THE HYDROGEOLOGICAL CONTEXT OF CEMETERY OPERATIONS AND PLANNING IN AUSTRALIA

by

Boyd B. Dent

VOLUME II (Appendices)

A thesis submitted to The University of Technology, Sydney for the Degree of Doctor of Philosophy in Science

December, 2002

APPENDIX A ABBREVIATIONS, CONTACT DETAILS, WORK STATISTICS

ABBREVIATIONS AND COMMON TERMS

A large number of terms are simplified by acronyms or abbreviations in order to make the text clearer or are common scientific usage. Some words are also given a specialised meaning as they are also used repetitively for clarity. These are listed below. A list of chemical abbreviations is also included. It is common practice in reporting groundwater analyses to ignore the electronic valence symbols for ions: these are usually only used if it is necessary to clarify the species' operations in a reaction.

Table A1. Acronym References for Cemetery Sites

Acronym	Cemetery Site*
BOT	Botany Cemetery, NSW
CEN	Centennial Park Cemetery, SA
GUI	Guildford Cemetery, WA
HEL	Cheltenham Cemetery, SA
LAU	Carr Villa Memorial Park (Launceston), TAS
MEL	Melbourne General Cemetery, VIC
NEW	Bunurong Memorial Park, VIC
SPR	The Necropolis (Spring Vale), VIC
WOR	Woronora General Cemetery, NSW

^{*} greater detail about site locations and names is given elsewhere in Appendix A

Table A2. Explanation of Terms, Abbreviations and Symbols

/1 - 7designation for groundwater sampling event; preceded by a cemetery identifier, for example: CEN/1 1E-6 m/sec scientific notation, consistent with method of reporting for electronic media; in this case equivalent to 1 x 10⁻⁶ m/sec ACCA Australian Cemeteries and Crematoria Association adipocere an intermediate decomposition product, whitish or white-grey in colour, waxy lustre, composed of fatty acids; chemically it is neither a wax nor a fat adipose as in adipose tissue, i.e. fat tissue

AEC Anion Exchange Capacity, a property of soil's clay minerals and

organic matter

aerobe a micro-organism which requires oxygen for survival, i.e. an aerobic

environment

a micro-organism which requires an anaerobic environment, i.e. one anaerobe

without oxygen, for survival

anion an inorganic chemical species with excess negative charge

term derived from palaeontology, meaning here the whole collection assemblage

of indicator bacterial analytes considered together

В sample designation for any sample from Botany Cemetery

BOD Biochemical Oxygen Demand, also elsewhere denoted BOD₅, is a

chemical test particularly relevant to assessing the 'pollution load' of

waters

borehole same as a 'well'; term for subsurface exploratory hole or permanent

> sampling point. Borehole logs (or borelogs) are found in Appendices B - J; soils described in these logs, and some terminology, are further

considered in Appendix K

BOT refers to Botany Cemetery (Eastern Suburbs Memorial Park), as an

adjective or a noun

BTEX aromatic hydrocarbons associated with the petroleum refining process

and including:- benzene, toluene (methylbenzene), ethylbenzene, m +

p xylene, o xylene and styrene

 \mathbf{C} sample designation for any sample from Centennial Park Cemetery

cadaverine a gas given off due to the anaerobic decarboxylation of proteins

during decomposition; a diamine, $C_4H_8(NH_2)_2$, (1,4-diaminobutane)

with a foul odour; toxic

cation an inorganic chemical species with excess positive charge

Cation Exchange Capacity, a property of the soil's clay particles and **CEC**

organic matter

cell in the context of a landfill means a large, properly engineered,

> excavated ditch which is subsequently filled with municipal waste materials and re-covered with clayey soils to prevent water infiltration

the word is used generically and includes the ideas of "burial ground", cemetery

"graveyard", and "churchyard"

CEN refers to Centennial Park Cemetery as an adjective or a noun

CFU/100 mL common unit of measurement for bacterial tests: colony forming units

per 100 mL of tested water

 CH_4 methane, the simplest hydrocarbon, a gas, given off during the

decomposition process;

 CO_2 carbon dioxide, a gas given off during decomposition of organic

materials, a final product; from the atmosphere is incorporated into

rainfall

COD chemical oxygen demand (in either mg/L or equivalents of oxygen);

often used as a measure of pollution and equal to the concentration of species that are readily oxidized by addition of a soluble oxidizing agent like permanganate; high values are considered to be undesirable

DC direct electrical current

EC electrical conductivity, measured in units µS/cm

EPA Environment/al Protection Agency (a generic term)

equivalents per litre, often also as meg - milli-equivalent; a chemical equiv.(eq)/L

> concentration unit obtained by multiplying the analyte's concentration (in mg/L) by the available ionic charge divided by the unit formula

weight.

FA Factor Analysis: a statistical technique which seeks to link variables

(analytes) together in a way that recognizes their contribution to the total variation between all the results; Factors are developed after

preliminary analysis (also see PCA)

facultative in reference to micro-organisms; those that may survive in an

environment with different oxygen conditions to the environment in

which they thrive

formaldehyde an organic molecule from the successive hydroxylation of methane;

more properly called methanal (H-CHO); it can be oxidised to formic

acid (methanoic acid) and then carbon dioxide

formalin a solution of formaldehyde in water; solutions up to 40%

formaldehyde are said to be used in the embalming process

G sample designation for any sample from Guildford Cemetery gilgai Australian term for a landform initiated in swelling soils where small

ridges or mounds 'grow' from otherwise flattish land

used with the terms 'positive' (+) or 'negative' (-) to aid in the gram

identification of bacteria using Gram's dye test

GUI refers to Guildford Cemetery as an adjective or a noun.

Η sample designation for any sample from Cheltenham Cemetery

hectare, areal measurement, 10000 m², equal to about 2.5 acres ha

HEL refers to Cheltenham Cemetery as an adjective or a noun.

heterotrophic in respect of bacteria; common types which need complex organic

compounds for their source of carbon (i.e. to sustain them)

hydroxyapatite a biologically derived mineral which primarily comprises bone –

Ca₁₀(PO₄)₆(OH)₂; a source of calcium and phosphorus in the body

ICP Induced Coupled Ion Spectrometry or Spectrometer (a chemical

analytical method or apparatus)

i.d. internal diameter

unless the context implies otherwise means the Australian cemeteries industry

and crematoria industry

interment strictly the burial of human remains in soil; but can be interpreted as

the encapsulation of the remains in a crypt, vault or mausoleum

invert level the base of the grave, that is the lowest-most excavated level

k intrinsic permeability; a measurement of the aguifer matrix only in

units of metres squared

K hydraulic conductivity; reported in many units but herein units used

are either m/day or m/sec

karst a set of landforms and sub-surface features where the solution of

> carbonates (like limestone or chalk) by groundwater and running water has created vast networks of underground channels, caves and

structures that easily convey water

L sample designation for any sample from Launceston Cemetery (Carr

Villa Memorial Park)

L/min litres per minute: groundwater sampling or flow rate LAU refers to Launceston Cemetery (Carr Villa Memorial Park), as an adjective or a noun

lift and deepen the process of re-opening a grave for the purpose of re-use wherein any remains are gathered up and re-interred at a level below the proposed grave invert; in South Australia this is now possible after 50 years, originally 99 years

lifts and batters in relation to landfills: lift represent typical construction layers – about 1.8 m thick; batters are the outermost finished slopes of these; the effect is often a stepped hillside

M sample designation for any sample from Melbourne General Cemetery

MEL refers to Melbourne General Cemetery as an adjective or a noun

mercaptans (or thiols) are decomposition gases containing the –SH mercaptans (sulfhydryl group). They are notable for their disagreeable odour. They are acidic and form insoluble solutions with heavy metals, for

example mercury.

milligrams per litre of solution, common designation for concentration mg/L

of chemical analytes in water (almost equivalent to ppm)

millilitre, volume measurement identical to 1 cm³ under standard mL

conditions

millimetres per annum; used to report annual precipitation mm/a

N sample designation for any sample from Bunurong Memorial Park

 N_2 nitrogen gas; results from the denitrification of organic and inorganic

nitrogen compounds via various pathways wherein the processes are

driven by bacterial action

necro-leachate the term applied to leachate of decomposition products in cemeteries

NEW refers to Bunurong Memorial Park, as an adjective or a noun

obligate in reference to micro-organisms; those that can only survive in an

environment with specified oxygen conditions

o.d. outside diameter

PCA Principle Component Analysis: a statistical technique which seeks to

link variables (analytes) together in a way that recognizes their

contribution to the total variation between all the results; Components

are developed from the raw data (also see FA)

PET polyethylene terephthalate, a polyester PFU/L plaque forming units per litre (or per 100 mL), a measure of the concentration of viruses particles **PVC** polyvinyl chloride plastic; a common, relatively inert plastic used in all but some specialised groundwater sampling applications pН the acidity of a sample or soil measured on the pH scale of 1 - 14 units parts per billion – a measurement of concentration; an approximate ppb equivalent is µg/L (micro-grams per litre) parts per million – a measurement of concentration; an approximate ppm equivalent is mg/L (milli-grams per litre) putrescine a gas given off due to the anaerobic decarboxylation of proteins during decomposition; a diamine, $C_5H_{10}(NH_2)_2$, (1,5-diaminopentane) with a foul odour; toxic QC Quality Control program or regime used to ensure testing integrity and reliability OSS Ouantity Surveying Score; obtained by summing the distribution of number of interred individuals multiplied by a weighting factor based on the length of interment quantity survey the term adopted for the recording of grave numbers and date information relative to the sampling points remains the organic waste comprising all or some of the solid and fluid body parts of a deceased human; synonyms are "body", "cadaver", "corpse" S sample designation for any sample from Spring Vale Cemetery (The Necropolis) means the cemetery location where the work was done in general site soilfluction a mass movement phenomenon where thawing permafrost or other frozen ground gives rise to wet near-surface soils which then creep and flow SPR refers to Spring Vale Cemetery (The Necropolis), as an adjective or a noun; common use of this geographic descriptor is now 'Springvale' Study refers to the research, investigations and analyses reported and

discussed in this thesis; as well, in context, the National Study of

Cemetery Groundwaters

sulfur the chemical name in its new spelling; occasionally it is still seen as

"sulphur"; related variants are -sulfate & sulfite

SWL 'standing water level' measured in wells, usually prior to sampling,

expressed in metres below the ground surface

the temperature parameter measured for water samples, in degrees temp

Celsius

thermotolerant in reference to micro-organisms; those that survive in an

identification test with elevated temperature conditions e.g. 44°C compared to those tested at usual human body temperature of about

37°C

TSE transmissible spongiform encephalopathies – a group of

> debilitative/fatal diseases including Creutzfeldt-Jakob Disease (variant, vCJD) and Gerstmann-Straussler-Scheinker syndrome in humans, and 'mad cow' - Bovine Spongiform Encephalitis (BSE),

disease in cattle

W sample designation for any sample from Woronora General Cemetery

WOR refers to Woronora General Cemetery as an adjective or a noun.

micro Siemen volt, a measure of the radiation received from elements' μSv

radioactive decay events

μS/cm micro Siemens per centimetre, common unit of reporting electrical

conductivity (EC) – a reflection of dissolved ions in water or extracted

from soil into water

UK United Kingdom - essentially mainland Britain

USA United States of America - essentially continental North America

USCS Unified Soil Classification System

USGS United States Geological Survey

UTS University of Technology, Sydney

VIC Victoria, in context is a reference to the Victorian Department of

Human Services (a Contributing Research Partner) or all of the

Victorian cemeteries included in the Study

XRD X-ray Diffraction, an analytical technique, used as an adjective or

noun

Chemical Symbols

The concept of chemical species existing as an ion is usually implied; electronic valence is not usually shown.

Al – aluminium, As - arsenic, B - boron, Br – bromine, Ca - calcium, CaCO₃ calcium carbonate, Cd - cadmium, Cl - chlorine, CN - cyanide radical, CO_3 carbonate radical, Cr - chromium, Cu - copper, F - fluorine, Fe -iron, Fe²⁺ iron II ion, Fe³⁺ iron III ion, HCO₃ - bicarbonate, Hg – mercury, K - potassium, Mg magnesium, Mn - manganese, Mo - molybdenum, N - nitrogen, Na - sodium, NO₂ nitrite, NO₂-N nitrogen in nitrite radical, NO₃ - nitrate, NO₃- N nitrogen in nitrate radical, NH3 - ammonia, NH3-N nitrogen in ammonia or ammonium radical, NH4 ammonium ion, Ni - nickel, P - phosphorus, Pb - lead, PO₄ - orthophosphate, PO₄-P phosphorus in orthophosphate radical, S - sulfur, S² - sulfite, Se - selenium, Si silicon or silica*, SO₄ – sulfate, Sr – strontium, Zn - zinc

*silica is correctly SiO₂ but in water analyses suspended silica is often reported as simply Si - it is not ionic, but is identifiable as an element in ICP analysis

CONTACT DETAILS FOR CEMETERIES, ORGANISATIONS AND CONTRIBUTING RESEARCH PARTNERS

The Study was conducted at 9 different cemetery locations (sites). These are variously controlled by public Boards of Trustees, local government (Carr Villa Memorial Park), or statutory Boards (Guildford Cemetery). The benefactors of the Study were designated Contributing Research Partners. In the state of Victoria the Department of Human Services was responsible for the whole Study and the sites used participated with the Department's concurrence.

Table A3 Location and Contact Information for Cemetery Sites

Cemetery	Contact Details	Physical Location
Designation		•
ACCA	Ms Robyn Smith	n/a
	Executive Officer	
	Australian Cemeteries and	
	Crematoria Association	
	472 William Street	
	West Melbourne, VIC 3003	
BOT	Mr David Blake	Eastern Suburbs Memorial Park
[CPR]	General Manager	(Botany Cemetery),
	Eastern Suburbs Memorial Park	between Military Road and
	(Botany Cemetery Trust)	Bunnerong Road, Phillip Bay, a
	PO Box 11	suburb of Sydney, in the state of
	BOTANY, NSW 2019	New South Wales
CEN	Mr Norm Orchard	Centennial Park Cemetery,
[CPR]	General Manager	Goodwood Road, Pasadena, a
	Centennial Park Cemetery Trust	suburb of Adelaide, in the state of
	760 Goodwood Road	South Australia
	PASADENA, SA 5042	
GUI	Mr Peter MacLean	Guildford Cemetery,
[CPR]	General Manager	Kalamunda Road, South Guildford,
	Metropolitan Cemeteries Board	a suburb of Perth, in the state of
	Perth General Cemetery	Western Australia
	Railway Road	
	KARRAKATTA, WA 6016	
HEL	Mr Kevin Crowden	Cheltenham Cemetery,
[CPR]	General Manager	Port Road, Cheltenham, a suburb of
[1]	Enfield General Cemetery Trust	Adelaide, in the state of South
	PO Box 294	Australia
	BLAIR ATHOL, SA 5084	
LAU	Mr Craig Saunders	Carr Villa Memorial Park
[CPR]	General Manager	(Launceston Cemetery),
	Carr Villa Memorial Park	Nunamina Avenue, Kings
	(Launceston Cemetery)	Meadows, a suburb of Launceston,
	36 Nunamina Avenue	in the state of Tasmania

	LAUNCESTON, TAS 7249	
MEL	Mr Russ Allison	Melbourne General Cemetery,
[2]	General Manager	Cemetery Road, Carlton North, a
	Board of Trustees	suburb of Melbourne, in the state of
	The Necropolis	Victoria
	PO Box 1159 RMDC	
	CLAYTON VIC 3169	
NEW	Mr Peter Green	Bunurong Memorial Park,
	General Manager	Frankston-Dandenong Road,
	Cheltenham Public Cemetery Trust	Bangholme, a suburb of Melbourne
	Wangara Rd	in the state of Victoria
	CHELTENHAM, VIC 3192	
SPR	Mr Russ Allison	The Necropolis (Spring Vale
[2]	General Manager	Cemetery),
	Board of Trustees	Princes Highway, Springvale, a
	The Necropolis	suburb of Melbourne in the state of
	PO Box 1159 RMDC	Victoria
	CLAYTON VIC 3169	
VIC	Ms Jo Fox	n/a
[CPR]	Manager of Cemeteries &	
[3]	Crematoria	
	Planning, Budget, Public Health &	
	Development Division	
	Vic Department Human Services	
	GPO Box 1670N	
	MELBOURNE, VIC 3001	
WOR	Mr Ivan Webber	Woronora General Cemetery,
[CPR]	General Manager	Linden Street, Sutherland, a suburb
	Woronora Cemetery Trust	of Sydney in the state of New South
	PO Box 4	Wales
	SUTHERLAND, NSW 2232	

Notes to the table:

[CPR] Designates A Contributing Research Partner that provided funding for the Study.

- [1] During the Study the General Manager at Bunurong Memorial Park was Mr John Gilbertson.
- [2] During the Study the General Manager of The Necropolis was Mr Malcolm Tucker.
- [3] The Study in the state of Victoria was controlled and financed by the Victorian Department of Human Services. That Department provided a Special Research Grant Reference # 907-CO4-00658.

LABORATORY DETAILS

Table A2 sets out details of the laboratories used for all groundwater sample testing, including the actual analytes tested at <u>any</u> time during the Study and the test methods used. The information recorded is as specified by the laboratories.

Table A4. Details of Commercial Water Testing Laboratories and Test Methods

Laboratory details	Any cemetery's	Any analytes tested	Test method
	samples tested		
Water Environmental Laboratory	BOT	Total coliforms	APHA 9222B
Department of Land & Water Conservation	WOR	Faecal coliforms	APHA 9222D
4 Guess Ave.,	LAU	E. coli	AS1095.41.6-1981
Arncliffe, NSW 2205		Faecal streptococci	APHA 9230C
[N]		Pseudomonas aeruginosa	APHA 9213E
		Salmonella spp.	AS1095.41.6-1981
		Bicarbonate alkalinity	APHA 2320B
		BOD5	APHA 5210B
		Total Nitrogen (N)	APHA 4500-NO ₃ F
		Total Phosphorus (P)	APHA 4500 -P F
		Total Organic Carbon	APHA 5310C
		Chloride	AS 3741
		Sulphate	AS 3741
		Mercury	APHA 3030K, 3114C
		Na, B	APHA 3120B
		Cd	APHA 3030K, 3113B

Water ECOscience Pty Ltd	MEL	Coliforms	Coliform and E.coli
68 Ricketts Road,	NEW	Faecal streptococci	counts determined by
Mt. Waverley, VIC 3149	SPR	E. coli	Colilert method; other
[N, I]	LAU	Pseudomonas aeruginosa	microbiological test
		Clostridium perfringens	methods not specified
		Total Alkalinity, as CaCO3	WEC001
		Bicarbonate Alkalinity, CaCO3	WEC001
		Biochemical Oxygen Demand, 5 Day	WEC008
		Nitrate and Nitrite as N	WEC043
		Total Kjeldahl Nitrogen	WEC053
		Total Nitrogen as N	WEC069
		Ammonia, as N	WEC015
		Phosphate, reactive as P	WEC052
		Phosphorus, total as P	WEC053
		Total Organic Carbon	WEC039
		Chloride, as Cl	WEC067/006
		Sulphate, as SO4	WEC061
		Mercury, as Hg	WEC024
		Bromide by IC	WEC006
		Sodium, as Na	WEC 061
		Boron, as B	WEC058
		Cadmium, as Cd (USN)	WEC023

Australian Water Quality Centre	CEN	Coliforms	80-01/02/07
Hodgson Road,	HEL	Faecal coliforms	76-01/02
Bolivar, SA 5108		Faecal streptococci	82-01
[N, I]		E. coli	81-07
		Pseudomonas aeruginosa	90-01
		Total Alkalinity, as CaCO3	101-01
		Bicarbonate	102-01
		Biochemical Oxygen Demand	153-01
		Nitrate and Nitrite as N	161-01
		Nitrate as Nitrogen	106-01
		Nitrite as Nitrogen	107-01
		TKN as Nitrogen	112-01
		Ammonia as N	100-01
		Reactive Phosphate as P	108-01
		Phosphorus - total as P	109-01
		Total Organic Carbon	158-05
		Chloride, as Cl	104-02
		Sulphate, as SO4	110-31
		Mercury - soluble	566-01
Water Microbiological Laboratory	LAU	Total Coliform	AS4276.5
Department of Primary Industry and Fisheries*		E. coli	AS4276
Bass Highway Prospect		Faecal streptococcus	AS4276.7
Kings Meadows, TAS 7219		Pseudomonas aeruginosa	AS4276.13
		Faecal coliforms	AS4276.7
		Clostridium spp.	In-house method [L]
		Yersinia spp.	In-house method
		Salmonella spp.	In-house method

Agricultural and Environmental Chemistry	LAU	BOD	Specific test methods are
Laboratory		Boron (B)	not listed by the
Department of Primary Industry and Fisheries		Cadmium (Cd)	laboratory. Most testing
Bass Highway Prospect		Calcium (Ca)	of individual elements was
Kings Meadows, TAS 7219		Chloride	by ICP except Cd and Hg
		Copper (Cu)	which were by Atomic
		Iron (Fe)	Absorption methods.
		Magnesium (Mg)	
		Manganese (Mn)	
		Mercury (Hg)	
		Molybdenum (Mo)	
		Nitrogen (N)	
		Phosphorus (P)	
		Potassium (K)	
		Sodium (Na)	
		Sulphur (S)	
		Zinc (Zn)	
Ti-Tree Bend Laboratory	LAU	Biochemical Oxygen Demand (5 day)	APHA 5210 (B)
Technical Services Division		Total Nitrogen (Kjeldahl)	APHA 4500Norg (B)
Launceston City Council		Chloride	APHA Cl ⁻ (B)
Ti-Tree Bend Wastewater Plant		Fluoride	APHA F⁻ (C)
Launceston, TAS		Total Phosphorus	APHA 4500 P (E)
		Bicarbonate Alkalinity as CaCO3	APHA 2320 (B)
Public Health Unit - Water Examination	GUI	Total coliforms	Waters Examination
Laboratory ("Path Centre")		Thermotolerant coliforms	Laboratory Methods M
Locked Bag 2009,		Faecal streptococci	
Nedlands, WA			

Microserve Laboratory Pty Ltd	GUI	Coliforms	MMM 4.2W
Suite 6, 771 Beaufort St.,		Thermotolerant coliforms	MMM 4.3W
Mt. Lawley, WA 6050		E. coli	MMM 4.3W
		Faecal streptococci	MMM 4.4W
		Pseudomonas aeruginosa	MMM 4.5W
		Salmonella spp.	MMM 4.7W
		Yersinia enterocolitica	MMM 2.14F
		Clostridium spp.	APHA 36.6
Australian Government Analytical Laboratories	GUI	Alkalinity	Local laboratory methods
(AGAL)		Bicarbonate as CaCO ₃	in general
3 Clive Rd		BOD	WL119
Cottlesloe, WA 6011		TOC	WL122
[N]		Total phosphorus	WL189
		PO ₄ -P (ortho)	WL195
		Total nitrogen	WL239
		Nitrate (NO ₃ -N)	WL240
		Ammonia as NH ₃ -N	
		Chloride	
		Sulphate	
Australian Government Analytical Laboratories	GUI	Hg	VL250 (ICP/MS)
(AGAL)		Other elements:	local laboratory method
51 - 65 Clarke St.,		Al, As, B, Ca, Cd, Cr, Cu, Fe, K, Mg,	
South Melbourne, VIC 3205		Mn, Na, Ni, Pb, Se, Si, Zn	
[N, I]			
Australian Government Analytical Laboratories	GUI	Br	NW_B14
(AGAL)			local laboratory method
1 Suakin Pl.,			
Pymble, NSW 2073			
[N]			

Notes to the table:

- [N] indicates that the laboratory and the test methods used are endorsed by NATA (National Association of Testing Authorities, Australia)
- [I] indicates that the laboratory is an ISO 9001 Quality Systems Certified Organisation
- [L] this laboratory provides extensive testing services for Tasmanian agricultural and veterinarian needs; In-house test methods have been
- developed based on heat-treated milks and abattoir waters. The methods are not necessarily accredited. (Walters, D. pers. comm.) * in 1998 this Tasmanian Government Department changed its name to the Department of Primary Industries, Water and Environment. Test Methods:
- MMM denotes Microserve Methods Manual, wherein the test methods are based on Australian Standard Methods (Frankish, pers. comm.).
- APHA -denotes American Public Health Association test method, the relevant method number is given.
- AS denotes Australian Standard test method, the relevant standard number is given. In-house see Note L.

