The Psychophysiology of Driver Fatigue/Drowsiness: Electroencephalography, Electro-oculogram, Electrocardiogram and Psychological Effects

Saroj Kusum Lata Lal (BSc, MAppSc)

Doctor of Philosophy (Science)

2001

i

Certificate of Authorship/Originality

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Signature of Candidate

Production Note: Signature removed prior to publication.

Acknowledgements

I would foremost like to thank the God Almighty, Bhagwan Sri Sathya Sai Baba for his blessings and guidance during the course of my study. I would also like to thank my parents (Mr Dhansukh Lal and Mrs Kusum Lal) and my brother (Shailendra Lal) for their continuous encouragement and strength that they provided during this doctoral research. I would further like to thank my mother for proof correcting the thesis.

I wish to extend my sincere gratitude and acknowledgement to Professor Ashley Craig, for his expertise and guidance throughout the doctoral research and for the preparation of this thesis. I have recently received a National Medical and Health Research (NHMRC) fellowship for further research and would like to thank Professor Craig for his expert assistance and advice. I also extend my appreciation to Associate Professor Les Kirkup and Yvonne Tran for their assistance.

Preface

The research reported in this thesis was conducted at the University of Technology (UTS), Sydney, in the Department of Health Science. The author was granted an Australian Postgraduate Award Scholarship to complete the degree of Doctor of Philosophy in Science. The author was a part-time lecturer/tutor at UTS and also completed an internship program in education during the course of the doctoral research and was awarded the Graduate Certificate of Higher Education in 2000. During the period of the doctorate, the author was also an active member of the Academic Board and was also a member of the review panel of the Academic Board at UTS. Towards the end of the PhD, the author attracted a National Health and Medical Research Council (NHMRC) fellowship, 2001 (Australian Clinical Research Fellowship) for further research in fatigue with Professor Ashley Craig as co-investigator. Some of the reviews and research presented in this thesis have been published, accepted for publication or submitted for publication in the following journals.

Manuscripts

Lal, SKL and Craig, A (2001). A critical review of the psychophysiology of driver fatigue. Biological Psychology, 55: 173-194.

Lal, SKL and Craig, A. (2000). Electroencephalography activity associated with driver fatigue: implications for a fatigue countermeasure device. Journal of Psychophysiology (submitted).

Lal, SKL and Craig, A (2000). Driver Fatigue: electroencephalography and psychological assessment. Psychophysiology (submitted).

Conference Papers and abstracts

Lal SKL, Craig A. Psychophysiology of driver fatigue. Proceedings of the Fourth International Conference on Fatigue and Transportation. Transportation Research, (2000). Lal SKL, Craig A. Psychophysiological effects associated with drowsiness: driver fatigue and electroencephalography. International J Psychophysiology 35: 39 (2000).

Lal SKL, Craig A, (2000). Physiological indicators of driver fatigue. Road Safety Research, Policing and Education Conference (2000), Queensland, 489-494.

Craig, A and Lal SKL. Brain Signals and behaviour: applications of encephalography research in humans. XVIth Annual Scientific Research meeting, RNSH and UTS, 19 (1999).

Manuals

Lal SKL (2000) A fatigue questionnaire for assessing physical and mental fatigue (Modified from Wessely and Powell, 1989). Sydney, UTS.

Table of Contents

List of Illustrations	xiv
List of Tables	xviii
Abstract	xxii
Definition of Technical Terms	xxiv

Chapter One:

Introduction and Review of the Concepts and Psychophysiology of Fatigue

1.	Intro	duction		1
	1.1	Defini	tion of Fatigue	3
		1.1.1	Physical fatigue	4
		1.1.2	Mental fatigue	4
		1.1.3	Mental fatigue and boredom	4
		1.1.4	Fatigue and vigilance	7
		1.1.5	Fatigue and circadian rhythms	7
	1.2	Fatigu	e in Different Workplace Situations	8
		1.2.1	Shift/night work and fatigue	8
		1.2.2	Fatigue in aviation	9
		1.2.3	Driver fatigue	9
			1.2.3.1 Driver fatigue and arousal	11
			1.2.3.2 Driver fatigue and psychological determinants	12
			1.2.3.3 Fatigue and the professional driver	12
	1.3	Fatigu	e, Driving and Sleep Disorders	14
	1.4	Measu	rement of Fatigue	16
		1.4.1	Primary task measure	16
		1.4.2	Secondary task measure	16
		1.4.3	Objective indicators of fatigue	16
		1.4.4	Subjective measures of fatigue	17
	1.5	The P	hysiological Indicators of Fatigue	18
		1.5.1	Eye movement as a measure of fatigue	18

