-

rithms with good effect? Mutation promotes diversity and helps delay conver-
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gence. Mutation re–introduces lost alleles. Sometimes, the new alleles are ideal

alleles. When this occurs, selection locks in the gained alleles.

The analysis in Sections 3.2.1 and 3.2.2 refers to the average effect over many

individuals and/or generations. When small amounts of mutation are followed

closely by selection, damage is minor and on the occasions where ideal alleles

arise, they are quickly locked in by selection before further detrimental mutation

reverses their benefit.

A high mutation rate is more likely to behave as described in Sections 3.2.1

and 3.2.2 because a high mutation rate means more mutations per generation

and the cumulative effect of these more closely approximates the average effect

predicted by the preceding analysis. Hence high mutation rates are, on average,

more detrimental than low mutation rates. This is why genetic algorithms have

been more successful when using very low mutation rates.

3.2.5 Targeting Mutation to Add Information.

Mutating alleles selected at random from the population is, on average, detri-

mental to the solution density of a population. However, in a population ranked

in decreasing order of ideal alleles per individual, the solution density of the full

population can be separated by a threshold k0 between individuals with a low

solution density and those with a high solution density thus

1

L

L
∑

λ=0

λp(λ | L, ρg) =
1

L

k0
∑

λ=0

λp(λ | L, ρg) +
1

L

L
∑

λ=k0+1

λp(λ | L, ρg) (3.26)

Equation (3.26) describes the solution density of the full population on the

left while the right describes the same population separated into a low solution

density sub–population added to a high solution density sub–population. If k0

is selected so that the first term on the right hand side is less than 1/A and

mutation is targeted at individuals with less than λ = k0 + 1 ideal alleles, then
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Fig. 3.5: A population of ten individuals (rows) having ten loci (columns) ranked by
ideal allele from the solution (A,C,C,D,D,C,D,B,A,B) indicated in grey. The
threshold separates individuals with more / less ideal alleles than the popu-
lation average (as generated by the memoryless information source).

mutation will, on average, improve the solution density of those individuals and

hence the population overall.

In order to target mutation at individuals with a solution density less than

the mutation source in this way, it is first necessary to rank all individuals in

the population. Next the threshold separating high scoring individuals, having

solution density greater than the mutation source, from low scoring individuals,

with solution density less than that of the mutation source must be identified.

Because this threshold is fixed by the information source used for mutation, it

is defined as the static selection threshold and is denoted by k0. An example

population ranked in this way is shown in Figure 3.5.

Individuals with rank above the static selection threshold are retained in the

population (without mutation). Individuals below the threshold can either be

selected for deletion (and replacement with newly produced individuals) or have
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randomly selected loci mutated. Either method is straightforward, although

replacement by newly generated individuals has a more significant effect on

the diversity of symbols in the population because more alleles are replaced.

This increased diversity assists the genetic algorithm since diversity provides

alternative paths to a solution (Shipman et al., 2000).

Replacement of individuals ranked below the static threshold benefits the

population because the average number of ideal alleles in the deleted individ-

uals is less than the average number of ideal alleles reintroduced by the new

individuals. The challenge is to accurately identify the static selection thresh-

old. This is addressed in Section 3.3.

3.2.6 Summary of Key Ideas

This section shows that mutation applied indiscriminately across the popula-

tion has, on average, a detrimental effect to the solution density of a population

and therefore the accumulation of ideal (solution) alleles. This is because, as

a genetic algorithm increases the solution density of the population, it quickly

exceeds the solution density of the mutation source. This increases the proba-

bility that mutation will replace ideal alleles with non–ideal alleles. The effect

is worse for the bit flipping form of mutation.

The analysis described here suggests that when mutation is targeted specif-

ically at individuals with a solution density less than the mutation source, then

significant amounts of mutation can be applied, which increases the average

occurrence of ideal alleles in the population and also improves the population’s

diversity.

If individuals, each with L loci, can be ranked by the number of ideal alleles

they contain, then a static threshold (k0 : 0 ≤ k0 ≤ L) exists, whereby individ-

uals with more than k0 ideal alleles have a solution density greater than that of

the information source. Deleting any individual from above this static threshold
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results in lost information that cannot be easily recovered using the information

source. Similarly, applying mutation to any individual above this threshold will,

on average, decrease the solution density of the population rather than increase

it.

The definition used throughout this Thesis, linking mutation to a memoryless

information source and not some other variation of ‘mutation’, is critical to

obtain the specific mathematical properties attributed to mutation. It is this

property which links mutation to the static threshold described.

Researchers who apply the term ‘mutation’ to operators which do not use a

memoryless information source, for example the “shift mutation” of Nearchou

(2003), alter these mathematical properties and the relationship to the selection

threshold. Indeed, shift mutation has the property of maintaining the frequency

of alleles in individuals and altering it in loci across the population. As a

result, shift ‘mutation’ uses a source with memory and is therefore related to

the dynamic selection threshold discussed in the next section.

3.3 A Model of Solution Density in a Genetic Algorithm Subject

to Selection

Diversity refers to the variation of alleles present in the population. Because it

is produced by a memoryless information source, the initial population is the

most diverse population that can be generated. As a genetic algorithm discards

low performing individuals, alleles will be lost and the diversity of alleles in the

population will decrease. Generally this is useful as the relative frequency of

high performing individuals and their constituent alleles will increase. Some of

these constituent alleles will be ideal alleles and therefore the solution density

of the population will rise. This change in the relative frequency of alleles in

the population applies a bias to the genetic algorithm’s search and ultimately
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a reduction in the size of the solution space that is searched. If this happens

prematurely, then the genetic algorithm may converge to a non-optimal solution.

While mutation can counteract this premature convergence, research has

shown that mutation can also be detrimental to the success of a genetic al-

gorithm as it may alter ideal alleles present in the population to other, non–

optimal alleles (eg; Milton et al. (2005); Galvan-Lopez and Poli (2006); Wright

and Richter (2006); Ochoa (2006)). Poor selection choices can similarly lead a

genetic algorithm to delete individuals containing ideal alleles. These lost alle-

les can only be re–introduced by mutation or the addition of newly generated

individuals which replace deleted individuals (Gonalves et al., 2005).

This section develops a model of solution density in a genetic algorithm that

reveals the effect on the accumulation of information in genetic algorithms when

selection pressure is varied. The results are shown to be relevant to both genetic

algorithms and Univariate Estimation Distribution Algorithms (UEDA) (Muh-

lenbein and PaaB, 1996). This section is drawn from work accepted for publi-

cation in Milton and Kennedy (2008).

Two thresholds are defined by the model, a static selection threshold and a

dynamic selection threshold. The static threshold is combined with a memory-

less information source to generate replacement individuals in lieu of mutation

as sought in Section 3.2 and the dynamic threshold uses survivor ‘parents’ as

the information source for replacement individuals.

3.3.1 The Model

The binomial distribution describes the number of times a specific event occurs

in a number of independent trials, assuming the event has a constant probability

of occurring in a single trial (Kreyszig, 1983). In the Model the occurrence of

an ideal allele constitutes ‘an event’, while placing an allele into a loci are the

‘independent trials’. Now since ideal alleles are generated by a memoryless
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information source producing ideal alleles with a frequency of ρg at generation

g, then ideal alleles λ will initially be distributed throughout the population

with binomial probability distribution

p(λ | L, ρ0) =
L!

λ!(L − λ)!
ρλ
0 (1− ρ0)

(L−λ) (3.27)

in a fashion similar to that shown in Figure 3.6. This binomial distribution

describes the number of ideal alleles per individual {λ | 0 ≤ λ ≤ L} where L is

the number of loci per individual (the genome length). The solution density ρg,

of the population at generation g, represents the number of ideal alleles divided

by the total number of alleles in the population.

The concept of solution density is central to the explanation of this The-

sis. Because solution density is defined in terms of ideal alleles, binomial dis-

tributions are used. To focus readers on the salient variables, the binomial

distribution p(λ|L, ρg) will be abbreviated as p(g, λ). Sometimes only parts of

a binomial distribution are required. For example, p(λ | L, ρg) for λ ∈ [a, b].

These partial distributions will be abbreviated as pb
a(g, λ). In each case a and

b are in the range [0, L] and a ≤ b.

Selection from a threshold k truncates the binomial distribution thus

pL
0 (0, λ)

select⇒ pL
k+1(0, λ) (3.28)

An example of this kind of distribution is shown in Figure 3.7.

The population described by Figure 3.7 no longer has ideal alleles distributed

binomially. Instead, ideal alleles occur more frequently per individual in the sur-

viving population than they did in the initial population. This would invalidate

the continued use of binomial distribution equations to model the genetic algo-

rithm behaviour. However, if crossover is now repeatedly applied to all of the
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Fig. 3.6: The binomial distribution pL
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individual before selection.
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Fig. 3.7: The probability distribution pL
3
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removed individuals with less than 3 ideal alleles (Selection threshold k = 2).
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Fig. 3.8: The truncated distribution of Fig. 3.7 with alleles redistributed by sufficient

crossover to return it to a binomial distribution pL
0
(1, λ).
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individuals, the distribution of ideal alleles across the population will return to

a binomial distribution.

The minimum amount of crossover which achieves this return to a binomial

distribution is referred to as sufficient crossover in this Thesis. Applying more

crossover than this has no further effect on the distribution of ideal alleles in the

population and is computationally intensive. Therefore the accurate identifica-

tion of sufficient crossover is important to the efficient operation of the genetic

algorithm. Section 3.4 calculates how much crossover is sufficient.

Once sufficient crossover has been applied between all of the individuals

in the population, the ideal alleles are again distributed binomially across the

population and the binomial distribution equations can again to be used to

model the growth of solution density ρg from generation to generation.

pL
0 (0, λ)

select⇒ pL
k+1(0, λ)

crossover⇒ pL
0 (1, λ) (3.29)

Figure 3.8 illustrates the binomial distribution p13
0 (1, λ) of a population that

has the same solution density as the population in Figure 3.7. Note that the

peak of the distribution has moved to the right when compared to Figure 3.6,

indicating that a greater percentage of the population contains more ideal alleles.

Hence, the solution density of the population has risen. Figure. 3.9 illustrates

the trend resulting from repeating this process each generation. This effect

can be described algebraically to reveal the change in solution density and to

identify the selection threshold k which optimises the improvement in solution

density each generation.

The binomial distribution equations can also be used to model the growth

of solution density ρg from generation to generation in a Univariate Estimation

Distribution Algorithm (UEDA) (Muhlenbein and PaaB, 1996). UEDAs use

an estimate of a population’s allele distribution, rather than an instance of a
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Fig. 3.9: This figure illustrates the movement of the probability density function from
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due to repeated selection and crossover.

population, and modify this estimated distribution. This approach is popular as

it can learn the structure between search variables (Shapiro, 2006) and require

less memory to store actual populations (Sastry et al., 2007). An estimated

distribution implicitly assumes that alleles are distributed throughout the ‘pop-

ulation’ as represented by the distribution. Hence the distribution of ‘ideal’ vs

‘non–ideal’ alleles must be binomially distributed in a UEDA and therefore the

models described in this Thesis are applicable to UEDAs.

pL
0 (0, λ)

UEDA⇒ pL
0 (1, λ) (3.30)

Returning to the model, an expression for the expected solution density in

the population at generation g + 1 which describes this change will now be

constructed. First an expression describing the number of ideal alleles present
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in the population after selection is required. This expression must be further

developed to include the number of ideal alleles which are added by the randomly

generated replacement individuals. Finally, the expression for expected solution

density must account for the probability that at least one individual survives to

the next generation.

When individuals ranked above a threshold k are selected, the expected

number of ideal alleles in the population at generation g is Ng

∑L
λ=k+1 λp(g, λ)

and the total number of alleles in the population at generation g + 1 is LNg+1.

Since the solution density is given by the ratio of ideal alleles in the population

to the total alleles, the expected solution density at generation g + 1 for a

population subject to selection only is

Es[ρg+1] =

Ng

L
∑

λ=k+1

λp(g, λ)

LNg+1
(3.31)

To this point the individuals deleted from the population have not been

replaced. If randomly generated new individuals are now used to replace the

deleted individuals and increase the diversity of symbols represented in the pop-

ulation (that is, in lieu of mutation) then the solution density is further altered

as follows. Firstly, the number of individuals to be added to the population

must be quantified. Next, the solution density associated with these individuals

must be quantified. Then, this solution density must be added to the surviving

population’s solution density.

As the individuals with k or fewer ideal alleles (ie. λ ≤ k) were deleted, the

number of individuals deleted and therefore the number of replacements required

to maintain the population size so that Ng = Ng+1, is Ng

∑k
λ=0 p(g, λ).
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The solution density associated with these new individuals is

∑L
λ=0 λp(0, λ)
∑L

λ=0 p(0, λ)
(3.32)

which simplifies to
∑L

λ=0 λp(0, λ) since the denominator
∑L

λ=0 p(0, λ) = 1.

Notice that as new individuals are generated in the same way as for the initial

population, the binomial distribution p(0, λ) is used rather than p(g, λ).

The solution density to be added to the surviving population is the product

Ng

k
∑

λ=0

p(g, λ)

L
∑

λ=0

λp(0, λ) (3.33)

the number of randomly generated replacement individuals multiplied by the

number of ideal alleles associated with the randomly generated replacement in-

dividuals. Adding this term to the numerator of Equation (3.31) and simplifying

gives

1

L

[

L
∑

λ=k+1

λp(g, λ) +

k
∑

λ=0

p(g, λ)

L
∑

λ=0

λp(0, λ)

]

(3.34)

However, the expected solution density in generation g +1 is valid only if at

least one individual survives. Thus our final estimate of the expected solution

density is given by Equation (3.35). In Equation (3.35), the first term in the

first set of braces represents the surviving solution density while the second term

represents solution density introduced by randomly generated individuals. This

sum is multiplied by the probability that at least one individual survives.

Esr[ρg] =
1

L

[

L
∑

λ=k+1

λp(g, λ) +
k
∑

λ=0

p(g, λ)
L
∑

λ=0

λp(0, λ)

]

×



1−
(

k
∑

λ=0

p(g, λ)

)N


 (3.35)
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Equation (3.35) describes the expected solution density ρg of a population

from generation to generation under the successive application of selection, ran-

dom replacement and crossover.

This line of reasoning is critically dependent on the number of crossover

operations. Insufficient crossover reduces the mixing of the ideal alleles and

invalidates this analysis. However, with sufficient crossover it is possible to

model increasing solution density and estimate the number of individuals that

exist at or below the threshold for any generation.

Observe that the last term in Equation (3.35) approaches 1 as N → ∞.

Clearly the probability that at least one individual will survive approaches cer-

tainty for large populations. However, for small populations, as used by this

Thesis, the influence of this last term is significant and an accurate value for k

is essential.

3.3.2 Static Threshold

To use Equation (3.35) to model information flow in a genetic algorithm a

suitable value for the selection threshold k must be determined which will ensure

that the solution density rises from generation g to g+1. For the solution density

to increase, the ideal alleles lost when individuals are deleted must be less than

the ideal alleles introduced by the randomly generated individuals replacing

them. Hence if k is set to satisfy

k
∑

λ=0

λp(g, λ) <

k
∑

λ=0

p(g, λ)

L
∑

λ=0

λp(0, λ) (3.36)

then information will accumulate and the solution density will rise. As the max-

imum value of λ on the left hand side of equation (3.36) is k and
∑L

λ=0 λp(0, λ)

is independent of k, then (3.36) will be satisfied if k ≤∑L
λ=0 λp(0, λ).
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To see this, note that
∑L

λ=0 λp(0, λ) is a constant. Hence let
∑L

λ=0 λp(0, λ) =

Λ and expand the summations on both sides of Equation (3.36) thus

0p(g, 0)+1p(g, 1)+ . . .+ kp(g, k) < Λp(g, 0)+Λp(g, 1)+ . . .+Λp(g, k) (3.37)

Subtracting like terms on the left from like terms on the right gives

0 < (Λ− 0)p(g, 0) + (Λ− 1)p(g, 1) + . . . + (Λ− k)p(g, k) (3.38)

which is true for all k ≤ Λ since when the last term equals zero the remainder

of the right hand side is positive. This may also be true for some k > Λ, but

the degree to which it is true varies for different distributions p(g, λ).

Hence a conservative bound on a selection threshold which guarantees that

information will accumulate is

k ≤
L
∑

λ=0

λp(0, λ) (3.39)

The bound on k can be better quantified by realising that the initial solution

density, ρ0 = 1/A. This means that
∑L

λ=0 λp(0, λ) = L
A .

Therefore, if the selection threshold k is less than L/A, ideal alleles will on

average accumulate and if k is greater than L/A, ideal alleles will be lost. This

bound is the static selection threshold k0 = L/A which defines the boundary

between information gain and information loss when using randomly generated

replacement individuals.

Replacing individuals having k0 or fewer ideal alleles with new, randomly

generated individuals will, on average, provide an increase in solution density.
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To summarise, the static selection threshold is given by

k0 ≤
L
∑

λ=0

λp(0, λ) =
L

A
(3.40)

An example of how solution density changes with a static selection threshold

is illustrated in Figure 3.10. This figure is drawn from Section 4.1 where it is

derived from the measured behaviour of a genetic algorithm with the same

parameters.
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Fig. 3.10: The expected solution density predicted by Equation (3.35) for a variety of
selection thresholds k. (N = 31, L = 13, A = 6).

3.3.3 A Model with Parents

The model so far described is effective in replacing lost information but the over-

all improvement in solution density is quite low. The maximum solution density

of 0.5 achieved after 100 generations (Figure 3.10) only provides a very small
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probability that the optimal solution exists in the population. Nevertheless, the

average solution density of the population, whilst low, is still higher than that

of the information source. Therefore it seems sensible to use this population as

a source of replacement individuals.

If individuals from the surviving population are used to replace deleted indi-

viduals, they become parents for the following generation and the model equa-

tions require some revision. As before the proportion of individuals deleted

from the population and hence, the proportion of replacement children in the

next population, is given by
∑k

λ=0 p(g, λ). The number of ideal alleles that the

randomly generated children add to the population is

Esr[ρg+1] =

∑L
λ=k+1 λp(g, λ)
∑L

λ=k+1 p(g, λ)
. (3.41)

Therefore the expected solution density in the next generation is estimated as

Esp[ρg+1] =
1

L

[

L
∑

λ=k+1

λp(g, λ) +

∑k
λ=0 p(g, λ)

∑L
λ=k+1 λp(g, λ)

∑L
λ=k+1 p(g, λ)

]

(3.42)

which after some manipulation simplifies to

Esp[ρg+1] =
1

L

[

∑L
λ=k+1 λp(g, λ)
∑L

λ=k+1 p(g, λ)

]

(3.43)

As the solution density of this information source (that is, the surviving pop-

ulation) rises over successive generations, then the selection threshold for indi-

viduals replaced using the surviving population also increases. This dynamic

selection threshold is denoted kg and the expected solution density in generation

g + 1 is

Esp[ρg+1] =
1

L

[
∑L

λ=kg+1 λp(g, λ)
∑L

λ=kg+1 p(g, λ)

]

(3.44)
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Equation (3.44) accounts for the use of randomly selected survivor parents,

but it does not permit the introduction of new information to replace infor-

mation lost during selection. This means that the diversity of the population

may decrease potentially resulting in premature convergence on a sub–optimal

solution or in the ‘stalling’ of the algorithm as it runs out of useful information.

To resolve this, individuals below the static threshold k0 are replaced with ran-

domly generated individuals and individuals between the static threshold k0 and

the dynamic threshold kg are replaced with randomly selected survivor parents

from above kg. Equation (3.45) reflects these changes to the model.

In Equation (3.45), the first term in the first set of braces represents the sur-

viving solution density, the second term represents solution density introduced

by randomly generated individuals and the third term represents the solution

density introduced by parents selected from survivor individuals. This sum is

multiplied by the probability that at least one individual survives.

Esrp[ρg+1] =
1

L

[

L
∑

λ=kg+1

λp(g, λ) +

k0
∑

λ=0

p(g, λ)

L
∑

λ=0

λp(0, λ)

+

∑kg

λ=k0+1 p(g, λ)
∑L

λ=kg+1 λp(g, λ)
∑L

λ=kg+1 p(g, λ)

]

×






1−





kg
∑

λ=0

p(g, λ)





N





(3.45)

3.3.4 Dynamic Threshold

Having described how the expected solution density changes from generation

to generation, the threshold kg which supports the accumulation of informa-

tion may be quantified. The threshold k0 associated with randomly gener-

ated replacements is static since the replacement information source has a con-
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stant solution density. However, the threshold kg associated with replacement

by randomly selected survivor parents is dynamic because the solution den-

sity of the surviving population increases over generations. Combining Equa-

tion (3.40), which gave an upper bound on the static selection threshold, with

Equation (3.2), which defined the solution density of the initial population gives

k0 ≤
L
∑

λ=0

λp(0, λ) =
L

A
= Lρ0 (3.46)

Since ρ0 is the solution density at g = 0 and ρg is the solution density at g > 0,

this suggests that, where g > 0 and 0 ≤ k0 < kg < L,

kg = Lρg (3.47)

Therefore, the selection threshold k0 can be determined using Equation (3.40)

and ρ1 calculated using Equation (3.35). Analogously kg may be calculated

with Equation (3.47) and ρg, for g ≥ 2, with Equation (3.45).

An example of how solution density changes with both static and dynamic

selection thresholds is illustrated in Figure 3.11. This figure is reproduced in

Section 4.2 where it is compared to the measured behaviour of a genetic algo-

rithm with the same parameters.

Excessive and Insufficient Selection Pressure

When selection exceeds the thresholds described in Section 3.3.3, the popula-

tion improves very quickly but the rate of information loss is such that the

improvement stalls when finally there are no more ideal alleles to be exploited.

The model in Figure 3.11 shows this effect imperfectly. The line marked kg + 1

in the model is where the threshold has been artificially raised one ideal allele

above the calculated optimum of kg. Because the model shows an average, it
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Fig. 3.11: The expected solution density predicted by Equation (3.45) for the optimal
dynamic selection threshold kg and for kg + 1, kg − 1, kg − 2, kg − 3.
(N = 31, L = 13, A = 6).

implicitly assumes that high selection pressure leaves some survivors which con-

tain ideal alleles. In real populations, especially small ones, the stalling effect is

more pronounced as selection pressure rapidly eliminates surviving ideal alleles.

When selection pressure is below the thresholds described in Section 3.3.3,

the population improves very slowly, if at all. In this case the diversity of surviv-

ing alleles are roughly equal so that none are able to dominate the population.

The model in Figure 3.11 shows this affect very well. The line marked kg − 3,

where the threshold has been artificially lowered by three ideal alleles, repre-

sents selection that is so weak that no improvement in solution density occurs.

Similarly, the line marked kg−2 requires 25 generations before surviving alleles

begin to dominate the population and drive an improvement in solution density.
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Fig. 3.12: While one of the trials shown has sufficient selection pressure to improve
its solution density, the other four trials have selection thresholds below the
dynamic threshold and hence failed to improve from generation to genera-
tion.

Figure 3.12 provides a real example to illustrate this failure to ‘take off’ in

an actual genetic algorithm2. The lines indicating where solution density does

not improve above 0.2 − 0.3 are an example of this failure. The diversity of

surviving alleles is very clear in the associated allele frequency matrix diagram

(Figure 3.13). Figure 3.13 shows the frequency matrix for one of the non–

improving trials shown in Figure 3.12. Note that all alleles have approximately

the same frequency at the generation shown. By comparison, Figure 3.14 shows

the frequency matrix for the single trial which does improve. Note how some

alleles clearly dominate.

3.3.5 Summary of Key Ideas

This section shows the existence of both static and dynamic selection thresholds

which govern the accumulation of information in a genetic algorithm. These

2 These trials are described in detail at Chapter 4.
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Fig. 3.13: This snapshot of allele frequency vs loci at G = 30 shows how, with low
selection pressure, no allele dominates in any loci.

Fig. 3.14: This snapshot of allele frequency vs loci at G = 30 shows how, with selection
pressure guided by a dynamic threshold, certain alleles come to dominate
loci. If ranking is not deceived, these will be ideal alleles.
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thresholds are defined by the solution density of the information source and the

solution density of surviving parents, used to replace the deleted individuals.

The threshold k0 associated with the randomly generated replacements is

static since the replacement information source has a constant solution density.

However, the threshold kg associated with replacement with randomly selected

survivor parents is dynamic because the solution density of the surviving pop-

ulation increases over generations.

Two recommendations are made to ensure that information accumulates in

a genetic algorithm and to ensure that selection pressure is controlled to achieve

a balance between the rate of improvement and population diversity:

• replace individuals below the static threshold with randomly generated

replacements, and

• replace individuals between the static and dynamic selection thresholds

with randomly selected individuals from above the dynamic threshold.

