Advanced Neural Network
Controllers and Classifiers Based on
Sliding Mode Training Algorithms

A thesis submitted by

Van Minh Tri Nguyen

in partial fulfilment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

from

The University of Technology, Sydney

D

2006

CERTIFICATE OF AUTHORSHIP/ORIGINALITY

[certify that the work in this thesis has not previously been submitted for a degree nor
has it been submitted as part of the requirements for a degree except as fully

acknowledged within the text.

[also certify that the thesis has been written by me. Any help that I have received in my
research work and the preparation of the thesis itself has been acknowledged. In
addition, [certify that all information sources and literature used are indicated in the

thesis.

Signature of Candidate

Production Note:
Signature removed prior to publication.

ACKNOWLEDGMENTS

1 would sincerely like to thank the following people who have been of help in the

undertaking of my doctoral research.

First and foremost, my supervisor, Professor Hung Tan Nguyen, who has been a great
and good teacher in my life. Professor Hung not only gave me invaluable guidance in
my research, but also supported me in the best possible way for my spirit. My
knowledge and experience over the past three years have been obtained, to a great

degree, from Professor Hung, to whom [am very grateful.

Next, my co-supervisor, Associate Professor Quang Phuc Ha, who helped me a great
deal and taught me with his expert knowledge of sliding mode control. I am grateful for

his challenging feedback, which has improved my research career.

Thank you to Pat Skinner, for her editorial support in the writing of my draft. Her
attention to detail and suggestions taught me how to write carefully and academically. I

can say that she has made an integral contribution to the completion of my thesis.

Thanks also to my good colleague and friend, Phillip Taylor, for his invaluable help, his
expertise in collecting, processing and disseminating the experimental data of the head
movement commands for wheelchair control; to Russell Nicholson for his expert
guidance in the control laboratory; to all the technical and administration staff in the

Faculty of Engineering, for their prompt and helpful support.

I owe sincere thanks to my parents, Nguyen Luan and Luong Thi Buoi, for their
encouragement and useful advice during these challenging years. 1 pursued this work
for my parents, who have supported me and expected my success since [was a child. To
my siblings, Tinh, Tien, Thuy and Truong, thanks for their good humour and moral

support.

Above all, thanks to my dear wife, Quynh Tran, who has always shared all my
difficulties and feelings over the last trying years. | am deeply grateful to my wife. To
my daughter, Nha Tran, who was born while 1 was undertaking the research and

significantly changed my thought: I dedicate this work to you.

-11-

TABLE OF CONTENTS

Certificate of authorship/originality ..., [
ACKNOWIEAZMENTSoviiiiii e 1
Table Of CONEIES ...ooiiiiiiiiee ettt st 1l
LiSt Of SYMDOLIS ...eiiiiiiieiie e v
LISt OF ADDIEVIAIIONS ...ttt ettt e vii
LISt OF FIGUIES .ot Vil
LISt OF TADIES .ot e e Xi
ADSITACE ..ttt ettt et e e et e e e bttt e et e ettt e e as X1i

CHAPTER 1 INTRODUCTION

1.1 INIOAUCTION .ttt 1
1.2 Research ObJectiVeS ..o oiiiiii et 3
1.3 Organisation Of TRESIScc.ooooiviiiiiiiiicii e 5
CHAPTER 2 LITERATURE REVIEW
2.1 HiStorical PerspeCtiVe........cociiiiieeiiieeiieceee et 7
2.2 Backpropagation Algorithm Developments in Classification...................... 11
2.3 Neural Control Developments.......c.coveiiiiiiiiiiie e 16
2.4 Discussion and CONCIUSIONcocuiieeiiieiiieeiiieeriieeiie e cte e eeee e eeeas 21

CHAPTER 3 NEURAL NETWORK LEARNING ALGORITHMS

3.1 The Backpropagation Algorithm.........o.cccooooiiiiiiiiiiiii e, 24
3.2 Variable Learning Rate Backpropagation Algorithms.............coccceneennn. 29
3.3 Second-order Gradient Methodsoooioiiiiiiii e 34
3.4 Activation Function Variationscceeeeviririieeeiiiie e 37
3.5 Backpropagation with Momentum Methods.............ccooooviiiviiiiiieeic 39
3.6 Criterion Function Variationsccceoeieeveioiiiiiiie e 46
3.7 Sliding-mode-based Learning Algorithms........c.cccceiiiiiiiiiiniiicciinnnnn. 48
3.8 Discussion and cONCIUSIONcc.oviiiiiiiiiiiieie et 54

CHAPTER4 ADVANCED NEURAL NETWORK TRAINING ALGORITHMS BASED ON
SLIDING-MODE CONTROL TECHNIQUES
4.1 INrOAUCTION ..eoiiiiii e 57
4.2 Shding-mode-based Neural Networks for Classification Applications....... 59
4.3 Chattering-free Sliding-mode-based Neural Networks for Control
APPHCALIONS ...t 77

4.4 Robust sliding-mode-based Neural Networks for Control Applications.....92
A G ONCIUSION . oo e e, 104
CHAPTERS NEURAIL NETWORK CONTROILLER DESIGN FOR A C1.LASS OF UNCERTAIN

SYSTEMS WITH TRANSPORTATION LAG

5.1 INOAUCTION oovei ettt 106
5.2 Static VAR Compensator as an Uncertain System with Transportation Lag
.. 108
5.3 Advanced Neural Controller Design.........cccccccoiiiiiiiiee 115
5.4 Experimental RESUIScoooiiiiiiiiiiiiei e 128
5.5 Discussion and CONCIUSION ... couiiiiiiiiiieiiiiiiee it eeeee e 140
CHAPTER 6 DECENTRALISED NEURAL NETWORK CONTROLLER DESIGN FOR A
CLASS OF INTERCONNECTED UNCERTAIN NONLINEAR SYSTEMS
6.1 INtrOAUCHION ...eieii ettt 142

6.2 Coupled Electric Drives CE8 as an Interconnected Uncertain Nonlinear

SYSERIM ..ttt et e e e 144
6.3 Advanced Neural Controller Desi@n.......ccocovieiiiiiiiiiiiiiiiiie e, 147
6.4 Experimental ReSUItSccooooiiiiiiiiiiieiin e 162
6.5 Discussion and CONCIUSIONccc.ovivviiiiiieeiieieetie et 169

CHAPTER 7 CONCLUSION AND RECOMMENDATIONS FOR FUTURE RESEARCH

7.1 CONCIUSION. ...ttt ettt e et eeeenaeeenees 171

7.2 Recommendations for Future Researchcocooiiiiiiiiiiicee 175
APPENDIX A

A.1 Matlab Program for Modelling the SVC Systemcccocovviiiirieiiieieennne, 176
APPENDIX B

B.1 Chapter 5 Proofscc.oooouiiiiiiiee e 181
APPENDIX C

C.1 C Program for Training the Neural Network Controller................c............. 186
APPENDIX D

D.1 Matlab Program for Design of the Neural Network Controller 195
BIBLIOGRAPHY coeteietiinitiiintineiinrieenscstssesssassseasesssssssssesosasessnesssesssesssessssassssasssaassns 199

-1v-

AY
N

F.G
P.Q

LIST OF SYMBOLS

number of input nodes
number of hidden nodes
number of output nodes

number of patterns in the data set

network weight between input node » and hidden node k
network weight between hidden node & and output node m
output of hidden node &

output of output node m

input vector of pattern p

target output vector of pattern p

activation function

first derivative of the activation function 1

criterion function of the network error

vector of all the network weights
gradient vector

sliding function

Euclidean norm for a vector and Frobenius norm for a matrix

system matrix

input matrix

output matrix

system state vector

transformation matrix

parameter vector of the sliding function

a pair of controllable canonical matrices

a pair of matrices in the Lyapunov equation
control input

reference input

Subscripts
@ speed subsystem

X tension subsystem

Greek Letters

a momentum coefficient
n learning rate

U a positive scalar

£ robust learning rate

-vi-

ABP
Adaline
BP
CFSMBP
CG

DBD
DWM
EABPM
FNN

GA

GN

GOTA
TIAMSS
[EEE

LM
MGFPROP
MLP

NN

QN
QuickProp
RMBP
RPROP
SARPROP
SISO
SMC
SuperSAB
SvC
TRUST
VSS

LIST OF ABBREVIATIONS

Adaptive BackPropagation

Adaptive linear element

BackPropagation

Chattering-Free Sliding-Mode BackPropagation
Conjugate Gradient

Delta-Bar-Delta

Deterministic Weight Modification

Extended Adaptive BackPropagation with Momentum
Feedforward Neural Network

Genetic Algorithm

Gauss—Newton

Globally Optimal Training Algorithm

[terated Adaptive Memory Stochastic Search

the Institute of Electrical and Electronics Engineers
Levenberg—Marquardt

Magnified Gradient Function Propagation
MultiLayer Perceptron

Neural Network

Quasi-Newton

Quick Propagation

Reach Mode BackPropagation

Resilient Propagation

Simulated Annealing Resilient Propagation
Single-Input Single-Output

Sliding Mode Control

Super Self-Adapting Backpropagation

Static VAR Compensator

Terminal Repeller Unconstrained Subenergy Tunnelling

Variable Structure System

-vii-

Figure 2.1:
Figure 3.1:
Figure 3.2:
Figure 3.3:
Figure 3.4
Figure 3.5:
Figure 4.1:

Figure 4.2:

LIST OF FIGURES

Milestones in the development of neural networks ..., 10
Structure of a feedforward neural network with one hidden layer............. 25

Tree classification of different modified backpropagation algorithms 28

Sigmoid function (solid line) and its derivative (dotted line) 37
State trajectories of a variable structure Systemcccoovieriiviiiciieens 49
Structure of a feedforward neural network with one output neuron 53
Tree classification of the proposed learning algorithms.........c..ccccoveveeninn. 59
Structure of a feedforward neural network with one hidden layer............. 60

Figure 4.3: Diagram of the powered wheelchair control system using head movement

COMMEANAS ..o e et 67

Figure 4.4: The posture of two axis data collected from a C5 user with the (a) forward,

Figure 4.6:

(b) backward, (c) left, (d) right and (e) stop commands..........c..cceevveernnee. 69
Figure 4.5: The posture of two axis data collected from a C4 user with the (a) forward,
(b) backward, (c) left, (d) right and (e) stop commands..............ccceernee. 70
Structure of a feedforward neural network with one output neuron 78
Structure of the proposed neural control systemcccoeevveiveerciiiiinennee. 85

Figure 4.7:
Figure 4.8:

Figure 4.9:

Figure 4.10:

Figure 4.11:

Figure 4.12:

Output and control signals of System 1 (solid line), System 2 (dashed line)
and System 3 (dash-dot line), using the chattering-free sliding-mode-based
neural network controller.........oooooiiiiiii e, 90
Output and control signals of System 1 (solid line), System 2 (dashed line)
and System 3 (dash-dot line), using the state feedback controller............. 91

Output and control signals of System 1 (solid line), System 2 (dashed
line) and System 3 (dash-dot line), using the robust sliding-mode-based
neural network controller...........ooooiiiiiiiiii e 101

Output and control signals of System 1 (solid line), System 2 (dashed
line) and System 3 (dash-dot line), using the chattering-free sliding-mode-
based neural network controller.................coc 101

Output and control signals of System 1 (solid line), System 2 (dashed
line) and System 3 (dash-dot line), using the SMC-based neural network

COMITOL T e e e 102

-Vili-

Figure 4.13: Output and control signals of System I (solid line), System 2 (dashed
line) and System 3 (dash-dot line), using the robust sliding-mode-based
neural network controller. ... 103
Figure 4.14: Output and control signals of System | (solid line), System 2 (dashed line)

and System 3 (dash-dot line). using the chattering-free sliding-mode-based

neural network controller..............oo 103
Figure 5.1: The Static VAR Compensator (SVC) systemcoocceeveriniievreeeiiineeennne. 109
Figure 5.2: System step responses with an input of 3.5V ... 110

Figure 5.3: Step responses of the real-time system (solid line), model G, (dashed line)

and model G;, (dotted line) with an input of 3.5V ... 110
Figure 5.4: Model step responses with 1V INputccccceeiviiiiiiiiiinic e 112
Figure 5.5: Structure of the chattering-free sliding-mode-based neural network
CONTONET SYSLEIM 1.t 115
Figure 5.6: Structure of the proposed neural control systemccccceeveeervecriennnane 117
Figure 5.7: Structure of the neural control system for training process..............ccc..... 122

Figure 5.8: Output and control signals of System 1 (solid line), System 2 (dashed line)
and System 3 (dash-dot line), using the CFSMBP algorithm.................. 130
Figure 5.9: Output and control signals of System 1 (solid line), System 2 (dashed line)
and System 3 (dash-dot line), using the BP algorithm 131
Figure 5.10: System output and sliding function responses when the trained neural
controller with optimal parameters is utilised...........c.cccccoeeeiiiiiienniiiennnen. 132
Figure 5.11: Output and control signals of System 1 (solid line), System 2 (dashed line)
and System 3 (dash-dot line), using the proposed neural controller........ 136
Figure 5.12: The output and control input signals of the SVC system, using the neural

controller designed with the reference inputs of 1.2 (a), 1.7 (b) and 2.2 (¢)

Figure 5.13: The output and control input signals of the SVC system, using the PID
controller designed with the reference inputs of 1.2 (a), 1.7 (b) and 2.2 (¢)

Figure 6.1: The Coupled Electric Drives CE8 system and a part of the elastic belt... 145

Figure 6.2: Diagram of the Coupled Electric Drives system with the pre-compensator

ix-

Figure 6.3:

Step responses of the open-loop system with the control inputs (a) u, =0,

u =3 and(b) u, =3, 1 =0 146

Figure 6.4: Structure of the /" neural control subsystemc.cccccoooveieviirennnnn. 157

Figure 6.5:

Figure 6.6:

Figure 6.7:

Figure 6.8:

Figure 6.9:

The system outputs using the continuous sliding-mode controller with the
reference INPULS 7, =2, 7, =2 ..o 165
The system outputs using the sliding-mode-based feedback controller with
the reference nputs 7, =2, ¥, =2 . 166
Structure of the whole Coupled Electrical Drives system using the

decentralised neural network controller........oooeoeveemee e, 167

The system outputs using the proposed neural controller with the reference
IMPULS 7, =2, 7, =2 (oo 168

The system outputs using the proposed neural controller with the reference

INPULS 7, =2, 7, = =1 et 168

LIST OF TABLES

Table 4.1: Performance comparison for the XOR problem............................ 65
Table 4.2: Description of all learning algorithms used in the neural network head-
MOVEMENT ClaSSIIETviiiiiiii i 75

Table 4.3: Performance comparison for the neural network head-movement classifier

... 76
Table 5.1: System transfer functions with different step inputs...........c.ccoccoeoveneennn. 111
Table 5.2: Performance comparison for training the neural controller...................... 133

Table 5.3: Performance for training the neural controller using the CFSMBP algorithm
and different numbers of hidden nodes........c.coooeeiiiiiiinn. 134

Table 5.4: Performance for training the neural controller using the BP algorithm and

different numbers of hidden nodescccooeriiiiiiiiiiiiii, 134
Table 5.5: Performance comparison between the NN and PID control systems with
different reference INPULScccvvviiiriiiiiii e 141
Table 6.1: Performance comparison among the three control systems...................... 169

-X1-

ABSTRACT

This thesis presents the research undertaken to develop some novel learning algorithms
based on the sliding-mode control techniques for the neural network classifiers and
controllers. Although the feedforward neural network with the backpropagation learning
algorithm is the most widely used approach for classification and control applications,
the slow convergence rate. the local minima problem, the difficulties in system
identification and the lack of robustness are the issues existing for these neural network-
based systems. The combination of the sliding-mode control techniques and the
backpropagation algorithm, as described in this thesis, leads to three novel learning

algorithms, which offer effective solutions for these problems.

The first learning algorithm, derived from the integration between the chattering-free
sliding-mode control technique and the backpropagation algorithm, can obtain fast and
global convergence with less computation. Experiment results relating to the head-
movement neural classifier for wheelchair control show that the proposed approach
considerably improved the convergence speed, global convergence capability and even
the generalisation performance of the neural network classifier, in comparison with

various popular learning algorithms.

The second learning algorithm, also derived from the integration between the
chattering-free sliding-mode control technique and the backpropagation algorithm, can
guarantee the stability and robustness of the neural control system with parameter
uncertainties. Based on this stable neural controller, a neural control design
methodology is developed for a class of uncertain nonlinear systems with transportation
lag, wherein a new training procedure is proposed to avoid the difficult choice of the
training inputs always associated with the conventional neural network identifier. The
implementation results with a real-time Static VAR Compensator system indicate the

effectiveness of the proposed method.

The third on-line learning algorithm, developed from the reaching law method
combined with the backpropagation algorithm, offers a robust adaptation approach for
the neural control systems with parameter uncertainties and disturbances. The neural

control approach is further developed to design a novel decentralised neural controller

-X11-

for a class of uncertain large-scale systems with bounds of interconnections and
disturbances. The stability and robustness of the neural control system are guaranteed
based on the Lyapunov synthesis. Real-time implementation results for a Coupled
Electric Drives CE8 system show the effectiveness and feasibility of the proposed

approach.

-X111-

CHAPTER 1

INTRODUCTION

1.1 Introduction

Nowadays. soft computing is being applied more and more frequently in commerce and
industry (Bonissone et al., 1999). One important component of soft computing is the
artificial neural network (NN), and the most widely used neural network architecture is
the multilayer feedforward (Haykin, 1995). For training the multilayer feedforward
neural network (FNN), the backpropagation (BP) algorithm based on the gradient
descent method is the most popular approach. The FNNs with the BP learning algorithm
have been used successfully in a variety of industrial applications such as pattern
recognition, classification, optimisation, modelling, identification, and control (Meireles
et al., 2003). However, there are many problems associated with the BP algorithm. Its
major drawbacks are the uncertainty of finding a global minimum of the error criterion
function and the excessively long time for training the FNNs. In addition, the BP
algorithm 1is sensitive to perturbations in the noise environments. Therefore, the

robustness of the learning algorithm has recently become a major issue.

In the last 20 years, a significant number of different learning algorithms has been
developed to improve the BP performances. Some attempts focusing on the dynamic
change of learning rate, the addition of a momentum term, the selection of a better
energy function, or the modifications of the slope of the activation function have been
undertaken. These approaches, however, did not result in significant improvement in the
convergence rate and the global convergence capability. A number of second-order
gradient methods, such as the Levenberg-Marquardt, quasi-Newton, conjugate gradient
and Quickprop algorithms, can remarkably improve the convergence speed, but local

minima problems still exist in these methods.

To overcome the problem of local minima, stochastic global optimisation approaches
have been applied to the neural networks’ training algorithm. The random optimisation

method, the genetic algorithm, and the simulated annealing optimisation technique are

some popular directions of the stochastic methods. However, the stochastic approaches
sometimes require a very long time to reach a global optimal solution. Other global
optimisation methods are the deterministic approaches that can effectively find the
global minima. Nevertheless, the computational complexity for these learning

algorithms with a global convergence is very high.

One of the powerful tools for tackling the above problems is the combination of the
variable structure system (VSS) strategy and the BP learning algorithm (Kaynak et al.,
2001). Through the use of the VSS principle, the convergence and robustness properties
of the gradient-based learning algorithm are significantly improved. Several pioneering
studies using VSS theory in the training of NN weights are reported in the literature.
Based on a linear “sliding surface” in Slotine and Sastry (1983), Parlos et al. (1994)
proposed his adaptive backpropagation (ABP) algorithm. In the function approximation
applications, the ABP algorithm outperforms the BP and QuickProp approaches
(Fahlman, 1988) in terms of speed and chance of convergence. Parma et al. (1999)
introduced a sliding mode backpropagation algorithm that can speed up the BP
algorithm in the function approximation problems. However, these schemes have not
been implemented in the pattern recognition and classification applications. Giordano et
al. (2004) developed an adaptive learning approach based on the sliding mode control
strategy, which guarantees the finite time reachable condition of a zero network error.

Nevertheless, this approach was only applied in a neural identifier.

The nonlinear mapping and learning properties of FNNs provide an attractive capability
for applying the networks to control systems. After the first IEEE (the Institute of
Electrical and Electronics Engineers) conference on neural networks in 1987, a
remarkable increasing amount of conference and journal papers was published relating
to the neural control systems. These papers showed the significant capability of NNs for
dealing with the system nonlinearity, and a number of new NN control structures were
also proposed. However, some disadvantages exist in these neural control systems.
When the networks are trained to identify nonlinear dynamic systems and their inverses,
it is very difficult to choose the appropriate training inputs covering the operating range
of the controlled systems. In addition, most of the neural control systems using the on-

line learning capability of FNNSs still lack rigorous stability guarantees.

Recently. several excellent NN control approaches have been proposed based on
Lyapunov’s stability theory. One main advantage of these schemes is that the adaptive
laws for the multilayer FNNs are derived based on the Lyapunov synthesis and
therefore guarantee the stability of the controlled systems without the requirement for
off-line training. Some adaptive laws proposed by Jagannathan (2001) and Hayakawa et
al. (2005) can actually be classified into the group of the sliding-mode-based learning
algorithms. However. these Lyapunov-like methods still encounter difficulties in real-

time applications.

[n this thesis, a number of novel NN learning algorithms based on the sliding mode
techniques are developed. A combination of the chattering-free sliding-mode control
scheme and BP produces a fast and globally converged algorithm, which can be applied
in the binary problems. Similarly, an on-line learning algorithm is proposed and applied
in the neural controller of a class of uncertain single-input single-output (SISO)
systems. A novel training scheme is developed for this neural control system so that the
difficult choice of the training input signal is eliminated. Another proposed on-line
update rule for the FNNs is based on the reaching law method of the VSS theory. A
decentralised neural controller using this learning rule can guarantee the stability of a
class of large-scale systems with interconnections and disturbances. All the proposed

learning algorithms are successfully implemented in real-time systems.

1.2 Research Objectives

The primary objective of the research described in this thesis was to develop the
learning algorithms of FNNs based on the VSS theory in order to overcome some
problems associated with the neural network classifiers and controllers using the

backpropagation learning algorithm. Specifically, the proposed objectives were:

(1) The development of a system with:

1) a novel training algorithm based on the sliding mode technique which assure

fast and global convergence of the FNNSs, together with

2) a head-movement classifier using FNN and the proposed learning algorithm.

(11) The development of a system with:

1) a neural controller structure for a class of uncertain SISO systems, together

with

2) a novel training algorithm based on the sliding mode technique which

guarantees the system stability, and

3) a new training framework of the neural network controller which avoids the
difficult choice of the training inputs always associated with the conventional

training procedure for system modelling.

(i11) The development of a system with:

1) a novel decentralised controller structure using neural networks for a class of

uncertain interconnected nonlinear systems, and

2) a sliding-mode-based learning algorithm which guarantees the stability of the

controlled large-scale systems.

The thesis describes the outcome of the research undertaken to fulfil these objectives.
Additionally, some minor researches closely associated with the objectives have been

undertaken. They include:

. A review of the literature on neural networks from a historical perspective, the BP

modifications, and the neural control systems

. Critical comparisons of the new methods with other conventional methods.

. Application details of the proposed neural controllers in some real-time systems

including the Static VAR Compensator system and the Coupled Electric Drives system.

. Application details of the neural network head-movement classifier for the wheelchair

control system.

1.3 Organisation of Thesis

Chapter | brietly introduces artificial neural networks concepts and their problems.
Some problems in the NN-based systems can be solved by using VSS theory in the

NNs™ learning algorithms. This is the objective of the research.

Chapter 2 contains the literature review section. The historical perspective of artificial
neural networks is first introduced. Some developments in the backpropagation
algorithm for improving convergence rate and global convergence are then reviewed.
Furthermore, an overview of the neural control systems based on nonlinear mapping
and adaptive learning properties of FNNs is presented. This section also reveals some
limitations of the NN control and classification systems and further formulates the

research aims.

Chapter 3 introduces some background about the NN learning algorithms and the VSS
theory. The BP algorithm and its modifications are classified in six branches, including
dynamic learning rate methods, second-order gradient methods, activation function
variations, BP with momentum, criterion function variations, and sliding-mode-based
approaches. Some discussions on the advantages and disadvantages of these algorithms

are presented at the end of this chapter.

A number of novel training algorithms based on the sliding-mode control techniques are
proposed in Chapter 4. Two algorithms, named CFSMBP and RMBP, are developed for
the neural controller, while the other algorithm, named EABPM, is proposed for the
neural classifier. All algorithms are globally converged in the sense of the Lyapunov
stability method. Some simulation results with the XOR problem and control problem
for an uncertain continuous linear system can illustrate the methods’ effectiveness. The
proposed EABPM learning algorithm is further developed and tested in a head-

movement neural classifier for wheelchair control.

Chapter 5 develops the neural controller design methodology for a class of uncertain
SISO system. A sliding function is first defined and is used as the network training
error. The proposed CFSMBP learning algorithm for the neural controller is proven to

guarantee the system stability. A training procedure for the neural controller is then

developed. Finally, the neural controller is applied in a real-time Static VAR

Compensator system.

In Chapter 6. a decentralised neural controller structure is designed for a class of large-
scale systems with bounds of interconnections and disturbances. Each neural network
controller using a proposed RMBP leaming algorithm can stabilise each subsystem of
the large-scale systems. Some real-time experiments in a Coupled Electric Drive system

are implemented to validate the designed method.

Chapter 7 concludes the thesis with a summary and some possible future research

directions.

CHAPTER 2

LITERATURE REVIEW

2.1 Historical Perspective

The modern concept of artificial neural networks (NNs) began when McCulloch and
Pitts (1943) introduced the first mathematical model of a biological neuron. Then
Donald Hebb (1949) proposed one of the first learning rules for the neurons. In 1958,
Rosenblatt established a first learning network, named Perceptron, which could be
trained for pattern recognition (Rosenblatt, 1958). Two years later, Widrow and Hoff
(1960) proposed an adaptive linear element, called Adaline. Based on the least mean
square learning rule, Adaline was successfully applied for cancelling the echo
phenomenon in telephone lines. This is considered to be the first industrial application
of NNs. However, Minsky and Papert (1969) mathematically proved that the Perceptron
could only solve a limited class of problems and predicted a dead end of the neural

network field.

Influenced by Minsky and Papert, during the 1970s, only a few pioneering works on
NNs were undertaken. Kohonen (1972) and Anderson (1972) independently proposed
the mathematical model for associative memory trained by the Hebb rule. In 1974,
Werbos originally developed the backpropagation algorithm for feedforward neural
networks, and demonstrated their ability to estimate a social communication model
(Werbos, 1974). Albus (1975) introduced the “Cerebellar Model Articulation
Controller” networks based on his view of human memory models. Grossberg (1976)
investigated self-organising networks derived from the human visual systems. In the
early 1980s, Hopfield (1982) introduced the first model of recurrent neural networks,
which could be implemented by integrated circuit hardware, and Paker (1982)
independently discussed the BP algorithm for training feedforward neural networks
(FNNs). The BP algorithm was then reinvented and made popular by Rumelhart and
McClelland (1986).

After Rumelhart and McClelland answered the criticism of Minsky and Papert, a
dramatic increase of interest in NNs occurred. The Institute of Electrical and Electronics
Engineers (IEEE) organised the first conference on neural networks in 1987, and the
International Neural Networks Society (INNS) was concurrently formed. The first
journal of INNS, Neural Networks, appeared in early 1988. Another IEEE Neural
Networks Society was then formed with one of its publications, /EEE Transaction on
Neural Networks, commencing in 1990. In the late 1980s to early 1990s, many
developments in NNs occurred. Kosko (1987) developed an adaptive “Bi-directional
Associative Memory” using the Hebb learning law. Broomhead and Lowe (1988) first
introduced “radial basic function networks” under the method of potential function.
Other novel NN structures such as the “Boltzmann Machine” (Hinton & Sejnowski,
1986), the “B-splines networks” (Moody, 1989), “functional-link networks” (Chen &
Billings, 1992) and “wavelet networks” (Zhang & Benveniste, 1992) were also
proposed.

The 1988 DARPA Neural Network study (1988) listed a number of NN applications in
commercial applications and motivated the use of neural networks in real life. Since
then, neural networks have been applied in many fields such as aerospace, automotive,
banking, defence, electronics, entertainment, financial, insurance, manufacturing,
medical, robotics, speech, securities, telecommunications, transportation and others.
Currently, the multilayer perceptrons (MLPs) are the most used structure in commercial
and industrial applications. As shown in the study by Haykin (1995), the percentages of
network utilisation are 81.2% for MLPs, 5.4% for Hopfield, 8.3% for Kohonen and

5.1% for the others.

For training FNNs, a group of MLPs, BP is currently the most popular algorithm among
others. The idea of increasing the learning robustness of BP in noise environment was
first considered in the late 1980s. Hanson and Burr (1988) introduced the Minkowshi-r
BP algorithm, and showed that the effect of noise in the target domain is dramatically
reduced by using small power values. In White (1989), the linear output error is
replaced by a nonlinear suppressor function so that the proposed learning law is
insensitive to small perturbations in the underlying probability distribution of the

training set. All the above researchers eventually used a signum function of the network

error in their learning algorithms, which are similar to the sliding-mode control

schemes.

The variable structure systems (VSSs), with the sliding-mode control (SMC) scheme
first proposed in the 1950s (Emelyanov, 1959; Itkis, 1976; Utkin, 1977), are very
tamous for their robust property. Other contributions to VSS theory have been made
during the last decade. In Gao and Hung (1993), the reaching law approach, a general
method for designing variable structure controllers, was first presented. The chattering-
free sliding-mode control approach (Ertugrul et al., 1995) was developed by combining
VSSs and Lyapunov designs. Another integral sliding mode control technique, which
guaranteed the robustness of the motion in the whole state space, was further proposed
by Utkin and Shi (1996). The use of VSS theory in the learning process was first
reported in Zak and Sira-Ramirez (1990), whereby a switching weight adaptation
strategy was proposed to impose a discrete-time asymptotically stable linear learning
error dynamics. In Parlos et al. (1994), an adaptive BP algorithm based on the choice of
a linear sliding surface was proposed and accelerated the convergence rate of BP. In
Sira-Ramirez and Morles (1995), a dynamic SMC approach was also proposed for
robust adaptive learning in analogue adaptive linear elements (Adalines). Giordano et
al. (2004) recently developed the robust learning approach of Sira-Ramirez and Morles

for the FNNs, which was successfully applied in a real-time neural network identifier.

Figure 2.1 presents an overview of NN history and VSS techniques, focusing on some

milestones in the development of NNs and their learning algorithms.

1943

]

0

@

4

[y
o

]

1976

1

o

il

6

8

— o
& &
W =

Y—
o

1y

S

2004

(S
N
Lo
o

?

g

4

McCulloch and Pitts — The {irst mathematical model of a neuron

Donald Hebb — The first biological learning rules for the neurons 1

Rosenblatt — The first introduction of perceptron

Emelyanov — Variable structure system theory

Widrow and Hoff — The first industrial application of Adaline

Kohonen and Anderson — The first model of associative memory

Werbos — The first introduction of BP

Grossberg — The self-organising networks

Rumelhart et al. — The popular publication of BP

Hanson and Burr — The first robust Minkowshi-r BP algorithm

Zak and Sira-Ramirez — The discrete-time SMC algorithm for FNNs

Gao and Hung — The reaching law method

Sira-Ramirez and Morles — The continuous SMC algorithm for Adaline

Ertugrul et al. — the chattering-free sliding-mode control method

Giordano et al. — The continuous SMC algorithm for FNNs

Figure 2.1: Milestones in the development of neural networks.

10

2.2 Backpropagation Algorithm Developments in Classification

Without doubt. the most popular NN structure 1s FNN, and the BP is the most widely
used learning algorithm in training FNNs. FNNs have successfully been applied in some
real problems such as pattern recognition and classification. Despite the general success
of BP in training FNNs, there are some major drawbacks that need to be overcome.
Firstly, BP will converge to a local minimum of the error function, and fail to find a
global optimal solution. The second shortcoming of the BP algorithm is its slow
convergence rate. Therefore, the FNN with BP algorithm is sometimes not accepted in
real-time systems. Moreover, the limitations of the training algorithms can also
influence the network’s generalisation ability. However, this problem is being addressed

by other researchers in my group.

Recently, many researchers have focused on improving the performance of BP. The

following review is divided into two major topics:

1. BP modifications for improving the convergence rate.
2. BP modifications for global convergence.
2.2.1 BP modifications for improving the convergence rate

The BP algorithm based on the steepest-descent technique performs poorly in terms of
convergence speed in high dimension and to a fixed step length (Fletcher, 1987). A large
learning rate, that is, faster convergence rate, is allowed in some flat regions of the error
surface, while in the high slope regions it causes oscillation and divergence of the
algorithm. A simple approach to speed up BP is through the addition of a momentum to

the weight update rule (Plaut et al., 1986). Thus for a flat region, the momentum leads

: . : 1 :
to increasing the learning rate by a factor] , where 0 <a <1 is the momentum
-a

coefficient (Tollenaere, 1990). On the other hand, in a region of high fluctuation, the
momentum effect vanishes. However, this method did not significantly improve the

convergence rate of BP.

11

Dynamic learning rate methods were also proposed to speed up the algorithm. Vogl et
al. (1988) and Battiti (1989) pioneered in adjustments to the learning rate. In their “bold
driver” techniques. the value of the square error £ is monitored after a weight update.
The learning rate is grown exponentially if the value of £ decreases. On the other hand,
if the value of E increases, the last weight update is rejected and the learning rate is
decreased exponentially. Weir (1991) proposed a method for a self-determination
adaptive learning rate. This method uses the sign of the energy-weight gradient for
computing the optimal learning rate. These methods are actually faster than the BP with

momentum, but the improvement in convergence speed is still limited.

Because the characteristic of the error surface depends on every weight dimension,
some other researchers applied an individual dynamic learning rate for each weight in
the network. Jacobs (1988) introduced the Delta-Bar-Delta (DBD) rule which utilises
the sign change of an exponential averaged gradient. Each learning rate is linearly
increased if the parameter change has been in the same direction between two iterations.
Otherwise, if the direction of the parameter change alternates, the learning rate is
exponentially decreased. The SuperSAB (Tollenaere, 1990) and RPROP (Riedmiller &
Braun, 1993) methods are also based on the idea of an independent learning rate
adaptation. The basic change is to increase the learning rate exponentially instead of
linearly, as with the DBD method. The experimental studies by these authors have
shown that the individual adaptive learning rate algorithms considerably speed up the
learning process. However, these methods require the selection of many added
parameters, which affects the convergence speed. Moreover, variable learning rate BP

algorithms often become trapped in local minima.

The above variable learning rate BP algorithms attempt to change the learning rate with
regard to widely differing eigenvalues of the Hessian matrix. By directly using the
Hessian matrix, Newton methods can significantly improve the convergence speed of
BP. This algorithm converges quickly if the search region is quadratic or nearly so
(Bishop, 1995; Cichocki & Unbehauen, 1993). However, the Newton method requires
PxW? steps, where W is the number of weights in the network and P is the number
of patterns in the data set. Also, the Hessian matrix must be inverted, which requires
W’ steps. With this high computational expense, the Newton method is therefore not

commonly used.

12

To overcome this problem, several methods have been proposed to approximate the
Hesstan matrix. Becker and Le Cun (1989) proposed the Gauss—Newton method
whereby the off-line elements of the Hessian matrix are neglected. Facing another
problem of the Newton method when the Hessian matrix is not positive at every point in
the error surface, the Gauss—Newton approach may converge towards a maximum or a
saddle-point rather than a minimum. By adding a positive-definite symmetric matrix to
the Gauss-Newton approximation of the Hessian matrix, the Levenberg—Marquardt
(LM) method (Hagan & Menhaj, 1994) can overcome this difficulty. The study results
of Hagan et al. (1995) showed that the LM algorithm 1s one of the fastest algorithms for
training FNNs of moderate size. However, because it neglects off-diagonal Hessian
terms, 1t 1S not able to rotate the search direction as in the exact Newton’s method.
Alternative approaches (Battiti & Masulli, 1990), known as quasi-Newton (QN)
methods, compute an approximation of the inverse Hessian instead of calculating the
Hessian directly and then evaluating its inverse. The problem arising from Hessian
matrices which are not positive definite are also solved in the QN methods (Barnard,
1992). These methods, however, require large memory storage, for example, a size of
W xW for the QN method and a size of M x PxW for the LM method, where M is the
number of output nodes. For networks with more than a few thousand weights, this

could lead to prohibitive memory requirements.

Another linear searching approach to speed up the learning process is represented by the
conjugate gradient (CG) methods (Hert et al., 1991; Moller, 1993). They can be
regarded as a form of BP with momentum, in which the learning rate and momentum
coefficient are determined automatically at each iteration without explicit knowledge of
the Hessian matrix. The conjugate gradient techniques require only W storage, which is
better than the QN and LM algorithms. In a similar manner, the QuickProp algorithm
(Fahlman, 1988) is a variation of BP with a dynamic momentum that is viewed as an
approximation of Newton’s rule. Results from applications of the QN, CG and
QuickProp methods (Barnard, 1992; Fahiman, 1988; Makram-Ebeid et al., 1989) show
that these approaches are the fastest algorithms for training FNNs. The main

disadvantage of these second-order gradient methods is the local convergence problem.