APPENDIX B

SITE INVESTIGATION INFORMATION

EASTERN SUBURBS MEMORIAL PARK (BOTANY CEMETERY), SYDNEY, NSW, (BOT) B

Figure B.1 Historical Perspective of BOT – 1930 (aerial photography Commonwealth of Australia)

Figure B.2 Piezometer Locations at BOT (aerial photo base – NSW Dept. Lands, 1994)

Table B.1 Rainfall & Evaporation (Class A Pan) Data Period of Study and Overall including full month before sampling and final month for Station 66037, Sydney Airport (BOM, 2001)

measurements in mm

Rainfall

Italiliali													
Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Ann
1997		130.4	42.2	7.8	166.2	78	152.8	16.8	93.6	47.4	42	16.8	970
1998	71.2	38.4	31	214	227.2	91.6	88.6	396.6					
# readings	69	69	69	69	69	69	69	69	69	69	69	69	68
lowest	5.4	2.5	6.4	7.8	2.9	2.5	0	0.2	1.6	0	5.7	4.8	522.9
highest	400.4	596.9	393	476.2	421.7	465.9	253.7	396.6	249.4	271.3	396.1	359.2	2025.2
average	99.0	111.3	122.7	106.4	99.9	125.0	68.5	81.6	63.5	72.6	82.1	75.9	1103.4
median	84.0	73.2	97.9	80.0	84.5	100.6	51.6	44.6	47.4	47.4	67.4	55.6	1073.5

Evaporation

Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Ann
1997		164.4	190.8	143	86.4	69	78.6	121	117	199	221.6	238.6	1850.4
1998	231	214.4	190.2	135.2	85.4	72.6	76.6	101.2					
# readings	25	25	25	24	24	24	24	24	24	24	24	24	24
lowest	172.7	136.2	134.1	93.5	69.4	63.5	53.6	98.8	112.6	129.6	161.6	183.2	1561.1
highest	270.6	214.4	205	152.8	119.6	96.1	104.9	149.2	206.4	234.2	226	292.9	2042.6
average	217.1	178.6	165	123.9	88.8	75.7	83.7	115.2	141.3	176.6	195.3	230.1	1788.2
median	211.5	180.4	163.2	122.3	87.9	73.3	81.5	111.6	137.6	178.6	195.4	229.3	1766.3

Table B.2 Summary of Hydraulic Test Data

Slug Tests

K in m/sec

Well	Bouwer & Rice	Cooper et al.	Hvorslev	Comments
B5	n/a			too quick for any method see Chapter Four
В9	n/a			too quick for any method see Chapter Four

N.	NATIONAL STUDY OF CEMETERY GROUNDWATERS UNIVERSITY OF TECHNOLOGY, SYDNEY							
Cemetery:	Bota	ny Ceme	tery (Eastern S	Suburbs Mer	norial P	ark)		B1
Location:	behir	d 'Gener	ral Vault Area	' northern er	d oppo	site 'Gene	ral	RL * (ahd)
	Lawr	ıB'						Est. 15.8
Driller:		B. Den	-					Date Drilled:
Drilling Meth			Auger – 100 m			T		6/12/96
Piezometer				Colla	::	Screen L	ength:	Supervised By:
18, PVC	screen 0	.5mm slo	ots	0.68	m	0.5	m	BBD
Casing, lift, soil samples m	water filter scree	pack	Depth m	Description				
^^	∇ 0.4 d	lrain	0 - 0.5	gravelly cl	ay fill (v	wet at drain	n invert))
s 0.7 - 0.9	∇ 0.8		0.5 - 0.9	It grey to y	ellow-w	hite fine q	uartz sa	nd, sat'd
B1/1			0.9 - 1.15	It grey, wh				nd sat'd
s 1.0 - 1.1	pack to		1.15	complete in	ı sandst	one bedro	ck	
B1/2	scr 0.65	- 1.15						

DATE	TIME	SWL#	SAMPLE NO/S
26/3/97	09:33	1.38	B1/1, B1/111
28/5/97	>09:40	1.30	B1/2
1/8/97	09:15	1.22	B1/3
28/10/97	08:55	1.40	B1/4
10/3/98	09:11	1.61	B1/5

units

mV

°C

Initial Water Chemistry

6.7

-36

22.5

119.1

8.7 64.8

24.8

Date:

рН

Eh Temp

Na

Ca

Mg

K

Analyte v	Analyte values in mg/L							
EC	1014	μS/cm						
O_2	n/a	% Sat						
BOD	<2	mg/L						
C1	120.0							
HCO_3	329.7							
SO_4	13.0							
NO ₂ -N	0							

B1/1

NH_4	1.33	NO ₃ -N	0					
TOC	66.0	PO_4	1.9					
Notes:	*RL is approximate at co	llar-natural	junction; referenced to Austral	ian Height Datum (ahd)				
	# SWL measured from top of collar unless indicated otherwise							
^^ Tempo	^^ Temporary 100 mm PVC casing on some holes and for below watertable							

Sample No:

NATIONAL STUDY OF CEMETERY GROUNDWATERS UNIVERSITY OF TECHNOLOGY, SYDNEY						BOREHOLE	
Cemetery:	Botar	ny Ceme	tery (Eastern S	Suburbs Memorial	Park)		B2
Location:	New	Lawn are	ea N of Jewisl	n Section			RL * m (ahd)
							Est. 16.0
Driller:		B. Den	t				Date Drilled:
Drilling Meth	od:	Hand A	Auger – 100 m	ım			4/10/96
Piezometer T	ype: 50m	ım PVC	class 18,	Collar:	Screen Le	ngth:	Supervised By:
	PVC sc	reen 0.51	mm slots	0.69 m	1.4	m	BBD
Casing, lift, soil samples	SW filter scree	pack	Depth m				
s 0.6 B2/1 s 2.0 - 2.1 B2/2 s 3.05 - 3.2 B2/3	pack 0.9 ∇ 3.21 scr 2.0 -		0 - 0.3 0.3 - 1.3 1.3 - 1.6 1.6 - 3.2 3.2 - 3.4 3.4	dk to lt grey orga lt grey-white find orange-br iron co yellow fine – me orange-br sand, v complete on hard	e qtz sand emented sand d qtz sand very wet (R	nd (coff S?)	,

DATE	TIME	SWL#	SAMPLE NO/S
25/3/97	?	dry	
23/5/97	?	dry	
27/10/97	09:07	dry	
9/8/98	09:38	dry	
11/8/98	13:10	3.18	B2/6, B2/666

Initial Water Chemistry Sample No:

Date:	11/8	/98	Analyte values in mg/L			
pН	6.0	units	EC	367	μS/cm	
Eh	82	mV	O_2	n/a	% Sat	
Temp	17.5	°C	BOD	<2	mg/L	
Na	19.	.4	C1	38.5		
K	18.	.0	HCO ₃	25.1		
Ca	29.	.6	SO_4	22.2		
Mg	4.0	6	NO ₂ -N	0.008		
NH_4	0.:	5	NO ₃ -N	9.5		
TOC	5.0	6	PO ₄	0.5		

*RL is approximate at collar-natural junction; referenced to Australian Height Datum (ahd) # SWL measured from top of collar unless indicated otherwise

B2/6

^{^^} Temporary 100mm PVC casing on some holes and for below watertable.

NATIONAL STUDY OF CEMETERY GROUNDWATERS UNIVERSITY OF TECHNOLOGY, SYDNEY					BOREHOLE		
Cemetery:	Botar	ny Ceme	tery (Eastern S	Suburbs Memorial	Park)	В3	
Location:	Gene	ral 40 (n	nonumental) S	ection Row 6, abo	ve Centenary	RL * m (ahd)	
	Aven	ue				Est. 13.6	
Driller:		B. Den	t			Date Drilled:	
Drilling Meth			Auger – 100 m	<u>ım</u>		11/10/96	
Piezometer T	• 1			Collar:	Screen Length:	Supervised By:	
	PVC sc	reen 0.51	nm slots	0.7 m	1.5 m	BBD	
Casing, lift, soil samples	water filter scree	pack	Depth m	Description			
^^	∇ 1.2		0 - 1.2			l, pieces of SS; wet	
s 1.5 – 1.7	pack to		1.2 - 1.95	dk grey fine qtz			
B3/1	scr 0.45		1.95		dstone - ? possible	fill boulder ?	

DATE	TIME	SWL#	SAMPLE NO/S
25/3/97	13:10	2.20	B3/1
29/5/97	>09:33	2.09	B3/2
30/7/97	14:26	2.09	B3/3
27/10/97	10:54	2.18	B3/4
9/3/98	10:13	2.33	B3/5
11/8/98	13:42	1.87	B3/6

Initial Water Chemistry Sample No:

Date:	e: 25/3/97 Analyte values in mg/L					
pН	6.3	units	EC	1116	μS/cm	
Eh	64	mV	O_2	23.5	% Sat	
Temp	23.5	°C	BOD	2.0	mg/L	
Na	110.6		Cl	140.0		
K	14.8		HCO ₃	162.9		
Ca	83	.1	SO_4	130.0		
Mg	28.6		NO ₂ -N	0.011		
NH ₄	1.26		NO ₃ -N	0.4		
TOC	15	.0	PO_4	1.1		

*RL is approximate at collar-natural junction; referenced to Australian Height Datum (ahd) # SWL measured from top of collar unless indicated otherwise

B3/1

^{^^} Temporary 100mm PVC casing on some holes and for below watertable.

NATIONAL STUDY OF CEMETERY GROUNDWATERS UNIVERSITY OF TECHNOLOGY, SYDNEY						Вогеносе		
Cemetery:	Botany (Cemet	ery (Eastern S	Suburbs Memoria	al l	Park)		B4
Location:	NW side		entenary Avei	nue immediately	be	elow 'Gene	eral	RL * m (ahd) Est. 11.6
Driller: Drilling Method	В	3. Dent	uger – 100 m	ım				Date Drilled: 3/10/96
Piezometer Ty		PVC o	class 18,	Collar: 0.71 m		Screen Le	ength:	Supervised By: BBD
Casing, lift, soil samples	water mad filter pac screen r	ck	Depth m	Description				
1	∇ 1.15 pack to 0.3 scr 0.7 – 2.		0 - 1.9 $1.9 - 2.2$ 2.2	It grey – white orange clayey s complete in we	an	nd (RS); ve	ry wet	

DATE	TIME	SWL#	SAMPLE NO/S
25/3/97	12:15	2.63	B4/1
29/5/97	13:12	2.24	B4/2
30/7/97	15:15	2.29	B4/3
27/10/97	12:01	2.61	B4/4
9/3/98	09:58	dry	
10/8/98	14:04	1.49	B4/6

Initial Water Chemistry Sample No:

Date:	25/3	/97	Analyte values in mg/L			
pН	6.6	units	EC	484	μS/cm	
Eh	-75	mV	O_2	n/a	% Sat	
Temp	27.5	°C	BOD	<2	mg/L	
Na	30.8		C1	44.0		
K	8.	1	HCO ₃	164.4		
Ca	48.	.6	SO_4	15.0		
Mg	12.	9	NO ₂ -N	0.020		
NH ₄	0.5	8	NO ₃ -N	0		
TOC	11.	.0	PO ₄	2.8		

*RL is approximate at collar-natural junction; referenced to Australian Height Datum (ahd) # SWL measured from top of collar unless indicated otherwise

B4/1

^{^^} Temporary 100mm PVC casing on some holes and for below watertable.

NATIONAL STUDY OF CEMETERY GROUNDWATERS UNIVERSITY OF TECHNOLOGY, SYDNEY					BOREHOLE	
Cemetery:	Botan	y Cemet	ery (Eastern S	Suburbs Memorial	Park)	B5
Location:	SE co	rner Jew	rish Section a	djacent to path		RL * (ahd)
						Est. 13.2
Driller:		B. Den	t			Date Drilled:
Drilling Metho			uger – 100 m	<u>ım</u>		5/12/96
Piezometer Ty	-			Collar:	Screen Length:	Supervised By:
	PVC sci	een 0.51	nm slots	0.68 m	1.5 m	BBD
Casing, lift, soil samples	water i filter j screei	pack n m	Depth m		Description	
^^	pack to 1 scr 2.75		0-3.5 3.5-4.25 4.25	It grey and white orange silty sand complete in sand		z sand

DATE	TIME	SWL#	SAMPLE NO/S
25/3/97	?	4.08	B5/1
28/5/97	>11:51	3.53	B5/2
31/7/97	08:52	3.36	B5/3
27/10/97	13:34	3.96	B5/4
10/3/98	11:01	4.00	B5/5

Initial Water Chemistry

Date:	25/3/97		Analyte values in mg/L			
pН	6.0	units	EC	596	μS/cm	
Eh	167	mV	O ₂	24.8	% Sat	
Temp	24.8	°C	BOD	<2	mg/L	
Na	68.2		Cl	95.0		
K	14	.2	HCO ₃	60.0		
Ca	30	.9	SO ₄	48.0		
Mg	9.	0	NO ₂ -N	0.009		
NH ₄	n/a		NO ₃ -N	0.9		
TOC	16	.0	PO ₄	n/a		

*RL is approximate at collar-natural junction; referenced to Australian Height Datum (ahd) **Notes:** # SWL measured from top of collar unless indicated otherwise

Sample No:

B5/1

^{^^} Temporary 100mm PVC casing on some holes and for below watertable.

NATIONAL STUDY OF CEMETERY GROUNDWATERS UNIVERSITY OF TECHNOLOGY, SYDNEY					BOREHOLE
Cemetery:	Botany Cer	netery (Eastern	Suburbs Memorial	Park)	В6
Location:	on pathway	between "Roma	an Catholic 21 Sec	tion" and newer	RL * m (ahd)
	lawn, below	v Jewish Section	1		Est. 11.3
Driller:	В. Г	ent			Date Drilled:
Drilling Meth		d Auger – 100 n	ım		4/10/96
Piezometer T	ype: 50mm PV		Collar:	Screen Length:	Supervised By:
	PVC screen (.5mm slots	0.69 m	1.45 m	BBD
Casing, lift, soil samples	SWL filter pack screen m	Depth m		Description	
s 1.4 – 1.6 B6/1 s 2.4 – 2.6 B6/2	pack to 0.6 scr 1.15 – 2.6	0 - 0.3 1.4 - 1.6 1.6 - 2.1 2.1 - 2.6 2.6	yellow and mot o	emented sand (coff orange fine-med sand (RS), wet	,

DATE	TIME	SWL#	SAMPLE NO/S
25/3/97	11:25	dry	
29/5/97	10:45	2.73	B6/2
31/7/97	09:35	2.70	B6/3
27/10/97	09:18	dry	
27/3/98	09:52	dry	
11/8/98	14:22	2.02	B6/6

Initial Water Chemistry

Date:	29/5/97		Analyte va	Analyte values in mg/L		
pН	6.2	units	EC	670	μS/cm	
Eh	77	mV	O_2	12.1	% Sat	
Temp	17.2 °C		BOD	<2	mg/L	
Na	64.9		Cl	69.0		
K	13	.2	HCO ₃	103.6		
Ca	49	.7	SO ₄	89.0		
Mg	18	.5	NO ₂ -N	0.001		
NH_4	0.73		NO ₃ -N	3.5		
TOC	11.0		PO ₄	0.9		

*RL is approximate at collar-natural junction; referenced to Australian Height Datum (ahd) **Notes:** # SWL measured from top of collar unless indicated otherwise

Sample No:

B6/2

^{^^} Temporary 100mm PVC casing on some holes and for below watertable.

N.A	NATIONAL STUDY OF CEMETERY GROUNDWATERS UNIVERSITY OF TECHNOLOGY, SYDNEY					BOREHOLE
Cemetery:	Botar	ny Cemet	tery (Eastern S	Suburbs Memorial	Park)	B7
Location:	SE co	orner Gei	neral 38 (mon	umental) Section,	above Centenary	RL * m (ahd)
	Aven	ue				Est. 10.8
Driller:		B. Den	-			Date Drilled:
Drilling Meth			Auger – 100 m	<u>ım</u>		5/12/96
Piezometer T	ype: 50m	ım PVC	class 18,	Collar:	Screen Length:	Supervised By:
	PVC sc	reen 0.51	nm slots	0.68 m	1.5 m	BBD
Casing, lift, soil samples	water filter scree	pack	Depth m		Description	
s 1.7 – 1.8 B7/1 s 2.3 B7/2 s 1.0 – 1.4 B7/3	pack to scr 0.9 -		0 - 0.35 0.35 - 1.4 1.4 - 1.6 1.6 - 2.4 2.4	yellow-br fine qt	ne quartz sand nge mot cemented	sand (coffee rock)

DATE	TIME	SWL#	SAMPLE NO/S
25/3/97	?	2.43	B7/1
29/5/97	11:50	1.88	B7/2
31/7/97	10:15	1.87	B7/3
27/10/97	?	2.33	B7/4
9/3/98	09:55	2.64	B7/5
11/8/98	15:28	1.13	B7/6

Initial Water Chemistry

Date:	25/3	/97	Analyte values in mg/L		
pН	6.3	units	EC	910	μS/cm
Eh	45	mV	O_2	n/a	% Sat
Temp	24.0 °C		BOD	<2 mg/	
Na	73.2		Cl	92.0	
K	23	.8	HCO ₃	216.5	
Ca	75	.0	SO ₄	78.0	
Mg	20.6		NO ₂ -N	0.007	
NH ₄	1.72		NO ₃ -N	5.7	
TOC	13.0		PO ₄	1.1	

Notes: *RL is approximate at collar-natural junction; referenced to Australian Height Datum (ahd) # SWL measured from top of collar unless indicated otherwise

Sample No:

B7/1

^{^^} Temporary 100mm PVC casing on some holes and for below watertable.

NATIONAL STUDY OF CEMETERY GROUNDWATERS UNIVERSITY OF TECHNOLOGY, SYDNEY					BOREHOLE		
Cemetery:	Botan	ny Cemet	tery (Eastern S	Suburbs Memorial	Park)		В8
Location:	Cente	nary Av	enue, end of '	Roman Catholic 2	1' Section		RL * m (ahd)
							Est. 10.0
Driller:		B. Den					Date Drilled:
Drilling Metho			Auger – 100 m	ım			4/12/96
Piezometer T				Collar:	Screen Leng	gth:	Supervised By:
	PVC sc	reen 0.51	nm slots	0.63 m	1.5	m	BBD
Casing, lift, soil samples	SW filter	pack	Depth m	Description			
s 3.6 – 3.7 B8/1	pack to ∇ 2.7 scr 2.25		0-2.1 $2.1-2.4$ $2.4-2.8$ $2.8-3.5$ $3.5-3.75$ 3.75	loose It grey-whi orange-br cemen brown & orange dense yellow me It grey-white & t complete in wear	ted sand (coff mot sand, les d qtz sand beige clayey sa	s ceme and (R	ented, wet

DATE	TIME	SWL#	SAMPLE NO/S
25/3/97	09:30	3.31	B8/1
29/5/97	13:48	2.77	B8/2
31/7/97	11:15	2.66	B8/3
28/10/97	11:05	3.15	B8/4
9/3/98	13:18	3.67	B8/5
10/8/98	12:27	2.02	B8/6

Initial Water Chemistry Sample No:

Date:	25/3	/97	Analyte values in mg/L		
pН	6.2	units	EC	458	μS/cm
Eh	138	mV	O_2	15.2	% Sat
Temp	24.7	°C	BOD	<2	mg/L
Na	27.8		C1	42.0	
K	6.	2	HCO ₃	193.6	
Ca	53	.3	SO_4	15.0	
Mg	8.0		NO ₂ -N	0.005	
NH ₄	0.44		NO ₃ -N	0	
TOC	10.0		PO ₄	4.3	

Notes: *RL is approximate at collar-natural junction; referenced to Australian Height Datum (ahd) # SWL measured from top of collar unless indicated otherwise

B8/1

 $^{\wedge\wedge}$ Temporary 100mm PVC casing on some holes and for below watertable.