	1.5.2	Eye blinks to monitor fatigue	18
	1.5.3	Heart rate and heart rate variability as	
		an indicator of fatigue	19
1.6	Other	Methods to Assess Fatigue	21
	1.6.1	Psychomotor tests to measure fatigue	21
	1.6.2	Mental tests to assess fatigue	21
	1.6.3	Questionnaire studies of fatigue	21
	1.6.4	Video indication of fatigue	22
	1.6.5	Electroencephalography as an indicator of fatigue,	
		alertness and sleep	22
1.7	Funda	amentals of Neuroscience	24
1.8	The E	lectroencephalography (EEG)	26
	1.8.1	EEG recording	26
	1.8.2	Descriptors of EEG activity	27
	1.8.3	Description of the EEG frequency	29
	1.8.4	The effects of the EEG Rhythms	31
		1.8.4.1 Delta waves	31
		1.8.4.2 Theta activity	31
		1.8.4.3 Alpha frequency	31
		1.8.4.4 Beta waves	32
	1.8.5	EEG coherence analysis	32
	1.8.6	EEG signal processing and artifact detection	33
1.9	The E	electroencephalographic Features of Normal Sleep	34
	1.9.1	Sleep stages	36
	1.9.2	Sequential changes and sleep	36
	1.9.3	Sleep deprivation	39
1.10	Electr	oencephalography of Fatigue and Drowsiness	39
	1.10.1	Electroencephalography of Fatigue and Drowsiness	
		in Different Environments and Situations	41
	1.10.2	The electroencephalogram changes and	
		aviation fatigue	42
	1.10.3	The electroencephalogram changes and driver fatigue	42
1.11	Specif	fic Effects of Different Functional States of the Brain	
	on the	e EEG Activity	44

	1.11.1 Effects of attention and drowsiness on EEG rhythms	44
1.12	Fatigue Counter Measures	46
	1.12.1 Countermeasure using eye activity	47
	1.12.2 Countermeasures using neural networks	48
	1.12.3 Countermeasures using EEG	48
	1.12.4 Other types of countermeasure methods	50
	1.12.5 'Break periods' and practical countermeasures	50
	1.12.6 Criteria for effective countermeasures	51
1.13	On the Methodology of Fatigue Studies	52
1.14	Aims	53
	1.14.1 General Aim	53
	1.14.2 Specific Aims	54

Chapter Two:

Procedures Involved in Psychophysiological Assessment of Driver Fatigue

2.	Meth	Methods		
	2.1	Justification of Psychophysiological Procedures Used 5	9	
	2.2	Experimental Procedure 6	0	
		2.2.1 Study protocol 6	0	
		2.2.2 Physiological assessment 6	6	
		2.2.3 Validation of fatigue 7	2	
		2.2.4 Reliability of the video identification of fatigue 7	2	
		2.2.5 Psychological assessment 7	2	
		2.2.5.1 The State-Trait Anxiety Inventory 7	'3	
		2.2.5.2 The Profile of Mood States (POMS) 7	'3	
		2.2.5.3 The Locus of Control of Behaviour 7	'5	
		2.2.5.4 The Fatigue State Questionnaire 7	'5	
		2.2.5.5 The fatigue state likert question 7	'5	
	2.3	Data Acquisition and Statistical analysis7	'5	
		2.3.1 Data acquisition 7	'5	
		2.3.2 Data management, conversion and analysis 7	'6	
		2.3.3 Statistical and sample power analysis7	77	

Chapter Three:

Physiology of Fatigue and Drowsiness in Non-Professional Drivers

3.		Fatigue effects in Non-Professional Drivers: electroencephalography and electro-occulogram effects		
	2.1		-0	
	3.1	Introduction to the Physiology of Driver Fatigue 7		
	3.2	Methods 8	30	
		3.2.1 Subjects 8	80	
		3.2.2 Study protocol 8	81	
		3.2.3 Data acquisition and analysis 8	82	
		3.2.4 Statistical analysis	82	
	3.3	Results 8	83	
	3.4	Discussion 1	101	
		3.4.1 Driver fatigue and physiological effects	101	
		3.4.2 The methodology used in fatigue studies	104	

Chapter Four:

Psychological and Self-reported Assessment of Fatigue and Drowsiness in Nonprofessional Drivers