Another reason for the slow convergence is the premature saturation of the derivative of

the activation function, sometimes referred to as the “flat-spot” problem (Lee et al.,

13

1993). Some modifications had been suggested to eliminate the flat-spot problem in
order to accelerate the convergence speed. l'ahlman (1988) suggested altering the
derivative of the activation function directly by adding a constant 0.1 to the derivative
term. Vitela and Retfman (1997) turther sct the value of the derivative to a constant
value when the activation slope fell in predefined saturation regions. In the MGFPROP

method, Ng et al. (2004) magnified the activation derivative by using a power factor +,

where s >1. Therefore. the derivative of the activation function is scaled up to speed up
the convergence rate. Baum and Wilczek (1988) and Ooyen and Nienhuis (1992) chose
a better energy criterion so that the flat-spot problem has been eliminated for the output
units. However. the derivative of the activation function still appears for the hidden
units. Therefore, the flat-spot problem is only partially solved by employing the entropy
criterion. With these modifications, the convergence speed can be improved, but local

minima problems still exist.

Parlos et al. (1994) claimed that the slow convergence of BP is due to a small error
gradient in the vicinity of a local minimum. Then they introduced an adaptive
backpropagation (ABP) algorithm, in which the learning rate is a specific function of
the error and of the error gradient in order to accelerate the network convergence.
However, Parlos et al. only successfully applied ABP in function approximation. They
reported that ABP was found to be as fast as the BP in the binary problems, such as the
parity problem or the encoder problem. This leads to fewer studies on ABP in the neural

network literature.
2.2.2 BP modifications for global convergence

Another drawback of BP is the local convergence problem. Often trapped in local
minima, the BP algorithm usually results in poor performance. There are a number of

global optimisation algorithms which can overcome the problem.

The stochastic global optimisation method is one of the attractive solutions. Replacing
BP with random optimisation methods (Matyas, 1965; Solis & Wets, 1981), Baba
(1989) showed that the new algorithms often successfully found the NN’s weights
which gave a global minimum of the error function. Another stochastic minimisation

algorithm, called IAMSS (iterated adaptive memory stochastic search), characterised by

14

the use of an adaptive memory in Brunelli (1994), was superior to BP in binary
problems. The genetic algorithm (GA), a global optimisation method, has also been
introduced to train the ncural networks (Whitley et al., 1990). GA often assures the
networks™ success in searching and converging to the global minimum. Nevertheless,
GA can suffer from excessively slow convergence before proving an accurate solution.
SARPROP, proposed by Treadgold and Gedeon (1998), is a combination of RPROP
(Riedmiller & Braun, 1993) with the global search technique of simulated annealing
(SA) (Szu, 1987) in order to maintain quick convergence to the global minimum. The
SARPROP remarkably improves both the convergence rate and the global convergence
capability of the BP algorithm. However, these stochastic methods theoretically
converge to a global optimal solution in a limited space. For example, when the input
space 1s expanded, the random optimisation methods and TAMSS algorithm fail to
converge to the global minimum, and the evolutionary-gradient hybrid method
(Salomon, 1998) and SARPROP exhibit the same deficiencies as the steepest-descent
methods in some problems. In addition, there are no guarantees that the stochastic

approaches would reach the global minimum in finite time.

Several deterministic methods which are more efficient than BP have been proposed in
literature. Cetin et al. (1993) replaced the batch BP by a global-descent rule. This
methodology is based on a global optimisation scheme, acronymed TRUST (terminal
repeller unconstrained subenergy tunnelling). Although the global descent approach
always guarantees to find the global minima for the function of one variable, the same
result cannot be obtained for multivariate functions. Tang and Koehler (1994) used a
branch-and-bound based on Lipschitz optimisation methods and developed globally
optimal training algorithms (GOTA). However, the effectiveness of GOTA is only
improved by using dynamically computed local Lipschitz constants over subsets of the
weight space. Ng et al. (2004) used deterministic weight modification (DWM) which
reduces the system error by changing the weights of an FNN in a deterministic way.
The integration of DWM and MGFPROP can outperform other modified BP algorithms
for most of the adaptive problems in terms of the convergence rate and global
convergence capability. Nevertheless, the high computational complexity is the major

shortcomings for these global convergence learning algorithms.

15

2.3 Neural Control Developments

From the control theory viewpoint, there is no general controller design methodology
for the great diversity of nonlinear systems. In recent years, the NN-based nonlinear
control technique has attracted the interest of an increasing number of researchers. The
most attractive properties of neural networks in the control field are their nonlinear
mapping and learning capabilities. The NNs’ ability to represent nonlinear mappings,
that is, to model nonlinear systems, is the feature that is most exploited in the synthesis
of nonlinear controllers. Moreover. the training process of NNs to minimise an energy
criterion function also opens an on-line adaptation region for nonlinear control theory.

The following overview of the neural control field is divided into two areas:
1. Neural controllers based on nonlinear mapping.
2. Neural controllers based on adaptive learning.

2.3.1 Neural controllers based on nonlinear mapping

Following this direction, the nonlinear functional mapping properties of NNs are central
to their use in control. A number of results have been published showing that an FNN
can approximate any nonlinear function with an arbitrarily desired degree of accuracy
(Cybenko, 1989; Funahashi, 1989; Homnik et al., 1989). To be specific, these papers
proved that a continuous function can be arbitrarily well approximated by an FNN with
only a single hidden layer, where each unit in the hidden layer has a continuous
sigmoidal nonlinearity. Another group of MLPs, the radial basic function NNs, have
also been proven to have the best approximation property (Broomhead & Lowe, 1988;
Poggio & Girosi, 1990). However, the number of nodes needed in radial basic function
NNs increases with the dimension of the input space (Weigand et al., 1990), which

leads to the necessary consideration of the cost of using this approach.

Training an NN using input-output data from real-time nonlinear plants can yield
nonlinear dynamical systems and their inverses. The procedure of training an NN to
represent the forward dynamics of a system is introduced in Narendra and Parthasarathy

(1990). The NN model is often placed in parallel with the system and the error between

16

the system and network output is used as the network training error. Some useful
guidelines for choosing the training input signal may be found in Hagan et al. (2002).
Psaltis et al. (1988) also introduced a generalised inverse learning scheme to obtain the
inverse model of dynamical systems. In this approach, the inverse model network
precedes the system and receives input from the system output. A synthetic training
signal is introduced to the plant to obtain a corresponding output, and the network is
trained to reproduce its output as the plant output. Another approach to inverse
modelling is known as specialised inverse learning (Psaltis et al., 1988). This learning
structure contains a neural inverse model preceding the plant and a trained forward
model of the system placed in parallel with the plant. The error signal for the training
algorithm is the difference between the training input and the forward model output.
However, the training input signal must be chosen over a wide range of system nputs
and the actual operational inputs are very difficult to define a priori (Hagan et al., 2002;
Jordan & Rumelhart, 1992). This is the main drawback of the above training procedures

for forward and inverse modelling of dynamical systems.

Neural network models of dynamics systems and their inverses have been subsequently
utilised for control. In the literature on NN architectures for control, a large number of
control structures have been proposed and used. Direct inverse control, neural internal
model control, neural predictive control and neural feedback linearisation control are

some popular architectures, among others.

The neural predictive control scheme optimises the plant response over a specified time
horizon (Hagan et al., 2002; Soloway & Haley, 1996). This architecture requires a NN
plant model, a NN controller, a performance function to evaluate system responses, and
an optimisation procedure to select the best control input. The optimisation procedure,

however, can be computationally expensive.

An internal model control consists of a NN controller, a NN forward plant model and a
robust filter (Hunt & Sbarbaro, 1991; Varshney & Panigrahi, 2005). The difference
between the system and the model outputs is used as feedback input to the robustness
filter, which then feeds into the NN controller. The NN forward plant mode] and the NN
controller, that is, the inverse plant model, can be trained off-line using data collected

from plant operations. As mentioned above, the data set for training the neural model

17

may not cover a sutficiently large operational range, thus causing poor or even unstable

control performance.

A neural feedback linearisation structure uses two trained FNNs to approximate the
unknown nonlinear plant (Jin et al., 1993). After cancelling the nonlinear part by
feedbacking the NN outputs, a linear state feedback controller can be implemented.
There are several variations on the neural feedback linearisation controller (Breemen &
Veelenturf. 1996; Hagan et al., 2002). Nevertheless, system performance depends on the

accuracy of NN approximation, and is often unsatisfied.

Direct inverse control utilises an inverse system model that cascades with the controlled
system. Thus the network acts directly as the controller (Miller et al., 1990) without a
carefully trained NN plant model. The significant problem of this scheme is the lack of
robustness which can be attributed primarily to the absence of feedback. Ichikawa and
Sawa (1992) developed a direct feedback neural controller and a genetic training
algorithm for optimisation of the NN parameters in terms of various evaluations.
Although the controlled system, in simulations, can face noise, parameter changes and
nonlinearities, the approach is difficult to implement in real-time systems. Recently,
direct feedback inverse control scheme has been utilised in Nayeri et al. (2004) and
Daosud et al. (2005), but the difficulty in choosing the training input signal over the

operational range of system inputs is the main disadvantage of this approach.
2.3.2 Neural controllers based on adaptive learning

Most of the NN control approaches in literature have utilised the on-line learning
capability of NNs, that is, the adaptive learning approach. Since the real-time system
often includes time-varying parameters and unpredicted disturbances, the adaptive

neural control can enhance the robustness properties of the controlled systems.

An early “backpropagation-through-time” technique was proposed by Nguyen and
Widrow (1990), in which the plant dynamics can be learned off-line by a neural
network identifier, and the output error is back-propagated through the plant identifier
to obtain an equivalent error for training the neural controller. Recent developments of

this approach are presented in Da (2000) and Da and Song (2003), in which a sliding

18

mode regulator of system error is passed back through the necural identifier for tuning
the neural controller parameters. These studies, however, lack rigorous stability

guarantees.

The model reference indirect adaptive control using NNs has also been presented by
Narendra and Parthasarathy (1990). Here the desired performance of the closed-loop
system is specified through a stable reference model. The error between the plant output
and the reference model output is used for training the network acting as the controller.
When the NN controller treats the plant as a part of the NN output layer, it faces the
problem of unknown plant. Thus a forward model network has to be used to identify the
input-output behaviour of the plant. The identification model is then used for computing
the partial derivatives of the system output with regard to the controller parameters, also
known as the plant Jacobian matrix. In a more synthetic framework, Ng (1997) also
calculated the plant Jacobian from the neural model and showed the stability of the on-
line learning neural controlled system. However, in the stability proof (Ng, 1997), the
change in the Lyapunov function lacks the partial derivative of the Lyapunov function
with regard to the NN’s input states. Tanaka (1996) used the linear difference inclusion
approach to analyse the stability of these system configurations, but the results were

derived only for a few specific examples.

Instead of extracting the controller error from piant output error, the reinforcement
learning control approach (Barto, 1990) attempts to determine target controller outputs
that would lead to an increase in the measure of plant performance. The adaptive critic
controller (Sutton & Barto, 1998) consists of two NNs. The first action network
operates as an inverse controller and the second critic network predicts the future
performance of the system. Reinforcement learning, an approximation of dynamic
programming, is used to optimise future performance. However, the lack of a global

stability proof is the major problem of these methods.

With the advantage of no NN plant model, direct adaptive neural control schemes have
been developed to ease the unknown plant Jacobian. In Psaltis et al. (1988), a dynamics
is treated as an unmodifiable layer of the NN, and the error is backpropagated through
this dynamics. In the method proposed by Chen and Pao (1989), the system output error

is transformed into the network output error using an inverse transfer matrix of the

19

system dynamics. Another approach (Kawato et al., 1987) used a fixed feedback gain
stage to generate a transformed crror signal for updating the NNs. Saerens and Soquet
(1991) and Zhang et al. (1995) used the sign of the plant Jacobian in an attempt to
eliminate the demand of a preceding learning stage. Venugopal et al. (1995) put a gain
layer NN between the NN controller and the system. The Jacobian effects are therefore
controlled by updating the gain layer weights. Recently, direct adaptive neural control
schemes have been discussed in a new framework of sliding mode control approach
(Efe et al., 2003; Nguyen et al., 2004b; Tsai et al., 2004). In Efe et al. (2003), control
error is extracted from a prescribed reaching mode equation to avoid the plant Jacobian
requirement. Nguyen et al. (2004b) used the sliding function mentioned in Tsai et al.
(2004) for training the direct neural controller without involving the Jacobian matrix.
However, the stability and error convergence have not been fully proven for these NN-

based control systems.

Sanner and Slotine (1992) explained the instability of the above neural control systems
as being because of the gradient descent on-line training methods. Thus a number of NN
control approaches based on Lyapunov’s stability theory have been proposed
(Hayakawa et al., 2005; He, 2002; Hovakimyan et al., 2002; Jagannathan, 2001). In
these schemes, the adaptive laws for the multilayer NNs are derived based on the
Lyapunov method and therefore guarantee the stability of the controlled systems
without the requirement for off-line training. Using the Lyapunov approach,
Jagannathan (2001) proposed a novel weight updates of a multilayer NN controller so
that the tracking error and the NN weight estimates are uniformly ultimately bounded.
However, the proposed update rule is too complicated to applied in a real-time system.
Hovakimyan et al. (2002) developed an adaptive output feedback control methodology
for nonlinear systems using single-hidden-layer FNNs. A gradient-type learning
algorithm for on-line updating the NN weights is proposed so that the tracking error and
the weight estimate error are ultimately bounded. But such adaptive control schemes are

still difficult to implement in real-time systems.

In He (2002), a feedback control algorithm is proposed that utilises a set of NNs to
compensate for the effect of the system’s nonlinearities, and a proposed learning
algorithm for on-line updating the weight parameters of NNs can guarantee the

Lyapunov stability of the control system. This learning algorithm is actually similar to

20

the robust backpropagation training algorithm with a dead zone, introduced in (Song et
al. (1999). The selection of a small dead zone parameter will provide a small bound of
the tracking error. However, the dead zone parameter can not be set to zero, because this
may cause divergence of the NN in the present of disturbance (Song, 1998). Hayakawa
et al. (2005) developed a state feedback neural adaptive control scheme for nonlinear
uncertain nonnegative and compartmental systems. Using the Lyapunov-like methods,
an update rule of the NN weights was proposed and guarantees ultimate boundedness of
the error signal. In this on-line update algorithm, the sign of the output error is actually
used, thus this algorithm can be classified into the group of the sliding-mode-based

learning algorithms.

Other researchers basically developed the sliding-mode control scheme in the training
of NNs (Efe & Kaynak, 2000; Giordano et al., 2004). In Efe and Kaynak (2000), an
appropriate combination of BP and VSS theory leads to a novel update law which can
benefit from the robustness property of the VSS approach and the error minimisation
property of the BP algorithm. But the heuristic choice of many learning parameters is
the obvious drawback of this algorithm. Motivated from the research of Ramirez and
Morles (1995), Giordano et al. (2004) developed an adaptive learning approach based
on sliding-mode control strategy which guarantees the finite time reachability of zero
network error condition. Nevertheless, this approach is only applied in a neural

identification scheme of a real-time industrial manipulator.
2.4 Discussion and conclusion

In this chapter, the NN history and the SMC techniques are introduced. The overview
shows that the FNN is the most popular NN architecture and BP is the most used
algorithm for training FNNs. However, some major drawbacks associated with BP such
as local and slow convergence problems require further developments. A number of
approaches, such as the BP with momentum, the dynamic learning rate methods, the use
of entropy criterion or the activation function modifications, have been undertaken, but
the convergence rate and global convergence capability are not significantly improved.
Some second-order gradient methods, including the Levenberg-Marquardt, quasi-

Newton, conjugate gradient and QuickProp algorithms, can lead to high convergence

21

speed. However. large memory requircments and local minima convergence are major

limitations of these approaches.

Both stochastic and deterministic global optimisation methods are developed to
overcome the local minima convergence problem. The random optimisation method,
TAMSS, GA, and SARPROP often assure a convergence to the global minimum, but
these stochastic approaches sometimes require a long training duration and a limit of
input space. Other deterministic methods, named TRUST, GOTA or DWM, can
effectively find the global minima. Nevertheless, the computational complexity for

these learning algorithms with a global convergence is very high.

From the chattering-free sliding-mode control technique, an extended ABP algorithm
which can maintain fast convergence of the error function is proposed in this thesis. In
addition, a momentum term which stabilises the learning process is combined with the
extended ABP to form a novel algorithm, named EABPM. The EABPM algorithm, also
viewed as a deterministic method, is developed from the variable structure system
theory. Theoretically, the error function in the EABPM method exponentially converges
to zero in the sense of Lyapunov stability. EABPM therefore produces significant
improvement of the convergence speed while ensuring global convergence of the
training method. Experimental results in the head-movement classifier also show that

the EABPM always quickly converges the system error to a small acceptable level.

For the control purpose, the nonlinear mapping and learning capability of NNs open
bright prospects for nonlinear control developments, and a large number of NN control
structures have been proposed in the literature. Direct inverse control, neural internal
model control, neural predictive control, neural feedback linearization control are some
neural control structures based on nonlinear mapping, which are briefly mentioned in
this chapter. The difficulty of obtaining the training data set which covers a sufficiently
large operational range is the main drawback of these schemes. Moreover, most neural
control systems based on on-line learning strategies such as backpropagation-through-
time, model reference neural adaptive control, reinforcement learning control, and

direct adaptive control, still lack stability guarantees.

22

The research described in this thesis is focused on a type of control system architecture
in which the FNN serves as a direct feedback nonlinear controller. A sliding functjon
using as the network training error 1s defined to omit the need of an NN identifier. An
on-line shding-mode-based learning algorithm, named CFSMBP, is proposed to speed
up the incremental BP approach. The NN controllers using the CFSMBP and BP
learning algorithms are theoretically proven to stabilise the controlled system. A
training procedure is then developed to ensure the NN weights converge to optimal
values and to avoid the difficult choice of sufficient training signals associated with the
existing training procedure. Therefore, when applying the trained NN controller in the
system. the output performance can satisfy the desired requirements in the presence of
parameter changes and nonlinearities. Real-time experiments for the Static VAR
Compensator System show that a real-time neural controller has been designed and

implemented successfully.

The research further developed a decentralised neural control scheme for the large-scale
systems with interconnections and disturbances. The whole system has a parallel
structure so that each subsystem uses a multilayer NN which works as the direct
adaptive neural controller. A novel sliding function is defined for training the direct
neural controller without involving the Jacobian matrix. An on-line NN learning
algorithm based on the reaching law method is proposed so that the closed-loop
controlled system is asymptotically stable. The scheme is also applied successfully in

the real-time Coupled Electric Drive systems.

23

CHAPTER 3

NEURAL NETWORK LEARNING ALGORITHMS

Learning algorithms are the heart of artificial NNs. When the feedforward NNs are
utilised in the control and classification systems, the integration between variable
structure system (VSS) theory and the learning process can solve some problems of
these NN-based systems. Therefore, this chapter presents some background about
sliding mode techniques and NN learning algorithms. Until now, there have been
hundreds of publications proposing various learning algorithms of FNNs. It is not
possible to report all the learning algorithms published in the thesis, however, in this
chapter, a few popular learning algorithms for the multilayer FNNs have been
considered. These algorithms are well cited in the research literature and are related to

the new learning algorithms proposed in the next chapter.
3.1 The Backpropagation Algorithm

The backpropagation algorithm (Paker, 1982; Rumelhart & McClelland, 1986; Werbos,
1974) 1s the most well known and widely used among other learning algorithms
described in the literature. In this algorithm, an error function is defined as the mean-
square difference between the desired output and the actual output of the FNN. The BP
algorithm is based on steepest-descent techniques extended to each of the layers in the
network by the chain rule. There are two types of backpropagation algorithm, the batch
learning algorithm and the incremental learning algorithm. In the batch learning
method, the weights are updated after all patterns are presented, while weight updating
in the incremental learning is performed at every iteration after the presentation of an
input pattern. The batch learning method is more robust, since the training step averages
over all the training patterns. On the other hand, the incremental learning approach

appeals to some on-line adaptation applications.

Consider the basic structure of a feed-forward network with a single hidden layer, as

shown in Figure 3.1. The neural network consists of N input nodes, K hidden nodes, and

24

M output nodes. Sigmoid functions are used as the activation lunctions for both the

hidden and output layer.

Figure 3.1: Structure of a feedforward neural network with one hidden layer.

Let W, be the network weight of the connection between the input node n and the
hidden node k, W, the network weight of the connection between the hidden node k&
and the output node m, 0, and o, the output of the hidden node k and the output of the

output node m, respectively. For each training pattern p, let x” be the input values, and

d” the target output values.

The standard BP algorithm based on batch learning is shown in the following:

1. (Initialisation) Initialise all weights to small random values W, (0) and W,, (0).
Choose a small positive learning rate 77, maximum number of iterations ¢, and

a very small maximum tolerable error £___. Set the initial iteration 1 =0.

2. (Forward propagation) Select training pairs {x”,d”lpzl,...,P} from the

training set, propagate the inputs forward through the network using the

equation:

25

where f, (.)is the activation function for output node, f, (.)is the activation

function for hidden node.

The criterion function of the error is calculated as
1 P M 5
E:EZz[dWP—om"] (3.1)

If £ is not greater than E_, ., or the number of iterations exceeds a value ¢, ,

then the algorithm is stopped. Otherwise, go to step 3.

3. (Backward propagation) Compute the changes of the weights for the next

iteration
IN R0 e o Y
km 77 aka (f) - np:l m k
oF L
A —— _ — 5 Py P
" (t) 77 aWnk (t) 7717=I ¢ x”
where

Update the weights

26

Set 1 =1+1and go to step 2.

In the incremental learning method, the criterion function in (3.1) is replaced by
E=E" =-3[d, =0, (3.2)

For simplification, define a weight vector of all the NN’s weights as

— — — T
w=[W,,.W Wk Wi Wogsos Wiy | (3.3)

k>t

The BP algorithm can now be written in the form

OE

Aw(t)=— 3.4
) oE . i i
where the gradient term w () is sometimes expressed as g(¢)or VE(w (t)), and its
components Aw, (1) = —ni; i=NxK+KxM.
' ow, (1)

The BP algorithm with a simple computation has been successfully applied in a variety
of areas (Meireles et al., 2003). However, BP suffers from the following disadvantages.
Firstly, BP can converge to a local minimum of the error function (Bianchini et al.,
1994), and fail in finding a global optimal solution. Secondly, the convergence speed of
BP is too slow, which is often unacceptable in real-time systems. Its slowness is due to
the use of the steepest-descent technique with a fixed chosen step length (Fletcher,
1987). Another reason for the slow convergence is the premature saturation of the

derivative of the activation function, sometimes referred as the “flat-spot” problem (Lee

27

et al., 1993). Another less-considered major problem is the robustness, that is, how well
the FNN trained by BP will perform in the presence of noise. The concept of robustness

is a prime requirement when the NNs are used for control systems with external

disturbances and parameter uncertainties.

There are numerous modifications to BP with the goal of increased speed of
convergence, avoidance of local minima, and/or improvement in the NN’s robustness
properties. A classification tree is shown in Figure 3.2 to help our discussion. As can be
seen from the figure, the methods proposed to improve the original BP performance can
be divided into groups: (1) Dynamic learning rate methods, (2) Second-order gradient
methods, (3) Activation function variations, (4) BP with momentum, (5) Criterion

function variations, and (6) Sliding-mode-based learning algorithms.

Modifications of the BP algorithm

i)yngmic Second- Activation BP with Criterion SMC-based

carning orde'r function momentum function algorithms

rate gradient varjations BP

Entropy A
DBD | |Newton| Add Const||BPM function SMCBP
ick Minko

S Set Const| |Quic

S;pgr GN Prop weki-r VSS-BP
MGF SMC

LM CGM Chebyskev
Rprop

Figure 3.2: Tree classification of different modified backpropagation algorithms

28

3.2 Variable Learning Rate Backpropagation Algorithms

The convergence speed of BP is directly affected by the learning rate 7. If 7 is small,

the search path will closely approximate the gradient path, but convergence will be very
slow, due to the large number of update steps needed to reach a local minimum. On the

other hand. if 7 is large, convergence initially will be very fast, but the algorithm will

eventually oscillate and thus not reach a minimum. The adaptive learning rate hence can

speed up the leaming process. Some of these techniques will be discussed below.
3.2.1 Delta-bar-delta (DBD) (Jacobs, 1988)

The Delta-bar-delta learning rules use the adaptive rate to speed up the convergence. If
the parameter change has been in the same direction for several iterations, the algorithm
increases the learning rate by adding a constant. If the direction of the parameter change
alternates, then the learning rate is decreased by multiplying a constant smaller than 1.
This is prompted by the idea that if the weight changes are oscillating, the minimum 1s
between the oscillations and a smaller step size might find that minimum. The step size
may be increased again once the error has stopped oscillating. The DBD algorithm is

based on the batch learning method and can be described as follows:

1. (Initialisation) Initialise all weights to small random values w, (O) Choose small
positive learning rates 7,(0), maximum number of iterations /. and very
small maximum tolerable error £__ . Set the increase factor 7", the decrease

factor n”, the initial iteration 1 =1, w, (0) = 0, filter coefficient /.

2. (Forward propagation) Select training pairs {x",d”|p:1,...,P} from the

training set, propagate the inputs forward through the network to attain outputs
0" p=1L.,P,m=1.,M.

The criterion function of the error is calculated as

29

If £ is not greater than FE or the number of iterations exceeds a value ¢

max ° max °

then the algorithm is stopped. Otherwise, go to step 3.

3. (Backward propagation) Compute the derivative of the criterion function with

regard to weights as

Change the learning rate by the rule

w (t)=(1-5) + pw (1-1)

ow, (1)

if[oF le(t—1)>0)then n()=n(-1)+n"

else if [&fit) xw, (1-1)< OJ then 7,(1)=mn (1—1)xn

else 7,(1)=n,(1-1)
Update the weights and the gradient and learning rates

w,(z)=w,(z_1)-n,§(t—)

7, (1=1)=n,(1); awjf—l)) ajif)

30

Set =1 +1and go to step 2.

Some values are recommended for 7" =0.095and - =0.9, f=0.7. When n*, 1~ are

set to zero. the learning rates assume a constant value as in the standard

backpropagation algorithm.
3.2.2 RPROP (Riedmiller & Braun, 1993)

The basic principle of RPROP is to eliminate the saturated influence of the magnitude
of the gradient, thus only the sign of the gradient is used to find the proper update

direction. RPROP uses independent update step size 7, for every connection.

Furthermore, these step sizes are adapted with regard to the sign of the actual and the
last derivative. The step sizes are bounded by upper and lower limits in order to avoid
oscillation and arithmetic underflow of the floating point values. Finally, local
backtracking is applied to those connections where sign changes of the gradient are

detected. The RPROP algorithm can be described as follows:

1. (Initialisation) Initialise all weights to small random values w,(O). Choose
small positive learning rates 7,(0), maximum number of iterations 7, and
very small maximum tolerable errorE__ . Set the increase factor 7", the

decrease factor 77~ , the initial iteration 1 =1, Aw,(0)=0.

2. (Forward propagation) Select training pairs {x”,d”lpzl,...,P} from the

training set, propagate the inputs forward through the network to attain outputs

0o, p=1.,P,m=1...M.

The criterion function of error is calculated as

31

If £ is not greater than E__ . or the number of iterations exceeds a value ¢

max > max ?

then the algorithm is stopped. Otherwise, go to step 3.

-

3. (Backward propagation) Compute the derivative of the criterion function with

regard to weights as

Change the learning rate by the rule

i oF X oL >0 (then
ow, (1) ow,(1-1)

begin 7, (1)=n(t-1)xn’

lf 771 (t) > 77max then 771' (t) = nmax

aw, (1) ==1,(0) Sg”[éjb;f)J

w, (1) =w, (1-1)+2aw, (1)

end

oF oF
i <0 {then
else lf{é‘w,. (t)xé‘w, ([_]) j

begin 7, (1)=n,(t=1)xn"

32

if ,7: (,) <)Zlnin then 77:’ (’) = 77min

w (1) =w (r=1)-aw, (1-1)

end

end

Update the gradient, weight changes and learning rates

n(t=1)=n,(1); =~ Aw (1) = 4w, (1-1)

Set t =¢+1and go to step 2.

The recommended values of the parameters are 7 =12, n =05, 7, =500,

7. . =0.000001.

33

3.3 Second-order Gradient Methods

The variable learning rate BP algorithms actually try to change the learning rate with
regard to widely differing eigenvalues of the Hessian matrix. By directly using the
Hessian matrix, Newton methods can significantly improve the convergence speed of

BP. The Hessian matrix H, is the matrix of second derivatives of £ with regard to the

weights W as

O’E
- | 3.5
0=t o)
N O°E
with its components H, ()= ow, (r)ow, (1)
1 ./

3.3.1 Newton method

The Newton method is based on a quadratic model £ (w)of the criterion £ (w)and uses

only the three terms in the Taylor series expansion of E about the weight vector w(i):

E(w(t)+aw(r))= E(w(t))+ VE(w(r))aw (1) +1 aw (1) VZE(w(r))aw (1)

This quadratic function is minimised by solving the equation VE (w (r)+Aw (t)) =0,

which leads to the Newton’s method

aw(t)=-5[H, (1)]" ajE(t) (3.6)

This algorithm converges quickly if the search region is quadratic or nearly so
(Cichocki & Unbehauen, 1993). However, the Newton method is not commonly used
because computing the Hessian matrix is computationally expensive. To overcome the

problem, several methods have being proposed to approximate the Hessian matrix.

34

3.3.2 Gauss—Newton method (Becker & Le Cun, 1989)

Becker and Le Cun proposed the Gauss—Newton method whereby the off-line elements

of H_ are neglected, thus arriving at the approximation

ok | ok
Aw,(z)z—r{awz(l)J (3.7)

However, 1n the regions of very small curvature, such as plateaus, Aw, (t) in Equation

(3.7) 1s dramatically increased. Furthermore, the Hessian matrix may not be positive

definite at every point in the error surface.
3.3.3 Levenberg—Marquardt (LM) method (Hagan & Menhayj, 1994)

The LM method overcomes these difficulties by adding a positive scalar x to the

Gauss—Newton approximation of the Hessian:

Aw,(i)z—r{%ﬂu} 6‘\/(3,E(t) (3.8)

1 could also change adaptively by

upB E(1+1)=E(r)

a % E(1+1)< E(1)

where f is a value defined by the user. The LM algorithm can be described as:

35

1. (Initialisation) Initialise all weights to small random values w, (0). Choose a

small positive coefficient 4, maximum number of iterations ¢, and very small

maximum tolerable error £ . Set parameter 9, the initial iteration ¢ =1.

max

2. (Forward propagation) Select training pairs {x”,d”lp:],...,P} from the

training set. propagate the inputs forward through the network to attain outputs

and error vector
r. _ 14 7. — . —
0,”; e—[dm -0,], p=1..,P m=1,.,M

The criterion function over all patterns is calculated as

If E is not greater than E or the number of iterations exceeds a value ¢

max > max ?

then the algorithm is stopped. Otherwise, go to step 3.

3. (Backward propagation) Compute the derivative of output error o,” with regard

to weights to attain the Jacobian matrix

P
J = 90 ; iI=NxK+KxM; p=1..,.P;, m=1..M
ow, (1)

}

Update the weights
aw, (1) ==[3 T+ 1] Ve (3.9
w (1) =w,(1=1)+ 4w, (1)

4. Recompute the criterion function with the new weights w, (1).

36

1 PAl 3
E(r)= EZZ[W ~0,"]

p=l mi=1

If (E(1)< E(r—1)) then /lzllg,set w (1=1)=w (1), t=(+1and go to step 2.

Else =g w,(t1)=w,(r—1)and go to step 3.

The recommended values of the parameters are 3=5, 1 =0.01.

3.4 Activation Function Variations

During training, if a neuron in an FNN receives a weights signal net, a sum of all input
signals presented to this neuron, with a large magnitude, this neuron outputs a value
close to one of the saturation levels of its activation function, as in Figure 3.3. If the
corresponding target value is substantially different from that of the saturated neuron,
one can say that the neuron has entered a flat spot. When this happens, the size of the
weight update, due to the derivative of activation function approaching zero, will be

very small, and it will take an excessively long time to leave the flat spot.

B e

Sigmoidal function and its derivative

!

0 e
5 4

Figure 3.3: Sigmoid function (solid line) and its derivative (dotted line).

37

Fahlman (1988) suggested altering the derivative of the activation function directly by
adding a constant 0.1 to the derivative term. Thus the derivative will be scaled up and

will not be too small.
Jrew (net) = 1" (net)+0.1, (3.10)
where /”(net) canbe f](net,) for the output node or f; (net,) for the hidden node.

Vitela and Reifman (1997) set the value of the derivative to a constant value when the

activation level falls in predefined saturation regions.
f'(ner)=0.09 as f(net)<0.1orf(ner)=0.9 (3.11)

Ng et al. (2004) magnified the activation derivative by using a power factor ¢, where
s 2 1. Therefore, the derivative of the activation function is scaled up to speed up the

convergence rate.

15 (net,s) :[f’(net)]% (3.12)

These methods actually tried to solve the premature saturation problem accompanying
the derivative of activation function. Therefore, the NNs applying these approaches can

speed up the convergence rate, but the local minima problem still exists.

38

3.5 Backpropagation with Momentum Methods

One efficient and commonly used method that allows a larger learning rate without

divergent oscillations occurring is the addition of a momentum to the BP algorithm.
3.5.1 Backpropagation with momentum (BPM) (Plaut et al., 1986)
This learning algorithm introduces a momentum term in the weight changes as

oE

ow, (1)

+atw, (1-1) (3.13)

where the momentum factor 0 <a <1, Aw, (1) =w, (1)—w,(1-1).

This algorithm can be described in the following steps:

1. (Initialisation) Initialise all weights to small random values w,(O). Choose a
small positive learning rate 77, maximum number of iterations ¢ and very

small maximum tolerable error £, . Set the initial iteration 1 =1, Aw, (0)=0.

2. (Forward propagation) Select training pairs {x”,d”lpzl,...,P} from the

training set, propagate the inputs forward through the network to attain outputs
o ; p=1L..,P;m=1..,M.

The criterion function of the error is calculated as

E :%ii[dm” —0,,,”}2

p=1 m=1

If E is not greater than F or the number of iterations exceeds a value 7 .,

max °

then the algorithm is stopped. Otherwise, go to step 3.

39

3. (Backward propagation) Compute the derivative of the criterion function with |

regard to weights as

Change the weights as Aw, (1) =-p

2w, (1) +aAw, (1-1)

w, (1) =w,(1=1)+Aw, (1)

Update the weight changes Aw, (1 —1) = Aw, (1)

Set r=r+1and go to step 2.

3.5.2 Quickprop (Fahlman, 1988)

Fahlman (1988) proposed a variation of BPM, called Quickprop, that employs a

dynamic momentum by

oF
ow, (1
a(l)=—7g ()8E

ow,(1-1) ow,(r)

(3.14)

With this adaptive coefficient a(t) , if the current slope is persistently smaller than the

previous one but has the same sign, then o (r)is positive, and the weight change will

accelerate. If the current slope is in the opposite direction from the previous one,

meaning the weights are crossing over a minimum, then a(t)is negative, and the

weight change starts to decelerate. To prevent the weights from growing too large, a

small weight decay can be used.

40

The Quickprop algorithm can be described in the following steps:

I. (Initialisation) Initialise all weights to small random values w, (0). Choose a

small positive learning rate 77, maximum number of iterations ¢ and very

X

small maximum tolerable error £__ . Set parameter x , the initial iteration =1,

gradient

=0, Aw,(0) = Aw, (1)=0.

oF
o, 0)

2. (Forward propagation) Select training pairs {x”,d”|p=1,...,P} from the

training set, propagate the inputs forward through the network to attain outputs
0,/ ; p=L... P, m=1..M.

The criterion function of the error is calculated as

If E is not greater than E__ , or the number of iterations exceeds a value /,,,

then the algorithm is stopped. Otherwise, go to step 3.

3. (Backward propagation) Compute the derivative of the criterion function with

regard to weights as

4. Changes of the weights are as follows:
If (Aw,(¢)>0) then

begin

41

| OF OF
i 0 |then Aw (1+1)=-
| [8\\‘,(’)>] ren A (1-+1) ’78W,(t)

if[OE ;. O

th A 1)=Aw. A _
5w,(t) 1—,u(3w,(1-1)J en W,(l+) w,(t)+,u>< WI(’])

oF

ow, (1)
else Aw, (1+1) = Aw, (1) +——F OF

ow, (Z —1) ow, (1)

x Aw, (1-1)

end
Else if (Aw,(1)<0) then
begin

O
ow, (1)

i

if[oL <Ojthen Aw,.(z+1):_,7

ow, (1)

jf[OE H Ok

o (t) < i aWi(t_l)]then Aw, (t+l):Aw, (t)+ywa,. (t_l)

else Aw,(1+1)=2Aw, (1)+—

end

Else Aw (t+1):_,7

i

42

Update the weights, changes of weights and gradient

W) (t +1): w, (/)+Aw, (I)
OE OF
ow (1-1) ow, (1)
Aw, (1) = Aw (1 =1); Aw, (1 +1)= Aw, (1)

Settr=t+1,

=0 and go to step 2.