NA	NATIONAL STUDY OF CEMETERY GROUNDWATERS UNIVERSITY OF TECHNOLOGY, SYDNEY							
Cemetery:	Botany Ceme	tery (Eastern	Suburbs Memorial	Park)	В9			
Location:	E end of Gen	eral 32 Section	n on Arthur Taylor	Avenue near	RL * m (ahd)			
	Est. 8.2							
Driller:	B. Der	ıt			Date Drilled:			
Drilling Metho	od: Hand	Auger – 100 m	ım		6/12/96			
Piezometer Ty	pe: 50mm PVC	class 18,	Collar:	Screen Length:	Supervised By:			
	PVC screen 0.5	mm slots	0.68 m	1.5 m	BBD			
Casing, lift, soil samples	water made filter pack screen m	Depth m						
s 2.8 B9/2	pack to 0.6 ∇ 2.5 scr 2.0 – 3.5	$ \begin{array}{c} 0 - 1.5 \\ 1.5 - 1.8 \\ 1.8 - 2.8 \\ 2.8 - 3.4 \\ 3.4 - 3.5 \\ 3.5 \end{array} $	It grey & white forange & br mot It grey & white fivellow med qtz syellow-br sandy complete in med	offee rock) ay (EW siltstone)				

DATE	TIME	SWL#	SAMPLE NO/S
25/3/97	08:15	3.34	B9/1
29/5/97	15:15	2.73	B9/2
1/8/97	10:23	2.62	B9/3
28/10/97	09:51	2.86	B9/4, B999/4
9/3/98	14:27	3.12	B9/5
10/8/98	14:58	2.30	B9/6

Initial Water Chemistry

Date:	25/3	/97	Analyte values in mg/L						
pН	6.3	units	EC	607	μS/cm				
Eh	160	mV	O_2	25.0	% Sat				
Temp	23.2	°C	BOD	<2	mg/L				
Na	52	.1	Cl	76.0					
K	10	.7	HCO ₃	104.9					
Ca	50	.7	SO ₄	61.0					
Mg	12.	.2	NO ₂ -N	0.005					
NH ₄	0.6	53	NO ₃ -N	0.8					
TOC	9.	1	PO ₄						

Notes: *RL is approximate at collar-natural junction; referenced to Australian Height Datum (ahd) # SWL measured from top of collar unless indicated otherwise

Sample No:

B9/1

 $^{\wedge\wedge}$ Temporary 100mm PVC casing on some holes and for below watertable.

NA				ERY GROUNI OLOGY, SYDI				BOREHOLE
Cemetery:	Botany (Cemeter	y (Eastern S	Suburbs Memo	rial	Park)		B11
Location:	behind v	vaults fac	cing Frost A	venue opposit	e '(General Lav	wn 34'	RL * m (ahd)
	Section,	, NE of v	water founta	ain area				Est. 14.8
Driller:		B. Dent						Date Drilled:
Drilling Metho			ger – 100 m	m				4/12/97
Piezometer T				Collar:		Screen Lo	ength:	Supervised By:
	PVC scree		n slots	0.28	m	1.5	m	BBD
Casing, lift, soil samples	SWL filter pac screen r	ck	Depth m					
no s	pack to 1.2 ∇ 2.4 scr 1.15 – 2	$\begin{bmatrix} 0 \\ 0 \\ 1 \\ 2.65 \end{bmatrix}$	0 – 0.2 0.2 – 0.7 0.7 – 1.6 0.6 – 2.1 0.1 – 2.65 0.65	grey-white fir	ne q yello e m sano	tz sand ow cement ot fine qtz	ed sand sand	organic matter (coffee rock)

DATE	TIME	SWL#	SAMPLE NO/S
9/3/98	09:13	dry	
22/4/98	09:59	1.29	B11/E, B11/E2*
10/8/98	13:20	2.75	nil

Initial Water Chemistry Sample No: B11/E

Date:	22/4	/98	Analyte values in mg/L					
pН	5.8	units	EC	554	μS/cm			
Eh	152	mV	O_2	n/a	% Sat			
Temp	23.0	°C	BOD	<2	mg/L			
Na	47.	2	Cl	82.0				
K	3.0	5	HCO ₃	38.0				
Ca	37.	4	SO_4	105.0				
Mg	10.	0	NO ₂ -N	0.002				
NH ₄	0.1	2	NO ₃ -N	0.7	·			
TOC	6.9	9	PO_4	0.6				

Notes: *RL is approximate at collar-natural junction; referenced to Australian Height Datum (ahd) # SWL measured from top of collar unless indicated otherwise

Borehole established as anew background when B1 was found to be possibly contaminated. This bore adjacent to new construction on N side of boundary where ground level raised by about 4 m.

 $^{^{\}wedge\wedge}$ Temporary 100mm PVC casing on some holes and for below watertable.

N _A	NATIONAL STUDY OF CEMETERY GROUNDWATERS UNIVERSITY OF TECHNOLOGY, SYDNEY								
Cemetery:	Botany	/ Cemet	ery (Eastern S	Suburbs Men	norial	Park)		B12	
Location:			ormer power s b-station road			RL * m (ahd) Est. 20.0			
Driller:]	B. Dent	t					Date Drilled:	
Drilling Meth	od:	Hand A	uger – 100 m	ım				4/12/97	
Piezometer T				Collar: Screen Length:				Supervised By:	
	PVC scre	een 0.51	nm slots	0.66	m	1.5	m	BBD	
Casing, lift, soil samples	SWI filter pa screen	ack	Depth m	Description					
s none	pack to 1.		$\begin{array}{c} 0 - 0.7 \\ 0.7 - 1.7 \\ 1.7 - 1.75 \\ 1.75 - 2.1 \\ 2.1 - 2.75 \\ 2.75 - 3.2 \\ 3.2 \end{array}$	lt grey & br	fine yer o tz san br m e coa	qtz sand if brown cer id iot med-fine ise gravelly	nented e qtz sar		

DATE	TIME	SWL#	SAMPLE NO/S
9/3/98	09:03	dry	
10/8/98	10:32	2.52	B12/6, B12/666

Initial Water Chemistry Sample No: B12/6

Date:	10/8	/98	Analyte values in mg/L					
pН	6.7	units	EC	826	μS/cm			
Eh	75	mV	O_2	33.4	% Sat			
Temp	17.0	°C	BOD	7.0	mg/L			
Na	101	.7	C1	150.0				
K	29.	.3	HCO ₃	143.9				
Ca	32.	.5	SO_4	34.0				
Mg	10.	.1	NO ₂ -N	0.007				
NH ₄	2.4	-6	NO ₃ -N	0				
TOC	13.	.0	PO ₄	0.9	·			

Notes: *RL is approximate at collar-natural junction; referenced to Australian Height Datum (ahd) # SWL measured from top of collar unless indicated otherwise

New background bore in former power station site, N boundary adjacent to power sub-station road and W of former carpark

^{^^} Temporary 100mm PVC casing on some holes and for below watertable.

APPENDIX C

SITE INVESTIGATION INFORMATION $WORONORA\ GENERAL\ CEMETERY, SYDNEY, NSW,\ (WOR)\ W$

Figure C.1 Historic Perspective of WOR -1930(aerial photography Commonwealth of Australia)

Figure C.2 Piezometer Locations at WOR (aerial photo base – NSW Dept. Lands, 1994

Table C.1 Rainfall Data & Evaporation (Class A Pan) Period of Study and Overall including full month before sampling and final month for Station 66078, Lucas Heights (rainfall) and Station 66037, Sydney Airport (evaporation) (BOM, 2001)

measurements in mm

Rainfall

Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Ann
1997			61.2	0.5	96.5	51	48.8	18.7	105.6	60.2	21.7	27.3	732.4
1998	75	56	15.5	161	203.3	80.2	86.8						
#readings	39	39	40	41	41	41	41	40	40	39	39	39	37
lowest	7.1	12.2	10.4	0.5	4.1	2.3	0.3	0	0.6	0	8.1	6.4	556.3
highest	270.7	443	329.5	397.6	270.3	449.7	363.7	403.8	249.3	213.7	432.2	273.1	1804
average	102.4	94.5	117.3	97.0	82.5	106.8	59.3	75.0	55.3	73.4	97.2	87.4	1061.0
median	80.2	70.2	90.8	66.6	75.2	70.8	39.8	30.7	48.1	48.6	71.5	65.7	1070

Evaporation

= + erp erec													
Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Ann
1997			190.8	143	86.4	69	78.6	121	117	199	221.6	238.6	1850.4
1998	231	214.4	190.2	135.2	85.4	72.6	76.6						
# readings	25	25	25	24	24	24	24	24	24	24	24	24	24
lowest	172.7	136.2	134.1	93.5	69.4	63.5	53.6	98.8	112.6	129.6	161.6	183.2	1561.1
highest	270.6	214.4	205	152.8	119.6	96.1	104.9	149.2	206.4	234.2	226	292.9	2042.6
average	217.1	178.6	165	123.9	88.8	75.7	83.7	115.2	141.3	176.6	195.3	230.1	1788.2
median	211.5	180.4	163.2	122.3	87.9	73.3	81.5	111.6	137.6	178.6	195.4	229.3	1766.3

NA	NATIONAL STUDY OF CEMETERY GROUNDWATERS UNIVERSITY OF TECHNOLOGY, SYDNEY								
Cemetery:	Woronora Ge	neral Cemeter	y			W1			
Location:	in roadway b	etween 'Lawns	RL * m (ahd) Est. 100.7						
Driller:	Unidri	ll Pty. Ltd.				Date Drilled:			
Drilling Metho	od: 400 m	n solid flight a	uger			10/12/96			
Piezometer T	Type: 50mm PVC	class 18,	Collar:	Screen Lei	ngth:	Supervised By:			
	PVC screen 0.	mm slots	0.68 m	3.0	m	BBD			
Casing, lift, soil samples m	water made filter pack screen m	Depth m		Descrip	ption				
\$ 0.5 - 1.0 W1/2 \$ 1.0 - 1.2 W1/3 \$ 2.5 - 3.0 W1/1	pack to 1.05 ∇ 2.4 scr 1.15 – 4.15	$ \begin{array}{c} 0 - 0.3 \\ 0.3 - 1.2 \\ 1.2 - 2.0 \\ 2.0 - 4.15 \\ 4.15 \end{array} $	dk br sandy topsoil med dense yel-br sandy clay stiff grey clay with ironstone pebbles very soft, EW grey siltstone complete in grey siltstone						

DATE	TIME	SWL#	SAMPLE NO/S
10/4/97	10:55	2.10	W1/1
5/6/97	13:01	1.78	W1/2
29/7/97	09:39	1.74	W1/3
3/11/97	09:37	1.92	W1/4
16/3/98	13:17	2.64	W1/5
14/7/98	14:43	1.66	W1/6

Initial Water Chemistry Sample No: W1/1

Date:	10/4/97		Analyte values in mg/L		
pН	6.2	units	EC	337	μS/cm
Eh	37	mV	O_2	27.5	% Sat
Temp	21.8	°C	BOD	<2	mg/L
Na	17.0		C1	22.0	
K	10.2		HCO ₃	100.0	
Ca	30	.8	SO_4	15.0	
Mg	5.	6	NO ₂ -N	0.010	
NH_4	0.1	9	NO ₃ -N	0	
TOC	8.	8	PO ₄	0	

*RL is approximate at collar-natural junction; referenced to Australian Height Datum (ahd) **Notes:** # SWL measured from top of collar unless indicated otherwise

^{^^} no casing used for Woronora augering or pitting log adapted from nearby exploration pit #1 of 25/11/96

NA	NATIONAL STUDY OF CEMETERY GROUNDWATERS UNIVERSITY OF TECHNOLOGY, SYDNEY							Borehole
Cemetery:	Word	nora Gei	neral Cemeter	y				W2
Location:	NE o	f 'Lawn i	l' in buffer zo	ne				RL * m (ahd)
								Est. 100.0
Driller:		Unidril	l Pty. Ltd.					Date Drilled:
Drilling Metho			n solid flight a	uger				10/12/96
Piezometer T	ype: 50r	nm PVC	class 18,	Colla	r:	Screen L	ength:	Supervised By:
	PVC so	creen 0.5	mm slots	0.69	m	2.0	m	BBD
Casing, lift, soil samples m	water filter scree	pack	Depth m			Desci	ription	
s 0.2 – 1.1 W2/1 s 2.2 – 3.0 W2/2	pack to ∇ 1.7 ∇ 2.2 scr 1.3 -		0 - 0.2 0.2 - 1.1 1.1 - 2.2 2.2 - 3.0 3.0 - 3.3 3.3	red & gre weathered	yel-br y mot od d grey od d white	mot sandy clay & beige silt sandstone		d sandstone

DATE	TIME	SWL#	SAMPLE NO/S
10/4/97	12:00	1.64	W2/1
5/6/97	13:38	1.44	W2/2
29/7/97	13:59	1.43	W2/3
3/11/97	10:35	1.69	W2/4
16/3/98	14:01	2.46	W2/5
14/7/98	15:26	1.77	W2/6

Initial Water Chemistry

Date:	10/4	/97	Analyte values in mg/L		
pН	6.4	units	EC	375	μS/cm
Eh	122	mV	O_2	23.5	% Sat
Temp	21.0	°C	BOD	2	mg/L
Na	17.	.0	Cl	21.0	
K	12.	.9	HCO ₃	126.8	
Ca	32.	.8	SO_4	29.0	
Mg	3	3	NO ₂ -N	0.002	
NH ₄	0.	1	NO ₃ -N	0.5	
TOC	7.4	4	PO_4	0.1	

*RL is approximate at collar-natural junction; referenced to Australian Height Datum (ahd) Notes: # SWL measured from top of collar unless indicated otherwise

Sample No:

W2/1

^^ no casing used for Woronora augering or pitting log adapted from nearby exploratory Pit 32 of 25/11/96

N.A	BOREHOLE	E				
Cemetery:	Woronora G	eneral Cemeter	y		W3	
Location:	NE corner of	buffer zone, a	djacent new reside	ence	RL * m (ahd) Est. 99.5	
Driller:	Unidr	ill Pty. Ltd.			Date Drilled:	
Drilling Metho	od: 400 m	m solid flight a	uger		10/12/96	
Piezometer T	Type: 50mm PV		Collar:	Screen Lengt	h: Supervised B	y:
	PVC screen 0.	5mm slots	0.67 m	2.0	m BBD	
Casing, lift, soil samples m	water made filter pack screen m	Depth m		Description	on	
s no	pack to 1.1 scr 1.4 – 3.4	0-0.3 0.3-1.3 1.3-2.2 2.2-3.4 3.4	It br sandy topso orange & yel-br grey clay with in weathered (EW' complete in grey	mot sandy clay constone pebble ?) grey siltstone	S	

DATE	TIME	SWL#	SAMPLE NO/S
10/4/97	12:56	1.27	W3/1
5/6/97	12:44	1.43	nil
30/7/97	11:35	1.38	W3/3
17/3/98	12:52	2.29	W3/5
15/7/98	14:12	1.34	W3/6

Initial Water Chemistry Sample No:

Date:	10/4	/97	Analyte values in mg/L			
pН	10.8 ^{\$}	units	EC	390	μS/cm	
Eh	36	mV	O_2	44.3	% Sat	
Temp	21.6	°C	BOD	2.0	mg/L	
Na	19.	.0	C1	24.0		
K	16.	.0	HCO ₃	0		
Ca	27.	.8	SO_4	23.0		
Mg	0.0	6	NO ₂ -N	0.024		
NH ₄	0		NO ₃ -N	0.5		
TOC	7.:	5	PO_4	0		

*RL is approximate at collar-natural junction; referenced to Australian Height Datum (ahd) **Notes:** # SWL measured from top of collar unless indicated otherwise

W3/1

log adapted from nearby exploratory Pit #7 of 25/11/96

\$ the high pH cannot be explained, however, remainder of results in order

 $^{^{\}wedge \wedge}$ no casing used for Woronora augering or pitting

N.A	BOREHOLE				
Cemetery:	Woronora Ge	neral Cemeter	y		W4
Location:			o former residence	e and Linden St	RL * m (ahd)
~	above lower e				Est. 102.2
Driller:		1 Pty. Ltd.			Date Drilled:
Drilling Meth		n solid flight a	uger		10/12/96
Piezometer T	Type: 50mm PVC		Collar:	Screen Length:	Supervised By:
	PVC screen 0.5	mm slots	0.71 m	2.0 m	BBD
Casing, lift, soil samples m	water made filter pack screen m	Depth m		Description	
s 1.0 W4/1 s 2.1 W4/2 s 2.9 W4/3	pack to 1.0 scr 1.1 – 3.1	0 - 0.5 0.5 - 1.5 1.5 - 2.4 2.4 - 3.1 3.1	HW mot purple MW – HW grey	y, increasing ironst & red-br & grey si	Itstone

DATE	TIME	SWL#	SAMPLE NO/S
11/4/97	12:35	3.25	W4/1
5/6/97	11:26	3.10	W4/2
29/7/97	11:27	2.80	W4/3
3/11/97	11:51	3.27	W4/4
16/3/98	09:42	dry	
15/7/98	11:48	2.39	W4/6

Initial Water Chemistry Sample No: W4/1

Date:	11/4/97		Analyte values in mg/L			
pН	6.0	units	EC	922	μS/cm	
Eh	166	mV	O_2	33.0	% Sat	
Temp	21.6	°C	BOD	21.0	mg/L	
Na	69.5		C1	170.0		
K	22.	.6	HCO ₃	110.9		
Ca	30.	.0	SO_4	72.0		
Mg	9.0		NO ₂ -N	0.001		
NH_4	0		NO ₃ -N	0.4		
TOC	19.	.0	PO ₄	0		

*RL is approximate at collar-natural junction; referenced to Australian Height Datum (ahd) **Notes:** # SWL measured from top of collar unless indicated otherwise

^{^^} no casing used for Woronora augering or pitting

NATIONAL STUDY OF CEMETERY GROUNDWATERS UNIVERSITY OF TECHNOLOGY, SYDNEY						Borehole		
Cemetery:	Woro	nora Gei	neral Cemeter	y				W5
Location:	'Abel	ia Lawn'	,					RL * m (ahd)
								Est. 111.5
Driller:		Unidril	l Pty. Ltd.					Date Drilled:
Drilling Metho	od:	400 mn	n solid flight a	uger				10/12/96
Piezometer T				Collar		Screen L	ength:	Supervised By:
	PVC so	creen 0.5	mm slots	0.68	m	1.5	m	BBD
Casing, lift, soil samples m	water filter scree	pack	Depth m	Description				
s 0.5 – 0.8 W5/1 s 1.4 W5/2	pack to scr 0.9 -		0-0.2 0.2-1.3 1.3-1.8 1.8-2.4 2.4	grey clay	ly clay mot g			

DATE	TIME	SWL#	SAMPLE NO/S
11/4/97	13:11	2.27	W5/1
5/6/97	10:36	1.68	W5/2
30/7/97	10:28	1.62	W5/3
4/11/97	09:06	1.76	W5/4
17/3/98	11:27	2.22	W5/5

Initial Water Chemistry Sample No: W5/1

Date:	11/4	/97	Analyte values in mg/L			
pН	5.3	units	EC	274	μS/cm	
Eh	110	mV	O_2	10.4	% Sat	
Temp	24.3	°C	BOD	10.0	mg/L	
Na	30.5		C1	25.0		
K	1	3	HCO ₃	43.9		
Ca	2	3	SO_4	56.0		
Mg	2.9	9	NO ₂ -N	0		
NH ₄	2.6	52	NO ₃ -N	0.1		
TOC	9.3	2	PO_4	0		

*RL is approximate at collar-natural junction; referenced to Australian Height Datum (ahd) **Notes:** # SWL measured from top of collar unless indicated otherwise

^^ no casing used for Woronora augering or pitting borelog adapted from adjacent exploratory Pit # 6 of 25/11/96

NATIONAL STUDY OF CEMETERY GROUNDWATERS UNIVERSITY OF TECHNOLOGY, SYDNEY					BOREHOLE	
Cemetery:	Woronora Ge	neral Cemeter	y		W6	
Location:	'The Park' clo	ose to drain we	tland and W bour	dary	RL * m (ahd) Est. 106.0	
Driller:	Unidril	l Pty. Ltd.			Date Drilled:	
Drilling Metho	od: 400 mr	n solid flight a	uger		10/12/96	
Piezometer T	ype: 50mm PVC		Collar:	Screen Length:	Supervised By:	
	PVC screen 0.5	mm slots	0.69 m	1.5 m	BBD	
Casing, lift, soil samples m	water made filter pack screen m	Depth m	Description			
s 1.0 -2.0 W6/1 s 2.0 W6/2	pack to 0.5 $1.6 \text{ H}_2\text{S}$ scr $0.6 - 2.1$	$ \begin{array}{c} 0 - 0.3 \\ 0.3 - 1.2 \\ 1.2 - 2.0 \\ 2.0 - 2.1 \\ 2.1 \end{array} $		clay, moist & red, yel-br & gre I mot med sandston		

DATE	TIME	SWL#	SAMPLE NO/S
10/4/97	14:05	1.56	W6/1
4/6/97	09:50	0.87	W6/2
29/7/97	10:38	0.74	W6/3
3/11/97	13:07	1.06	W6/4
16/3/98	11:56	2.09	W6/5, W666/5
15/7/98	09:20	0.85	W6/6

Initial Water Chemistry Sample No:

Date:	10/4	10/4/97 Analyte values in mg/L				
pН	6.6	units	EC	984	μS/cm	
Eh	-134	mV	O_2	6.9	% Sat	
Temp	23.1	°C	BOD	10.0	mg/L	
Na	32.9		C1	39.0		
K	4.0	5	HCO ₃	256.0		
Ca	66.	1	SO_4	17.0		
Mg	8.7		NO ₂ -N	0		
NH ₄	4.7	2	NO ₃ -N	0		
TOC	n/a	1	PO_4	0.7		

*RL is approximate at collar-natural junction; referenced to Australian Height Datum (ahd) Notes: # SWL measured from top of collar unless indicated otherwise

W6/1

^^ no casing used for Woronora augering or pitting the general area of this bore is usually boggy except in very dry summer months