3.4 Some Observations Regarding Crossover

Crossover is a genetic algorithm operation where a section of genetic material in

one individual is exchanged with a corresponding section in another individual.

This operation is akin to mitosis in biology where genetic material (genes) from

each parent is present in the child. In a genetic algorithm it is possible to copy

the two parents, select randomly located sections from corresponding positions

of a given length and exchange those sections, resulting in two children from a

single ‘mating’.

The model developed in Section 3.3 required that a sufficient amount of

crossover be applied so that alleles are spread through the population and

maintain a binomial distribution. While this disrupts building blocks in spe-

cific individuals, the frequency of these alleles across the population does not
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change, until selection removes those associated with low fitness individuals.

Hence a genetic algorithm subject to large amounts of crossover depends on the

population evolving and accumulating information, not just some particularly

successful individuals.

This section explores crossover with a view to identifying how much crossover

is required to return the distribution of ideal alleles from pL
k+1(0, λ) to pL

0 (1, λ).

As crossover is computationally expensive, applying more crossover than is nec-

essary to achieve this change is inefficient and should be avoided. However,

before identifying this level of sufficient crossover, some observations regarding

the effect of crossover on the distribution of ideal alleles, the graph properties

of crossover in relation to search spaces and some common forms of crossover

will be examined.

3.4.1 Crossover and the Distribution of Ideal Alleles

The crossover operator neither adds information to the population, nor loses

information from the population. Its function is simply to re–distribute alleles

throughout the population. Crossover does this through the exchange of alleles

between individuals. By comparison, translation exchanges alleles between loci

within an individual.

Therefore, crossover has the property of maintaining allele frequency in loci

over the population and altering it in individuals (Wright and Richter, 2006)

while translation has the property of maintaining allele frequency in individuals

and altering allele frequency in loci across the population. Hence, crossover is

similar to translation in that it manipulates an information source with mem-

ory (the surviving population). However, by altering the frequency of alleles

in individuals, the application of sufficient crossover between individuals in a

population that has been subject to selection, will return the distribution of

ideal alleles to a binomial distribution.
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Crossover makes use of the surviving population as an information source

with memory by re–randomising the arrangement of alleles in the surviving

population while maintaining their frequency in each loci. Therefore it is key to

the effectiveness of the dynamic selection threshold described in Section 3.3.3.

Univariate Estimation Distribution Algorithms use an estimate of allele dis-

tribution throughout a population, rather than an instance of a population, and

modify the estimated distribution, depending upon the result of selection. An

estimated distribution implicitly assumes that alleles are distributed throughout

the ‘population’ as represented by the distribution. Hence, a UEDA implicitly

imposes this maximum degree of crossover through the operation of the popu-

lation probability vector.

3.4.2 Difficulty Respecting Non–Repeating Sequences

Non–repeating sequences are encountered in Traveling Salesman Problems where

a city can only occur once in a tour and in scheduling problems where jobs

can only be scheduled once onto a machine. While translation respects non–

repeating sequences by maintaining allele frequency in individuals, crossover

does not. Because crossover may result in an exchange of alleles such that a

particular allele occurs more than once in the resulting child genome, the non–

repeating sequence is violated and the child genome is ‘non–sense’. This po-

tential to construct a non–sense child presents difficulties when using crossover

to solve problems such as traveling salesman and flow shop schedules which are

constrained to single instances of towns, jobs, etc.

A common way to avoid duplicate alleles is to interpret the second occur-

rence of an allele differently to the first occurrence (and the third differently

to the second, etc.). However, when crossover causes the introduction of an

additional allele with the same value, this approach immediately results in a

re–interpretation of the existing alleles with that value. This re–interpretation
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means that the introduction of a single new allele can result in a large step

change in the objective function result. If the newly introduced allele is ‘early’

in the sequence this impact is greater than if the new allele is ‘late’ in the se-

quence. This approach implicitly links alleles and introduces epistasis into the

genome.

Some researchers (Goldberg et al., 1993) deal with duplicate alleles in an

alternative way by skipping subsequent alleles with the same value in a ‘first

come first served’ approach. However, this also results in epistasis since the

allele in the next loci is now evaluated as belonging to the previous loci. This

removes the association of that allele with the fitness it previously earned and

re–interprets it based on its new ‘loci’position. Hence crossover can introduce

(or add) epistasis when a non–repeating sequence of alleles is required by the

problem. This effect of crossover is encountered and examined in more detail

in Section 3.4.2 where a genetic algorithm is applied to a job shop scheduling

problem.

3.4.3 Graph Properties

Crossover and convergence of the population towards a binomial distribution of

alleles is a central difference between a genetic algorithm and a multiple restart

stochastic hill climber. A multiple restart stochastic hill climber is limited to

using single point changes, a process similar to mutation. Crossover provides

a means to bias a search which is not possible with simple mutation. To see

this, consider the graph formed by connecting each permutation of a binary

individual (Figure 3.15).

Figure 3.15 shows a graph connecting each permutation of a five bit binary

individual. This (admittedly small) gene is illustrated to explain the genetic re-

lationships between individuals involved in crossover and the search advantages

of crossover vs simple mutation. Observe that each path emanating from an
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Fig. 3.15: Graph showing Hamming Distance between Parents and Children Subject
to Crossover.

individual in Figure 3.15 defines the possible 1–bit mutations of that individual.

The search region for mutation is extremely local as single mutations alter

only one allele at a time and sample a point only 1 bit distant in the solution

space. This limitation defines the size of the search region around a given

individual as L(A − 1) points per mutation operation. Note that mutation

requires at least two operations to create one of the children shown in Figure 3.15

from either parent, four operations to create them both and the actual children

created in this way will have no relationship to each other, they are randomly

placed in the search space.

By comparison, crossover alters up to Y alleles in a single operation (where

Y is the length of the crossover section). If the Hamming distance between

the parents is l, then Al points in the search region are accessible to crossover.

Additionally, with crossover only the region between parents is searched and

the Hamming distance between the resulting two children equals the Hamming
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distance between the parents. Hence, children resulting from crossover are not

randomly placed in the search space.

Consider the graph connecting each parent as a hypercube with Al vertices

(each vertex being a potential individual), then the resulting children are on

diagonally opposing sides of that hypercube. The children of ‘parent’ individu-

als participating in crossover exist on the ‘great circle’ between various parents.

That is, the children are diagonally opposite each other on the hypercube de-

fined by the bits that differ between their parents. As a result, children are as

distant from each other as their parents are from each other. This observation

is described in detail in Toussaint (2004).

Hence distant parents (as defined by the Hamming distance between them)

search more globally, than do close parents. There may be many such ‘great

circles’ between parents on an m–dimensional surface defined by a population.

Sufficient crossover searches these ‘great circles’ with greater frequency where

parents are similar and with lesser frequency where the Hamming distance be-

tween parents is large.

Clearly, crossover increases the connectedness of the graph when compared

to mutation alone. Referring to Figure 3.15, if Y = 2, two alleles are exchanged

and this directly connects parent having alleles 10111 to a child having alleles

10001 in a single operation. Certainly two–point mutation can also directly

connect 10111 to 10001. However, mutation assumes that not only are the

immediately adjacent L(A−1) points likely to be better than the current point,

so are the L2(A − 1) points two loci away. On the other hand, the genetic

algorithm only ‘considers’ new points in a space which are in some way ‘proven’

as they are defined by already successful individuals (the parents).
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3.4.4 Sampling Rate of a Population Subject to Crossover

In signal processing an important consideration when sampling a signal is to

ensure that the Nyquist rate is exceeded. For a sampled signal to accurately

reflect the original, it is important that the sampling rate is at least twice the

highest frequency in the signal being sampled.

fs = 2fh (3.48)

Equation (3.48) is Shannon’s sampling theorem. In practice the sampling

rate must be considerably higher to ensure fidelity. The highest frequency in

the sampled signal is called the Nyquist frequency (fh). The minimum sam-

pling rate to accurately reproduce the sampled signal is called the Nyquist rate

(fs) (Stanley et al., 1984).

Considering these ideas and extending the earlier observations on crossover

between two parents to a population level, crossover between all parents in a

population is searching the full space defined by the distribution of alleles across

the population. Because the population size is constant, increasing diversity

in the population increases the global expanse of this search and reduces the

sampling rate. On the other hand, ‘similarity’ in the population increases the

sampling rate in the space defined by the ‘similar’ individuals. This increased

sampling rate reveals higher frequency information in the objective function in

that region. As mutation increases diversity, the mutation operator acts with

crossover to maintain (or increase) the sampled region. Conversely, selection and

replacement with children causes increased ‘similarity’ that results in population

convergence and an increase in the sampling rate in the vicinity of the optimum

as estimated by the algorithm.
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3.4.5 Approaches to Crossover

Crossover can be implemented in a number of ways. Single, or 1–point crossover

is where a single point in the genome is selected at random and the sections to

the left or the right of the loci at that point are exchanged. Alternatively, two

points in a genome may be chosen and the section between loci at those points

is exchanged. This is 2–point crossover. The concept may be extended to n–

point crossover, where n is even for n > 1. Uniform crossover is an extension

of n–point crossover whereby each allele is subject to crossover depending on a

set probability, usually 0.5 (Spears and De Jong, 1991).

A key advantage of n–point and uniform crossover is the ability to pro-

duce more possible children with a single crossover operation than can 1–point

crossover (Poli et al., 2004). To see this in a simple example, consider the

two parent genomes each with five alleles 00101 and 01011. 1–point crossover

between these two parents cannot produce the child 01111 with one crossover

operation. The only children that can be produced in a single 1–point crossover

operation are 00111 and 01001, 00011 and 01101, 01011 and 00101. However,

uniform or 2–point crossover may result in the exchange of the third alleles only,

producing 01111 and 00001.

3.4.6 Crossover Section Length

The concept of n–point crossover suggests the idea of crossover section length Y ,

being the distance between crossover points. Equivalently, for uniform crossover,

a crossover probability of 0.5 translates to an average exchange of Y = L/2

alleles while a uniform crossover probability of 1/5 is equivalent to an average

exchange of Y = L/5 alleles. Note that exchanging sections totaling more than

half of the genome length is equivalent to exchanging sections less than half.

That is, swapping Y = 3 alleles in an L = 5–loci gene is equivalent to swapping
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Y = 2 alleles in an L = 5–loci gene. Similarly for uniform crossover, a crossover

probability of 1/5 is equivalent to a crossover probability of 4/5. Therefore the

number of exchanged alleles per crossover operation Y can range from 1 to L/2.

An important parameter to be considered in n–point and uniform crossover is

the relative effect of exchanging different numbers of alleles (Y ) in redistributing

ideal alleles in the population. Does crossover of a single allele (Y = 1) change

the distribution of alleles more or less than crossover of Y = 2, 3, 4, etc. alleles

per crossover operation? This question is answered in the next section.

3.4.7 Calculating Sufficient Crossover

A central premise of this Thesis is the use of crossover to return the distribution

of ideal alleles in the population to a binomial distribution each generation. Yet

crossover is a computationally expensive process, especially for large popula-

tions. Therefore the smallest number of crossover operations (C) which returns

the distribution of ideal alleles in the surviving population after selection to a

binomial distribution is important and will be defined as sufficient crossover in

this Thesis.

This section develops an algorithm to determine the minimum number of

crossover operations (C) necessary to return a distribution of ideal alleles to a

binomial distribution in a surviving population. To avoid edge effects, such as

defining length bias (Spears and De Jong, 1991), only uniform crossover will be

considered in the analysis which follows. This subsection is drawn from work

accepted for publication in Milton and Kennedy (2008).

The problem is to determine the number of crossover operations required

to change the truncated distribution pL
k+1(g, λ) with selection threshold (k)

(Figure 3.7) into the binomial distribution p(g+1, λ) (Figure 3.8) by exchanging

Y alleles per operation. To do this, first define an intermediate distribution

(ψc) as the distribution after c crossover operations have been performed on



3. A Model of Genetic Algorithm Behaviour Inspired by Information Theory 101

pL
k+1(g, λ) and before the binomial distribution p(g + 1, λ) has been reached.

Each distribution ψc may be represented by a vector of length L + 1, where

each element of the vector represents the proportion of individuals in the pop-

ulation that contain λ : 0 ≤ λ ≤ L ideal alleles. Hence a matrix of probabilities

(Ψc) can be constructed whereby each cell in the matrix represents the joint

probability that two individuals, one with λ1 and the other with λ2 ideal alleles,

are randomly selected for crossover. This joint probability matrix is given by

Ψc = ψT
c ψc, where ψT

c is the transpose of the vector ψc.

Similarly, a hyper–geometric distribution3 w = w(λy |L, λ, Y ) exists that

describes the distribution of ideal alleles λy : 0 ≤ λy ≤ y amongst the Y loci in

each crossed–over section exchanged by the randomly chosen individuals (where

y equals the number of exchanged ideal alleles λ or Y , whichever is the least).

Again, a probability matrix (W ) can be constructed where each cell rep-

resents the joint probability that 0 ≤ λy ≤ y ideal alleles are amongst the Y

exchanged alleles. This matrix is given by W = wTw.

The probability that individuals with between 0 and L ideal alleles are cho-

sen for crossover, and then sections containing 0 to Y alleles are exchanged by

crossover, can be found by taking the Kronecker tensor product Ψc⊗W . Each

cell of the matrix Ψc ⊗W represents a transition probability from the distri-

bution ψc to another distribution π formed by the exchange of λy ideal alleles

between individuals containing λ ideal alleles.

By constructing each of these possible π distributions, then multiplying them

by the appropriate transition probability from Ψc⊗W and summing the result-

ing expected distributions (E[π]), the expected distribution (E[ψ1]) of a single

crossover operation is produced. Algorithm 2 describes the number of crossover

3 The hyper–geometric distribution models the number of ideal alleles λy in the Y alleles,
exchanged without replacement from the total ideal alleles λ in a parent individual with L

loci. w(λy|L, λ, Y ) =

(

λ
λy

)(

L−λ
Y −λy

)

(

L
Y

)
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operations required to change the distribution of ideal alleles in a population

having selection threshold (k) into a binomial distribution by exchanging Y

alleles per operation.

Data: Coding Order (A), Population Size (N), Genome Length (L),
Crossover Section Length (Y ), Truncated Distribution
(pL

k+1(g, λ)), Stop Criterion.

/* Initialise */

ψc =
p

L
k+1(g,λ)

∑

p
L
k+1(g,λ)

;
1

c = 1;2

while Stop Criterion False do3

/* Construct a joint probability matrix that individuals

with λ1 and λ2 ideal alleles are selected for

crossover. */

Ψc = ψT
c ψc;4

/* Find the Hypergeometric distribution w. */

w(λy |L, λ, Y ) =
( λ

λy
)( L−λ

Y −λy
)

(L

Y )
;

5

/* Construct a joint probability matrix of ideal alleles

amongst the Y loci selected for crossover. */

W = wTw;6

/* Construct a transition probability matrix describing

the probabilities that the distribution ψc will be

changed to another distribution π by the crossover

operation. */

T = Ψc ⊗W ;7

/* There exist πi,j distributions for each of the ij
elements in T . Multiplying each distribution by its

corresponding transition probability and summing gives

ψc+1. */

ψc+1 =
∑

j

∑

i[T i,jπi,j ];8

c← c + 1;9

/* Sufficient crossover C. */

C = c;10

Algorithm 2: Calculation of Sufficient Crossover

The sufficient number of crossover operations (C) can be determined by re-

peating the process using E[ψ1] in place of ψ0 and counting how many iterations

c are required before the intermediate distribution (ψc) equals the required bi-



3. A Model of Genetic Algorithm Behaviour Inspired by Information Theory 103

nomial distribution p(g + 1, λ). In addition, one can compare the number of

crossover operations required for differing numbers of exchanged alleles (Y ).

A difficulty with this approach is determining when the intermediate ψc

distribution equals the required binomial distribution p(g+1, λ). In Figures 3.16

to 3.20 when the Euclidean distance between the distributions [
∑

[ψc−ψc+1]
2]

1
2

is less than 10−9 in a single crossover operation the calculations are stopped.

The standard χ2 goodness of fit test with a confidence of 99% (Kreyszig, 1983)

is then applied to each intermediate distribution to decide when ψc equals the

binomial distribution p(g + 1, λ) and hence identify C.

Experiment Design

There are five parameters in Algorithm 2 which influence how many crossover

operations are sufficient. These parameters are; population size (N), genome

length (L), allele cardinality (A), selection threshold (k) and crossover section

length (Y ). To observe the influence of these parameters each must be varied,

one parameter at a time. Additionally, to determine if the influence is linear or

non-linear, at least three values for each parameter must be observed. Table 3.1

lists the parameters chosen.

Tab. 3.1: The five parameters in Algorithm 2 which influence how many crossover
operations are sufficient are; population size (N), genome length (L), allele
cardinality (A), selection threshold (k) and crossover section length (Y ).
Because of the interesting behaviour of varying crossover section lengths,
up to seven of these lengths from one loci up to L/2 loci are illustrated in
Figures (3.16) to (3.20).

Population Genome Allele Selection Crossover
Size Length Cardinality Threshold Section
(N) (L) (A) (k) (Y )
31 13 4 2 1
62 26 6 4 various
93 52 16 6 L/2
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In each case the distance between the distribution ψc and the distribution

p(g+1, λ) is illustrated by Figures 3.16 to 3.21 and then some observations made

regarding the number of crossover operations required to alter this distance to

meet the 99% χ2 test.

Observations

Figure 3.16 shows the Euclidean distance between the distribution ψc and the

distribution p(g+1, λ) for between 1 and 7 exchanged alleles (1 ≤ Y ≤ 7) versus

the number of crossover operations performed (c). The return to a binomial

distribution occurs fastest when Y = L/2. Indeed in every case illustrated here

and in all other parameter settings examined, the minimum number of crossover

operations required to return to the binomial distribution occurs when Y = L/2.

Figure 3.17 shows the Euclidean distance between the distribution ψc and

the distribution p(g + 1, λ) for three population sizes N = 31 (solid lines),

N = 62 (dashed lines) and N = 93 (dotted lines) versus the number of crossover

operations performed (c). The parameters held constant are genome length

L = 13, allele cardinality A = 6, selection threshold k = 2 and Y = L/2 alleles

are exchanged. The calculations are stopped when [
∑

[ψc −ψc+1]
2]

1
2 < 10−9.

A 99 % χ2 test is passed at C = 76 crossover operations for N = 31, at C =

152 operations for N = 62 and at C = 228 operations for N = 93. Clearly, the

relationship between population size (N) and the number of crossover operations

(C) required to return to a binomial distribution is linear.

Changes in genome length (L) (Figure 3.18), allele cardinality (A) (Fig-

ure 3.19) and selection threshold (k) (Figure 3.20) vary the shape of the distri-

butions pL
k+1(g, λ) and therefore the distance of this distribution to the binomial

distribution p(g+1, λ) in a non–linear fashion. Therefore a non–linear relation-

ship exists between genome length, allele cardinality, selection threshold and the

number of crossover operations required to return to a binomial distribution.
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Fig. 3.16: Distance between the distribution ψc and the distribution p(g + 1, λ) for
alleles exchanged Y = 1 to 7 per crossover operation. (N = 31, L = 13,
A = 6, k = 2).
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Fig. 3.17: Distance between the distribution ψc and the distribution p(g + 1, λ) for
population sizes N = 31, 62, 93. (L = 13, A = 6, Y = L/2, k = 2).
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Fig. 3.18: The distance between the distribution ψc and the distribution p(g + 1, λ)
for a variety of genome lengths L = 13, 26, 52. For each value of L, seven
crossover section lengths are shown distributed between Y = 1 and Y =
L/2. In each case the line for Y = L/2 has the fastest change in distance.
(N = 31, A = 6, k = 2).
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Fig. 3.19: Distance between the distribution ψc and the distribution p(g + 1, λ) for
allele cardinality A = 4, 6, 16. For each value of L, seven crossover section
lengths are shown from Y = 1 to Y = 7. In each case the line for Y = L/2
has the fastest change in distance. (N = 31, L = 13, k = 2).
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Fig. 3.20: Distance between the distribution ψc and the distribution p(g + 1, λ) for
selection thresholds k = 2, 4, 6. For each value of L, seven crossover section
lengths are shown from Y = 1 to Y = 7. In each case the line for Y = L/2
has the fastest change in distance. (N = 31, L = 13, A = 6).

Individuals of length L = 13 pass the χ2 test after C = 76, while individ-

uals of length L = 26 pass the χ2 test after C = 67 crossover operations and

individuals of length L = 52 passes after a single crossover operation. Clearly

the distribution of ideal alleles in an individual of 52 loci is little disturbed by

a selection threshold of only k = 2.

Individuals with allele cardinality A = 4 and individuals with allele cardi-

nality A = 16 pass the χ2 test after C = 66 and C = 84 crossover operations

respectively, while selection thresholds of k = 4 and k = 6 pass after C = 81

and C = 83 crossover operations. These results indicate that the magnitude

of C is primarily effected by population size (N) and only slightly effected by

changes to the other parameters (L, A, k).

To map the appropriate number of crossover operations (C) to a variety of

genomes, first reduce the number of parameters used. Observing that conver-

gence is linear with population size (N) and that the fastest convergence occurs

at Y = L/2, then N can be fixed at some convenient constant and Y replaced
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by L. In addition, the Thesis uses a dynamic selection threshold defined by

kg = Lρg and indicates that A = 1/ρ0. Therefore, it is possible to reduce the

range of parameters further by replacing A and k with ρ and L. Figure 3.21

provides a contour map giving C from ρ and L.

The contours in Figure 3.21 provide the multiplier (Γ) such that number

of crossover operations (C) required to return a population of individuals with

L loci, solution density (ρg), selection threshold (kg) and uniform crossover

probability equal to 0.5, to a binomial distribution is given by C = ΓN .
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Fig. 3.21: The multiplier Γ which provides the number of crossover operations C = ΓN
required to return a population of individuals with length L, solution density
ρg, selection threshold kg and uniform crossover probability equal to 0.5, to
a binomial distribution.

3.4.8 Comparison of Crossover to the Random Selection of Alleles

It has been suggested that, given the desire to remove correlations between loci

that it would be much easier to implement gene pool recombination (Muhlen-

bein and Voigt, 1995). Gene pool recombination forms the new population after
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selection by choosing alleles from among the surviving population rather than

implementing crossover between all of the survivors (parents). While such ran-

dom selection of alleles would indeed de–correlate the loci and result in a bino-

mial distribution, it would also result in the potential loss of alleles as some may

not be chosen. This would add another operator which probabilistically ‘leaks’

information from the genetic algorithm as already occurs with selection and mu-

tation. In addition, while both the sufficient number of crossover operations and

the random selection of alleles described here scale linearly with population size

(N)4, random selection of alleles also scales with increasing genome length (L).

Hence for populations of significant genome length, crossover is more efficient

than gene pool recombination at redistributing alleles through a population.

Recommendations

The most effective way to redistribute ideal alleles in a population altered by

selection to a randomised (binomial) distribution is to use crossover section

lengths of Y = L/2. The distribution is sufficiently close to a binomial distri-

bution, as determined by a 99% χ2 test, after 3N crossover operations (where

N is the population size). This rule is largely independent of other parameters.

Therefore sufficient crossover occurs at approximately C = 3N .

3.4.9 Summary of Key Ideas

This section describes how epistasis arises when researchers attempt to preserve

non–repeating sequences in a genome’s representation of a problem. The geo-

metric relationships between ‘parents’ and ‘children’ and the relevance of this

to algorithm resolution via sampling rates is outlined. The important result of

sufficient crossover (C), whereby any additional crossover has negligible affect

on the distribution of ideal alleles in a population, is described and estimated at

4 Refer to the discussion in Section 3.4.7.
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C ≈ 3N . A critical discovery that crossover section lengths of Y = L/2 results

in the fastest re–distribution of ideal alleles through a population is made.

3.5 Finding the Thresholds with Imperfect Knowledge

The Thesis considers the accumulation of ideal alleles as desirable and the objec-

tive function score as an (imperfect) means to that end. Achieving an accurate

estimate of the population solution density and accurately ranking individuals

by their solution density can be challenging. Such a ranking is critical if the

thresholds described in Section 3.3 are to be identified with imperfect knowledge.

This section investigates the causes of misranking, dynamic range and epis-

tasis. Experiments with high cardinality genotypes are conducted to combat

misranking in binary phenotypes and the new concept of an entropy profile

is explained and some of its uses explored. These ideas, combined with the

Shannon–McMillan theorem, lead to the idea of most probable individuals which

may be generated by a population subject to crossover.