4.	Fatig	e and Psychological Effects 100	6
	4.1 Psychological Implications of Fatigue		6
	4.2	Methods 108	8
		4.2.1 Subjects 108	8
		4.2.2 Study protocol 108	8
		4.2.3 Statistical analysis 109	9
	4.3	Results 109	9
	4.4	Discussion 122	2

Chapter Five:

Heart Rate and Heart Rate Variability as an Indicator of Driver Fatigue Assessment

5.	Introduction		126	
	5.1	The A	utonomic Nervous System	126
		5.1.1	The sympathetic nervous system	127
		5.1.2	The parasympathetic nervous system	127
	5.2	Physic	ological and Autonomic Implications of	
		Heart	rate and Heart Rate Variability effects	
		during	g Fatigue and Drowsiness	127
		5.2.1	Heart rate variability	127
		5.2.2	Heart rate variability as an indicator of fatigue/sleepiness	
			and workload	128
		5.2.3	Heart rate variability as an indicator of	
			driver fatigue	129
		5.2.4	Relationship between heart rate variability and	
			electroencephalography during fatigue/sleepiness	130
	5.3	Methods		130
		5.3.1	Subjects	130
		5.3.2	Study protocol	131
		5.3.3	Data acquisition and analysis	131
		5.3.4	Statistical analysis	132
	5.4	Result	ts	133
		5.4.1	Fatigue, HR and HRV effects	133
		5.4.2	Association between cardiovascular and EEG changes	
			during fatigue	135
	5.5	Discus	ssion	139
		5.5.1	Using spectral analysis of HR to identify autonomic effects	
			during driver fatigue	139
		5.5.2	EEG and cardiovascular associations during fatigue	140

Chapter Six:

Indicators of Fatigue in Professional Drivers: Truck Drivers and Physiological Effects

6.	Intro	duction	to Fatigue in Professional Drivers	143
	6.1	Truck	Drivers and Fatigue	143
	6.2	On th	e Brain Wave Activity of Professional Drivers	144
	6.3	Metho	ods	145
		6.3.1	Subjects	145
		6.3.2	Study protocol	147
		6.3.3	Statistical analysis	147
	6.4	Result	ts	148
		6.4.1	The physiological response during the driving task in	
			professional truck drivers	148
		6.4.2	comparison of the EEG activity in non-professional versus	
			professional drivers	158
	6.5 Discussion		n	161
		6.5.1	Fatigue effects, cardiovascular variables,	
			age and weight	161
		6.5.2	Fatigue effects on EEG in professional drivers	162
		6.5.3	A comparison of fatigue effects on EEG in professional	
			and non-professional drivers	163

Chapter Seven:

Reproducibility of the Electroencephalography changes from different Sites on the Brain during Driver Fatigue: an intra-session comparison

7.	Intro	duction	to Reproducibility of physiological changes	
	durir	ng fatigu	e	165
	7.1	The re	eproducibility of electroencephalography changes during	
		driver	fatigue	165
	7.2	Metho	ods	166
		7.2.1	Subjects	166
		7.2.2	Study protocol and statistical analysis	166
		7.2.3	Data and statistical analysis	167
	7.3	Result	S	167
		7.3.1	The agreement in EEG response, representative	
			of the whole brain, during the transitional phase	

7.4	Discus	ssion	177
		in professional drivers	173
		whole brain, during the transitional phase to fatigue	
	7.3.3	The agreement in EEG response, representative of the	
		in non-professional drivers	172
		(central site (Cz)) during the transitional phase to fatigue	
	7.3.2	The agreement in EEG response in a single site	
		to fatigue in non-professional drivers	168

Chapter Eight:

The Coherence Function or Spectral Correlation of Electroencephalography during Driver Fatigue: a case study of inter- and intra-hemispheric EEG coherence during drowsiness

8.	Intr	Introduction to Spectral Correlation or Coherence Analysis in				
	EEG Signal Analysis			178		
	8.1	Use of	Spectral Correlation in Drowsiness Research	179		
	8.2	Metho	ods	180		
		8.2.1	Subjects	180		
		8.2.2	Study protocol	181		
		8.2.3	Data and statistical analysis	181		
	8.3	Results		182		
		8.3.1	Interhemispheric EEG coherence	182		
		8.3.2	Intrahemispheric EEG coherence	182		
	8.4	Discuss	on	183		

Chapter Nine:

Feasibility of Technological Countermeasure Software for Detecting Fatigue in Drivers from Electroencephalography Signals