N.	NATIONAL STUDY OF CEMETERY GROUNDWATERS						BOREHOLE	
			OF TECHNO		YDNEY	Y		
Cemetery:	Woror	10ra Ge1	neral Cemeter	y				W7
Location:	within	road-en	closed triangl	e adjacent	to 'Ortl	hodox Secti	on'	RL * m (ahd)
	above	'The Pa	rk'					Est. 111.3
Driller:			Pty. Ltd.					Date Drilled:
Drilling Meth			n solid flight a	uger				10/12/96
Piezometer 7				Colla	r:	Screen L	ength:	Supervised By:
	PVC sci	reen 0.5	mm slots	0.68	m	2.0	m	BBD
Casing, lift, soil samples m	water r filter p screer	oack	Depth m	Description				
s 1.1 W7/1	pack to 0) 8	0 - 0.3 $0.3 - 0.8$	lt br & or yel-br sar		ravelly tops	oil	
s 2.1 W7/2	•		0.8 - 2.2	yel-br &	dk grey	mot sandy		
s 2.9 W7/3	scr 1.0 –	2.0	2.2 - 3.0 3.0			& mot yel-b thered silts		ne

DATE	TIME	SWL#	SAMPLE NO/S
11/4/97	14:55	1.72	W7/1
5/6/97	09:15	1.39	W7/2
30/7/97	09:19	1.35	W7/3
4/11/97	10:00	1.50	W7/4
16/3/98	10:48	2.68	W7/5
15/7/98	10:01	1.19	W7/6

Initial Water Chemistry Sample No: W7/1

Date:	11/4/97 Analyte values in mg/L			values in mg/L		
pН	6.5	units	EC	390	μS/cm	
Eh	51	mV	O_2	17.9	% Sat	
Temp	17.9	°C	BOD	110.0	mg/L	
Na	32.5		C1	21.0		
K	19	.9	HCO ₃	134.1		
Ca	38	.0	SO_4	25.0		
Mg	4.	1	NO ₂ -N	0.004		
NH ₄	0.1	. 5	NO ₃ -N	0		
TOC	21	.0	PO ₄	0.8		

Notes: *RL is approximate at collar-natural junction; referenced to Australian Height Datum (ahd) # SWL measured from top of collar unless indicated otherwise

^^ no casing used for Woronora augering or pitting

NATIONAL STUDY OF CEMETERY GROUNDWATERS UNIVERSITY OF TECHNOLOGY, SYDNEY						Borehole		
Cemetery:	Word	nora Gei	neral Cemeter	y				W8
Location:	below	'Vaults	Section', SE	corner near	Linder	n St		RL * m (ahd) Est. 109.2
Driller:		Unidril	l Pty. Ltd.					Date Drilled:
Drilling Metho	od:		n solid flight a	uger				10/12/96
Piezometer T	ype: 50r	nm PVC	class 18,	Colla	r:	Screen L	ength:	Supervised By:
	PVC so	creen 0.5	mm slots	0.63	m	1.5	m	BBD
Casing, lift, soil samples m	water filter scree	pack	Depth m	Description				
s no	pack to ∇ 1.3 ∇ 1.9 scr 1.0 -		0-0.6 $0.6-1.4$ $1.4-1.9$ $1.9-2.5$ 2.5	red-br mo	yel-br ot in gre d siltste	one with san	dstone l	ayers; hard at 2.4

DATE	TIME	SWL#	SAMPLE NO/S
11/4/97	14:45	2.64	W8/1
3/6/97	11:06	1.58	W8/2
29/7/97	12:41	1.55	W8/3
3/11/97	14:10	1.73	W8/4
17/3/98	10:15	2.32	W8/5

Initial Water Chemistry

		•		•		
Date:	11/4	/97	Analyte v	values in mg/L		
pН	5.8	units	EC	171	μS/cm	
Eh	176	mV	O_2	43.0	% Sat	
Temp	22.0	°C	BOD	4.0	mg/L	
Na	13.6		C1	19.0		
K	6.9	9	HCO ₃	18.3		
Ca	9.:	5	SO_4	16.0		
Mg	2.4		NO ₂ -N	0		
NH_4	0.03		NO ₃ -N	0.1		
TOC	9.4	4	PO_4	0.4		

Notes: *RL is approximate at collar-natural junction; referenced to Australian Height Datum (ahd) # SWL measured from top of collar unless indicated otherwise

Sample No:

W8/1

^^ no casing used for Woronora augering or pitting

borelog adapted from adjacent exploratory Pit #8 of 27/11/96

NATIONAL STUDY OF CEMETERY GROUNDWATERS UNIVERSITY OF TECHNOLOGY, SYDNEY					Borehole		
Cemetery:	Woronora G	eneral Cemeter	у				W9
Location:		n rubble sub-so	il drain bet	ween '	Anglican 3 a	ınd 4',	RL * m (ahd)
	on roadway	it NE end					Est. 103.0
Driller:		ll Pty. Ltd.					Date Drilled:
Drilling Metho		m solid flight a	uger				7/2/97
Piezometer T	ype: 50mm PV		Colla	r:	Screen Le	ength:	Supervised By:
	PVC screen 0	5mm slots	0.55	m	0.9	m	BBD
Casing, lift, soil samples m	water made filter pack screen m	Depth m	Description				
^^ s W9/1	pack to 0.58 ∇ 1.36 scr 1.2 – 2.1	2.1	profile wi	ithin sa in ?silt	stone?		emplacement

DATE	TIME	SWL#	SAMPLE NO/S
5/6/97	14:14	1.73	W9/2
29/7/97	14:53	1.62	W9/3
4/11/97	11:00	1.95	W9/4
18/3/98	10:40	dry	
15/7/98	13:53	1.69	W9/6

Initial Water Chemistry Sample No: W9/2

Date:	5/6/97		Analyte values in mg/L			
pН	5.5	units	EC	192	μS/cm	
Eh	72	mV	O_2	46.7	% Sat	
Temp	20.5	°C	BOD	<2	mg/L	
Na	24.8		C1	24.0		
K	1.	6	HCO ₃	2.4		
Ca	4.	8	SO_4	28.0		
Mg	4.	4.3		0		
NH_4	n/	a	NO ₃ -N	0		
TOC	0.	6	PO_4	0		

Notes: *RL is approximate at collar-natural junction; referenced to Australian Height Datum (ahd) # SWL measured from top of collar unless indicated otherwise

bore constructed on side of sub-soil drain to which it is connected by sand-filled trench no grout seal on this bore - not feasible; sandy fill of trench sampled

 $^{^{\}wedge\wedge}$ no casing used for Woronora augering or pitting

APPENDIX D

SITE INVESTIGATION INFORMATION MELBOURNE GENERAL CEMETERY, MELBOURNE, VIC, (MEL) M

Figure D.1 Historical Perspective of MEL – 1950 (aerial photography Melbourne Board of Works)

Figure D.2 Piezometer Locations at MEL (aerial photo base – Qascophoto, 1992)

Table D.1 Rainfall & Evaporation (Class A Pan) Data Period of Study and Overall including full month before sampling and final month for Station 86071, Melbourne Regional Office (BOM, 2001)

measurements in mm

Rainfall

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Ann
		20	13.8	59.6	35	18.2	27.8	56.8	30.8	56.8	7.2	359.8
59.4	71.6	7.4	50.2	50	50.6	39.6	22.8	35.4	78.6			
143	143	143	144	144	144	144	144	144	144	143	143	142
0.3	0.5	3.7	0	3.8	8	9.4	12.4	13.4	7.5	6.5	1.7	332.3
176	238.2	190.7	195	142.5	116.8	178.4	110.8	201.6	193.3	206.1	197.4	967.5
48.9	47.6	51.2	58.0	57.2	50.1	48.4	50.2	59.2	67.4	60.0	59.3	657.9
37.4	32.1	38.8	50.9	56.0	43.9	46.6	49.6	53.3	68.1	52.3	48.7	655.7
	59.4 143 0.3 176 48.9	59.4 71.6 143 143 0.3 0.5 176 238.2 48.9 47.6	20 59.4 71.6 7.4 143 143 143 0.3 0.5 3.7 176 238.2 190.7 48.9 47.6 51.2	20 13.8 59.4 71.6 7.4 50.2 143 143 143 144 0.3 0.5 3.7 0 176 238.2 190.7 195 48.9 47.6 51.2 58.0	20 13.8 59.6 59.4 71.6 7.4 50.2 50 143 143 143 144 144 0.3 0.5 3.7 0 3.8 176 238.2 190.7 195 142.5 48.9 47.6 51.2 58.0 57.2	20 13.8 59.6 35 59.4 71.6 7.4 50.2 50 50.6 143 143 143 144 144 144 0.3 0.5 3.7 0 3.8 8 176 238.2 190.7 195 142.5 116.8 48.9 47.6 51.2 58.0 57.2 50.1	20 13.8 59.6 35 18.2 59.4 71.6 7.4 50.2 50 50.6 39.6 143 143 144 144 144 144 144 0.3 0.5 3.7 0 3.8 8 9.4 176 238.2 190.7 195 142.5 116.8 178.4 48.9 47.6 51.2 58.0 57.2 50.1 48.4	59.4 71.6 7.4 50.2 50 50.6 35 18.2 27.8 143 143 143 144 144 144 144 144 144 0.3 0.5 3.7 0 3.8 8 9.4 12.4 176 238.2 190.7 195 142.5 116.8 178.4 110.8 48.9 47.6 51.2 58.0 57.2 50.1 48.4 50.2	20 13.8 59.6 35 18.2 27.8 56.8 59.4 71.6 7.4 50.2 50 50.6 39.6 22.8 35.4 143 143 144 144 144 144 144 144 144 144 13.4 0.3 0.5 3.7 0 3.8 8 9.4 12.4 13.4 176 238.2 190.7 195 142.5 116.8 178.4 110.8 201.6 48.9 47.6 51.2 58.0 57.2 50.1 48.4 50.2 59.2	20 13.8 59.6 35 18.2 27.8 56.8 30.8 59.4 71.6 7.4 50.2 50 50.6 39.6 22.8 35.4 78.6 143 143 144 144 144 144 144 144 144 144 144 144 7.5 176 238.2 190.7 195 142.5 116.8 178.4 110.8 201.6 193.3 48.9 47.6 51.2 58.0 57.2 50.1 48.4 50.2 59.2 67.4	59.4 71.6 7.4 50.2 50 50.6 35 18.2 27.8 56.8 30.8 56.8 143 143 144 14	59.4 71.6 7.4 50.2 50 50.6 35 18.2 27.8 56.8 30.8 56.8 7.2 59.4 71.6 7.4 50.2 50 50.6 39.6 22.8 35.4 78.6

Evaporation

Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Ann
1997			99.6	64.8	41.2	34.6	34.8	51	63.2	107.2	128	161	1139
1998	162.6	156.2	118.2	59.4	42.2	33.6	28.4	40.2	77.8	102.2			
#readings	44	44	44	44	44	44	44	44	44	44	43	43	43
lowest	130.1	103.8	82	46	29	23.3	22.1	33.5	48.2	72.9	86.2	111.4	904
highest	260.7	229.9	193.4	113.3	71.1	47.6	66.6	88.6	123.2	151	185	260.8	1592.2
average	182.3	153.3	121.7	78.0	48.8	33.7	36.9	51.7	73.6	108.9	135.2	164.1	1189.9
median	179.0	150.6	116.8	76.2	47.1	33.6	35.8	51.1	69.9	105.6	130.2	160.5	1143.6

NA				ERY GROUNDW OLOGY, SYDNE		BOREHOLE		
Cemetery:	Melbo	ourne	General Cemete	ery		M2		
Location:	Top o	f hill a	adjacent to new	mausoleum, on ed	lge of old roadway	RL * m (ahd)		
	at 'Se	ction 1				Est. 49.6		
Driller:			Leeuwen Found	•		Date Drilled:		
Drilling Metho			nm solid flight a	_	Screen Length:	16/12/96		
Piezometer T				Collar:	Supervised By:			
			.5mm slots	0.64 m	1.2 m	BBD		
Casing, lift, soil samples	SWI filter pa screen	ack	Depth m	Description				
^^ \$ s 1.6 M2/1 s 2.5 M2/3	pack to i scr 1.9 –		0-0.35 0.35-0.55 0.55-1.9 1.9-3.1 3.1	weathered grey	ay & grey sandy clay siltstone	, minor iron gravel . yel-br mot & roots		

DATE	TIME	SWL m#	SAMPLE NO/S
1/4/97	n/a	3.04	M2/1
17/6/97	10:48	3.36	M2/2
22/7/97	09:47	3.47	M2/3
2/10/97	08:45	3.30	M2/4
13/2/98	12:13	3.29	M2/5
16/4/98	10:26	3.40	M2/6
28/10/98	07:55	2.96	M2/7

Initial Water Chemistry Sample No:

Date:	1/4/	97	Analyte v	values in mg/L			
pН	6.9	units	EC	2176	μS/cm		
Eh	-28 mV		O_2	n/a	% Sat		
Temp	23.1 °C		BOD	>13	mg/L		
Na	492	2.0	Cl	61.0			
K	19.	.3	HCO ₃	725.4			
Ca	17.	.3	SO_4	450.0			
Mg	9.8		NO ₂ -N	0.003			
NH ₄	0.6	51	NO ₃ -N	0			
TOC	77.	.0	PO ₄	4.2			

*RL is approximate at collar-natural junction; referenced to Australian Height Datum (ahd) **Notes:** # SWL measured from top of collar unless indicated otherwise

M2/1

\$ other exploratory boreholes were drilled – these were not established as sampling points, but some soil samples were taken from these

^{^^} No casing was used during drilling at MEL

NA	NATIONAL STUDY OF CEMETERY GROUNDWATERS UNIVERSITY OF TECHNOLOGY, SYDNEY						
Cemetery:	Melbourne	e General Cemete	ery		M3		
Location:	east edge o	of 'Roman Catho	lic' Section on No	rth Avenue	RL * m (ahd)		
	adjacent to rotunda						
Driller:		Van-Leeuwen Foundation Drilling					
Drilling Metho		mm solid flight			16/12/96		
Piezometer Ty	-		Collar:	Screen Length:	Supervised By:		
	PVC screen	0.5mm slots	0.72 m	1.2 m	BBD		
Casing, lift, soil samples	SWL filter pack screen m	Depth m	Description				
s 1.2 M3/1 s 2.1 M3/2	pack to 1.5 scr 1.95 – 3.1	$ \begin{array}{c} 0 - 0.6 \\ 0.6 - 0.8 \\ 0.8 - 2.1 \\ 2.1 - 2.3 \\ 2.3 - 3.15 \\ 3.15 \end{array} $	grey coarse sand	ey sandy clay nge & grey sandy (weathered sands reathered siltstone			

DATE	TIME	SWL m#	SAMPLE NO/S
1/4/97	n/a	3.61	
7/6/97	12:00	3.25	
22/7/97	08:53	dry	
2/10/97	10:07	3.15	M3/4
13/2/98	09:05	3.33	M3/5
16/4/98	08:00	3.50	
24/10/98	n/a	1.64	

Initial Water Chemistry Sample No:

Date:	2/10)/97	Analyte values in mg/L				
pН	8 units		EC	1476 μS/σ			
Eh	-47 mV		O_2	13	% Sat		
Temp	18 °C		BOD	53	mg/L		
Na	n/	'a	C1	35			
K	n/a		HCO ₃	732			
Ca	n/	'a	SO_4	110			
Mg	n/a		NO ₂ -N	n/a			
NH ₄	n/	'a	NO ₃ -N	n/a			
TOC	32	2	PO_4	0	·		

*RL is approximate at collar-natural junction; referenced to Australian Height Datum (ahd) **Notes:** # SWL measured from top of collar unless indicated otherwise

M3/4

^{^^} No casing was used during drilling at MEL

N.	NATIONAL STUDY OF CEMETERY GROUNDWATERS UNIVERSITY OF TECHNOLOGY, SYDNEY							
Cemetery:	Melb	ourne Ge	eneral Cemete	ery			M5	
Location:	road	junction	at 'Presbyteria	an K' Section and	perimeter roa	ad	RL * m (ahd)	
							Est. 37.9	
Driller:	Driller: Van-Leeuwen Foundation Drilling							
Drilling Meth			n solid flight a	auger			16/12/96	
Piezometer T				Collar:	Screen Len	gth:	Supervised By:	
	PVC sc	reen 0.51	nm slots	0.66 m	1.5	m	BBD	
Casing, lift, soil samples	SW filter scree	pack	Depth m	Description				
^^			0 - 0.2	It br sandy topso				
s 0.95 M5/1	pack to		0.2 - 1.3	yel-br sandy clay				
s 1.6 M5/2	scr 1.45	- 2.95	1.3 – 2.95 2.95	EW grey siltston complete in HW			1.6	

DATE	TIME	SWL m#	SAMPLE NO/S
1/4/97	n/a	dry	
17/6/97	11:24	dry	
22/7/97	11:14	dry	
2/10/97	n/a	dry	
13/2/98	11:08	3.40	M5/5
16/4/98	08:10	dry	
24/10/98	n/a	dry	

Initial Water Chemistry Sample No: M5/5

Date:	13/2	/98	Analyte v	values in mg/L			
pН	6.5	units	EC	1232	μS/cm		
Eh	-62 mV		O_2	n/a	% Sat		
Temp	21.2 °C		BOD	9.0	mg/L		
Na	271	.9	Cl	62.0			
K	17.1		HCO ₃	475.5			
Ca	20.	9	SO_4	130.0			
Mg	12.5		NO ₂ -N	0			
NH ₄	<0	.i	NO ₃ -N	0			
TOC	18.	0	PO ₄	< 0.02			

*RL is approximate at collar-natural junction; referenced to Australian Height Datum (ahd) **Notes:** # SWL measured from top of collar unless indicated otherwise

^{^^} No casing was used during drilling at MEL

NAT	NATIONAL STUDY OF CEMETERY GROUNDWATERS UNIVERSITY OF TECHNOLOGY, SYDNEY emetery: Melbourne General Cemetery							BOREHOLE	
Cemetery:	Melbo	urne Ge	neral Cemete	ery				M6	
Location:	on per	imeter r	oad in 'Presby	yterian Q' Sec	tion			RL * m (ahd)	
								Est. 40.7	
Driller:		Van-Leeuwen Foundation Drilling						Date Drilled:	
Drilling Method			n solid flight a					16/12/96	
Piezometer Ty				Collar:		Screen Le	ngth:	Supervised By:	
	PVC scr	een 0.5r	nm slots	0.69	m	1.2	m	BBD	
Casing, lift, soil samples	SWI filter p screen	ack	Depth m	Description					
s no	pack to 1 ∇ 2.1 – 2 scr 1.5 –	.3	0 - 0.5 0.5 - 1.2 1.2 - 2.7 2.7	grey-br sandy fill & topsoil yell-br sandy clay; minor coarse sand grey EW/HW siltstone complete in grey siltstone					

DATE	TIME	SWL m#	SAMPLE NO/S
1/4/97	11:31	3.11	M6/1
7/6/97	11:31	3.46	
22/7/97	11:18	dry	
2/10/97	10:49	2.38	
13/2/97	10:18	3.44	
16/4/98	08:17	3.32	
28/10/97	09:14	2.80	M6/7

Initial Water Chemistry

Date:	1/4/	97	Analyte v	Analyte values in mg/L				
pН	7.1	units	EC	5060	μS/cm			
Eh	-139	mV	O_2	n/a	% Sat			
Temp	23.5	°C	BOD	<2	mg/L			
Na	992	2.7	Cl	780.0				
K	11.	.6	HCO ₃	1012				
Ca	30.	.0	SO ₄	270.0				
Mg	59.	.5	NO ₂ -N	0.002				
NH_4	n/a		NO ₃ -N	0				
TOC	11.	.0	PO_4	n/a				

*RL is approximate at collar-natural junction; referenced to Australian Height Datum (ahd) # SWL measured from top of collar unless indicated otherwise ^^ No casing was used during drilling at MEL

Sample No:

M6/1

NA	NATIONAL STUDY OF CEMETERY GROUNDWATERS UNIVERSITY OF TECHNOLOGY, SYDNEY							
Cemetery:	Melbe	ourne Ge	eneral Cemete	ery		M7		
Location:	on roa	adway in	nmediately do	erian R' Section	RL * m (ahd)			
						Est. 42.0		
Driller:				ation Drilling		Date Drilled:		
Drilling Metho	od:	400 mn	n solid flight a	auger		16/12/96		
Piezometer Ty	•			Collar:	Screen Length:	Supervised By:		
	PVC sc	reen 0.51	nm slots	0.72 m	1.2 m	BBD		
Casing, lift, soil samples	SWL Depth screen m			Description				
	pack to scr 1.5 -		0 - 0.5 0.5 - 1.2 1.2 - 2.7 2.7		clay; minor coars	e sand laminae, hard at 2.6		

DATE	TIME	SWL m#	SAMPLE NO/S
1/4/97	n/a	3.62	M7/1
17/6/97	11:36	dry	
22/7/97	11:25	dry	
2/10/97	n/a	dry	
13/2/98	08:23	dry	
16/4/98	08:24	dry	
24/10/98	n/a	dry	

Initial Water Chemistry

Date:	11/4	/97	Analyte values in mg/L				
pН	7.2 units		EC	6280 μS/c			
Eh	-111	mV	O_2	n/a	% Sat		
Temp	22.6	°C	BOD	nd	mg/L		
Na	152	29	Cl	960.0			
K	7.2	2	HCO ₃	n/a			
Ca	40.	9	SO ₄	720.0			
Mg	96.	8	NO ₂ -N	0			
NH ₄	n/a		NO ₃ -N	0			
TOC	35.	0	PO ₄	0			

*RL is approximate at collar-natural junction; referenced to Australian Height Datum (ahd) **Notes:** # SWL measured from top of collar unless indicated otherwise

Sample No:

M7/1

^{^^} No casing was used during drilling at MEL

APPENDIX E

SITE INVESTIGATION INFORMATION

THE NECROPOLIS (SPRINGVALE CEMETERY), MELBOURNE, VIC, (SPR) S

Figure E.1 Historical Perspective of SPR - 1951 (aerial photography Melbourne Board of Works)

Figure E.2 Piezometer Locations at SPR (aerial photo base – Qascophoto 1993)