3.5.1 Dynamic Range Explained

Dynamic range is a term used in numerous fields, including audio engineering,

digital signal processing, image and pattern recognition and electronic engineer-

ing, to describe the ratio between the smallest and largest possible values of a

changeable quantity (Skolnik, 1980; Gonzalez and Woods, 1992; Foley et al.,

1993). The dynamic range of a genome is defined here as the ratio between the

high contributed score of one loci and the lower contributed score of another.

For the purpose of illustrating the effect of dynamic range, assume an ob-

jective function operating on a binary string where only 1s contribute to an

individual’s score and the contributions of each of allele are linearly indepen-

dent (ie. there is no epistasis). This fitness function is illustrated in Table 3.2.
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Consider an individual i1, defined as the binary string 10000 with a score of

five points due entirely to the 1 in the first loci, and an individual i2 as 00111

with a score of three points due to a linear combination of the ones in the last

three loci. Now even if each allele with a bit value of 1 contributes linearly

so that an individual i3 such as 10111 scores eight points, misranking by ideal

allele content will still occur as i1 will be ranked significantly higher than i2.

Tab. 3.2: Fitness of the four example individuals. The score contributed by each loci
containing a 1 adds linearly to an individual’s score.

Loci contribution 5 1 1 1 1 9
to score when Loci = 1

Individual loci 1 loci 2 loci 3 loci 4 loci 5 Score
i1 1 0 0 0 0 5
i2 0 0 1 1 1 3
i3 1 0 1 1 1 8
i4 1 0 0 1 1 7

Therefore, i1 may be retained while i2 may be deleted by selection. This

occurs even though i2 has a higher solution density that contributes more alleles

to the improved solution i3, and the three ideal alleles in i2 are harder to replace

by mutation or crossover than the single allele in i1. Granted, i1’s single ideal

allele is important, but it should be discarded in preference to i2 as i1 is easier

to replace.

Similarly, an individual i4 such as 10011 ought to rank closely to individual

i2 as they both contain three ideal alleles, yet due to the higher value of the

first loci in i4, this is unlikely. Additionally, alleles with significantly higher

value than others tend to facilitate the survival of otherwise low performing

‘hitchhiker’ alleles (such as the zero in loci 2 of the examples given). In this way

genomes with a high dynamic range between loci result in a population that is

not ranked by ideal allele content.
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3.5.2 Epistasis Described

Epistasis is a form of non–linearity which leads to local optima and can ‘deceive’

genetic algorithms to find a false optima. Both local optima and deception can

only occur in the presence of epistasis between loci (Goldberg (1989), p.46).

Indeed they are caused by epistasis. To see this, first consider local optima. If

the problem is linear, then the contribution of each loci will combine linearly to

form the objective function score such that the score O of a binary individual

being 1115 will be given by O = a1 + b1 + c1 where a1, b1 and c1 are the

contributions of loci 1, 2 and 3 respectively.

If O is the optimum solution and the score V = d0 + e0 + f0 belonging to

another individual as 000 is a local optimum, then it follows that O > V . ie.

a1 + b1 + c1 > d0 + e0 + f0 (3.49)

Now the presence of a local optimum in the interval defined by the three loci

implies that a third individual being 011 will score U = d0 + b1 + c1 and U will

be less than both O and V . That is,

d0 + b1 + c1 < d0 + e0 + f0 (3.50)

which simplifies to

b1 + c1 < e0 + f0 (3.51)

However, if b1 + c1 < e0 + f0 and the problem is linear, then e0 + f0 can

replace b1 + c1 in O to produce an individual as 100 with O′ = a1 + e0 + f0 with

score O′ > O. This contradicts the definition of O as the global optima.

Therefore, local optima cannot be due to linear relationships between alleles.

Indeed, it is intuitively obvious that any linear function can have only one

5 This three bit example is unrelated to the five bit example in Section 3.5.1.
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maximum and one minimum as a linear function contains no critical points

or discontinuities. For a function to have more maxima or minima, it must

contain discontinuities or more than one critical point and at least one inflection

point and must therefore be non–linear. Deception is the convergence of an

algorithm’s solution toward a local optimum in preference to the global optima,

this implies the presence of at least two optima and hence a function which is

deceptive is non–linear for the reason just outlined.

3.5.3 Eliminating Epistasis

If epistasis is occurring between small independent groups of K alleles and if

these K alleles can be encoded into a single, higher cardinality, allele A′, epis-

tasis is fully contained within a single loci. The genome represented by these

higher cardinality alleles has no epistasis between loci. This is what Goldberg

et al. (1993) achieves when they use fast and messy genetic algorithm to reorder

loci. By collecting loci together and maintaining these building blocks, the car-

dinality of the problem is increased. Goldberg also re–maps from a complicated

phenotype to a simplified genotype. The cost is the increased population size

necessary to ensure that at least one of each higher cardinality allele A′ is present

at each loci in the higher cardinality population.

Therefore, for a Genetic Algorithm to overcome epistasis, the epistasis groups

needs to be small so that the resulting population size is manageable. This

seems reasonable since if over half of the bits in a genome participate in a single

epistasis group, then the problem is becoming a ‘needle in the haystack’. Indeed

as shown in Section 3.1.4, if epistasis in an individual exists between L/A loci,

then this exceeds the allele resolution required in the vicinity of the selection

threshold and hence the correct decision on which individuals to retain and

which to discard becomes a matter of chance.
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3.5.4 Managing Dynamic Range

To retain individuals with low score but high solution density first identify the

contribution of each ideal allele to an individual’s score. One way of doing this

while preserving the rank order is described in Algorithm 3 developed by this

Thesis. Algorithm 3 takes the logarithm of the raw objective function score of an

individual and accumulates it in each cell of the matrix Ωa,l corresponding to the

alleles contained in the scored individual’s genome. Accumulating the logarithm

of the score (Algorithm 3 line 8) is important as it compresses the range of

individual scores and reduces the dominance of very high scoring individuals in

the summation whilst retaining their rank order.

Data: The Population, The Objective Function F (n), The degree of
confidence B

Determine the genome length (L);1

Determine the allele cardinality (A);2

Determine Population Size (N) using B, L, A and Equation (3.11);3

Construct and initialise the A vs L matrix Ωa,l = 0;4

Construct and initialise the allele frequency matrix F a,l = 0;5

for n=1 to Population Size do6

for l=1 to Genome Length L do7

/* Using the individual genome as input determine the

allele value a at each loci l, then ... */

Ωa,l ← Ωa,l + log |F (n)|;8

F a,l ← F a,l + 1;9

/* Normalise the A vs L matrix by dividing each cell in Ω by

the corresponding cell in F */

Ia,l = Ωa,l/F a,l;10

Algorithm 3: Accumulated Allele Scores

The matrix F a,l counts how often an allele appears in a particular loci so

that the accumulated score in Ωa,l can be normalised so that over represented

alleles will not get disproportionate benefit from the accumulation process. Af-

ter normalisation these accumulated allele scores (Ia,l) can be used to re–score

each individual by looking up each cell in I corresponding to the individual’s
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component alleles and summing these to obtain the individual’s new cumula-

tive score. The goal is to achieve a higher ranking for individuals such as i3

(Table 3.2) so as to preserve its three contributing bits ahead of the single bit

in i1, while maintaining the ‘proximity’ of individuals such as i3 to i4.

To examine if this cumulative score method achieves its aim, two scatter

plots are compared. The first is a scatter plot of individual’s true rank by ideal

allele content versus individual’s raw score rank. This first plot is compared to

a scatter plot of true rank versus rank by accumulated allele score. A ranking

technique that produces a 45◦ line in such a scatter plot has achieved perfect

ranking by ideal allele content.

To illustrate this idea, consider Figure 3.22 which provides a representative

example of ranking a population with one high scoring allele group having a

dynamic range of 10 between ideal alleles contributing the most and those which

contribute the least to an individual’s raw score. In comparison Figure 3.23

shows an example of ranking the same population using the A vs L matrix

Ia,l accumulated over 3N2 evaluations. The horizontal and vertical dotted

lines represent the selection threshold at the generation shown. Perfect ranking

would take the form of a line of crosses from the origin at 45◦, with each cross

representing the rank place of an individual in the population.

Note that individuals in the bottom right quadrant (marked BR in Fig-

ures 3.22 to 3.25) would be deleted by selection when in fact they should be

retained, while individuals in the top left quadrant (TL) would be retained

when they should be replaced. The difference in the number of ideal alleles

belonging to individuals in these two quadrants represents the information lost

due to selection after misranking. In Figure 3.22 this information loss is 19 bits,

while in Figure 3.23 this information loss is 0 bits suggesting that the cumulative

score method may have merit. The non–ideal alleles in the top left quadrant

(TL) are hitchhikers.
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Fig. 3.22: The ranking of a population having low dynamic range between some alleles
scored using the raw objective function result. Perfect ranking would result
in a 45◦ line. Those individuals falling in the quadrant marked ‘BR’ are
deleted when they should be retained, leading to an information loss of
19 bits. The horizontal and vertical dotted lines represent the selection
threshold at the generation shown.
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Fig. 3.23: The ranking of the Figure 3.22 population scored using the A vs L matrix
Ia,l. Note how a 45◦ line is more closely approximated indicating close
to ideal ranking. The horizontal and vertical dotted lines represent the
selection threshold at the generation shown.
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A genetic algorithm can only recover lost information through randomly gen-

erated replacements or mutation. If this lost information exceeds the capacity

of mutation to recover, the population will suffer a permanent information loss,

increasing the likelihood of premature convergence.

Using a slightly harder objective function with two (instead of one) high

scoring allele groups and a dynamic range of 1000 (instead of 10) a similar re-

sult is obtained. The increased dynamic range in this second example caused

misranking as indicated by the greater spread of points in these figures (Fig-

ures 3.24 and 3.25) when compared to figures 3.22 and 3.23. Nevertheless, as

evidenced by superior grouping along the 45◦ line, the cumulative score (Ia,l)

ranking achieves a better approximation to ideal ranking and lower information

loss (68 bits) than using the raw scores alone (167 bits). Encouraged by these

results, the entropy profile of populations ranked by an objective functions raw

score and by the Ia,l cumulative score method are compared in the next section.

3.5.5 Entropy Profile

Shannon’s Information Measure (Shannon Entropy) is a measure of the infor-

mation content of an information source (Van der Lubbe, 1997). As a genetic

algorithm uses individuals ranked above a selection threshold to generate new

individuals, these surviving individuals form an information source for the gen-

eration of new (child) individuals.

Hence, the frequency of the alleles in the ‘list’ formed by each loci across

individuals in the surviving population defines the Shannon entropy of this par-

ent information source. As entropy measures the relative frequency of symbols

in a particular information source, loci which list alleles such as AABABCCB,

CBABABAC or DDFDFEEF over a population will have the same entropy

since the relative frequency of alleles they contain are the same.



3. A Model of Genetic Algorithm Behaviour Inspired by Information Theory 118

0 20 40 60 80 100 120
0

20

40

60

80

100

120

True Rank by Actual Ideal Allele

F
un

ct
io

n 
R

an
k 

−
 R

an
ke

d 
by

 R
aw

 S
co

re

Loss= −167 bits

TL 

TR 

BR 

Fig. 3.24: The ranking of a population having high dynamic range between some al-
leles scored using the raw objective function result. Note the increased
misranking due to the higher dynamic range (100 times greater than in
Figure 3.22). The structured ‘lines’ occur as some individuals contain none,
one, the other, or both high contribution alleles. The horizontal and vertical
dotted lines represent the selection threshold at the generation shown.

0 20 40 60 80 100 120
0

20

40

60

80

100

120

True Rank by Actual Ideal Allele

F
un

ct
io

n 
R

an
k 

−
 R

an
ke

d 
by

 Id
ea

l A
lle

le
 E

st
im

at
e

Loss= −68 bits

TL 
TR 

BR 

Fig. 3.25: The ranking of the Figure 3.24 population scored using the A vs L ma-
trix Ia,l. The horizontal and vertical dotted lines represent the selection
threshold at the generation shown.
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These lists are lists of alleles in one loci of the population of individuals, not

the genome of alleles forming a single individual. However, as these lists are

ranked by a score obtained from an objective function, then one would expect

that the relative frequency of particular alleles in the low ranked part of the list

would differ from their relative frequency in the highly ranked part of the list.

Therefore, if only part of a list is considered, say the lower half, then the entropy

of the lower half of the list from the first example (AABA) is clearly different

from the entropy of the lower half of the list from the second example(CBAB).

Similarly, the entropy of the first quarter of each of these lists is different.

Hence a sequence of N − 2 entropy measures: the entropy of the entire list, the

entropy of the list without the last allele, the entropy of the list without the

last two alleles, and so on until the entropy of the only remaining two alleles

are found, can be represented as an entropy profile of the list of N alleles of a

locus. If this is repeated for all loci in the population, it is the entropy profile

of the population. The profile also reveals information about the structure of

the list below a threshold moving down the list.

Figure 3.26 shows a typical entropy profile. The upper line is for a randomly

ordered population, the middle line (dashed) is for the same population ranked

by the raw score while the lower line is the population ranked by the cumulative

score method in Algorithm 3.

Accurate ranking by solution density is critical to the accurate identification

of the selection threshold and to minimising information loss. The entropy

profile H(n) for n = 2 . . .N of a ranked population is investigated in an endeavor

to find indications of the location of the selection threshold.
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Fig. 3.26: The entropy profile of a population of individuals each of 10 loci long formed
from a 64 symbol alphabet. The upper line is the list randomly arranged.
One ranking uses the raw objective function score (dashed), the other (bot-
tom line) ranks by the use of the cumulative scoring method.

Any list of N symbols, from an alphabet containing A symbols, where A <<

N , will have an entropy in bits which approaches

H(N) = −
A
∑

a=1

pa log2(pa) (3.52)

where pa = 1/A.

However, the frequency of symbol fa in an arbitrary list of N symbols drawn

from the alphabet A will vary and hence pa = fa/N and the entropy is

H(N) = −
A
∑

a=1

fa

N
log2

(

fa

N

)

(3.53)

The lists of interest are ranked by a score obtained from an objective func-

tion. Therefore, one would expect that the relative frequency of particular alleles

in the low ranked part of the list would differ from their relative frequency in
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the highly ranked part of the list. Considering only part of a list, say the lower

part up to n, then the entropy of the lower part of the list is given by

H(n) = −
A
∑

a=1

fa,n

n
log2

(

fa,n

n

)

(3.54)

where fa,n has been calculated only for the lower part of the list from 1 to n.

If this calculation is performed for symbols below a threshold n = 2, then

repeated for the threshold raised to n = 3, then n = 4 until n = N symbols on

the list, an entropy profile H(n) will result where H(2) ≈ 1/2 and approaches

the entropy of the full list H(N) as n→ N .

Calculating the entropy above such a threshold produces a similar profile.

Extending this idea to a population rather than a single list of alleles is a

straightforward matter of repeating this process for each loci in the same pop-

ulation and summing the results.

Figure 3.27 shows the entropy profile for a population with allele cardinality

A = 64 and length L = 10 as the threshold is raised through the population (hor-

izontal axis). As expected, the profile of the full list approaches 10 log2(64) = 60

bits. The entropy profile below the threshold (n) appear as lines with a positive

gradient, while the lines with negative gradient are the entropy profile above

the threshold (n).

Generating the entropy profile for a random (unranked) list produces a pro-

file H(n) which is in some sense maximum as any ranked list generates a profile

Hr(n) whose integral
∫ N

0 Hr(n) is less than
∫ N

0 H(n). H(n) profiles are shown

in Figure 3.27 as the solid upper lines. Hence the area under the profile H(n)

(solid upper line) is greater than the area under the profile Hr(n) of ranked lists

(dashed and solid lower lines). This occurs because a ranked list concentrates

particular symbols at the top and bottom of the list depending upon their influ-

ence on rank via the objective function used to order the list. This concentration

of symbols reduces the entropy of the list in these regions.
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Fig. 3.27: The entropy profile of a population of individuals each of 60 bits long formed
from a 64 symbol alphabet. The entropy profile below the threshold (n) ap-
pear as lines with a positive gradient, while the lines with negative gradient
are the entropy profile above the threshold (n). The upper solid lines are
from the list randomly arranged. The dashed lines use the raw objective
function score to rank while the lower solid lines rank by the use of the
cumulative scoring method described in Section 3.5.4. The dotted lines are
the maximum and minimum possible entropy profiles for a list of this type.

As both the ranked and random lists are the same set of individuals, the

entropy H(N) of the full lists are equal. However, the entropy profiles reveal a

difference in information content for various sections of the list. The only source

of this information is the objective function used to rank the list. The difference

between the areas under these profiles provides a measure of the information in

bits extracted from the objective function by raw score ranking (dashed lines)

and the use of the cumulative scoring method (lower solid lines).

Comparing the entropy profiles of a list ranked using the raw score and the

same list ranked by the cumulative score method suggests that the cumulative

scoring method extracts more information from the objective function than does

the raw scoring method.
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3.5.6 Integer Partition

The entropy profile of a population depends upon how many different ways

groups of n alleles from a set of A allele symbols can be arranged above (or

below) a threshold at n. Hence, it is easy to calculate the maximum entropy

profile and the minimum entropy profile of a population.

The maximum profile is simply the entropy profile of a population where

allele symbols change at every change in threshold up (or down) the population

and do not repeat until each allele value has occurred in each loci. For example

a sequence such as a, b, c, a, b, c, a, b, c, ... etc. The minimum profile is simply

the entropy profile where alleles do not change as the threshold moves up (or

down) the population until all alleles of the same value have occurred in each

loci. For example a sequence such as a, a, a, b, b, b, c, c, c, .. etc. The dotted lines

in Figure 3.27 are the maximum and minimum possible entropy profiles for a

population of individuals each of L = 10 loci long formed from a A = 64 symbol

alphabet.

As would be expected, the maximum entropy profile reaches the maximum

possible entropy of 10 log2(64) bits when n = A then falls away and returns

to a maximum entropy at n = xA where x is an integer x : 1 ≤ x ≤ N/A,

while the minimum possible entropy profile does not reach the maximum until

n = N . Calculating the expected entropy profile of various arrangements of

lists between these extremes is very challenging as it is related to the number

partition problem.

The number partition problem (Npp) is defined as follows. Given a list

a1, a2, ..., aN of positive integers, find a partition, ie. a subset, A ⊂ {1, ..., N}

such that the discrepancy

E(A) =

∣

∣

∣

∣

∣

∑

i∈A

ai −
∑

i/∈A

ai

∣

∣

∣

∣

∣

(3.55)
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is minimised. A partition with E = 0(E = 1) for
∑

aj even (odd) is called a

perfect partition (Mertens, 2006).

Number partitioning is one of Garey and Johnson’s (Garey and Johnson,

1979) six basic NP–hard problems that lie at the heart of the theory of NP–

completeness. A surprising feature of the Npp is the poor quality of heuristic

algorithms. This feature distinguishes the Npp from many other hard optimi-

sation problems like the Traveling Salesman Problem for which approximative

algorithms exist (Mertens, 2006).

The expected entropy profile of a population E[H(n)] requires that the en-

tropy of each possible arrangement of (A = |A|) allele symbols above (below)

a threshold (n) be determined. For example if the alphabet a, b, c (ie. A = 3)

is used and the threshold is n = 6 there may be 6 a’s, or 5 a’s and 1 b, or 4

a’s, 1 b, and 1 c, or 4 a’s and 2 b’s, etc each of which have a different entropy

and importantly, a different probability of occurring in a random list of length

n. Each of these sequences constitutes a perfect partition of n which must be

identified to permit its entropy to be calculated and then counted to permit its

probability of occurrence to be determined. In addition, this must be repeated

for each threshold from n = 2 to n = N . As a result, calculating E[H(n)] is

beyond the scope of this Thesis and instead a large number of random popu-

lations (100) are used to provide the estimate of E[H(n)] shown as the upper

solid line in Figure 3.27.

While E[H(n)] is shown as the average of these 100 populations, observed

individually, H(n) for each random population deviated very little. Indeed one

standard deviation is within 4.4 % of the mean. This suggests that populations

and arrangements of those populations which form entropy profiles well below

E[H(n)] are few in number, especially in comparison to the total number of

possible population arrangements. Indeed the entropy profiles of the ranked
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populations in Figure 3.27 are more than six standard deviations below the

mean for randomly arranged populations of equal size and allele cardinality.

This observation supports the conjecture that observed deviations in Hr(n)

from E[H(n)] in a ranked population are due to the influence of the objective

function from which the ranking is derived.

3.5.7 Most Probable Individuals

The entropy of a given population above (or below) a threshold can be calculated

by H = LH(n). The entropy of the population above the dynamic selection

threshold (kg) is the estimated entropy of the information source used to gener-

ate replacement individuals. This entropy estimate can be used to calculate the

number of ‘most probable individuals’ Nmp by way of the Shannon–McMillan

theorem (Van der Lubbe, 1997).

Explained briefly, the Shannon–McMillan theorem proves that for increas-

ing length (L) and an information source where not all symbols (in this case

alleles) occur with the same probability, then some messages (ie. individuals)

have negligible probability of occurring, while others have approximately the

same probability of occurrence. This is the source of the phrase ‘most probable

messages’, or ‘most probable individuals’ in the context of a genetic algorithm

where individuals are generated using the surviving population as an informa-

tion source.

Substituting H for the information source entropy in the Shannon–McMillan

theorem and simplifying gives the number of most probable individuals

Nmp ≈ 2H (3.56)

Since 2H < AL for finite N , this means that the number of different individu-

als that can actually be created by the information source defined by survivor
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parents is significantly smaller than both the global search space and the theo-

retical maximum search space defined by all of the alleles present in the parent

population.

This result has significant ramifications for termination criteria as a gener-

ation will eventually be reached whereby the number of evaluations to get to

that generation is greater than the number of probable individuals that can be

produced by all future generations (neglecting mutation). Therefore transition

to an exhaustive search (ie. Tabu search) at this point guarantees discovery

of the local optimum within the space defined by the current population in no

more than twice the processing time to this point. If the genetic algorithm has

guided the search well, this local optimum should also be the global optimum.

This and other termination criteria are elaborated further in the Section 3.6.

3.5.8 Summary of Key Ideas

This section briefly describes dynamic range, epistasis and the effect of these

on ranking individuals by solution density. An algorithm for managing genome

dynamic range and small groups of epistatic bits is outlined.

While analysing the effect of misranking, the new concept of entropy profile

is introduced and suggested as a measure of information extracted from an

objective function by ranking algorithms. The lower entropy of ranked lists

when compared to random lists suggests that entropy profiles may provide a

means for quantifying the information content of objective functions and a way

of comparing various techniques for extracting this information. Additionally,

a comparison of ranked vs random entropy profiles of a population may provide

a useful means to determine the selection threshold. However, the processing

time required to do this each generation may be too high to warrant the effort.

Finally, the entropy of a surviving population and its potential as a termination

criteria via application of the Shannon–McMillan theorem is identified.
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3.6 Termination

The most commonly used termination criteria identified in the literature (Safe

et al., 2004) are termination on population convergence to a single solution,

termination at a predefined termination generation and termination when fitness

does not change by a pre–defined amount. A variation on termination at full

convergence is termination when the variance of allele symbols in the population

reaches a specified minimum limit.

Termination at convergence is typically used where a metric such as ‘time to

converge’ is needed to compare the relative performance of alternative genetic

algorithm designs. The difficulty with a ‘time to converge’ criteria is that time

varies from processor to processor. As has been noted (Safe et al., 2004), a

better basis for comparison is the number of evaluations of the objective function

required to converge as this metric is processor independent.

Termination at a predefined generation count or predefined limit on the vari-

ance in the objective function are used by genetic algorithms solving problems

for industry. Pre–defined generation counts simplify the visual comparison of

results between algorithms as the graphs used have the same maximum horizon-

tal dimension (the fixed generation count). However, a pre–defined maximum

generation count requires a priori information about the algorithm performance

on each problem and may lead to too few, or too many, evaluations being com-

pleted (Safe et al., 2004). The better criteria for optimisation is termination at

a pre–defined limit on variance in fitness, diversity or similar metric. Such a

criteria can incorporate rational metrics without problem knowledge and offer

benefits in processing time or in the amount of search.

This section explores three alternative termination criteria associated with

the variance in population diversity. The first is based on the concept of solution

density from Section 3.1.2. The second measures the total size of the remaining
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search space and performs an exhaustive search when the genetic algorithm has

narrowed the search space so that such a search is feasible. The third approach

refines the second approach by way of the Shannon–McMillan theorem. Each are

explored and compared to determine which minimises the number of evaluations

required to obtain a globally optimal result with some arbitrary confidence.