OF
ow, (0)

The recommended value of the parameter 4 is 1.5.

3.5.3 Scaled conjugate gradient method

In scaled conjugate gradient methods, a new search direction in two successive steps of
optimal steepest descent is a compromise between the current gradient VE and the

previous search direction

d(t)=—g(t)+ad(r-1)

a(t)aw(1-1), (3.15)

In practice, o , which plays the role of an adaptive momentum, is chosen according to

the Hestenes-Stiefel rule (Moller, 1993):

(- 20 00801
()= d(r-1) [g(t g(r-1)]

43

or the Polack-Ribiere rule (Hert et al.. 1991):

or the Fletcher-Reeves rule:

x(r)-— £ 20)

) g(/—l)rg(t—l)

The optimal step size ry(t) is chosen to minimise the energy function along the search

direction
n(t)= m”in E(w(t)+n(r)d (z))

These algorithms can be described as follows:

1. (Initialisation) Initialise all weights to small random values w,.(O). Choose a
small positive learning rate 7, maximum number of iterations ¢ . and very

small maximum tolerable errorE_, . Set the initial iteration =1,

g(o):aw_afo_):o, d(0)=—g(0), Aw, (0)=0.

2. Estimate the minimisation step

_a0e()
d(r) H(0)d(r)+A(r)]d (o)

7(1) =~

Where A(1)is a fudge factor to make the denominator positive and H(¢)is an

approximation of the Hessian matrix.

44

Update the weights — Aw (1) = (/)d (/)

3. (Forward propagation) Select training pairs {x”,dp|p:1,...,P} from the

training set, propagate the inputs forward through the network to attain outputs
0, ; p=1.,P, m=1.,M.

The criterion function of the error is calculated as

1 P M 2
51330 0]

p=l m=1

If E is not greater than E__ , or the number of iterations exceeds a value ¢

max

then the algorithm is stopped. Otherwise, go to step 3.

4. (Backward propagation) Compute the derivative of the criterion function with

regard to weights as

Calculate a(f)as

g(’)y [g(t)—g(t _1)} (Hestenes—Stiefel)

g(1)-
a(t)= [g(l/) 8t J (Polak-Ribiere)

g(t)“ 8(1) (Fletcher-Reeves)

45

5. Find the conjugate direction d(/)as

d(1)=—g(t)+a()d(1-1)

Set r =7+1and go to step 2.

3.6 Criterion Function Variations

In order to increase the speed of convergence, to avoid local minima convergence and to
improve the robust property, other criterion/error functions are used, from which new

versions of the BP rule can be derived.
3.6.1 The instantaneous entropy criterion
The instantaneous entropy criterion was proposed by Baum and Wilczek (1988),

wherein E(w)=§i{(l+dm)ln(l+dm}+(1—dm)ln{1—d’" H (3.16)

m=1 1 +0m _Om

With hyperbolic tangent activations at both hidden and output layers, employing the

incremental BP learning, the weight changes are obtained as

AW, (1+1)=np(d,~o0,)o,)
_ (3.
AW, (t+1)=np*(d, -o, (1 -0,)x,,
From this equation, the derivative of the activation function has been eliminated, and
the output units do not have a flat-spot problem. However, the derivative of the
activation function still appears for the hidden units. Therefore, the flat-spot problem is

only partially solved by employing the entropy criterion.
3.6.2 The Minkowski-r criterion function

The Minkowski-r criterion function was proposed by Hanson and Burr (1988) as:

46

M

Z|a’m m| (3] 8)

m=1

which leads to the weight update rule as

A” km (, + 1) ,] Sgn(m m)ldm m a -/;)’(netm)b_k

AT (1+1) {ngn =0, w.,, (t)ﬂ(netm)}ﬂ(netk)xn

m=|

(3.19)

r—1

—0

m m

Hanson and Burr (1988) showed that decreasing the power values r can significantly

improve convergence and may dramatically reduce noise in the target domain.

The idea of increasing the learning robustness of BP in noisy environments can be
placed in a more general statistical framework (White, 1989). Robustness of learning

refers to insensitivity to small perturbations in the underlying probability distribution

Pl x) of the training set. These statistical techniques motivate the replacement of the
linear error e, =d, —o0, by a nonlinear error suppressor function f,(e,) that is

compatible with the underlying probability density function p(x). For example,

d —o

m m

- (3.20)

fe (em) =sgn (dm _Om)

with 1<r<2.

This error suppressor leads to the weight update rule in Equation (3.19). This update

rule actually can be classified as the sliding-mode-based learning algorithm.

3.6.3 The Chebyskev norm

The quadratic cost function (3.2) can be generalised to have the norm-based form

(Burrascano, 1991) as

Z(dm—o " where 1< p<w (3.21)
p m

47

The L, norm. also called the Chebyshev norm, of the cost function is as
E" =sup(|d, -o,[) (3.22)

Where sup(.) denotes a function selecting the largest component of the error vector,

while the other error components are negligible. The weight update rule is obtained as

AW, (1+1)=nsgn(d, ~0,) /1, (net,)o,

AW, (1+1) [ngn YW (1) £ (net,,)}fh’(netk)xn

m=]

(3.23)

The algorithm (3.23) is a specific case of the update rule (3.19) with » =1.
3.7 Sliding-mode-based Learning Algorithms

From the robustness point of view, VSS theory offers high-performance solutions to the
problem of NNs’ parameter tuning. VSS theory was first proposed by Emelyanov
(1967), and was later developed by Itkis (1976) and Utkin (1977). In general, the sliding
mode control (SMC) system can be separated into the reaching mode and sliding mode,
as shown in Figure 3.4 (for a second-order system). In the reaching mode, a system
trajectory starting from anywhere on the phase plane moves toward a desired dynamics,
called the sliding surface, and reaches the surface in finite time. Remaining on the
sliding surface, or in the sliding mode, the trajectory asymptotically tends to the origin
of the phase plane. In the sliding mode, the system is robust against external

disturbances and system uncertainties.

Numerous contributions to VSS theory have been made during the last decade. The
integral sliding mode control (Utkin & Shi, 1996), the reaching law method (Gao &
Hung, 1993) and the chattering-free sliding-mode approach (Ertugrul et al., 1995) are
some examples of these new contributions. In those approaches mentioned, the
Lynapunov stability theorem is satisfied in different ways so that the system state

trajectory is driven toward and remains on the sliding surface.

48

_ reaching
reaching sliding mode

mode .
mode origin

v®

sliding
mode

Sliding surface
S=0

Figure 3.4: State trajectories of a variable structure system.

Several studies utilising VSS theory in the training algorithm of NN are reported in the
literature. Zak and Sira-Ramirez (1990) developed a switching weight adaptation
strategy and showed to impose a discrete-time asymptotically stable linear learning
error dynamics. However, the authors just developed the robust algorithm for the FNNs
with discontinuous activation functions. The pioneering study of Sira-Ramirez and
Morles (1995) primarily discussed the use of the sliding-mode control strategy in
learning algorithm of Adalines. A dynamical adaptive learning scheme based on
sliding-mode control ideas is proposed, and it represents a simple, but robust,
mechanism for guaranteeing the finite time reachability of zero error condition. This
approach is also highly insensitive to bounded external perturbation inputs and output
measurement noise. However, this robust algorithm is only developed for the Adalines.
In the following section, recent studies accounting for the sliding-mode-based training

performance of FNNs are briefly considered.
3.7.1 Adaptive BP (ABP)

The adaptive BP algorithm was proposed by Jervis and Fitzgerald (1993) and Parlos et
al. (1994). The algorithm updates the weights in the direction of steepest descent, but

with a learning rate that is a specific function of the error and of the error gradient norm:

49

(3.24)

where p(E)= nk

ntanh(ﬁ)

n and E; are positive constants, representing the algorithm step size and the error

normalisation factor. respectively.

The adaptive BP algorithm with p(E)=nE is described as follows:

1. (Initialisation) Initialise all weights to small random values w,.(O). Choose a
small positive learning rate 77, maximum number of iterations ¢ . and very

small maximum tolerable error £, . Set the initial iteration 7 =1, Aw, (0)=0.

2. (Forward propagation) Select training pairs {x”,d”lpzl,...,P} from the

training set, propagate the inputs forward through the network to attain outputs
0, ; p=1L...P, m=1,... M.

The criterion function of the error is calculated as

If E is not greater than E__ , or the number of iterations exceeds a value /.,

then the algorithm is stopped. Otherwise, go to step 3.

3. (Backward propagation) Compute the derivative of the criterion function with

regard to weights as

50

/
Calculate the denominator Y = oL oL
ow (1) | ow(r)
_nkE oF

Changes of weights are as Aw, (z) = e ()
w, (1

w, (t): w, (l —1)+Aw, (1)

Set 1 =¢+1and go to step 2.

3.7.2 Sliding-mode BP algorithm (SMC-BP)

A new learning algorithm based on the SMC strategy was proposed by Parma et al.
(1999). For an FNN as shown in Figure 3.2, the sliding surfaces are first defined as:

For the output layer,

s, ()=e,, (1)+Ce,, (1), C>0
e, (1)=(d,-o0,) [(net,)
e, ()=¢, (1)—e, (1-1)

For the hidden layer, Sy =€y ¥Chey> Cy >0,

M
elkl-l =];II (nel/()Z eIkam ([)

Wlth m=]
€run ([) =€y ([)—elkH (’ _])

Basing on the SMC principle, the weight update rule is obtained as

51

M, (1) =a e, (0)]sen(s,, (1)), (1)

_ 3.25
AW, (f) = /Jlem, (/)’sgn(sm (l))x” (/) (5:22)

From the discrete-time sliding mode condition, some bounds on o >0,/ >0are

proposed such that the network trained by the proposed algorithm is global
convergence. The SMC-BP algorithm resembles the incremental BP one, except for two

subtle changes:

1. The absolute value of the error i1s used instead of the actual error.

I

The sign of the sliding surfaces is added so that the learning problem is reduced
to a standard SMC problem. Convergence of the algorithm is therefore

guaranteed.

The weight update rule (3.25) is actually similar to the rule in Equation (3.19) with
r=2.

3.7.3 Variable structure system technique for BP algorithm (VSS-BP)

In Efe et al. (2000), a sliding function from the change of weights is defined as

s(t)=Aw(r)

From the reaching law approach (Gao & Hung, 1993), the reaching condition is

obtained as As =—(Q, tanh [%} ~K,s=A4(w),

where Q,, K, are the gains and ¢ is the width of the boundary layer.

Then a VSS-based algorithm was proposed to force Aw to zero

Aw(z—l)”

g(1)

A(w)
(1)

g

AWVSS(I)=ﬂmin{ }g(1)+A(w), 0<p<l

52

By combining the BP algorithm and VSS-based algorithm, a fast and robust algorithm

1s obtained as

Aw (1-1)

g(/)

Aw (1) =-ng(1)+n, min{

}g(!)+z]3,4(w) (3.26)

One obvious drawback of the VSS-BP algorithm is that it now contains five heuristic

parameters: 7,.17,. 175, Oy, K .
3.7.4 On-line learning in FNN based on the sliding mode concept (SMC)

Giordano et al. (2004) developed an adaptive learning scheme for an FNN with time-

varying input vector and an output scalar, as shown in Figure 3.5.

Figure 3.5: Structure of a feedforward neural network with one output neuron.

Giordano et al. assumed that the weight matrices, input vector derivate and derivative of

the desired output are bounded

(Wi<s, . [W]<E,

[x(1)| < B.. |5.()|<B,

And the adaptive law for the weight vectors is attained as

53

)

1) = 2 Jasen(et0)

T ()=~ "5 Jrsgn(e(0)

W (3.27)

R
X X

where xis the vector of the time-varying inputs, o is the vector of the output signals of

the neurons in the hidden layer. e(r)=y(¢)-y, (/) is the output error, the slope of

activation function f,(.) is assumed not to be larger than B,, and the learning rate is

chosen as:

o> KB,B,B.B; +B, .

This algorithm assures the output error converges to zero in a finite time 7, , which may

be estimated as

k0
) < (3.28)
o -KB,B, BB, ~B,

3.8 Discussion and conclusion

In the batch learning procedure, after all training data are presented, £ is calculated and
the NN’s weights are updated. Thus it can be said that the error criterion £ is a function

of all weight variables. The change of £ in a very small incremental time can be

,
approximated as AE ~ [2@} Aw .
ow

,
: E | oF .
The BP algorithm yields the dynamics AE = —7 {é_} — . In the vicinity of a local

.. oF . : :
minimum, P is very small, which results in a slow convergence rate of the BP
approach. Moreover, the training process stops when AE =0 in the local minima, that

1s, % =0, and the NN becomes trapped in the local minima.

54

.
The Newton algorithm leads to the equation AE ~—p [@} H([)*'a_E. Because the
ow

elgenvalues {11 /l”} of H (t) are not always positive in the error surface, the training

procedures may be diverged. In the Levenberg-Marquardt algorithm, this problem is

overcome by using a matrix H(t)+;zl , and the positive scalar g is chosen such that

all eigenvalues {4, + ..., +,u} are positive. However, these second-order gradient

methods still face the problem of getting trapped in the local minima since the training

process always stops at the local minima, that is, % =0.

The inclusion of momentum can generally improve the convergence rate of the BP
algorithm, as proven in Bishop (1995). But the BPM algorithm remains inefficient.
Another heuristic approach, the QuickProp algorithm, utilises a dynamic momentum
factor, thus leading to a significant improvement in convergence speed, in comparison
to the BPM algorithm. Nevertheless, if the local quadratic fit is a parabola with a
maximum, the QuickProp algorithm leads to an uphill step. Although the scaled
conjugate gradient method can be the fastest algorithm for training FNNs, its

convergence to local minima is the main drawback of this BP variation.

In the adaptive BP algorithm, the change in error can be obtained as AE=-pk.

Therefore, the training algorithm will converge to the global minimum, that is, £=0,
with a convergence rate 7. This BP modification can show the capability of utilising
VSS theory in BP to improve the convergence rate and avoid the local minima problem.
However, Parlos et al. (1994) only successfully applied ABP in function approximation.
They reported that ABP was found to be as fast as the BP in the parity problem or the

encoder problem. This has led to fewer studies on ABP in the neural network literature.

Although the on-line learning algorithm proposed by Giordano et al. (2004) represents a
simple, but robust, mechanism for guaranteeing the finite time reachable condition of
the zero error function, it is only successfully applied in a real-time neural identifier.
Moreover, in the case where the value of 0’0 in (3.27) reaches zero, the change of

weights becomes infinite. This results in the divergence of the SMC algorithm.

55

In conclusion, a number of popular NN learning algorithms are introduced in this
chapter. These BP variations arc distributed into some categories, including the dynamic
learning rate approaches, the second-order gradient methods, activation function and
criterion function variations, backpropagation with momentum, and especially the
combination of VSS theory and BP. Major advantages and disavantages of these
learning algorithms are then discussed. Motivated from the above algorithms, three

novel learning algorithms are developed and presented in the next chapter.

56

CHAPTER 4

ADVANCED NEURAL NETWORK TRAINING ALGORITHMS BASED

ON SLIDING-MODE CONTROL TECHNIQUES

This chapter describes the integration between the variable structure system (VSS)
theory and the backpropagation (BP) learning algorithm to obtain some robust
algorithms. Using the chattering-free sliding-mode control technique and the reaching
law approach. three different learning algorithms are proposed. One batch leaning
algorithm 1s developed for classification problems, and results in a fast and global
convergence of the system. Two on-line learning schemes are developed for control
applications, and the neural controllers mathematically guarantee the stabilities of the
systems with parameter uncertainty and external disturbances. Their effectiveness is
illustrated through some simulation results, and is further tested in a neural head-
movement classifier for wheelchair control. Finally, discussion on the results is

presented in the end of the chapter.
4.1 Introduction

In the VSS theory (Hung et al., 1993), the reaching law method is the most general

scheme among the others. For the continuous system, the derivative of a predefined

sliding function s(¢) in the reaching law method (Gao & Hung, 1993) is described as
5'([):—gsgn(s(t))—qs(t), £>0,g>0. (4.1)
The reaching time for the system (4.1) to move from an initial position s(0) to the

q‘s(())|+g
n—4—.

. 1
sliding surface s =0 is finite, and is given by 7, =—1 .
q

If £ =0, the reaching rule is similar to the chattering-free SMC strategy (Ertugrul et al.,
1995; Nguyen, 1998):

57

.\"(r):—qs(!), q>0. (4.2)

and the sliding variable .\'(I) in the rule (4.2) exponentially converges to zero with a

convergence rate ¢ .

If g =0. the reaching rule becomes the standard SMC strategy (Utkin, 1977):
s(1)=-esgn(s(1)), >0, (4.3)

()

£

and the law (4.3) forces the sliding variable s{f) to zero in a finite time T, = f

s

£ 1s too small, the reaching time will be too long. On the other hand, a ¢ too large will

cause severe chattering. Apparently, by adding the proportional term —gs, the zero

convergence of the sliding function in the reaching law method is faster than those of

the other schemes.

The discrete version of the chattering-free SMC strategy becomes

As=s(t+1)=s(1)=—q,s(1). (4.4)

and the sliding function will exponentially converge to zero if 0<gq, =q.Ar <1.

When the VSS theory is applied in the NN training process, the criterion function of the

network error is often defined from the sliding variable as

E=—5’ (4.5)

When the change of E is satisfied by the law (4.1), (4.2), or (4.4), the error function
will asymptotically converge to zero. Therefore, using the reaching law approach and
the chattering-free SMC method in the BP algorithm can yield a number of novel
training algorithms, which are presented in the next section. Figure 4.1 shows the tree

classification of these algorithms, wherein the acronym of EABPM refers to the

58

extension of the ABP algorithm with momentum, the acronym of CFSMBP denotes the
chattering-free sliding-mode control technique combined with the backpropagation
algorithm. and the acronym of RMBP denotes the reaching law method combined with

the backpropagation algorithm.

SMC strategy for BP algorithm

T T~

Classification Control

EABPM CFSMBP RMBP

Figure 4.1: Tree classification of the proposed learning algorithms.

4.2 Sliding-mode-based Neural Networks for Classification

Applications

4.2.1 Feedforward neural network structure for classification applications

Consider the structure of a feedforward network with a single hidden layer, as shown in

Figure 4.2. The neural network consists of N+1 input nodes, K+1 hidden nodes, and M

output nodes. Sigmoid functions, /(v)= are used as the activation functions for

v 7

1+e
both the hidden and output layer. This NN structure is often utilised in the classification

applications (Haykin, 1995).

Let W, be the network weight for the input node » and the hidden node &, W the
augmented weight matrix between the input layer and the hidden layer, W, the

network weight for the hidden node & and the output node m, W the augmented weight

matrix between the hidden layer and the output layer, 0, and o, the outputs of the

hidden node k and the output node m, respectively, © the augmented output vector of

59

the hidden layer. For each training pattern p, let x” be the input pattern p, X” the vector

of augmented inputs, and d” the target output values.

Figure 4.2: Structure of a feedforward network with one hidden layer.

After presenting all training pairs {x”, d’ |p =1,..., P} to the network, the error criterion

function is calculated as

E :—;-Zi[dm” ~o0,” | (4.6)

P
p=1 m=1
4.2.2 Sliding-mode-based learning algorithm for the FNN

The batch BP algorithm is the gradient descent method which changes the network
weights to minimise the error function E. However, the BP algorithm is slow in

convergence, and often becomes trapped in a local minimum. As discussed in Chapter

3, in the vicinity of a local minimum, w is very small, which results in a slow

convergence rate of the BP approach. Moreover, the changes of weights stop when

AE =0 1n the local minima, that is, % =0, and the NN becomes trapped in the local

minima.

In the adaptive BP (ABP) algorithm (Parlos et al., 1994), the change in error can be
obtained as AE = —77E . From the chattering-free SMC strategy, the training process will

converge to the global minimum, that is, £ =0, with a convergence rate 77. However,

60

as reported in Parlos et al. (1994). the ABP algorithm is not an effective approach for

solving the binary problems. such as the parity problem or the encoder problem.

An extended learning algorithm of ABP, as in Equation (3.24) with p(E)=nE, for the

FNN. as described in Figure 4.2, is derived from as:

(4.7)

where

o," (-0,) 7 netmn

There are two problems associated with this algorithm. Firstly, when an arbitrary weight

of the FNN reaches a local minimum, that is, gw—E:O, the change of this weight

obtained zero. Therefore, it is possible for the NN to be trapped in a local minimum. In

addition, the denominator in the right side of (4.7) is proportional to the slopes of the

activation functions £, (net,,) and f, (net,,). Therefore, if the slope values reach zero,

the changes of the network weights become infinite. These problems are the reasons

why the ABP algorithm cannot applied in the binary problems.

To tackle the disadvantages of ABP, a momentum term is added to establish a novel

algorithm:

6]

(4.8)

By adding the momentum term, the zero gradient value in a local minimum will not

affect the changes of the network weights.

Moreover, to avoid the zero reachability of the slope of the activation function, a

modification consisting of adding a constant 0.01 to the values of f(net,,) and

74 (net,,) is approached.

The meaning of adding the momentum term to ABP can also be explained by the

chattering-free SMC theory. Define a sliding function as
s=AW(1-1). (4.9)

From the chattering-free sliding-mode-based condition (4.4), the sliding condition is

satisfied as

As = -q,S (4 1 O)
where ¢, is the positive constant, 0 < g, <1.

Substituting Equation (4.9) into Equation (4.10) yields to

Aw (1)=Aw(1-1)=—q,aw (1 -1) @i
Aw(t)=aaw(r—1); O<a=(1-g,)<I

The law introduced in (4.11) will assure limAW(7)=0, and the convergence rate is

[0

decided by the appropriate choice of « .

62

A combination of the laws formulated in (4.7) and (4.11) will meet the objectives of
both the parametric stabilisation and the cost convergence. Therefore, the learning

algorithm (4.8) can obtain fast and global convergence.

The algorithm (4.8) 1s named as EABPM. which refers to the Extension of the ABP
algorithm with Momentum. Other versions of the BP with momemtum schemes, the
QuickProp and scaled conjugate gradient methods cannot apply in EABPM. The
QuickProp algorithm indeed uses a crude approximation of the Hessian. Therefore, this
algorithm will be diverged when error points are near a maximum of the error surface.
For the scaled conjugate gradient method, the adaptive learning rate was determined by

performing a line minimisation along the search direction.

The proposed algorithm for training the FNN in classification problems can be

described as follows:

1. (Initialisation) Initialise all weights to small random values W, (0) and W, (0).
Choose a small positive learning rate 77, momentum coefficient « , maximum

number of iterations ¢ and a very small maximum tolerable error £___. Set the

ax

iteration number 7 =0and AW, (0)=AW,, (0)=0.

2. (Forward propagation) Select training pairs {x”,d”'pzl,...,P} from the

training set, propagate the inputs forward through the network using the

equation:

where £, (.)is the activation function for output node, f,(.)is the activation

function for hidden node.

63

The criterion function of the error is calculated as

oM

E :%ZZ[“’J —0“,"]2 (4.12)

p=1m=1

, or the number of iterations exceeds a value ¢

max max >

It E is not greater than E

then the algorithm is stopped. Otherwise, go to step 3.

-~

3. (Backward propagation) Compute the changes of the weights for the next

iteration:
i
AW, (1) = i -N5,75," + abW,, (t—1)
P d _
S|+ Sarae |
p=l p=1
P p— —_
AW, (1) = 277 225,(”xn”+aAWnk (r-1)
P P "
Sovar| o[S|
p=1 p=1
where
s, =(d,” —o,")(f(ret,,)+0.01)
M
5.7 =(f;(net,)+0.01)>6,"W,, (1)
m=|
Update the weights

Set =¢+1and go to step 2.

64

4.2.3 Classification application using the sliding-mode-based neural networks

The XOR problem. a type of the binary problems, is the most popular benchmark at
present. Thus it would be worthwhile to solve the XOR problem using the EABPM

algorithm, as described in Section 4.2.2.

An FNN structure with N =2, K'=2, M =1 is chosen for this task. The mean square

error 1s defined as
r M p
E = ZZ[dmp _Omp:|

p=l m=l

o | —

The maximum tolerable error £ =0.002and the maximum epochs / =3x10"are set.

The initial weights are drawn at random between -0.1 to 0.1. In the first experiments, a
first set of weights is randomly generated and kept constant while the learning
parameters are tuned to obtain the fastest possible convergence. Apparently, the optimal
learning parameters, which correspond with the fastest convergence of the NN, are
obtained by a trial and error approach. Thus these parameters can reach different values
for various applications. Secondly, each experiment is performed 50 times for 50
different sets of initial weights on various learning algorithms, including the BPM,
ABP, and proposed EABPM algorithms. The simulation results are shown in Table 4.1,
where the optimal learning parameters were obtained from the tunning process, %

means the percentage of global convergence, which counts the percentage of trials (over

50 trials) that successfully converge within / =3x10"epochs, R means the average

number of epochs to converge over the converged trials.

Table 4.1: Performance comparison for the XOR problem.

Leaning algorithm Optimal learning parameters R Y
BPM n =095, a" =0.89 2312.4 100

|
ABP n" =0.01 816 52

|
EABPM "=0.015, ' =0.06 699.98 100

65

Discussion:

As seen from the results exhibited in Table 4.1, our proposed algorithm, EABPM,
outperforms the BP. ABP approaches in terms of global convergence capability. Among
the algorithms that have 100% of global converged trials, the proposed algorithm is
really faster than BPM. Although ABP is faster than BPM, its global convergence
capability is very poor. These results demonstrate that the proposed EABPM algorithm
can guarantee fast and global convergence for training the FNN in the classification

problems.

4.2.4 Sliding-mode-based neural network head-movement classifier for wheelchair

control
Introduction

Powered wheelchairs are commonly the means of transport of people with lower-
extremity disability. Conventional electrical wheelchairs are not always appropriate for
mobility disabilities relating to quadriplegia. To overcome this problem associated with
joystick control, various wheelchair-guidance interfaces, such as a sip and puff
(Schimeisser & Seamone, 1979), chin controller (Schimeisser & Seamone, 1979),
eyewink controller (Crisman et al., 1991), voice (Mazo et al., 1995; Rockland &
Reisman, 1998) and head movement (Joseph & Nguyen, 1998; Nguyen et al., 2004a),

have been designed.

Head movement is a natural form of pointing a certain direction, and can be used to
replace the joystick while still allowing for similar control. A number of researchers
have developed head-movement wheelchair control for severely disabled people. Coyle
(1995) developed an ultrasonic non-contact head controller integrated with a small
vocabulary voice recognition system for the wheelchairs. In Tew (1988), a photo
quadrant sensor, which is made up of four photodiodes fabricated on one substrate, is

used to determine the head movement.

66

An alternative telemetric head movement device using a tilt sensor and wireless
technology was recently designed for the control of powered wheelchairs (Joseph &
Nguyen, 1998). This system had many benefits for the disabled wheelchair users, such
as comfortable and easy use, and adaptability to each individual user via neural
networks (Taylor & Nguyen, 2003). In 2004, this head movement controller was
successtully extended using embedded LINUX and neural networks (Nguyen et al.,
2004a).

Powered wheelchair control using head movement commands

The whole powered wheelchair control system is described in Figure 4.3.

Power Head movement
Wheelchair transducer | ___________________ M Recei
& & eceiver
Disabled User Transmission

il B L R e ¥Y--------
Speed & Neural Data
DAC ! o < . |
N Direction [« Network 1« Processing |
.' Determination Classifier :
! Computer !

Figure 4.3: Diagram of the powered wheelchair control system using head

movement commands.

When a user tips or nods her/his head for the desired direction, the output signals of a
head movement transducer inside the user’s cap are transmitted via the telemetry
system. In the receiver, the signal is received and is then normalised to a value range of
zero-to-one for the neural network classifier. The neural network’s weights are trained

to store vital information about the patterns.

In the real-time system, the trained neural network can classify the input signal into
intended commands corresponding to the user’s head movements. Afterwards, a simple
set of heuristics is utilised to determine the corresponding speed and direction of the

wheelchair. These speed and direction outputs are in turn converted to the 0 to 5V

67

output via a digital to analogue converter (DAC). Therefore, the powered wheelchair is

controlled easily by the user’s head movement.

A number of disabled people voluntarily participated in the test with approval from the
UTS Human Research Ethics Committee and informed consent from the volunteers.
They had high-level spinal cord injuries with C5 lesion (having difficulty in using their
arms freely) and C4 lesion (cannot move their arms at all). Four head nods in the
forward, backward, left and right directions and a sideways shake of the head for
stopping the wheelchair are recorded. The head movement is sampled at a rate of 20Hz
upon a request from a computer, and the movement transducer signals with regard to
two coordinates x and y are measured, wherein the coordinate axis x is horizontal and
straight out in front of the user, and the coordinate axis y is horizontal and perpendicular
to the axis x. A sliding window of 20 samples from each coordinate produces each
pattern with 40 inputs. Figures 4.4 and 4.5 show the posture of some sample data

collected from users with C5 and C4 lesion, respectively.

As seen in Figures 4.4 (a) and 4.4 (b), when a user with C5 lesion inclines or moves
back his/her head, the transducer signals with regard to coordinate x have pulse
postures, and those with regard to coordinate y are rather flat. When the user’s head is
tilted left or right, the signals with regard to coordinate x are virtually flat, and those of
the coordinate axis y are fluctuated, as in Figures 4.4 (c) and 4.4 (d). Two axis signals in
Figure 4.4 (e) are changed as the user shakes the head. In addition, the data signals in
Figure 4.5 are different with those in Figure 4.4 because the disabled with C4 lesion
have difficulty in moving the head. Nevertheless, basing on the nonlinear classification
capability of the neural networks, the head-movement neural classifier can effectively

work with different disabled people.

68

os} o5
a4f P N 04|
- ~
03 ’ \ oal
X / \ >
' 02 ; N , oz
N
o ! N g 01|
B ’ ~
[} / SOl b ol R
I / © : - -
R S 0} -~
Ny
g 02 g 02
£
o3t 013
O S- 04}
ost osl
L. o S I
o 001 002 O0O3 004 O0O5 006 007 008 009 O1 o 001 002 003 004 005 006 007 008 009 01
Time (s) Time (s)
L 05}
°s 0.4
[0 5
ot > 03
X r o,
.2
d 02k
c1rr
o1 ‘#
‘ i B - (b)
of <~ BT L e e - o -
_____ -7 \ PR o1l N e - _ - R
0.1} \ »
02} \ / 0.2}
3 4 0.3}
03k \ /
/ ©al
0a} AN ,
05} \ . ’ 05k
\\‘// ~ -7
o 601 002 003 004 005 006 007 008 005 o1 O 001 002 003 004 005 006 007 008 009 0.1
Time (s) Time (s)
05}
05K 0af
.41 031
03t o 02}
0.2} '
x 2 oot
. 01 [
o o PRGN
ot -~ w o - ’ N .
e RN Phe T~ L %,-01- S~ RN -7
o1} ~ . P S
E - = 0.2} -
oz}
03}
03
0.4l
0.4
oS
0.5f
L . - . = o
o 001 002 003 004 005 006 007 008 009 O1 0 001 002 003 004 005 006 007 008 009 O
Time (s) Time (s)
ost
osf
o4t 0.4}
o3 03}
X o2l ?. oz|
f
o1} 04} e PN
E o . [- - T 4 ~
@ - o # ~. ., N
5’01 N ~ - - - o _ e e m T T TS ﬁ,o1’. -~
(<]
T 02 € o2}
0.3} o3|
0.4l o4l
o.st osl
y —— ; d 1 L 1 I I I b - i —
© 001 002 003 004 005 006 007 008 009 01 0 o5T 052 005 0o 005 006 057 668 009 o4
Time (s) Time (s)
0s o,sT
04 04
03 oal
X o2 > o2z -
\ L RN
5 E o o R
- - - - ~ N
B o - \\ = - ~ . . - & o - / N / N
N // ~ - ~ -7 N ’ N
o1 N o \\ // A 4
02 ’ 02} - N
0.3 oal
0.4 oal
0.5 osf
. " . S e sy a—— SR SR SRS S PO SO - BRSPS
] 001 0.02 0.03 0 04 0 05 0.08 0 07 0 o8 0 08 01 o 0.01 002 003 00a 0 05 006 007 008 0 09 [
Time (s) Time (s)

Figure 4.4: The posture of two axis data collected from a C5 user with the (a)

forward, (b) backward, (c) left, (d) right, (¢) stop commands.

69

forwerd signal - x

badwerd signal - x

left signal - x

nght signal - x

shake signal - x

08

06

Time (s)

[ESS

o4t
03}
o2t -

o1f S , \ PEEN

01t N , N
-02f A [
-0.3F
0.4}

-0.5+

P S SR T, VSO = B e N —
001 002 003 004 005 006 007 008 009

Time (s)

ost
04
03
ozt

o1y - =~

01}
025
03l
0al

-O.SL

L L n L " n
o] 00" 002 003 004 005 006 007 008 009 Q1

0 0.07 002 0.03 004 005 006 0.07 0.08 009
Time (s)

ost
oaf e _ - -
03 i

0.2t s

0.1

0.1

02k

03
04
-0S

. . ” . "
001 0 02 0.032 004 005 006 007 oo8 0.09
Time (s)

o

ost
0.4
03 ’ - - ~

ozt - - g ~

01

on}
02t
03
04l
4)5)-

S
01

BCR)

[} oo 002 003 0.04 005 008 0 07 o o8 009
Time (s)

0

:

:
[0.01

osh
oal
o3}
0.2

o1}

>
Ll
4]
o1t
o2l
0.3}

04}
05k

"
002

0.03

B S
004

S
005 O

Time (s)

.06

o] o0

0.5+
o4t
03fF
02f

o1r

-0.1+

left signal -y
[=]

-02
-03

04l

osf

0.02

0.03

004

2
005 O

Time (s)

06

s
007

0.07

L
008

[} 001

0.5
o
0.3

o2r

[JRES

PR
-0.2L

right signal - y
(=3
i

-0.3}

0.4
0.5

002

.
0.03

n
004

005 006
Time (s)

007

0.08

L

L
o 001

0.5}
oa
[
o3|
02|

-01
02t
03k
04k

o

I E———
(o] 001 002

0.02

L
0.03

L
0.04

L
0.05

Time (s)

;.
0.06

"
0.07

o008

009

0.1

0.03

004

005

"
006

Time (8)

007

L
008

009

01

(d)

Figure 4.5: The posture of two axis data collected from a C4 user with the (a)
forward, (b) backward, (c¢) left, (d) right, (e) stop commands.

70

Sliding-mode-based neural network classifier for head movement commands

The teedtorward neural network with one hidden layer is used for the head-movement
classifier. The input layer consists of 41 nodes, with the first 20 being the input from the
coordinate x. the next 20 being the input from the coordinate y and an augmentation
input of 1. The output layer consists of five nodes corresponding to each of five
commands: forward, backward, left, right and stop. The target value of each output is
cither 1.0 or 0.0. By a trial and error approach, the hidden node number of 9 is chosen to

obtain better generalisation property. A bias of 1 is also augmented to the hidden layer.

The EABPM learning algorithm presented in Section 4.2.2 is used for training the
feedforward neural network. Moreover, a 0.05-0.95 threshold with margin criterion is
chosen in the training process. Any output over 0.95 is set to a one and anything under

0.05 is set to a zero before back propagation occurs.

For improving generalisation of the network, a non-convergent method described in
Finnoff et al. (1993) can be utilised to avoid “overfitting”. The whole data set is divided
into three parts: training set, validation set and test set. The training set is used for
training the NN’s weights. The validation set is utilised to stop the training process
when the validation error starts to increase. The test set is used to estimate the expected

performance (generalisation) of the trained network on new data.

The proposed training procedure is shown in the following steps:

I. (Initialisation) Initialise all weights to small random values #,, (0) and %, (0).
Choose a small positive learning rate 77, maximum epoch value [, large value

E,_ and very small maximum tolerable error £, . Set number of epochs /=0,

vmin

count =0 .

2. (Forward propagation) Select training pairs {x”,d”]p:l,...,P} from the

training set and propagate the inputs forward through the network:

71

If ((—0.05 > em”) or (em” < 0.05)) thenset e,” =0

)] P M 2
Finally. calculate the mean square error E = — d’—o"1| .
y q DICAETEY

p=1 m=1

Check whenever the total error is acceptable within / epochs. If E<E or

[>1 , then go to step 6. Otherwise, go to step 3.

3. (Backward propagation) Compute the changes of the weights for the next

iteration
p
AW, (1) = 7 -3"65,70," +aAW,, (1-1)
P P z
o]]
p=1 p=t
I —
AWnk (1): 277 2z_;"’xn”+aAWnk (t—l)
P 7 =
(25’"175,(;7} +[Z _kﬁxan p=l
p=l p=l
where
s, =(d,” =0,)(/. (net,,)+0.01)
M
5, = (1 (net,,)+0.01)>.8,"W,, ()
m=1
Update the weights

72

4. (Validation procedure) Select validation pairs {x‘,”,dv”

p= 1,...,Pv} from the

validation set and propagate the inputs forward through the network:

If ((—0.05 >em”) or (em” <0.05)) thenset ¢ 7 =0.

