Advanced Neural Network Controllers and Classifiers Based on Sliding Mode Training Algorithms

A thesis submitted by

Van Minh Tri Nguyen

in partial fulfilment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

from

The University of Technology, Sydney

2006

CERTIFICATE OF AUTHORSHIP/ORIGINALITY

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of the requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Signature of Candidate

Production Note: Signature removed prior to publication.

ACKNOWLEDGMENTS

1 would sincerely like to thank the following people who have been of help in the undertaking of my doctoral research.

First and foremost, my supervisor, Professor Hung Tan Nguyen, who has been a great and good teacher in my life. Professor Hung not only gave me invaluable guidance in my research, but also supported me in the best possible way for my spirit. My knowledge and experience over the past three years have been obtained, to a great degree, from Professor Hung, to whom I am very grateful.

Next, my co-supervisor, Associate Professor Quang Phuc Ha, who helped me a great deal and taught me with his expert knowledge of sliding mode control. I am grateful for his challenging feedback, which has improved my research career.

Thank you to Pat Skinner, for her editorial support in the writing of my draft. Her attention to detail and suggestions taught me how to write carefully and academically. I can say that she has made an integral contribution to the completion of my thesis.

Thanks also to my good colleague and friend, Phillip Taylor, for his invaluable help, his expertise in collecting, processing and disseminating the experimental data of the head movement commands for wheelchair control; to Russell Nicholson for his expert guidance in the control laboratory; to all the technical and administration staff in the Faculty of Engineering, for their prompt and helpful support.

I owe sincere thanks to my parents, Nguyen Luan and Luong Thi Buoi, for their encouragement and useful advice during these challenging years. I pursued this work for my parents, who have supported me and expected my success since I was a child. To my siblings, Tinh, Tien, Thuy and Truong, thanks for their good humour and moral support.

Above all, thanks to my dear wife, Quynh Tran, who has always shared all my difficulties and feelings over the last trying years. I am deeply grateful to my wife. To my daughter, Nha Tran, who was born while I was undertaking the research and significantly changed my thought: I dedicate this work to you.

TABLE OF CONTENTS

Certificat	e of authorship/originalityi
Acknowl	edgmentsii
Table of	Contentsiii
List of Sy	wmbolsv
List of A	bbreviationsvii
List of Fi	guresviii
List of Ta	blesxi
Abstract	xii
Снартеі	R1 INTRODUCTION
1.1	Introduction1
1.2	Research Objectives
1.3	Organisation of Thesis5
Снартеі	R2 LITERATURE REVIEW
2.1	Historical Perspective7
2.2	Backpropagation Algorithm Developments in Classification11
2.3	Neural Control Developments16
2.4	Discussion and conclusion
Снартеі	x 3 Neural Network Learning Algorithms
3.1	The Backpropagation Algorithm24
3.2	Variable Learning Rate Backpropagation Algorithms
3.3	Second-order Gradient Methods
3.4	Activation Function Variations
3.5	Backpropagation with Momentum Methods
3.6	Criterion Function Variations46
3.7	Sliding-mode-based Learning Algorithms
3.8	Discussion and conclusion
Снартен	R4 Advanced Neural Network Training Algorithms Based on
SLIDING-	mode Control Techniques
4.1	Introduction
4.2	Sliding-mode-based Neural Networks for Classification Applications 59
4.3	Chattering-free Sliding-mode-based Neural Networks for Control
	Applications

4.4	Robust sliding-mode-based Neural Networks for Control Applications 92
4.5	Conclusion104
Снартер	5 NEURAL NETWORK CONTROLLER DESIGN FOR A CLASS OF UNCERTAIN
Systems	WITH TRANSPORTATION LAG
5.1	Introduction
5.2	Static VAR Compensator as an Uncertain System with Transportation Lag
5.3	Advanced Neural Controller Design115
5.4	Experimental Results128
5.5	Discussion and conclusion
Снартер	x 6 Decentralised Neural Network Controller Design for a
CLASS OF	FINTERCONNECTED UNCERTAIN NONLINEAR SYSTEMS
6.1	Introduction142
6.2	Coupled Electric Drives CE8 as an Interconnected Uncertain Nonlinear
	System
6.3	Advanced Neural Controller Design
6.4	Experimental Results
6.5	Discussion and conclusion
Снартер	7 Conclusion and Recommendations for Future Research
7.1	Conclusion171
7.2	Recommendations for Future Research175
Appendi	X A
A.1	Matlab Program for Modelling the SVC System
Appendi	x B
B.1	Chapter 5 Proofs
Appendi	x C
C.1	C Program for Training the Neural Network Controller
APPENDI	x D
D.1	Matlab Program for Design of the Neural Network Controller
Bibliogi	арну