3.6.1 Presence of the Optimal Solution with Arbitrary Confidence

To identify termination criteria derived from the solution density of the pop-

ulation, a relationship must be found between the solution density (ρg) and

some arbitrary level of confidence that the solution exists in the population at

generation g. This relationship can be found by recognising that the binomial

distribution pL
0 (g, λ) = p(λ | L, ρg) is the distribution of ideal (solution) alle-

les in the population and that the binomial coefficient6 pL
L(g, λ) represents the

probability of an ideal individual occurring in the population at generation g.

Similarly, the distribution of ideal individuals in the population is given by

b(n | N, θ), the binomial distribution of a population of N individuals in which

ideal individuals occur with probability θ. This probability θ is the same as

pL
L(g, λ).

Conversely, b(0 | N, θ) is the probability that no ideal individuals at all

are present in the population. Hence the probability that at least one ideal

individual is present is given by 1−b(0 |N, θ). Now since N and L are known and

1−b(0 | N, θ) can be set to an arbitrarily desired confidence, these equations can

be combined and rearranged to give the solution density ρg required to achieve

a desired confidence that at least one ideal individual exists in the population.

6 As described in Section 3.3.1
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First let the arbitrary confidence be β = 1−b(0 | N, θ) and expand b(0 | N, θ)

to its full binomial expression

β = 1− N !

0!(N − 0)!
θ0(1− θ)N−0 (3.57)

Rearranging to find θ gives

θ = 1− (1− β)1/N (3.58)

As stated above, θ also equals pL
L(g, λ) which can be expanded similarly to β

and hence

L!

L!(L− L)!
ρL

g (1 − ρg)
L−L = 1− (1− β)1/N (3.59)

Simplifying gives the ρg which satisfies the desired confidence β that an optimal

solution exists in the population. Call this ρT , the termination value of solu-

tion density ρg. ρT is the solution density of the population when the desired

confidence β that at least one ideal individual exists in the population has been

reached.

ρT =
[

1− (1− β)1/N
]1/L

(3.60)

For example, with an arbitrary 99.9% confidence (β = 0.999) that the ideal

individual exists in a population of N = 31 individuals each having L = 13

loci, the necessary solution density ρT is 0.8835. The underlying assumption is

that the genetic algorithm has by this point correctly identified the ideal alleles

which form the solution as this is what determines ρT . An alternative view

might be that the algorithm ‘believes’ it has found the optimal solution with

99.9% confidence.
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This first termination criteria is ‘Terminate when ρg = ρT ’, where ρT has

been calculated using Equation (3.60).

3.6.2 Feasible Space for Exhaustive Search

The second termination criteria examined measures the total size of the remain-

ing search space (S) and performs an exhaustive search of this space when the

genetic algorithm has narrowed it down so that such a search is feasible. Such

an exhaustive search is an evaluation of every possible individual that could be

generated using the allele symbols present in each loci in the population.

Initially, alleles occur in the population with a relative frequency of 1/A and

the size of the problem search space is S = AL. This large search space cannot

be exhaustively searched, hence the need for an algorithm such as a genetic

algorithm. As a genetic algorithm progresses, the frequency of allele symbols

per loci in the population declines. Since AL is an exponential function, as the

frequency of allele symbols per loci declines, the size of the search space reduces

very rapidly.

Therefore, the genetic algorithm will relatively quickly reach a point where

it is feasible to evaluate every possible individual that could be generated using

the allele symbols present in each loci in the population. The point where this

becomes feasible may provide a reasonable termination criterion. In this case the

genetic algorithm has been used to focus the search on the most likely region for

exhaustive search, rather than to find the solution itself. It would be left to an

algorithm such as Tabu search to conduct an exhaustive search of the remaining

space in a manner similar to that used for memetic algorithms (Merz, 2000).

Transition from genetic algorithm to exhaustive search must be done when

there is sufficient time to complete the search, that is when the search is feasible.

This suggests that a reasonable point to make a transition from genetic algo-

rithm search to exhaustive search may be when the remaining search space will
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require as many individuals to be evaluated as have already been evaluated by

the genetic algorithm to that point. This ‘half way point’ in the overall search

will be defined as the point where exhaustive search becomes feasible.

If Al for l ∈ [1, L] is the number of different allele symbols at loci position l

then the size of the un–searched space remaining from generation g is

Sg =

L
∏

l=1

Al. (3.61)

Now, the number of individuals tested up to generation g is given by gN . Con-

sequently, when Sg = gN , the genetic algorithm should be terminated and an

exhaustive search of the remaining space commenced. This criterion will now

be linked to the solution density (ρg) to facilitate a comparison with the first

termination criterion.

3.6.3 Solution Density at ‘Feasible’ Search Point

To determine if the second termination criteria is better than the first, a rela-

tionship will be established between search space size (Sg) and solution density

(ρg). To establish this relationship, first note that search space size is governed

by the number of allele symbols and the number of loci in the genome so that

if a genome has A allele symbols in each of L loci, then the search space is

AL. Now if for example there is a reduction in allele diversity in the population

due to selection, so that 50% of loci contain only 2 allele symbols, 25% of loci

contain 3 allele symbols and 25% of loci contain A− 1 allele symbols, then the

search space size will be given by

S = 2L/23L/4(A− 1)L/4 (3.62)
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Hence the search space size can be expressed in terms of solution density if a

relationship can be found between the number of allele symbols present in loci

and the solution density. Assuming a binomial probability density function for

ideal alleles per loci7 q(n | N, ρg) describing the distribution of ideal alleles per

loci in terms of solution density (ρg), then each coefficient in this distribution

represents the proportion of loci in the population which contain zero through

to N ideal alleles.

Consider first the minimum number of allele symbols which loci in the pop-

ulation could contain and construct an expression for the minimum remaining

search space. Next consider the maximum number of allele symbols which loci

in the population could contain and construct an expression for the maximum

remaining search space. This will identify the range between the minimum re-

maining search space and the maximum remaining search space. However, it is

the second expression for the maximum remaining search space which will be

used to compare termination criteria.

To construct an expression for the minimum number of allele symbols, begin

by identifying the terms associated with loci corresponding to the binomial

coefficient q(g, 0). These loci contain no ideal alleles and therefore must contain

at least one non–ideal allele value. Similarly, loci corresponding to q(g, N)

contain only ideal alleles. Hence, the terms associated with these are 1Lq(g,0)

and 1Lq(g,N) respectively, since only one allele symbol is contained by the loci.

The remaining loci contain at least two types of allele (the ideal and one

other). The terms associated with these loci are of the form 2q(g,N−1), 2q(g,N−2),

and so on. In this way an expression for the minimum size of the remaining

search space at each generation (Smin) can be constructed in terms of q(g, n).

7 The earlier distribution p(λ | L, ρg) described the distribution of ideal alleles per individ-
ual.
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The minimum search space size is given by

Smin = 1Lq(g,0)2Lq(g,1)2Lq(g,2) . . . 2Lq(g,N−1)1Lq(g,N) (3.63)

which simplifies to

Smin = 2L
∑N−1

n=1 q(g,n) (3.64)

Similarly, the expression for maximum search space size (Smax) can be de-

termined in four parts. As before, loci corresponding to the binomial coefficient

q(g, 0) contain no ideal alleles and hence contain at most A− 1 non-ideal allele

symbols. The term associated with this is

(A− 1)Lq(g,0) (3.65)

Similarly, loci corresponding to the coefficients from q(g, 1) up to q(g, N −

(A− 1)) contain at most A allele symbols and we get the expression

ALq(g,1)ALq(g,2)ALq(g,3) . . . ALq(g,N−(A−1)) (3.66)

which simplifies to

AL
∑N−(A−1)

n=1 q(g,n) (3.67)

From q(g, N − (A − 2)) up to q(g, N − 1) the increasing number of ideal

alleles per loci means that limited places are available for other allele symbols

and so the maximum number of allele symbols diminishes until at q(g, N − 1)

there are two allele symbols. This results in the expression

(A− 1)Lq(g,N−(A−2)) . . . (A− a)Lq(g,N−(A−a−1)) . . . 2Lq(g,N−1)) (3.68)

a ∈ [1, A− 2] which simplifies to
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A−2
∏

a=1

(A− a)Lq(g,N−(A−a−1)) (3.69)

Finally, loci corresponding to the coefficient q(g, N) have only ideal alleles giving

the final term

1Lq(g,N) (3.70)

From these four terms, (3.65), (3.67), (3.69), (3.70), the equation for the

maximum search space size can be constructed as

Smax = (A−1)Lq(g,0)AL
∑ (N−(A−1))

n=1 q(g,n)
A−2
∏

a=1

[

(A− a)Lq(g,N−(A−a−1))
]

1Lq(g,N)

(3.71)

Equation (3.64) describes the minimum possible remaining search space at

ρg because the binomial coefficients q(g, 0), q(g, n), q(g, N − (A− a− 1)), and

q(g, N) are functions of ρg while Equation (3.71) gives the maximum possible

remaining search space at ρg for A > 2. These are the expressions linking the

search space size (Sg) to solution density (ρg) so that Smin ≤ Sg ≤ Smax. Note

that when A = 2, Smin = Smax. This is a fundamental difference between

binary and higher cardinality alleles.

The example given in Section 3.6.1 (A = 6, L = 13 and N = 31) will again be

used to compare termination criteria while maintaining an arbitrary confidence

that the optimum will be found by the overall search.

For this example, Figure 3.28 illustrates that the first termination criteria of

ρg = 0.8835 occurs at or around g = 20. Section 3.6.1 indicates that when this

value of ρg is reached there is a 99.9% confidence that the solution already exists

in the population. Hence, Figure 3.28 suggests that there should be about 20N

further evaluations required to exhaustively search the remaining space with

better than 99.9% confidence of finding solution.
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Fig. 3.28: The average results of 100 trials where crossover has been performed between
randomly selected pairs of individuals 310 times. (N = 31, L = 13, A = 6).

However, Table 3.3 indicates that for this example when ρg = 0.8835 the

remaining search space (Sg) requires approximately 2.912× 106 generations to

exhaustively search. This suggests that the second termination point of Sg = gN

is not a sensible point to move from genetic algorithm to an exhaustive search

as long before 2.912× 106 generations the solution will have been found with a

confidence far exceeding the required 99.9%.

3.6.4 Most Probable Search Space

The third and final termination criteria to be considered uses the concept of most

probable individual described by the Shannon–McMillan theorem. Section 3.5.7

suggested terminating the genetic algorithm and commencing an exhaustive

search when the number of most probable individuals (Nmp ≈ 2Hg ) of the

information source defined by the surviving population equals the number of
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Tab. 3.3: Search space size and ‘equivalent generations’ to complete an exhaustive
search for increasing solution density and A=6, L = 13 and N = 31. S = AL

is the total solution space while Smin is calculated using Equation (3.64) and
Smax using Equation (3.71).

Solution ρg = 0.5 ρg = 0.75 ρg = 0.8 ρg = 0.8835
Density
S = AL 1.306× 1010 1.306× 1010 1.306× 1010 1.306× 1010

Smin 8.192× 103 8.182× 103 8.119× 103 6.749× 103

Smax 1.306× 1010 9.426× 109 4.583× 109 9.026× 107

Generations (min) 2.643× 102 2.639× 102 2.619× 102 2.177× 102

Generations (max) 4.213× 108 3.041× 108 1.478× 108 2.912× 106

individuals evaluated to that generation (gN). This transition point is easily

identified by evaluating the entropy Hg(N) of a population at each generation

and terminating the genetic algorithm when 2Hg(N) ≤ gN .

Smp = 2Hg (3.72)

where Hg is the population entropy given in Equation (3.3).

To determine if using most probable individuals is a superior termination

criteria to the two termination criteria described so far, an expression for pop-

ulation entropy in terms of solution density is required. This will facilitate

comparison of the termination criteria in terms of solution density (ρg).

As in Section 3.6.3, the entropy estimated using ρg has a minimum and a

maximum depending on the number of allele symbols per loci in any particular

generation. The minimum (non-trivial) entropy occurs when throughout the

population only two allele symbols exist in each loci position, the ideal allele

and one other. In these circumstances the average relative frequency of ideal

alleles is the solution density (ρg) and the average relative frequency of the

remaining non-ideal allele symbol is 1 − ρg. Hence the estimated minimum
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entropy in terms of solution density is

Hmin = −L [ρg log2(ρg) + (1 − ρg) log2(1− ρg)] (3.73)

where the L term converts the average entropy per loci to the average entropy

across the population.

The estimated maximum entropy given ρg occurs when each loci contains

all allele symbols, and all non-ideal allele symbols occur with equal relative

frequency. Hence the relative frequency of all non-ideal allele symbols collected

together is 1− ρg.

To obtain the relative frequency of one of the non-ideal allele symbols 1−ρg

must be divided by A − 1, the number of different non–ideal allele symbols.

Thus we get

Hmax = −L

[

ρg log2(ρg) + . . . +
1− ρg

A− 1
log2

(

1− ρg

A− 1

)]

(3.74)

where a (1− ρg) term occurs for each of the A− 1 non–ideal alleles. Hence this

simplifies to

Hmax = −L

[

ρg log2(ρg) + (A− 1)
1− ρg

A− 1
log2

(

1− ρg

A− 1

)]

= −L

[

ρg log2(ρg) + (1− ρg) log2

(

1− ρg

A− 1

)]

(3.75)

Figure 3.29 uses Equation (3.75) to illustrate two cases of how maximum entropy

per loci falls as solution density rises. The upper line is for A = 64 while the

next line is for A = 16. The bottom line in Figure 3.29 is the minimum entropy

per loci.

Table 3.4 shows the maximum sizes of the most probable search space (Smp)

for various information densities (ρg) using Equation (3.75) for the same problem
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Fig. 3.29: The upper two lines show the maximum entropy per loci for a population
with allele cardinalities A = 16 and A = 64 as solution density of the
population rises. The bottom line is the minimum entropy for each of these
cases. The actual entropy of a population will lie between these maximum
and minimum lines.

described in Section 3.6.3. As before the number of evaluations required before

Smp is feasible depends upon the rate of improvement for the problem in question

(that is, improvement in ρg). Referring again to the Section 3.6.1 example,

when ρg = 0.8835, then Table 3.4 indicates that the remaining search space

(Sg = Smp) requires approximately 40 generations to be exhaustively searched.

This estimate aligns very well with Figure 3.28, which shows that ρg reaches a

value of 0.8835 at approximately 20 generations and a good solution is reached

around 50 generations. This result suggests that Smp ≤ gN may be a sensible

point for shifting from genetic algorithm to an exhaustive search. However,

more experimental analysis for a range of parameter settings would be required

to confirm this.

This third termination criteria is implemented by monitoring the genetic

algorithm’s population entropy, calculating Smp from Equation (3.72), termi-
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Tab. 3.4: Most probable search space size and ‘equivalent generations’ to complete an
exhaustive search as solution density improves for A=6, L = 13 and N = 31.
Smp is calculated using Equation (3.75). Generations is Smp/N .

Solution ρg = 0.5 ρg = 0.75 ρg = 0.8 ρg = 0.8835
Density
S = AL 1.306× 1010 1.306× 1010 1.306× 1010 1.306× 1010

Smp 2.862× 108 2.796× 105 4.390× 104 1.232× 103

Generations 9.328× 106 9.019× 103 1.416× 103 40

nating the genetic algorithm when Smp ≥ gN and exhaustively searching from

that point onwards using the surviving population and crossover to generate

candidate individuals and Tabu search to select new, unique individuals to be

evaluated from amongst those candidates. Hence an implementation of this

termination criteria is independent of the earlier assumption of a binomial dis-

tribution.

Therefore, when the measured population entropy Hg at generation g is such

that

Hg ≤ log2(gN) (3.76)

then selection and mutation should cease and crossover be used to generate

individuals for Tabu Search to evaluate until a further Smp evaluations have

been completed.8

3.6.5 Discussion

Waiting for convergence before terminating a genetic algorithm is inefficient

since the presence of a solution is never certain and because solution improve-

ments in the ‘final run to convergence’ are typically minimal and may in fact be

zero (for example if a copy of the optimal solution already exists in the popu-

lation). The first termination criteria suggests that by monitoring the solution

density of the population it becomes possible to pre–empt convergence by some

8 Equation (3.76) is obtained by setting Smp = gN , substituting into Equation (3.72) and
rearranging to find Hg.
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generations, save and display the current best result with a high confidence that

this is the optimal result.

The second termination criteria examines the idea of changing from genetic

algorithm search to an ‘exhaustive’ search where every possible individual in

the remaining search space could be evaluated with no more evaluations than

had already been performed. This criteria proves to be of little use as the point

where the ‘exhaustive’ search commences is so close to full convergence as to

add little value over termination at full convergence.

A more attractive approach is to monitor the entropy (Hg) of a population

and then shift the algorithm to a search of Smp additional individuals when

Smp = 2Hg . This approach ensures that the remaining space is thoroughly

searched, provides a clear termination point and may eliminate deceptive be-

haviour from the later portion of the search since selection is discontinued at

the transition to exhaustive search.

3.6.6 Summary of Key Ideas

As solution density rises, so too does the probability that the optimal solution is

present in the population with some arbitrary confidence. The solution density

ρT corresponding to this confidence point was quantified by Equation (3.60).

This was the first termination criteria considered.

The increase in solution density also corresponds with a decrease in the

size of the search space defined by the surviving population. Because the size

of this search space declines very rapidly each generation, a point is reached

where the remaining space can be exhaustively searched in no more time than

has already been expended. However, this was found to occur at such a high

solution density that the population had already nearly converged. Hence this

second termination criteria was judged less useful than the first.
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A better termination point is indicated by the Shannon–McMillan theorem

as the population reaches a point where its entropy defines the most probable

individuals that can be generated from the population. The number of most

probable individuals corresponding to this point occurs well before population

convergence. This third termination criteria was found to be the best of the

three termination criteria considered.

3.7 Fundamental Contributions

The model of genetic algorithm behaviour described in this chapter provides

both a consistent framework in which appropriate parameter settings can be ar-

rived at and illuminates some previously undiscovered characteristics of genetic

algorithms. The key contributions of this Thesis are outlined below. These,

include static and dynamic selection thresholds, sufficient crossover, entropy

profile and selection criteria based on most probable individuals.

A model of genetic algorithm behaviour.

A model of genetic algorithm behaviour inspired by information theory is estab-

lished. Two ideas are central to the model. Firstly, that evolutionary processes

encode information into a population by altering the relative frequency of al-

leles throughout the population. Secondly, that the key difference between a

genetic algorithm and other algorithms is the generational operators, selection

and crossover. This suggests that genetic algorithms benefit from maximising

the number of generations processed. Hence the model presented maximises a

population’s information as represented by the relative frequency of ideal alleles

in the population, encourages the accumulation of these alleles and maximises

the number of generations able to be processed.
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A static selection threshold in ranked populations.

If individuals, each with L loci, can be ranked by the number of ideal alleles they

contain, then a static threshold (k0 : 0 ≤ k0 ≤ L) exists, whereby individuals

with more than k0 ideal alleles have a solution density greater than that of

the information source used to generate the initial population. Section 3.2

shows that deleting any individual from above this static threshold results in

lost information that cannot be easily recovered using the information source.

Similarly, applying mutation to any individual above this threshold will, on

average, decrease the solution density of the population rather than increase it.

This static threshold is identified as k0 = Lρ0.

A dynamic selection threshold in ranked populations.

The threshold k0 associated with the randomly generated replacements is static

since the replacement information source has a constant solution density. How-

ever, the threshold kg associated with replacement of individuals with randomly

selected survivor parents is dynamic because the solution density of the surviv-

ing population increases over generations. Replacing individuals between the

static and dynamic thresholds with individuals drawn from above the dynamic

threshold results in the accelerated accumulation of information by the genetic

algorithm. The dynamic threshold is identified in Section 3.3 as kg = Lρg.

A maximum practical bound for the number of loci participating

in epistasis.

Resolution of the objective function in the vicinity of the static selection thresh-

old is critical for a genetic algorithm to decide which individuals to retain and

which to discard. This is interesting as it indicates a maximum practical bound
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for the number of loci participating in epistasis. Section 3.1.4 shows that when

there are more than Lρ0 loci participating in epistasis, finding the optimum be-

comes increasingly due to chance rather than the ability of the genetic algorithm

to direct the search.

Sufficient crossover and optimal crossover section length

Sufficient crossover is defined in Section 3.4 as a limit to the amount of crossover,

whereby any additional crossover has negligible affect on the distribution of ideal

alleles in a population. Sufficient crossover (C) is described and estimated in

Section 3.4 as approximately three times the population size (N). Section 3.4

also makes the important discovery that a crossover section length of Y = L/2

results in the fastest re–distribution of ideal alleles through a population.

A cumulative scoring method for identifying solution density.

The scaled raw scores of individuals, normalised by the frequency of their alleles

in the population, is accumulated in an A vs L matrix Ia,l. This can be used to

identify the major schema and hence estimate the solution density. The major

schema of the population is defined by Chapter 5 to be the genome comprising

the highest scoring allele in Ia,l. This major schema represents the best estimate

of the ideal individual at generation g. However, it is not necessarily an actual

individual from the population. Nevertheless, it is possible to ‘engineer’ an

individual from the major schema which, when then scored, is often superior to

the best individual in the population.
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An entropy profile of ranked lists

The concept of an entropy profile of ranked lists is defined and examined in

Section 3.5. The lower entropy of ranked lists when compared to the same list

randomly ordered suggests that entropy profiles may provide a means for quan-

tifying the information content of objective functions and a way of comparing

various techniques for extracting this information. Additionally a comparison of

ranked vs random entropy profiles of a population may provide a useful means

to accurately determine selection thresholds.

A termination criteria based on the Shannon–McMillan theorem.

A termination criteria is suggested by the Shannon–McMillan theorem since the

population reaches a point where its entropy defines the most probable individ-

uals that can be generated by the population from that point on. Section 3.6

uses the Shannon–McMillan theorem to show that the number of most probable

individuals corresponding to this population entropy occurs well before popula-

tion convergence and hence provides a useful criteria for transition to exhaustive

search.

The following chapters take these ideas and apply them, first in relatively

simple simulations following the ‘little models’ approach, but then in increas-

ingly more realistic genetic algorithms applied to industry benchmarks and prob-

lems.



4. SIMULATIONS TO EXAMINE THE FIDELITY OF THE

MODEL

A simulation study follows to examine the fidelity of the model of information

flow, especially the accurate identification of the selection thresholds and the

influence of crossover derived in Chapter 3. Two simulations are performed.

The first looks only at the static threshold (from Section 3.3) while the second

simulation combines the static and dynamic thresholds. Each simulation is

performed with both excessive crossover and little crossover for comparison to

the theoretical results derived in Chapter 3. This chapter is drawn from work

accepted for publication in Milton and Kennedy (2008).

The simulations described by this chapter produce results corresponding to

the predictions from Chapter 3 with sufficient accuracy to provide confidence

in the model. In addition, by tracking the change in solution density when a

population is subject to varying amounts of crossover, it is shown that large

amounts of crossover (or a UEDA) are superior to insufficient crossover when

the location of thresholds is uncertain.

4.1 Simulation One

This first simulation looks only at the static threshold defined by Equation (3.40).

The objective of this simulation is to verify that populations manipulated by

crossover and replacement with randomly generated individuals drawn from

below the static threshold behave as predicted by the model defined in Equa-

tion (3.35).
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4.1.1 Simulation One Construction and Parameter Settings

This genetic algorithm simulation uses the well–known ‘Royal Road’ prob-

lem (Mitchell et al., 1992) described in Section 2.3. This first experiment is

a ‘simulated’ genetic algorithm because the genetic algorithm knows the correct

solution to the problem, unlike the usual case when the optimal solution is, of

course, unknown. Each ideal allele is defined as the symbol 1 and hence the

ideal evolution of the genetic algorithm can be monitored and compared to the

theoretical model. The simulation selects individuals for survival based on the

number of 1’s they contain. This means that the genetic algorithm has perfect

knowledge of the ranked order of individuals based on the number of ideal alleles

each one has.

Parameters used for both the theoretical model and simulated genetic algo-

rithms are an initial population size of N = 31 individuals (B = 0.95), genome

length L = 13 loci and allele cardinality of A = 6 alleles. These parameter

settings have been chosen as they are a tractable size which permits a number

of trials to be completed in a reasonable time. A = 6 is chosen as it is not

a power of two while L = 13 is chosen because 13 is a prime number greater

than 2A (given A = 6) and hence it is less likely that effects due to A would

be mistaken for effects due to L (and vice versa). N is calculated throughout

this Thesis using Equation (3.11). With these parameters, the static selection

threshold, k0, is calculated using Equation (3.40) to be 2.1667.