9.	Techn	nological Countermeasures for Fatigue/Drowsiness 1	85
	9.1	Research on Technological Countermeasure to Fatigue 1	185
	9.2	Methods 1	187
		9.2.1 Subjects 1	187

	9.2.2	Study protocol	187
	9.2.3	The fatigue anticipating software: towards a	
		technological countermeasure against driver fatigue	187
	9.2.4	Data and statistical analysis	188
9.3	Resul	ts	194
9.4	Discu	ssion	195
	9.4.1	The potential of the EEG detecting software	195
	9.4.2	Future research and development of the fatigue	
		monitoring software	195

Chapter Ten:

Conclusions and Future Directions Evident from a Three Year Investigation of the Psychophysiology of Driver Fatigue/Drowsiness

10.	Concl	usions from the Review on the Psychophysiology	
	of Dri	iver Fatigue 198	
	10.1	The Electroencephalography and Driver Fatigue 199	
	10.2	The Electro-occulogram and Video as an Indicator of	
		Driver Fatigue 200	
	10.3	The Psychological Associations with Driver Fatigue 200	
	10.4	Heart rate and Heart Rate Variability as an Indicator of Driver	
		Fatigue 201	
	10.5	Fatigue Effects in Professional Versus Non-Professional	
		Drivers 201	
	10.6	The Reproducibility of Fatigue during Driving 202	
	10.7	Electroencephalography Coherence Analysis during Fatigue 202	
	10.8	The Prospects of a Fatigue Monitoring and Alerting Software	
		Employing Electroencephalography Changes that Occur	
		during Driver Fatigue 202	
	10.9	Future Research Prospects on the Psychophysiological	
		Associations with Driver Fatigue 203	
Refe	rences		
Appe	ndices-	231	
	Appe	ndix 1 231	
	Appendix 2 233		

List of Illustrations

Figure 1.1	A theoretical model to illustrate the neuro-physiological mechanism	l
	which regulates the functional state of the organism. The level of	
	activation of the cerebral cortex, the degree of readiness for action,	
	and the level of alertness all increase from left to right	
	(adapted from Grandjean, 1979)	6
Figure 1.2	General functional areas of the cerebral cortex (adapted from Spenc	e
	and Mason, 1987)	25
Figure 1.3	Frequency bands. Delta, theta, alpha and beta frequency bands,	
	defined by wave frequency (Hz) and length (ms)	30
Figure 1.4a	EEG after on-line reduction of muscle artifact contamination	35
Figure 1.4b	EEG after on-line reduction of eye artifact contamination	35
Figure 1.5	EEG stages 0-4 and REM. The EOG pattern	
	during REM sleep is the second trace from the	
	bottom (adapted from (Åkerstedt, Torsvall, & Gillberg, 1987)	38
Figure 1.6	Five sections from electroencephalograms, characteristic of	
	various functional states. The vertical lines indicate the scale	
	for 1 mV (adapted from Grandjean, 1979)	45
Figure 2.1	Fatigue study protocol	62
Figure 2.2	Shows fatigue laboratory with car simulator and other equipment	63
Figure 2.3	The screen as displayed to the subject during active and	
	alert driving	64
Figure 2.4	The screen as displayed to the subject during passive driving	65
Figure 2.5	The International 10-20 System of Electrode Configuration	67
Figure 2.6	Shows the electrodes mounted on the Electro-Cap System [™]	69
Figure 2.7 a	Shows the equipment and material used in the study with the	
	Electro-Cap System [™]	
	a) electrode gel, syringe and blunted needle	70
Figure 2.7 b	Shows the equipment and material used in the study with the	
-	Electro-Cap System [™]	
	b) resistance meter and electrode tester	70
Figure 2.8	The Red dot electrodes and connections 'clips' used for EOG	