Table E.1 Rainfall Data & Evaporation (Class A Pan) Data Period of Study and Overall

including full month before sampling and final month for Station 86077, Moorabbin Airport (rainfall) and Station 86071, Melbourne Regional Office (evaporation) (BOM, 2001)

measurements in mm

Rainfall

Italiliali													
Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Ann
1997					90	41	32.8	63.6	47.2	31.4	66	4.2	492.8
1998	122	69	20	57.8	41.2	71	37	25.8	44.8	91.8			
#readings	45	45	44	46	46	45	45	47	47	47	46	45	40
lowest	1.2	0.3	5.4	8.2	22.6	15.1	16.6	12	25	22.4	5.1	2.9	443.8
highest	137	210.5	129.6	157.8	160.1	139.8	165	127.7	122.2	165.4	180.6	146.6	965.9
average	48.1	43.8	46.5	63.4	75.8	58.3	67.0	68.6	68.7	72.7	62.0	57.2	730.1
median	40.6	36.8	44.5	61.55	77.1	59.1	64.2	68.7	62.4	73.4	54.65	54.8	726.7

Evaporation

Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Ann
1997					41.2	34.6	34.8	51	63.2	107.2	128	161	1139
1998	162.6	156.2	118.2	59.4	42.2	33.6	28.4	40.2	77.8	102.2			
#readings	44	44	44	44	44	44	44	44	44	44	43	43	43
lowest	130.1	103.8	82	46	29	23.3	22.1	33.5	48.2	72.9	86.2	111.4	904
highest	260.7	229.9	193.4	113.3	71.1	47.6	66.6	88.6	123.2	151	185	260.8	1592.2
average	182.3	153.3	121.7	78.0	48.8	33.7	36.9	51.7	73.6	108.9	135.2	164.1	1189.9
median	179.0	150.6	116.8	76.2	47.1	33.6	35.8	51.1	69.9	105.6	130.2	160.5	1143.6

Table E.2 Summary of Hydraulic Test Data

Slug Tests

K in m/sec

Well	Bouwer & Rice	Cooper et al.	Hvorslev	Comments
S8	7.19E-06			
S9		n/a		too rapid for Cooper method
S10	n/a			too quick for any method see Chapter Four
S12	n/a			too quick for any method see Chapter Four

N	NATIONAL STUDY OF CEMETERY GROUNDWATERS UNIVERSITY OF TECHNOLOGY, SYDNEY							
Cemetery:	Cemetery: The Necropolis							
Location:	'The	Cedars'	, adjacent to er		RL * m (ahd) Est. 65.5			
Driller:		Van-Le	eeuwen Founda	tion Drilling			Date Drilled:	
Drilling Meth	nod:	400 mr	n diam. solid f	light auger – boor	m mounted		17/12/96	
Piezometer T	ype: 501	nm PVC	class 18,	Collar:	Screen I	Length:	Supervised By:	
	PVC s	creen 0.5	5mm slots	-0.05 m	2	m	BBD	
Casing, lift, soil samples m	water filter scree	pack	Depth m		Desc	cription		
\$ s 0.6 S1/1 s 1.6 S1/2 s 2.4 S1/3 s 3.0 S1/4 s 3.8 S1/5 s 4.8 S1/6	pack to scr 2.8		0-0.3 0.3-2.4 2.4-4.3 4.3-4.8 4.8	It grey sandy to mot red-br and yel-br & red-br; damp red-br sar complete in mo	orange grav grey silty and becoming	and sandy l g FeOx ricl	ayers	

DATE	TIME	SWL#	SAMPLE NO/S
17/6/97	n/a	dry	
24/7/97	n/a	dry	
2/10/97	13:59	1.31	S1/4
11/2/98	15:33	4.29	S1/5
28/10/98	14:13	0.70	S1/7

S1/4**Initial Water Chemistry** Sample No:

Date:	2/10	/97	Analyte va	Analyte values in mg/L				
pН	7.1 units		EC	459	μS/cm			
Eh	243	mV	O_2	48.8	% Sat			
Temp	14.8 °C		BOD	5	mg/L			
Na	71	.9	Cl	70.0				
K	6.	1	HCO ₃	90.0				
Ca	23.	.1	SO ₄	74.0				
Mg	7.9	9	NO ₂ -N	0.004				
NH ₄	0		NO ₃ -N	1.4				
TOC	3.	0	PO ₄	0.3				

*RL is approximate at collar-natural junction; referenced to Australian Height Datum (ahd) **Notes:** # SWL measured from top of collar unless indicated otherwise

\$ no casing was used for drilling bores 1-5 at SPR

This borehole was originally finished above ground but in July 1997 this was altered to be belowground (-0.05 m)

N.				ERY GROUNDW OLOGY, SYDNEY		BOREHOLE		
Cemetery:	Cemetery: The Necropolis							
Location:	'The N	Maples'		RL * m (ahd) Est. 65.0				
Driller:		Van-Le	euwen Founda	ation Drilling		Date Drilled:		
Drilling Meth	od:	400 mn	n diam. solid f	light auger – boor	n mounted	17/12/96		
Piezometer T	Type: 50m	ım PVC	class 18,	Collar:	Screen Length:	Supervised By:		
	PVC sc	reen 0.5	mm slots	1.7 m	0.65 m	BBD		
Casing, lift, soil samples m	water i filter j screei	oack	Depth m		Description			
\$ s 1.1 S2/1 s 2.1 S2/5 s 2.2 S2/2 s 3.0 S2/3 s 4.5 S2/4	pack to 3 scr 3.2 –		0-2.2 2.2-3.6 3.6-4.9 4.9	mot red-br & ye	grey mot sandy, gra ll-br & lt grey silty ds with ironstone co -rich sand	and clayey sands		

DATE	TIME	SWL#	SAMPLE NO/S
17/6/97	n/a	dry	
24/7/97	17:15	4.50	S2/2
2/10/97	13:17	3.21	S2/4
10/2/98	11:28	4.95	S2/5
27/10/98	17:12	4.45	S2/7

Initial Water Chemistry Sample No: S2/2

Date:	ate: 24/7/97 Analyte values in mg/L					
pН	6.8	units	EC	933	μS/cm	
Eh	187	mV	O_2	50.1	% Sat	
Temp	16.8	°C	BOD	<1	mg/L	
Na	133	133.7		110.0		
K	31.	.2	HCO ₃	114.6		
Ca	28.	.2	SO ₄	86.0		
Mg	11.	.6	NO ₂ -N	0.010		
NH_4	0		NO ₃ -N	14.1		
TOC	<1		PO ₄	0.8		

*RL is approximate at collar-natural junction; referenced to Australian Height Datum (ahd) **Notes:** # SWL measured from top of collar unless indicated otherwise

\$ no casing was used during the drilling of boreholes 1-5 at SPR

N.A	NATIONAL STUDY OF CEMETERY GROUNDWATERS UNIVERSITY OF TECHNOLOGY, SYDNEY						BOREHOLE
Cemetery:	The N	Vecropoli	is				S3
Location:	'Jewi				RL * m (ahd) Est. 73.0		
Driller:		Van-Le	euwen Founda	ation Drilling			Date Drilled:
Drilling Metho	od:	400 mn	n diam. solid f	light auger – booi	n mounted		17/12/96
Piezometer T	Type: 50r	nm PVC	class 18,	Collar:	Screen 1	Length:	Supervised By:
	PVC so	creen 0.5	mm slots	0.67 m	2	m	BBD
Casing, lift, soil samples m	water filter scree	pack	Depth m	Description			
\$ s 2.0 S3/1 s 2.8 S3/2 s 3.0 S3/3 s 4.8 S3/4	pack to scr 2.85		0-0.4 $0.4-2.0$ $2.0-2.8$ $2.8-4.85$ 4.85	lt grey-br sandy dk orange-br wi firm grey silt an stiff grey and br complete in stiff	th red-br, y d red/yell g sandy clay	gravelly c	lay

DATE	TIME	SWL#	SAMPLE NO/S
17/6/97	15:43	1.27	S3/1
24/7/97	15:35	2.05	S3/2
2/10/97	16:03	1.71	S3/4
11/2/98	n/a	1.16	

Initial Water Chemistry Sample No:

Date:	te: 17/6/97 Analyte values in mg/L					
pН	6.7	units	EC	895	μS/cm	
Eh	160	mV	O_2	3.9	% Sat	
Temp	16.9 °C		BOD	3.0 mg/L		
Na	128.9		C1	62.0		
K	3.	7	HCO ₃	170.7		
Ca	16	.3	SO_4	59.0		
Mg	8.	8.0		0.029		
NH ₄	0.18		NO ₃ -N	23.4		
TOC	<1		PO ₄	2.5		

Notes: *RL is approximate at collar-natural junction; referenced to Australian Height Datum (ahd) # SWL measured from top of collar unless indicated otherwise

S3/1

\$ no casing was used during the drilling of boreholes 1-5 at SPR

N.	NATIONAL STUDY OF CEMETERY GROUNDWATERS UNIVERSITY OF TECHNOLOGY, SYDNEY						Borehole	
Cemetery:	The N	Vecropoli	is					S4
Location:	'Rom	'Roman Catholic F' Section on 7 th Road F			RL * m (ahd) Est. 73.2			
Driller:		Van-Le	euwen Founda	ation Drilling				Date Drilled:
Drilling Meth	od:	400 mn	n diam. solid f	light auger – bo	on	n mounted		17/12/96
Piezometer 7	Гуре: 501	nm PVC	class 18,	Collar:		Screen L	ength:	Supervised By:
	PVC s	creen 0.5	mm slots	0.73 m		2	m	BBD
Casing, lift, soil samples m	filter	made pack en m	Depth m	Description				
\$ s 2.0 S4/1 s 2.9 S4/2 s 4.7 S4/3	pack to		0-0.4 0.4-2.9 2.9-4.1 4.1-4.85 4.85	lt grey-br sand red-br and yel red and yell-b sandy clay (m complete in gr	l-b r c ed	or sandy cla layey sand sand) & so	s ome ceme	ey sands ented yel-r-br concs

DATE	TIME	SWL#	SAMPLE NO/S
17/6/97	16:08	dry	
25/7/97	08:48	4.08	S4/2
2/10/97	15:15	1.49	S4/4
14/2/98	16:14	4.13	S4/5
17/4/98	08:48	5.05	S4/6
28/10/98	15:06	1.33	S4/7

Initial Water Chemistry Sample No: S4/2

Date:	ate: 25/7/97 Analyte values in mg/L					
pН	6.3	units	EC	1074	μS/cm	
Eh	-85	mV	O_2	14.1	% Sat	
Temp	17.2 °C		BOD	9.0 mg/L		
Na	545.4		C1	390.0		
K	3.	1	HCO ₃	180.0		
Ca	7.4	4	SO_4	290.0		
Mg	15.	15.7		0.056		
NH ₄	0.22		NO ₃ -N	0.6		
TOC	30.0		PO ₄	1.4		

*RL is approximate at collar-natural junction; referenced to Australian Height Datum (ahd) **Notes:** # SWL measured from top of collar unless indicated otherwise

\$ no casing was used during the drilling of boreholes 1-5 at SPR

This bore was re-established just prior to the first sampling – moved out of a new driveway area

NATIONAL STUDY OF CEMETERY GROUNDWATERS UNIVERSITY OF TECHNOLOGY, SYDNEY					BOREHOLE			
Cemetery:	The N	lecropoli	is					S5
Location:		t-most ba	ackground adj	acent to Lak	es gri	d G8148 aı	nd near	RL * m (ahd) Est. 56.0
Driller:		Van-Le	euwen Founda	ation Drillin	g			Date Drilled:
Drilling Metho	od:	400 mn	n diam. solid f	light auger -	- boor	n mounted		17/12/96
Piezometer T	ype: 50n	nm PVC	class 18,	Collar		Screen L	Length:	Supervised By:
	PVC sc	reen 0.5	mm slots	0.63	m	1.5	m	BBD
Casing, lift, soil samples m	water filter scree	pack	Depth m	Description				
\$ s 2.1 S 5/1 s 3.0 S 5/2 s 4.1 S 5/3	pack to scr 2.8 -		0-0.5 $0.5-2.1$ $2.1-3.5$ $3.5-4.3$ 4.3	yel-br and	, yell- grey o y sand	br and grey clayey sand and sandy	l (med), r clay; yel	v sandy clay ed-br mot & concs l-br mots & concs ninor clay

DATE	TIME	SWL#	SAMPLE NO/S
20/6/97	08:40	4.16	S5/1
22/7/97	14:22	4.34	S5/2
3/10/97	11:24	3.68	S5/4
8/2/98	14:38	n/a	
14/4/98	14:47	n/a	
28/10/98	12:40	3.24	S5/7

Initial Water Chemistry Sample No: S5/1

Date:	Date: 20/6/97 Analyte values in mg/L					
pН	6.3	units	EC	263	μS/cm	
Eh	-51	mV	O_2	10.1	% Sat	
Temp	15.2	°C	BOD	nd	mg/L	
Na	37.2		C1	44.0		
K	1.	0	HCO ₃	61.9		
Ca	7.	8	SO_4	3.2		
Mg	4.	7	NO ₂ -N	0		
NH ₄	0.6	53	NO ₃ -N	0		
TOC	4.	0	PO ₄	2.6		

*RL is approximate at collar-natural junction; referenced to Australian Height Datum (ahd) **Notes:** # SWL measured from top of collar unless indicated otherwise

\$ no casing was used during the drilling of boreholes 1-5 at SPR

initially two piezometers (5A and 5B) were nested in the one hole here; 5A was dry and abandoned

NATIONAL STUDY OF CEMETERY GROUNDWATERS UNIVERSITY OF TECHNOLOGY, SYDNEY					BOREHOLE
Cemetery:	The Necro	polis			S8
Location:			ing aquifer, adjace ent to west bounda		RL * m (ahd) Est. 56.5
Driller:	Geo	test Drilling Pty.	Ltd.		Date Drilled:
Drilling Metho	d: 115	mm diam. solid f	light auger, then 1	50 mm hollow flt	18/12/96
Piezometer Ty			Collar:	Screen Length:	Supervised By:
	PVC screen	0.5mm slots	0.70 m	3.0 m	BBD
Casing, lift, soil samples m	water made filter pack screen m	l Denth	Description		
	pack to 3.0 scr 3.7 – 6.7	0 – 6.7 6.7	lithology as per complete in yel	borehole S5 -br silty clay, sandy	r clay

DATE	TIME	SWL#	SAMPLE NO/S
20/6/97	10:00	4.92	S8/1
22/7/97	15:38	4.88	S8/2, S888/2
3/10/97	12:40	4.48	S8/4
7/2/98	15:14	5.03	S8/5
14/4/98	15:00	5.11	S8/6
28/10/98	12:06	3.94	S8/7

Initial Water Chemistry Sample No:

Date:	20/6	/97	Analyte values in mg/L				
pН	5.2 units		EC	180.5	μS/cm		
Eh	162	mV	O_2	28.1	% Sat		
Temp	17.5 °C		BOD	nd mg			
Na	29.5		C1	43.0			
K	0.	6	HCO ₃	37.1			
Ca	2.	2	SO_4	3.9			
Mg	1.	8	NO ₂ -N	0.002			
NH_4	0.27		NO ₃ -N	0			
TOC	2.	0	PO_4	3.5			

Notes: *RL is approximate at collar-natural junction; referenced to Australian Height Datum (ahd) # SWL measured from top of collar unless indicated otherwise

S8/1

\$ no casing was used during the drilling of boreholes 8 & 9 at SPR

solid flight auger to 4.5 m then reamed out with hollow flight and continued below watertable

NA		Borehole				
Cemetery:	The Necropol	is				S9
Location:	'Boronia' Sec corner of cem		ront entrance on 1	st Avenue, far	SW	RL * m (ahd) Est. 57.2
Driller:	Geotes	t Drilling Pty.	Ltd.			Date Drilled:
Drilling Metho	od: 115 mi	n diam. solid f	light auger, then 1	50 mm hollow	/ flt	18/12/96
Piezometer T	ype: 50mm PVC	class 18,	Collar:	Screen Leng	gth:	Supervised By:
	PVC screen 0.5	mm slots	0.93 m	3.0	m	BBD
Casing, lift, soil samples m	water made filter pack screen m	Depth m		Descript	ion	
\$ s 7.5 - 8.0 S9/1 s 14.0 S9/2	pack to 8.35 ∇ 11.55 ser 10.4 – 13.4	0 - 2.5 2.5 - 5.5 5.5 - ca 12 ca 12 - 14	red-br & mot gred-br sandy clared-br coarse sailt yel sandy clay complete in sat'o	y and clayey sand, minor clay	and	yey sand

DATE	TIME	SWL#	SAMPLE NO/S
20/6/97	13:13	12.36	S9/1
25/7/97	10:30	12.31	S9/2
10/5/98	10:36	12.37	S9/5
14/4/98	16:10	12.42	S9/6

Initial Water Chemistry Sample No:

Date:	Date: 20/6/97 Analyte values in mg/L						
pН	4.4 units		EC	432	μS/cm		
Eh	233	mV	O_2	n/a	% Sat		
Temp	16.7 °C		BOD	nd	mg/L		
Na	69.	4	C1	96.0			
K	0.	1	HCO ₃	0			
Ca	2.8	3	SO_4	14.0			
Mg	6.0)	NO ₂ -N	n/a			
NH_4	n/a		NO ₃ -N	n/a			
TOC	2.0		PO ₄	n/a			

Notes: *RL is approximate at collar-natural junction; referenced to Australian Height Datum (ahd) # SWL measured from top of collar unless indicated otherwise

S9/1

\$ no casing was used during the drilling of boreholes 8 & 9 at SPR

solid flight auger to 8.0 m then reamed out with hollow flight and continued below watertable bore caved at base during piezometer installation

NAT		Borehole				
Cemetery:	The Necropoli	S				S10
Location:	'Cassia Lawn''	adjacent to P	rinces Highway, g	grid R1111		RL * m (ahd) Est. 57.0
Driller:	Geotech	n Pty Ltd				Date Drilled:
Drilling Method	d: 140 mm	n hollow flight	auger, then 100 r	nm roller bit		18/12/96
Piezometer Ty	pe: 50mm PVC	class 18,	Collar:	Screen Le	ngth:	Supervised By:
	PVC screen 0.5	mm slots	0.71 m	3.0	m	BBD
Casing, lift, soil samples m	water made filter pack screen m	Depth m		Descri	ption	
\$ s 6.0 S10/2 s 9.5 S10/1 V	pack to 6.4 ∇ 14.35	0-6.0 $6.0-9.5$ $9.5-14.4$ $14.4-17.3$ 17.3	dry red-br clay a red-br v coarse s clayey coarse sa coarse white san complete in white	andy clay nd & ye silty d	•	

DATE	TIME	SWL#	SAMPLE NO/S
25/7/97	12:10	14.51	S10/2
8/2/98	13:48	14.60	S10/5
14/4/98	13:46	14.64	S10/6
3/10/97	n/a	14.50	

Initial Water Chemistry Sample No: S10/2

Date:	25/7	25/7/97 Analyte values in mg/L				
pН	5.4 units		EC	7320	μS/cm	
Eh	236	mV	O_2	n/a	% Sat	
Temp	14.7 °C		BOD	3.0 mg/		
Na	1168		C1	2400		
K	8.0)	HCO ₃	58.5		
Ca	32.	.7	SO_4	100.0		
Mg	233	.7	NO ₂ -N	0.002		
NH ₄	0.01		NO ₃ -N	0.1		
TOC	1.0		PO ₄	0.5		

Notes: *RL is approximate at collar-natural junction; referenced to Australian Height Datum (ahd) # SWL measured from top of collar unless indicated otherwise

\$ no casing was used during the drilling of boreholes 8 & 9 at SPR

very difficult drilling, commenced with 140 mm hollow flight auger to 9.5 m then 100mm roller bit with air flushing

Na	BOREHOLE					
Cemetery:	The Necropoli	S			S12	
Location:	background be corner of ceme		ng aquifer , grid I	09532, far NE	RL * m (ahd) Est. 79.0	
Driller:		rilling Austra			Date Drilled:	
Drilling Metho			light auger, then 1	50 mm hollow flt	18/12/96	
Piezometer Ty	ype: 50mm PVC		Collar:	Screen Length:	Supervised By:	
	PVC screen 0.5	mm slots	0.67 m	6.0 m	BBD	
Casing, lift, soil samples m	water made filter pack screen m	Depth m	Description			
s 15 S 12/2	pack to 10.4 scr 22.1 – 28.1	0-1.0 1.0-3.0 3.0-15.0 15.0-23.7 23.7-28.1 28.1	It br sandy clay red br sandy clay	ome med dk yel san l	d	

DATE	TIME	SWL#	SAMPLE NO/S
8/2/98	11:26	24.26	S12/5, S12/52*
14/4/98	11:10	24.52	S12/6, S12/62*

Initial Water Chemistry Sample No: S12/5

Date:	8/2/	98	Analyte values in mg/L				
pН	5.7 units		EC	3620	μS/cm		
Eh	201	mV	O_2	24.1	% Sat		
Temp	18.7 °C		BOD	8.0 mg/			
Na	663.3		C1	1100			
K	3.:	5	HCO ₃	336.5			
Ca	21.	.6	SO_4	40.0			
Mg	115	5.9	NO ₂ -N	0.015			
NH_4	0		NO ₃ -N	3.5			
TOC	3.0		PO_4	0			

Notes: *RL is approximate at collar-natural junction; referenced to Australian Height Datum (ahd)
SWL measured from top of collar unless indicated otherwise
\$ no casing was used during the drilling of boreholes 12 at SPR

solid flight auger to 23.7 m then hollow flight auger

APPENDIX F

SITE INVESTIGATION INFORMATION BUNURONG MEMORIAL PARK, MELBOURNE, VIC, $\,$ (NEW) N

Figure F.1 Historical Perspective of NEW - 1951 (aerial photography Melbourne Board of Works)

Figure F.2 Historical Perspective of NEW – 1992 (just prior to cemetery development)

Figure F.3 Piezometer Locations at NEW (after Cemetery Trust's CAD file)

Table F.1 Rainfall & Evaporation (Class A Pan) Data Period of Study and Overall

including full month before sampling and final month for Station 86077, Moorabbin Airport (rainfall) and Station 86071, Melbourne Regional Office (evaporation) (BOM, 2001)

measurements in mm

Rainfall

Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Ann
1997					90	41	32.8	63.6	47.2	31.4	66	4.2	492.8
1998	122	69	20	57.8	41.2	71	37	25.8	44.8	91.8			
#readings	45	45	44	46	46	45	45	47	47	47	46	45	40
lowest	1.2	0.3	5.4	8.2	22.6	15.1	16.6	12	25	22.4	5.1	2.9	443.8
highest	137	210.5	129.6	157.8	160.1	139.8	165	127.7	122.2	165.4	180.6	146.6	965.9
average	48.1	43.8	46.5	63.4	75.8	58.3	67.0	68.6	68.7	72.7	62.0	57.2	730.1
median	40.6	36.8	44.5	61.55	77.1	59.1	64.2	68.7	62.4	73.4	54.65	54.8	726.7