Crossover is performed between randomly selected individuals. Each crossed–

over section is six loci in length (corresponding to Y = L/2), selected from a

random starting position in each parent, with ‘wrap–around’ at genome ends.

No mutation is applied as diversity is introduced into the population through re-

placing deleted members with new randomly generated individuals. The specific

form of genetic algorithm used in the simulation is shown in Algorithm 4.
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Data: Degree of confidence = B, Termination Criteria, Genome
Length = L, Cardinality = A

Define information source having cardinality A;1

Determine Population Size (N) using B, L, A and Equation (3.11);2

Calculate the static threshold k0 using Equation (3.40);3

for n=1 to Population Size do4

Generate Individual of length L using information source;5

repeat6

Score each individual in the population using the objective function;7

Delete individuals in population with k0 or less ideal alleles;8

Replace deleted individuals using information source;9

/* The Thesis uses C = 310 and C = 10 for comparison

purposes */

for c=1 to C do10

Randomly select sections of length L/2 in two randomly selected11

individuals and exchange these sections;

until termination criteria = true ;12

Algorithm 4: Outline of a Genetic Algorithm with Randomly Generated
Replacements

The simulation experiments are repeated for two scenarios corresponding to

amounts of crossover at either end of the spectrum:

• C = 310 crossover operations per generation, and

• C = 10 crossover operations per generation.

The choice of C = 310 crossover operations is well above the sufficient level

identified in Section 3.4 while C = 10 is well below the sufficient level. This is

done to contrast the impact of crossover on the simulations and the fidelity of

the model in each case.

Equation (3.35) defines the theoretical model and is used to predict the

change in expected solution density for a variety of selection thresholds k over

several generations. Results for each selection threshold are averaged over 100

trials of the simulation to produce meaningful results. These modeled results

are illustrated in Figure 4.1.
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4.1.2 Simulation One Results

Figure 4.2 shows the solution density of the simulated genetic algorithm pop-

ulation over 100 generations with 310 crossover operations per generation and

Figure 4.3 shows the solution density of the same simulation, but with ten

crossover operations per generation.

In Figures 4.1 to 4.3, different selection thresholds k are indicated by lines.

For example, k = 2 is the graph of E[ρg] with a selection threshold set at 2 ideal

alleles. Dashed lines indicate the solution density of the information source used

for generation of replacement individuals.
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Fig. 4.1: The expected solution density predicted by Equation (3.35) for a variety of
selection thresholds k. (N = 31, L = 13, A = 6).

4.1.3 Discussion of Simulation One

Where the number of crossover operations is sufficient to return the distribu-

tion of ideal alleles to a binomial distribution (Figure 4.2), then the model (Fig-

ure 4.1), is an excellent estimation of the simulated genetic algorithm behaviour.
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Fig. 4.2: The average results of 100 trials where crossover has been performed between
randomly selected pairs of individuals 310 times each generation, C = 310.
(N = 31, L = 13, A = 6).

Indeed for the simulations where selection pressure (k) is set at less than 4 ideal

alleles per individual (k < 4), the maximum Mean Squared Error between the

model and 100 experimental trials is only 0.0023. When fewer crossover op-

erations are done (Figure 4.3) the model is less accurate, but for k < 4, the

maximum Mean Squared Error between the model and 100 experimental trials

is still only 0.0038.

When selection pressure exceeds the calculated selection threshold k0 =

2.1667, the equations predict a collapse in information. That is, a leveling off or

rapid decline in the solution density of the population. For example, compare

the line marked k = 2 with k = 3 and k = 4 in Figure 4.1. This collapse is

apparent in the simulations (see Figure 4.2 for k = 2 compared to k = 3 and

k = 4). As predicted, in Section 3.3 the highest possible selection pressure,
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Fig. 4.3: The average results of 100 trials where crossover has been performed between
randomly selected pairs of individuals with only C = 10 crossovers each
generation. (N = 31, L = 13, A = 6).

that does not exceed k0 = 2.1667, provides the fastest improvement of solution

density.

Low selection pressure in the simulation with sufficient crossover (Figure 4.2,

C = 310) achieves slightly faster improvement in solution density than does

low selection pressure in the simulation with insufficient crossover (Figure 4.3,

C = 10). In other words, Figure 4.2 k = 0, 1 and 2 are superior to Figure 4.3

k = 0, 1 and 2.

High selection pressure (that is, with k = 3, 4 or 5) in the simulation with

sufficient crossover (Figure 4.2, C = 310) has slower increase in solution density

than does high selection pressure in the simulation with insufficient crossover

(Figure 4.3, C = 10). This suggests that a little crossover is more robust

to higher selection pressure than excessive crossover as explained in the next

simulation.
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In both crossover scenarios, the maximum solution density reached is quite

low. Indeed it is less than 0.5, the starting point for an equivalent genetic

algorithm with a binary allele cardinality (A = 2).

One way to increase this maximum solution density lies with how individuals

are replaced in the population. As will be shown in the next section, rather than

replacing individuals with random genomes, the maximum solution density may

be increased if individuals are replaced with randomly selected survivors of the

previous generation. That is, by using the survivors as parents.

4.2 Simulation Two

This second simulation combines the static and dynamic thresholds of Sec-

tion 3.3. The objective of this simulation is to verify that populations ma-

nipulated by crossover and replacement with randomly generated individuals

taken from below the static threshold and with randomly selected survivors

ranked between the static and dynamic thresholds behave as predicted by the

model.

Because the dynamic threshold changes from generation to generation, the

subscripts must be amended to show both generations and selection thresholds.

The subscript g will still refer to the generation, while the subscripts k0 and

kg refer to the static and dynamic selection thresholds respectively. Hence, Ng

is the size of the full population at generation g, while Ng,k0 is the size of the

population up to the static threshold k0 at generation g and Ng,kg
is the size of

the population up to the dynamic threshold kg at generation g (Figure 4.4).

The aim of this simulation study is to examine the fidelity of the equations

modeling information flow, the accurate identification of the selection threshold

and the influence of crossover. However, this time Equation (3.45) instead

of Equation (3.35) is used to model the effect of using randomly generated
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Fig. 4.4: Ng is the size of the full population at generation g, while Ng,k0 is the size
of the population up to the static threshold k0 at generation g and Ng,kg is
the size of the population up to the dynamic threshold kg at generation g.

individuals and child individuals to replace low–performing individuals.

In the first simulation, the genetic algorithm has full knowledge of the so-

lution. The motivation was to check the fidelity of the equations modeling its

behaviour. In this second simulation the genetic algorithm is made more realis-

tic by reducing its knowledge of the solution. Instead, an estimate for solution

density is used that can be derived by the genetic algorithm from the population

without knowledge of the solution (ideal alleles).

The major schema of the population is defined as the genome comprising

the most frequently occurring allele at each locus in the population. This major

schema represents the best estimate of the ideal individual at generation g.

However, it is not necessarily an actual individual from the population.
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The effective solution density is defined as the relative frequency of alleles

forming the major schema at generation g. The effective solution density is

used to estimate the selection thresholds (k0 and kg) for the simulation. The

population is ranked by ideal allele as before. The specific form of genetic

algorithm used in the simulation is shown in Algorithm 5.

4.2.1 Simulation Two Construction and Parameter Settings

The selection operator now replaces individuals in generation g that are below

the k0 threshold estimated by effective solution density. Hence the bottom

ranked

Ng,k0 = Ng

k0
∑

λ=0

p(g, λ) (4.1)

individuals are replaced with randomly generated individuals. Replacing the

next Ng,kg
− Ng,k0 individuals with randomly selected individuals from above

the threshold kg (Figure 4.5) where

Ng,kg
= Ng

kg
∑

λ=0

p(g, λ) (4.2)

This more realistic simulation was run against the same Royal Road problem

and with the same parameter settings as simulation one. Parameters used for

both the theoretical model and simulated GAs are a population size of N = 31

individuals, genome length L = 13 loci and allele cardinality of A = 6 alleles.

Results for each scenario were averaged over 100 trials of the simulation to

produce meaningful results.

As before, the simulation is repeated for two scenarios corresponding to

amounts of crossover at either end of the spectrum:

• C=310 crossover operations per generation, and

• C=10 crossover operations per generation.
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Data: Degree of confidence= B, Termination Criteria, Genome
Length= L, Cardinality= A

Define information source having cardinality A;1

Determine Population Size (N) using B, L, A and Equation (3.11);2

Calculate the static threshold k0 using Equation (3.40);3

Initialise g = 0;4

for n=1 to Population Size do5

Generate Individual of length L using information source;6

repeat7

g ← g + 1;8

Determine major schema;9

Estimate the dynamic threshold kg using major schema and10

Equation (3.47);
Score each individual in the population using the objective function;11

Rank population by Score;12

Delete bottom ranked Ng,kg
individuals ;13

Replace Ng,k0 individuals using information source;14

Replace Ng,kg
−Ng,k0 individuals using randomly selected individuals15

from above Ng,kg
;

/* The Thesis uses C = 310 and C = 10 for comparison

purposes */

for c=1 to C do16

Randomly select sections of length L/2 in two randomly selected17

individuals and exchange these sections;

until termination criteria = true ;18

Algorithm 5: Outline of a Genetic Algorithm with Randomly Generated
and Parent Replacements
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Fig. 4.5: The bottom ranked Ng,k0 individuals are replaced with randomly generated
individuals. Replacing the next Ng,kg − Ng,k0 individuals with randomly
selected individuals from above Ng,kg

This first amount of crossover is chosen arbitrarily based on ten times the pop-

ulation size.

4.2.2 Simulation Two Results

The theoretical results are shown in Figure 4.6. Results of the simulated genetic

algorithm are shown in Figure 4.7 (310 crossovers per generation) and Figure 4.8

(10 crossovers per generation). The simulation marked kg is where the selection

threshold is set at the optimum level as indicated by the model. The simulations

marked kg + 1, kg − 1, kg − 2,... etc. are where the selection threshold was

artificially increased (decreased) by one, two, ideal alleles per individual for

comparison purposes.
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Fig. 4.6: The expected solution density predicted by Equation (3.45) for the optimal
dynamic selection threshold kg and for kg + 1, kg − 1, kg − 2, kg − 3 and the
average of these three. (N = 31, L = 13, A = 6).

4.2.3 Discussion of Simulation Two

As before, the model (Figure 4.6) gives a good estimation of the simulated ge-

netic algorithm behaviour when the number of crossover operations is sufficient

(Figure 4.7). The maximum Mean Squared Error between the model and the

simulation for kg + 1 and kg is 0.0758 and 0.1483 respectively. This is greater

than the maximum Mean Squared Error in simulation one due to the relaxed

assumptions of the simulation.

In this simulation, the thresholds are set imperfectly and some individuals

with low solution density survive, artificially lowering the simulation’s selection

threshold. This is most clearly seen where the dynamic threshold is deliberately

set to below the predicted optimum (Figure 4.7 line kg−1). This line resembles

the average of lines kg−1, kg−2 and kg−3, from the model shown in Figure 4.6.
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Fig. 4.7: The average results of 100 trials where crossover has been performed between
randomly selected pairs of individuals 310 times. (N = 31, L = 13, A = 6).

This occurs because the inaccurate thresholds cause some individuals with much

less than the targeted kg − 1 ideal alleles to survive to the next generation.

When selection pressure exceeds the calculated selection threshold kg, the

model predicts an increased rate of improvement in solution density, which

reaches a lower maximum solution density than the optimum. To see this,

compare the kg and kg + 1 lines in Figure 4.6. This behaviour is observed in

the simulation with 310 crossovers (Figure 4.7, lines kg and kg + 1). Again the

simulation is effected by inaccurate thresholds.

Looking at the simulation with less crossover (Figure 4.8) the model (Fig-

ure 4.6) does not predict the maximum performance of the genetic algorithm as

well as before. This is especially evident for kg +1 which reaches a significantly

lower solution density in the simulation than predicted by the model. This is

because there is not sufficient crossover to return the distributions of ideal al-
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Fig. 4.8: The average results of 100 trials where crossover has been performed be-
tween randomly selected pairs of individuals with only C = 10 crossovers per
generation. (N = 31, L = 13, A = 6).

.

leles to a binomial distribution. Instead, newly introduced ideal alleles remain

in low scoring ‘random’ individuals and are selected out at the very next gener-

ation leading to increased information loss and the ‘stalling’ affect apparent in

the flattening kg + 1 line.

However, the reduced crossover also means that the simulation is less effected

by inaccurate thresholds as the deleterious alleles of individuals with low solution

density are not mixed through the remaining individuals to the degree that

occurs when more crossover is applied. This is evidenced by the low crossover

simulation’s more rapid improvement in solution density when compared to the

high crossover simulation, especially when a deliberately low threshold of kg−1

is set.
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Clearly, significant crossover assists the algorithm with accurate or slightly

high selection pressure while low crossover improves the performance of algo-

rithms subject to low selection pressure.

4.3 Conclusion

Two controlled experiments are presented which validate the model for infor-

mation loss and accumulation in a population subject to sufficient crossover,

selection and replacement at defined thresholds. The simulations produce re-

sults corresponding to the predictions from Chapter 3 with sufficient accuracy

to provide confidence in the model.

By tracking the change in solution density when a population is subject to

varying amounts of crossover, it is shown that large amounts of crossover or

a UEDA (Figure 4.7) are superior to insufficient crossover (Figure 4.8) when

thresholds are uncertain. This is especially the case when selection pressure

can be kept at (kg) or slightly above (kg + 1) the optimum selection threshold.

However, if selection pressure is below the optimum threshold (ie. kg − 1), then

limited crossover (Figure 4.8) provides better average performance.

With this confidence the model techniques are applied in Chapter 5 to a

series of common benchmarks used by the genetic algorithm community.



5. PROTOTYPE GENETIC ALGORITHMS APPLIED TO

BENCHMARK PROBLEMS

This chapter develops a genetic algorithm utilising the concepts and recom-

mendations from Chapter 3 and builds them into a genetic algorithm. The

algorithm will have high mutation, sufficient crossover and defined thresholds

to maximise the accumulation of information and the number of generations

able to be processed. For brevity this High Mutation, sufficient crossover with

defined Threshold algorithm will be referred to as an HMXT algorithm. In this

chapter, an HMXT algorithm is applied to a number of benchmark problems

commonly used to test genetic algorithms.

The first group of selected benchmarks is based on ten concatenated 6–bit

traps for a 60–bit problem as described in Harik (1999)1. The next group of

benchmarks concern small NK landscapes as described in Kauffman (1993).

These are of limited size as the monitoring subroutine needs to exhaustively

search the space for the optimal solution for comparison purposes. The last

group of benchmarks are a set of functions used in Li et al. (2006) and other

researchers in optimisation algorithms.

Bit traps are chosen as they are considered to be highly deceptive to genetic

algorithms and therefore provide a meaningful test of the use of higher cardinal-

ity alleles to combat epistasis. NK landscapes are chosen for a similar reason,

while the last group of benchmark functions from Li et al. (2006) are chosen to

allow comparison to the work of other researchers.

1 Although Harik used ten concatenated 4–bit traps
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5.1 Genetic Algorithm Prototype

The prototype HMXT algorithm uses a phenotype representation of each indi-

vidual as input to the benchmark’s objective function and manipulates a geno-

type representation of the individual using crossover and selection to find an

optimal solution. This permits small groups of epistatic symbols in the pheno-

type to be encoded into a higher cardinality genotype allele to combat epistasis

as suggested in Section 3.5.4. As a result, two information sources are necessary;

the first with cardinality Ap to generate the initial phenotype population and

start the algorithm, and the second with cardinality A to generate replacement

genotypes as suggested in Section 3.2.5. This is the only time a phenotype is

randomly generated by the algorithm.

Equation (3.11) is used with allele cardinality A to determine population

size N having a confidence B that the genotype population contains at least

one allele of each value. Similarly genotype cardinality (A) and genome length

(L) are used to construct the A vs L matrix, Ia,l, to improve ranking and

estimation of the selection threshold as suggested in Section 3.5.4. Each cell in

this matrix is assigned the sum of fitness scores for all individuals containing the

allele a in the loci l, normalised by the frequency F a,l as shown in Algorithm 3,

page 114. The matrix Ia,l is used to define effective solution density so as to

base an individual’s fitness on its allele’s contributions across the population.

The major schema (Section 4.2) of the population is re–defined to be the

genome comprising the highest scoring allele in Ia,l at each locus in the popula-

tion. As before, the major schema is not necessarily an actual individual from

the population. The relative frequency of alleles forming this major schema at

generation g now defines the effective solution density.

The genotype population is then subject to 5N crossover operations (rather

than 3N) to absolutely guarantee that sufficient crossover is applied to re–
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distribute alleles throughout the population as suggested in Section 3.4. The

algorithm subsequently maps the genotype representation of individuals to their

phenotype representation for scoring against the objective function and the next

generational cycle is commenced.

In each experiment a separate subroutine, which is aware of the optimum

solution, monitors the performance of the HMXT algorithm so that the absolute

performance of HMXT can be compared to it’s own estimated performance.

The monitoring subroutine (Algorithm 6, line 16) collects information on each

individual’s true solution allele content, its true rank from this information

content and its entropy profile. The monitoring subroutine in no way influences

the genetic algorithm (except to increase the run time). The specific form of

the HMXT algorithm is shown in Algorithm 6.

Five trials are conducted for each benchmark experiment and the average

across the five trials is graphed in Figures 5.1 to 5.7. The solid lines in these

figures are the estimated solution density of the genetic algorithm (using the

frequency of major schema) while the dotted lines are the actual solution den-

sity measured by the monitoring subroutine (which knows the optimal solution).

The actual solution density is a measure of the structural similarity (Hamming

distance) between the current best individual in a generation and the optimum

solution. The dashed lines are the raw score of the generation’s current best in-

dividual normalised to range between zero and one, with one being the optimum

score.

5.2 Bit Traps

The bit–trap problem is a “deceptive” version of the counting ones problem. In

the bit–trap problem the fitness of an individual is the number of 1s it contains,

unless it is all 0s, in which case the individual’s fitness is L + 1. The problem
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Data: The degree of confidence= B, Termination Criteria, Phenotype
Length= Lp, Genome Length= L, Phenotype Cardinality= Ap,
Genotype Cardinality= A, Ranking Technique (AvsL matrix Ia,l

or Raw Score Rank)
Determine Population Size (N) using B, L, A and Equation (3.11);1

Define first information source having cardinality Ap;2

Define second information source having cardinality A;3

Calculate the static threshold k0 using Equation (3.40 and A);4

Initialise g = 0;5

for n=1 to Population Size do6

Generate Individual of length Lp using first information source Ap;7

repeat8

g ← g + 1;9

Score each individual in the population using the objective function;10

Identify the Genotype matching each Phenotype;11

Generate Ia,l;12

Rank population using Ia,l and Raw Score from line 10;13

Determine major schema;14

Estimate the dynamic threshold kg using the effective solution density15

and Equation (3.47);
Collect monitoring metrics;16

Delete bottom ranked Ng,kg
individuals using Ranking Technique;17

Replace Ng,k0 individuals using second information source A;18

Replace Ng,kg
−Ng,k0 individuals using randomly selected individuals19

from above Ng,kg
;

for c=1 to 5N do20

Randomly select sections of length L/2 in two randomly selected21

genotypes and exchange these sections;

until termination criteria = true ;22

Algorithm 6: The HMXT genetic algorithm used to compare algorithm
performance across benchmarks and ranking techniques
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Tab. 5.1: Parameters, ranking and threshold setting for five bit trap benchmarks.

Experiment Lp A N ρ Estimation Ranking
Technique Technique

Experiment 1 60 bits 16 114 Ia,l Ia,l

Experiment 2 60 bits 64 439 Ia,l Ia,l

Experiment 3 60 bits 64 439 Ia,l Raw Score
Experiment 4 360 bits 64 553 Ia,l Raw Score
Experiment 5 360 bits 64 1106 Ia,l Raw Score

is deceptive because the algorithm is rewarded incrementally for each 1 it adds

to individuals, but the optimum solution consists of all 0s.

Five bit–trap experiments will be described (Table 5.1). The first will have a

genotype cardinality of A = 16 and use Ia,l matrix to both rank the population

and estimate the solution density. The second will repeat the first experiment

for a genotype cardinality of A = 64. A third experiment utilising the Ia,l

matrix for estimating solution density but using only the raw unscaled score for

ranking will then be described. Each of these three experiments will have a 60

bit phenotype. To increase the difficulty, the third experiment is repeated with

a 360 bit phenotype.

The first three experiments used here are comprised of 10 concatenated traps

each of 6 bits. Therefore, the genetic algorithm phenotype has a length of

Lp = 60 bits. For an allele cardinality of A = 16, a population size of N = 114

ensures that the algorithm has at least one allele of each value in each loci with

a confidence of B = 99%. For an algorithm using an allele cardinality of A = 64,

the population size required to achieve this confidence level is N = 439.

When the word length of the genotype does not fully encompass the phe-

notype bits participating in epistasis then the genetic algorithm has extreme

difficulty in reaching a solution. For example, epistasis exists between a group

of six phenotype bits in a 6–bit trap yet with genotype allele cardinality A = 16,

only four phenotype bits are coded into the genotype allele. Indeed as evidenced
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Fig. 5.1: The HMXT algorithm with allele cardinality A = 16 attempting to solve
a problem of 10 concatenated 6–bit traps (problem length Lp = 60 bits,
N = 114). The structural similarity is a normalised measure of the Hamming
distance to the optimal solution. The average of five trials is shown.

by the high estimated solution density and the low actual solution density of

Figure 5.1, a genetic algorithm with allele cardinality A = 16 is deceived by the

6–bit trap.

However, the same genetic algorithm using an allele cardinality of A = 64

solves the problem easily (Figure 5.2). Note that all three lines in Figure 5.2

using Ia,l scoring, approach the maximum level of one very quickly. 6585 eval-

uations are completed in the G = 15 generations required to converge to 0.9 of

the optimum. This compares favourably with Harik’s result for a 4–bit trap,

40–bit problem which required 4000 evaluations and a population size of 500

with an Extended Compact Genetic Algorithm (ECGA) to achieve a similar

result (0.93 of the optimum).

While these results appear promising, a variation of the HMXT algorithm

utilising the Ia,l matrix for estimating solution density but using only the raw

unscaled score for ranking, performs better on almost all occasions (Figure 5.3).
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Fig. 5.2: The HMXT algorithm with allele cardinality A = 64 solving a problem of
10 concatenated 6–bit traps (problem length Lp = 60 bits, N = 439). The
structural similarity is a normalised measure of the Hamming distance to the
optimal solution. The average of five trials is shown.
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Fig. 5.3: The HMXT algorithm with allele cardinality A = 64 solving a problem of 10
concatenated 6–bit traps (problem length Lp = 60 bits, N = 439) the same
as Figure 5.2 but ranking using only the raw score. The structural similarity
is a normalised measure of the Hamming distance to the optimal solution.
The average of five trials is shown.
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Indeed the allele cardinality of A = 64 genetic algorithm with a length of Lp = 60

bits and a population size of N = 439 using raw score ranking requires on

average 5707 evaluations in G = 13 generations to find the optimum solution.

This compares very favourably with Harik’s result (Harik, 1999) for a 4–bit trap,

40–bit problem which required 7300 evaluations and a population size of 1000

with an Extended Compact Genetic Algorithm (ECGA) and which found the

optimum.

As an Lp = 60 bit problem is relatively simple, the problem size is increased

in experiment four from Lp = 60 bit phenotype to a L = 360 bit phenotype

as concatenated 6–bit traps (Figure 5.4). A problem of this dimension has a

distribution of ideal alleles with high kurtosis. This makes it very difficult to

accurately locate the thresholds. As a result, the genetic algorithm suffers infor-

mation loss which prevents it from finding the optimum. This loss is addressed

in experiment five by doubling the population size from N = 553 to N = 1106

ensuring that at least two alleles are present with a confidence of 99% (Fig-

ure 5.5). The increased population permits the genetic algorithm to discover

the optimum consistently in G = 33 generations or 36498 evaluations.