	and ECG recordings	71
Figure 3.1	The EEG amplitude response during driver fatigue	
	over all 19 channels	86
Figure 3.2	The EEG magnitude response during driver fatigue	
	over all 19 channels	87
Figure 3.3	Shows the EEG activity during the alert phase in all 19 channels	88
Figure 3.4	Shows the EEG activity during the transition to fatigue phase	
	in all 19 channels	89
Figure 3.5	Shows the EEG magnitude during alert in the FZ, CZ, PZ,	
	O1 and O2 sites	92
Figure 3.6	Shows the EEG magnitude during transition to fatigue phase	
	in the FZ, CZ, PZ, O1 and O2 sites	92
Figure 3.7	Shows the EEG power during alert in the FZ, CZ, PZ, O1 and	
	O2 sites	93
Figure 3.8	Shows the EEG power during transition to fatigue phase in the	
	FZ, CZ, PZ, O1 and O2 sites	93
Figure 3.9	Shows the EEG magnitude spectral activity during an alert state in	the
	FZ, CZ, PZ, O1 and O2 sites	94
Figure 3.10	Shows the EEG magnitude spectral activity during transition to	
	fatigue state in the FZ, CZ, PZ, O1 and O2 sites	94
Figure 3.11	Shows the topograph of EEG activity in the 1= theta, 2= alpha	
	and 3= beta bands during an alert state	96
Figure 3.12	Shows the topograph of EEG activity in the 1= theta, 2= alpha	
	and 3= beta bands during transition to fatigue phase	96
Figure 3.13	The EEG amplitude activity during the transitional phase to	
	fatigue in different sites on the brain	99
Figure 3.14	The EEG magnitude activity during the transitional phase to	
	fatigue in different sites on the brain	. 99
Figure 4.1	A positive linear regression line of delta amplitude changes with	
	Trait Anxiety	· 112
Figure 4.2	A positive linear regression line of theta amplitude changes with	
	Control Efficacy	112
Figure 4.3	A positive linear regression line of alpha amplitude changes with	
	Fatigue-Inertia	113

Figure 4.4	A positive linear regression line of beta amplitude changes with	
	pre-study fatigue state 1	13
Figure 4.5	A positive linear regression line of delta magnitude changes with	
	Tension-Anxiety 1	14
Figure 4.6	A negative linear regression line of delta magnitude changes with	
	Vigor-Activity 1	14
Figure 5.1	The correlation and linear regression between LF:HF and alpha	
	amplitude during transition to fatigue 1	38
Figure 5.2	The correlation and linear regression between LF:HF and beta	
	amplitude during transition to fatigue 1	38
Figure 6.1	The delta magnitude (μV) in professional drivers during alert,	
	transition to fatigue, transitional-post-transitional,	
	post-transitional and arousal phases 1	51
Figure 6.2	The theta magnitude (μV) in professional drivers during alert,	
	transition to fatigue, transitional-post-transitional,	
	post-transitional and arousal phases 1	51
Figure 6.3	The alpha magnitude (μV) in professional drivers during alert,	
	transition to fatigue, transitional-post-transitional,	
	post-transitional and arousal phases 1	52
Figure 6.4	The beta magnitude (μV) in professional drivers during alert,	
	transition to fatigue, transitional-post-transitional,	
	post-transitional and arousal phases 1	52
Figure 6.5	Shows an example of the raw EEG activity during the alert phase - 1	53
Figure 6.6	Shows an example of the raw EEG activity during the transition	
	to fatigue phase 1	54
Figure 6.7	Change in EEG magnitude during the alert phase 1	55
Figure 6.8	Change in EEG magnitude during the transition to fatigue phase 1	55
Figure 6.9	The EEG topograph during the alert phase in a subject in the	
	1= theta, 2= alpha and 3= beta bands 1	56
Figure 6.10	The EEG topograph during the transitional phase to fatigue in	
	a subject in the 1= theta, 2= alpha and 3= beta bands 1	57
Figure 6.11	The EEG topograph during the transitional to post-transitional phase	
	to fatigue in a subject in the $1 =$ theta, $2 =$ alpha and $3 =$ beta bands - 1	157
Figure 7.1	Average EEG magnitude changes during two episodes of	

	transition to fatigue in non-professional drivers (n=35)	160
Figure 7.2	Linear regression line and correlation of delta activity during	107
riguit 7.2		1 5 0
	the two episodes of fatigue in non-professional drivers	170
Figure 7.3	Linear regression line and correlation of theta activity during	
	the two episodes of fatigue in non-professional drivers	170
Figure 7.4	Linear regression line and correlation of alpha activity during	
	the two episodes of fatigue in non-professional drivers	171
Figure 7.5	Linear regression line and correlation of beta activity during	
	the two episodes of fatigue in non-professional drivers	171
Figure 7.6	Average EEG magnitude changes during two episodes of	
	transition to fatigue in professional drivers (n=20)	174
Figure 7.7	Linear regression line and correlation of delta activity during the	
	two episodes of fatigue in professional drivers	175
Figure 7.8	Linear regression line and correlation of theta activity during the	
	two episodes of fatigue in professional drivers	176
Figure 7.9	Linear regression line and correlation of alpha activity during	
	the two episodes of fatigue in professional drivers	176
Figure 7.10	Linear regression line and correlation of beta activity during the	
	two episodes of fatigue in professional drivers	177
Figure 9.1	The panel allocation of data into an alert (green), transition to	
	fatigue (yellow), transitional-post transitional phase (orange)	
	and post-transitional phase (red)	189
Figure 9.2	This panel shows the mean coefficients allocated to detect the	
	alert and fatigue phases by the software	190
Figure 9.3	The algorithm panel of the fatigue monitoring software	191
Figure 9.4	A graphical representation of the data in offline analysis mode	
2	using the fatigue monitoring software	193