LIST OF SYMBOLS

N	number of input nodes
K	number of hidden nodes
M	number of output nodes
Р	number of patterns in the data set
\overline{W}_{nk}	network weight between input node n and hidden node k
W_{km}	network weight between hidden node k and output node m
\overline{O}_k	output of hidden node k
0 _m	output of output node m
\mathbf{x}^{p}	input vector of pattern p
d ^{<i>p</i>}	target output vector of pattern p
f	activation function
f'	first derivative of the activation function f
Ε	criterion function of the network error
W	vector of all the network weights
$\frac{\partial E}{\partial \mathbf{w}}$	gradient vector
S	sliding function
.	Euclidean norm for a vector and Frobenius norm for a matrix
Α	system matrix
В	input matrix
С	output matrix
X	system state vector
Τ	transformation matrix
Н	parameter vector of the sliding function
F,G	a pair of controllable canonical matrices
P , Q	a pair of matrices in the Lyapunov equation
и	control input
r	reference input

Subscripts

ω	speed subsystem
N	tension subsystem

Greek Letters

α	momentum coefficient
η	learning rate
μ	a positive scalar
ε	robust learning rate

LIST OF ABBREVIATIONS

ABP	Adaptive BackPropagation
Adaline	Adaptive linear element
BP	BackPropagation
CFSMBP	Chattering-Free Sliding-Mode BackPropagation
CG	Conjugate Gradient
DBD	Delta-Bar-Delta
DWM	Deterministic Weight Modification
EABPM	Extended Adaptive BackPropagation with Momentum
FNN	Feedforward Neural Network
GA	Genetic Algorithm
GN	Gauss-Newton
GOTA	Globally Optimal Training Algorithm
IAMSS	Iterated Adaptive Memory Stochastic Search
IEEE	the Institute of Electrical and Electronics Engineers
LM	Levenberg-Marquardt
MGFPROP	Magnified Gradient Function Propagation
MLP	MultiLayer Perceptron
NN	Neural Network
QN	Quasi-Newton
QuickProp	Quick Propagation
RMBP	Reach Mode BackPropagation
RPROP	Resilient Propagation
SARPROP	Simulated Annealing Resilient Propagation
SISO	Single-Input Single-Output
SMC	Sliding Mode Control
SuperSAB	Super Self-Adapting Backpropagation
SVC	Static VAR Compensator
TRUST	Terminal Repeller Unconstrained Subenergy Tunnelling
VSS	Variable Structure System

LIST OF FIGURES

Figure 2.1: Milestones in the development of neural networks	0
Figure 3.1: Structure of a feedforward neural network with one hidden layer2	5
Figure 3.2: Tree classification of different modified backpropagation algorithms2	8
Figure 3.3: Sigmoid function (solid line) and its derivative (dotted line)	7
Figure 3.4: State trajectories of a variable structure system	9
Figure 3.5: Structure of a feedforward neural network with one output neuron	3
Figure 4.1: Tree classification of the proposed learning algorithms	9
Figure 4.2: Structure of a feedforward neural network with one hidden layer)
Figure 4.3: Diagram of the powered wheelchair control system using head movement	t
commands	7
Figure 4.4: The posture of two axis data collected from a C5 user with the (a) forward	Ι,
(b) backward, (c) left, (d) right and (e) stop commands	9
Figure 4.5: The posture of two axis data collected from a C4 user with the (a) forward	l,
(b) backward, (c) left, (d) right and (e) stop commands70	C
Figure 4.6: Structure of a feedforward neural network with one output neuron	8
Figure 4.7: Structure of the proposed neural control system	5
Figure 4.8: Output and control signals of System 1 (solid line), System 2 (dashed line)
and System 3 (dash-dot line), using the chattering-free sliding-mode-base	d
neural network controller	0
Figure 4.9: Output and control signals of System 1 (solid line), System 2 (dashed line)
and System 3 (dash-dot line), using the state feedback controller9	1
Figure 4.10: Output and control signals of System 1 (solid line), System 2 (dashe	d
line) and System 3 (dash-dot line), using the robust sliding-mode-base	d
neural network controller10	1
Figure 4.11: Output and control signals of System 1 (solid line), System 2 (dashe	d
line) and System 3 (dash-dot line), using the chattering-free sliding-mode	;-
based neural network controller10	1
Figure 4.12: Output and control signals of System 1 (solid line), System 2 (dashe	d
line) and System 3 (dash-dot line), using the SMC-based neural networ	k
controller10	2