Finally, calculate the mean square error £, =

P M)
ZZ[dvmp—om”] .
p=l m=1

N =

If £,>FE . then

vmin

Save the weights at the minimum validation error _

andset £._. =F .

vmin v

5. Update training parameters, set k =k +1, / =/+1and go to step 2.

6. If />/_, terminate the training process and report a false trial to converge.

Otherwise, go to step 7.

7. (Test procedure) Set the pattern number p =1, select a pattern from the test set

{xy” ,d”\p=1..,P } and propagate the inputs forward through the network:

73

A
()m,7 = nelm) / [z W/(m

f, nel ,Li

g

It 0 >0.75 then set 8 =1

Otherwise, set 5 =0.

()3, J
o,

If all 0= d,” then conclude the pattern is classified well, count = count +1.

Set p=p+1.

If p<=1F, where F, is the number of patterns in the test set, then go to step 7

Otherwise, terminate the training process,

count

and report the accuracy =

!

x100% .

4.2.5 Experimental Results of the Sliding-mode-based Neural Network Classifier

for Head Movement Commands

For comparison of the performances, a number of learning algorithms in Table 4.2 are

tested on the head-movement neural classifier. All the learning algorithms are in the

batch mode.

A sensible strategy, as presented in Wessels and Barnard (1992), is used for choosing
the magnitudes of the initial weights to avoid the premature saturation problem. In the

neural network head-movement classifier, initial weights were drawn at random

between -0.47 and 0.47. The maximum epoch value is set to 3 10*. With the chosen

74

criterion function, the maximum tolerable error E, can be set to 0.00125, which means

that all output errors ¢/;m=1,...M; p=1,.... P must approach zero.

Table 4.2: Description of all learning algorithms used in the neural network head-

movement classifier.

Learning algorithm Abbreviation Algorithm parameters |
Backpropagation with momentum in | BPM n learning rate
batch mode a momentum coefficient
Adaptive backpropagation ABP n7 learning rate
RPROP RPROP n" increase factor
n~ decrease factor
Magnified gradient function method | MGFPROP 7n learning rate
o momentum coefficient
s magnification factor
The proposed EABPM algorithm EABPM 7n learning rate

a momentum coefficient

In the experiments, the data used for training the neural classifier is randomly divided
into three sets. The training set includes 30 patterns of each command class, the

validation set contains other 30 patterns of each command class, and other patterns,

including 24 patterns of each command class, are used in the test set.

The first experiments are the tuning process to obtain the optimal parameters of each
learning algorithm. The first set of weights is randomly generated and kept constant
while the learning parameters are tuned to obtain the fastest possible convergence.
Because this is a trial and error approach, the optimal learning parameters in Table 4.3

for the head-movement classifier are different from those of the XOR problem, as

shown in Table 4.1.

75

In the next experiments, 50 initial random weight settings are chosen, and each of the

algorithms is executed using these sets of weights with the optimal learning parameters

obtained from the tuning process.

Table 4.3 shows the experimental results for the 41-10-5 network, where % means the

percentage of global convergence, which counts the percentage of trials (over 50 trials)
that successfully converge within / =3x10*epochs, R means the average number of

epochs to converge over the converged trials, and ACR means the average accuracy of

the network when it is tested in the test set over the converged trials.

Table 4.3: Performance comparison for the neural network head-movement

classifier.
Learning Optimal parameters % R ACR
algorithm (%)
BPM 7" =028, a" =0.1 44 13350 86.13+5.84
ABP n"=0.51 72 680.14 84.31+£6.93
RPROP nt =158, n =074 68 641.79 78.1£9.49

MGFPROP "=028,0"=0.1,5s" =5 98 2305.4 81.39+13.5

EABPM n=042,a" =0.78 100 423.84 91.35+5.0

Discussion:

In Table 4.3, the EABMP has 100% global convergence capability while the BPM,
ABP and RPROP methods fail to converge in more than 28% of the trials. Additionally,
the average epochs needed for the EABMP are approximately 423.84, which is the best

result, compared with the other algorithms. Surprisingly, the percentage of correctly

76

classified patterns in the test set for the EABPM is 91.3545.0, which is the highest
accuracy result, compared with the other algorithms. Thus, our proposed algorithm,
EABM. outpertorms the BPM, ABP, RPROP and MGFPROP approaches in terms of

the convergence rate, global convergence capability and classified accuracy.

4.3 Chattering-free Sliding-mode-based Neural Networks for Control
Applications

4.3.1 Feedforward neural network structure for control applications

Consider a class of feedforward NN with one hidden layer and one output node, as
shown in Figure 4.6. Cybenko (1989), Hornik et al. (1989) and Funahashi (1989)
independently proved that this kind of feedforward NNs can approximate any nonlinear
function with an arbitrary desired degree of accuracy. Currently, this feedforward NN
has been used in the neural controller design for replacing any unknown nonlinear
function (He, 2002; Hovakimyan et al., 2002), or used as a direct feedback neural
controller (Daosud et al., 2005; Hayakawa et al., 2005; Nayeri et al., 2004). In a control
system, the order of the system state is often represented by ». Therefore, the following

definitions will be used for this FNN.

The multilayer neural network, as shown in Figure 4.6, consists of n+1 input nodes,

I—e™”

I+e™’ .

m+1 hidden nodes, and one output node. The hyperbolic tangent, fh(v):

used as the activation function for the hidden nodes, and the linear function, f,(v)="v, is

used as the activation function for the output node.

X =[x],...,xn]T is the vector of the time-varying input signals. A constant input of 1,

. ~ T
affecting the bias, is assigned to the vector of augmented inputs x=(x,....x,1) .

VV]] n
W=| ¢ - 1 | is the matrix of the time-varying connections’ weights between
Wml Wmn

the neurons in the input layer and the neurons in the hidden layer.

77

wW=| - : is the matrix of augmented weights by including the bias

ml T Wm(n+l)

weights components W(ml); i=1..m.

i

- = - - ar = .
0=[o,...0,] ; 0 =1, (net,); net, :ZWJ'XJ+”/,(n+|) is the vector of the output
J=1

signal of the neurons in the hidden layer. A constant input of 1, affecting the bias, is
assigned to the vector of augmented outputs 3=[51,...,b‘m,1]r. W=[W,...W,] is the
row vector of the connections’ weights between the neurons in the hidden layer and the

output node, and \%Y :[VI/,,...,Wm,Wm+]] is the row vector of augmented weights by

including the bias weights component W ;. The output signal y (t) can be calculated as
o m+] m no_ _
y()=Wo=>Wwo, =Y Wf|>Wx + W iy [+ W - (4.13)

The scalar y, (t) represents the time-varying desired output of the NN.
4.3.2 Chattering-free sliding-mode-based learning algorithm for the FNN

The zero value of the learning error e(/) is defined as a sliding surface:

78

s(e)=c(t)=y(1)=»,(1)=0, (4.14)

and the error criterion function is defined as

E=—¢". (4.15)

The research objective is to propose a novel learning algorithm so that the learning error

e(r) will quickly and globally converge to zero. Moreover, the FNN will be used for

control purposes, thus the incremental learning approach should be considered for on-

line adaptation applications.

Motivated from the research of Giordano et al. (2004), the first learning algorithm for

the weight vector W and the weight matrix Wis proposed as:

W=

W T W
o

(4.16)

where “II denoted Euclidean norm for a vector and Frobenius norm for a matrix.

In the case when the same input x is presented to the NN, from (4.13), (4.15) and
(4.16), the change of E is obtained as

. m+l aE m n+l
W Ty = 4.17)
E-3 S (

y

From the chattering-free SMC strategy, the condition (4.17) guarantees that the error

e(I) globally converges to zero, and the convergence rate is decided by the appropriate

choice of 7.

79

However, when the FNN is applied in the control system, the input vector x is time-

varying. Therefore, the change of £ becomes

m+ m o n+l

E = Z ZZ Z——x :—77E+Z—x—x (4.18)

Il/l ,'

and the system stability 1s difficult to obtain. This is the problem of the system stability
proof demonstrated by Ng (1997).

For a class of linear systems with unmatched uncertainties, the feedforward NN
controller with the learning algorithm (4.16) is proven to guarantee stability and

robustness. These results with some simulations were presented in Nguyen (2005).

A problem of the learning algorithm (4.16) is caused by the zero reachability of the
derivative of the activation function of the hidden nodes. The small derivative value can
lead to a very large change of weights and diverges the algorithm convergence. To
overcome this problem, the learning algorithm (4.16) 1s then developed to another

version as follows:

R R
AR .
T EE '
oI +|FwW's
h,l 0
where F,=| i . i |, fr, (i=1l,..,m) is the derivative of o, with regard to
O S

2 2)
Because the dominator “6’ ! ’“ in (4.19) is larger than or equal to one, the

problem of the zero slope value is eliminated completely.

80

In the case when the same input x 1s presented to the NN, the learning algorithm (4.19)

also leads to the change ot £ as:

. m+] aE moon+
S

|
1= :l/l ,

This equation is the sliding condition of the chattering-free sliding mode control
approach. Therefore, the learning algorithm (4.19) is a variation of BP derived from the

chattering-free sliding mode control theory, and is named as CFSMBP.

In the next section, the feedforward NN with the learning algorithm (4.19) acts as a

direct adaptive controller for a class of uncertain single-input single-output systems.

4.3.3 Control applications of the chattering-free sliding-mode-based neural

networks
Consider the following continuous-time uncertain system:

x=(A+AA)x+(B+AB)u, x(0)= (4.20)
y=Cx |

where x=[x, - xn]r e R’ is the system state vector, » € Ris the control input,

A e R™" is the system matrix,B € R™ is the input matrix and C e R"™ is the output

matrix so that A,C satisfy the observability condition, and A,B are in the controllable

canonical form:

0 1 0
01 . .
A . B=| |, 4.21)
S 0
Lal an _b_

And AA € R”™",AB e R” represent parameter uncertainties in the plant model.

Assumption 4.1: The uncertain matrices AA,AB are assumed 1o be bounded:

81

[aA]< 0,

. 422
|aB] < p, (4-22)

The control objective 1s to regulate the state x in (4.20) to zero, and this is obtained via
a two-stage control design. In the first stage, a sliding hyperplane is designed. This
sliding function is then used as the training signal for a neural network controller
designed 1n the second stage.

Design of the sliding hyperplane

First define the sliding function as:
s=éc+ad, 6>0, do(0)=-05(0) (4.23)
where o is a scalar,

o =Hx 424
=, + Ay, b, (4.29)

and the row vector H=[#,,...,h,,,1] is designed so that the polynomial (4.24) has only

left-half plane characteristic roots.

Assumption 4.2: There exists a positive scalar g, satisfied.

g2, <H(B+AB) (4.25)

With the controllable canonical system (4.21), the equation (4.23) can be cast into a

state-space form as:
x =Fx+Gs (4.26)

where matrices F € R”” and G € R” are in the canonical form:

82

[0 1 . . 0]

. 0 1 . .
F= G-= (4.27)

| —oh =O0h,—-h . -5- h,, |

Theorem 4.1: If 0, = -2, and H is drawn directly from the following equation

h+-+h "7 45" :(5—11),..(3‘—/1,,_,)

then A, A,,---. A, are the eigenvalues of the system dynamics in the hyperplane s=0.

Proof: In the hyperplane s =0, x=Fx, and the eigenvalues of the system dynamics

can be found from

det[sl—F]:O
s -1 0 0
0 s -1 0
< det| : : : : =0
0 0 0 -1
([Sh Sh+h Shi+h - s+6+h,

<:>(S+5)(h, ot h s"7 +s"_])=0

Therefore, if iy +---+h,_s" 2 +5"" =(s—A4)...(s=4,_,) and § =—4,, then 4,4, 4,

are the eigenvalues of the system dynamics in the hyperplane s=0. |

Remark 4.1: By defining the sliding function with the specific initial condition (4.23),

the sliding function attains zero at the initial instant, S(O) =0. If the control signal can

keep system states on the hyperplane s=0, then A,4,,---,A4 are the desired

eigenvalues of the closed-loop system.

&3

Remark 4.2: The desired poles 4. 4,.---. A of the closed-loop system always locate on
the left-halt plane. thus matrix F is a stable, and there exisls a symmetric positive

definite matrix P e R""salisfying the Lyapunov equation:
PF+F' P=-I (4.28)

Lemma 4.1: For the dynamic system (4.26), the Jollowing relationship is always

obtained:
Ix[| <2|PGl||s| - (4.29)
Proof: Suppose that Hx” > 2||PG|||S|.

Choose a Lyapunov function ¥, = x'Px.
The change of ¥, is obtained from Equations (4.26), (4.28) as:

V. =x"Px+x' Px

=—x"x+2x"PGs

If ”x||>2||PG”|s|, then V|<O and all system states x will converge to zero.

Consequently, the inequality (4.29) is obtained. |

Remark 4.3: The inequality (4.29) is often used in the popular boundary layer method

for smoothing the sliding-mode control signal. In this continuous sliding mode
controller, the system state is forced into the boundary layer B(x):{x“sl < (ﬁ}, where
¢ denotes the thickness of the boundary layer. As a result, it is obtained from Lemma

4.1 that x| <2||PG|¢ .

Also from Lemma 4.1, the system state asymptotically converges to zero if s=0.

Therefore, an NN controller designed in the next stage will drive the sliding variable s

to zero.

84

Design of the neural network controller

The feedforward neural network defined in Section 4.3.1 is utilised in the neural

controlled system, as shown in Figure 4.7,

u
Plant J

Figure 4.7: Structure of the proposed neural control system

Assumption 4.3: Due to the physical constraints, the magnitudes of W and W are

assumed to be bounded by

IW|<B,. |W|<B; (4.30)

The output of the neural network is also the control signal # defined as:

m+1 m no_ _
U(X) = Wﬁ = ZW@ = ZVV/ﬁu [ZVVljxj + VV/(nH)] + Wm+] (43 1)
1=l

i=1 J=t

As in Remark 4.3, the control objective is to regulate the sliding variable s to zero, thus

the neural network can be trained on-line to minimise a cost function

V,=1s (4.32)

o=

Substituting Equations (4.20) and (4.24) into Equation (4.23) yields:

85

$=00+6 =SHx+ H(A+AA)x+H(B+AB)u (4.33)

Ei:_\iliH(A+AA)X+(§HX+H(B+AB)U]
cu ou (4.34)
=H(B+ AB)

The gradients of 1, with regard to the weight matrix or vector are calculated as follows:

oV, v, as au

L= —=sH(B+AB)o’ 435
oW 3 auow HBraB)o (3:33)
ov, oV, o 0 o
Oy OV, 0504 08 _ (B +AB)F, WK (4.36)
OW Os Ou 00 5w
o0
where F, =| -, i |, f, (i=l..,m) is the derivative of o with regard to
0 - f

The CFSMBP learning algorithm of the weight vector W and the weight matrix W s

presented as follows:

77 56/

T wT .

W= 7 _sF, W'
[+ ws|

where 7 is a learning rate to be chosen in (4.38).

Theorem 4.2: Consider the closed-loop system consisting of the dynamics (4.20), the
controller (4.31) and the training algorithm (4.37), if Assumptions 4.1, 4.2 and 4.3 are

satisfied and n is chosen as

86

k
N 438
o (4.38)

where k. = |HA|+|H|[(p, +5+0.50,8; B,)+0.56B,B,, C, = " then
the closed-loop system is asymptotically stable.
Proof: The derivative of the function (4.32) is attained as
i m+1 aV m n+l V
V, = Z W, 5—25(]
I]aW IIJI _/=]ax/
From Equations (4.35), (4.36) and (4.37), it is obtained as:
: , Os .
V, =—n[H(B+AB)]s +sé;x
(4.39)
V, <-nH(B+AB)s’ +|s| ”x“
From Equations (4.31) and (4.33), it is obtained as:
%zH(A+AA)+5H+H(B+AB)WF,:W (4.40)
d (1 —e_v 1 2 .
Because f, =— =—(1- <0.5, i=1,...,m,and HB=5b,
.fhl dV[l‘i'e_V] 2(h’)
% <|HA||+|H|(p,+5+0.50,B;B,)+0.5bB; B, =k, (4.41)

!

: H
Multiplying the two sides of Equation (4.23) for o

yields another dynamic equation

s (4.42)

87

Equation (4.42). combined with the inequality (4.29) leads to
5l (20 PG+ ml is| = | (4.43)
Substituting the inequalities (4.41) and (4.43) into the inequality (4.39) yields

4 s[—nH(BmB)Jrka]

s’z

From Assumption 4.2, if we can choose 7 as in the inequality (4.38), then V2 <0520,

and the sliding variable s will converge to zero by the Lyapunov stability method.

When s =0. from Lemma 4.1, the closed-loop system is asymptotically stable. []

Remark 4.4: From Theorems 4.2, the NN controller with the on-line learning
algorithms (4.37) can assure that the system state converges to zero and the system

performances are satisfied by the design of the sliding hyperplane.

Theorm 4.2 also indicates that the number of hidden nodes does not affect system
stability. However, the number of hidden nodes should be chosen from 2 to 7 in order to

reduce the time associated with on-line computation.

4.3.4 Numerical results of the chattering-free sliding-mode-based neural network

controller

Consider an uncertain linear system, as described in Coleman & Godbole (1994). The

nominal motor plant is modelled by the following transfer function

System 1: G = (4.44)
g bos(s+1)(s+2)
The two perturbed plant models are given by the following transfer functions
2 4.45
System 2: G, = (4.45)

88

System 3: G, = (4.46)

The transfer tunction models are transferred into state space format as

X = Ax+ Bu

y=Cx

0o 1 0 0
where A={0 O 1. B=[0], C=[1 0 O] for System 1,
0 -2 -3 5
01 0 0
A,=|0 0 1], B,=|0|, C,=[1 0 0] forSystem2,and
0 2 -1 2
0O 1 0 0
and A, =| 0 0 1 B,=/0|, C,=[1 0 0] forSystem 3.
-2 =5 -4 7

The whole motor plant can be modelled by an uncertain dynamic equation:

x=(A +AA)x+(B+AB)u

y=Cx
0O 1 0 0
where A=|0 0 1|, B=|0|, C :[l 0 0] for the nominal system, and
0 -2 -3 5
0O 0 0 0
AA=1 0 O 0], AB=| 0
+2 +4 2 +3

89

Suppose that the closed-loop cigenvalues are (—2_54;—].33+j1.9];—1.33~j] .91).

From Theorem 4.1. a sliding function is designed as

s=0Hx+Hx,

where & =254 H=[h.h.1]=[5417 2.66 1].
Apparently. Assumption 4.2 is always obtained with H(B + AB) 2HB,=2>0.

An FNN structure with n=3, m=5 and one output node is used as the neural

controller, as described in Figure 4.7. The network weights are simply initialised at

random small values. The on-line learning algorithm (4.37) is applied to minimise the

cost function V, :%52.

From the simulations, the network weights vary in a range [—3,3]. From Theorem 4.2,
one can choose 7>89.9. With =109 chosen, the output and control signals of the

controlled systems are shown in Figure 4.8.

System output y

Controlu

Figure 4.8: Output and control signals of System 1 (solid line), System 2 (dashed
line) and System 3 (dash-dot line), using the chattering-free sliding-mode-based

neural network controller.

90

To compare the simulation results, a state variable feedback controller can be designed
using the pole placement method (Franklin et al.. 2002), and the controller parameters

are obtained for the nominal system as:

K=[27518 2.0347 0.44]

This state variable feedback controller is then applied to control Systems 1, 2 and 3, and

the output and control signals of the controlled systems are shown in Figure 4.9.

5 i i ; x] 1

Time (S)

Figure 4.9: Output and control signals of System 1 (solid line), System 2 (dashed

line) and System 3 (dash-dot line), using the state feedback controller.

Discussion:

In Figure 4.9, when controlling Systems 1 and 3, the state feedback controller assures
the required performances, that is, a rise time of no more than 3.5 seconds and an
overshoot of no more than 6%. However, when applied to System 2, the state feedback
controller cannot stabilise the system, as shown in Figure 4.9. On the other hand, the
proposed neural controller can guarantee the required performances of the closed-loop

systems including Systems 1, 2 and 3, as described in Figure 4.8. This indicates the

91

robust capability of the system in the presence of parameter uncertainties when using

the proposed neural controller in comparison to the state-feedback control system.

Although the CFSMBP algorithm, another version of Equation (4.16), is developed
from the idea of Giordano et al. (2004), CFSMBP can completely avoid the chattering
phenomenon. However, the CFSMBP-based neural network controller only stabilises
the linear system with parameter uncertainties. When the system dynamics includes
external disturbances. the on-line learning algorithm in Giordano et al. (2004) can
further assure system stability and robustness. Therefore, CESMBP needs to be
upgraded to another robust sliding-mode-based learning algorithm, which will be

presented in the next section.

4.4 Robust Sliding-mode-based Neural Networks for Control
Applications

4.4.1 Robust sliding-mode-based learning algorithm

When the NN-based control system includes parameter uncertainties and external
disturbances, the robustness of the learning algorithm becomes an important issue. The
CFSMBP algorithm can face system parameter uncertainties, as described in Section
4.3.3. However, the included external disturbance requires the development of more
robust algorithms. A novel learning algorithm is mathematically presented in the

following.

Consider again the FNN, as shown in Figure 4.6. All the definition of the FNN in

Section 4.3.1 are used in this section.

Assumption 4.4: There exist some positive constants such that

%] < B Dul= 8,

_ (4.47)
W< 5, [W]<5,

Definition 4.1: (Sira-Ramirez & Morles, 1995) A sliding motion is said 1o exist on a

sliding surface s(e)=e(t)=0, after time 1,, if the condition s(1)s(t)=e(t)é(1) <0 is

92

satisfied for all t in some nontrivial semi-open subinterval of time of the form

[r.1,) € (0.1,

It is desired to devise an adaptive learning algorithm for the NN such that the sliding-
mode condition in Definition 4.1 is satisfied. Using the reaching law method, we then

obtain the following results.

Theorem 4.3: If Assumption 4.4 is satisfied, and the on-line learning algorithm for the

FNN weights is chosen as

W [—ne —£sgn (e)] =
fof o'

. (4.48)
& [jrzye —gsgn (e)g FW
ol +[mw x|
with n>0 and € being a sufficiently large positive constant satisfied by
£>0.5By B, Bs +B, , (4.49)

then, for an arbitrary initial condition e(0), the learning error e(t) converges to zero
in finite time t, estimated by
nle(0)|+ £~0.5ByB,Bs - B,

¢ <Lin , (4.50)
n £-0.5ByB,Bs — B,

and a sliding motion is maintained on e =0 for all t>1,.

Proof: Consider a Lyapunov candidate given by

yole (4.51)

From Equations (4.51), (4.14) and (4.13), it is obtained as

93

ol ol _ 4

6TV,:U()': a—W:cWI_/,”x/ Z W L 7:_ _
U d
The time derivative of 17 is obtained as:
. m+ aV m o+l aV . aV aV
J RAAPRIey
"2 G e R

e[77‘3 gsg:l(/)][i52+ y "H(th, j) J+eZZme %, TV

6 i=} =l

m

V = —ne’—ele|+e> LW Y W
1=1 J=1

V =-ne’ —s|e|+e(WF,',WX—yd)

, dl-e" 1 : :
Because f, =— e_v = —(1 ~ 1) <0.5, i=1,...,m,and from Assumption 4.4, it
dvil+e 2

1s obtained as:

V <-ne’ - gle|+[e](0.5By BBy + B,) = —ne’ —(c—0.5By BBy~ B,)le|. (4.52)

If ¢ is chosen in (4.49), then ¥ < 0; Ve # 0, and the error function e(7) converges to

zero in a stable manner.

It can be shown that such a convergence occurs in finite time. The time derivative of

e(t) satisfies:

' m+1 m n+l ; ae) ae .
e = ; ~
Z a : J =~ axj J ayd

1=1 l|/

é = —zye—gsgn(e)‘l"(WF/;WX_yd)

94

ésgn(e)dt

= dl = —
—nle —g+(WF,:WX—yd)sgn(e)
i < ésgn(e)d . 4.53)
~7nle]-£+0.5B, BBy, + B,

Integrating the two sides of (4.53) with regard to time, from ¢ =0 with initial condition

¢(0) to r=r, with e(r,) =0, leads to

1 nle(0)|+£-0.5B, BBy - B,
n £-0.5ByB, By ~ B, '

Y

[, =<

h —

(4.54)

Evidently, for Vi<, and for the large constant & chosen in (4.49), the sliding

condition is satisfied as

e¢ < —ae’ —(5 —-0.5By BB - B,)|e| <0

and a sliding mode exists on e(r) =0 for 1 >1,. n

Remark 4.5: In order to reduce the chattering phenomenon, the following

approximation for the signum function has been adopted:

sgn(e)~ |e|i . (4.55)

with & being a small constant.

Remark 4.6: As the time derivative of ¥ in (4.52) satisfies the sliding condition of the
reaching law method, the algorithm (4.48) is named RMBP, which denotes the
integration between the reaching law method and the backpropagation algorithm. On the
other hand, the on-line learning algorithm proposed by Giordano et al. (2004) is derived
from the integration between the standard SMC technique and BP. By inheriting the

advantages of the reaching law method, the zero convergence of the learning error in the

95

RMBP algorithm is therefore faster than that in the learning algorithm proposed by
Giordano et al. (2004).

4.4.2 Control applications of the robust sliding-mode-based neural networks

Consider the following continuous-time uncertain system:

x=(A+AA)x+(B+AB)u+0d(1), x(0)=x,

4.56
)= Cx (4.56)

r no: : . xn
where x = [xl xn] € R" 1s the system state, € R is the control input, A € R”

is the system matrix, B € R"" is the input matrix and C e R"” is the output matrix so

that A, C satisfy the observability condition, and A,B are in the controllable canonical
form (4.21), AA € R™ AB e R™ represent parameter uncertainties in the plant model,

® e R™' is the disturbance input matrix, and d(r) is the external disturbance.

Assumption 4.5: Assume that the uncertain matrices AA,AB are bounded.:

[2al< 2, (4.57)
|AB| < o,
and the first-order derivative of the disturbance is bounded:
U@d (z)“ <D. (4.58)

The control objective is to regulate the state x in (4.56) to zero, and this is obtained via
a two-stage control design. In the first stage, a sliding hyperplane is derived from
desired eigenvalues of the closed-loop system, as described in Theorem 4.1. This sliding
function is then used as the training signal for a neural network controller designed in

the second stage.

96

Similar to Section 4.3.3, a sliding function is defined, as in Equation (4.23). By the

choice of the coefficients A,.....A4,_ .1, the system state x is forced to remain inside the

subspace in which the inequality (4.29) is satistied.

In the second stage. a neural controller structure, as shown in Figure 4.7, is used. The

output ot the neural network is also the control signal v defined as:
o i+l m noo_ _
u(x)=Wo= Z Wo,= ZW,.fh,. [Wx, + W,(m])}r W . (4.59)
1=l 1=1 1=1

The sliding variable s is used as the training signal for the FNN. Therefore, the neural

network can be trained on-line to minimise a cost function

V,=1s’ (4.60)

=

The RMBP learning algorithm of the weight vector W and the weight matrix W are

presented as follows:

s +esgn(s) =

W=-—
=7 r ol 27)P
[+ W]

I

(4.61)

~ s +esgn(s) W's

oA

7

W

1

where 77 is a standard learning rate and & is an added robust learning rate.
Theorem 4.4: Consider the closed-loop system consisting of the dynamics (4.56), the

controller (4.59) and the training algorithm (4.61), if Assumptions 4.2, 4.3 and 4.5 are

satisfied and n, € is chosen as

g (4.62)

where k. =|HA|+[H|(p, ++0.50,B;B,)+0.56B,B,, C,=25|PG|+|H|", then

the closed-loop svstem is asymptotically stable.

Proof: Substituting Equation (4.56) into Equation (4.23) yields:

s=00+06 =5Hx+ H(A+AA)x+H(B+AB)u + HOJ (4.63)
é:i[H(AnLAA))(+5HJ|{+H(B+AB)u+H®a’]
ou Ou (4.64)
=H(B+AB)
oS

——:é—[H(A+AA)x+5Hx+H(B+AB)u+HGd]=H® (4.65)
ad od

The gradients of ¥, with regard to the weight matrix or vector are calculated as:

oV, 9V, ds du
OW Os ou OW

= sH(B+AB)o’ (4.66)

OV, OV 3504 9 _ jy(B+AB)F,W' X' (4.67)

aw Os ou 0o oW

The derivative of the function (4.60) is obtained as

m+1 n+l n .
o A
ox. ' od

i) i =1 = / /=1 J

V=

From Assumption 4.5 and Equations (4.61), (4.65), (4.66) and (4.67) , it is obtained as:

0.
V,=-nH(B+AB)s’ —gH(B+AB)|+ g_x+S§j7d
(4.68)

y, <-nH(2511 -1 B+ 2B) el (A DI

From Equations (4.59) and (4.63), it is obtained as:

98

ds -
ZH(A+AA)+SH +H(B+AB)WF'W (4.69)

Ox
Thus the inequalities (4.41) and (4.43) are obtained.

The mequality (4.68). combined with the inequalities (4.41) and (4.43) leads to

i <[nH(B+AB)-k, C. ||s* -(H(B+AB)s~|H|D)|s

From Assumption 4.2. if we can choose 7,& as in the inequality (4.62), then
I, <0:5 %0, and the sliding variable s will converge to zero by the Lyapunov stability

method. When s =0, from Lemma 4.1, the closed-loop system is asymptotically stable.

Remark 4.7: From Theorems 4.3, the NN controller with the on-line learning
algorithms (4.61) can assure that the system state robustly converges to zero and the

system performances are satisfied by the design of the sliding hyperplane.

Theorm 4.3 also implies that the number of hidden nodes does not affect system
stability. However, the number of hidden nodes should be chosen from 2 to 7 in order to

reduce the time associated with on-line computation.

In order to reduce the chattering phenomenon, the following approximation for the

signum function has been adopted:

e
|e|+9

sgn(e)=

with 9 being a small constant.

4.4.3 Numerical results of the robust sliding-mode-based neural network controller

99

Consider an uncertain linear system including three representational models, that is,

Systems 1, 2 and 3 with added external disturbance d(r). The whole motor plant can be

modelled by an uncertain dynamic equation:

X:(A+AA)x+(B+AB)u+®d(/)

y=Cx
0 1 0 0] 0
where A={0 0 1|, B=|0|, @=|0], C=[1 0 0] for the nominal
0 -2 -3 il
0 0 0 [0
system, AA={ 0 0 0|, AB={ 0 |,
2 4 12 | 3

and a small disturbance d(¢)=5sin (51).

Suppose that the closed-loop eigenvalues are (-2.54; —1.33+ j1.91; -1.33— /1 91).

From Theorem 4.1, a sliding function is designed as s=SHx+ Hx, where & =2.54

and

H=[h,h,1]=[5417 2.66 1].

Apparently, H(B+AB)>HB, =2> 0.

An FNN structure with n=3, m=5 and one output node is used as the neural

controller, as described in Figure 4.7. The network weights are simply initialised at
random small values. The on-line learning algorithm (4.61) is applied to minimise the

cost function V; =1s*. From Theorem 4.4, one can choose 7>98.9 and £>67.72.

The approximation of signum function (4.55) is also used with $=0.0001. With

n =109 and & =70 chosen, the output and control signals of the controlled systems are

shown in Figure 4.10.

100

The chattering-free sliding-mode-based neural network controller is also applied to

control this uncertain system. With =109 chosen, the output and control signals of

the controlled systems are shown in Figure 4.11.

Moreover. the sliding-mode-control-based learning algorithm (SMC) in Giordano et al.
(2004) is developed for training the neural control system presented in Section 4.4.2.
With a learning rate « =270 chosen, system performances satisfy the requirements

even in the presence of parameter uncertainties and disturbances, as shown in Figure

4.12.

System oudpud y

Cortrolu

Figure 4.10: Output and control signals of System 1 (solid line), System 2 (dashed
line) and System 3 (dash-dot line), using the robust sliding-mode-based neural

network controller.

u

SN

System cudputy

Cordralu

Figure 4.11: Output and control signals of System 1 (solid line), System 2 (dashed
line) and System 3 (dash-dot line), using the chattering-free sliding-mode-based

neural network controller.

101

- 1 T [N T I T T B
- I |) | |
> 2| \"\\\\) T [i _a : :
N ' | | | T T T Ty T
I) | | | | |
1 | R ' i [B I [
| X - ! ' | 1 | 1 |
L S b il il) 1
o I L K\\!, L e ,JM__LV-F__Lﬁ,
I 1 | [[)
1 1 1 [1 t : : :
-1 L — L S S i N N S Y I
O 1 2 3 4 5 6 7 8 9 10
e (S)
10 r T 'W*‘_r]‘,,,’:;* I | L O S —
“Mﬂuﬂwmm rq\% | | | | | | '
Iy 1
g ‘\ T]

Grrdu

Time (S)

Figure 4.12: Output and control signals of System 1 (solid line), System 2 (dashed
line) and System 3 (dash-dot line), using the SMC-based neural network controller.

As seen in Figures 4.10 and 4.11, the disturbance amplitude of 5 leads to no different

results between the two methods. Therefore, for comparison purposes, a disturbance of

d(r)=200sin(5r) is utilised, although this disturbance eventually leads to a large

control signal.

When the robust sliding-mode-based NN controller is utilised with 7=109 and

£ =23000, the output and control signals of the controlled systems are shown in Figure

4.13.

When the chattering-free sliding-mode-based NN controller is utilised with 7 =109

chosen, the output and control signals of the controlled systems are shown in Figure

4.14.

102

yetem ouApu y

<
)

=oa e T L ; '
oo be---- ,\:---.,-.’,‘_--._E__ S S S S S I S
B N) : NG) R Ty : I
= ¢ o ; S\ S A\ : - :)
E . S
S : o : ; : : / :
-100 _\,1__,5___\{__: _____ \.{J _______ A SR SR T N A S * AT SR Sl
-2a0 I i | L i \ i i |
Q 1 2 3 4 5 =1 7 a 9 10
Time (S)

Figure 4.13: Output and control signals of System 1 (solid line), System 2 (dashed
line) and System 3 (dash-dot line), using the robust sliding-mode-based neural

network controller.

System output y

200

100
% 100 : :
S - _ :

-200 '_

2300 L I I i | i | |

w} 1 2 3 4 5 6 7 38 9 10
Time (S)

Figure 4.14: Output and control signals of System 1 (solid line), System 2 (dashed
line) and System 3 (dash-dot line), using the chattering-free sliding-mode neural

network controller.

103

Discussion:

From the results demonstrated in Figures 4.10 and 4.11. both the chattering-free sliding-
mode-based neural network controller and the robust sliding-mode-based neural
network controller robustly yield the required performances of the controlled systems in
the presence of parameter uncertainties and external disturbances. With a severe
disturbance, the controlled systems using the robust sliding-mode-based neural network
still obtain the required output performances, as shown in Figure 4.13. Although the
chattering-free sliding-mode-based neural network controller can stabilise the uncertain
systems, the closed-loop systems have a maximum overshoot of 32%, as described in
Figure 4.14. Therefore, the robust sliding-mode-based neural network controller shows
superior performance in comparison to the chattering-free sliding-mode-based neural

network controller.

As seen in Figures 4.10 and 4.12, the neural control system using the RMBP algorithm
leads to lower chattering control signal than that system using the SMC algorithm. This
indicates another advantage of the RMBP comparing to the learning algorithm proposed
by Giordano et al. (2004).

4.5 Conclusion

In conclusion, several novel algorithms integrated between the SMC strategy and BP
algorithm, named EABPM, CFSMBP and RMBP, are proposed in this chapter. The
EABPM algorithm improves BP performances in convergence rate and global
convergence. Example results in the XOR problem demonstrate the advantage of the
proposed method. The EABPM algorithm is further applied in the neural network head-
movement classifier, and the experiment results illustrate the effect of the proposed

method.

When applied in control systems, FNNs with the CFSMBP, RMBP algorithms can work
as the direct adaptive controllers. These neural controllers can assure closed-loop

system stability in the present of parameter uncertainties or external disturbances. Some

104

example results in controlling two uncertain linear systems demonstrate the advantage
of the proposed ncural controller design techniques. In the next chapter, the chattering-
free sliding-mode-based neural network is applied to control a class of nonlinear
systems with transportation lag. and is implemented in a real-time Static VAR
Compensator system. In Chapter 6, the robust sliding-mode-based neural network
controller is developed for a class of multivariable systems with bounds of

interconnections and disturbances, and is performed in a real-time Coupled Electric

Drives apparatus CES.