List of Tables

Table 1.1	Ranks and numbers of most frequent signs of fatigue in	
	long-distance and dump-truck drivers (three possible	
	answers per driver) (adapted from Milosevic, 1997)	23
Table 1.2	Levels of consciousness in terms of psychological states and	
	EEG (adapted from Cacioppo & Tsssinary, 1990	30
Table 1.3	Classification of fatigue/drowsiness EEG and arousal EEG	41
Table 1.4	Summary of major published fatigue, drowsiness and related	
	studies	55
Table 1.5	Psychophysiological findings and relevant conclusions of	
	the above studies	57
Table 3.1	Shows the demographics of the subjects in the study	
	(n=35 non-professional drivers)	83
Table 3.2	The average EEG activity (over all 19 channels) during the alert	
	baseline, transitional phase to fatigue, transitional-post transitional,	
	post transitional and the arousal phase in non-professional drivers -	84
Table 3.3	The average change in EEG amplitude and magnitude from the	
	alert baseline during drowsiness	91
Table 3.4	Average EEG amplitude and magnitude in different sites on	
	the brain during transition to fatigue	97
Table 3.5	The video and EOG indicators of fatigue	100
Table 4.1	The number (percentage) of subjects responding to individual items	
	on the Likert 'fatigue state question' immediately before and after	
	the driving task	110
Table 4.2	Showing all significant correlation between the average EEG	
	changes across the entire brain and psychological variables	111
Table 4.3	Non-significant correlation between the average EEG	
	changes across the entire brain and psychological variables	116
Table 4.4a	Multiple regression analysis of psychological association with	
	EEG delta amplitude changes	117
Table 4.4b	Multiple regression analysis of psychological association with	
	EEG theta amplitude changes	117

Table 4.4c	Multiple regression analysis of psychological association with	
	EEG theta amplitude changes 1	118
Table 4.4d	Multiple regression analysis of psychological association with	
	EEG beta amplitude changes 1	l 18
Table 4.4e	Multiple regression analysis of psychological association with	
	EEG delta magnitude changes 1	118
Table 4.4f	Multiple regression analysis of psychological association with	
	EEG delta magnitude changes 1	119
Table 4.4g	Multiple regression analysis of psychological association with	
	EEG delta magnitude changes 1	119
Table 4.4h	Multiple regression analysis of psychological association with	
	EEG delta magnitude changes]	120
Table 4.4i	Multiple regression analysis of psychological association with	
	EEG delta magnitude changes 1	120
Table 4.5	The self-rated fatigue state questionnaire: scored according to numbe	er
	(percentage) of subjects responding in each category 1	121
Table 5.1	Spectral Power of Heart Rate Variability-effect of fatigue	
	(beats/min ² /Hz)]	133
Table 5.2	A comparison of the fatigue phases to the alert baseline	
	using post-hoc comparison of the means (Scheffé test)	134
Table 5.3	Associations between HR variability and EEG	
	amplitude changes 1	136
Table 5.4	Associations between HR variability and EEG	
	magnitude changes 1	137
Table 6.1	Shows the demographics of the subjects in the study	146
Table 6.2	Mean cardiovascular effects before and after the driving task	149
Table 6.3	The average EEG activity during the alert baseline, transitional	
	Phase to fatigue, transitional-post transitional, post-transitional	
	and the arousal phase in truck drivers	149
Table 6.4	The changes in EEG magnitude in truck drivers during drowsiness	
	compared to the alert baseline	150
Table 6.5	The average EEG activity during the alert baseline, transitional phase	e
	to fatigue, transitional-post transitional, post transitional	
	and the arousal phase in non-professional (np) drivers	