5.3 NK Landscapes

NK fitness landscapes developed in Kauffman (1993) can be used to explore the

effects of epistasis on the ruggedness of a landscape and the degree of interaction

between symbols. Kauffman labels the number of loci in a genome with N and

the number of epistatic bits with K (hence NK landscape). For consistency

with the rest of this Thesis, the number of loci are labeled L and the population

size N . The number of epistatic symbols is denoted by K as is usual.
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Fig. 5.4: A problem of 60 concatenated 6–bit traps. The genetic algorithm has a length
of Lp = 360 bits and a population size of N = 553. 5530 evaluations are
completed in G = 10 generations. The genetic algorithm suffered information
loss which prevented it from finding the optimum. Note the low structural
similarity achieved.
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Fig. 5.5: A problem of 60 concatenated 6–bit traps, the same problem and allele car-
dinality as Figure 5.4, but with a doubled population size. The genetic
algorithm has a length of Lp = 360 bits and a population size of N = 1106.
11060 evaluations are completed in G = 10 generations. Note the improved
results due to doubled population size which has countered the information
loss apparent in Figure 5.4.
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Hence the fitness function is

F (n) =
1

L

L
∑

i=1

Fi(ai, ai1 , ai2 , ai3 . . . , aiK
) (5.1)

where the alleles ai belong to individual n, 0 ≤ K ≤ L − 1 and i1, . . . iK ⊂

1, . . . , i− 1, i + 1, . . . L and a lookup table of numbers representing the fitness

components Fi (Altenberg, 1996).

The parameter K adjusts the degree of ruggedness of the landscape and, as

shown in Skellett et al. (2005), also increases the expected value of the global

optimum which is located amongst many low lying peaks. NK landscapes come

in two broad varieties: adjacent neighbourhood and random neighbourhood. In

adjacent neighbourhood NK landscapes each of the K epistatic loci lie one after

the other, while for random neighbourhood landscapes each of the K epistatic

loci are randomly distributed throughout the genome.

Random neighbourhood NK landscapes are known to be NP complete for

K ≥ 3 (Weinberger, 1991). The optimum of NK landscapes can only be found

with certainty by using an exhaustive search. Therefore, a relatively small search

space is used to test the performance of a genetic algorithm on NK landscapes

to facilitate such a search by a separate search program. In addition, the ef-

fectiveness of combining epistatic bits into a single higher cardinality genotype

is explored. As a result, the random neighbourhood variant of NK landscape

is not examined. Instead each group of 6 epistatic bits neighbour each other.

Clearly this simplifies the problem and the relevance of this simplification is

discussed later in Section 5.5.

An NK landscape problem with K = 6 and Lp = 24 is used to test the

genetic algorithm. The genetic algorithm phenotype has a length of Lp = 24

bits and a population size of N = 100 for the allele cardinality A = 16 algorithm

and a population size of N = 381 for the allele cardinality of A = 64 algorithm.
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Fig. 5.6: An NK landscape problem with K = 6 and Lp = 24. When only 4 bits are
grouped by the genetic algorithm into a 16 symbol allele cardinality, a K = 6
landscape is difficult to solve. The genetic algorithm has a length of Lp = 24
bits and a population size of N = 100 individuals. 1000 evaluations are
completed in G = 10 generations. The structural similarity is a normalised
measure of the Hamming distance to the optimal solution.
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Fig. 5.7: An NK landscape problem with K = 6 and Lp = 24. When 6 bits are
grouped by the genetic algorithm into a 64 symbol allele cardinality, a K = 6
landscape is much easier to solve. The genetic algorithm has a length of Lp =
24 bits and a population size of N = 381. 3810 evaluations are completed in
G = 10 generations. The structural similarity is a normalised measure of the
Hamming distance to the optimal solution.
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These population sizes ensure that at least one higher cardinality allele exists

in each loci with confidence of 99 %. The average result over five trials is taken.

As before, when the word length of the genotype (A = 16) does not fully

encompass the K = 6 phenotype bits participating in epistasis, the genetic

algorithm has extreme difficulty in reaching a solution. Indeed, as evidenced

by the dotted line in Figure 5.6, the structural similarity of the best solution

compared to the optimal solution is little more than 0.5. Clearly, a genetic

algorithm with allele cardinality A = 16 is deceived by the K = 6 landscape.

However, the same genetic algorithm having an allele cardinality of A = 64

solves the problem in 3810 evaluations (Figure 5.7).

5.4 Benchmark Functions

The prototype HMXT algorithm was then applied to a selection of benchmark

functions from Li et al. (2006) to compare the performance of the approach to

algorithm design advocated in this Thesis with others. In each of the functions

F1 to F6, the variable xi is represented by six bits in the binary phenotype

dividing the function into 64 equally spaced intervals. This limits the resolution

the algorithm can achieve and in some cases alters the optimum that can be
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found. The functions are

F1 =
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Functions F1 through to F4 require a genetic algorithm phenotype with

length of Lp = 180 bits and a population size of N = 509 for a genotype allele

cardinality of A = 64. Similarly, functions F5 and F6 need a genetic algorithm

phenotype with length of Lp = 600 bits and a population size of N = 585 for

a genotype allele cardinality of A = 64. These population sizes ensure that at

least one of each genotype allele symbol exists in each loci with confidence of

99%. The average result over five trials is shown in Table 5.2.

The results of the genetic algorithm utilising the Ia,l matrix to determine

solution density and selection threshold with ranking by the raw score are pre-

sented in Table 5.2 below. The column labeled ‘Function Space’ indicates the

range over which the function is described and the dimensionality as an ex-

ponent. The results shown in brackets are those achieved in Li et al. (2006).

Importantly, Li et al. (2006) conducted 20, 000 evaluations during preprocessing

which are not included in their tabulated results.
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Tab. 5.2: The average results over five independent trials of the HMXT algorithm
applied to each function while utilising the Ia,l matrix to determine solution
density and selection thresholds with ranking by the raw score. Each point
in the function space is represented by 6 bits. The values shown in brackets
are those from Li et al. (2006).

Function Fn Space Evaluations Optimum Best Found

F1
[−500 : 500]30 21480 12569 12402

(34420 + 20000) (12569.47)

F2
[−5.12 : 5.12]30 18935 0 −5.9832

(56760 + 20000) (−4.24× 10−4)

F3
[−32 : 32]30 30438 0 −2.9102

(44400 + 20000) (−5× 10−6)

F4
[−600 : 600]30 42552 0 −2.1824

(45160 + 20000) (−1.5× 10−8)

F5
[0 : π]100 37791 99.2784 90.9667

(115020 + 20000) (97.61)

F6
[−5 : 5]100 51919 78.3324 77.5877

(86220 + 20000) (78.33)

While the function values achieved are not as good as Li et al. (2006), they

are commensurate and in all cases required significantly fewer function evalua-

tions. The results for F1 and F6 are within 2% of Li after less than 50% of Li’s

evaluations. The result for F5 underperformed Li by less than 7%, again with

fewer evaluations (14%). Li was a few orders of magnitude closer to the zero

optima of F2, F3 and F4. This is in part due to the limited resolution of the

Thesis representation. For example the Thesis representation for F2 is limited

to increments in the score of 1.2358 whereas Li can represent a number such as

−4.24× 10−4.

5.5 Mapping and Representation

Weinberger (1991) explains how random neighbour NK problems are NP com-

plete while adjacent neighbor NK problems are in P (although this may not

be as generally applicable as first thought (Gao and Culberson, 2002)). This
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explains the success in the previous section in solving both NK and 6–bit trap

problems when the genotype coding encompasses all epistatic phenotype bits

in a single genotype loci. However, the only difference between adjacent and

random neighbor problems is the relationship between phenotype symbols and

genotype loci. Hence, unless P = NP , the problem of finding the appropriate

genotype representation of the binary phenotype so that K epistatic bits are

grouped together into single high cardinality genotype loci must be a problem in

NP . It also indicates that the real difficulty faced by genetic algorithms applied

to NP problems is the mapping or representation, and not the original objec-

tive function problem. In other words, the difficulty with problems in general

lies not in the problems themselves, but rather in the way they are represented.

This observation is supported by a number of researchers (Reeves and Wright,

1995; Whitley, 2001; Rowe et al., 2004a).

5.6 Conclusion

The existence of both static and dynamic selection thresholds which govern the

accumulation of information in a genetic algorithm are described in Section 3.3.

The accurate identification of these thresholds is critical in minimising informa-

tion loss and avoiding premature convergence in a genetic algorithm. To identify

these thresholds, the solution density of a population must be estimated and the

population should be ranked in ideal allele order. Some techniques to achieve

these goals are explored by this Thesis. The cumulative score method proved

to be less successful than anticipated as the simpler raw score ranking provided

superior results.

The representation of binary phenotypes as higher cardinality genotypes is

demonstrated to eliminate epistasis from bit trap and NK landscape problems

when participating bits can be coded into a higher cardinality allele. This result
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suggests that problem complexity stems from the representation rather than the

problem itself. It also suggests that the focus of genetic algorithm optimisation

efforts should be directed at this mapping problem as once this is achieved (or

improved) the problem complexity is significantly reduced.

Three recommendations to improve the operation of genetic algorithms are

made:

• Use cardinality matched to, or exceeding, the degree (K) of epistasis in

the problem,

• Estimate the solution density of a population and selection thresholds

using the cumulative score method described in Section 3.5.4, and

• Rank the population using the raw objective function score.



6. INDUSTRIAL PROBLEM – SCHEDULING

6.1 A Final Test

Benchmarks developed by the genetic algorithm community are useful. How-

ever, they are contrived and have little relation to the structure and, more

specifically, the constraints of real world problems. On the other hand, the wide

variety of real world problems means that some problem instances are much

harder than others of the same type. Hence a good result in a particular real

world problem is not necessarily evidence of an advance in algorithm design.

For this reason researchers supporting industry have standardised on li-

braries of real problems of known difficulty and in some cases with a known

optimal solution. These industry benchmarks provide the benefit of being able

to compare algorithms while knowing the problem is of real–world complexity.

An area where industrial benchmarks are mature is scheduling, where li-

braries of problems of various sizes are readily available. One such library is

the Operational Research Library originally described in Beasley (1990). This

library contains a large number of different benchmarks for a variety of opera-

tional research problems, including numerous instances of flow, job, and open

shop schedules.

The Taillard benchmarks (Taillard, 1993) are widely used as they are repre-

sentative of real world scheduling problems in respect of both size and difficulty.

In addition, Taillard provided a straightforward means of generating each of the

260 instances and the Operational Research Library maintains a listing of the

best found result for each of these from a variety of researchers.
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This chapter will use a selection of Taillard benchmarks as a final test of

the model of genetic algorithm behaviour described herein. The objective of

this test will not be to find an optimum schedule as there is no known ‘best’

heuristic for job shop scheduling and the goal of this Thesis is not to find such

a heuristic. Instead this test will use a heuristic which is equally amenable to

a genetic algorithm which applies the key concepts explained in Chapter 3 and

to a control genetic algorithm which does not.

The control will not use a memoryless information source for mutation, nor

will it respect selection thresholds or crossover as described in Chapter 3. How-

ever, in all other respects the control genetic algorithm will mirror the HMXT

algorithm which applies the key concepts laid out in this Thesis. This will facili-

tate a fair comparison of the HMXT algorithm to the control genetic algorithm.

The Taillard job shop instances chosen as the real world test for the HMXT

algorithm generate two matrices: the processing time for each operation (D)

and the machine sequence of each job (M ). These matrices are used to generate

job shop schedules and to calculate the makespan of a schedule which is the time

from schedule start to finish.

The chapter will outline the available industry benchmarks and then provide

a brief description of job shop scheduling problems. How job shop schedule

problems may be represented as a genome is then discussed and a representation

equally amenable to a genetic algorithm implementing the concepts described

by this Thesis and a control genetic algorithm is described. The results of this

final test are then provided and discussed.

6.2 The Scheduling Problem

Scheduling problems are amongst the most difficult practical problems which are

provably NP–hard. Industrial tasks from car assembly lines to the scheduling
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of maintenance teams into tasks and jobs onto processors are examples of job

shop scheduling problems of use to industry. Even small incremental percentage

improvements in these schedules can provide significant financial advantages. In

addition they are interesting from a theoretical standpoint as even seemingly

small problems such as the MT10 benchmark introduced by Muth and Thomp-

son in 1963 was not provably optimally solved until 1989 (Schmidt, 2001).

Scheduling problems are concerned with the allocation of resources to the

completion of a set of tasks. Each scheduling problem is characterised by five

components:

• a number of resources, usually called machines;

• a number of tasks called jobs;

• a processing time for each job on each machine;

• a set of constraints;

• an objective function to be optimised.

The nature of the constraints are the primary differences between classes of

scheduling problem. A flow shop problem sets the order of machines through

which all jobs must pass, and permits the job sequence to vary. The job shop

problem sets a different sequence of machines for each job, while the open shop

problem does not constrain either the order of machines or jobs.

Each class of scheduling problem may use any one of a variety of objective

functions. The most common is the makespan which defines the period from

commencing the first job to completing the last job. However, makespan is

of little use if the schedule is dynamic; for example, if new jobs are added to

the schedule or if things go wrong which disrupt some machines as the work

proceeds. In these cases the objective function used seeks to minimise machine
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idle time (van Otterloo, 2002). This Thesis will use makespan as the objective

function to be optimised.

6.2.1 Job Shop Schedules

Formally, a job shop schedule consists of jobs {j | j ∈ Z+ : 1 ≤ j ≤ J}

and operations {i | i ∈ Z+ : 1 ≤ i ≤ M} performed on one of M machines.

Each operation i requires a fixed amount of time Dij to complete without

interruption. No machine may process more than one operation at a time, and

each operation must complete before the next operation of that job begins.

Jobs must pass through all machines and through each machine only once. To

simplify later explanation these constraints will be numbered.

1. Each job has i operations, each of which must occur on a specific machine

m in a specified order.

2. Each operation i requires a fixed amount of time Dij ≥ 0 to complete

without interruption.

3. Each operation must complete before the next operation of that job begins.

4. No machine may process more than one operation at a time.

An example of a machine sequence (M) for each job is given in Table 6.1. An

example of job times (D) for each machine is given in Table 6.2.

Critical Operations and Critical Blocks

The sequence of operations across jobs and machines which determine the

makespan is the schedule’s critical path. Operations belonging to the critical

path are known as critical operations. A critical block is a sequence of critical

operations having zero idle time on the same machine. Critical blocks in the

example in Figure 6.1 are shown underlined. It has been proven (Jensen, 2001)
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Tab. 6.1: An example sequence of machines per job (M ). For clarity of presentation
the matrix M is transposed here and machines are indicated by numbers.

Job 1st 2nd 3rd 4th
Operation Operation Operation Operation

A 1 4 2 3
B 4 1 3 2
C 2 3 1 4
D 2 4 3 1

Tab. 6.2: An example matrix (D) which specifies the time (in units) required by each
operation of each job in the example problem. For clarity of presentation
the matrix D is transposed here and machines are indicated by numbers.

Job 1st 2nd 3rd 4th
Operation Operation Operation Operation

A 2 4 1 3
B 5 8 4 4
C 4 4 4 2
D 6 9 5 1

Tab. 6.3: An ambiguous schedule showing the sequence of jobs per machine as trans-
formed from Table 6.1. Note that decisions need to be made as some jobs
compete for the same machine at the same sequence point.

Machine 1st 2nd 3rd 4th
Operation Operation Operation Operation

1 A B C D
2 C, D A B
3 C B, D A
4 B A, D C
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Fig. 6.1: A schedule with critical blocks shown underlined.

that only a change at the beginning or the end of a critical block can alter the

makespan. This focuses heuristic attention on permutations of critical blocks.

Bottlenecks

As the job shop problem specifies inM the sequence of machines through which

each job must pass, this sequence can be simply transformed to a sequence of

jobs on each machine (Table 6.3). However, some jobs seek access to a machine

at the same point in the sequence of operations. Table 6.3 shows these operations

in the same column representing a bottleneck for that sequence point. For

example jobs C and D both require machine 2 for their first operation, jobs A

and D both require machine 4 for their second operation and jobs B and D both

require machine 3 for their third operation. A sequence point bottleneck results

in ambiguity that must be resolved by a decision on how to order these jobs

through the subject machine. Figure 6.2 shows these sequence point bottlenecks

circled. Only when the sequence point bottlenecks are resolved does a sequence

of jobs through machines form a schedule.

The schedule then reveals timing bottlenecks, where jobs seek access to ma-

chines at the same time. As operations have different processing times, opera-
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Fig. 6.2: A schedule with sequence point bottlenecks circled.
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Fig. 6.3: A schedule with timing point bottlenecks circled.

tions may seek access to the same machine at the same time (although due to

differing processing times, these operations may be at different sequence points).

These are timing point bottlenecks. Figure 6.3 shows these timing point bottle-

necks circled. Once again a decision on the priority order of operations must be

made. Resolving these two key decisions, the sequence point decisions and the

timing point decisions at the appropriate place in schedule construction will be

the focus of the genetic algorithms described in this chapter.

It is interesting to observe that as these improvements to the schedule reduce

the makespan, the critical path (underlined in Figure 6.2) approaches other

‘almost critical’ paths until the current critical path is shorter than an ‘almost

critical path’ which then takes over as the critical path. As this new critical path
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shortens, it approaches and may then equal the old critical path, so there may

now be two equal critical paths and so on. As the makespan shortens further

the number of these equal or almost equal paths must increase. This means

that the problem becomes increasingly complex to represent as it converges to

an optimum.

6.3 The Application of Genetic Operators to Schedules

Scheduling problems may be represented in many ways for solution by genetic

algorithm. Some representations provide a high degree of manipulative freedom

to an algorithm, but may require special operators or enumerative checking to

ensure that constraints are not violated, while others may limit the freedom of

an algorithm to ensure constraints are not violated.

Because jobs must pass through all machines, and through each machine

only once, this means that a gene defining the job sequence through a machine

may only have one occurrence of each allele representing a particular job. This

presents a difficulty for genetic algorithms as the crossover operator alters the

allele frequency per individual. Hence crossover may result in a gene with

repeated alleles which translates to machines with repeated jobs and missing

jobs. This violates constraint number one from Section 6.2.1.

The way many researchers (eg. Liang and Lewis (1995); Liaw (2000); Prins

(2000)) ensure that alleles are not repeated is to modify the crossover and mu-

tation operators. Nearchou (2003) provides an excellent summary of the most

common modifications to these operators which ensure that repeated alleles do

not occur in the resulting population. Nearchou’s ‘best’ crossover and mutation

operators will be outlined.

The Nearchou C3 crossover operator is modified so that a selected section

from one parent is copied exactly to a child as usually occurs with crossover.
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However the remaining loci in the child are populated from a second parent, not

from the remaining loci positions, but instead from those alleles in the second

parent that have not been supplied by the first parent. The only thing copied

from the second parent then is the relative order of these alleles. Figure 6.4

illustrates the approach. This means that the alleles sourced from the second

7

1 2 3 4 5 6 7

2 7 3 4 5 6 1

5 2 3 6 4 1

Fig. 6.4: Nearchou C3 crossover operator which preserves allele frequency in a child
individual (Parent 1 on top, Parent 2 on bottom, child center).

parent do not preserve allele frequency in loci across the population. Hence this

modified crossover is a hybrid of crossover plus allele translation, which alters

the properties of the crossover operator. As a result, using this modified form

of crossover will not necessarily demonstrate the effectiveness or otherwise of

crossover as described in Section 3.4.

The mutation operators described in Nearchou (2003) do not use a memory-

less information source to alter alleles in the population. Instead, the ‘mutation’

operators described are actually allele translation, where alleles are ‘swapped’

between loci in a genome (Nearchou M2), or allele inversion, where a contigu-

ous group of alleles in a genome are ‘flipped’ end–to–end (Nearchou M5). Since

surviving parents are used as the source of alleles, these forms of ‘mutation’ use

an information source with memory and do not demonstrate the importance or

otherwise of the static selection threshold as described in Section 3.3.

In addition, mutation operators such as these which translate alleles left,

singly or in combination, also move all other alleles one (or more) loci to the
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right. Nearchou’s research identifies the operator labeled M3 as the most suc-

cessful of those examined. The M3 operator consists of a randomly selected

operation being shifted a random number of operations earlier in the sequence

of operations. Hence a single ‘mutation’ not only alters the allele frequency

in one loci across the population, but in all loci to the right of the mutated

allele. This introduces additional epistasis into the genome as discussed in Sec-

tion 3.4.2.

Since the relative order of alleles (and hence operations) is important in

scheduling problems, Nearchou’s approach is reasonable and, as reported in

Nearchou (2003) and others, successful. However, it means that mutation has

global influence rather than a local influence on the genome. Interestingly, the

fact that these modified operators are successful when applied to scheduling

problems suggests that relative order of allele sequences rather than absolute

allele positions in the genome are significant in these problems.

6.3.1 Problem Knowledge

How a problem is represented can have a significant impact on the efficiency

of a genetic algorithm, as is seen in Section 3.5.4 where a technique to combat

epistasis and hence problem complexity is described. Indeed, a recurring theme

throughout this Thesis is the difference in problem difficulty when only the

problem representation is changed. This observation is not new.

Vose and Liepins (1991) showed that there exists a Mt. Fuji representation

for all fitness functions. In reference to Vose, Sharp (2000) points out that for a

given NP–hard problem, finding the Mt. Fuji representation must be an NP–

hard task by itself. If this is not the case it means that an NP–hard search

problem could be used to solve all NP–complete decision problems in P time.

This would contradict the widely believed assumption that P 6= NP .
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Further evidence supporting the notion that problem representation is crit-

ical to a successful algorithm is the well known ‘No Free Lunch’ theorem of

Wolpert and Macready (1997). ‘No Free Lunch’ shows that for an algorithm

to have better than average performance, some knowledge of a problem is re-

quired to match the algorithm to the class of problem. However, encoding such

problem knowledge into the genetic algorithm operators, as done by Nearchou,

alters the operator properties and prevents a true comparison of the HMXT

algorithm to a control algorithm. This means that this Thesis must encode

problem knowledge into the genome representation to facilitate comparison be-

tween the HMXT algorithm and a control algorithm.

6.3.2 A Common Representation

Since a schedule is a sequence of jobs through machines, it is relatively simple to

represent each job as an allele and each sequence of operations on a machine as a

chromosome formed from these alleles so that the sequences of alleles in chromo-

some 1 is the sequence of jobs which pass through machine 1 and the sequence

of alleles in chromosome 2 is the sequence of jobs which pass through machine 2.

Hence, each individual representing a schedule has a number of chromosomes,

each of which represent a sequence of jobs on a particular machine. This is the

representation often used by researchers applying genetic algorithms to schedul-

ing problems (Liang and Lewis, 1995; Liaw, 2000; Prins, 2000; Nearchou, 2003).

This commonly used representation leads to the modified operators described

above.

As this Thesis is not about developing job shop schedule heuristics, ideally

an existing, well accepted, representation of job shop schedules for genetic al-

gorithms would be adopted to test the operators described in Chapter 3 of this

Thesis. Unfortunately, all such representations found, including Liang and Lewis

(1995), Liaw (2000), Prins (2000), Ye and Papavassiliou (2001), Pongcharoen
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et al. (2002), Nearchou (2003), Puente et al. (2004), and Wu et al. (2004) incor-

porate altered genetic algorithm operators, such as mutation from an informa-

tion source with memory, altered crossover operators to eliminate the possibility

of repeated jobs per machine or repair schemes to ‘correct’ non–sense schedules.

Such altered operators cannot be used to test the effectiveness of mutation

using a memoryless information source nor the importance of respecting selec-

tion thresholds. In the one representation found were altered operators where

not employed (Gonalves et al., 2005) a number of empirical parameters gov-

erning gene interpretation and mutation were used. As these parameters were

set by trial and error their use introduces uncertainty regarding the relative

importance of the operators described in Chapter 3 compared with the impor-

tance of a correctly set empirical parameter. As a result of these considerations

the algorithm described by Gonalves has not been used by this Thesis and an

alternative representation must be developed.

6.3.3 An Alternative Representation

An alternative representation of a job shop schedule is required that is able

to utilise operators described in Chapter 3 with equal utility and few, if any,

other changes to the algorithm. Any problem knowledge incorporated in the

representation must be equally accessible to both the HMXT algorithm and the

control algorithm. Such a representation permits a fair comparison between a

HMXT genetic algorithm and a control genetic algorithm.

Since the aim of this research is to improve the design of genetic algorithms

by revealing the underlying dynamics influencing genetic algorithm parameters,

little time can be devoted to also finding a new and optimal, or even best

practice, representation of the job shop schedule problem. Nevertheless, an

alternative representation that meets all four constraints of job shop schedules,

resolves both sequence and timing bottlenecks and is equally amenable to the
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HMXT algorithm and a control without giving advantage to one or the other

will be attempted.

Sequence Point Bottlenecks as High Cardinality Alleles

As described in Section 6.2.1, sequence point bottlenecks must be resolved to

obtain a candidate schedule from those jobs seeking access to the same machine

at the same sequence point. This necessitates a decision by the algorithm to

resolve the sequence. Then the resulting timing point bottlenecks must be

resolved to identify the best order of operations which are competing for access

to the same machine at the same time.