105

CHAPTER S

NEURAL NETWORK CONTROLLER DESIGN FOR A CLASS OF

UNCERTAIN SYSTEMS WITH TRANSPORTATION LAG

In this chapter, a neural-networks-based control design is developed for a class of
uncertain systems with transportation lag, also known as input delay. A direct-feedback
neural control scheme is developed for control of such a system. For training the neural
network controller, a sliding function is designed from the pole placement method, and
is used as the training signal. The CFSMBP on-line learning algorithm proposed in
Chapter 4 is proven to stabilise the controlled system. Based on a novel training
procedure, the neural network parameters can converge to optimal values. The approach
is effective for control of such uncertain systems with transportation lag. Experiments

for a real-time SVC system are implemented to validate the proposed approach.
5.1 Introduction

It 1s well known that input delays often exist in various engineering systems. The
problem of controlling the systems with time delay in the control input becomes more
complex. Therefore, a number of nonlinear control methods have been developed to

solve this problem. Isidori and Astolfi (1992) presented a state feedback nonlinear H

control approach to attenuate disturbance for an affine nonlinear system. However, the
solution of the Hamilton-Jacobian-Isaacs equations in this method is only obtained for
some special nonlinear systems. Basin et al. (2003) developed an optimal regulator
based on the integral sliding-mode scheme for such linear delay systems. Chiang et al.
(2004) also designed a robust fuzzy-model-based sliding-mode controller for uncertain
nonlinear input-delay systems. However, the chattering problem often associated with

the sliding mode schemes limits the applicability of these methods.

Recently, NNs have offered an attractive solution for this problem because of their
nonlinear mapping and learning capability. In the literature, a variety of neural
controller structures has been found for the controlled nonlinear systems (Hagan &

Demuth, 1999). Among these approaches, the direct inverse neural controller (Miller et

106

al.. 1990) has the simplest scheme. However, it encounters instable problem when
noises or disturbances exist in the system. These problems are due to the lack of
feedback. To overcome the problems, the direct feedback inverse neural control
schemes have been utilised in Norgaard (1996) and recently in Nayeri et al. (2004) and
Daosud et al. (2005). For training the inverse neural network controller, the data set is
often generated by exciting the plant with random inputs within the operation region of
the controlled system. Consequently, it is very difficult to choose the appropriate
training inputs. Moreover, if the specialised inverse learning method (Psaltis et al.,
1988) 1s applied. a trained neural network identifier must be utilised. This leads to

significant efforts in the system identification.

My research aims to develop a novel training method for the direct-feedback neural
control scheme. For optimising this neural controller’s parameters, a genetic training,
algorithm was proposed by Ichikawa and Sawa (1992), but this approach is not possible
to implement in the real-time systems. In my research, an FNN is first trained to
approximate the nonlinear feedback controller, then replaces the feedback controller in
the closed-loop system. The FNN is trained on-line, thus avoiding difficult choice of
training data. A sliding function is defined and used as the training error without the
need for unknown plant Jacobian or a trained neural network identifier. Both the BP and
CFSMBP algorithms mentioned in Chapter 4 are utilised for on-line training of the

network, which guarantee the system stability by the Lyapunov method.

Moreover, in Chiang et al. (2004), the uncertain nonlinear time-delay system can be

approximated by the Takagi-Sugeno fuzzy model (Cao & Frank, 2000) as:

P IFx, isI} and ... and x, is "}
| THEN x = A x +AA x+Bu(1-7,)+ ABu(t-7,)

h

where R' denotes the i fuzzy inference rule, l"’/ the fuzzy set in the M rule,

A eR” B eR"”' the constant matrices in controllable canonical form, and

AA,, AB, the real matrices representing uncertainties.

107

More generally, in this research, the uncertain nonlinear input-delay system is

approximated by an uncertain discrete-time linear model

x(k +l):(A+AA)x(k)+(B+AB)u(k)
y(k)=Cx(k)

where A.B is not in the controllable canonical form.

5.2 Static VAR Compensator as an Uncertain System with

Transportation Lag

In modemm power systems, power quality is a major concern. Recently, advanced
reactive power compensators using power semiconductor switching devices have been
applied for power factor correction, improvement of voltage regulation and increase of
the transient stability margin of the power systems. One of these advanced equipments
using power electronics devices is the Static VAR Compensator (SVC), which is
designed for transmission lines and industry (Lockey & Philpott, 2002). In industry,
many loads are partly inductive, which decreases the power factor of the electric power
system. By varying its reactive power output, an SVC can maintain a virtually constant

desired power factor and thereby reduce the losses in the power system.

The picture of an SVC system developed in the Faculty of Engineering, University of
Technology, Sydney (UTS) is shown in Figure 5.1. This system was designed by
Professor Hung Tan Nguyen. There are thyristor-switched capacitors and thyristor-
controlled reactors. The capacitors are switched on to compensate the inductive
component of the Joad, and the reactors are continuously controlled to correct the power

factor. The SVC system also has a motor load with speed and torque control.

In order to obtain the system transfer functions, a number of step-response experiments
are carried out. In these experiments, speed and force references of the motor load are
kept constant, the capacitor bank is switched on and the reactive power absorption is
controlled continuously by the thyristor-controlled reactors. With different references of
input voltages, the system output voltages that are proportional to the power factors are

measured and saved.

108

T 1 &

) -
 waAw e

A

PV
Figure 5.1: The Static VAR Compensator (SVC) system.
5.2.1 Experiments with different step inputs

In the first experiments, a step input of 3.5V is presented to the SVC system five times.

With this input, the power factor PF :cos(¢v —¢,.) attains approximately 0.90 with

redundancy capacitive. Figure 5.2 shows five experiment results, where the black line

represents the averaged response of these experiments.

After cancelling the offset of 3.41, we can obtain approximate models with the two

transfer functions below:

02757 ~0.305.¢7°%

_ - 5.1
G ()= o5 71 A0 e G-

109

Figure 5.3 compares the system averaged response with the models’ step responses. The

modelling procedure of the SVC system is aided by the Matlab software, and a Matlab
program 1s detailed in Appendix A.

4.8

4.6

A N N, VN
JA A R A “\mfv\\,/fr\,/\ VAW q
ANVARUE AP B LY Rt VALY ““1‘ an W TR RVATRAY

X\
V71 v =1
WL Y { \ \

System output

3.2

Time (S)

Figure 5.2: System step responses with an input of 3.5V,

SVC modelling

System output
o
o

0 0.5 1 1.5 2
Time (sec)

Figure 5.3: Step responses of the real-time system (solid line), model Gy, (dashed

line) and model G,, (dotted line) with an input of 3.5V.

110

Similarly. with difterent step inputs, several system models are obtained, as in Table

5.1.
Table 5.1: System transfer functions with different step inputs.
Input (V) | PF offset | Transfer function 1 | Transfer function 2
-;5 09 (C) 341 0'271.8—0”.\' 0.31'e_0_09_\.
G, (s)= 22 |G, (5)=23Le
0.19s5 +1 0.11s+1
3.7 0.95(C.) | 343 027170 031 %
GIP(S):T— GZp(S):—
19s+1 0.11s+1
4.0 0.97 (C) 34 0.29.8_0']% 0.32.6—0.095
G‘p(s):— Gz,,(s)=——
0.2s+1 0.12s+1
4.2 0.99(C.) | 3.4 030 0.33 00
Glp(s):— G2[7(S):_———
0.2s+1 0.12s +1
4.5 1(C)) 3.43 0.3 0.32 =008
Glp(s):— G2p(s):——
0.2s+1 0.12s+1
48 1 (I) 343 0.31.8_0'”3 0.34.8—0.0&
G,(s)=—"5—— | Gp(s)=""——
0.2s+1 0.12s +1
53 098 (1.) |3.43 0.32.e70" 0.35.¢700s
_U2% G (=222
5 (5) 0.19s+1 2 (5) 0.125+1
55 096 (I) 343 0.32.6—0‘15 03556-—0083
G,(s)="a— | Guls)=—7
0.195+1 0.11s+1
>-8 0.90 (L) | 3.44 0.36.°" 0.385.c°%
Glp (S): GZp (S):____
0.15s+1 0.11s+1
6.0 0.80 (1) |3.44 0.39.e7%" 0.415.e7"%"
G, (s)==—— | G (s)="T
0.15s+1 0.11s+1
6.2 0.54 (L) |35 0.51.c°" 0.56.¢™%
()= 2L 6, ()=
0.22s5 +1 0.165 +1

111

5.2.2 Mathematical models of the Static VAR Compensator system

From 22 transfer functions above, we plot step responses of the system models with a

step input of 1, as shown in Figure 5.4.

Linear Simulation Results

a4s

0.4

03s

03 po---- f e
, S

D25 |- ---

Ampltude

a2f---

Q15 f-- -

01 |-

Q0S|

o L L L L
=

Time (sec)

Figure 5.4: Model step responses with 1V input.

A general transfer function of the SVC system is obtained as:

B Y(S)—O]j‘set _Ke'”
G (S)_ U(s) s+l 6-2)

with a varying range of the system parameters as follows:

K =[0.29,0.56]
r=[0.22,0.11]
t,=[0.07,0.12]
offset =[3.4,3.5].

Three following system models can represent the real-time SVC system, and are used

for further study in this chapter.

112

System 1 with the nominal parameters has the transfer function:

0.425.7"
G (y)=————.
a3) 0.165s +1 (5-3)
System 2 with upper-bound parameters has the transfer function:
0.55.7°"
G,($)=—"", 5.4
() 0.11s+1 S
and System 3 with lower-bound parameters has the transfer function:
0297
G (s)=———. 5.5
d (s) 0.22s +1 (5:2)
5.2.3 State space dynamic equations
Applying the Maclaurin series expansion, e =1 +x+%x2 +-- (0<|x| <), for a
small value of 7, the delay part in Equation (5.2) is approximated by:
la lq 2
ot e —75+%(7S)
= 2 s
e’ l+4s+d (%s)
Therefore, Equation (5.3) becomes:
(s) 0.425 1-0.055+0.00125s° 0.425-0.02125s +0.000531255° (5.6)
sS=-—— - = . .
! 0.1655+1 1+0.055+0.00125s” 1+0.2155+0.0095s° +0.00020625s

The system (5.6) preceded by the zero-order holder is then transferred to the discrete-

time dynamic equation with the sampling time 7" = 0.025 as follows:

x(k+1):Ax(k)+Bu(k)

(5.7)
y(k)=Cx(k)

113

.“(k)

where x(k) =/ x, (k) |. and the parameters for System 1|

X, (k)
0.16107 0.01327 0.00021 0.0166
A=[-14.848 0.7723 0.022916| B=|-2.3319
-64.34 —-1.0153 0.9906 49.74 >-8)
C=[1 0 0]
Similarly. dynamic parameters for System 2 and 3 are obtained respectively as:
—0.03846 0.00964 0.00017 0.012336
A, =] -23.334 0.60013 0.02117| B,=| -5.7088
—143.1 -2.5838 0.97479 196.96 (5-9)
C,=[1 0 0]
0.26792 0.01498 0.00023 0.011348
A,=|-11.164 0.8355 0.02352| B, =| —1.0285 5 10
—37.838 —0.56906 0.99483 17.76 (5-10)
C,=[1 0 0]
5.2.4 Remark

As shown from the experimental results, the SVC system is actually a nonlinear single-
input-single-output system with transportation lag. Using an appropriate approximation,
this real-time system can be modelled by an uncertain discrete-time linear system.
Therefore, an NN-based control scheme is developed in the next section to solve the

control problem of this system.

114

5.3 Advanced Neural Controller Design

Consider the tollowing discrete-time uncertain system:

X(A+1)=(A+AA)x(k)+(B+AB)u(k), x(0)=x,
v(k)=Cx(k) G-

! no: : H n
where x = [.\', xn] € R 1s the system state, # € R is the control input, A € R””

is the system matrix, B e R"" is the input matrix and C e R"™ is the output matrix so
that A, B, C satisfy the controllability and observability conditions, and AA,AB are the

uncertain matrices.

Assumption 5.1: The uncertain matrices AA,AB are assumed to be bounded

”AA" Ny (5.12)
|AB] < o, '

The objective is to design a control law so that the output y tracks the constant

reference r with the required performances.

From the chattering-free sliding-mode-based neural network controller design in
Section 4.3, a neural controller structure, as shown in Figure 5.5, has been developed for

the uncertain system (5.11).

r v l
(+ U y
ﬁ)gP_, [| K > N, © /1% Plant

v

“l/

© “
NN
X
Ny 1 Observer
- ™

Figure 5.5: Structure of the chattering-free sliding-mode-based neural network

controller system

115

In this system. the neural network (NN) is trained on-line by the CFSMBP algorithm.

-l
The constants N, and N_ :[N\,I,N‘,.N”]/ are obtained from N, = A B0 ,
S N C D| |1

u

and a small integral gain K, is chosen to attain zero steady state error even in the

presence of system parameters’ uncertainties. This neural control system structure is
more complicated than that proposed in Section 4.3, because the output y of the real-
time system is required to track a constant reference input r. The on-line neural
controller in Figure 5.5 has been applied in the SVC system, and system performances
are even better than those of the neural control system using off-line neural controller
presented in the following. However, the research in this chapter is to highlight the

nonlinear mapping capability of the feedforward NNs.

From the neural control system in Figure 5.5, an off-line neural controller structure, as

shown in Figure 5.6, is derived. The FNN consists of (n+1) input nodes, (m+1)

1—-e’

I+e™’

hidden nodes, and one output node. The hyperbolic tangent sigmoid, fh(v): is

used as the activation function for the hidden nodes and the linear function, £, (v)=v, is

used as the activation function for the output node.

The input vector x(f)=(x (k),...x, (k))T of the neural network is also the vector of

system states x in (5.11). A constant input of 1, affecting the bias, is assigned to the

I/1_711 In
vector of augment inputs i:(x,(k),...,xn(k),l)] . Let W=| ¢ . i | be the
Wm! T Wmn

weight matrix between the input layer and the hidden layer, and

T I/Vl(rHl)

W,

w=| : be the matrix of augmented weights by including the bias

m m(n+1)

weights components W,(n+;);i =1....m.

116

N = — i .
The vector 0 =(0,.....0,,) ;0, = f,”.[E W, x, + Wl(”.u)] is the vector of the output signals
=1

of the neurons in the hidden layer. A constant input of 1, affecting the bias, is assigned
i — — T

to the vector of augment outputs 0=(3a,,....9,,1) . Let W=[W, - W,] be the

weight vector between the hidden layer and the output layer, and W = [WI Wm]]

be the vector of augmented weights by including the bias weights component W, .

r v (+) U Y
(+) T N -
__’e‘?_’ J Kl ‘;99 — __/_ » Plant >

_ N
) - -
W 0, A% Xy
s E E = Observer
Output Xn
1 1
....................... Hidden layer

Figure 5.6: Structure of the proposed neural control system.

The output of the neural network is defined as:

Uy (x)=Wo=>Wo,+W,, = le,fh, (Z. W,x, (k)+VI7,.("+1)J+ w.., (5.13)
i=1 1= J=

Because the system is required to respond to the step input r, the integral component,

as shown in Figure 5.6, is utilised to attain robust tracking performances.

The integrator state equation is
v(k+l):v(k)+r(k)—y(k), (5.14)
The control input is given by

u(k)=uy, (x(k))+ Ky (k). (5.15)

117

Therefore, the control objective is reduced to a more simple task, which is to develop a

comprehensive training procedure so that the NN can approximate a nonlinear state

feedback controller tor the system (5.11).

The control design methodology is divided into four stages. Firstly, a sliding function is
defined and used as the training error. This can avoid the need for unknown plant
Jacobian or a trained neural network identifier. Secondly, the on-line training algorithm
is applied into the NN controller such that the stability of the neural control system
without reference input 1s guaranteed. Next, the on-line training process is repeated
within a number of circles until the NN weights can converge to optimal values. Finally,
the other parameters of the neural controller, as seen in Figure 5.6, are calculated, and
the trained neural network controller is applied in simulations and experiments of the

SVC system.
5.3.1 Design of the sliding hyperplane

Tsai et al. (2004) and Nguyen et al. (2004b) used a reduced-order sliding function as the
training error for the neural controllers. Nevertheless, the gradient of V' with regard to
the NN weights includes an integral component, which resuits in difficult calculations

of the weight updating rule.

Therefore, a novel sliding function is defined as:

s, =60, +0,,, 60, |k=0 =—0,, 40> (5.16)
where & is a scalar, and
o, = Hx (k) =hx (k)+hx, (k)+--+hx,(k), (5.17)
where the vector H =[A, ,esh, 1, is designed so that all roofs of the polynomial
h+hz++hz™ =0

lie within the unit circle in the z plane.

118

Since A.B satisfy the controllability condition, there exists an invertible transformation

matrix T and a new state:
z(k)=T"'x(k) (5.18)
so that a controllable canonical system can be established as:
Z(k+1)=T"ATz(k)+T"Bu(k). (5.19)

The following theorem will show how the sliding function s, may be found in an

explicit form using the pole placement method.

Theorem 5.1: For a row vector v=[a, -+ a,, 1| obtained directly from the

following equation:

if 6=—z, and H=vT", then 2,,2,,",Z, are the eigenvalues of the system dynamics

in the hyperplane s, =0.
Proof: Substituting Equations (5.17) and (5.19) into (5.16) yields
s, =60, +0,, =0Hx(k)+Hx(k+1)=6HTz(k)+HTz(k+1). (5.20)
If H=vT"', then v=HT, and Equation (5.20) becomes:
s, =ovz(k)+vz(k+1). (5.21)

With the controllable canonical system (5.19), the dynamic equation (5.21) can be cast

into a state-space form as:

z(k+1)=Fz(k)+Gs, (5.22)

119

where the matrices Fe R""and G € R" are in the controllable canonical form:

F= ' G=| | (5.23)

| —da, —ba,-a, . -b-a,, 1

In the hyperplanes, = 0. the dynamic system (5.22) becomes:

z(k+1)=Fz(k),

and the eigenvalues z,.z,,---,z, of the system dynamics can be found from:

det[zl~F]:O
[z -1 0 0]
z -1 0
< det| : : : -0
0 0 0 -1
| 0a, ba,+a, Saz+a, - z+O0+a,

2?47 =(z-27)..(z-z,,) ad S=-z,, then

Therefore, if o+ -+«

n-1

z,,2,, "+, 2, are the eigenvalues of the system dynamics in the hyperplane s, =0. |

Remark 5.1: The closed-loop system exhibits the desired dynamics behaviour after the
sliding function attains zero. Therefore, if the control signal can keep the system states

on the hyperplanes, =0, then z,z,,---,z, are the desired eigenvalues of the closed-

loop system.

120

Remark 5.2: If the matrices A.B are in the canonical form, that is, T is a unit matrix,

then the sliding function s, can be obtained directly from » desired eigenvalues of the

closed-loop system.

Remark 5.3: The desired poles z,,z,.---,z, of the closed-loop system are always
located inside the unit circle in the z plane, thus matrix Fin (5.23) is stable. If s, is

driven to zero by the controller action, then all system states z as well as x will

converge to zero. This suggests that s, can be used as a supervisor training signal for
the neural network controller designed in the next stage. Because F is a stable matrix,

there exists symmetric positive definite matrix P e R"™" satisfying the Lyapunov

equation
F'PF-P=-Q (5.24)

for any given symmetric positive matrix Q.

Remark 5.4: The vector H chosen in Theorem 5.1 yields:

[0

HB=VI'B=[ao, - a,, 1](:):1

1]

With HB > —|HAB| , the following assumption can be approached:

Assumption 5.2: There exist positive scalars g,, g, satisfying

g, <H(B+AB)<g, (5:25)

121

5.3.2 Application of the on-line learning algorithms with system stability

guarantees

The aim of the training process is to converge the NN weights to optimal values, so the
trained NN can approximate the nonlinear state feedback controller. For this training
purpose. a novel neural control structure is introduced, as shown in Figure 5.7. The NN

precedes the plant and receives input from the system state output.

Plant

Figure 5.7: Structure of the neural control system for training process.

In contrast to the generalised inverse learning method (Psaltis et al., 1988), in the
proposed training scheme, the neural controller on-line regulates the system state x
from an arbitrary initial state to zero. Therefore, the on-line learning algorithm must
guarantee system stability. Moreover, as in Remark 5.1, the closed-loop system exhibits

the desired dynamics behaviour after the sliding function attains zero. Thus the training

purpose is to minimise the sliding function s, .

All network parameters are defined as in Section 5.3. The output of the neural network

is as:

uNN (X) = Wﬁ = ZI/V/Z)‘I + VVnHI = ZVV/ﬁn [Z”_/(/x/ (k)+ ”_//(n+l)]+ I/I/IH+] (526)
1= /=

=]

122

Assumption 5.3: Due 1o the physical constraints, the magnitudes of W and W are

assumed 1o be bounded by:
IWl<B,. |W|<B, (5.27)
Using s, as the training error. the cost function is defined as:

v (k)=

ro[—
[
= N

(5.28)

The CFSMBP learning algorithm of the weight vector W and the weight matrix W are

presented as follows:

AW (k)= ~—— ! 5,0 (k)
[5x) [+ ey w ey (e[
) , (5.29)
W(k)=-— F (k)W (k)" %(k)’
[5(x) R ewE @y
I 0
whereF; (k)=| © "-. |, fr, (i=1,..,m)is the derivative of & with regard to

[ZW x (k)+H7,(n+l)J ,and 7 is a positive scalar.

y7y
J=]

Proposition 5.1: Consider that the closed-loop system consists of the dynamic system

(5.11), the controller (5.26) and the training algorithm (5.29), for an arbitrary positive
scalar [, any symmetric positive matrix Q satisfied Q—f"'F'F >0, if Assumptions

5.1, 5.2 and 5.3 are satisfied and n is chosen as:

O<h<77<—1—+h, (5.30)
&o 2g, &

123

/1 N GI‘ >/ /
where 8, =k 1+J MG PRGIGRG),

max /1"“” (Q . ,B—IFI'F)

knm\ = ”A” + ;0,4 +0+ OS(“B“+ /0/3) BW BW ,

then the closed-loop system is asymptotically stable.

Proof: See Appendix B.

The on-line backpropagation learning algorithms for the weight vector Wand the

weight matrix W can also be obtained as follows:

AW (k) =-ns,0" (k) 531)
AW (k) = —ns, F2W (k) % (k) |

Proposition 5.2: Consider that the closed-loop system consists of the dynamic system

(5.11), the controller (5.26) and the training algorithm (5.31), for an arbitrary positive
scalar B, any symmetric positive matrix Q satisfied Q— 7'F'F >0, if Assumptions

5.1, 5.2 and 5.3 are satisfied and n is chosen as

O<19"‘—*"‘<77<—1——+19"‘—ax (5.32)
o 2g, &

A (BG'P'PG +G'PG)
Aoin (Q=87'F'F)

b =IAL+ £, -0 10581 0,) By B

then the closed-loop system is asymptotically stable.

Proof: See Appendix B.

124

Remark 5.5: With both the incremental BP and CFSMBP algorithms, the neural

controller can work as a feedback adaptive controller and the controlled systems are

asymptotically stable.

Another major issue is how to converge NN weights to optimal values. Therefore, a

comprehensive training process will be developed in the next stage.

5.3.3 The training process for approximation of the nonlinear feedback controller

Choose Criterion Function

In the training process, the system state is initialised at arbitrary position x(O) =X,. The

neural network controller forces the state trajectory to stay on the sliding surface s, =0,

then the system state will converge to zero with the required performance. With the

defined sliding function, s, =0 in the initial instance. Because the initial weights of the
neural networks are arbitrarily small, the sliding function s, may have departed from

zero. The online algorithm (5.29) or (5.31) will start to train the neural network to force

s, to zero. After system state x converges to zero, the training process is restarted with
arbitrary initial system state x(O). If the neural network can exactly copy the nonlinear

feedback controller for the uncertain system (5.11), s, =0 forall r>0.

Therefore, a criterion function to stop the training phase is proposed as:

T,

j) dr<E, (5.33)

E=2 o
T,

m

where T is a sufficient period such that the system state converges to zero, and £ isa

maximum tolerable error.

125

Data-processing

Because the mput variables have very different orders of magnitude, it is recommended
to rescale the data. In this way, more reliable predictions can be undertaken. The

variables are rescaled to be included within the interval [-1, 1] by using the following

equation:

old
PG

!
X

fmax

(5.34)

where x"" (k) and x™ (k)are respectively the new and old values of the system state

x, at a sampling point k . and x.

/max

1s the maximum amplitude of this state.
Training procedure

The proposed training method is shown in the following procedure.

1. (Initialisation) Initialise all weights to small random values W, (0) and 78 (0).
Choose a small positive learning rate 77, sampling time 7', maximum iteration

m

k == maximum epoch value / and very small maximum tolerable error

m

E_ . Set the iteration number k=0, E=0, set x(0) and #(0), number of

epochs /=0 .

2. (Forward propagation) Read the system state x(k+1) from the system (5.11),

process the state inputs and propagate the inputs forward through the network to

obtain the control signal:

m

u(k+1):W6: Wo +W . = I/V,f,”[ZWUxJ(k)+V—l7,(n+l)]+Wm]
1=1 7=

It} m+)
=]

Calculate s, =0, +0,,, 6>0, o,=Hx(k), o, =Hx(k+1),

126

E=E+0.5s(k).

3. (Backward propagation) Compute the changes of the weights for the next

iteration using Equation (5.29) or (5.31).

Update the weights

4. (One epoch loop) Check whenever one training cycle has been finished. If

k <k, .thenset k =k +1, apply control signal u(k +]_) to the system (5.11), and

go to step 2; otherwise, go to step 5.
5. (Total error checking): Check whenever the total error is acceptable within

[, epochs:

o E . ..
if [— <E] or (/2 1) then terminate the training process and output the

m

final weights;

otherwise, set £=0,k=0,/=/+1, x(0) and #(0), and go to Step 2.

Note that the training procedure for approximation of the NN controller is an

incremental training method. Thus the batch learning approaches cannot be applied in

this training procedure.
5.3.4 Calculation of the other parameters of the neural controller

After the three design stages above, the trained NN can now work as a direct feedback

controller, as shown in Figure 5.5. In practice, not all the state variables are measured.

127

So an observer should be used to estimate system states. If the measurement of output
variable 1 involves significant noise and is relatively inaccurate, then the use of a full-
order observer results in a better system perlormance.

Assume that the state X is approximated by the state X of the dynamic equation

X(k+1)=(A-K.O)X(k)+Bu(k)-K, y(k) (5.35)

where A.B,C are parameters of the nominal system (5.7) and the observer gain K, can

be calculated by the pole placement methods demonstrated in Franklin et al. (2002).

For the step input, x(k),u(k),v(k) approach the constant values x(0),u(0),v(x),

respectively. Therefore, the integrator state in Equation (5.14) leads to:
v(e0) = v()+r—y(®)
or y(w)=r.

Clearly, there is no steady-state error in the output when a small value of integral gain

K, can be chosen.

5.4 Experimental Results
Consider again the SVC system model (5.7):

x(k+1)= (A +AA)x(k)+ (B +AB)u(k),
y(k)=Cx(k)

The model parameters vary between three sets, as described in Equations (5.8), (5.9)

and (5.10).

128

5.4.1 Sliding function design

Suppose that the closed-loop system performance has no more than 2% overshoot and a

rise time of no more than 0.4 seconds. Thus a damping ratio ¢ =0.8 will meet the

overshoot requirement, and for this damping ratio, a rise time of 0.4 seconds suggests a

natural frequency

1. .
@, =4—8—:4—1—8:18.
, 0.4
Therefore two dominant poles are given by:
Z,, = ool _ oonstraasion g cangy j0.18609

The last pole needs to be placed far to the left of the dominant pair, and we assume a
factor of 2 in the respective undamped natural frequencies to be adequate. Thus the last

desired pole is attained as:
z, =¢' "% = 0.40657
A sliding function for the nominal system, System 1, is designed as follows:

s(k)=d0,+0,,; 6>0 (5.36)

where

o, =Hx(k), H=[h.h.h] (5.37)
= hyx, (k) + hyx, (k) + hyx, (k)

From Theorem 5.1, the sliding function parameters are obtained as:

= —z, =-0.4066

3 —

o
H = [4.0583,—0.20269,0.0092474].

129

5.4.2 Application of the on-line learning algorithms to the neural controller

A feedforward neural network controller, as illustrated in Figure 5.7 with four input

nodes. four hidden nodes and one output node, is utilised.

The on-line learning algorithm (5.29) or (5.31) is used for training the network. The NN
weights are initialised by random small values. From the experimental results, if the
learning rate 7 1s chosen as 0 <7 <0.55, the neural control system is stable. This
validates the theoretical development in Section 5.3.2. For the CFSMBP algorithm with
the chosen learning rate 7=0.1, the system outputs and control inputs of the three
representational systems are shown in Figure 5.8. Figure 5.9 shows the system
performance results when the incremental BP algorithm is utilised with the chosen

learning rate 17 =0.01.

...

System output y

o
o
[6)]
=
-
0
N
n
w
w
n
f=%
£
&)
&

Time (S)

03] ! I 1 1 ! I T

‘ . , ' . . ’ '

. . , . ' . » '
..

........................
..

Control u

1 1.5 2 25 3 35 4 4.5 5
Time (S)

Figure 5.8: Output and control signals of System 1 (solid line), System 2 (dashed
line) and System 3 (dash-dot line), using the CFSMBP algorithm.

130

3W
Y SRS S SR UURNN SNV OO OO U SO
s ° : '. '. e b
g ; ; : : ; : : : :
SRR 1) SRS SE . . ﬁ
E ST T
% : : : : : : : : :

i 1 i ' ' i i L

0 0 1 15 2 25 3 35 4 45 5

Time (S)
03 T ! T T ! T T i T
D2 -t Lo L -

Cortrol u

-—_
-
)]
N
]
@)
w
w
8y}
£
i-Y
n
M

Time (S)

Figure 5.9: Output and control signals of System 1 (solid line), System 2 (dashed
line) and System 3 (dash-dot line), using the BP algorithm.

5.4.3 Training process

Experiment 1:

In the first experiments, the NN controller with the CFSMBP learning algorithm (5.29)

and 77 =0.] 1s applied to the nominal system 1.

From simulations in Section 5.4.2, we can choose 7, =2 seconds. We perform some

simulations from Section 5.4.2 again with different initial states, and the maximum

amplitudes of three states are estimated as:

x,, =3.5 x, =50; x;, =480

Im

The initial weights are drawn at random between -0.1 and 0.1. The maximum tolerable
error £ =10"" can be chosen. After hundreds of iterations, the training process is

converged, and the NN weights approach optimal parameters. Figure 5.10 shows the

131

output and sliding function responses of the controlled system, using the trained NN

controller with its optimal weights.

Sytem ool y

Siiding function 5

Time (S)

Figure 5.10: System output and sliding function responses when the trained neural

controller with optimal parameters is utilised.
Experiment 2:

In these experiments, both the CFSMBP and incremental BP algorithms are applied for

training the neural controller in order to compare the convergence rates.

A first set of weights is randomly generated and kept constant while the learning rate is
tuned to obtain the fastest possible convergence. Then 29 additional initial random
weight settings are chosen, and each of the algorithms is executed using these sets of

weights with the optimal learning rate obtained from the tuning procedure. Table 5.2
show the experimental results for a 4-4-1 network, where 77" means the optimal learning
rate, % means the percentage of global convergence, which counts the percentage of

runs (over 30 runs) that successfully converge within /, =3x10"e pochs, R means the

average number of epochs to converge over the converged runs.

132

Table 5.2: Performance comparison for training the neural controller.

rLeaning algorithm n' R %
Incremental BP 0.12 1221.47 100
CFSMBP 0.34 7253 100

Experiment 3:

In these experiments, the NN controller with the on-line learning algorithm (5.29) or
(5.31) 1s applied to the nonlinear SVC system represented by a bank of linear models
(5.2). The NN in these experiments is trained to approximate a nonlinear feedback

controller for the nonlinear system (5.11).

The training procedure in this case is the same as that in Section 5.3.3, but the system
state space dynamics (5.8), (5.9) and (5.10) are sequentially used for the training
process. The initial weights are drawn at random between -0.1 and 0.1. The number of

hidden nodes is increased from 2 to 10. The maximum tolerable error is set to

E, =3x107".

Similar to the first experiments, an optimal learning rate is obtained from the tuning
procedure using the first set of weights, then 29 additional initial random weight
settings are chosen, and the proposed algorithm is executed using these sets of weights

with the optimal learning rate.

Tables 5.3 and 5.4 show the experimental results when the CFSMBP algorithm and BP

algorithms are utilised, respectively.

133

Table 5.3: Performance for training the neural controller using the CFSMBP

learning algorithm and different numbers of hidden nodes.

No. ot hidden nodes n' R %
2 0.08 463.83 100
3 0.1 336.71 100
4 0.1 348.23 100
5 0.09 341.42 100
6 0.12 312.43 100
7 0.09 359.7 100
8 0.09 371.68 100
9 0.09 372.74 100

Table 5.4: Performance for training the neural controller using the BP learning

algorithm and different numbers of hidden nodes.

No. of hidden nodes n' R %
2 0.02 1126.87 100
3 0.03 687.4 100
4 0.03 688.4 100
5 0.02 1016.43 100
6 0.02 994.33 100
7 0.015 1287.8 100
8 0.015 1252.93 100
9 0.01 1885.9 100

134

From Table 5.3, we can choose =06 for the best result. By the training procedure in
the second experiments. a 4-6-1 FNN is trained to approximate the nonlinear feedback
controller for the three representational systems: System 1 in (5.8), System 2 in (5.9)
and System 3 in (5.10). The detail program of the training process can be found in

Appendix C. After training, the network parameters are obtained as

W =[0.50661 -0.83856 1.39899 0.020495 -0.72583 -0.008715]

[0.447966845 -0.317514887 0.176749624 0.047171784]
| -0.783156952 0.419020834 -0.341294348 0.001924934
W =1.249068789 -0.758633954 0.608523292 -0.005631910
0.059103632 0.029943808 -0.024164411 0.001681880
| -0.639445163 0.371328805 -0.362590229 -0.004127458

These parameters will then be used in the next stage.
5.4.4 The neural controller design and implementation in the real-time system

The observer poles can be chosen to be faster than the controller poles by a factor of 5.

In this case, the desired poles of the observer are chosen as:

z

=Tl s 0 _10,036202+0.16129%1 0.036202-0.16129*i 0.1054].

123 7

Using the Ackermann formula, the observer gain can be designed as:

K,=[k, k, k,] =[1.7462 103.115 2206.8345]'

A small integral gain is chosen K, =0.17.

The design procedure of the controller parameters is written in a Matlab programme,

which is detailed in Appendix D.

With the NN controller parameter obtained in the previous stage, some simulation
results for the dynamic systems is shown in Figure 5.1 1. Figure 5.11 shows the closed-

loop system outputs and control inputs of the three representational systems.

135

3 T i T T 71 T T T
. . P o e SELLLY
> . - H) 1
§3/,/ ---------------------------------- .
: e :
‘:% 1F---- :/:‘ L’,_;_._,_,_,,_ .. .
‘3\ /.y P es e 1
,',/":
ol 1 i | I I i I I
&) 05 ! 15 2 25 3 35 4 45 5

Cortrol u
[
|
!
|
|
|
!
|
i
|
|
|
|
|
|

Time (S)

Figure 5.11: Output and Control Signals of the system 1 (solid line), System 2

(dashed line) and System 3 (dash-dot line) using the proposed neural controller.

In the real-time experiment, we use the software Turbo Pascal, applied to all controllers
and hardware. The program includes many individual modules for graphic interface,
reading/writing ADC/DAC card, applying controller algorithms and others. An engineer
can monitor the system states or controller signal via specific windows, revise the
parameters of the controller and windows online. The timer module offers interrupt
request at every fixed sampling time, thus the controller algorithm is calculated and

implemented in real time while the system states and controller signal are displaying.

For the NN controller, the network and observer parameters are left exactly as in

Sections 5.4.3 and 5.4.4, except for a slight change of the integral gain K, =0.22.
Figure 5.12 displays the system outputs and control signals of the neural controlled

system with different reference inputs.

136

il YT I ‘xﬁ*_F*“‘T**T‘-—*_—TR‘—F—R—‘—‘
g \M Al N‘*\‘*’\\\"'\”‘W‘“W“W\"‘WW{%’Q_{?&?J_#":':*{%}%E“
S 05_-»_;\4\4 ———————————————————— et I S S
N 1 S S DS R R i}
s 1 1 |: : 1 1 "_J _______ b
Q 1 2 3 4 5 =Y 7 =]
Time (S)
& | %'_'——’ T T T 1
N MNM gy 'ﬁ%‘f%‘w "f\@~;w{u}v‘«ﬁ,%~;»{w‘w%§@&,~;~;~;;;;34;;.;;,:;,;;;;; ——
E o T 2
oOHW------- - ___ —
~a 1 > 3 2 = 5 7 5
Time (S)
(a)
0 %Wimmwmmwwwwwwwwwww‘uWWJF
S t --
ot o S SOV SRR NS SN .
1 I | L | I I 1
O 1 2 3 4 5 b 7 =]
Time (S)
8
S I U T R b T it e i U S
- . M ﬁ MM&LMWM@MMMMMMMMM \mﬂuﬂ
e 1 |t ErEr T SR SUUpU U S S S
5 AU U S S NS S N i
o | I I I i | i
u] 1 2 3 4 5 6 7 38
Time (S)

(b)

4 T T T ¥
| i ﬂu;j,igiw;a;wmmm ' "" it @L&@L@Q@@%@;@;g
§ 1“ﬂ¢' """""" oo -
s f_‘,ll;[,,____L________EL_____A_,::_______,_._____;__A_,_____VA________E _______
1 / L I l i 4 i J_A
8] 1 2 3 4 5 5 7 =
Yime (S)
=1 ‘r li T l
5 JJuW‘-h@ ,m,m M’Mﬁ;’l} Y HM yWNINS M,M,ﬁwwwwwwﬂw,&wm
= el
:jg; 2 —————-—L»————A-_L-——————~_——————7—~~———~'~—<—’:E —————————————————————————
(s} ________L________:L__-_____L,______-.____-___é _________________________]
; 3 s ; : : ; g
Timme (53

(c)

Figure 5.12: The output and control input signals of the SVC system, using the
neural controller designed with the reference inputs of 1.2 (a), 1.7 (b) and 2.2 (¢).