	versus professional (p) drivers 158
Table 6.6	The average changes in EEG magnitude in non-professional (np)
	and professional (p) drivers during drowsiness from the
	alert baseline 159
Table 6.7	Showing differences in EEG between professional and
	non-professional drivers for the alert, transitional, transitional-post
	transitional fatigue phases and the arousal phase, significance level
	according to Scheffé analysis 160
Table 6.8	Showing p values according to Scheffé analysis of differences in
	EEG between professional and non-professional drivers for the alert,
	transitional, transitional-post transitional fatigue phases and the
	arousal phase 161
Table 7.1	The average EEG activity during two different episodes of the
	transitional phase to fatigue in non-professional drivers. Bonferroni
	corrections have been applied so that the probability for rejection
	is p=0.01 (i.e. 0.05/4) 168
Table 7.2	The results of a dependent sample t-test and Pearson's correlation on
	the intra-session EEG activity during the transitional phase to fatigue
	in non-professional drivers. Bonferroni corrections have been applied so
	that the probability for rejection is p=0.01 (i.e. 0.05/4) 169
Table 7.3	The average EEG activity in the central site during two different
	episodes of the transitional phase to fatigue in non-professional drivers.
	Bonferroni corrections have been applied so that the probability of
	rejection is p=0.01 (i.e. 0.05/4) 172
Table 7.4	The results of a dependent sample t-test and Pearson's correlation on the
	intra-session EEG activity in the central site during the transitional phase
	to fatigue in non-professional drivers. Bonferroni corrections have been
	applied so that p=0.01 (i.e. 0.05/4) 173
Table 7.5	The average EEG activity, representative of the whole brain during two
	different episodes of the transitional phase to fatigue in professional
	drivers. Bonferroni corrections have been applied so that the probability
	for rejection is p=0.01 (i.e. 0.05/4) 174
Table 7.6	The results of a dependent sample t-test and Pearson's correlation on
	the intra-session EEG activity during the transitional phase to fatigue

	in professional drivers. Bonferroni corrections have been applied	
	so that the probability for rejection is $p=0.01$ (i.e. $0.05/4$)	175
Table 8.1	Demographics of the five subjects in this study	180
Table 8.2	Average interhemispheric EEG coherence during alert 'a' and	
	transition to fatigue 'f' phase	182
Table 8.3	Average intrahemispheric EEG coherence during alert 'a' and	
	transition to fatigue 'f' phase	183
Table 9.1	Showing the ability of the fatigue software to detect an alert or a	
	fatigue state in each subject	
	(detection shown as percentage values)	194

Abstract

Driver fatigue is a major cause of road accidents and has implications for road safety. Investigating the psychophysiological links to fatigue can enhance our understanding and management of fatigue in the transport industry. A variety of psychophysiological parameters have been identified as indicators of fatigue, with electroencephalography (EEG) perhaps being the most promising. Therefore, monitoring EEG during driver fatigue may be a promising variable for use in fatigue countermeasure devices. However, most previous fatigue-based studies have suffered from methodological shortcomings such as insufficient sample numbers, lack of a controlled testing environment, inadequate study design and statistical analysis. Furthermore, a thorough psychophysiological assessment of fatigue was found to be lacking in the literature. Therefore, the aims of the present doctoral research were to: 1) Assess the EEG and electro-occulogram (EOG) changes during driver fatigue in a 'state of the art' experimentally controlled study. 2) Identify psychological associations with fatigue. 3) Assess the changes in autonomic nervous system activity during fatigue. 4) Investigate the differences in the physiological changes that occur during fatigue in professional versus non-professional drivers. 5) Identify the reproducibility of physiological changes that occur during fatigue. 6) Examine the changes in EEG coherence during fatigue. 7) Utilise the physiological findings in this research for the development of EEG based software to detect fatigue.

The results showed significant increases in delta and theta during driver fatigue. The conventional high amplitude blinks during alertness was replaced with slow, low amplitude blinks during fatigue. Reduced Fatigue-Inertia and decreased Vigour-Activity (which are mood sub-scales) and increased anxiety levels were associated with fatigue. There was an increase in parasympathetic activity during fatigue. Nonprofessional drivers showed greater increases in the EEG of fatigue compared to professional drivers. The EEG changes associated with fatigue were shown to be reproducible. The changes in EEG coherence were not found to be significant during fatigue. The EEG changes during fatigue were used for the development of an algorithm for a fatigue-countermeasure device and was shown to reliably detect fatigue.

In summary, this research has provided important information on the psychophysiology of driver fatigue clarifying some of the findings of prior research.