Evaporation

Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Ann
1997					41.2	34.6	34.8	51	63.2	107.2	128	161	1139
1998	162.6	156.2	118.2	59.4	42.2	33.6	28.4	40.2	77.8	102.2			
#readings	44	44	44	44	44	44	44	44	44	44	43	43	43
lowest	130.1	103.8	82	46	29	23.3	22.1	33.5	48.2	72.9	86.2	111.4	904
highest	260.7	229.9	193.4	113.3	71.1	47.6	66.6	88.6	123.2	151	185	260.8	1592.2
average	182.3	153.3	121.7	78.0	48.8	33.7	36.9	51.7	73.6	108.9	135.2	164.1	1189.9
median	179.0	150.6	116.8	76.2	47.1	33.6	35.8	51.1	69.9	105.6	130.2	160.5	1143.6

Table F.2 Summary of Hydraulic Test Data

Slug Tests

K in m/sec

Well	Bouwer & Rice	Cooper et al.	Hvorslev	Comments
N1	7.45E-06			
N2	6.86E-06			
N7	1.40E-05			too few early data for Cooper method
N8	6.08E-06	2.18E-06	3.98E-06	

National Study of Cemetery Groundwaters University of Technology, Sydney							Borehole		
Cemetery:	Bunuro	ong Mer	norial Park					N1	
Location:	adjacer	nt to SE	corner of ma	in entrance	е			RL * m (ahd) Est. n/a \$	
Driller:		Strata D	rilling Austra	lia Pty Lto	1			Date Drilled:	
Drilling Metho	od:	130 mm	diam. hollow	/ flight au	ger			<1996	
Piezometer T				Coll	ar:	Screen L	ength:	Supervised By:	
PVC scr	een, ceme	ented jo	int at top	0.7	m	3.0	m	n/a	
Casing, lift, soil samples m	water m filter pa screen	ack	Depth m	Describtion					
s 2.0 N2/1 s 2.8 N2/2 s 4.1 N2/3	scr 3.3 – 6	6.3	0 - 2 2 - 4.1 4.1 - 6.3 6.3	bore #2	on 17/12 grey si sand, y sand	2/96 lty sand & s		y exploratory t	

RECORD OF SAMPLING AND WATER LEVELS

Date	Time	SWL#	Sample No/s
19/6/97	13:51	4.13	N1/2
24/7/97	08:37	5.21	N1/3
9/2/98	11:48	4.31	N1/5
16/4/98	14:26	4.48	N1/6
28/10/98	15:43	4.37	N1/7

INITIAL WATER CHEMISTRY

Date:	19/6	/97	Analyte values in mg/L				
pН	6.6	units	EC	7820	μS/cm		
Eh	140	mV	O_2	39.5	% Sat		
Temp	17.4	°C	BOD	2	mg/L		
Na	142	21	C1	2300			
K	0.′	7	HCO ₃	148.7			
Ca	55.	.0	SO_4	210.0			
Mg	146	5.9	NO ₂ -N	0.001			
NH ₄	0.2	23	NO ₃ -N	0			
TOC	0		PO ₄	3.7			

Notes: *RL is approximate at collar-natural junction; referenced to Australian Height Datum (ahd) # SWL measured from top of collar unless indicated otherwise

SAMPLE NO:

N1/2

\$ accurate survey of all boreholes at NEW is required; height data was not available at the time of borehole establishment; boreholes 7, 8 and NT $\stackrel{1}{\text{1}}$ - 4 are approximately 2 m above all others (N1 – N6) Boreholes N1-N6 completed with bentonite plug above sand pack

	Borehole						
Cemetery:	Bunurong Me	morial Park			N2		
Location:			ery adjacent to bo	oundary with	RL * m (ahd)		
	farmhouse and	l main road			Est. n/a \$		
Driller:		Drilling Austra	•		Date Drilled:		
Drilling Meth	od: 130 mn	n diam. hollov	y flight auger		<1996		
	Type: 50mm PVC		Collar:	Screen Length:	Supervised By:		
PVC scr	reen, cemented jo	int at top	0.7 m	3.0 m	n/a		
Casing, lift, soil samples m	water made filter pack screen m	Depth m	Description				
s 1.8 N1/1 s 2.2 N1/2 s 2.5 N1/3	scr 3.2 – 6.2	0 - 0.3 0.3 - 2.6 2.6 - 3.8 3.8 - 6.2 6.2	bore #1 on 17/12 It br-grey sandy mot red-br yel-b	topsoil r & grey gravelly c l & yel0br sandy cl			

RECORD OF SAMPLING AND WATER LEVELS

Date	Time	SWL#	Sample No/s
19/6/97	15:33	3.55	N2/2
24/7/97	10:25	3.55	N2/3
9/2/98	12:52	3.79	N2/5
15/4/98	14:38	3.98	N2/6
28/10/98	14:10	3.92	N2/7

INITIAL WATER CHEMISTRY

Date:	19/6	5/97	Analyte values in mg/L					
pН	6.7	units	EC	3880	μS/cm			
Eh	141	mV	O ₂	66.6	% Sat			
Temp	16.1	°C	BOD	3	mg/L			
Na	564.2		Cl	1200				
K	0.	3	HCO ₃	100.0				
Ca	31	.2	SO ₄	95.0				
Mg	81.9		NO ₂ -N	0				
NH ₄	0		NO ₃ -N	0				
TOC	<1		PO ₄	0				

*RL is approximate at collar-natural junction; referenced to Australian Height Datum (ahd) **Notes:** # SWL measured from top of collar unless indicated otherwise

SAMPLE NO:

 $N_{2/2}$

\$ accurate survey of all boreholes at NEW is required; height data was not available at the time of borehole establishment; boreholes 7, 8 and NT 1-4 are approximately 2 m above all others (N1 – N6) Boreholes N1-N6 completed with bentonite plug above sand pack

	National Study of Cemetery Groundwaters University of Technology, Sydney							
Cemetery:	Bunurong Me	morial Park					N3	
Location:	SW corner of	maintenance s	shed compo	ound			RL * m (ahd) Est. n/a \$	
Driller:	Strata I	Drilling Austra	lia Pty Ltd				Date Drilled:	
Drilling Metho	od: 130 mr	n diam. hollov	v flight aug	er			<1996	
	ype: 50mm PVC		Colla	r:	Screen Le	ength:	Supervised By:	
PVC scre	een, cemented jo	int at top	0.7	m	3.0	m	n/a	
Casing, lift, soil samples m	water made filter pack screen m	Depth m	Description					
	scr 2.9 – 5.9	5.9	no descri complete		vailable			

RECORD OF SAMPLING AND WATER LEVELS

Date	Time	SWL#	Sample No/s
24/7/97	12:16	4.35	N3/3
11/2/98	14:13	4.15	N3/5

INITIAL WATER CHEMISTRY

Date:	24/7	//97	Analyte values in mg/L				
pН	6.3 units		EC	10850	μS/cm		
Eh	137 mV		O_2	3.2	% Sat		
Temp	15.8 °C		BOD	1.0 mg/l			
Na	1794		C1	3500			
K	1.	3	HCO ₃	243.8			
Ca	129	9.1	SO ₄	240.0			
Mg	275.5		NO ₂ -N	0.003			
NH ₄	0		NO ₃ -N	0			
TOC	<1		PO ₄	0.1			

Notes: *RL is approximate at collar-natural junction; referenced to Australian Height Datum (ahd) # SWL measured from top of collar unless indicated otherwise

SAMPLE NO:

N3/3

\$ accurate survey of all boreholes at NEW is required; height data was not available at the time of borehole establishment; boreholes 7, 8 and NT 1-4 are approximately 2 m above all others (N1 – N6) Boreholes N1-N6 completed with bentonite plug above sand pack

	National Study of Cemetery Groundwaters University of Technology, Sydney						Borehole	
Cemetery:	Bunuı	rong Mei	morial Park					N7
Location:	adjace	ent to fro	nt of administ	ration bloc	k and c	carpark, in g	garden	RL * m (ahd) Est. n/a \$
Driller:		Geotecl	n Pty. Ltd.					Date Drilled:
Drilling Meth	od:	160 mn	n diam. hollow	/ flight aug	er			2/4/97
Piezometer 7	Type: 50n	nm PVC	class 18,	Colla	ır:	Screen L	ength:	Supervised By:
	PVC sc	reen 0.5	mm slots	0.29	m	3.0	m	BBD
Casing, lift, soil samples m	water filter scree	pack	Depth m			Descr	ription	
s 5 – 6 N7/1 s 8.3 N7/2	pack to ser 5.3 -		0-2.2 2.2-3.5 3.5-8.3 8.3	well com red-br sil lt br fine complete	ty clay sandy s	silt and silty	sands, r	ninor clay

Date	Time	SWL#	Sample No/s
19/6/97	11:40	5.20	N7/2
23/7/97	09:45	5.12	N7/3
9/2/98	08:15	5.33	N7/5
15/4/98	08:55	5.53	N7/6
28/10/98	10:07	5.40	N7/7

INITIAL WATER CHEMISTRY SAMPLE NO:

Date:	19/6	/97	Analyte values in mg/L			
pН	6.5	units	EC	13320	μS/cm	
Eh	144	mV	O_2	9.5	% Sat	
Temp	17.2	°C	BOD	1.0	mg/L	
Na	226	66	C1	4400		
K	1.4	4	HCO ₃	207.3		
Ca	161	.0	SO ₄	230.0		
Mg	369	0.8	NO ₂ -N	0.003		
NH_4	0.6	57	NO ₃ -N	0		
TOC	<1	[PO ₄	6.3		

Notes: *RL is approximate at collar-natural junction; referenced to Australian Height Datum (ahd) # SWL measured from top of collar unless indicated otherwise

N7/2

\$ accurate survey of all boreholes at NEW is required; height data was not available at the time of borehole establishment; boreholes 7, 8 and NT 1- 4 are approximately 2 m above all others located in garden bed – unobtrusive collar

	National Study of Cemetery Groundwaters University of Technology, Sydney						Borehole	
Cemetery:	Bunu	rong Me	morial Park		-			N8
Location:	in lav	vn betwe	en Administra	tion compl	ex and	crematoriun	n	RL * m (ahd)
								Est. n/a \$
Driller:			n Pty. Ltd.					Date Drilled:
Drilling Metho			n diam. hollow					2/4/97
Piezometer T	Type: 50r	nm PVC	class 18,	Colla	ır:	Screen Le	ength:	Supervised By:
	PVC so	creen 0.5	mm slots	0.79	m	3.0	m	BBD
Casing, lift, soil samples m	water filter scree	pack	Depth m			Descr	iption	
s 6 – 7 N8/1	pack to ∇ 6.59 scr 5.5 -		0 - ca 2 2 - 3.5 3.5 - 8.55 8.55	clayey fil stiff red-l lt br sand complete	or sandy y silt	•		

Date	Time	SWL#	Sample No/s
18/6/97	11:48	5.71	N8/2
23/7/97	10:44	5.44	N8/3
9/2/97	10:35	5.59	N8/5
15/4/98	12:22	5.71	N8/6
28/10/98	10:43	5.81	N8/7

N8/2INITIAL WATER CHEMISTRY **SAMPLE NO:**

Date:	18/6	/97	Analyte v	values in mg/L		
pН	6.4 units		EC	11500 μS/c		
Eh	-18	mV	O_2	56.1	% Sat	
Temp	17.2	°C	BOD	<25	mg/L	
Na	202	26	C1	3700		
K	1.4	4	HCO ₃	195.1		
Ca	140).5	SO_4	250.0		
Mg	315	5.7	NO ₂ -N	0.005		
NH_4	0.5	52	NO ₃ -N	0		
TOC	4.0	0	PO ₄	5.0		

Notes: *RL is approximate at collar-natural junction; referenced to Australian Height Datum (ahd) # SWL measured from top of collar unless indicated otherwise

\$ accurate survey of all boreholes at NEW is required; height data was not available at the time of borehole establishment; boreholes 7, 8 and NT 1-4 are approximately 2 m above all others This borehole was re-opened and sand pack lowered 1 month after initial establishment

	National Study of Cemetery Groundwaters University of Technology, Sydney						Borehole	
Cemetery:	Bunu	rong Me	morial Park					NT1
Location:			nediately infro driveway	nt of Adm	inistrati	on complex	ζ,	RL * m (ahd) Est. n/a \$
Driller:		cemeter	ry staff					Date Drilled:
Drilling Meth	od:	Trench	excavation	with 450 n	ım back	thoe		27/2/97
Piezometer 7	• 1			Colla	ır:	Screen L	ength:	Supervised By:
().5 mm sl	otted PV	C screen	0.6	m	6.0	m	BBD
Casing, lift, soil samples m	water filter scree	pack	Depth m			Descr	ription	
s 1.8 NT1/1 s 2.2 NT1/2 s 2.9 NT1/3 s 1.4 NT1/4	pack co scr by 0		0 – 2.3 2.3 2.9		ripped	fill, minor g surface: dk		r clay

Date	Time	SWL#	Sample No/s
2/4/97	n/a	n/a	NT1/1
18/6/97	09:21	1.26	NT1/2
23/7/97	14:26	1.26	NT1/3
9/2/98	14:53	1.25	NT1/5
15/4/98	10:09	1.24	NT1/6
28/10/98	11:59	1.24	NT1/7

INITIAL WATER CHEMISTRY SAMPLE NO: NT1/1

Date:	2/4/	97	Analyte v	Analyte values in mg/L			
pН	10.5	units	EC	1528	μS/cm		
Eh	-254	mV	O_2	n/a	% Sat		
Temp	19.6	°C	BOD	15.0	mg/L		
Na	28	1	C1	260			
K	16.	9	HCO ₃	n/a			
Ca	54.	5	SO_4	90.0			
Mg	1.6	6	NO ₂ -N	n/a			
NH ₄	n/a	1	NO ₃ -N	0			
TOC	78.	0	PO ₄	n/a			

Notes: *RL is approximate at collar-natural junction; referenced to Australian Height Datum (ahd) # SWL measured from top of collar unless indicated otherwise

\$ accurate survey of all boreholes at NEW is required; height data was not available at the time of borehole establishment; boreholes 7, 8 and NT 1- 4 are approximately 2 m above all others (N1 – N6)

	National Study of Cemetery Groundwaters University of Technology, Sydney						Borehole	
Cemetery:	Bunu	rong Mei	morial Park					NT2
Location:			nediately infro	nt of Admi	inistrati	on complex	Σ,	RL * m (ahd) Est. n/a \$
Driller:	towar	cemeter						Date Drilled:
Drilling Metho	od:		– excavation v	with 450 m	ım back	thoe		27/2/97
Piezometer T				Colla		Screen L	ength:	Supervised By:
0	.5 mm sl	otted PV	C screen	0.6	m	6.0	m	BBD
Casing, lift, soil samples m	water filter scree	pack	Depth m			Descr	ription	
	pack co scr by 0		3.3	excavated sump dep		yey fill		

Date	Time	SWL#	Sample No/s
18/6/97	09:58	1.09	NT2/2
23/7/97	13:13	1.11	NT2/3
9/2/98	15:35	1.12	NT2/5
15/4/98	10:52	1.02	NT2/6
29/10/98	12:34	1.56	NT2/7

INITIAL WATER CHEMISTRY SAMPLE NO:

Date:	18/6	/97	Analyte values in mg/L				
pН	7.5	units	EC	1914	μS/cm		
Eh	-132	mV	O_2	4.6	% Sat		
Temp	15.7	°C	BOD	11.0	mg/L		
Na	245	5.4	C1	190.0			
K	13.	.6	HCO ₃	n/a			
Ca	78.	.1	SO_4	51.0			
Mg	57.	.2	NO ₂ -N	0			
NH ₄	n/a	a	NO ₃ -N	0			
TOC	240	0.0	PO ₄	n/a			

Notes: *RL is approximate at collar-natural junction; referenced to Australian Height Datum (ahd) # SWL measured from top of collar unless indicated otherwise

NT2/2

\$ accurate survey of all boreholes at NEW is required; height data was not available at the time of borehole establishment; boreholes 7, 8 and NT 1- 4 are approximately 2 m above all others (N1 – N6)

	National Study of Cemetery Groundwaters University of Technology, Sydney									
Cemetery:	Bunu	rong Mei	morial Park					NT3		
Location: rear (NW) corner of Muslim burial area adjacent to Maintenance shed								RL * m (ahd) Est. n/a \$		
Driller:		cemeter	y staff					Date Drilled:		
Drilling Metho	od:	Trench	excavation	with 450 m	m back	choe		27/2/97		
	Piezometer Type: 50mm PVC class 18, Collar: Screen Length:					ength:	Supervised By:			
0).5 mm sl	otted PV	C screen	0.74	m	6.0	m	BBD		
Casing, lift, soil samples m	water filter scree	pack	Depth m			Desci	ription			
s 1.0 N3/1 s 1.4 N3/2 s 2.2 N3/3	pack co scr by 0		0-1.5 $1.5-2.2$ 2.2		ripped	y clay fill surface –ye	l-br & g	rey sandy clay		

Date	Time	SWL#	Sample No/s
18/6/97	>15:00	dry	-
23/7/97	11:30	dry	
15/4/98	16:00	dry	

INITIAL WATER CHEMISTRY

Date:		Analyte values in mg/L					
pН	units	EC	μS/cm				
Eh	mV	O_2	% Sat				
Temp	°C	BOD	mg/L				
Na		C1					
K		HCO ₃					
Ca		SO_4					
Mg		NO ₂ -N					
NH ₄		NO ₃ -N					
TOC		PO_4					

Notes: *RL is approximate at collar-natural junction; referenced to Australian Height Datum (ahd) # SWL measured from top of collar unless indicated otherwise

SAMPLE NO:

nil

\$ accurate survey of all boreholes at NEW is required; height data was not available at the time of borehole establishment; boreholes 7, 8 and NT 1- 4 are approximately 2 m above all others (N1 – N6)

	National Study of Cemetery Groundwaters University of Technology, Sydney								
Cemetery:			morial Park	nogy, by c	шсу			NT4	
Location:			ner of Muslim	burial adja	acent to	roadway		RL * m (ahd)	
				Est. n/a \$					
Driller:		cemetery staff						Date Drilled:	
Drilling Metho			excavation	with 450 m	ım back	thoe		27/2/97	
Piezometer T				Colla	ır:	Screen L	ength:	Supervised By:	
0	.5 mm sl	otted PV	C screen	0.69	m	6.0	m	BBD	
Casing, lift, soil samples m	water filter scree	pack	Depth m	Description					
s 1.7 NT4/1 s 1.4 NT4/2			0 – 2.3 2.3 2.5		ripped	fill, minor g surface: dk		[,] clay	

Date	Time	SWL#	Sample No/s
18/6/97	15:25	RL -0.52	NT4/2
23/7/97	11:25	RL -0.58	NT4/3
11/2/98	13:19	2.29	NT4/5
16/4/98	15:25	2.56	NT4/6

INITIAL WATER CHEMISTRY SAMPLE NO:

Date:	18/6	/97	Analyte v	Analyte values in mg/L					
pН	6.4 units		EC	1382	μS/cm				
Eh	-53	mV	O_2	13.9	% Sat				
Temp	15.8	°C	BOD	12.0	mg/L				
Na	104	1.2	C1	90.0					
K	17.	.9	HCO ₃	560.8					
Ca	102	2.9	SO_4	44.0					
Mg	55.	.7	NO ₂ -N	0					
NH ₄	n/s	a	NO ₃ -N	0					
TOC	150	0.0	PO ₄	n/a					

Notes: *RL is approximate at collar-natural junction; referenced to Australian Height Datum (ahd) # SWL measured from top of collar unless indicated otherwise

NT4/2

APPENDIX G

SITE INVESTIGATION INFORMATION CARR VILLA MEMORIAL PARK, LAUNCESTON, TAS, $\,$ (LAU) L

Figure G.1 Historical Perspective of LAU - 1946 (aerial photography Tasmanian Government)

Figure G.2 Piezometer Locations at LAU (aerial photo base – Tasmap, 1992)

Table G.1 Rainfall & Evaporation (Class A Pan) Data Period of Study and Overall including full month before sampling and final month for Station 91104, Launceston Airport (BOM, 2001)

measurements in mm

Rainfall

Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Ann
1996					12.8	54.4	47.8	145.2	101.6	78.6	37.6	22.8	800
1997	77	27.2	17.4	10.2	105.6	36.2	40.6	32.2	65.6	28.4	38.2	13.2	491.8
1998	38.4	41.8	7	70.4	20.6	74.6	75	28.8	97.4	41.2			
# readings	67	67	67	67	67	66	66	68	68	68	67	67	65
minimum	3	0	2.1	4.6	4.4	11.7	13.1	13.2	8	13.7	9	0	409.9
maximum	153.8	164.1	106.3	183.3	183.6	181.2	192.8	229.2	149.1	163.1	121.8	140.8	953.1
average	43.5	40.1	38.8	55.8	62.1	60.8	78.1	77.6	63.4	61.5	50.8	51.3	684.4
median	38.4	31.1	31.6	47.4	56.0	55.9	70.3	71.1	60.9	56.7	48.6	46.4	661.5

Evaporation

Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Ann
1996					41.4	27.6	27.8	54.4	79.6	111.2	137	187.5	1149.2
1997	203.8	144.6	123.2	81.6	36.2	20.4	24.6	39.2	66	117.6	156.4	214.6	1228.2
1998	233.4	183.4	na	78.8	37.4	32	33.2	47	74.8	110.7			
#readings	32	33	32	32	32	32	32	32	32	32	32	31	31
lowest	157.6	124.8	81.2	56.9	27.4	20	20.8	31.8	55.4	93.7	110	115.8	988.4
highest	284.8	233.7	181	100.6	67.1	50.6	59.9	79.7	129.2	173.1	212.5	282.7	1613.8
average	212.5	180.0	139.7	79.6	45.0	28.1	31.4	48.2	76.6	118.3	152.9	195.8	1308.5
median	206.5	182.8	138.6	80.1	44.3	26.4	30.9	46.0	73.3	113.3	152.3	191.0	1300.8