137

In order to compare the control performance. a PID controller is designed for the time-

delay SVC system as:

. . |
(I‘_(A\'): [\/’(]—'—T—S—}-TDSJ (538)
/

where K is the proportional gain, T, the integral gain and Tp, the differential gain.

From the Ziegler-Nichols Rules (Nguyen, 2004), the PID controller parameters can be

determined from the reaction rate R and the transportation lag L.

K
R=—; L=t,

.

5 (5.39)
K,=57 T,=2L T,=051

K, :imm(o.ﬁ—,o 25}
K L,
(5.40)
K, 1 T
K, =—+=—max| 0.1—,0.5
/ td td

With the nominal system, the PID controller’s parameters can be attained as

. 0.25
K :—1—min(0.4w,0.25j:——=0.59
70425 0.1 0.425
K X 5
K, =—"L= ! max(0.191—65—,0.5J:—0—:11.765
7, 0.425x0.] 0.1 0.425%0.1

K, =K,T, =0.59x0.05=0.0295

In the real-time experiment, the parameters of the PID controller are appropriately tuned

to obtain the best performance. The optimal values K, = 0.59, K, =0.358 and K, =2

were finally chosen. Figure 5.13 shows the experimental results of the PID controlled

system with different reference inputs.

138

¥}

Bopl
o - 1l > 3 .;, 5I % 7I]
. | | | T"'nel(S) | |

B e e B

S St S R R R S —
Y S S N S A E S —

System oulput y

Cortrol u

a ' ! : : ! !
B AU S EE S SR
= g P, \M
L Fomoooo i il el A —
. 321 O0U HUNU U S MNP PN SRS S
4 1 i i 1 | | L
0 1 2 3 4 5 6 7 8
Time (S)
= & '// . ”‘-.,..Nir, P N"‘«QM /,f?‘ LHM‘"‘?J,J/M W"’)--W M‘f."am?‘w{ff Fﬁfm“{'{ﬂﬂp‘\w
et A e e B R
o5 1 > 3 i = 7 5
Time (S)

(c)
Figure 5.13: The output and control input signals of the SVC system using the PID

controller designed with the reference inputs of 1.2 (a), 1.7 (b) and 2.2 (c).

139

5.5 Discussion and conclusion

As secn in Figures 5.8 and 5.9, with the on-line learning neural controller, the system

outputs always converge to zero. Therefore, both the on-line BP and CFSMBP

algorithms can guarantee the system stability.

It is very promising, from the results illustrated in Figure 5.10, that s, ~Oforall 1>0.

This means that the neural network can exactly copy the state feedback controller. As a

consequence. the closed-loop system exhibits the desired dynamic behaviour on the

predefined sliding hyperplane.

The experimental results in Table 5.2 showed that the CFSMBP and BP algorithms both
assure global convergence of the training process. In addition, the proposed CFSMBP

algorithm outperforms the BP in terms of the convergence rate.

Table 5.3 and 5.4 demonstrate the converged property of the training process for the NN
controller approximation. The simulation results show that the number of hidden nodes
does not affect the convergence of the proposed method. Moreover, the CFSMBP

algorithms can approximately converge twice as fast as the BP algorithm does.

From the experiment results shown in Figures 5.12 and 5.13, output performances of the

neural control system and the PID control system have been reported in Table 5.5.

With the reference input of 1.2, no overshoot is observed in either the NN and PID
control systems, and the rise times of the two systems are smaller than or equal to 0.4
seconds. In this case, the PID controller and the neural controller both guarantee the

required performance.

For a step input of 1.7, the NN controller still assures the best performance, whereas the

PID controller results in an overshoot of 29%. Therefore, the neural controller shows

superior performance in comparison to the PID controller.

When the system must respond to a step input of 2.2, the system nonlinearity becomes

more severe. Thus both of the NN and PID control systems have a maximum overshoot

140

of 22.7%. However. the neural controller successtully maintains the zero steady-state
error after 2.4 scconds. On the contrary, the PID controller fails to track the system
output to the reference input. This indicates the robustness capability of the system in

the presence of uncertain nonlinearity when using the NN controller in comparison to

the PID-based control system.

Table 5.5: Performance comparison between the NN and PID control systems with

different reference inputs.

Control method | Reference input | Rise time (s) | Max. overshoot Settling time

V) (%) (s)

PID 1.2 0.28 0 0.8

NN 1.2 0.40 0 1

PID 1.7 0.25 29 1.7

NN 1.7 0.35 0 1

PID 2.2 0.27 22.7 Large

NN 2.2 0.38 22.7 24

In conclusion, this chapter presents the neural network controller design methodology
for a class of uncertain SISO systems, particularly in the time-delay nonlinear Static
VAR Compensator system. Following the direct feedback neural controller structure, a
novel sliding function is designed from the pole placement method, and is used as the
neural network’s training signal. A new training process for the neural network is
proposed, in which the neural network works as a direct adaptive feedback controller.
The incremental BP learning algorithm and the proposed CFSMBP on-line learning
algorithm are both proven to stabilise the controlled system. Apparently, in the training
phase, the CFSMBP approach outperforms the BP in term of convergence speed. At the
end of the training process, the NN can approximate a nonlinear feedback controller.
The proposed training procedure also eliminates the requirement of a careful choice of
the training input signals, which is the shortcoming of the existing fraining procedure
for the neural network identifier. Fruitful experimental results for the real-time Static

VAR Compensator system can validate the effectively proposed method.

141

CHAPTER 6

DECENTRALISED NEURAL NETWORK CONTROLLER DESIGN
FOR A CLASS OF INTERCONNECTED UNCERTAIN NONLINEAR

SYSTEMS

In this chapter. a decentralised controller using neural networks is designed for a class
of uncertain large-scale nonlinear systems with high-order interconnections and
disturbances. The novel decentralised NN-based controller is developed from a shiding-
mode-based feedback controller. Using a new predefined sliding surface, the robust
sliding-mode-based neural network is trained to stabilise the system states on the sliding
surface. Thus performance of the controlled system is guaranteed. Experimental results
for a Coupled Electric Drives CE8 system show that the real-time neural controller has

been implemented successfully.
6.1. Introduction

Controller design for complex systems with high levels of uncertainties is a current
major challenge. When dealing with large-scale nonlinear systems, such as
communication networks, satellite constellations, robotics systems and powered
wheelchairs, the decentralised adaptive control schemes are usually used. Ikeda and
Siljak (1980) showed that the linear interconnected system is decentralised and
stabilisable by choosing appreciate gains of the local feedback controller. In Joannou
(1985), the direct model reference adaptive control schemes were presented to solve the
decentralised control problem for the large-scale systems with first-order
interconnections. An indirect adaptive controller is also introduced in Ossman (1989)
for the interconnected systems. In these approaches, the global stability proof requires
that the matrix M involving the bounds of interconnections is positive definite. This
condition, however, cannot easily be checked a priori in the adaptive case, since the M-
matrix entries depend on the unknown system parameters (Ossman, 1989). This
problem was solved in Gavel and Siljak (1989) by using an alternative high-gain
stabilisation technique with strictly matching uncertainties. Nevertheless, this adaptive

method requires the known subsystem dynamics.

142

Large-scale systems with high-order interconnections were first considered by Shi and
Singh (1992). who have made simpler assumptions about the strength of the
interconnections. Although the method could handle unbounded interconnections and
unknown parametcrs of subsystems, the dynamic subsystems were required in linear
form. Wen and Soh (1997) relaxed the relative degree limitations of the linear
subsystem and the structure condition of interconnections by using the integrator
backstepping technique, but the use of infinite memory for the modelling error limits
the applicability of the scheme. In Jain and Khorrami (1997), a decentralised adaptive
controller was designed for a class of large-scale nonlinear system with known bounds
of interconnections and disturbances. The approach, however, requires parameterisation
of the system dynamics in linear in the parameter form. This is also the main drawback

of most centralised adaptive control schemes.

Recently, a number of researchers have used neural networks to relax many restrictive
assumptions mentioned above in the design of the decentralised controllers. Spooner
and Passino (1999) proposed decentralised direct and indirect adaptive control schemes
for uncertain nonlinear systems with restrictions on the interconnections. For each
subsystem, a feedback linearising controller based on the sliding-mode control
technique was designed, and a radial basic neural network was utilised to approximate
the feedback controller. The NN update law in Spooner and Passino (1999) eventually
has the same form of the sliding-mode-based learning algorithms. In Da (2000), a new
type of the controller, fuzzy neural networks sliding-mode controller, was proposed for
a class of large-scale system with unknown bounds of high-order interconnections and
disturbances. In each subsystem, a sliding mode regulator of system error is passed back
through a neural identifier for tuning the neural controller parameters. However, these

methods are still restricted in the real-time applications.

In this chapter, the SMC-based feedback control and NN-based control approaches are
studied for a class of uncertain nonlinear large-scale systems with bounds on the
interconnections and disturbances. Utilising techniques from Nguyen et al. (2003) and
Seshagiri and Khalil (2005), a sliding-mode-based state feedback controller is first
developed for this uncertain nonlinear large-scale system. However, this control scheme
often leads to a larger amplitude of control input, which in turn distorts system

performance. To overcome this problem, a novel neural control structure is proposed.

143

The whole system has a parallel structure such that each subsystem has one FNN acting
as a direct inverse adaptive controller. A novel sliding function is defined and used for
training the neural controller. The NNs’ weights are updated on-line by the RMBP
learning algorithm. as mentioned in Chapter 4. The neural controller using the RMBP
learning algorithm can stabilise the system states on the sliding surface. System
performance is therefore satisfied by the appropriate choice of the sliding function

parameters. The proposed method is tested in a real-time Coupled Electric Drives

system.

6.2 Coupled Electric Drives CE8 as an Interconnected Uncertain

Nonlinear System

Coupled drives systems are very common in industrial systems, such as textile
processes, paper mills, rolling mills, wire manufacturing plants and every process
requiring a continuous production line. In these systems, the material speed and tension
controlled by drive systems is frequently required to adjust within defined limits. The
coupled electric drives apparatus is a typical multivariable nonlinear system with
interactions between subsystems. In Lee et al. (1991), the coupled drives apparatus was
represented by two single-input single-output systems with the interactions within the
multivariable considered as measurable disturbances. In each subsystem, the effect of
the interactions was reduced by a self-tuning controller based on a feedforward
paradigm and the generalised minimum variance control strategy. Also in Kocijan et al.
(1997), the coupled drives apparatus was decomposed into two equivalent single-input
single-output channels with disturbance inputs representing interaction influents. Using
the Individual Channel Analysis and Design technique (Kocijan et al., 1997), each
compensator was designed for each channel to meet the channel specification. More
generally, in this research, the coupled electric drives system is considered as a large-

scale nonlinear system with interconnections and disturbances.

In the Coupled Electric Drives CE$ system, as shown in Figure 6.1, an elastic belt loops
around the two pulleys and an intermediate jockey pulley. The two pulleys are driven by
two DC motors while the jockey pulley is suspended vertically by a spring. The tension
of the elastic belt is provided by the extension of the spring and it is measured by a

potentiometer. A pulse sensor on the jockey pulley produces a signal that is proportional

144

to the magnitude of the velocity. Because all parts of the elastic belt, as shown in Figure
6.1, are not identical to the connection of the belt, the tension output always suffers

from a small vibration. The main object of this project is to control both tension and

velocity effectively.

spring

Jockey pulley

“] tension
Al
velocity
Filter L——’
ulley speed
Tachometer Pulley spee
T/
T
Vy \ 2
_______ A
V2

Figure 6.1: The Coupled Electric Drives CES8 System and a part of the elastic belt.

Let @ denote the pulley angular speed, x the displacement of the spring, v,,v, the

input voltages of motor 1 and motor 2, respectively. To decrease the effect of
interactions between two subsystems, a pre-compensator (6.1) is often utilised, as

shown in Figure 6.2.

Vv, =

1 (uw+ux)

(u, —u.)

(6.1)

V2=

o= N

where u,, u, are the control signals for the tension and speed subsystems

145

1
o v w

1
— P (o >
Pre Coupled -
", compensator L Electric Drives X

Figure 6.2: Diagram of the Coupled Electric Drives system with the pre-

compensator.

Welochy (mis)
=1
I
Velocky (m/s)

D%-ﬁ‘

Tension Dispiacement(m)

Tension Displacemsri(m)

Figure 6.3: Step responses of the open-loop system with the control inputs (a)

u,=0,u =3 and (b) u, =3, u_=0.

In order to model the system, some step-response experiments are performed. Figure 6.3

shows the experiment results for two cases: u, =0, u =3 and u_ =3, u ,=0. As shown in
Figure 6.3 (a), although the velocity reference input u, is set to zero, the velocity
output is different from zero. Similarly, the tension displacement is oscillated as in
Figure 6.3 (b) when the tension reference input u_ equals zero. These results show that

the coupling effects between two subsystems still exist. Consequently, the real Coupled
Electric Drives system is actually a large-scale system with interconnections and
disturbances. It is also observed from the experiment results that the velocity subsystem
is a first-order system and the tension subsystem has a fourth-order dynamic equation.

This is similar to the mathematical model of the coupled electric drives systems

described in Wellstead (1979).

The system dynamics have a general form as:

146

Speed subsysten {a) =/ (@)+b, (0)u, +z, (X)+d, (o.1) 62)
v, =@

[.\‘(Vo (x)+b (x)u, +z (X)+d (x1)

Tenston subsystem
[y =x

(6.3)

h{ I . .
where x:[.\' v xm] 1s the state vector of the tension subsystem,

X:[a) x']‘[‘the system state. [, (@), f,(x) the unknown continuous function,

b,(w). b (x) the unknown control gain function, z,z, the strength of

x?“w

interconnections from the other subsystems, d_,d the disturbances, u, ,u_ the control

w?

inputs of the velocity and tension subsystems, respectively.

In the next section, some control strategies are proposed to solve the control problem of

this class of uncertain interconnected systems.
6.3 Advanced Neural Controller Design

Consider a large-scale system which is composed of N interconnected subsystems

q;i=1,...,N . Each subsystem ¢, may be represented as (Da, 2000):

'X.-I| ~= A
x12 :xl3
q, : (6.4)
xm :/’I(xl)+gl(x,)u,(t)+zi(X)+d,(X,,l)
yl :xll

7 .
where x, = [x,],...,xml] e R" denotes the state vector of ¢,, u, € R the control input of

g,y the system output, f,(x,) the unknown continuous function, g, (x,) the unknown

control gain function, z (X) the strength of interconnections from the other

147

subsystems, « (x,./) the uncertainties and disturbances of the subsystem ¢,

A r r " N
X= [‘1 \\} eR" . n= Z,:.l”, the state vector of the whole system.

Assumption 6.1: Full state vectors of the system are measurable.

Assumption 6.2: The sign of g, (x,) is known and there exist some positive constants

S0-8, >0 suchihat g, S‘g,(x)' <gni=lL.,N.
Without losing generality, g,(x,) is assumed to be positive.

Assumption 6.3: |f, (x,)| <F(x,);i=1,...,N, where F is a non-negative function, and

there exist some positive constants B, such that ”Vf, (x,)” <B;i=1..N.

Assumption 6.4: |d, (x,,t)ISD, (x,):i=1,....,N, where D, is a non-negative function,

and there exist some positive constants B, , B, such that

Had,(x,) <.
x |

!

Assumption 6.5: The interconnections are bounded by a p"-order polynomial in

states, that is, there exist non-negative numbers ¢ ,f and le such that

Vz, (X)|<B,; i=1,...N.

N k
I EDII W Y
Assumption 6.6: Assume that the reference y,,(t)=x,, (1) has the property

limy, (1)=y,, and Iiﬁrfnyi‘,’) (1)=0 for 1< j<n-1.

148

and the external disturbance approaches «a constant limit d

188

that s,

llmd,(x,.t):a’m. For every (y..d.), i=1,..,N. there exist a unique equilibrium

>
. T ! y o : :
point X, = [_\,\\.O,....O] . :[xl__\....,xN__\,] and unique control signal

w, =u, (vd.) i=1...N such that 0= f (X,)+ g, (x,ds_‘)u,._x +2z,(X,)+d,, and

Assumption 6.6 means that there exists an equilibrium point e =0; i=1,...,N and

steady-state control input which maintain the equilibrium.

The research objective is to design a decentralised robust control scheme for the system

T T
(6.4) so that the state x, = [x,,,...,x } can track the desired state x , = [x,d,...,xfj'_])} ,

m,

. 7
and the tracking error e, =X, ~x,, = [e,],.. e] € R™ can converge to zero.

6.3.1 Sliding-mode-based state feedback controller design

For the subsystem ¢, , define a sliding function s, (e,) in the state space R"

S: (ei) = Hlel = hi]eil +ooot h'(n,—l)el(ni—]) + em, (65)

i

where the column constant vector Hi:[h,,,...,hi("__]),l} is chosen so that the

polynomial s~ +h,(" _])s""2 +---+h, is Hurwitz. Thus tracking error e, will converge

to zero if s (e,)=0;i=1,.,N.

By choosing a Lyapunov candidate V, =1s?, if the control law u, is designed so that

1

V <0;s, #0,then 5, will asymptotically converge to zero.

The control law u, can be designed as:

149

1, :—KII[)[—;L);Q >O;i:],...,N (66)

|

with p[—'j is a saturated integral-proportional function, and is defined as:

1 if 5 >4
s s 1's
Pl l=y—=+—=|+dt if |[s|<4g (6.7)
(¢l] ¢l 7—; I;|‘¢l | |
| -1 if s, <9,

where 7, is the integral time constant and ¢, is the initial time when system states enter

the boundary layer B (x,) :{ I[s <4 }

The next lemma shows that all system state trajectories will be driven toward the sliding

surface 5, =0.

Lemma 6.1: For the system (6.4) with control law (6.6), if Assumptions 6.1-06.5 are

satisfied and K, is chosen as

Ii Z j+l) fd

n >0 i=1.,N

F(x)+ X020l +Dx)+n, , (6.8)

then s, is forced to zero in a finite time.

Proof: Consider again the Lyapunov function V,, = 1t

!

When |s,| > ¢,,sat[;4

!

J =sgn(s,), and the derivatives of s, and ¥, are obtained as:

150

-1

Z l(ul)

1=

:”Zl Com L) =g, (%) K, sen (s 5.)+ 2, (X)+d (x,)-x\)

IL/

n, =l
s = S L) 2 (1) !

If Assumptions 6.2-6.5 are satisfied and

()
Z h{/el(/+l) X

Je XS [+ +n,],n,>o,

then 17, <0. and all the subsystem state x, starting from any initial position will be

forced into a boundary layer B (x,)= {x, ”s,| < ¢,} in a finite time.

When |S,| < ¢ , there are three possible cases for any value 7.

o . .
e If p=5 +—s =0, s will tend to zero with convergence rate 5 .

!

s +%s, <0 foralls >0

1

o If p= , it leads to V, <—%V,,. So the Lyapunov

S, +%s, >0 foralls, <0 !

!

stability condition is satisfied and s, =0 is the asymptotically stable point of

the system.

]
s +—s >0foralls >0 _
T p increases on all s, > 0

S thi s that :
o If p , this mean p decreases on all s, >0

S, +le <0 foralls, <0
L1

151

As a result, the inequalities below can be obtained after a finite time (Salas &
Hill, 1990):

-
l /
S;+—|sdt>¢ fors >0
Tj 4, for s,
s, +Ll.[s.dt£—¢. for s, <O.
T ! i !

LN

The control law (6.6) with K, chosen in (6.8) consequently causes the
condition ¥, <0; s #0 to be satisfied, and the system state will go to the

sliding surface s, =0 in a finite time. n

Proposition 6.1: For the system (6.4) with control law (6.6), if Assumptions 6.1-6.6

are satisfied and K, is chosen as in (6.8), then the equilibrium point ¢, =0; i=1..,N

of the closed-loop system is asympiotically stable.

Proof:

5

e When ‘s,‘>¢,,sat[¢

i

]z sgn(s,), as in the proof of Lemma 6.1, the condition

V, <0 is satisfied, and all the subsystem state x; starting from any initial
position will be forced into a boundary layer B,.(x,.)z{x, “s,légz},.} in a finite

time.

a
o When |5|< g, define g, 2[6,,...,@("[_,)})

0 1 0 0
= : | N G =
E=lo o ! o

|__hll _hlz ' _'h/[n,—l)_ L~

The system (6.5) can be represented by

152

S, =Fg +G s (6.9)

With the vector H, chosen, the matrix F is stable. Thus there exists a

symmetric positive definite matrix P e RVH) satisfying the Lyapunov

equation
PF +F'P =1, (6.10)
where 1, € R"™"™ i5 3 unit matrix.

Choose a Lyapunov function ¥, (g,)=¢Pg,,

if Ve |=2PG |||, then ¥,=-¢ ¢ +2¢/PGs <[| <0

i

, and all

subsystem errors g, will converge to zero.

When [g,| < 2[|PG,||s,|. because |s,|< ¢, all the subsystem errors

g, = [e,,...,e,(n‘_])}r will be forced into the region:
Q, ={ls|=2|PG flgl} ~ils|< 4}

T
From Lemma 6.1, s, is forced to zero, thus ¢, = [ej,...,e,(n__,)] tends to zero, as

described in the inequality ”g, ” < 2||P,G,|||s,|‘ From the dynamic equation (6.4),

the final error state, ¢, =x,, , - x,(L',"—') =¢,, > consequently tends to zero.

1

When e, =0 and s, =H e, =0, ¥, =0. Therefore, e, =0 is the largest invariant

set inside the region Q.

The application of the invariance principle (Khalil, 2002) shows that the

equilibrium point e, =0; i=1,..,N is asymptotically stable. m

153

Remark 6.3: The proposed sliding-mode-based feedback controller can maintain the

system stability. attenuates the tracking errors and completely eliminates the chattering

ot control torces.

However. the values of K. as chosen in (6.8), are often large and distort system

performance. Using the learning capability of neural networks, the neural controller’s
parameters initialised to small values can be on-line updated, thus the above
disadvantage will be avoided. Additionally, motivated from the saturated integral-
proportional function, a new sliding function for training the neural controller is

designed in the next section.
6.3.2 Neural network controller design

Equation (6.4) can be rewritten as

q,

=Y.,

{x,:A,x,+B,[f,<x,>+g,(x,>u,<r>+zf<x)+d'Wﬂ 611
vy, =Cx,

0 1 0 0
here A =~ |, B=|_|; ¢=[1 0 - 0]
wnere , 0 0 1 i 0 []
0 0] 1]

Design the sliding surfaces

First define new sliding functions as:

5 =85 +5; 6>0, 85 (0)==5/(0)
i=1,..N

(6.12)

with § >0, and s, is defined as in (6.5):

154

where the row constant vector H, :[h,,,...,h/.(”_l).l} is chosen so that the polynomial

"

n -l =2 . .
st h,(,,‘_l)é +---+h, 1s Hurwitz.

Remark 6.4: By defining the sliding function with the specific initial condition (6.12) ,

the sliding function attains zero at the initial instance, 5,(0)=0. If the control signal

can keep system states on the surfaces 5 =0, then the closed-loop system behaviour is

characterised by the sliding surfaces’ dynamics.
Equation (6.11). added (6.5) and (6.12) leads to:

S=0He +Hg (6.13)

¢ =Fe +G 5 (6.14)

0 1 : . L 0

_ 0 1 _)

= ' _ ' . G, = ol (6.15)
~Sh, =Sh,—h, . —5-h, 1]

Remark 6.5: With the chosen vector H, and &, >0, the matrix F in (6.15) is stable,

thus there exists a symmetric positive definite matrix P < R"" satisfying the Lyapunov

equation

PF +F'P =-1I (6.16)

where 1 € R""" is a unit matrix.

Lemma 6.2: For the dynamic system (6.14), the following relationship is always

obtained:

155

e <2|PG |5 (6.17)

Proof: Suppose that |e,| > 2||l-’,(_},“|§,|
Choose a Lyapunov function ¥, =e,'Pe, .

The time derivative of V| is obtained from (6.14) and (6.16) as:

If ”e, ” > 2“1_),.6,]”3,[, then ¥, <0 and all the tracking errors e, will converge to zero.

Consequently, the inequality (6.17) is obtained. |

Remark 6.6: Lemma 6.2 means that tracking errors e, asymptotically converge to zero
if s, =0. This suggests that 5, can be used as a supervisor training signal for the neural

network controller, which is designed in the next stage.
Design the decentralised neural network controller

The whole system has a parallel structure; each subsystem has one feedforward NN

controller, as shown in Figure 6.4. For each subsystem g,, each feedforward neural
network consists of (n, +1) input nodes, (m, +1) hidden nodes, and one output node.

1—-e™’

The hyperbolic tangent sigmoid, fh(v):l—_ , is used as the activation function for
+e

the hidden nodes and the linear function, f,(v)=v, is used as the activation function for

the output node. For the i"™ subsystem, a superscript i is appended to the name of neural

network’s weights.

156

tlidden layer Output

L] vi
@_,{ Subsystem,J_.

Xj

Figure 6.4: Structure of the i neural control subsystem.

. l - -
The input vector e, = [e,] s €] of the neural network is also the vector of the tracking

error e, of the system (6.4). A constant input of 1, affecting the bias, is assigned to the

ng W;n
vector of augment inputs €, = [e,,,...,eml ,1]7‘. Let W=| © . © | bethe weight
W o W,
W;I W;(n,-ﬂ)
matrix between the input layer and the hidden layer, and wi=l 1 : be
me W:n(n,ﬂ)

the matrix of augmented weights by including the bias weights components

W/(nlm;j:l,...,m.

“2m, J{n+1}

T W — .)
The vector o, =[5,,,.. 0, :I 5 0y =fu[Wx +W'];] =1,...,m, 1is the vector of
k=1

the output signals of the neurons in the hidden layer. A constant input of 1, affecting the
bias, is assigned to the vector of augment outputs o, = [5,,,...,5,”,‘,1]7‘. Let
W' :[W’, W'”,J be the weight vector between the hidden layer and the output
layer, and W' = [W’, W’m”} be the vector of augmented weights by including the

bias weights component W'

m+l

Assumption 6.7: Due to the physical constraints, the magnitudes of Wand W are

assumed to be bounded by:

157

W<n. [len. e

The output of the neural network in the /" subsystem is also the control signal , as:

Hl,

u(e)=Wo =W o +w, :ZW’th(W' e, +W']+W"m’+, (6.18)
=1 k=1

g - J{m,+1)
Substituting Equations (6.5), (6.11) into (6.12) leads to:

5;=6He, +H,{A,x, +B,.[f,(x,)+g,(x,)u,(t)+z,(X)+a’,(x,,t)]—x,d}
s :(§,H,+H,A,)e,+g,(x,)u,+ (6.19)
+H,.{A,.x,.d+B, [f,(x,)+z,(X)+d,(x,,t)]—i(,d}.

@
ou,

i

Therefore, =g. (6.20)

The cost function for training the i network is defined as:

) (6.21)

The proposed online learning algorithm of the weight vector W' and the weight matrix

W' is presented as follows:

. (75, +¢ sen (s,)] =
5/ +e, ws/ [622)
ViV' [775, +¢&,sgn (S_I)] F W%’ |

2 T h '

=TT . e
=17 ' iT=1
o+, wx7]

158

By o 0
where Fj =1 @ ot fl0 (j=1....m,) is the derivative of 9, with regard to
0 - |

n,
{ et W i +|)]~ 1),- £ are some positive scalars to be chosen in the next theorem.

The learning algorithm (6.22) is mentioned in Chapter 4, and is named RMBP.

Theorem 6.1: Consider the closed-loop system consisting of (6.4); each subsystem q,

uses the controller (6.18) and the training algorithm (6.22), if Assumptions 6.1-6.5 and

6.7 are satisfied and n,, €, is chosen as:

n > "5'H"—+ﬁ’"+0.53 B, +B,+B, || 25|PG “+L (6.23)
’ £ S L 1 D |
g > [|H,x,dg— H,| +(B, +B,)|x,|+B, +B, ||x|]} (6.24)
0
where H = [O o h",-I:I , then the closed-loop system is asymptotically stable.

Proof: For each subsystem g, , the derivative of the function (6.21) is obtained as:

an ; R ; Sy
Zawl Z; J ; aei ell
J J /]
W
$

un ov, oV,
=1

o, Z o (x) 3 (x.0)

where x is the /™ components of vector X :[x',/',...,x"N] eR',N= Z, .

It is obtained from (6.18), (6.20) and (6.21) that

159

ol,, oV, ds ou _ _
= =580,

oW &, ou, oW’

o, oV,ds ou o _ s
2= = X
Wy~ @ ou owy, ET I

",

a]’ — I ats I .
— = S, [(Slhll +h’(_l—|) + g/ZWk //;/(W/(/J Wlth h’(_l) - 0.
k=1

an
oV oV oV !
£ :S—Ih,.(._I); —_'4—:—3,/’1,}; _—14:3,'&[2/]
axul/ ! a 1dj axj ”
oV, _ ov, s, zi,g,-Vf,(X,)X,

V., oV, s, _ | od(x.0) |, _ od(x,1)
= :Slgl xl + i
ad (x,,t) &5 od (x,,1)

Therefore,

V=58 [n5 +&5en(5)]+5 (6 H +H + g WE,W)¢,

o (x.0)), oy 200)

<HH)g[m>T}g () 50 (3%

i

. - NSV ad,(x,,t) :
Va==58[n5+e5en(5)]+5 1 0H + H + g WE W+ g | Vf (x)+ ——=—= ¢

_ od (x,,1)|. _od(x,,t) _ :
+§,{H,X,d—H,X,d+g,[V]”,(x,)+ a(;’)}xld}Jrs,g,—%——)wts,g,Vzl(X)X
: , _ I od, (x,.0) ||\
V,<-ngls| —cg[5|+[5||oH +H, +g WE,W +g| Vf(x,)+ o e
’ (6.25)
= od (x,,1) | . od (x, .1 :
+|§|{H,X,J—H,x,d+g, {Vf,(x,)Jr%un, +g |_(——) +g[[vz (X)) x||

160

where H =H,A =[0 4 . h.

Multiplying the two sides of Equation (6.13) for H, > yields another dynamics

equation:

€ =-0e +——7% (6.26)
Equation (6.26), combined with the inequality (6.17) yields:

N n<[olF@ g "] " 627)

The inequality (6.27) added to (6.25) yields:

I)iZ S _[771 -

od
]5H +H +WFW Vf() ,(x,,l)
g X,

25 6 g T

Hx,-HX od, (x,,0)y. . |8d (x,,t : _
[g,(_dg,_u Vf(x,)+%'l e)+||Vz,(X)"”XI|Hg,|S,I
Assumption 6.2—6.5 and 6.7 and the inequality f, = (1 fh,) i=1,...,m leads

to:

V:z S_[nl _(M+O,SBWBW +B, +Bd’}(2§ ”PG ”+ ” “]:fg, lﬂz
&o

r — ..
~le _(’H,x,d _H'x'd’+(B/I +B{,‘_)IIX , + 5, : Hg, |§|
&o

If 7, is chosen in (6.23) and & is chosen in (6.24), then V,<0,5 %0, and the sliding

variable 5 will converge to zero by the Lyapunov stability theorem.

161

When s =0, the inequality (6.17) is satisfied. Therefore, from Lemma 6.2, the closed-

loop system is asymptotically stable. |

Remark 6.7: In order to reduce the chattering phenomenon, the following

approximation for the signum function has been adopted:

(6.29)

with 4 being a small positive constant.
6.4 Experimental Results

In this section, a neural controller for the Coupled Electric Drives CE8 system, as

shown in Figure 6.1, is designed and implemented to validate the proposed method.
6.4.1 High-gain observer design

For the tension subsystem, the state estimation is an important consideration and high-

gain observer is constructed through

izAfﬁLL(yx—j/X)

(6.30)
y, =Cx
[0 1 0 O]
0 01 O R)
where A= 0 ,C=[1 0 0 0], x denotes the state estimate,
0 O
0 0 0 0]

T
L= [% L a—i‘,:| the observer gains, and x small positive scalar to assure small
u H u

observer errors (Khalil, 2002).

The positive constant vector [al,az,ag,cg] is chosen such that all roofs of the

polynomial s* + a,s3 +a252 +a,s+a, =0 are u times the desired poles of the observer.

162

For the tension subsystem. suppose that the closed-loop system performance has no
more than 2% overshoot and a rise time of no more than 1 second. Thus a damping ratio

< =0.8 will meet the overshoot requirement, and for this damping ratio, a rise time of 4

1.8
seconds suggests a natural frequency o, :4><—4-:].8. The observer poles can be

chosen to be faster than the desired poles by a factor of 5:

5, =72%j54; s5,,=-9.
Thus with g =0.033, the positive constant vector [a] ,az,a3,a4] is obtained as:

[a,,a,,a,,a,]=[0.09431, 0.458687, 1.0692, 1] . (6.31)

Discretisating the system (6.30) using the zero-order hold method (Franklin et al.,

2002), with the sampling time T =0.025, leads to the applicable observer equation:

X(k+1) =T (k) +A(y(k)-3(k))

A) (6.32)
y(k) =Mk (k)

where

1 0.025 0.0003125 0.0000026 | 0294278]

0 1 0.025 0.0003125| 22.023423 |
= 0 0 1 0.025 © 7 11007.30993 |

0 0 0 1 | 21080.6622
n=[1 0 0 0]

6.4.2 Sliding-mode-based state feedback controller

From the system dynamics (6.2) and (6.3), the sliding functions for the speed and

tension subsystems are defined as:

163

Speed subsystem {s, =¢

0

o (6.33)
Fension subsystem {s, =H e =h e +h,e,+he +he.,

where the speed ermor ¢,=w-w,, @, is the speed reference input,
- o , ! . .
e =X-X, = [e‘,, .o, eH] IS the tracking error vector,

: :) r ro : :
"(/:[\n Yoo Vs X(,4] Z[yn, 0 0 0] is the desired state and y_, the desired

tension input.

The vector value H, is appropriately chosen so that the system performance is

satisfied.

From the real-time experiments in the discrete-time domain, the appropriate value of the

vector H is obtained as:

H, =[1.7784 0.075036 -0.015123 0.001]. (6.34)

To compare the control performance, a continuous sliding-mode controller using the

popular boundary layer method is designed for the speed and tension subsystem as:

u, = K, sat (i]
b

u, = K sat [S—"J
2

(6.35)

1 if s>¢
where sat(i = % if |s| <¢ ,and ¢ is the thickness of the boundary layer.
¢

-1 if s<—¢

Figure 6.5 shows the experiment results of the controlled system with the reference

inputs 7, =2; r,=2 and the controller parameters K, =2.0; ¢,=1.0;

K =20; 4.=05.

164

PR = } S S S docm seen S e :
A s L r T T SRR IR SRR SN S
= | l‘\@ LA fr AR AR . . \ . o
o 1A 1T St e AL AR A AR SPORS SRS
= A . .] 1:
Joap----- T e S ;
2 : B
U: L___,_x_,,,,_4;___,,41___<,__\,______1_,__,A_I; ______ _y_________,»_,._L___-n‘E
a _ i i \ | i ! i i
a} 1 2 3 4 5 B 7 8 9 10
Time (S)
B_ __
g :
?) R e i e A R e T e
s Ll J : . . E .
8 2 L P -, S oo Y :
g | | .(,bl\‘%\-’\fm\'\)\:v\’%-W\'M\'qumm‘wmiﬁﬁzﬁﬂ
Y 11T A D - o PR SR S S S
i=] : ;
;0'__; _QL ___ S A
5 :
4 I | I I I 1 I | L
al 1 2 3 4 5 o] 7 8 9 10
Time (S)

Figure 6.5: The system outputs using the continuous sliding-mode controller with

the reference inputs r, =2; r, =2.

When the saturated function is replaced by the saturated integral-proportional function,

the control law becomes:

K p|le
" ‘”’{m]

|

where the saturated integral-proportional function is defined in (6.7).

(6.36)
u, = K,p[

= I‘ca
Y =

In the experiment, the proposed controller (6.36) is applied to the speed and tension

subsystems. With the reference inputs r, =2; 7, =2 and the controller parameters
1
K =20, ¢ =1.0; K,=20; ¢,=05; T, =—1—and T.=——, the controlled system
N N ! : 0.09 0.02

outputs are plotted in Figure 6.6.