Significant changes were found to occur in EEG, EOG and parasympathetic activity during fatigue. From this research it may also be suggested that psychological status of the driver may influence fatigue status. Furthermore, the EEG changes during fatigue are consistent and reliable, which can be utilised to detect fatigue in a EEG-based fatigue countermeasure device. The results are discussed in the light of direction for future driver fatigue studies and fatigue management.

Definition of Technical Terms

Coherence analysis (spectral correlation): The coherence function measures the correlation between two signals as a function of the frequency components which they contain. Thus, the coherence function is a correlation spectrum and also known as spectral correlation. The coherence function is a statistical measure used to determine the likelihood of two stochastic signals arising from some common generator process, and the frequency band in which this occurs. Therefore, the coherence measure is conducted on sample epochs of the signals of interest and is therefore a statistical estimate of the true relationship between the signals.

Electrocardiogram (ECG): The ECG is the measure of the electrical activity of the heart.

Electroencephalography (EEG): The EEG or 'brain wave' is a measure of the electrical activity present in the brain. There are four major types of brain waves which are delta, theta, alpha and beta (refer to 'Electroencephalography frequency bands). The changes in EEG amplitude and magnitude are two common descriptors of EEG activity.

Amplitude: The amplitude of EEG waves is measured in microvolts (μV , millionths of a volt). It is determined by measuring the total vertical distance of a wave. Amplitude is the maximum or peak spectral amplitude within a band's frequency range.

Magnitude: The magnitude of EEG waves is measured in microvolts (μ V). Magnitude is the sum of all the amplitude in a band's frequency range.

Electroencephalography frequency bands:

Delta: These are slow waves between 0.5 and 4 Hz in a range of 20-200 μ V. Delta waves are present during the deep sleep stage of normal EEG, that is, synchronised sleep indented by faster spindle waves. Delta activity is also present during various stages of drowsiness.

Theta: The theta rhythm is an activity within the frequency range of 4-8 Hz, at an amplitude ranging from 20-100 μ V. Theta occurs during drowsiness.

Theta has been associated with conditions of low levels of alertness and sleep deprivation and has such been associated with decreased information processing.

- Alpha: The alpha rhythm has a frequency range of 8-12 Hz at a magnitude of about 20-60 μV, occurs during wakefulness particularly over the occipital cortex, appears at eye closure and disappears at eyes opening. The classical view of alpha has been that it represents a relaxed state and will be disrupted with any kind of mental work.
- **Beta:** Beta is an irregular wave that occurs at a frequency of 13-50 Hz with an amplitude of approximately 2-20 μ V. It is common during increased alertness such as during mental or physical activity.

Electro-occulogram (EOG): The EOG is the measure of changes in electrical potential that occurs when the eyes move.

Heart rate variability: is a spectral measure of changes in ECG and has the potential value of being a non-invasive measure of autonomic nervous system activity. The two main spectral regions of interest are (1) a low frequency (LF) component and (2) a high frequency (HF) component. The higher frequencies are believed to reflect parasympathetic activity, and lower frequencies are believed to be sympathetic activity (Baharav, et al. 1995). The parasympathetic origins of high frequency fluctuations are generally accepted. The interpretation of changes in lower frequencies is controversial. Some believe that LF activity is a composite of parasympathetic and sympathetic influence (Baharav, et al. 1995). Since the neuroautonomic influence at the low end of the spectrum is complex, a useful way to study the autonomic activity by means of spectral analysis is to define a sympathetic index is derived by dividing the LF activity by either the HF activity or total spectral activity, that is, LF:HF or LF: total spectrum (Baharav, et al. 1995; Jaffe et al. 1993).

LF: The lower frequencies are believed to be sympathetic activity.

- *HF:* The higher frequencies are believed to reflect parasympathetic activity.
- LF:HF or LF: total spectral activity: The sympathovagal balance or sympathetic index is derived by dividing the LF activity by either the HF activity or total spectral activity, that is, LF:HF or LF: total spectrum.

Fatigue Phases: Fatigue may be divided into transitional, transitional to post-transitional and post-transitional periods as defined below, and the EEG features of each can be presented separately.

Transitional: The transitional phase occurs between awake alpha and absence of alpha, that is, a few to 10 seconds preceding alpha disappearance, during which the EEG changes in frequency, distribution, or amplitude of the dominant activity.

Transitional-post transitional: The transitional and post-transitional

phase refers to both or either of the transitional or post-transitional periods.

Post-transitional: The post-transitional phase consists of the first EEG section after alpha disappearance comprising early Stage 1 of sleep.