Referring to Table 6.3 the sequence point bottlenecks are indicated by the

three cells containing two jobs (C, D) (B, D) & (A, D). Having identified the

sequence point bottlenecks the operations involved in each bottleneck are then

encoded into a single high cardinality allele so that one allele might represent the

sequence D, C while a different allele represents the sequence C, D. This reduces

the number of loci in the genome, since there are fewer of these bottlenecks

than jobs per machine. The individual shown in Figure 6.5 encodes a potential

solution to the example sequencing decision. By combining this individual with

the operation times given in Table 6.2 the ambiguous schedule of Table 6.3 is

transformed into a candidate schedule as shown in Figure 6.6.

Figure 6.6 shows the critical path underlined and the resolved sequence point

bottlenecks circled. The approach described permits unmodified crossover and

mutation from a memoryless information source as the entire sequence of op-

erations forming each bottleneck are encoded into a single loci (Figure 6.5).

This means that mutation and crossover only alter the permutation of opera-

tions at a bottleneck (ie. make the sequencing decision explained above) and

do not duplicate jobs in machines. This representation is equally amenable to

the operators described in Nearchou (2003).



6. Industrial Problem – Scheduling 189

DBD ADC2�� operation1�� operation
L o
c i  
3

L o
c i  
2

L o
c i  
1

Fig. 6.5: An individual deciding the sequence of operations in a critical block. Each
pair of letters shown (CD), (DB) and (AD) are treated as single alleles by
the HMXT algorithm.
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Fig. 6.6: A schedule constructed by applying the individual of Figure 6.5 to the am-
biguous schedule of Table 6.3.
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Fig. 6.7: Another individual resolving the second sequence point bottleneck (loci 2)
differently to the individual shown in Figure 6.5.
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Fig. 6.8: The schedule resulting from applying the individual of Figure 6.7 to the
ambiguous schedule of Table 6.3.

Similarly the ambiguous schedule of Table 6.3 may be transformed by a

second individual (Figure 6.7) into a different candidate schedule (Figure 6.8).

This second individual resolves the second sequence point decision differently

from Figure 6.5 resulting in a more fit individual as its makespan is less than

Figure 6.6. Such an individual may have been randomly generated or may have

been constructed during crossover by the exchange of loci 2 between the indi-

vidual illustrated in Figure 6.5 and another individual. In this way a population

of individuals are evaluated and ranked in order of fitness to determine a ‘best’

sequencing of jobs onto machines.
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The main disadvantage of this representation is that operations outside of

the bottlenecks cannot be reordered by the algorithm. This is alleviated by

allowing the inclusion of the operation immediately prior to a bottleneck and

the operation immediately following a bottleneck into the high cardinality allele.

However this can only be done when it will not violate a schedule constraint

and so does not deliver full freedom of action to the algorithm. For simplicity

the inclusion of these ‘preceding’ and ‘following’ operations are not shown in

the example figures.

Operation Blocks as High Cardinality Alleles

Having provided a means to resolve the sequence point bottlenecks and arrived

at a best candidate schedule (Figure 6.8), the time point bottlenecks must now

be resolved. The candidate schedule of Figure 6.8 is now used as a template and

a completely new and different genome is constructed representing changes to

the sequence of critical operations in the template’s time point bottlenecks.

Because the reordering of operations at time point bottlenecks will be done

relative to a template, each allele in the new genome need only represent the

operation’s new position relative to its current position in the template and not

the specific operation itself (Figure 6.9). First recall that a critical block is a

sequence of critical operations having zero idle time on the same machine and

the critical path is made up of operations in critical blocks. There are seven

critical operations (shown circled) in the example of Figure 6.10 (top). Hence

the individual in Figure 6.9 shifts the seventh critical operation two places to

the left and leaves all others untouched, resulting in the new schedule shown in

Figure 6.10 (bottom).

It is the representation shown in Figure 6.9 which is subject to mutation,

crossover and selection by the algorithm. While it is the representation shown

in Figure 6.10 which is tested and evaluated against the objective function
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Fig. 6.9: An individual encoding a shift of −2 changes the upper schedule of Fig-
ure 6.10 into the lower schedule by shifting the 7th bottleneck operator two
positions left.
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Fig. 6.10: Applying the individual shown in Figure 6.9 to the upper schedule, results
in the lower schedule where job ‘A’ has shifted two places left on machine 3.
The lower schedule has an improved makespan and a changed critical path.
This is how stage two of the HMXT algorithm continually refines schedules.



6. Industrial Problem – Scheduling 193

(makespan minimisation). This introduces the idea of a genotype (Figure 6.9)

which represents changes to schedule operation positions relative to a template

schedule to construct a phenotype (Figure 6.10), which is used to evaluate the

fitness of the individual.

The cardinality of alleles in this genotype can be limited to ensure that,

irrespective of the affect of mutation and crossover, the schedule constraints can

never be violated. Unfortunately, this also limits the freedom of the algorithm

regarding which operations can be moved and hence the absolute success of the

algorithm in finding an optimal schedule. This freedom can be improved by

making each allele value conditional on surrounding alleles in each individual,

but this would require checking every individual for constraint violations rather

than just the template. Hence the overhead of this increased freedom is high

and has not been implemented.

Because a good schedule is used as a template, this means that the ‘current

best schedule’ can be selected at any point and used as a new template. This is

important as changes to schedules produce new critical paths and new timing

point bottlenecks requiring resolution by the algorithm.

6.4 Experimental Trials

This section describes the design of experimental trials using Taillard bench-

marks. First how the alternative representation of Section 6.3.3 is implemented

in a HMXT algorithm will be explained. Then the control algorithm used as

a comparison will be outlined. Selected benchmarks from Taillard will then be

described, the results of the experiments presented and conclusions drawn.
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6.4.1 Experiment Design

Both the HMXT algorithm and the control algorithm used to optimise a job

shop schedule will have two stages. The first stage will resolve the sequence

point bottlenecks. The algorithm’s first stage is followed by a second stage

which resolves the time point bottlenecks. The second stage is then repeated

with the output of the stage two forming the input template for another iteration

of stage two. This staging of the algorithm is shown in Algorithm 7.

In stage one the matrices D and M from Taillard are used to construct a

sparse three dimensional array Zi,s,a is illustrated in Figure 6.11. Zi,s,a has

rows representing i machines, columns for s sequence points and where a job

seeks access to an occupied sequence point in Zi,s,a, the integer (j) representing

the job is placed at Zi,s,a+1. The location in Z of this sequence point bottleneck

is also recorded.

Using the example of Table 6.3, machine one is encoded into row one of Z

so that Z1,1,1 = A, Z1,2,1 = B, Z1,3,1 = C, Z1,4,1 = D, then for machine two

Z2,1,1 = C, Z2,1,2 = D, Z2,2,1 = 0, Z2,3,1 = A and Z2,4,1 = B and so on for

the remaining two rows (machines) in Z. The sequence point bottleneck can be

identified by the presence of a positive integer in Zi,s,2. It is important to note

that Z is not an individual, it is a matrix representation of Table 6.3 which the

algorithm can use to find sequence point bottlenecks and construct individuals.

When all jobs have been assigned to the array Zi,s,a, a population of indi-

viduals is then constructed having a locus for each sequence point bottleneck

in Z with alleles representing a random permutation of the jobs forming the

bottleneck. In other words, each loci in an individual represents the job se-

quence given at Zi,s,1:a when a > 1. This first stage produces a population of

individuals such as in Figures 6.5 and 6.7.
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Fig. 6.11: An illustration of the sparse matrix Z showing how operations are placed
into a three dimensional array, with competing operations placed in the next
available position in the dimension marked ‘a’. This is used to construct an
individual such as in Figure 6.7.

This population is acted on by the HMXT algorithm (Algorithm 8). Hence,

individuals below the static selection threshold are replaced with newly gen-

erated individuals, while individuals between the static and dynamic selection

thresholds are replaced by randomly selected survivor parents from above the

dynamic threshold. The control algorithm acts on a population formed in the

same way, but uses operators as described in Nearchou (2003) instead. The

specific form of genetic algorithm used as a control is shown in Algorithm 9.

The first stage of both algorithms seeks a best resolution to the sequence

point bottlenecks and generates a template job shop schedule (Z ′) being the best

job shop schedule found by stage one. The template (Z ′) contains a number of

time point bottlenecks. These form blocks of jobs as described in Section 6.3.3.

In the second stage the location in Z ′ of jobs in these blocks is identified

and the maximum possible left (−b) and right (+c) shifts of these jobs, that will

not violate a constraint, is recorded (where b and c are integers). A population

of individuals is then generated having loci for each job in a block with alleles

(a) randomly generated from the interval −b ≤ a ≤ c. Figure 6.10 shows an

example of how an individual encoding a shift of −2 in loci 7 changes the upper

schedule into the lower schedule.
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Data: Taillard Matrix (D) and (M), The degree of confidence= B,
Termination Criteria (One & Two), Ranking Technique (Raw
Score Rank)

/* Begin Stage One to construct and optimise a schedule

template which resolves the Sequence Point Bottlenecks */

Define Template Schedule (Z) using D and M ;1

Implement Genetic Algorithm 8 (Thesis) or 9 (control);2

/* Begin Stage Two. The input of Stage Two is the Output of

Stage One, an improved schedule. Since the output of

Stage Two is also an improved schedule, Stage Two can be

iterative. */

Define Template Schedule (Z ′) using best individual from Stage One or3

Stage Two; repeat
Implement Genetic Algorithm 8 (Thesis) or 9 (control);4

until termination criteria two = true ;5

Algorithm 7: Staging used to optimise job shop schedules by first focusing
on sequence bottlenecks (stage one) and then on timing bottlenecks (stage
two).

Additionally, as individuals represent shifts to operations in the template,

an all zero individual is forced into the population so that at least one individual

is as good as the best from the previous stage. That is, an individual such as

the one shown in Figure 6.10 except that all loci have zeros representing ‘no

change from the template’ individual.

This second stage generates a series of populations from which job shop

schedules may be constructed by applying the permutations described by each

individual to the template Z ′. Each of these candidate job shop schedules will

have different time bottlenecks than the template schedule (Z ′). Hence, when

the algorithm reaches the termination criteria as described in Section 3.6, the

second stage may be terminated and the resulting best schedule examined.

As with the first stage, the second stage population is acted on by the HMXT

algorithm (Algorithm 8). Hence, individuals below the static selection thresh-

old are replaced with newly generated individuals, while individuals between

the static and dynamic selection thresholds are replaced by randomly selected
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Data: Template Schedule (Z), The degree of confidence= B,
Termination Criteria One, Ranking Technique(Raw Score Rank)

Define Lp, Ap, L, A using dimension of Z;1

Define first information source having cardinality Ap;2

Define second information source having cardinality A;3

Determine Population Size (N) using B, L, A and Equation (3.11);4

Calculate the static threshold k0 using Equation (3.40);5

Initialise g = 0;6

for n=1 to Population Size do7

Generate Individual of length Lp using first information source (Ap);8

repeat9

g ← g + 1;10

Score each individual Phenotype in the population using the objective11

function;
Identify Genotype matching Phenotype;12

Generate Ia,l;13

Rank population using Ranking Technique;14

Determine major schema of Genotype;15

Estimate the dynamic threshold kg using major schema and16

Equation (3.47);
Collect monitoring metrics;17

Delete bottom ranked Ng,kg
individuals using Ranking Technique;18

Replace Ng,k0 individuals using second information source (A);19

Replace Ng,kg
−Ng,k0 individuals using randomly selected individuals20

from above Ng,kg
;

for c=1 to 5N do21

Randomly select Genotype sections of length L/2 in two randomly22

selected individuals and exchange these sections;

until termination criteria one = true ;23

Algorithm 8: The HMXT Algorithm used to optimise job shop schedules
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Data: Template Schedule (Z), The degree of confidence= B,
Termination Criteria One, Ranking Technique(Raw Score Rank)

Define Lp, Ap, L, A using dimension of Z;1

Define first information source having cardinality Ap;2

Define second information source having cardinality A;3

Determine Population Size (N) using B, L, A and Equation (3.11);4

Initialise g = 0;5

/* Next line for performance monitoring only */

Calculate the static threshold k0 using Equation (3.40);6

for n=1 to Population Size do7

Generate Individual of length Lp using first information source (Ap);8

repeat9

g ← g + 1;10

Score each individual Phenotype in the population using the objective11

function;
Identify Genotype matching Phenotype;12

/* Performance monitoring only */

Generate Ia,l;13

Determine major schema;14

Estimate the dynamic threshold kg using major schema and15

Equation (3.47);
Collect monitoring metrics;16

/* End performance monitoring */

/* Control operators from Nearchou (2003) follow. */

Rank population using Ranking Technique;17

Apply Tournament Selection or Linear Ranking Selection to construct18

next generation;
Apply Nearchou’s Mutation type M3 to Genotype (Nearchou, 2003);19

Apply Crossover to Genotype as described in Nearchou (2003);20

until termination criteria one = true ;21

Algorithm 9: The Control Genetic Algorithm used to compare with the
HMXT algorithm for job shop schedules



6. Industrial Problem – Scheduling 199

survivor parents from above the dynamic threshold. The control algorithm

acts on a population formed in the same way, but uses operators as described

in Nearchou (2003) instead. The specific form of genetic algorithm used as a

control is shown in Algorithm 9.

Both the input and the output of the second stage is a job shop schedule.

Because of this, the best resulting job shop schedule from the second stage may

be made into the new template and the second stage repeated to improve the

overall schedule. Each iteration of stage two will refocus the algorithm on the

newly formed time point bottlenecks.

As stage two may be repeated indefinitely, a decision must be taken on

when to terminate a stage and commence the next stage. Section 3.6 discusses

a number of criteria such as solution density and population entropy. However,

these cause variation in the number of generations per stage. This in turn

makes comparison between different trials, problems and algorithms less clear

than it needs to be to identify relevant differences. Therefore, after examining

the behaviour of a few trials, it was decided to make each stage 50 generations

long and complete 500 generations in total.

While the representation described is not particularly elegant for job shop

schedules, it is equally amenable to both the HMXT algorithm and a control

genetic algorithm using the operators described in Nearchou (2003). This facil-

itates the aim of comparing the Chapter 3 operators with a control.

6.4.2 Selected Benchmarks from Taillard

Taillard (1993) provided a straightforward means of generating each of 260 in-

stances of scheduling benchmarks, including 120 flow shop problems, 80 jobshop

problems and 60 open shop problems. There are eight groups of job shop prob-

lems each with ten instances.
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The eight groups are:

• 15 jobs and 15 machines (ta01 – ta10)

• 20 jobs and 15 machines (ta11 – ta20)

• 20 jobs and 20 machines (ta21 – ta30)

• 30 jobs and 15 machines (ta31 – ta40)

• 15 jobs and 20 machines (ta41 – ta50)

• 50 jobs and 15 machines (ta51 – ta60)

• 50 jobs and 20 machines (ta61 – ta70)

• 100 jobs and 20 machines (ta71 – ta80)

The Taillard instances selected to test the usefulness of the main contribu-

tions of this Thesis are:

• 15 jobs and 15 machines (ta01 – ta10)

• 30 jobs and 15 machines (ta38)

• 50 jobs and 20 machines (ta68)

• 100 jobs and 20 machines (ta72)

The first 10 benchmarks where chosen as they could be completed relatively

quickly on the processor available. The last three were chosen randomly from

the harder Taillard problems to test the algorithms on truly difficult job shop

schedules.

Five independent trials for each problem are conducted and the average

makespan for each is compared to the average makespan for five trials of the
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control genetic algorithm. Five was chosen as the number of trials per experi-

ment due to the length of time required to complete a single trial, especially for

the harder benchmarks (24–48 hours). Section 6.4.4 provides these comparisons.

The normalised makespan

Mnorm = 1− Makespan−Optimum

Optimum
(6.1)

scales the schedule’s actual makespan to a value between 0 and 1. This simplifies

comparison between different trials, benchmarks and algorithms. The Optimum

in Equation (6.1) is from Taillard. Figure 6.12 shows the normalised makespan

per generation for the five trials of a single problem (Taillard 02) to provide a

feel for the behaviour of a representative problem.
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Fig. 6.12: All 5 trials for a HMXT algorithm optimising a Taillard 02 benchmark as
an illustration of the typical variation between trials for a given problem.
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The genome produced by the representation described in Section 6.4.1 varies

in length, allele cardinality and population size from stage to stage and from

trial to trial as well as between problems. This variability arises in stage one

between problems as the template varies from problem to problem. In stage two

these parameters are even more variable as the template is based on the best job

shop schedule discovered by stage one, or the preceding repetition of stage two.

As the blocks vary in size and number, so does the genome length, cardinality

and population size. Table 6.4 illustrates the magnitude of these parameters.

Tab. 6.4: Summary of the parameters used by the representation described in Sec-
tion 6.3.3 to operate on various Taillard benchmarks. These parameters
vary from stage to stage and trial to trial. Hence they are only representa-
tive of the magnitude they take.

Function Problem Size Genome Allele Population
(jobs,machines) Length Cardinality Size

Ta01 15, 15 64 7 57
Ta02 15, 15 61 5 40
Ta03 15, 15 63 7 57
Ta04 15, 15 58 6 48
Ta05 15, 15 59 7 57
Ta06 15, 15 62 7 57
Ta07 15, 15 55 7 56
Ta08 15, 15 55 8 65
Ta09 15, 15 65 8 66
Ta010 15, 15 57 8 65
Ta038 30, 15 129 10 90
Ta062 50, 20 277 14 138
Ta071 100, 20 384 24 248

6.4.3 What Experimental Observations Characterise a ‘Good’ versus a ‘Poor’

Result?

Section 6.4.4 applies the HMXT algorithm to a series of real world problems and

compares the results to a control algorithm applied to the same problems. A

short discussion of what comparative behaviour might constitute favourable and

unfavourable observations will facilitate this comparison. Figures 6.13 and 6.14
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illustrate the general profiles of algorithm performance in support of this dis-

cussion.

To observe if an algorithm outperforms a control, the mean results of the

algorithm should possess a profile similar to that marked ‘excellent’ or ‘good’ in

Figure 6.13 as such profiles indicate that the algorithm has not been deceived

to a significant degree and produce results for industry within a useful period.

By comparison, if an algorithm has a mean profile as shown by the line marked

‘poor’ in Figure 6.13, then clearly it converges too quickly and, while early re-

sults are promising, the control provides a better result to industry within a

useful period. In a similar way, subtracting the mean results of a control from

the mean of an algorithm will highlight the early vs late performance of the

algorithm when compared to the control (Figure 6.14). Hence, in the experi-

ments to follow, the observed behaviour of the algorithm’s normalised makespan

should be similar to the lines marked ‘excellent’ or ‘good’ in Figure 6.13 while

the difference in normalised makespan should be similar to the lines marked

‘excellent’ or ‘good’ in Figure 6.14.

6.4.4 Job Shop Schedule Results

Figures 6.15 – A, B & C show as lines the averages over five trials for the

problems Taillard01 to Taillard10 (15 jobs by 15 machines). Figure 6.15 – A

is a control genetic algorithm with Linear Ranking while Figure 6.15 – B is

a control genetic algorithm with Tournament Selection. Figure 6.15 – C is a

HMXT algorithm.

The first characteristic that stands out when examining the results is the

periodic discontinuities at G = 50, 100, 150, . . . , 500. These are points where

the algorithm initiates the transition from stage one to stage two (G = 50)

and the subsequent iterations of stage two (G = 100, 150, 200...500). These

transitions occur as the algorithm can now exploit the new set of critical blocks
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Fig. 6.13: Using a hypothesised control as a comparison, the anticipated mean profiles
of ‘excellent’, ‘good’ and ‘poor’ algorithms are illustrated.
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in its search for an improved schedule. All three algorithms, each control and

the HMXT algorithm, use a new randomly generated population of individuals

at the commencement (or recurrence of) stage two.

The only difference between the two control algorithms are the selection

schemes used: Linear Ranking and Tournament Selection. Linear Ranking

(Figure 6.15 – A) continues to improve at transition to stage two because of

the high probability with which Linear Ranking retains the all zero individual

which is forced into the population at stage two. By comparison, the perfor-

mance of Tournament Selection (Figure 6.15 – B) declines before improving.

This occurs because Tournament Selection runs a high probability of filling all

vacant population positions before chance (1/N) selects the all zero individual

for a tournament.

While the HMXT algorithm (Figure 6.15 – C) possesses a similar transition

profile as Tournament Selection, it does so for different reasons. The HMXT

algorithm does retain the all zero individual as it is a high, perhaps the highest,

performing individual early in stage two. However, large amounts of crossover

are then used to distribute the alleles throughout the population as suggested in

Section 3.4. This redistribution results in a fall in solution density early in the

stage which manifests as a decline in normalised makespan. Both the control

algorithm with Tournament Selection and the HMXT algorithm rapidly recover

from this early setback and ultimately benefit from it as evidenced by their

outperformance of Linear Ranking.

The control with Tournament Selection and the HMXT algorithm achieve

comparable results. However the HMXT algorithm consistently outperforms

both control algorithms in all experiments. This is especially evident in the

first 50 to 100 generations, where the HMXT algorithm has a far greater rate of

improvement than the control using either Linear Ranking or the Tournament
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Fig. 6.15: Each line is the average of five trials of Taillard 01 to 10, acted on by
the control with Linear Ranking (A), then the control with Tournament
Selection (B) and finally the HMXT algorithm (C).
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Selection. Figure 6.16 plots the percentage difference between the mean result

of the HMXT algorithm and the Linear Ranking control while Figure 6.17 plots

the percentage difference between the mean results of the HMXT algorithm and

the Tournament Selection control. These two figures clearly show the advantage

of the HMXT algorithm over the controls. The statistical significance of this

advantage is discussed at Section 6.4.5.

Another observation is that all three algorithms eventually achieve similar

makespans. This is a result of their approach to the optimum (or perhaps a

local maxima). Given sufficient time, it is possible for even a relatively naive

algorithm to find the optimum and converge on the makespan found by a world

class algorithm.

It is unfortunate, but not unexpected, that the algorithms do not achieve

a particularly good result when compared to the known optimum (Table 6.5).

This is attributed to limitations in how the job shop schedule problem has been

represented as outlined in Section 6.3.3. As mentioned, this Thesis requires a

representation of job shop problems that is equally amenable to the parameter

setting of both control algorithms and the HMXT algorithm.

Some Harder Problems

To evaluate the algorithms further, five independent trials for each of the Tail-

lard38, Taillard62 and Taillard71 problems are conducted. The average makespan

for each is compared to the average makespan for five trials of a control genetic

algorithm. Figure 6.18 shows the makespan per generation for each of the five

trials of problem Taillard38 (30 jobs by 15 machines) providing a feel for the

behaviour of a harder problem.

Figure 6.19 shows the averages over five trials for the problems Taillard38,

Taillard62 (50 jobs by 20 machines) and Taillard71 (100 jobs by 20 machines).
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Fig. 6.16: The percentage difference between the results shown in Figures 6.15 and
6.15 – A (HMXT minus Linear Ranking control). Note how the HMXT
genetic algorithm outperforms the control (Taillard 01 to 10).
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Fig. 6.17: The percentage difference between the results shown in Figures 6.15 and
6.15 – B (HMXT minus Tournament Selection control). Note how the
HMXT genetic algorithm outperforms the control, especially early in the
process (Taillard 01 to 10).



6. Industrial Problem – Scheduling 209

Figure 6.19 – A is a control genetic algorithm with Linear Ranking and Fig-

ure 6.19 – B is a control genetic algorithm with Tournament Selection. Fig-

ure 6.19 – C is a HMXT algorithm. Figure 6.20 compares the HMXT algorithm

to the control using Linear Ranking and Figure 6.21 compares the HMXT al-

gorithm to the control using Tournament Selection.
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Fig. 6.18: All 5 trials for Taillard 38 benchmark as an illustration of the typical varia-
tion between trials for a given problem. The genetic algorithm uses param-
eters from Chapter 3 of this Thesis.

The results for these harder problems have similar characteristics to those

for the easier Taillard 01 to 10 problems described earlier. As before the HMXT

algorithm consistently outperforms both control algorithms in all experiments.

Not surprisingly however the absolute improvement of these harder problems

compares less favourably to the known global optima than did the earlier prob-

lems. Table 6.5 summarises the results of these benchmarks.
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Fig. 6.19: Each line is the average of five trials of Taillard 38, 62 (bottom) and 71 (up-
per), acted on by the control with Linear Ranking (A), then the control

with Tournament Selection (B) and finally the HMXT algorithm (C).
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Fig. 6.20: The percentage difference between the results shown in Figures 6.19 – C
and 6.19 – A (HMXT minus Linear Ranking control). Note how the HMXT
genetic algorithm outperforms the control. (Taillard 38, 62 and 71.)
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Fig. 6.21: The percentage difference between the results shown in Figures 6.19 – C
and 6.19 – B (HMXT minus Tournament Selection control). Note how the
HMXT genetic algorithm outperforms the control. (Taillard 38, 62 and 71.)
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Tab. 6.5: Summary of the Best Makespan(above) with average and standard deviation
(below) for each of the controls and the HMXT algorithm. The last column
shows the known optimum makespan for the indicated problem.