165

& o = A A S : E : :
= / e SRR
f S O S S SO S : : ;
S I Froroo it e
! 1] ! i ; ‘;1\ L |
1 2 3 4 5 B 7 8 9 10
Time (S)

Tengion Displacemert(m)

L T R U Sy S S
l . , ;
OF-H----teo :___,__,: _____________________ O
1 L L L N] j
&} 1 2 3 4 5 B 7 3 9 10
Time (S)

Figure 6.6: The system outputs using the sliding-mode-based feedback controller

with the reference inputs r, =2; r =2,

6.4.3 The NN controller

The sliding functions for the speed and tension subsystems are defined in the discrete-

time domain as:

5,(k)=6,¢,(k)+e, (k+1) (6.37)

5, (k)=0,5,(k)+s,(k+1); s, (k)=H.e (k) (6.38)

In the real-time system working in the discrete-time domain, H_is chosen as in (6.34),

and 6, =-0.7305 and &, =-0.9305 can be chosen.

Two parallel neural network controllers are designed for the whole Coupled Electrical
Drives system, as shown in Figure 6.7. A neural network with two input nodes, three
hidden nodes and one output node is designed for the speed subsysiem and a neural
network controller with five input nodes, seven hidden nodes and one output node is
designed for the tension subsystem. The NNs’ weights are initialised by very small

random values.

166

IS
; Tension |

subsystem
X
Hidden layer Output
w® 0 dwl xl
Speed o
subsystem .

Figure 6.7: Structure of the whole Coupled Electrical Drives system using the

decentralised neural network controller.

The on-line training algorithms (6.22) in the discrete-time domain become:

N _ 5, (k)+¢ sen (s, (k))]

B, ()W (k) % (k)|

77,?29’, (k)+ & sen (5 (k)] _F, (k)W (k) %, ()
F, (k)W (k) %, (k)

©Oh

+

T
+

. : e
With the approximation of the signum function sgn(e)= , and the parameters

" le|+0.01
n,=002; £, =003; n =002; ¢ =0.022, the training algorithm is successfully

implemented in the real-time Coupled Electric Drives system.

167

Figures 6.8 and 6.9 indicate the experimental results of the controlled system under the

designed neural controller with different reference inputs.

Velotty (m/fs)

Tension Displacemert(m)

Time (S)

Figure 6.8: The system outputs using the proposed neural controller with the

reference inputs r, =2; r =2.

Veloctty (m/s)

Tension Displacement(m)

Figure 6.9: The system outputs using the proposed neural controller with the

reference inputs r, =2; r. =—1.

168

6.5 Discussion and conclusion

From the experimental results shown in Figures 6.5, 6.6 and 6.8, output performances of

the three control systems have been reported in Table 6.1.

Table 6.1: Performance comparison among the three control systems

Control method Subsystem | Rise time | Max. overshoot (%) | Settling time
Speed — — false
The continuous
shiding-mode controller Tension — — false
Speed 3.7 0 3.9
The sliding-mode-
based feedback controller | Tension 3.5 45 3.6
Speed 3.9 0 4.1
The proposed
neural controller Tension 34 0 3.5

In the real-time experiments, when the standard sliding-mode controller is utilised, the
high-frequency component of control signals causes severe oscillations of system
outputs. This chattering problem can be decreased if a conventional equivalent control
term is added. However, the calculation of the equivalent control term requires the exact
mathematical model, which is difficult to obtain for the Coupled Electrical Drives. With

the continuous sliding-mode controller (6.35), steady state errors always exist, that is

e,(»)=1.3 and e, («)=0.22, although the control inputs are smooth. This trade-off

between the smoothness of control signals and the control accuracy is often mentioned
in the variable structure system theory. Apparently, because the system’s mathematical
model is unknown, both the standard sliding-mode controller and the continuous
sliding-mode controller cannot effectively be implemented in the real-time Coupled

Electric Drives system.

169

By using the saturated integral-proportional function in the control law, the system
outputs can track the reference inputs after a rise time of 3.7 seconds. However, the
control signal described in (6.306) is large, and leads to a large overshoot of 45% in the
transition response of the tension output. Comparing to the experimental results of the
continuous sliding-mode controller, the sliding-mode-based state feedback controller
can improve system performance with minimum tracking errors. Nevertheless, the

system’s overshoot performance is unsatisfactory when the sliding-mode-based state

teedback controller is used.

Using the proposed neural controller, the control system outputs can track their setting
points after 3.9 seconds, while the overshoot performance is good. Moreover, system
performances of the neural control system are still good even with different reference
inputs, as shown in Figure 6.8 and 6.9. As the signum function has been approximated
by Equation (6.29), the effect of interconnections and disturbances results in an
acceptable limit of tension output. These experimental results show the effective
applicability of the proposed neural controller for a large-scale system with

interconnections and disturbances.

In conclusion, in this chapter, a sliding-mode-based feedback controller and a neural
network-based controller have been designed for a class of uncertain nonlinear large-
scale system with high-order interconnections and disturbances. Although the sliding-
mode-based feedback controller can guarantee the closed-loop system stability, the
associated system performance is not satisfactory. For the NN-based controller, a novel
sliding function has been designed and used for training the neural network. When the
RMBP on-line learning algorithm is utilised in the neural controller, system states are
kept in the sliding surface. Therefore, the system stability is guaranteed and the
performance specification is satisfied by the appropriate choice of sliding function

parameters. Experimental results in a real-time Coupled Electric Drives illustrated the

effectiveness of the proposed methods.

170

CHAPTER 7

CONCLUSION AND RECOMMENDATIONS FOR FUTURE

RESEARCH
7.1 Conclusion

The main objective of this research, as mentioned in Chapter 1, was to develop novel
learning algorithms for feedforward neural networks so that the problems, which occur
when the feedforward neural networks using the backpropagation algorithm are applied
in classification and control, can be overcome. This objective has been achieved through
the combination of the sliding mode techniques and the backpropagation algorithm,
which improves the convergence rate, global convergence capability and robustness of

the backpropagation algorithm.

The first chattering-free sliding-mode-based learning algorithm for the feedforward
neural networks was developed to obtain fast and global convergence when the FNNs
were applied in classification, particularly in the head-movement classifier for
wheelchair control. The second chattering-free sliding-mode-based algorithm was
designed for on-line training of a direct feedback neural controller such that the
controlled system’s stability was guaranteed. Moreover, the training procedure for the
neural controller was proposed to avoid the requirement of the careful choice of training
inputs in the current identification methods. The third robust sliding-mode-based
algorithm for on-line training of a decentralised neural network controller was designed
to assure the stability and robustness of a class of uncertain nonlinear large-scale

systems with interconnections and disturbances.

In order to obtain an overview of the development of neural networks and their learning
algorithms and applications, an initial historical perspective was presented in Chapter 2.
A critical analysis, contained in Chapter 2, showed the disadvantages of the existing

learning algorithms for improving convergence speed and global convergence

171

capability. and also pointed out a gap in the literature, which can be developed further to
an eftective algorithm in this thesis. The review also highlighted the difficulties
experienced in the use of neural networks for modelling system dynamics and the lack
ot stability guarantecs in most of the adaptive neural control systems. The analysis
exhibits an opening capability of the sliding-mode-based learning algorithms in neural

control applications.

Background information and research relating to the backpropagation learning
algorithm and its variations, especially the use of the variable structure system theory in
the neural network leaning algorithms, are provided in Chapter 3. A systematic analysis
based on the Lyapunov method explained the slow convergence rate of BP and the
possibility of getting trapped in the local minima of the BP and second-order gradient
algorithms, and highlighted the efficacy of use of the VSS in the NNs’ learning
algorithms. This background research is the foundation of and motivation for the

development of some novel sliding-mode-based training algorithms in this thesis.

From the chattering-free sliding-mode control strategy, an extension of the adaptive BP
algorithm with a momentum term added, named EABPM, was developed to avoid the
shortcomings of the adaptive BP algorithm. The proposed EABPM algorithm obtains
fast and global convergence properties in the sense of the Lyapunov method. Moreover,
the simple implementation and less computational complexity are the advantages of the
EABPM algorithm. The EABPM was also applied successfully in the head-movement
neural classifier for wheelchair control, as presented in Chapter 4. Experiment results
showed that the EABPM always had 100% global convergence capability, obtained the
average converged epochs of 423.84, which was the best result, compared with the
BPM, ABP, RPROP and MGFPROP algorithms, and also improved more than 5% of
the classification accuracy in comparison with the other algorithms. This indicated that
the EABPM algorithm outperformed the other algorithms in term of convergence rate,

global convergence capability and classification accuracy.

Another novel learning algorithm, named CFSMBP, was developed from the integration
between the chattering-free sliding-mode control technique and the backpropagation
algorithm, and was appropriate for application in the control area. Solving control

problems of the uncertain continuous linear systems, as described in Chapter 4, the

172

feedforward neural network trained by the CFSMBP algorithm can work as a direct
adaptive feedback controller, and guarantees system stability based on the Lyapunov
synthesis. Moreover. a novel sliding function was designed and used as the training
signal. thus avoiding the problem of unknown plant’s Jacobian, or the need for a trained
neural network identilier. In an example with an uncertain linear system, the proposed

neural controller robustly guaranteed the required performances of the closed-loop

system.

The above neural controller was further developed to establish the neural network
controller design methodology for a class of uncertain single-input single-output
systems. particularly in the time-delay nonlinear Static VAR Compensator system, as
presented in Chapter 5. A review of control methods for nonlinear systems with
transportation lag, contained in this chapter, illustrated the difficulties and inadequacies
of the current solutions, and provided an approach for approximating the nonlinear
controller of the time-delay systems. This modelling approach was verified in a real-

time Static VAR Compensator system, as described in Section 5.2.

The neural control design method, as proposed in Chapter 5, comprised four stages.
Firstly, a novel sliding function was designed from the pole placement method, and was
used as the neural network’s training signal. Secondly, the feedforward neural network
trained by the increment BP learning algorithm or the proposed CFSMBP learning
algorithm, which acted as a direct adaptive feedback controller, was proven to stabilise
the closed-loop system. Next, a new training procedure for the neural network controller
was developed so that the network parameters converge to the optimal values. Finally,
the other parameters of the neural controller were calculated, and incorporated with the

optimal neural network to control the uncertain systems with transportation lag.

Experimental results for the real-time Static VAR Compensator system, provided in
Chapter 5, showed that both the BP and CFSMBP algorithms can guarantee the
system’s stability. In the training process, the BP and CFSMBP both assure the global
convergence of the network, as indicated in Section 5.4. This means the neural network
always obtains its optimal weights, and the required system performance is satisfied.
Results also concluded that the number of hidden nodes did not affect the global

convergence capability of the proposed method. Moreover, the CFSMBP algorithm

173

always outperforms the BP in term of convergence rate. This training procedure can
avoid the difficult choice of the training input signal associated with the convenient
training procedure for the neural network identifiers, as discussed in Chapter 2. After
training the network. implementation results indicated that the proposed neural
controller can robustly stabilise the real-time nonlinear system with transportation lag,

while the PID controller, in some cases, failed to track the system output to the

reference input.

Furthermore, a robust learning algorithm, named RMBP, was developed from the
reaching law method integrated with the BP algorithm. This on-line learning algorithm
offered a simple and robust adaptation approach for control applications. As proven in
Chapter 4, the direct adaptive feedback controller using the feedforward neural network
with the RMBP algorithm assured the stability and robustness of a class of uncertain
continuous linear system with disturbances. Simulation results, also provided in Chapter

4, indicated that the RMBP was more robust than the CFSMBP in term of performance.

The method was further developed for controlling the large-scale nonlinear systems, as
presented in Chapter 6. A decentralised neural network controller structure was
proposed so that each feedforward neural network was utilised as a direct inverse
adaptive controller for each subsystem. Motivated from a sliding-mode-based feedback
controller, novel sliding functions were defined and utilised as the training signals. The
RMBP algorithm was then applied for on-line updating the network parameters, which
guaranteed asymptotic stability of the closed-loop system by the Lyapunov method. In
the real-time implementation for a two-input two-output Coupled Electric Drives CE8
system, the continuous sliding-mode controller always caused steady-state errors.
Although the sliding-mode-based feedback controller could reduce the output errors,
system performance was distorted with a large overshoot of 45%. The proposed
decentralised neural controller using the RMBP algorithm could stabilise the system and
the system performance was satisfied, that is, a rise time of 3.9 seconds and no

overshoot. These real-time experimental results demonstrated the effectiveness and

feasiblity of the proposed neural control method.

174

7.2 Recommendations for Future Research

Further rescarch should involve two directions. The first direction concerns obtaining a
unified learning algorithm from the three neural learning algorithms proposed in this
thesis. :\s discussed in Chapter 4, the reaching law method is the most general scheme
among other sliding-mode control techniques, and converges the output error to zero in
the fastest tinite time. Therefore, the RMBP algorithm derived from the reaching law
method is the optimal choice for the unified learning algorithm. If the RMBP algorithm
replaces the CFSMBP algorithm in the proposed neural controller for the delay-input
systems, the training process, as described in Chapter 5, will converge faster and more
robustly. In classification problems, the RMBP algorithm, in the same manner of the
robust Minowski-r BP algorithm (Hanson & Burr, 1988), can also improve the robust
property of the BP algorithm in noisy environments. However, the RMBP is an
incremental learning algorithm while the EABPM is a batch learning approach.
Therefore, the application of RMBP in the head-movement neural classifiers needs
further research and validation. The development of a unified learning algorithm for the
advanced neural network controllers and classifiers is a topic currently under

investigation.

Another critical point in this research is to design the parameters of the sliding function,
which in turn decides the system performance. For linear systems, these parameters of
the sliding function were designed by the pole placement method, as presented in
Chapters 4. However, for nonlinear systems, this is a very challenging problem in
control engineering. Some studies have already developed an adaptive approach for
design of the sliding surface (Bekiroglu, 1996). Therefore, it is possible to utilise a
neural network to learn the nonlinear sliding surface. Nevertheless, if a neural network
is used for identifying the sliding function, the neural control system becomes the
conventional direct adaptive neural control scheme with a trained neural identifier (Ng,
1997). To avoid the challenge of choosing appropriate input signals over the operational
range of the control system, a novel training procedure for FNN to approximate the

nonlinear sliding surface should be developed. Based on the training procedure obtained

175

in Chapter 5. the development of an advanced neural approach for designing an optimal

sliding surface for nonlinear control systems should be feasible.
APPENDIX A

A.1 Matlab Program for Modelling the SVC System

File name: StVrEx0l.m

function out=StVaEx01(filenamel,filename2, filename3,filename4,filename5)
%%6%6%%%%%0 %% % %% %% % %% %% % %% % %% %% %% %% %

%%%% Program to get model of the SVC system %%%%%
%%%%6%%%%%6%6%%%%6%6%%6%%%6%6%6%6%%%6%%%0%6 %%

% Validate input args

if nargin==0, error('Not enough input arguments."); end

% get filename
if ~isstr(filename1), error('Filename must be a string."); end

% do some validation
if isempty(filename 1), error('Filename must not be empty.'); end

% make sure file exists
if ~isequal(exist(filenamel), 2), error('File not found."), end

% open the file
fid = fopen(filenamel,'r');
if fid == (-1)

error(['Could not open file ', filenamel ,"."]);
end
A = fscanf(fid, %of%f%%{% %% ,[7,inf]);
fclose(fid);

[m,n]=s1ze(A);

[St,ERRMSG] = sprintf('The array is %dx%d.",m,n);

disp(St);

for i=1:(n-400),
t(1)=A(1,1);
inl1(i))=A(2,1);
in2(1)=A(3.1);
in3(1)=A4,1);
in4(1)=A(5,i);
outl(i)=A(6,1);
out2(1)=A(7,1);

end

plot(t,inl1,'g');

176

xlabel("Time (S).'FontSize' 8):
ylabel('System output','FontSize'.8):
hold;

%grid on:

pause;

% Validate input args

if nargin==0, error('Not enough input arguments."); end

% get filename
if ~isstr(tilename?2), error('Filename must be a string."); end

% do some validation
if isempty(filename?), error('Filename must not be empty."); end

% make sure file exists
if ~isequal(exist(filename?), 2), error('File not found."), end

% open the file
fid = fopen(filename?2,'r");

if fid == (-1)

error(['Could not open file ', filename2 ,"']);
end
A = fscanf(fid, %f%{% %% %%, [7,inf]);
fclose(fid);

[m,n]=size(A);
[St, ERRMSG] = sprintf('The array is %dx%d.",m,n);
disp(St);
for i=1:(n-400),
t(1)=A(1,1);
in12)=A(2,1);
in2(1)=A(3.1);
in3(i)=A(4,1);
ind(1)=A(5,1);
out1 (1)=A(6,1);
out2(1y=A(7,1);
end
plot(t,in12,'g");
xlabel('Time (S)', FontSize',8);
ylabel('System output’,’FontSize',8);
%hold;
%grid on;
pause;
% Validate input args
if nargin==0, error('Not enough input arguments.’); end

% get filename o
if ~isstr(filename3), error('Filename must be a string.'); end

% do some validation

177

if isempty(filename3). error('Filename must not be empty.'); end

% make sure file exists
if ~isequal(exist(filename3). 2), error('File not found."), end

% open the file
tid = topen(tilename3.'r');
it fid == (-1)

error(['Could not open file ', filename3)
end
A= fscanf(ﬁd.'%t"/or“/of%f"/of"/of%f’,[7,inf]);
tfelose(fid):

2

[m.n]=size(A);
[SLERRMSG] = sprintf('The array is %dx%d.',m,n);
disp(St):
for i=1:(n-400),
t(1)=A(1.1);
inl3(1)=A(2,1);
In2(1)=A(3.1);
n3(i)=A(4.1);
in4(1)=A(5.1);
outl(1)=A(6.1);
out2(1)=A(7,1);
end
plot(t,in13,'g");
xlabel('"Time (S)','FontSize',8);
ylabel('System output','FontSize',8);
%hold;
%grid on;
pause;
% Validate input args
if nargin==0, error('Not enough input arguments."); end

% get filename
if ~isstr(filename4), error('Filename must be a string.'); end

% do some validation
if isempty(filename4), error('Filename must not be empty."); end

% make sure file exists
if ~isequal(exist(filename4), 2), error('File not found."), end

% open the file
fid = fopen(filename4,'r');
if fid == (-1)
error(['Could not open file ', filename4 ,"."]);

end
A = fscanf(fid, % %1% %% %% [7,inf]);

fclose(fid);

178

[m.n]=sizc(A):
[SLERRMSG] = sprint{'The array is %dx%d." . m.n);
disp(St):
for 1I=1:(n-400).
t()=A(1.1):
inl4(1)=A(2.1):
In2(1)=A(3.1):
In3(1H=A.0):
In4(1)=A(5.1):
outl(1)=A(6.1):
out2(1)=A(7.1):
end
plot(t.int4.'g");
xlabel('Time (S)','FontSize',8);
ylabel('System output'.'FontSize'.8);
%hold;
%grid on;
pause;

% Validate input args
%i1f nargin==0, error('Not enough input arguments."); end

% get filename
if ~isstr(filename5), error('Filename must be a string."); end

% do some validation
if isempty(filename5), error('Filename must not be empty."); end

% make sure file exists
if ~isequal(exist(filename5), 2), error('File not found."), end

% open the file
fid = fopen(filename5,'r');
if fid == (-1)

error(['Could not open file ', filename5 ,'.']);
end
A = fscanf(fid, %of% %%t %% %t [7,inf]);
fclose(fid);

[m,n|=size(A);
[St, ERRMSG] = sprintf('The array is %dx%d.',m,n);
disp(St);
for i=1:(n-400),
t(1)=A(1,1);
in15(1)=A(2,1);
n2(1)=A(3,1);
in3(1)=A(4,);
ind(1)=A(5,1);
outl (1)=A(6,1);

179

out2(1)=A(7.1):
end
plot(t.inl3.'g":
xlabel('Time (S).'FontSize'.8):
vlabel('System output’.'FontSize' 8):
%hold;
grid on;
pause;

B=[in11:in12:in13;in14;in15]
H=mean(B):
plot(t,H,'’k-"):

>

xlabel("Time (S)','FontSize',8);
vlabel('System output’,'FontSize',8);
grid on;

hold;

pause;

clf;
[k]=length(H)
for i=1:k,
t(1)=A(1,1);
outl(1)=A(6,1);
md(1)=H(i)-3.41; % Cancel offset
end
plot(t,md,’k-");
xlabel('Time (S)','FontSize',8);
ylabel('System output’,'FontSize',8);
hold;
%pause;
%plot(t,outl);
pause;
hs1=tf(0.305,[0.12 1], InputDelay',0.09)

hs2=t£(0.275,[0.19 1], InputDelay’,0.11)

Isim(hs1,outl,t);lsim(hs2,outl,t);
pause;

180

APPENDIX B

B.1 Chapter 5 Proofs

Let us first introduce the following Lemmas.

Lemma S.1: For the real vectors or matrices M,N with appropriate dimension, we

have

M'N+N'M< MM+ S'N'N

Jor any positive constant 3 .

Proof: See (Wang & Cheng, 1992).

Lemma 5.2: For the dynamic system (5.22), the following relationship is always

obtained-:

A G'P'PG+G'PG
”Z(k)||<\/ =7 .)|Sk|> (B.1)

A (Q - [rlFTF)

where S is an arbitrary positive constant, and a symmeltric positive matrix Q is

chosen so that (Q - ,B"FTF) is positive definite.

(BG'P'PG +G'PG)
Ao (Q=B'F'F)

lsk ’

A
Proof: Suppose that Hz(/c)“>\/'malx

Choose a Lyapunov function

The change of 1, is obtained from Equations (5.22), (5.24) and Lemma 5.1

AL (k) =T (k1) =11 (k) =z(k+1) Pz(k+1)~2(k) Pz(k)
~ (F2()+Gs,)/ P(Fa(k)+Gs,)-2(k) Pz (k)
=z(k) (F'PF-P)z(k)+5,G'P'Fz(k)+2(k) F'PGs, +5,G'PGs,
~z(k) Qx(k)z(k)+ fs5,G"P'PGs, + B'z(k) F'Fz(k)+5,G'PGs,
g—/lmm(Q—,B"F’)|z (* ” + 2 (BG'P'PG +G'PG)s/’

G'P'PG
If ”z(k)”>\/ o (4 e PG)'S,J, then AV, <0 and all system states z will

Ao (Q=B7'FTF)

converge to zero. Consequently, the inequality (B.1) is obtained. []

Proof of Proposition 5.1: Substituting Equations (5.11) and (5.17) into (5.16) yields

=60, +0,, =0Hx(k)+H(A+AA)x(k)+H(B+AB)u(k) (B.2)

os, O
k=~ [H(A+AA)x(k)+5Hx(k)+H(B+AB)u(k
—-=—|H(A+2A)x(k)+sHx(k))] B.3)
=H(B+AB)
The gradients of ¥ with respect to the weight matrix or vector are calculated as:
oV _oVo O __ y(B+aB)s(k) (B.4)

oW (k) 0s, ou oW (k)

oV oV s, ou 3§(k):SkH(BJrAB)F,;(k)w(k)Ti(k)" (B.5)

oW (k) @s, u do(k) oW (k)

As demonstrated in Salas & Hill (1990) and Ng (1997), the change of function V in
(5.28) can be obtain as:

m _ n oV
AV = N +Z OV AW+ —Ax, (B.6)
/4 1 '

=1 y=1 y J=1 J

Substituting Equations (5.29) | (B.4)and (B.5) in to Equation (B.6) leads to:

Al :—nH(B+AB)3k +5, o, — < Ax(k)

ax(8)
5, (B.7)
AV =-nH(B+AB)s,? +]s,| ax(Jax ()
From Equation (5.16). added Equations (5.1 1) and (5.26), it is obtained as:
) _
%zH(A+AA)+5H+H(B+AB)WF,:W (B.8)
d|l1-e”’ 1
Because f, =E;[l+e‘ J—E(l—f,f)<0 5 i=l....m,
os
x4 <AL+ 2, +8+05(IB]+ ;) By B, | = |H] ke (B.9)

where k., =|A|+p,+5+0.5(|B|+ p;) B; B, .

7

Multiplying two sides of Equation (5.16) for II; >

to yield another dynamic equation

x(k+1)=-5x(k)+ (B.10)

Equation (B.10), combined with the inequality (B.1) and Equation (5.18) leads to

o [BG'P'PG +G PG)|]+§j
Ax (k)= - (B.11)
o P e o

Note from Theorem 5.1 that

183

[Hf <]Vl (B.12)

The inequality (B.7), added (B.9), (B.11) and (B.12) yields

| A [BG'P'PG+G'PG
AI'<S=2| nH(B+AB)-k__ |- (~‘ﬁ~J\l+§\\\v}+k V.
/?,m].n (Q—-IB F F) max

The function ¥ will globally converge to zero if the following inequality is satisfied

max

0<7H(B+AB)- & <%,

A (BG'P'PG +GTPG)
2in (Q= B7'F'F)

where & =k \/ |1+5|||v||+1 .

From Assumption 5.2, if the learning rate 77 satisfies:

g 4
0<2 << — D2
8 2g, g

then the sliding variable s, will globally converge to zero. The on-line training
algorithms of the neural network will stop when the sliding variable s, reaches zero.

When s, =0, from Lemma 5.2, the closed-loop system is asymptotically stable. |

Proof of Proposition 5.2: Similar to the proof of Proposition 5.1, the gradient terms

(B.4) and (B.5) are obtained, and the change of function ' can be obtained as in (B.6).

Substituting Equations (5.31), (B.4) and (B.5) in to Equation (B.6) leads to:

2

AV = —77H(B+AB)(H3(/()T +

184

2
Because H >1

H[E ()W) % (k)

M

AV <-nH(B+AB)s,” +|s,| ”Ax ”

(

As the proof of Proposition 5.1. if we can choose 7 as in the inequality

‘9max 1 '9m
0<% <<t
o 2g, g

then 1" converges to zero. Consequently the closed-loop system is asymptotically stable.

185

APPENDIX C

C.1 C Program for Training the Neural Network Controller

File name: DSVC_ WSI1.CPP

/* Program simulate SVC sytem using output state variable feedback controller
Writer: Tri VM Nguyen

Date: 29 November 2005

version: 0.1

Describe: Proposed algorithm for approximating NN controller,

optimal learning rate 1s used and 30 runs for different initial weights

Control law: Neural Control System without Observer and reference input
3 model is used to train the NN controller to check if V->0 or not?

-> Good result of sliding function defined.

Observing V by graphic functions

*/

#include <stdlib.h>
#include <conio.h>
#include<stdio.h>
#include<math.h>
#include <graphics.h>
#define TileX 640.0
#define TileY 480.0
#define P1 3.14159255

const N=4: // state variables = no. of input node.
const M=6: // no. of hidden node

const L=1;// no. of output node

const Lm=10000; // max epochs

char str[25];

int sig = 5; /* significant digits */

float Un,ymax,xmax,X;

nt n;

int Xm,Ym;

int KDDoHoa(void);

void VeTruc(void);

void VeHam(float Un,int n,float ymax,float xmax);

int DongDoHoa(void);
186

double sat(double x.double v);
double baf(double v):

double dbat{double v):

double purelin(double v):

void mam()

{

FILE *fp.*fpl:

char ta[40]="weight.txt":

char ta2[40]="fweight.txt";

char fal{40]="SVC WSI12.txt";

char ch;

int 1,j,dem;

long k.STEP,count,l,count2;

double
alpha.beta, Xk 1[N],Xk[N],XkI[N],Xb[N],Xbl[N],Xc[2],Xc1[2],Nu,Nr,Uk,T,T1,T2 Ki,
e.el:

double yk,rk,zOK[N],yOk[N],W1k1[M][N];

double netlk[M],netz1k[M],z1k[N],y 1k[M],es1k[M];
double W2k1[M],y2k,z2k,net2k netz2k,es2k ;

double Sk,Sk 1,Skl1,dSk,V,J1,delta, HB,k0,Vk,Vk1,20;
//Coefficients for Data Processing//

double DP[N-1]={3.5,50,480};

// Sliding function coefficients//

double H[N-1]={4.0583,-0.2027,0.0092};
// double H[N-1]={9.40518,-0.28799,0.00346};
// double Nx[N]={55.175034,55.175034,55.175034};
double E Em,temp, W2k[M],W1k[M][N];

randomize();

fpl=fopen(fal,"w"),
fflush(fpl);
printf("\nStarting");

for (dem=1;dem<=1;dem++)

{
§

// Initial conditions
fp=fopen(fa,"w");
if (fp==NULL)
perror("Error in data file"),
fflush(fp);

for(i=0;1<M;i++)
§
§
temp=random(1000);
x=(500-temp)/5000.0;
W2k[1]=x;
fprintf(fp,"%f\n" X);
}

187

for (i=0;1<(M-1);i++)
for (j=0:j<N;j++)

]

b
temp=random(1000):
X=(500-temp)/5000.0:

WIK[][]=x:

fprintf(fp."%M\n" x);

!

fclose(fp):

KDDoHoa();

1=0.025: //simulation timestep
STEP=80; // no. of step
alpha=0.1: // learning rate
beta=0.12;
// Initial conditions
g0=1;
rk=0;
// count=2;
/I delta=-0.637628;
delta=-0.4066;
Em=0.0003; // error threshold
I=1; // epochs

do
{

E=0; // error function
for (count2=0;count2<3;count2++)
{

count=random(3);

VeTruc();

temp=random(10);

Xk[0]=5-temp;

Xk[1]=0; // Initial states

Xk[2]=0;

V=0; yk=0;

// Initial control signal
if (count==0)

{

//nominal System
Uk=-(delta*H[0]+H[0]*0.161-H[1]*14.848-H[2]*64.34)* Xk[0]/(H[0]*0.0166-
H[1]*2.332+H[2]*49.74);
}
if (count==1)

{
/I System 2

188

Uk=-(delta*H[0]-H[0]*0.038-H[1]*23.334-H[2]*143.1 02)*Xk[0]/(H[0]*0.012-
H11*5.709+H[2]*196.959);
v
b
it (count==2)

{
1

// Sytem 3
Uk=-(delta*H[0]+H[0]*0.268-H[1]* 11.164-H[2]*37.838)*Xk[0}/(H[0]*0.011-
H1]*1.0285+H[2]*17.76);
1

§

for (k=0:k<STEP:;k++)
§
v
//Dynamic relations
if (count==0)
f
1
////Nominal Parameter//////
Xk1[0] = 0.1607*Xk[0]+0.01327*Xk[1]+0.00021 *Xk[2] +0.0166*Uk;
Xk1[1] =-14.848*Xk[0]+0.7723*Xk[1]+0.022916*Xk[2]-2.3319*Uk;
Xk1[2]=-64.34*Xk[0]-1.015*XKk[1]+0.9906* Xk[2] +49.74*Uk;
vk=Xk[0];
}
if (count==1)
{
//// Upper bound parameter///////
Xk1{0]=-0.03846*Xk[0]+0.00964*Xk[1]+0.00017*Xk[2] +0.012336*Uk;
Xk1[1] =-23.334*Xk[0]+0.60013*Xk[1]+0.02117*Xk[2] -5.7088*Uk;
Xk1[2]=-143.102*Xk[0]-2.5838*Xk[1]+0.97479*Xk[2] +196.959*Uk;
yk=Xk[0];
}
if (count==2)
{
////Under bound parameter///////
Xk1[0] = 0.26792*Xk[0]+0.01498*Xk[1]+0.00023*Xk[2] +0.01 1348*Uk;
Xkl1[1}=-1 1.164*Xk[0]+0.8355*Xk[1]+0.02352*Xk[2]-1.0285*Uk;
Xk1[2] =-37.838*Xk[0]-0.56906* XK1 1+0.99483*Xk[2] +17.76*Uk;
yk=Xk[0];
}

////1/] Calculate error signals for training/////////1//]
Sk=0;Sk1=0;
for (i=0;i<(N-1);1++)
{
Sk=Sk+H[i]*(Xk[i]);
Sk1=SkI1+H[i]*(Xk1[i]);
}
V=delta*Sk+Sk1;
E=E+0.5*V*V;
// printf("\nJ=%f".J);getch();

189

/111111/Present kth input pattern///////////)
for(1=0:1<(N-1):i++)

1
YOK[i]=-(Xk1[i])/DPJi]:
1
VOK[N-1]=1;
///l//Calculate hidden layer input and output//////////
for (i=0:1<(M-1):i++)
1
2
netlk[i]=0;
for(j=0;j<N:j++)
]
0
netlk[i]=net1k[i]+W1k[i][j]*yOk[j];
}
y Ik[1]=baf(net1k[i]);

1
]

ylk[M-1]=1:
//[1/lf/Calculate output layer input and output///////
net2k=0;
for(j=0;)<M;j++)
{
netZk=net2k+W2k[j1*y1k[j];
}
y2k=purelin(net2k);
Uk=y2k;
/1] calculate the new weights of hidden-to-output layer/////
if (V!=0)
{

/* /I For back-propagation learning algorithm
for (1=0;1<M;i++)
W2kl1[1]=W2k[i]-beta* V*y 1k[i]/g0;
for (i=0;1<(M);i++)
for (j=0;<N;j++)
WIkI1[1][]=W1k[1][j]-beta* V*dbaf(net1k[1])* W2k[i]*yO0k[;]/g0;
*/
// For proposed exponential learning algorithm
T1=0;
for (1=0;1<M;1++)
§
t
T1=T1+ylk[1]*y1k[i];
}
T2=0;
for (1=0;1<(M-1);1++)
for (j=0;j<N;j++)
{

§

T2=T2+(dbaf(net1k[i])* W2k[i]*yOk[j])* (dbaf(net1k[i])* W2k[i]*yOk[j]);

;

190

if ((T1+12)!=0)
$
b
for (1I=0:1<M;1++)
§
b

W2k 1 [i]=W2k[i]-alpha*V*y 1k[i/(g0*(T1+T2));
!
§

tor (1I=0;1<(M-1):i++)
for (j=0:;j<N:j++)
{
WI1kI1[1][j]=WIK{i][;]-
alpha*V*dbaf(net1k[i])* W2k[i]*yOk[j]/(g0*(T1+T2));
}

Y/ of if TIHT2
v/ of if V

ymax=6;xmax=STEP;
VeHam(V,k,ymax,xmax);
// Preparing for next step
for(i=0;1<M;i++)
W2k[i]=W2k1[i];
for (i=0;1<(M-1);1++)
for (j=0;)<N;j++)
WIk[i][1=WIk1[i][];

for (i=0;i<(N-1);i++)
{
Xk[i]=Xk1[i];
}

} //of FOR k

} // of For count

J+=1;

E=E/(3*STEP),

// ymax=60;xmax=Lm;

// VeHam(E,l,ymax,xmax);
// getch();

}
while ((E>=Em)&&(1<=Lm));

for(i=0;1<M;1++)
fprintf(fpl,"%O.9f\n",W2k[i]);
for (i=0;i<(M-1);1++)

for (j=0;)<N;j++)
fprintf(fp1,"%0.91\t", W1 k[110D);

191

fprintf(fpl."\n");
1

§
fprintt(fp1."%d\t%d\n" dem,|-1):
tprintf(fp1."%N\n" E):
fprintt(tfp1."\n");
printf("\n%d\t%d\t%f" ,dem,|-1.E):

! // For dem
fclose(fpl):

/I setcolor(RED);

/I gevt(ymax, sig, str);

/I outtextxy(15.10,str);
DongDoHoa();
printf("\n%d\t%d\t%f",dem,]-1,E);
printf("\nFine");

getch();

return;

}

double sat(double x,double v)
{
double tg;
if o>v) tg=v;
else if (x<-v) tg=-v;

else tg=x;
return(tg);
}
/e */
int KDDoHoa(void)

{
it driver = DETECT, mode;

int error_code;

initgraph(&driver,&mode,"c:\te\\bgi");

error_code=graphresult();
if (error_code!=grOk)
return(-1);

/*khong phai man hi'nh EGA hoac VGA */

if ((driver!'=EGA)& & (driver!'=VGA))

{
closegraph();
return 0;

]
s

return(1);

}

192

void VeTruc(void)
f
1

setbkcolor(CYAN):;

/* Mo cua so va’ cho phep ve ca ngoai cua so */
szgetmaxx();Yngetmaxy();
setviewpon(0.0.Xm.Ym,O);
clearviewport();

setcolor(LIGHTRED):
outtextxy(15.Ym/2+10,"(0,0)™);
setcolor(RED);

/* chuyen con tro ve goc va' ve truc X*/
moveto(5.Ym/2);

lineto(Xm-10,Ym/2);
outtextxy((Xm-10),Ym/2,"x");

/* chuyen con tro ve goc va' ve truc Y*/
moveto(10,Ym-10);

lineto(10,10);

outtextxy(15,5,"y");

setcolor(BLUE);
settextstyle(TRIPLEX FONT,HORIZ DIR,3);
outtextxy(200,Ym-40,"Do thi Y=F(x)");

moveto(10,Ym/2);
setcolor(YELLOW);
}
/e *
void VeHam(float Un,int n,float ymax,float xmax)
{
int x,y;

x=10+(int)(n*TileX/xmax+0.5);
y=Ym/2-(int)(Un*Tile Y/(ymax*2)+0.5);
lineto(x,y);

moveto(x,y);

)
§

int DongDoHoa(void)

{
getch();

closegraph();
return(1);

193

double baf(double v)
{
double tg:
te=-1:
it (v>-709)
tg=(1-exp(-V))/(1+exp(-v));
return(tg):

1
§

double dbaf(double v)

!

double tg.tgl:

tg=0:

if (v>-709)
f
1
tgl=exp(-v);
tg=2*tg1/((1+tgl)*(1+tgl));

double purelin(double v)
{

return(v);