Figure 4.13:	Output and control signals of System 1 (solid line), System 2 (dashed
lir	ne) and System 3 (dash-dot line), using the robust sliding-mode-based
ne	eural network controller
Figure 4.14: Ot	utput and control signals of System 1 (solid line), System 2 (dashed line)
an	nd System 3 (dash-dot line), using the chattering-free sliding-mode-based
ne	eural network controller
Figure 5.1: Th	e Static VAR Compensator (SVC) system109
Figure 5.2: Sy	stem step responses with an input of 3.5V110
Figure 5.3: Step	p responses of the real-time system (solid line), model G _{1p} (dashed line)
an	nd model G _{2p} (dotted line) with an input of 3.5V110
Figure 5.4: Mo	odel step responses with 1V input112
Figure 5.5: S	tructure of the chattering-free sliding-mode-based neural network
c	ontroller system
Figure 5.6: Str	ructure of the proposed neural control system117
Figure 5.7: Str	ructure of the neural control system for training process
Figure 5.8: Ou	utput and control signals of System 1 (solid line), System 2 (dashed line)
an	nd System 3 (dash-dot line), using the CFSMBP algorithm
Figure 5.9: Ou	utput and control signals of System 1 (solid line), System 2 (dashed line)
an	nd System 3 (dash-dot line), using the BP algorithm
Figure 5.10: S	System output and sliding function responses when the trained neural
со	ontroller with optimal parameters is utilised
Figure 5.11: Ou	utput and control signals of System 1 (solid line), System 2 (dashed line)
an	nd System 3 (dash-dot line), using the proposed neural controller136
Figure 5.12: Th	he output and control input signals of the SVC system, using the neural
со	ontroller designed with the reference inputs of 1.2 (a), 1.7 (b) and 2.2 (c)
Figure 5.13: TI	he output and control input signals of the SVC system, using the PID
со	ontroller designed with the reference inputs of 1.2 (a), 1.7 (b) and 2.2 (c)
Figure 6.1: Th	e Coupled Electric Drives CE8 system and a part of the elastic belt145
Figure 6.2: Di	agram of the Coupled Electric Drives system with the pre-compensator

Figure 6.3:	Step responses of the open-loop system with the control inputs (a) $u_{\omega} = 0$,
	$u_x = 3$ and (b) $u_{\omega} = 3$, $u_x = 0$
Figure 6.4:	Structure of the i^{th} neural control subsystem
Figure 6.5:	The system outputs using the continuous sliding-mode controller with the
	reference inputs $r_{\omega} = 2$, $r_x = 2$
Figure 6.6:	The system outputs using the sliding-mode-based feedback controller with
	the reference inputs $r_{\omega} = 2$, $r_x = 2$
Figure 6.7:	Structure of the whole Coupled Electrical Drives system using the
	decentralised neural network controller167
Figure 6.8:	The system outputs using the proposed neural controller with the reference
	inputs $r_{\omega} = 2$, $r_x = 2$
Figure 6.9:	The system outputs using the proposed neural controller with the reference
	inputs $r_{\omega} = 2$, $r_x = -1$

LIST OF TABLES

Table 4.1:	Performance comparison for the XOR problem
Table 4.2:	Description of all learning algorithms used in the neural network head-
	movement classifier75
Table 4.3:	Performance comparison for the neural network head-movement classifier
Table 5.1:	System transfer functions with different step inputs111
Table 5.2:	Performance comparison for training the neural controller
Table 5.3:	Performance for training the neural controller using the CFSMBP algorithm
	and different numbers of hidden nodes134
Table 5.4:	Performance for training the neural controller using the BP algorithm and
	different numbers of hidden nodes134
Table 5.5:	Performance comparison between the NN and PID control systems with
	different reference inputs141
Table 6.1:	Performance comparison among the three control systems

ABSTRACT

This thesis presents the research undertaken to develop some novel learning algorithms based on the sliding-mode control techniques for the neural network classifiers and controllers. Although the feedforward neural network with the backpropagation learning algorithm is the most widely used approach for classification and control applications, the slow convergence rate, the local minima problem, the difficulties in system identification and the lack of robustness are the issues existing for these neural network-based systems. The combination of the sliding-mode control techniques and the backpropagation algorithm, as described in this thesis, leads to three novel learning algorithms, which offer effective solutions for these problems.

The first learning algorithm, derived from the integration between the chattering-free sliding-mode control technique and the backpropagation algorithm, can obtain fast and global convergence with less computation. Experiment results relating to the head-movement neural classifier for wheelchair control show that the proposed approach considerably improved the convergence speed, global convergence capability and even the generalisation performance of the neural network classifier, in comparison with various popular learning algorithms.

The second learning algorithm, also derived from the integration between the chattering-free sliding-mode control technique and the backpropagation algorithm, can guarantee the stability and robustness of the neural control system with parameter uncertainties. Based on this stable neural controller, a neural control design methodology is developed for a class of uncertain nonlinear systems with transportation lag, wherein a new training procedure is proposed to avoid the difficult choice of the training inputs always associated with the conventional neural network identifier. The implementation results with a real-time Static VAR Compensator system indicate the effectiveness of the proposed method.

The third on-line learning algorithm, developed from the reaching law method combined with the backpropagation algorithm, offers a robust adaptation approach for the neural control systems with parameter uncertainties and disturbances. The neural control approach is further developed to design a novel decentralised neural controller for a class of uncertain large-scale systems with bounds of interconnections and disturbances. The stability and robustness of the neural control system are guaranteed based on the Lyapunov synthesis. Real-time implementation results for a Coupled Electric Drives CE8 system show the effectiveness and feasibility of the proposed approach.