NA.	NATIONAL STUDY OF CEMETERY GROUNDWATERS UNIVERSITY OF TECHNOLOGY, SYDNEY								
Cemetery:	Carr `	Villa Me	morial Park					L1	
Location:	SE up	hill area	adjacent to To		RL * m (ahd) Est. 91.0				
Driller:		Stacpoo	ole Enterprises		Date Drilled:				
Drilling Metho	od:	450 mn	n diam solid fl	ight auger c	n boo	m		18/2/97	
Piezometer T	ype: 50n	nm PVC	class 18,	Collar	:	Screen L	ength:	Supervised By:	
	PVC so	creen 0.5	mm slots	0.68	m	3.0	m	BBD	
Casing, lift, soil samples m	water filter scree	pack	Depth m			Descr	ription		
s 0.8 L1/1 s 1.1 L1/2 s 1.7 L1/3 s 3.1 L1/4 s 4.7 L1/5 s 5.3 L1/6	pack to scr 2.3 -		0-0.3 0.3-4.8 4.8-5.3 5.3		ed-br o d & st	clay & sand iff grey clay			

DATE	TIME	SWL#	SAMPLE NO/S
15/6/97	n/a	dry	
20/7/97	09:52	dry	
5/10/97	09:07	dry	
23/11/97	08:32	dry	
29/3/98	08:02	dry	
25/10/98	09:27	dry	

Initial Water Chemistry Sample No:

Date:		Analyte values in mg/L					
pН	units	EC	μS/cm				
Eh	mV	O_2	% Sat				
Temp	°C	BOD	mg/L				
Na		Cl					
K		HCO ₃					
Ca		SO_4					
Mg		NO ₂ -N					
NH ₄		NO ₃ -N					
TOC		PO ₄					

*RL is approximate at collar-natural junction; referenced to Australian Height Datum (ahd) **Notes:** # SWL measured from top of collar unless indicated otherwise This borehole remained dry throughout the study

NIL

NA	NATIONAL STUDY OF CEMETERY GROUNDWATERS UNIVERSITY OF TECHNOLOGY, SYDNEY							
Cemetery:	Carr V	Villa Me	morial Park					L2
Location:	upper	upper gully 'Lawn' adjacent to roadway						RL * m (ahd) Est. 83.0
Driller:		Stacpoo	ole Enterprises		Date Drilled:			
Drilling Metho	od:	450 mn	n diam solid fl	ight auger o	n boo	m		18/2/97
Piezometer T	ype: 50n	nm PVC	class 18,	Collar		Screen L	ength:	Supervised By:
	PVC sc	reen 0.5	mm slots	0.68	m	1.5	m	BBD
Casing, lift, soil samples m	water filter scree	pack	Depth m			Descr	ription	
s 2.8 L2/1 s 3.5 L2/2	pack to scr 2.3 -		0-0.3 0.3-2.8 2.8-3.8 3.8		rey m	ot clays & : ds & clayey		nys

DATE	TIME	SWL#	SAMPLE NO/S
15/6/97	12:26	1.88	L2/1
20/7/97	10:46	1.78	L2/2, L222/2
5/10/97	10:03	1.64	L2/3
23/11/97	10:55	1.86	L2/4
29/3/98	10:20	2.50	L2/5
26/10/98	11:00	1.74	L2/6

Initial Water Chemistry Sample No:

Date:	15/6	/97	Analyte values in mg/L				
pН	5.2	units	EC	2580	μS/cm		
Eh	-39	mV	O_2	1.9	% Sat		
Temp	16.8	°C	BOD	3	mg/L		
Na	434	.9	C1	828.9			
K	6.	3	HCO ₃	18.0			
Ca	8.	7	SO_4	21.0			
Mg	34	.8	NO ₂ -N	0.001			
NH ₄	1.3	2	NO ₃ -N	0			
TOC	10	.0	PO ₄	10.0			

Notes: *RL is approximate at collar-natural junction; referenced to Australian Height Datum (ahd) # SWL measured from top of collar unless indicated otherwise

L2/1

NA	NATIONAL STUDY OF CEMETERY GROUNDWATERS UNIVERSITY OF TECHNOLOGY, SYDNEY					Borehole		
Cemetery:	Carr `	Villa Me	morial Park					L3
Location:	middl	le of low	er 'Lawn" sec	tion in filled	gully	above pond	l	RL * m (ahd) Est. 79.0
Driller:		Stacpoo	ole Enterprises	Pty Ltd				Date Drilled:
Drilling Metho	od:	450 mn	n diam solid fl	ight auger c	n boo	m		18/2/97
Piezometer T	ype: 50n	nm PVC	class 18,	Collar	:	Screen L	ength:	Supervised By:
	PVC so	creen 0.5	mm slots	0.68	m	3.0	m	BBD
Casing, lift, soil samples m	water filter scree	pack	Depth m			Descr	iption	
s 1.3 L3/1 s 1.7 L3/2 s 2.9 L3/3 s 3.6 L3/4 s 4.8 L3/5	pack to scr 2.3 -		0-0.2 0.2-2.9 2.9-4.8 4.8-5.3 5.3	yel & grey mot yel-bi	mot s			

DATE	TIME	SWL#	SAMPLE NO/S
15/6/97	13:45	5.49	L3/1, L333/1
20/7/97	12:34	2.66	L3/2
5/10/97	12:00	1.57	L3/3
23/11/97	12:52	2.21	L3/4
29/3/97	14:00	3.16	L3/5
26/10/97	08:53	1.48	L3/6

Initial Water Chemistry Sample No:

Date:	15/6	/97	Analyte values in mg/L				
pН	4.4	units	EC	7280	μS/cm		
Eh	63	mV	O_2	1.9	% Sat		
Temp	16.3	°C	BOD	50	mg/L		
Na	1295		Cl	2430			
K	4.0	0	HCO ₃	0			
Ca	16.	.9	SO_4	98.0			
Mg	174.6		NO ₂ -N	0			
NH ₄	1.64		NO ₃ -N	0			
TOC	14.	.0	PO ₄	15.1			

*RL is approximate at collar-natural junction; referenced to Australian Height Datum (ahd) # SWL measured from top of collar unless indicated otherwise Notes:

L3/1

NA	NATIONAL STUDY OF CEMETERY GROUNDWATERS UNIVERSITY OF TECHNOLOGY, SYDNEY						Borehole
Cemetery:	Carr Villa M		,				L4
Location:	lowestmost p	osition in "law ond	n" filled gu	lly imn	nediately ad	jacent	RL * m (ahd) Est. 77.5
Driller:	Stacpo	ole Enterprises	Pty Ltd				Date Drilled:
Drilling Metho	od: 450 m	m diam solid fl	ight auger	on boo	m		18/2/97
Piezometer T	ype: 50mm PV	C class 18,	Colla	r:	Screen Lo	ength:	Supervised By:
	PVC screen 0.	5mm slots	0.68	m	3.0	m	BBD
Casing, lift, soil samples m	water made filter pack screen m	Depth m			Descr	iption	
s 3.5 L4/1 s 3.9 L4/2 s 1.8 L4/3	pack to 2.1 scr 2.2 – 5.2	0 - 0.3 0.3 - 3.5 3.5 - 5.2 5.2	lt yel clay lt yel-br c red-br & complete	layey s grey m	sand ot clay		

DATE	TIME	SWL#	SAMPLE NO/S
15/6/97	15:37	1.45	L4/1
20/7/97	13:37	0.97	L4/2
5/10/97	12:56	1.20	L4/3
23/11/97	13:54	1.64	L4/4
29/3/98	12:42	2.85	L4/5
25/10/98	16:52	1.25	L4/6

Initial Water Chemistry Sample No: L4/1

Date:	15/6/97		Analyte v	Analyte values in mg/L			
pН	6.4	units	EC	1252	μS/cm		
Eh	136	mV	O_2	3.7	% Sat		
Temp	14.4	°C	BOD	30.0	mg/L		
Na	130	.1	C1	400.0			
K	42.	4	HCO ₃	290.2			
Ca	67.	2	SO_4	72.0			
Mg	35.	8	NO ₂ -N	0.064			
NH ₄	1.46		NO ₃ -N	4.6			
TOC	14.	0	PO ₄	18.7			

*RL is approximate at collar-natural junction; referenced to Australian Height Datum (ahd) Notes: # SWL measured from top of collar unless indicated otherwise

NATIONAL STUDY OF CEMETERY GROUNDWATERS UNIVERSITY OF TECHNOLOGY, SYDNEY					BOREHOLE			
Cemetery:	Carr V	illa Mei	morial Park					L5
Location:	on per	rimeter r	oad, NW bour	ndary area	below S	Section 'A2	,	RL * m (ahd) Est. 75.0
Driller:		excavat	ed by cemeter	y staff				Date Drilled:
Drilling Method	d:	450 mm	n bucket on ba	ckhoe				18/2/97
Piezometer Ty				Colla	r:	Screen Lo	ength:	Supervised By:
	PVC sci	reen 0.5	mm slots	0.60	m	6.0	m	BBD
Casing, lift, soil samples m	water r filter p screer	pack	Depth m	Description				
	pack 0.4 screen	above	0 – 0.3 0.3 – 1.3 1.5			ly clay & gr r & red-br c		and

DATE	TIME	SWL#	SAMPLE NO/S
16/6/97	08:57	0.08	L5/1
21/7/97	10:44	0.82	L5/2
5/10/97	17:07	1.11	L5/3
25/11/97	12:20	1.48	L5/4
29/3/98	17:00	1.65	nil
26/10/98	15:19	1.72	L5/6

Initial Water Chemistry Sample No:

Date:	16/6/97		Analyte values in mg/L				
pН	5.6	units	EC	2608	μS/cm		
Eh	6	mV	O_2	2.0	% Sat		
Temp	11.3	°C	BOD	31.0	mg/L		
Na	974.0		C1	892.5			
K	2.	0	HCO ₃	5.6			
Ca	9.	7	SO_4	4.0			
Mg	53	.0	NO ₂ -N	0			
NH ₄	0.1	18	NO ₃ -N	0			
TOC	7.	0	PO_4	0			

*RL is approximate at collar-natural junction; referenced to Australian Height Datum (ahd) # SWL measured from top of collar unless indicated otherwise L5 – L7 are seepage trenches

L5/1

NAT	NATIONAL STUDY OF CEMETERY GROUNDWATERS UNIVERSITY OF TECHNOLOGY, SYDNEY						BOREHOLE
Cemetery:	Carr Villa Me	morial Park					L6
Location:	on perimeter in further NE that	oad, NW bour an L5	ndary area be	low S	Section 'A6'		RL * m (ahd) Est. 75.2
Driller:	excava	ted by cemeter	y staff				Date Drilled:
Drilling Method	d: 450 mi	n bucket on ba	ickhoe				18/2/97
Piezometer Ty	ype: 50mm PVC	class 18,	Collar:		Screen Le	ngth:	Supervised By:
	PVC screen 0.5	mm slots	0.6	m	6.0	m	BBD
Casing, lift, soil samples m	water made filter pack screen m	Depth m	Description				
_	pack 0.3 above screen	0 – 0.3 0.3 – 1.6 1.6			nd & sandy c clay and san		

DATE	TIME	SWL#	SAMPLE NO/S
16/6/97	09:36	0.78	L6/1
21/7/97	09:55	0.76	L6/2
5/10/97	16:26	1.09	L6/3
23/11/98	15:49	1.53	nil
30/3/98	09:23	1.86	L6/5
26/10/98	14:52	1.58	L6/6

Initial Water Chemistry Sample No: L6/1

Date:	16/6	/97	Analyte values in mg/L			
pН	4.1	units	EC	4030	μS/cm	
Eh	36.7	mV	O_2	15.2	% Sat	
Temp	13.2	°C	BOD	10.0	mg/L	
Na	681.8		C1	1333		
K	4.1	1	HCO ₃	0		
Ca	31.	.6	SO_4	7.0		
Mg	73.	.7	NO ₂ -N	2.5		
NH_4	0		NO ₃ -N	0.22		
TOC	10.	.0	PO ₄	0		

Notes: *RL is approximate at collar-natural junction; referenced to Australian Height Datum (ahd) # SWL measured from top of collar unless indicated otherwise

L5-L7 are seepage trenches

NATIONAL STUDY OF CEMETERY GROUNDWATERS UNIVERSITY OF TECHNOLOGY, SYDNEY						BOREHOLE		
Cemetery:	Carr `	Villa Me	morial Park					L7
Location:	adjac	ent to we	stern boundar	y 'A' Secti	on			RL * m (ahd) Est. 77.5
Driller:		excavat	ed by cemeter	y staff				Date Drilled:
Drilling Metho	od:	450 mn	n bucket on ba	ckhoe				18/2/97
Piezometer T				Colla	ır:	Screen L	ength:	Supervised By:
	PVC so	creen 0.5	mm slots	0.6	m	4.8	m	BBD
Casing, lift, soil samples m	water filter scree	pack	Depth m	Description				
	pack 0.4 screen	l above	0 – 0.3 0.3 – 1.8 1.8			ly clay & gr clay, sandy (

DATE	TIME	SWL#	SAMPLE NO/S
16/6/97	10:35	0.81	L7/1
20/7/97	15:35	0.78	L7/2
5/10/97	15:31	0.97	L7/3
23/11/97	17:06	1.36	L7/4
29/3/98	16:22	1.63	L7/5
26/10/98	14:15	0.98	L7/6

Initial Water Chemistry Sample No: L7/1

Date:	16/6	/97	Analyte values in mg/L			
pН	5.5	units	EC	483.0	μS/cm	
Eh	-85	mV	O_2	2.8	% Sat	
Temp	13.0	°C	BOD	100.0	mg/L	
Na	842.9		C1	1642		
K	1.3	3	HCO ₃	45.2		
Ca	13.	.9	SO_4	6.0		
Mg	86.	.7	NO ₂ -N	0		
NH ₄	4.0)4	NO ₃ -N	0		
TOC	16.	.0	PO ₄	0		

Notes: *RL is approximate at collar-natural junction; referenced to Australian Height Datum (ahd) # SWL measured from top of collar unless indicated otherwise

L5-L7 are seepage trenches

NATIONAL STUDY OF CEMETERY GROUNDWATERS UNIVERSITY OF TECHNOLOGY, SYDNEY						BOREHOLE	
Cemetery:	Carr Villa Me	morial Park					L11
Location:	easternmost gr			erve; a	ttempt to fin	nd	RL * m (ahd)
	background bo						Est. 75.5
Driller:		ole Enterprises					Date Drilled:
Drilling Metho		n diam solid fl	ight auger o	on boo	m		24/11/97
Piezometer T	ype: 50mm PVC		Colla	r:	Screen Le	ength:	Supervised By:
	PVC screen 0.5	mm slots	0.53	m	1.5	m	BBD
Casing, lift, soil samples m	water made filter pack screen m	Depth m	Description				
	pack to 0.8 scr 1.1 -2.6	0-0.3 0.3-2.6 2.6		red sa	ndy clay & s br silty sand		d

DATE	TIME	SWL#	SAMPLE NO/S
25/11/97	08:44	dry	
29/3/98	08:12	dry	
25/10/98	10:25	dry	

Initial Water Chemistry

Date:		Analyte values in	mg/L
pН	units	EC	μS/cm
Eh	mV	O ₂	% Sat
Temp	°C	BOD	mg/L
Na		Cl	
K		HCO ₃	
Ca		SO ₄	
Mg		NO ₂ -N	
NH ₄		NO ₃ -N	
TOC		PO ₄	

Notes: *RL is approximate at collar-natural junction; referenced to Australian Height Datum (ahd) # SWL measured from top of collar unless indicated otherwise

Sample No:

NIL

NATIONAL STUDY OF CEMETERY GROUNDWATERS UNIVERSITY OF TECHNOLOGY, SYDNEY						BOREHOLE		
G .				DLOGY, S	YDNE	Y		T 10
Cemetery:			morial Park					L12
Location:			ılly adjacent to		serve; a	ttempt to fi	nd	RL * m (ahd)
	backg	round bo	ore – middle o	f gully				Est. 75.5
Driller:		Stacpoo	ole Enterprises	Pty Ltd				Date Drilled:
Drilling Metho	od:	450 mn	n diam solid fl	ight auger	on boo	m		24/11/97
Piezometer T	ype: 50n	nm PVC	class 18,	Colla	ır:	Screen L	ength:	Supervised By:
	PVC so	reen 0.5	mm slots	0.57	m	3.0	m	BBD
Casing, lift, soil samples m	water filter scree	pack	Depth m	Description				
s 3.5 L12/1 s 4.4 L12/2	pack to scr 2.1 -		0-0.3 0.3-3.3 3.3-5.1 5.1		ot red- el sand	s and sandy		clayey sands

DATE	TIME	SWL#	SAMPLE NO/S
25/11/97	08:45	dry	
29/3/98	08:14	dry	
25/10/98	09:45	dry	

Initial Water Chemistry

Date:		Analyte values in mg/L			
pН	units	EC	μS/cm		
Eh	mV	O ₂	% Sat		
Temp	°C	BOD	mg/L		
Na		Cl			
K		HCO ₃			
Ca		SO ₄			
Mg		NO ₂ -N			
NH ₄		NO ₃ -N			
TOC		PO ₄			

Notes: *RL is approximate at collar-natural junction; referenced to Australian Height Datum (ahd) # SWL measured from top of collar unless indicated otherwise

Sample No:

NIL

NATIONAL STUDY OF CEMETERY GROUNDWATERS UNIVERSITY OF TECHNOLOGY, SYDNEY						Borehole		
Cemetery:	Carr	Villa Me	morial Park					L13
Location:	imme	diately b	elow pond in	gully area				RL * m (ahd)
		•						Est. 74.0
Driller:			ole Enterprises					Date Drilled:
Drilling Meth			n diam solid fl			m		24/11/97
Piezometer 7				Colla	ır:	Screen L	ength:	Supervised By:
	PVC s	creen 0.5	mm slots	0.54	m	1.5	m	BBD
Casing, lift, soil samples m		made pack en m	Depth m	Description				
s 2.5 L13/1	pack to	1.0	0 -1.1 1.1 - 2.5	dk br san		oil or clayey sa	nd	
	scr 1.2		2.5 - 2.7			not sandy cl		
	∇ 1.3	2.7	2.7	complete			uy	

DATE	TIME	SWL#	SAMPLE NO/S
25/11/97	09:36	4.82	
29/3/98	14:34	2.45	L13/5
25/10/97	14:32	1.83	L13/6

Initial Water Chemistry Sample No:

Date:	29/3	/98	Analyte values in mg/L					
pН	6.1	units	EC	234	μS/cm			
Eh	-69	mV	O_2	9.2	% Sat			
Temp	16.7	°C	BOD	<2	mg/L			
Na	14.	.7	C1	14.0				
K	2.9	9	HCO ₃	146.3				
Ca	10.	.6	SO_4	7.2				
Mg	17.	.4	NO ₂ -N	0.004				
NH_4	2.2	.4	NO ₃ -N	1.6				
TOC	n/s	a	PO_4	0.7				

Notes: *RL is approximate at collar-natural junction; referenced to Australian Height Datum (ahd) # SWL measured from top of collar unless indicated otherwise

L13/5

N.	NATIONAL STUDY OF CEMETERY GROUNDWATERS UNIVERSITY OF TECHNOLOGY, SYDNEY							
Cemetery:	·							L14
Location:	imme	diately b	elow pond in	gully area				RL * m (ahd)
		•						Est. 73.5
Driller:			ole Enterprises					Date Drilled:
Drilling Meth			n diam solid fl	ight auger	on boo	m		24/11/97
Piezometer T	Type: 501	nm PVC	class 18,	Colla	r:	Screen L	ength:	Supervised By:
	PVC s	creen 0.5	mm slots	0.54	m	2.0	m	BBD
Casing, lift, soil samples m		made pack en m	Depth m	Description				
s 3.5 L14/1 s 5.3 L14/2	pack to scr 2.3		0 -1.1 1.1 - 2.5 2.5 - 5.3 5.3	dk br san mot grey mot red-g complete	& yel-l grey sar	or clayey sa ndy clay	nd	

DATE	TIME	SWL#	SAMPLE NO/S
25/11/97	09:35	dry	
29/3/98	08:39	dry	
25/10/97	10:11	dry	

Initial Water Chemistry Sample No: NIL

Date:		Analyte v	values in mg/L
pН	units	EC	μS/cm
Eh	mV	O_2	% Sat
Temp	°C	BOD	mg/L
Na		Cl	
K		HCO ₃	
Ca		SO_4	
Mg		NO ₂ -N	
NH ₄		NO ₃ -N	
TOC		PO ₄	

Notes: *RL is approximate at collar-natural junction; referenced to Australian Height Datum (ahd) #SWL measured from top of collar unless indicated otherwise

NA	NATIONAL STUDY OF CEMETERY GROUNDWATERS UNIVERSITY OF TECHNOLOGY, SYDNEY									
Cemetery:	Carr `	Villa Me	morial Park					L15		
Location:		st end (N) sum road) of main gully	y below Poi	nd, at b	oundary fe	nce of	RL * m (ahd) Est. 67.0		
Driller:		Stacpoo	ole Enterprises	Pty Ltd				Date Drilled:		
Drilling Metho	od:	450 mn	n diam solid fl	ight auger	on boo	m		24/11/97		
Piezometer T				Colla	r:	Screen L	ength:	Supervised By:		
	PVC so	creen 0.5	mm slots	0.58	m	1.0	m	BBD		
Casing, lift, soil samples m	water filter scree	pack	Depth m			Desci	ription			
	pack to scr 1.2 -		0-0.5 0.5-1.2 1.2-2.2 2.2		ed-br 1 -br & §	mot sandy c grey mot sa		& clayey sand		

DATE	TIME	SWL#	SAMPLE NO/S
25/11/97	08:34	dry	
29/3/98	08:21	2.81	nil
25/10/98	12:00	1.16	L15/6

Initial Water Chemistry Sample No: L15/6

Date:	25/10)/98	Analyte values in mg/L					
pН	7.5 units		EC	325	μS/cm			
Eh	-16.2	mV	O_2	3.1	% Sat			
Temp	14.0	°C	BOD	<2	mg/L			
Na	56.	3	Cl	16.0				
K	11.	6	HCO ₃	98.8				
Ca	42.	3	SO_4	11.0				
Mg	10.	10.0		0				
NH ₄	0.37		NO ₃ -N	0.9				
TOC	n/a	1	PO ₄	0.5				