;

194

APPENDIX D

D.1 Matlab Program for Design of The Neural Network Controller
File name: DiscreteStatic VarContr.m

function out=DiscreteStatic VarContr()
R Pole placement-------

% Determination of state feedback gain matrix K by use of transformation
% matrix T

% ** Enter matrices A and B**

% Note that X=[x3;x2;x1]

format short g

% Upper parameter system 2

td=0.07

a=0.55*[td*td/8 -td/2 1]

b=0.11*[td*td/8 +td/2 1]

c=[b(1) b(2) b(3) 0] + [0 td*td/8 +td/2 1]

numeratorGs=a

denominatorGs=c

pause;

[A2,B2,C2,D2]=tf2ss(numeratorGs,denominatorGs)
step(A2,B2,C2,D2)

N=[C2" A2'*C2"' (A2')"2*C2'];

rank(N)

pause;

%**since the rank of N is 3, design of the observer is possible**
%% Obtain the coefticients of the characteristic polynamial [sI-A|. This
%% can be done by entering statement poly(A)

JA=poly(A2)

al=JA(2);a2=JA(3);a3=JA(4);

%*** Define matries W and T as follows***

W=[a2 al 1;a1 1 0;1 00]

Q=W*N'

% Transfer system into the observable canonical form
F=Q*A2*inv(Q)

G=Q*B2

H=C2*inv(Q)

J=D2

step(F.G,H.,J)

pause;

A2=F:B2=G;C2=H;D2=J;
sysSSc=ss(A2,B2,C2,D2);
Ts=0.025;
sysSSd=c2d(sysSSc,Ts,'zoh');
[Phi2,Gam2,H2]=ssdata(sysSSd)

195

pause:

%under bound parameter system 3

td=0.12

a=0.29%[td*td/8 -td/2 1]

b=0.22*[td*td/8 +td/2 1]

c=[b(1) b(2) b(3) 0] + [0 td*td/8 +td/2 1]
numeratorGs=a

denominatorGs=c¢

pause:
[A3.B3.C3.D3]=tf2ss(numeratorGs,denominatorGs)
step(A3.B3.C3.D3)

N=[C3" A3"™*C3" (A3)"2*C3'];

rank(N)

pause;

%**since the rank of N is 3, design of the observer is possible**
%% Obtain the coefficients of the characteristic polynamial |sI-A|. This
%% can be done by entering statement poly(A)
JA=poly(A3)

al=JA(2);a2=JA(3);a3=JA(4),

%*** Define matries W and T as follows***
W=[a2 al 1;al 1 0;1 0 0]

Q=W*N'

% Transfer system into the observable canonical form
F=Q*A3*inv(Q)

G=Q*B3

H=C3*inv(Q)

J=D3

step(F,GH,J)

pause;

A3=F;B3=G;C3=H;D3=I;
sysSSc=ss(A3,B3,C3,D3);

Ts=0.025;

sysSSd=c2d(sysSSc,Ts,'zoh’);
[Phi3,Gam3,H3]=ssdata(sysSSd)

pause;

% Nominal parameter System 1

td=0.1

a=0.425*[td*td/8 -td/2 1]
b=0.165*[td*td/8 +td/2 1]

c=[b(1) b(2) b(3) 0] + [0 td*td/8 +td/2 1]
numeratorGs=a

denominatorGs=c

pause;
[A,B,C,D]=tf255(numeratorGs,denominatoer)
step(A,B,C,D)

o%*** Define the observability matrix N and check its rank***
N=[C" A*C" (A")"2*C'];

196

rank(N)

pause;

%**since the rank of N is 3, design of the observer is possible**
%% Obtain the coefficients of the characteristic polynamial [sI-A|. This
%% can be done by entering statement poly(A)

JA=poly(A)

al=JA(2):a2=JA(3):a3=JA(4);

%*** Define matries W and T as follows* **

W=[a2al l:al 10;1 0 0]

Q=W*N'

% Transfer system into the observable canonical form
F=Q*A*inv(Q)

step(F.GH,J)
pause;
A=[F(3.3) F(3,2) F(3,1)
F(2,3) F(2,2) F(2,1)
F(1,3) F(1,2) F(1,1)]
B=[G(3);G(2);G(1)]
C=[H(3) H(2) H(1)]
D=)
%A=F;B=G;C=H;D=]J;
sysSSc=ss(A.B,C,D);
Ts=0.025;
sysSSd=c2d(sysSSc,Ts,'zoh");
[Phi,Gam,H]=ssdata(sysSSd)

pause;
%*** Define the controllability matrix M***

Md=[Gam Phi*Gam Phi"2*Gam];

%*** Check the rank of matrix M***

rank(Md)

pause;

%**since the rank of Md is 3, arbitrary pole placement is possible**
%% Obtain the coefficients of the characteristic polynamial |sI-A|. This
%% can be done by entering statement poly(A)

JA=poly(Phi)

al=JA(2);a2=JA(3);a3=JA(4);

%%*** Define matries W and T as follows***

W=[a2 al 1;al 10;] 00];

T=Md*W

tr=0.2;

ce=0.8;
M=exp(-pi*ce/sqrt(1-ce”2))
wn=2*1.8/tr

el=ce*wn

197

wd=wn*sqrt(1-cen2)

P=[-eltwd*i-cl-wd*i:-2*wn|
"oPd:[cxp(—cde*i);exp(—el-wd*i);exp(—e|+wd*i);exp(—el—wd*i)]
Pd=exp(Ts*P)

Kd=acker(Phi.Gam.Pd)

®oDesign H of the sliding mode function
rh=[-el+wd*i:-el-wd*i]

rdh=exp(Ts*rh)

Hp=poly(rdh)

HIp=[Hp(3) Hp(2) Hp(1)]
H2p=Hl1p*inv(T)

HB=H2p*Gam
H3p=exp(Ts*(-2*wn))*H2p

% Calculate input gain for zero steady-state error to a step command at x1
[=eve(3):

G=[Phi-1 Gam;H 0]

N=1nv(G)*[0;0;0;1]

Nu=N(4)

Nx=[N(1);:N(2);N(3)]

Nr=Nu + Kd*Nx

pause;
%K=acker(A.B,P)

% Full order Observer

%*** Define the observability matrix N and check its rank***
N=[H' Phi"*H' (Phi")"2*H'];

rank(N)

pause;

%**since the rank of N is 3, design of the observer is possible**

% Using acker() command in Matlab
Pe=exp(Ts*[-5*el+5*wd*i;-5*el-5*wd*i;-5*wn])
Ke=acker(Phi',H',Pe)’

temp=[Phi-Ke*H]

pause;

198

BIBLIOGRAPHY

1988. DARP-A Neural Network Study, MIT Lincoln Laboratory, Lexington, MA.

Albus, J.S. 1975.'A new approach to manipulator control: The celebellar model

articulation controller', Trans. ASME, J. Dyn. Sys, Meas. Control, vol. 97, pp.
220-227.

Anderson, J.A. 1972, 'A simple neural network generating an interactive memory',

Mathematical Biosciences, vol. 14, pp. 197-220.

Baba, N. 1989, 'A New Approach for Finding the Global Minimum of Error Function of
Neural Networks', Neural Networks, vol. 2, pp. 367-373.

Barnard, E. 1992, 'Optimization for Training Neural Nets', IEEE Trans. Neural
Networks, vol. 3, no. 2, pp. 232-240.

Barto, A.G. 1990, Neural Networks for Control, MIT Press, Cambridge, MA.

Basin, M., Gonzalez, J.R., Acosta, P. and Fridman, L. 2003, 'Robust Integral Sliding
mode Regulator for Linear Systems with Time delay in Control Input', Proc.

American Control Conference, Denver, CO., pp. 2138-2143. .

Battiti, R. 1989, 'Accelerated backpropagation learning: Two optimization methods',

Complex Syst, vol. 3, pp. 331-342.

Battiti, R. and Masulli, F. 1990, 'BFGS optimization methods for backpropagation:
Automatic parameter tuning and faster convergence', INNC 90, Paris,

International Neural Network Conference, vol. 2, pp. 757-760.

Baum, E.B. and Wilczek, F. 1988, 'Supervised learning of probability distributions by
neural networks', in D.Z. Anderson (ed.), Neural Information Processing

Systems, American Institute of Physics, New York.

199

Becker, S. and Le Cun, Y. 1989, 'lmproving the convergence of back-propagation
learning with second order methods', Proc. the 1988 Connectionist Models

Summer School, ed. G.H. D. Touretzky. and T. Sejnowski, Eds., San Mateo, CA
pp. 29-37.

Y

Bekiroglu, N. 1996, 'Adaptive sliding surface design for sliding mode control systems',

PhD dissertation thesis, Bogazici University, Bogazici, Turkey.

Bianchini. M., Gori, M. and Maggini, M. 1994, 'On the Problem of Local Minima in
Recurrent Neural Networks', IEEE Trans. Neural Networks, vol. 5, pp. 167-177.

Bishop, C.M. 1995, Neural networks for pattern recognition, Oxford University Press,
New York.

Bonissone, P.P., Chen, Y.T., Goebel, K. and Khedkar, P.S. 1999, 'Hybrid Soft
Computing Systems: Industrial and Commercial Applications', Proc. of IEEE,
vol. 87, no. 9, pp. 1641-1667.

Breemen, A.JN.V. and Veelenturf, L.P.J. 1996, 'Neural Adaptive Feedback

Linearization Control', Journal A, vol. 37, pp. 65-71.

Broomhead, D.S. and Lowe, D. 1988, 'Multivariable functional interpolation and

adaptive network', Complex Syst, vol. 2, pp. 321-355.

Brunelli, R. 1994, 'Training Neural Nets Through Stochastic Minimization', Neural
Networks, vol. 7, no. 9, pp. 1405-1412.

Burrascano, P. 1991, 'A norm selection criterion for the generalized delta rule’, IEEE

Trans. Neural Networks, vol. 2, no. 1, pp. 125-130.

Cao, Y.Y. and Frank, P.M. 2000, 'Analysis and Synthesis of Nonlinear Time-Delay
Systems Via Fuzzy Control Approach’, [EEE Trans. Fuzzy Syst., vol. 8, no. 2,
pp- 200-211.

200

Cetin. B.C.. Burdick. J.W. and Barhen, J. 1993. 'Global descent replaces gradient
descent to avoid local minima problem in learning with artificial neural

networks'. IEEE Inter., Conf. Neural Networks, vol. 11, San Francisco, pp. 836—
842.

Chen. S. and Billings, S.A. 1992, 'Neural networks for nonlinear dynamic system

modelling and identification'. /nt. J. Control, vol. 56, no. 2, pp. 319-346.

Chen. V.C. and Pao, Y.H. 1989, 'Leaning control using neural networks', Proc. Inter.

Conference Robotics and Automation, vol. 3, pp. 1448-1453.

Chiang, C.-C., Shen, K.-M. and Tsai, M.-Y. 2004, 'Robust fuzzy-model-based sliding
mode controller for uncertain nonlinear input-delay systems', Proc. 2004 IEEE

International Conference on Systems, Man and Cybernetics, pp. 2243-2248.

Cichocki, A. and Unbehauen, R. 1993, Neural Networks for Optimization and Signal
Processing, John Wiley and Sons, New York.

Coleman, C.P. and Godbole, D. 1994, 'A comparison of Robustness: Fuzzy, PID, &
Sliding Mode Control', Proc. of the 1994 IEEE 3rd International Fuzzy Systems
Conference, Orlando, Florida, pp. 1654-1659.

Coyle, E.D. 1995, 'Electronic Wheelchair Controller Designed for Operating by Hand-
Operated Joystick, Ultrasonic Non-Contact Head Control and Utterance from a
Small Word-Command Vocabulary', IEE Colloquium (Digest), vol. 55, pp. 3/1-
3/4.

Crisman, E.E., Loomis, A., Shaw, R. and Laszewski, Z. 1991, 'Using the Eye Wink
Control Interface to Control a Powered Wheelchair', Proc. the Annual
International Conference of the IEEE Engineering in Medicine and Biology
Society vol. 13, pp. 1821-1822.

Cybenko, G. 1989, 'Approximations by superpositions of sigmoidal functions’,
Mathematics of Control, Signals, and Systems, vol. 2, pp. 303-314.

201

Da. F. 2000. 'Decentralized Sliding Mode Adaptive Controller Design Based on Fuzzy

Neural Networks for Interconnected Uncertain Nonlinear Systems', IEEE Trans.

Newural Networks. vol. 11.no. 2, pp. 1471-1480.

Da. F. and Song, W. 2003. 'Fuzzy Neural Networks for Direct Adaptive Control', JEEE
Irans. Ind. Electron., vol. 50, no. 3, pp.- 507-513.

Daosud. W.. Thitiyasook, P.. Arpornwichanop, A., Kitisupakorn, P. and Hussain, M.A.
2005. 'Neural network inverse model-based controller for the control of a steel

pickling process', Computers and Chemical Engineering, vol. 29, pp. 2110—
2119.

Efe, M.O. and Kaynak, O. 2000, 'Stabilizing and robustifying the learning mechanisms
of artificial neural networks in control engineering applications', Int. J. Intell.

Syst., vol. 15, no. 5, pp. 365-388.

Efe, M.O., Kaynak, O. and M.Wilamowski, B. 2000, 'Stable training of computationally
intelligent systems by using variable structure systems technique', IEEE Trans.

Ind. Electron., vol. 47, pp. 487-496.

Efe, M.O., Kaynak, O., Wilamowski, B.M. and Yu, X. 2003, 'A Robust On-line
Leaning Algorithm for Intelligent Control Systems', /nter. J. Adapt. Control and
Signal Processing, vol. 17, pp. 489-500.

Emelyanov, S. 1967, Variable Structure Control Systems, Nauka, Moscow.

Emelyanov, S.V. 1959, 'Control of first order delay systems by means of an astatic

controller and nonlinear correction', Autom. Remote Control, no. 8, pp. 983-991.

Ertugrul, M., Kaynak, O. and Sabanovic, A. 1995, 'A comparison of various VSS
techniques on the control of automated guided vehicles', Proc. IEEE ISIE’95,

vol. 2, pp. 837-842.

202

Fahlman, S.E. 1988. 'Fast learning variations on backpropagation: An empirical study’,
Proc. the 1988 Connectionist Models Summer School, ed. G.H. D. Touretzky,
and T. Sejnowski. Eds.. Pittsburgh, San Mateo, CA, pp. 38-51.

Finnoft. W.. Hergert. F. and Zimmermann, H.G. 1993, 'Improving Model Selection by
Nonconvergent Methods', Neural Networks, vol. 6, pp. 771-783.

Fletcher. R. 1987, Practical Methods of Optimization, Wiley, Chichester, U. K.

Franklin, G.F., Powell, J.D. and A.Emami-naeini 2002, Feedback control of dynamic

system, Prentice Hall, New Jersey.

Funahashi, K. 1989, 'On the Approximation Realization of Continuous Mappings by
Neural Networks', Neural Networks, vol. 2, no. 3, pp. 183-192.

Gao, W. and Hung, J.C. 1993, 'Variable structure control of non-linear systems: a new

approach', IEEE Trans. Ind. Electron., vol. 40, pp. 45-55.

Gavel, D. and Siljak, D. 1989, ' Decentralized adaptive control: structural conditions for

stability', JEEE Transactions of Automtic Control, vol. 34, no. 4, pp. 413-426.

Giordano, V., Topalov, A.V., Kaynak, O. and Turchiano, B. 2004, 'Sliding-mode
approach for on-line neural identification of robotic manipulators', Pro. the 5th

Asian Control Conference, Melbourne, Australian, 2004 pp. 2070-2076.

Grossberg, S. 1976, 'Adaptive pattern classification and universal recording: 1. Parallel

development and coding of neural feature detectors', Biological Cybernetics,

vol. 23, pp. 121-134.

Hagan, M. and Demuth, H. 1999, 'Neural Networks for Control', American Control
Conference, June, 1999, San Diego, pp. 1642-1656.

Hagan, M.T., Demuth, H.B. and Beale, M. 1995, Neural network design, PWS

Publisher, Boston.

203

Hagan. M.T., Demuth, H.B. and Jesus, O.D. 2002, 'An introduction to the use of neural

networks in control systems', International Journal of Robust and Nonlinear

Control. vol. 12, pp. 959-985.

Hagan. M. T. and Menhaj, M.B. 1994, 'Training feedforward networks with the
Marquardt algorithm', IEEE Trans. Neural Networks, vol. 5, pp. 989-993.

Hanson. S.J. and Burr, D.J. 1988, 'Minkowski-r back-propagation: Learning in
connectionist models with non-Euclidean error signals', in D.Z. Anderson (ed.),

Neural Information Processing Systems, American Institute of Physics, New

York. pp. 348-357.

Hayakawa, T.. Haddad, W.M., Bailey, J.M. and Hovakimyan, N. 2005, 'Passivity-Based
Neural Network Adaptive Output Feedback Control for Nonlinear Nonnegative
Dynamical Systems', IEEE Trans. Neural Networks, vol. 16, no. 2, pp. 387-398.

Haykin, S. 1995, Neural Networks: A Comprehensive Foundation, vol. 2, Prentice-Hall,
New York.

He, S. 2002, Neural Adaptive Control of Nonlinear Multivariable System with
Application to a Class of Inverted Pendulums', Inter. J. Neural Syst., vol. 12, no.
5, pp. 411424,

Hebb, D.0. 1949, The Organization of Behaviour, Wiley, New York.

Hert, J., Krogh, A. and Palmer, R.G. 1991, Introduction to the Theory of Neural
Computation, Addison-Wesley, Redwood, CA.

Hinton, G.E. and Sejnowski, T.J. 1986, Learning and Relearning in Bolizmann

machines, MIT Press, Cambridge, MA.

Hopfield, J.J. 1982, "Neural networks and physical systems with emergent collective

computational abilities', Proc. the National Academy of Sciences, vol. 79, pp.

2554-2558.

204

Hornik. K., Stinchcombe, M. and White, H. 1989, 'Multilayer feedforward networks are

universal approximators'. Neural Networks, vol. 2. pp. 359-366.

Hovakimyan. N.. Nardi. F.. Calise. A. and Kim, N. 2002, 'Adaptive Output Feedback
Control of Uncertain Nonlinear Systems Using Single-Hidden-Layer Neural

Networks', IEEE Trans. Neural Networks, vol. 13, no. 6, pp. 1420-1431.

Hung. J.Y.. Gao. W. and Hung, J.C. 1993, 'Variable Structure Control: A Survey', IEEE
Trans. Ind. Electron., vol. 40, no. 1, pp. 2-22.

Hunt, K_J. and Sbarbaro, D. 1991, 'Neural networks for nonlinear internal model

control'. /[EE Proc. Contr. Theory and Applicat., vol. 138, pp. 431-438.

Ichikawa. Y. and Sawa, T. 1992, 'Neural Network Application for Direct Feedback
Controllers', I[EEE Trans. Neural Networks, vol. 3, no. 2, pp. 224-231.

Tkeda, M. and Siljak, D.D. 1980, 'On decentralized stabilizable large-scale systems',
Automatica, vol. 16, pp. 331-334.

loannou, P. 1985, 'Decentralized Adaptive Control of Interconnected Systems', I[EEE
Trans. Automat. Contr., vol. 31, no. 4, pp. 291-298.

Isidori, A. and Astolfi, A. 1992, Disturbance Attenuation and Heo-Control Via
Measurement Feedback in Nonlinear Systems', /EEE Trans. Automat. Conir.,

vol. 37, no. 9, pp. 1283-1293.
[tkis, U. 1976, Control System of Variable Structure., Wiley, New York.

Jacobs, R.A. 1988, 'Increased rates of convergence through learning rate adaptation’,

Neural Networks, vol. 1, no. 4, pp. 295-308.

Jagannathan, S. 2001, 'Control of a Class of Nonlinear Discrete-Time Systems Using
Multilayer Neural Networks', IEEE Trans. Neural Networks, vol. 12, no. 5, pp.
1113-1120.

205

Jain, S. and Khorrami, ' 1997, 'Decentralized Adaptive Output Feedback design for

large-Scale Nonlinear Systems'. IEEE Trans. Automat. Contr., vol. 42, no. 5, pp.
729-735.

Jervis. T.T. and Fitzgerald, W.J. 1993, Optimization schemes for neural networks,

Trumpington Street. Cambridge.

Jin. L.. Nikiforuk. P.N. and Gupta, M.M. 1993, 'Direct Adaptive Output Tracking

Control Using Multilayer neural Networks', /EE Proc. D, vol. 40, no. 6, pp.
393-398.

Jordan. M.1. and Rumelhart, D.E. 1992, 'Forward models: supervised learning with a

distal teacher’, Cognitive Science, vol. 16, pp. 307-354.

Joseph, T. and Nguyen, H. 1998, 'Neural network control of wheelchairs using
telemetric head movement', Proc.the 20th Annual International Conference of

the IEEE Engineering in Medicine and Biology Society, vol. 5, pp. 2731-2733.

Kawato, M., Furukawa, K. and Suzuki, R. 1987, 'A hierarchical neural network model

for control and learning of voluntary movement', Biological Cybernetics, vol.

57, pp- 169-185.

Kaynak, O., Erbatur, K. and Ertugrul, M. 2001, 'The Fusion of Computationally
Intelligent Methodologies and Sliding-Mode Control—A Survey', IEEE Trans.
Ind. Electron., vol. 48, no. 1, pp. 4-17.

Khalil, H. 2002, Nonlinear System, Prentice Hall, Upper Saddle River, NJ

Kocijan, I., O'Reilly, J. and Leithead, W.E. 1997, 'An Integrated Undergraduate
Teaching laboratory Approach to Multivariable Control', IEEE TRans.
Education, vol. 40, no. 4, pp. 266-272.

Kohonen, T. 1972, 'Correlation matrix memories', IEEE Trans. on Computers, vol. 21,

pp. 353-359.

206

Kosko. B. 1987, "Adaptivc bi-directional associative memories', Appl. Opt., vol. 26, pp.
4947-4960.

Lee. T.-H.. Lim. K.-W. and Lai, W.-C. 1991, 'Real-time Multivariable Self-Tuning
Controller Using a Feedforward Paradigm with Application to a Coupled

Electric-Drive Pilot Plant', JEEE Trans. Ind. Electron. , vol. 38, no. 4, pp. 137-
242,

Lee. Y.. Oh. S.H. and Kim, M.W. 1993, 'An analysis of premature saturation in back
propagation learning'. Neural Networks, vol. 6, pp. 719-728.

Lockey. B. and Philpott, G. 2002, 'Static Var Compensators: A Solution to the Big
Motor/Weak System Problem?' IEEE Industry Applications Magazine, vol. 8,
no. 2. pp. 43—49.

Makram-Ebeid. S.. Sirat, J.A. and Viala, J.R. 1989, 'A Rationalized Error Back-
Propagation Learnign Algorithm', Proc. International Joint Conference on

Neural Networks. vol. 2, pp. 373-380.

Matyas, J. 1965, 'Random optimization', Automation and Remote Control, vol. 26, pp.
246-253.

Mazo. M., Rodriguez, F.J., Lazoro, J.L., Urena, J., Garcia, J.C., Santiso, E. and
Revenga, P.A. 1995, 'Electronic Control of a Wheelchair Guided by Voice
Commands', Control Eng. Practice, vol. 3, pp. 665-674.

McCulloch, W. and Pitts, W. 1943, 'A logical calculus of the ideas immanent in nervous

activity', Bulletin of Mathematical Biophysics, vol. 5, pp- 115-133.

Meireles, M.R.G., Almeida, P.E.M. and Simdes, M.G. 2003, 'A Comprehensive Review
for Industrial Applicability of Artificial Neural Networks', IEEE Trans. Ind.

Electron.. vol. 50, no. 3, pp. 585-601.

Miller, W.T., Sutton, R.S. and Werbos, P.J. 1990, Neural network for control, MIT
Press, Cambridge, MA.

207

Minsky. M. and Papert. S. 1969, Perceptrons, MI'T Press, Cambridge, MA.

Moller. M.F. 1993, A scaled conjugate gradient algorithm for fast supervised learning’,

Neural Nenvorks. vol. 6, no. 525-533

Moody. J. 1989, Fast-learning in multi-resolution hierarchies, vol. 1, Morgan

Kautman, San Mateo. CA.

Narendra. K.S. and Parthasarathy, K. 1990, 'Identification and Control of Dynamical
Systems Using Neural Networks', IEEE Trans. Neural Networks, vol. 1, no. 1,
pp- 4-27.

Nayeri, M.R.D., Alasty, A. and Daneshjou, K. 2004, 'Neural optimal control of flexible

spacecraft slew maneuver, Acta Astronautica, vol. 44, pp. 817-827.

Ng, G.W. 1997, Application of Neural Networks to Adaptive Control of Nonlinear
Systems, J. Wiley, New York.

Ng. S.-C., Cheung, C.-C. and Leung, S.-H. 2004, 'Magnified Gradient Function With
Deterministic Weight Modification in Adaptive Learning', /EEE Trans. Neural
Nenworks, vol. 15, no. 6, pp. 1411-1423.

Nguyen, D.-k. 1998, 'Sliding-mode control: advanced design techniques', University of
Technology, Sydney, Sydney, Australia.

Nguyen, D.H. and Widrow, B. 1990, 'Neural Networks for Self-Learning Control
Systems', IEEE Control Syst. Mag., vol. 10, pp. 18-23.

Nguyen, H.T. 2004, Analogue and Digital Control, Faculty of Engineering, University
of Technology, Sydney.

Nguyen, H.T., King, L.M. and Knight, G. 2004a, 'Real-time Head Movement System
and Embedded Linux Implementation for the Control of Power Wheelchair',
Proc.the 26th Annual International Conference of the IEEE EMBS, San
Francisco, CA, USA, pp. 4892-4895.

208

Nguyen, T.V.M. 2005. 'Neural Network-based Sliding Mode Control for Linear

Systems with Unmatched Time-varying Uncertainties'. 2005 Research

Showease, Faculty of Engineering, UTS.

Neuyen, T.V.M.. Ha, Q.P. and Nguyen, H.T. 2003, 'A Chattering-Free Variable
Structure Controller for Tracking of Robotic Manipulators', Proc. of the

Australian Conference on Robotics and Automation (ACRA 2003), Brisbane,

Australia.. no. 2. pp. 1-6.

Nguyen. T.V.M., Nguyen, H.T. and Ha, Q.P. 2004b, 'Sliding Mode Neural Controller
for Nonlinear Systems with Higher-Order and Uncertainties', Proc. IEEE CIS'04
& RAM'04. pp. 1026-1031.

Norgaard, M. 1996, 'System Identification and Control with Neural Networks', Ph.D.

thesis thesis, Technical University of Denmark.

Ooyen, A.V. and Nienhuis, B. 1992, 'Improving the convergence of the
backpropagation algorithm', Neural Networks, vol. 5, pp. 465—471.

Ossman, K.A. 1989, 'Indirect adaptive control for interconnected systems', IEEE Trans.

Automt. Contr., vol. 34, no. 8, pp. 908-911.

Paker, D. 1982, Learning logic, Department of Electrical Engineering, Stanford
University, Stanford, CA.

Parlos, A.G., Fernandez, B., Atiya, A.F., Muthusami, J. and Tsai, W.K. 1994, 'An
accelerated leaning algorithm for multilayer perceptron networks', IEEE Trans.

Neural Networks, vol. 5, no. 3, pp. 493-397.

Parma, G.G., Menezes, B.R.D. and Braga, A.P. 1999, 'Neural Networks Learning with
Sliding Mode Control: The Sliding Mode Backpropagation Algorithm.'

International Journal of Neural Systems, vol. 9, no. 3, pp. 187-193.

209

Plaut, D.S.. Nowlan. S. and Hinton, G. 1986. Experiments on Learning by Back

Propagation. Department of Computer Science, Carnegie-Mellon University,
Pittsburgh, PA.

Poggio. T. and Girosi. F. 1990, 'Networks for approximation and learning', Proc.the

IEEE. vol. 78. pp. 1481-1497.

Psaltis. D.. Sideris. A. and Yamamura, A.A. 1988, 'A multilayer neural network

controller', IEEE Control Syst. Mag., vol. 8, no. 1, pp. 17-21.

Riedmiller. M. and Braun, H. 1993, 'A direct adaptive method for faster

backpropagation learning: The RPROP algorithm', in Proc. Int. Conf Neural
Networks, vol. 1, pp. 586-591.

Rockland, R.H. and Reisman, S. 1998, 'Voice activated wheelchair controller', Proc.the

IEEE 24th Annual Northeast Bioengineering Conference, pp. 128—129.

Rosenblatt, F. 1958, 'The perceptron: A Probabilistic model for information storage and

organization in the brain', Psychological Review, vol. 65, pp. 386-408.

Rumelhart, D.E. and McClelland, J.L. 1986, Paralle! Distributed Processing:”

explorations in the microstructure of cognition, vol. 1, MIT Press, London.

Saerens, M. and Soquet, A. 1991, 'Neural controller based on back-propagation

algonithm', JEE Proc.Radar and Signal Processing, vol. 138, no. 1, pp. 55-62
Salas, S.L. and Hill, E. 1990, Calculus: one and several variables, Wiley, New York.

Salomon, R. 1998, 'Evolutionary Algorithms and Gradient Search: Similarities and

Differences', IEEFE Trans. Evolutionary Computation, vol. 2, no. 2, pp. 45-55.

Sanner, R.M. and Slotine, J.-J.E. 1992, 'Gaussian Networks for Direct Adaptive
Control', IEEE Trans. Neural Networks, vol. 3, no. 6, pp. 837-863.

210

Schimeisser, G. and Seamone. W. 1979_'An assitive equipment controller for

quadriplegics', Johns Hopkins Med. Journal, vol. 143, no. 3, pp. 84-88.

Seshagiri. S. and Khalil. H.K. 2005, 'Robust Output Feedback Regulation of Minimum-

phase Nonlinear Systems Using Conditional Integrators', Automatica, vol. 41,

pp. 43-54.

Shi. L. and Singh, S.K. 1992, ‘Decentralized adaptive controller design for large-scale

systems with high order interconnections', IEEE Trans. Automat. Contr., vol. 37,

no. 8. pp. 1106-1118.

Sira-Ramirez, H. and Morles, E.C. 1995, 'A sliding mode strategy for adaptive learning
in adalines', [EEE Trans. Circuits Syst. I, vol. 42, pp. 1001-1012.

Slotine, J.J. and Sastry, S.S. 1983, 'Tracking control of nonlinear systems using sliding
surfaces with application to robot manipulators’, Int. J. Control, vol. 38, pp.

465-492.

Solis, F.J. and Wets, J.B. 1981, "Minimization by random search techniques,

Mathematics of Operations Research, vol. 6, pp. 19-30.

Soloway, D. and Haley, P.J. 1996, 'Neural generalized predictive control', Proc. 1996
IEEE International Symposium on Intelligent Control, pp. 277-281.

Song, Q. 1998, 'Robust training algorithm of multilayered neural network for
identification of nonlinear dynamic systems', IEE Proc. Control Theory and

Applications — Part D, vol. 145, no. 1, pp. 41-46.

Song, Q., Xiao, J. and Soh, Y.C. 1999, 'Robust Backpropagation Training Algorithm for
Multilayer Neural Tracking Controller', IEEE Trans. Neural Networks, vol. 10,

no. 5, pp. 1133-1141.

Spooner, J.T. and Passino, K.M. 1999, 'Decentralized adaptive control of nonlinear

systems using radial basis neural networks', [EEE Trans. Automt. Contr., vol.

44, no. 11, pp. 2050-2057.

211

Sutton, R.S. and Barto. A.G. 1998, Introduction 1o reinforcement learning, MIT Press,
Cambridge, MA.

Szu. H. 1987, "Nonconvex optimization by fast simulated annealing', Proc. IEEE, vol.
75, pp. 1538-1540.

Tanaka. K. [996.'An Approach to Stability Criteria of Neural Network Control
Systems', IEEFE Trans. Neural Networks, vol. 7, no. 3, pp. 629-642.

Tang. Z. and Koehler. G.J. 1994, 'Deterministic Global Optimal FNN Training
Algorithms', Neural Networks, vol. 7,n0. 2, pp. 301-311.

Taylor. P.B. and Nguyen, H.T. 2003, 'Performance of a head-movement interface for
wheelchair control', Proc.the 25th Annual International Conference of the IEEE

Engineering in Medicine and Biology Society, vol. 2, pp. 1590-1593.

Tew, A.I. 1988, 'The Oxford Optical Pointer: A Direction-sensing Device with
Proportional Electric Output', Med. & Biol. Eng. & Comp., vol. 26, pp. 68-74.

Tollenaere, T. 1990, 'SuperSab: fast adaptive backpropagation with good scaling
properties’, Neural Networks, vol. 3, no. 5, pp. 561-573.

Treadgold, N.K. and Gedeon, T.D. 1998, 'Simulated annealing and weight decay in
adaptive learning: The SARPROP algorithm', IEEE Trans. Neural Networks,

vol. 9, pp. 662—668.

Tsai, C.-H., Chung, H.-Y. and Yu, F.-M. 2004, 'Neuro-Sliding Mode Control With Its
Applications to Seesaw Systems', IEEE Trans. Neural Networks, vol. 15, no. 10,

pp. 124-134.

Utkin, V. and Shi, J. 1996, 'Integral Sliding Mode in Systems Operating under

Uncertainty Condition', Proc.the 35th Conference on Decision and Control,

Kobe, Japan, pp. 4592-4596.

212

Utkin, V.1. 1977. 'Survey Paper - Variable Structure System with Sliding Modes.' /EEE
Trans. Automat. Contr.. vol. AC-22.no. 2, pp. 212-222.

Varshney. K. and Panigrahi, P.K. 2005, 'Artificial neural network control of a heat

exchanger in a closed flow air circuit', Applied Sofi Computing, vol. 5, pp. 441

465,

Venugopal. K.P.. Sudhakar, R. and Pandya, A.S. 1995, 'An Improved Scheme for Direct
Adaptive Control of Dynamical Systems using Backpropagation Neural

Networks'. Circuits, System and Signal Process, vol. 14, no. 2, pp. 213-236.

Vitela, J.E. and Reifman, J. 1997, 'Premature saturation in backpropagation networks:
Mechanism and necessary conditions', Neural Networks, vol. 10, no. 4, pp. 721-

735.

Vogl, T.P.. Mangis, J.K., Zigler, A.K., Zink, W.T. and Alkon, D.L. 1988, 'Accelerating
the convergence of the backpropagation method', Biological Cybernetics, vol.

59, pp. 256-264.

Wang, W.J. and Cheng, C.F. 1992, 'Stabilising controller and observer synthesis for

uncertain large-scale systems by the Riccati equation approach’, IEE Proc. , vol.

139, pp. 72-78.

Weigand, A.S., Huberman, B.A. and Rumelhart, D.E. 1990, 'Predicting the future: a

connectionist approach’, Int. J. Neural systems, vol. 1, no. 3, pp. 193-209.

Weir, M.K. 1991, 'A method for self-determination of adaptive learning rates in back

propagation', Neural Networks, vol. 4, no. 3, pp. 371-379

Wellstead, P.E. 1979, Introduction to physical system modelling, Control System

Centre, University of Manchester, Academic Press, Manchester, UK.

Wen, C. and Soh, Y.C. 1997, 'Decentralized Adaptive Control using Integrator
Backstepping', Automatica, vol. 33, no. 9, pp. 1719-1724.

213

Werbos, P.1. 1974, 'Beyond regression: New tools for prediction and analysis in the

behavioural sciences', Ph. D dissertation thesis, Harvard Uni., Cambridge, MA.

Wessels. L.F.A. and Barnard, E. 1992."'Avoiding false local minima by proper

initialization of connections ', JEEE Trans. Neural Networks, vol. 3, no. 6, pp-

899-905.

White. H. 1989, 'Learning in artificial neural networks: A statistical perspective’, Neural

Computation, vol. 1, pp. 425-464.

Whitley, D., Starkweather, T. and Bogart, C. 1990, 'Genetic algorithms and neural
networks: Optimizing connections and connectivity', Parallel Computing, vol.

14, pp. 347-361.

Widrow, B. and Hoff, M.E. 1960, 'Adaptive Switching Circuit', /960 IRE WESCON
Convention Record, New York: IRE Part 4, pp. 96—-104.

Zak, S.H. and Sira-Ramirez, H. 1990, 'On the adaptation algorithms for feedforward
neural networks', in D.A.F.a.V. Komkov (ed.), Theoretical Aspects of Industrial
Design, SIAM, New York, pp. 116-133.

Zhang, Q.G. and Benveniste, A. 1992, 'Wavelet Networks', IEEE Trans. Neural
Networks, vol. 3, no. 6, pp. 889-898.

Zhang, Y., Sen, P. and Hern, G.E. 1995, 'An on-line trained adaptive neural controller’,

JEEE Control Syst. Mag., vol. 15, no. 5, pp. 67-75.

214

	Title page

	Acknowledgements

	Table of contents

	List of symbols

	List of abbreviations

	List of figures

	List of tables

	Abstract

	Chapter 1

	Chapter 2

	Chapter 3

	Chapter 4

	Chapter 5

	Chapter 6

	Chapter 7

	Appendix A

	Appendix B

	Appendix C

	Appendix D

	Bibliography