Function Linear Ranking Tournament Thesis Optimum
Best Best Best

(av, std) (av, std) (av, std)

Ta01
1417 1387 1369 1231

(1438.8, 15.36) (1417.8, 22.52) (1414.2, 25.28)

Ta02
1379 1324 1306 1244

(1390.6, 18.93) (1353, 19.84) (1324.8, 16.72)

Ta03
1428 1402 1380 1218

(1460.8, 27.80) (1414.4, 11.50) (1393.2, 15.87)

Ta04
1401 1362 1340 1175

(1429.8, 19.20) (1403.2, 48.81) (1378.2, 23.24)

Ta05
1486 1465 1444 1224

(1540.8, 34.77) (1482.2, 15.22) (1454.8, 8.70)

Ta06
1381 1344 1313 1238

(1410, 29.60) (1381, 32.20) (1337.6, 18.78)

Ta07
1495 1470 1429 1227

(1542.8, 34.47) (1513, 38.70) (1477.4, 30.91)

Ta08
1374 1359 1330 1217

(1406.4, 30.01) (1387.4, 30.32) (1357.2, 27.14)

Ta09
1491 1464 1453 1274

(1528.6, 25.75) (1504.8, 28.71) (1497.2, 27.60)

Ta010
1436 1388 1374 1241

(1448, 9.92) (1401.4, 18.51) (1399.4, 27.34)

Ta038
2200 2066 2043 1673

(2278, 46.42) (2114.2, 43.18) (2070.8, 32.03)

Ta062
3919 3646 3497 2869

(3943.8, 39.40) (3684.2, 36.27) (3601.4, 74.29)

Ta071
7190 6821 6623 5464

(7228.8, 20.12) (6857.6, 38.65) (6672.4, 32.59)

6.4.5 Result of Significance Testing

Significance tests were applied to the Table 6.5 results to determine their sta-

tistical significance. Firstly, an f–test was applied to identify the appropriate

t–test (equal or unequal variance) and then a one sided t–test was carried out.



6. Industrial Problem – Scheduling 213

Results for twelve of the thirteen of the comparisons of the HMXT to the Linear

Ranking control indicated a statistically significant difference between the aver-

age performance of the HMXT over the control. The results for the comparison

between the HMXT algorithm and the Tournament control were less conclusive

with seven of the thirteen tests indicating a difference of statistical significance,

given an alpha level of 0.05 (Table 6.6).

Tab. 6.6: Summary of significance test (t–test, p value) results for each of the control

algorithms. Bold entries indicate that the difference between the HXMT
mean and control mean is statistically significant(ie; p < 0.05).

Function HMXT vs Linear Ranking HMXT vs Tournament
(p-value) (p-value)

Ta01 0.05394 0.40903
Ta02 0.00020 0.02059
Ta03 0.00139 0.02239
Ta04 0.00252 0.17141
Ta05 0.00207 0.00587
Ta06 0.00132 0.01899
Ta07 0.00671 0.07426
Ta08 0.00309 0.00082
Ta09 0.04997 0.34041
Ta010 0.00665 0.44803
Ta038 3.539E-05 0.05593
Ta062 0.00014 0.03394
Ta071 3.225E-09 1.840E-05

6.5 Conclusion

This Chapter uses Taillard job shop schedule benchmarks to provide a final real

world test of genetic algorithm parameter settings derived from the techniques

described in Chapter 3. To achieve this, two control genetic algorithms, one

using Linear Ranking selection and the other using Tournament Selection are

compared to a HMXT algorithm.

A search for suitable genetic algorithms to act as these controls was unsuc-

cessful as the problem representation used by researchers had caused them to
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modify the implementation of both mutation and crossover to avoid duplicated

jobs in their solution schedules. The techniques used to do this are valid and,

according to their results, successful. However, the modifications introduce ad-

ditional problem knowledge to the operators and alter their mathematical prop-

erties as the mutation operator generates symbols from an information source

with memory and the crossover operator alters the frequency of alleles in loci

while maintaining the frequency of alleles in individuals.

The model described by this Thesis assumes no problem knowledge in the

operators when it uses a memoryless information source for mutation and de-

pends upon a crossover operator which maintains allele frequency in loci and

alters it in individuals. Hence, in the HMXT algorithm only selection alters

allele frequency in loci as ranking concentrates certain alleles above the selec-

tion threshold. The frequency of these alleles therefore rises when individuals

below the threshold are discarded. Because of these differences, the properties

of genetic algorithms sourced from other research are not suited to providing a

fair control for the ideas presented in this Thesis and another way of incorpo-

rating problem knowledge to prevent the duplication of jobs in schedules must

be found.

Instead of modifying the operators to avoid duplicated jobs in schedules,

the representation of a job shop schedule is modified so that duplicated jobs

cannot arise. This places problem knowledge into the representation instead

of the operators and permits the use of a memoryless information source and

crossover which maintains allele frequency in loci. The particular alternative

representation used by this Thesis constrains the changes that a genetic algo-

rithm can apply in its search for an optimal schedule and hence the quality of

the best schedule that is likely to result. However, it also allows the removal of

constraints in the algorithm operators and limits the freedom of all algorithms
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equally (Thesis HMXT and control). Hence while it is unlikely to provide a

breakthrough in schedule research it does facilitate the equal comparison of the

Thesis model of genetic algorithm operators (HMXT) to control operators in a

real world problem.

Using this representation two control algorithms were constructed, one using

Linear Ranking selection and the other Tournament Selection. Both of the

controls used parameter settings for mutation and crossover as described in

Nearchou (2003)1. All three genetic algorithms, the two controls and the HMXT

algorithm, used the same representation of a job shop problem.

Fifty comparisons of each control against the HMXT algorithm were con-

ducted, consisting of five trials of ten problems, each of similar difficulty. In nine

out of ten cases the algorithm using the parameters derived from the Thesis

model (HMXT) outperformed the Linear Ranking control, while outperforming

the Tournament control in five out of ten cases. The remaining five cases out-

performed the control but significance testing indicates that the difference was

not sufficient to rule out chance as a factor.

To evaluate HMXT further an additional three problems of significantly

greater, and increasing, difficulty were tested. With only one exception (with

a p-value of 0.056), the HMXT outperformed both of the controls. The Thesis

model has passed the final test.

The primary focus of Chapter 6 was the evaluation of the HMXT algorithm

against a problem of real world difficulty. In the course of doing this, a new way

for genetic algorithms to represent job shop schedules was contributed. This new

representation incorporates problem knowledge into the genome and permits the

use of various of genetic operators without changing their characteristics to suit

the problem. This facilitates an equitable comparison between the operators as

the algorithms can be the same in all other respects.

1 Although Nearchou tested his operators against the easier Taillard flowshop benchmarks
they are used here in jobshop problems.



7. CONCLUSION

The objective of this Thesis is to establish theoretically sound methods for es-

timating appropriate parameter settings and structurally appropriate operators

for genetic algorithms. The Thesis establishes a systematic approach to de-

termining optimum values for genetic algorithm parameters and generational

operators such as mutation, selection, crossover and termination criteria. The

outcomes of the Thesis form theoretically justified guidelines for researchers and

practitioners.

The Thesis establishes a model for the analysis of genetic algorithm be-

haviour by applying fundamental concepts from information theory. The use of

information theory grounds the model and contributions to a well established

mathematical framework making them reliable and reproducible. The model

and techniques provide a clear and practical basis for algorithm design and tun-

ing. Six areas of genetic algorithms are examined: how a population of genomes

representing potential solutions are encoded, how to apply mutation so that in-

formation accumulates, which individuals to select for survival, the importance

(and difficulty) of ranking, the effect of crossover on the distribution of ideal alle-

les in a population and new termination criteria. Each of the six areas identified

some important new ideas to guide the construction of genetic algorithms.
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7.1 Population Construction

The success of a genetic algorithm is particularly dependent on ‘generational

operators’ (such as selection). An excessive population size limits the number

of generations that can be evaluated in a given time. Therefore, the construc-

tion of an information dense population through the careful selection of allele

cardinality which matches the problem representation is very important. This

information dense population is achieved by maximising the coding efficiency

as measured by Equation (3.1). The population size required to ensure that at

least one allele is present in each loci across the population with confidence B

is given by Equation (3.11).

Adequately resolving the objective function in the vicinity of the static se-

lection threshold is critical to the ability of a genetic algorithm to decide which

individuals to retain and which to discard. This is particularly interesting as

it indicates a maximum practical bound for the number of loci participating

in epistasis. The Thesis determines that if the number of loci participating in

epistasis is greater than L/A, finding the optimum becomes increasingly due to

chance rather than the ability of the genetic algorithm to direct the search.

7.2 Mutation

The Thesis shows that mutation applied indiscriminately across the population

has, on average, a detrimental effect on the population’s solution density and

therefore the accumulation of ideal (solution) alleles. This is because, as the

genetic algorithm increases the solution density of the population, the probabil-

ity that mutation will replace ideal alleles with non–ideal alleles also increases.

The analysis in Section 3.2 shows that when mutation is targeted at individuals

with a solution density less than the mutation source, then significant amounts

of mutation can be applied, which both increases the average occurrence of ideal

alleles in the population and also improves the population’s diversity.
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The definition used throughout this Thesis, linking mutation to a memory-

less information source and not some other variation of ‘mutation’, is critical

to obtaining the specific mathematical properties attributed to mutation. In

particular, it is these properties which link mutation to the static threshold.

7.3 Selection

The existence of both static and dynamic selection thresholds which govern the

accumulation of information in a genetic algorithm are described in Section 3.3.

These thresholds are defined by the solution density of the information source

and the solution density of surviving parents used to replace deleted individuals.

The threshold k0 associated with the randomly generated replacements is static

since the replacement information source has a constant solution density. The

threshold kg associated with replacement by randomly selected survivor parents

is dynamic because the solution density of the surviving population increases

over generations. The static threshold is given as k0 = L/A by Equation (3.40)

while the dynamic threshold is given as kg = Lρg by Equation (3.47).

7.4 Crossover

The important result of sufficient crossover, whereby any additional crossover

has negligible effect on the distribution of ideal alleles in a population, is de-

scribed in Section 3.4 and estimated at C ≈ 3N . A critical discovery is made

that crossover section lengths of Y = L/2 result in the fastest re–distribution

of ideal alleles throughout a population. This means that researchers can vary

the impact of crossover by altering the crossover section length.

By modeling the change in solution density of a population subject to varying

amounts of crossover, it is shown that large amounts of crossover (or a UEDA)

are superior to insufficient crossover when selection pressure is high, while small

amounts of crossover are superior when selection pressure is low.
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7.5 Ranking

While analysing the effect of misranking on genetic algorithm performance, the

new concept of entropy profile is introduced in Section 3.5 and suggested as a

measure of information extracted from an objective function by ranking algo-

rithms. The lower entropy of ranked populations when compared to randomly

ordered populations suggests that entropy profiles may provide a means for

quantifying the information content of objective functions and a way of com-

paring various techniques for extracting this information. Additionally, a com-

parison of ranked vs random entropy profile of a population may provide a useful

means to determine selection thresholds.

7.6 Termination

The size of the search space defined by the surviving population declines each

generation. Eventually a search space size is reached whereby the remaining

space can be exhaustively searched in no more time than has already been ex-

pended. An excellent termination point is indicated by the Shannon–McMillan

theorem to when the population entropy defines the most probable individuals

that can be generated by the population from that point on. Section 3.6 shows

that the number of most probable individuals corresponding to this point oc-

curs well before population convergence and hence provides a useful criteria for

making the transition to exhaustive search.

7.7 Testing the Model

Having developed a model and identified operators and parameter estimation

techniques, an algorithm (the HMXT algorithm) was constructed to explore the

model, confirm the model’s underlying assumptions and then test the perfor-
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mance of an algorithm based on the operator and parameter settings described

in Chapter 3. Testing was completed in three stages. First, Chapter 4 de-

scribed a simulation study which examined the fidelity of the model’s underly-

ing assumptions. Second, Chapter 5 applied a HMXT algorithm to a series of

benchmark tests to observe the algorithm’s performance in progressively more

difficult benchmark problems. While benchmarks developed by the genetic al-

gorithm community are useful, they are contrived and have little relation to the

structure and, more specifically, the constraints of real world problems. The

third stage (Chapter 6) improved on these benchmarks by applying a HMXT

algorithm to a set of job shop scheduling problems of real world complexity to

evaluate the performance on a HMXT algorithm in real world conditions.

The Simulations

Chapter 4 described a simulation study which examined the fidelity of the

model’s estimation of information flow, especially the accurate identification

of the selection thresholds and the influence of crossover. Two types of experi-

ment were performed. The first looked at the effect of the static threshold while

the second combined the static and dynamic thresholds. The experiments vali-

dated the model for information loss and accumulation in a population subject

to sufficient crossover, selection and replacement at defined thresholds. The sim-

ulation results corresponded to the predictions from Chapter 3 with sufficient

accuracy to provide confidence in the model.

It was learned that when selection thresholds are uncertain, a population

subject to large amounts of crossover (or a UEDA) is superior to insufficient

crossover. This is especially the case where selection pressure is above the opti-

mum selection threshold. If selection pressure is below the optimum threshold,

then limited crossover provides better average performance. These lessons were

applied to the development of the HMXT algorithm built to optimise the bench-

mark problems.
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The Benchmarks

Three types of benchmark were used to test the HMXT algorithm. The first

group of selected benchmarks was based on ten concatenated 6-bit traps for

a 60-bit problem as described in Harik et al. (1998). The second group of

benchmarks concerned NK landscapes as described in Kauffman (1993). The

last group of benchmarks were a set of functions used in Li et al. (2006) and

other researchers to test optimisation algorithms.

These tests revealed that the cumulative score method for ranking popula-

tions (Section 3.5) was less successful than anticipated as the simpler raw score

ranking provided superior results. The representation of binary phenotypes as

higher cardinality genotypes did however eliminate epistasis from bit trap and

NK landscape problems when the participating bits are coded into a higher

cardinality allele.

It was learned that the use of allele cardinality greater than binary in a

genotype matched to, or exceeding, the degree of epistasis was advantageous.

Additionally, the estimate of the population’s solution density and the level of

selection thresholds are best set by using the cumulative score method while

populations should be ranked using the raw objective function score and not

the cumulative score method.

The Real World Problem

In a final test, two control genetic algorithms, one using Linear Ranking selection

and the other using Tournament Selection, were compared to a genetic algorithm

based of the model described in Chapter 3 and applied to a set of Taillard job

shop schedule benchmarks from the Operational Research Library.

Fifty comparisons of each control against the HMXT algorithm were con-

ducted, consisting of five trials of ten problems, each of similar difficulty. In
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nine out of ten cases the HMXT algorithm outperformed the Linear Ranking

control while achieving good results against the Tournament control. To evalu-

ate the algorithm further, an additional three problems of significantly greater,

and increasing, difficulty were tested. Again the algorithm based on the HMXT

outperformed the controls in five out of six cases.

Outcome of the Tests

This sequence of tests demonstrated that the model of information accumulation

developed in Chapter 3 is valid and provides a useful and repeatable basis for

determining genetic algorithm parameters and operator structure. Through

simulation and experiment, guidance regarding the application of the model

to a variety of problems was obtained and the model finally validated by the

success of the HMXT algorithm in optimising a series of problems having real

world complexity.

7.8 Future Work

Two common themes recur throughout the Thesis and suggest directions for

future work:

• The importance of defining operators in terms of mathematical or func-

tional properties.

• How a problem is represented.

While ‘biological crossover’ may not be precisely defined or it may be conve-

nient for a researcher to mix crossover and translation in a given problem and

call it ‘crossover’, such ambiguity does not assist the decomposition, modeling or

explanation of what is occurring in a genetic algorithm. To achieve this clarity

and consistency between researchers it is important to clearly define operators
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in terms of mathematical or functional properties, such as information sources

or the maintenance of allele frequency in loci.

A clear taxonomy of operators derived from fundamental properties such

as their relationship to defined mathematical objects or similarly quantifiable

properties is required. The convenient labeling of operators simply because they

bear some resemblance to an existing operator needs to end. The work in Rowe

(2001), Rowe et al. (2002), Rowe et al. (2004b), Rowe et al. (2007), Poli et al.

(2004), Toussaint (2004), Mitavskiy (2004), and Borenstein and Poli (2006)

and other similar research must be used to categorise and characterise genetic

algorithm operators to make their understanding of operator properties more

accessible to the broader genetic algorithm community.

The second common theme is the central importance of how a problem is

represented and therefore how it is mapped to a genome (in the case of a genetic

algorithm). The work of Reeves and Wright (1995), Whitley (2001), Rowe et al.

(2004a) and the results described in this Thesis indicate that a key difference

between a hard problem and an easy one is how it is represented.

As a result of this realisation an excellent direction for future research would

be to direct algorithms to search for improved mappings between genotype and

phenotype rather than only searching for an optimum solution for problem ob-

jective functions with a fixed representation. Examples of this approach are

the work of Ritthof et al. (2002) and Kubalik et al. (2006). Ritthof describes a

hybrid genetic algorithm which utilises problem feature transformation to im-

prove the algorithm’s performance. Kubalik proposes a selecto–recombinative

genetic algorithm with continuous chromosome reconfiguration. This algorithm

identifies pair–wise gene dependencies each generation, recodes these dependen-

cies into the genome and thereby captures the problem structure in high–order

building blocks. The results of Kubalik’s work suggest that this approach may

be usefully applied to problems with considerable epistatic structure.
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It appears that if a search algorithm such as the one described in Ritthof

et al. (2002) could be directed at manipulating a type of problem, learning its

characteristics and learning how to re–form it so that the maximum amount

of information could be extracted from the new objective function, such an

algorithm would provide greater benefit than algorithms which seek only to

solve particular problems within a single fixed representation.

In addition to these recurring themes, Section 3.5.5 describes the idea of an

entropy profile of ranked and random lists. It would be interesting to construct a

‘topographic chart’ of the region between the highest and lowest entropy profiles

(ie. the area between the upper and lower dotted lines in Figure 3.27). Such a

chart would represent the probability of a particular profile as a height. In this

way a ridge line of high probability profiles might be revealed in the vicinity of

profiles associated with random lists. It would be interesting to know if, either

side of this ridge, the topology was convex or concave as this would indicate if

the entropy profile of ranked lists were particularly uncommon (or not).

While the cumulative score method was less successful in ranking populations

than expected, examination of the major schema defined by Ia,l each generation,

suggests that it may be useful to engineer an individual using the major schema

as this is sometimes better than the best individual yet tested in the population.

Further examination of entropy profiles suggests that setting a selection

threshold at the point where the ranked population’s profile diverges from its

random profile would be worth investigating. The interval where the two pro-

files are equal indicates that both the ranked population and a randomly ordered

population have the same information content. However, the time required to

compute these entropy profiles every generation may be prohibitive if the benefit

is small.
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Finally it would be useful to explore the relationships between solution den-

sity and the translation and inversion genetic operators. Such research would

improve the mathematical basis of these operators.



NOMENCLATURE

Symbol Description.

A The set of alleles generated by the memoryless information source.

A Allele cardinality (|A|).

Ap Allele cardinality of a phenotype representation (where this distinction is nec-
essary).

Al The number of different alleles in loci position l.

b(0|N, θ) The binomial coefficient equal to the probability that no ideal individuals at
all are present in the population.

B The confidence that a single individual contains at least one instance of a
particular allele.

β Arbitrary confidence that the solution exists in the population.

C Number of crossover operations which are sufficient.

D Matrix of operation processing times for a Taillard job shop schedule.

E The discrepancy in a number partition problem.

Es[ρg] The Expected value of ρ at generation g after selection.

Esr[ρg] The Expected value of ρ at generation g after selection and random replace-
ments.

Esp[ρg] The Expected value of ρ at generation g after selection and parent replacements.

Espr[ρg] The Expected value of ρ at generation g after selection and both parent and
random replacements.
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fh The highest frequency of signal being sampled.

fs The Nyquist rate.

fa The frequency of symbols in an arbitrary list of symbols drawn from the al-
phabet A.

fa,n The frequency of symbols in an sub–list of n symbols ({n | n ∈ Z+ : 1 ≤ n ≤
N}) drawn from the alphabet A′ ∈ A present in the sub–list.

F (n) Objective function with individual n’s genes as input.

F ′(n) Selection probability derived from F (n) with individual n’s genes as input.

F a,l The frequency of each allele a in loci l.

G Maximum number of generations.

Γ The multiplier such that number of crossover operations (C) required to return
a population of individuals with L loci, solution density (ρg), selection threshold
(kg) and uniform crossover probability equal to 0.5, to a binomial distribution
is given by C = ΓN .

H The entropy profile of a full population of N individuals.

Hg The entropy of the population at generation g.

H(n) The entropy profile of n individuals in a population.

Hr(n) The entropy profile of n individuals in a ranked population.

Ia,l The allele cardinality A vs loci L matrix holding the logarithm of each individ-
ual’s score accumulated against each allele represented in the individual and
normalised by allele frequency.

J Number of jobs.
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k Selection threshold measured in ideal alleles per individual.

k0 Static selection threshold measured in ideal alleles per individual.

kg Dynamic selection threshold at generation g measured in ideal alleles per indi-
vidual.

K The number of loci participating in epistasis.

L Genome length in loci.

Lp Genome length of a phenotype representation (where this distinction is neces-
sary).

λ The number of ideal alleles.

λg The number of ideal alleles at generation g.

λy The number of ideal alleles in the Y alleles, exchanged without replacement
from the total ideal alleles λ in a parent individual with L loci.

M Number of machines.

Mnorm Normalised makespan.

M Machine sequence per job matrix.

N Population size.

Ng Population size at generation g.

Ng,k0 The number of individuals in the population below the static selection threshold
k0.

Ng,kg
The number of individuals in the population below the dynamic selection
threshold kg.

Nmp The number of ‘most probable individuals’ by way of the Shannon–McMillan
theorem.
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Ωa,l The allele cardinality A vs loci L matrix holding the logarithm of each individ-
ual’s score accumulated against each allele represented in the individual.

p The probability of an event.

pa The probability of the symbol a in an arbitrary list of symbols drawn from the
alphabet A.

pφ The probability of symbol φ ∈ Φ occurring (not to be confused with the prob-
ability of an allele (a ∈ A)).

Pgain The probability that the number of ideal alleles in the mutated individual will
rise by 1 allele as a result of a single mutation event.

Ploss The probability that the number of ideal alleles in the mutated individual will
fall by 1 allele as a result of a single mutation event.

Pnone The probability that the number of ideal alleles in the mutated individual will
not change as a result of a single mutation event.

p(λ|L, ρg) Describes the binomial distribution of ideal alleles per individual.

pb
a(g, λ) The binomial distribution p(λ|L, ρg) for λ = a to b.

ψ An intermediate distribution between pL
k+1(g, λ) and p(g + 1, λ).

ψc An intermediate distribution between pL
k+1(g, λ) and p(g+1, λ) after c crossover

operations.

π A binomial distribution formed by the exchange of λy ideal alleles between
individuals.

φ The symbols (φ ∈ Φ)

Φ The set of symbols φ.

|Φ| The number of possible symbols. eg. maximum number of cities to be encoded.

Ψ The matrix of probabilities, ψT ⊗ψ.
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q(n|N, ρg) Describes the binomial distribution of ideal alleles per loci.

qb
a(g, n) The binomial distribution q(n|N, ρg) for n = a to b.

Qloss Information lost.

Q(0) The proportion of individuals in a population that contain no ‘ideal’ alleles.

Rg The accumulated information in a population.

ρ solution density.

ρg solution density at generation g.

ρT solution density at termination.

S Size of the search space.

Sg Size of the search space at generation g.

Smin Minimum size of search space.

Smax Maximum size of search space.

Smp Size of the most probable search space.

T The transition probability matrix describing the probabilities that the distri-
bution T = Ψc ⊗W .

θ The probability at which ideal individuals occur in a population of N individ-
uals.

w A hyper–geometric distribution w(λy |L, λ, Y ) describing the distribution of
ideal alleles λy : 0 ≤ λy ≤ y amongst Y alleles in each crossed over section
exchanged between randomly chosen individuals.

W The matrix of probabilities, wT ⊗w.

Y The number of loci exchanged with another individual in a single crossover
operation.

Z Job shop schedule.
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