Notes: *RL is approximate at collar-natural junction; referenced to Australian Height Datum (ahd) # SWL measured from top of collar unless indicated otherwise

N.A	NATIONAL STUDY OF CEMETERY GROUNDWATERS UNIVERSITY OF TECHNOLOGY, SYDNEY									
Cemetery:	Carr	Villa Me		L16						
Location:		st end (N sum road) of main gully	below Por	nd, at b	oundary fe	nce of	RL * m (ahd) Est. 67.0		
Driller:		Stacpoo	ole Enterprises	Pty Ltd				Date Drilled:		
Drilling Meth	od:	450 mn	n diam solid fl	ight auger	on boo	m		24/11/97		
Piezometer T	Type: 50r	nm PVC	class 18,	Colla	r:	Screen L	ength:	Supervised By:		
	PVC so	creen 0.5	mm slots	0.52	m	3.0	m	BBD		
Casing, lift, soil samples m	water filter scree	pack	Depth m	Describtion						
s 2.7 L16/1 s 4.1 L16/2 s 5.1 L16/3	pack to scr 3.2 -		0-0.5 0.5-1.2 1.2-2.7 2.7-4.9 4.9-6.2 6.2	red-br yel	ed-br -br & g y mot o dy cla	mot sandy c grey mot sa clayey sand	ndy clay	& clayey sand		

DATE	TIME	SWL#	SAMPLE NO/S
25/11/97	08:33	dry	
29/3/98	08:25	dry	
25/10/98	13:07	5.54	L16/6

Initial Water Chemistry Sample No:

Date:	25/10)/98	Analyte values in mg/L					
pН	6.1 units		EC	215.7	μS/cm			
Eh	-147	mV	O_2	2.7	% Sat			
Temp	13.7	°C	BOD	<2	mg/L			
Na	62.	.5	C1	25.0				
K	5.3	8	HCO ₃	42.1				
Ca	4	3	SO_4	25.0				
Mg	1.	7	NO ₂ -N	0				
NH ₄	0.67		NO ₃ -N	3.7				
TOC	n/s	a	PO ₄	0.3				

Notes: *RL is approximate at collar-natural junction; referenced to Australian Height Datum (ahd) # SWL measured from top of collar unless indicated otherwise

L16/6

APPENDIX H

SITE INVESTIGATION INFORMATION CENTENNIAL PARK CEMETERY, ADELAIDE, SA, (CEN) C

Figure H.1 Historical Perspective of CEN - 1949 (aerial photography South Australian (S.A.) Government)

Figure H.2 Piezometer Locations at CEN (aerial photo base – S.A. Dept. Environment and Natural Resources, 1995)

Table H.1 Rainfall & Evaporation (Class A Pan) Data Period of Study and Overall

including full month before sampling and final month for Station 23031, Adelaide - Waite Institute (rainfall) and Station 23090, Adelaide - Kent Town (evaporation) (BOM, 2001)

measurements in mm

Rainfall

Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Ann
1997					61.2	45	34	115.6	78.4	63	48.4	21.6	546.8
1998	5.2	24.8	8.6	122.2	31.8	88.8	63	68.2	59.8	49.8			
#readings	74	74	74	74	74	74	74	74	74	74	73	72	72
lowest	0	0	0	1.4	1.6	12.3	30	11.5	9	2.4	2.1	2.4	326.4
highest	92.2	107.2	105.6	189.5	174.9	179	183.1	162.6	172.2	155	120.2	93.5	877.7
average	24.0	23.8	23.4	52.9	75.9	76.4	88.0	76.1	63.4	52.1	36.8	29.7	618.6
median	20.1	14.5	17.3	44.7	66.7	69.0	83.3	71.8	61.7	48.4	32.0	27.3	614.4

Evaporation

Lvaporat	1011												
Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Ann
1997					39.4	42	44.4	58.6	74.4	140	171.6	185.2	1411
1998	208.2	179	145.2	79.2	57.2	35.8	32.6	57.8	100	122			
#readings	21	22	22	22	22	22	22	22	22	22	21	21	20
lowest	182	100.4	123.2	74.6	39.4	32.6	32.6	50.4	68.2	112	131.8	148.3	1268.1
highest	279.6	212.8	170.6	119.4	77.2	47.8	56.6	101	107.4	157.8	206.8	241.2	1616.4
average	220.1	184.4	152.0	91.3	58.0	41.4	45.6	64.0	89.8	135.9	170.2	201.2	1452.9
median	219.6	191.7	156.5	90.6	58.0	42.0	45.4	61.2	88.0	136.6	173.4	203.2	1436.9

Note: Continued from Chapter Three

At least two older bores are present on the site, one has probably been lost, and the second is used for some irrigation. The details of this latter bore in the northwestern corner are unknown; however, it is likely to have been established between 1970 and 1981 and is reported to be up to 97 m deep (Hall, 1994). All the official records (S.A. Dept. Mines and Energy, 1996) inaccurately record this information.

Table H.2 Summary of Hydraulic Test Data

Slug Tests

K in m/sec

Well	Bouwer & Rice	Cooper et al.	Hvorslev	Comments
C1	n/a			too few early data for Cooper method
C2	1.98E-06			too few early data for Cooper method
C3	n/a	7.28E-06	2.05E-05	
C4	n/a			recovery too slow for field evaluation

	National Study of Cemetery Groundwaters University of Technology, Sydney						Borehole
Cemetery:	Cemetery: Centennial Park Cemetery						
Location: above vault area of 'Catholic J' Section, on Central Drive							RL * m (ahd) Est. 48.8
Driller:		Underd	lale Drillers P	ty Ltd			Date Drilled:
Drilling Meth	od:	150 mr	n solid flight a	nuger – no casing			20/9/96
Piezomete				Collar:	Screen L	ength:	Supervised By:
18,	, PVC sc	reen 0.5	mm slots	-0.05 m	3.0	m	BBD
Casing, lift, soil samples m	water filter scree	pack	Depth m	Description			
s 2 C1/1 s 3 C1/2	pack to ∇ 3.6 scr 3.0		0-0.2 0.2-3.0 3.0-6.0 6.0	dk br sandy clay topsoil red-br sandy clay with caliche various red & br sandy clays, occ cobbles complete			

Date	Time	SWL#	Sample No/s
17/10/96	12:15	3.62	
14/2/97	n/a	3.75	
29/6/97	16:17	3.74	C1/3
24/9/97	08:19	3.19	C1/4
22/2/97	16:13	3.75	C1/5

INITIAL WATER CHEMISTRY

Date:	29/6	/97	Analyte values in mg/L				
pН	7.3	units	EC	7220	μS/cm		
Eh	3	mV	O_2	27.5	% Sat		
Temp	17.8	°C	BOD	40	mg/L		
Na	1273		Cl	1750			
K	7.	1	HCO ₃	901.0			
Ca	153	.3	SO_4	261.0			
Mg	151.3		NO ₂ -N	0			
NH ₄	0.01		NO ₃ -N	0			
TOC	27	.0	PO_4	0			

*RL is approximate at collar-natural junction; referenced to Australian Height Datum **Notes:**

SAMPLE NO:

C1/3

SWL measured from top of collar unless indicated otherwise

	National Study of Cemetery Groundwaters University of Technology, Sydney							Borehole
Cemetery: Centennial Park Cemetery							C2	
Location: 'Catholic H' Sectioin, Central Drive near rotunda							RL * m (ahd) Est. 45.5	
Driller:		Underd	ale Drillers Pt	y Ltd				Date Drilled:
Drilling Meth	od:	150 mn	n solid flight a	uger – no ca	asing			20/9/96
Piezometer 7	Type: 50n	nm PVC	class 18,	Collar	:	Screen L	ength:	Supervised By:
	PVC so	creen 0.5	mm slots	-0.05	m	3.0	m	BBD
Casing, lift, soil samples m	water filter scree	pack n m	Depth m	Description				
s 2 C2/1 s 4 C2/2 s 4.8 C2/3	pack to ∇ 4.0 scr 3.5 -		0 - 0.3 0.4 - 0.6 0.6 - 6.5	It br gravelly fill br-grey silty clay mot red-br & yel-br & grey sandy clay, caliche, occ gravel layers, minor ironstone complete in sandy clay				ay, caliche,

Date	Time	SWL#	Sample No/s
17/10/96	13:56	1.70	C2/1
14/2/97	n/a	2.21	C2/2
29/6/97	15:46	2.34	C2/3
24/9/97	10:24	1.99	C2/4

INITIAL WATER CHEMISTRY SAMPLE NO: C2/1

Date:	17/10	0/96	Analyte values in mg/L				
pН	7.0	units	EC	7470	μS/cm		
Eh	n/a	mV	O_2	5.9	% Sat		
Temp	18.6	°C	BOD	21	mg/L		
Na	n/a	a	C1	n/a			
K	n/a	a	HCO ₃	865.6			
Ca	n/a	a	SO_4	n/a			
Mg	n/a		NO ₂ -N	0			
NH ₄	n/a		NO ₃ -N	n/a			
TOC	9.6		PO ₄	2.2			

*RL is approximate at collar-natural junction; referenced to Australian Height Datum (ahd) # SWL measured from top of collar unless indicated otherwise **Notes:**

	National Study of Cemetery Groundwaters University of Technology, Sydney							Borehole
Cemetery:	Cemetery: Centennial Park Cemetery							C3
Location:	botto	m 'Catho	lic J' on City	of Unley Avenue				RL * m (ahd)
								Est. 46.1
Driller:			ale Drillers Pt	•				Date Drilled:
Drilling Meth			n solid flight a		_			20/9/96
Piezometer 7	• 1		,	Collar	:	Screen L	ength:	Supervised By:
	PVC so	creen 0.5	mm slots	-0.05	m	3.0	m	BBD
Casing, lift, soil samples m	water filter scree	pack	Depth m	Description				
s 3 C3/1 s 2.4 C3/2	pack to ∇ 3.0	0.4	0 – 4.8			ays & sand al on cobbl		
	scr 1.8	- 4.8	4.8	complete				

Date	Time	SWL#	Sample No/s
17/10/96	12:35	1.38	C3/1
14/2/97	n/a	2.08	C3/2
29/6/97	11:09	2.03	C3/3
24/9/97	11:14	1.64	C3/4
22/2/98	14:36	2.21	C3/5

INITIAL WATER CHEMISTRY SAMPLE NO: C3/1

Date:	17/10	0/96	Analyte v	values in mg/L			
pН	6.9	units	EC	8660	μS/cm		
Eh	n/a	mV	O_2	81.9	% Sat		
Temp	19.2	°C	BOD	<2	mg/L		
Na	132	24	C1	n/a			
K	11	.9	HCO ₃	873.0			
Ca	191	.5	SO_4	n/a			
Mg	186	5.6	NO ₂ -N	0.005			
NH ₄	0.48		NO ₃ -N	n/a			
TOC	2.8		PO ₄	2.0			

*RL is approximate at collar-natural junction; referenced to Australian Height Datum (ahd) # SWL measured from top of collar unless indicated otherwise **Notes:**

	National Study of Cemetery Groundwaters University of Technology, Sydney							Borehole
Cemetery:	Centennial Park Cemetery							C4
Location:	'Catholic	'Catholic K' Section, o perimeter road jctn North west Drive						RL * m (ahd) Est. 41.7
Driller:			ale Drillers Pt	•				Date Drilled:
Drilling Meth	od: 15	50 mm	ı solid flight a	uger – no c	asing			21/9/96
Piezometer 7	• 1			Collar	:	Screen L	ength:	Supervised By:
	PVC scree	en 0.51	mm slots	-0.05	m	3.0	m	BBD
Casing, lift, soil samples m	water ma filter pac screen 1	ck	Depth m	Description				
s 9.5 C4/1 s 11 C4/2	pack to ca scr 9.5 – 12		0 - 2.2 2.2 - 6.0 6.0 - 8.0 8.0 - 12.5 12.5	dk br gravelly clay & clay fill stiff yel-br clay often gravelly yel-br gravelly clay lt yel-br silty clay complete				

Date	Time	SWL#	Sample No/s
17/10/96	n/a	2.59	C4/1
14/2/97	n/a	3.09	C4/2
29/6/97	12:23	3.09	C4/3, C444/3
24/9/97	10:35	2.78	C4/4
22/2/98	13:20	1.86	C4/5

INITIAL WATER CHEMISTRY SAMPLE NO:

Date:	17/10	0/97	Analyte values in mg/L				
pН	6.7	units	EC	19520	μS/cm		
Eh	n/a	mV	O_2	64.3	% Sat		
Temp	22.5	°C	BOD	4.0	mg/L		
Na	4806		C1	n/a			
K	67	.7	HCO ₃	780.3			
Ca	891	.5	SO_4	n/a			
Mg	131	10	NO ₂ -N	0.013			
NH ₄	1.7	70	NO ₃ -N	n/a			
TOC	3.	6	PO ₄	1.9			

*RL is approximate at collar-natural junction; referenced to Australian Height Datum (ahd) Notes: # SWL measured from top of collar unless indicated otherwise area of this borehole substantially built up of in-cemetery clayey fill

C4/1

	National Study of Cemetery Groundwaters University of Technology, Sydney						
Cemetery:	Centennial Pa	rk Cemetery				C5	
Location:	adjacent to th	e lower gate of	f Central Drive, in	'General A	F'	RL * m (ahd)	
	Section					Est. 43.4	
Driller:		lale Drillers Pt	•			Date Drilled:	
Drilling Meth			uger – no casing	T		20/9/96	
Piezometer 7	Гуре: 50mm PVC		Collar:	Screen L	ength:	Supervised By:	
	PVC screen 0.5	mm slots	-0.05 m	3.0	m	BBD	
Casing, lift, soil samples m	water made filter pack screen m	Depth m	Description				
s 2 C5/1	pack to 2.4	0 - 0.3	lt br gravelly fill				
s 4 C5/2	∇ 3.0	0.3 - 2.0	•				
s 6 C5/3	scr 4.05 – 7.05	2.0 – 7.3 7.3	It br clay with caliche mot orange br white & grey sandy clay, caliche, occ gravel layers, minor ironstone complete in sandy clay, minor caving				

Date	Time	SWL#	Sample No/s
17/10/96	14:33	6.20	C5/1, C10/1
14/2/97	n/a	1.91	C5/2
29/6/97	14:45	2.09	C5/3
24/9/97	14:12	1.49	C5/4
22/2/98	13:24	1.70	C5/5
1/10/98	12:54	1.47	C5/7

INITIAL WATER CHEMISTRY SAMPLE NO:

Date:	17/10/96		Analyte values in mg/L				
pН	6.8	units	EC	23050	μS/cm		
Eh	n/a	mV	O_2	29.4	% Sat		
Temp	20.2	°C	BOD	47.0	mg/L		
Na	695	59	Cl	n/a			
K	58.	.2	HCO ₃	1231			
Ca	581	.0	SO_4	n/a			
Mg	166	62	NO ₂ -N	0			
NH ₄	0.9	05	NO ₃ -N	0			
TOC	15.	.6	PO ₄	0.5	·		

*RL is approximate at collar-natural junction; referenced to Australian Height Datum (ahd) # SWL measured from top of collar unless indicated otherwise **Notes:**

C5/1

National Study of Cemetery Groundwaters University of Technology, Sydney						Borehole		
Cemetery:	Cente	ennial Par	rk Cemetery					C6
Location:		ent to Ce dwood R	ntral Drive ex oad)	it from crea	matoriı	ım at bound	ary	RL * m (ahd) Est. 68.8
Driller:		Forests	Electrical					Date Drilled:
Drilling Meth	od:	450 mn	n solid flight a	uger – no c	asing			22/9/97
Piezometer 7	Гуре: 50г	nm PVC	class 18,	Colla	r:	Screen Le	ength:	Supervised By:
	PVC so	creen 0.5	mm slots	-0.05	m	3.0	m	BBD
Casing, lift, soil samples m	water filter scree	pack	Depth m	Description				
s 1.5 C6/1 s 6.5 C6/2 s 3.9 C6/3	pack to scr 2.05		0-1.5 1.5-2.4 2.4-5.05 5.05	lt br clay	with ca	iliche granu	les and o	raliche granules quartzite cobbles cobbles to 200mm

Date	Time	SWL#	Sample No/s
24/9/97	15:26	dry	
22/2/98	09:13	dry	
1/10/98	09:55	dry	

INITIAL WATER CHEMISTRY

Date:		Analyte values in mg/L			
pН	units	EC	μS/cm		
Eh	mV	O ₂	% Sat		
Temp	°C	BOD	mg/L		
Na		Cl			
K		HCO ₃			
Ca		SO ₄			
Mg		NO ₂ -N			
NH ₄		NO ₃ -N			
TOC		PO ₄			

*RL is approximate at collar-natural junction; referenced to Australian Height Datum (ahd) # SWL measured from top of collar unless indicated otherwise
this general area used to be called 'Springbank' because of numerous springs – not now apparent (large sub-soil drain in Goodwood Road)

SAMPLE NO:

NIL

National Study of Cemetery Groundwaters University of Technology, Sydney						Borehole		
Cemetery:	Center	nnial Par	rk Cemetery					C7
Location:	l l		vn part of 'Ca	tholic G' S	ection	adjacent to		RL * m (ahd)
D '11	1	eter road						Est. 44.5
Driller:			Electrical					Date Drilled:
Drilling Metho			n solid flight a					22/9/97
Piezometer T				Colla	r:	Screen L	ength:	Supervised By:
	PVC sci	reen 0.5	mm slots	-0.05	m	3.0	m	BBD
Casing, lift, soil samples m	water r filter p screer	pack	Depth m	Description				
s 5 C7/1	pack to 1 ∇ 3.2 – 3 scr 2.0 -5	1.7 3.6	0 - 0.2 0.2 - 0.4 0.4 - 5.0 5.0	It br sand It grey gra yel-br and complete	avelly s d lt gre	sand y-br sandy o	clay with	gravel bands

Date	Time	SWL#	Sample No/s
25/9/97	09:23	1.06	C7/4
22/2/98	09:35	1.60	C7/5
1/10/98	10:47	1.27	C7/7

INITIAL WATER CHEMISTRY

Date:	25/9	/97	Analyte values in mg/L			
pН	7.2	units	EC	9480	μS/cm	
Eh	194	mV	O_2	88.6	% Sat	
Temp	17.4	°C	BOD	5.0	mg/L	
Na	1639		Cl	2510		
K	15	.7	HCO ₃	941.2		
Ca	217	7.8	SO ₄	n/a		
Mg	251	.4	NO ₂ -N	0.001		
NH ₄	0.26		NO ₃ -N	0		
TOC	5.4		PO ₄	0		

Notes: *RL is approximate at collar-natural junction; referenced to Australian Height Datum (ahd) # SWL measured from top of collar unless indicated otherwise

SAMPLE NO:

C7/4

National Study of Cemetery Groundwaters University of Technology, Sydney						Borehole		
Cemetery:	Cente	ennial Par	rk Cemetery					C8
Location:			wn part of 'Ca	tholic E' So	ection	adjacent to		RL * m (ahd)
	perim	eter road						Est. 44.0
Driller:			Electrical					Date Drilled:
Drilling Meth	od:	450 mn	n solid flight a	uger – no c	asing			22/9/97
Piezometer 7	Type: 50r	nm PVC	class 18,	Colla	r:	Screen L	ength:	Supervised By:
	PVC so	creen 0.5	mm slots	-0.05	m	3.0	m	BBD
Casing, lift, soil samples m	water filter scree	pack	Depth m	Description				
s 2.2 C8/1 s 4.1 C8/2	pack to ∇ 2.7 scr 2.0		0 - 0.5 0.5 -5.0		& lt ye	l-br sandy		r sandy clay velly bands
			5.0	complete				

Date	Time	SWL#	Sample No/s
24/9/97	15:05	1.73	C8/4
22/2/98	10:35	1.86	C8/5
1/10/98	11:55	1.29	C8/7

INITIAL WATER CHEMISTRY

Date:	24/9/97		Analyte values in mg/L			
pН	7.4	units	EC	12090	μS/cm	
Eh	353	mV	O_2	70.3	% Sat	
Temp	17.5	°C	BOD	2.0	mg/L	
Na	2137		C1	3470		
K	24.2		HCO ₃	1359		
Ca	206.9		SO_4	325.0		
Mg	328.0		NO ₂ -N	0.003		
NH ₄	1.77		NO ₃ -N	2.1		
TOC	9.	6	PO ₄	0.3	·	

Notes: *RL is approximate at collar-natural junction; referenced to Australian Height Datum (ahd) # SWL measured from top of collar unless indicated otherwise

SAMPLE NO:

C8/4

National Study of Cemetery Groundwaters University of Technology, Sydney				Borehole		
Cemetery:	Cemetery: Centennial Park Cemetery				CA & CB	
Location:	Location: two nearby holes in front lawn adjacent to Administration					RL * m (ahd)
	Complex					Est. 70.9 & 73.0
Driller:		dale Drillers Pt	•			Date Drilled:
Drilling Meth			uger – no casing	T		20/9/96
Piezometer 7	Гуре: 50mm PV		Collar:	Screen L	ength:	Supervised By:
	PVC screen 0.	5mm slots	-0.05 m	3.0	m	BBD
Casing, lift, soil samples m	water made filter pack screen m	Depth m 0 - 0.7	Description			
	1111	0.7 - 4.0	yel sandy fill red-br clay, occ gravel			
s2 Cb/1		4.0 - 8.5	stiff, occ moist red-br & yel-br occ mot clay			
s3 Cb/2 s 4 Cb/3		8.5	occ quartzite co abandoned	bbles to 60	mm dian	n.

Date	Time	SWL#	Sample No/s

INITIAL WATER CHEMISTRY

Date:		Analyte values in mg/L		
pН	units	EC	μS/cm	
Eh	mV	O ₂	% Sat	
Temp	°C	BOD	mg/L	
Na		C1	-	
K		HCO ₃		
Ca		SO ₄		
Mg		NO ₂ -N		
NH ₄		NO ₃ -N		
TOC		PO ₄		

Notes: *RL is approximate at collar-natural junction; referenced to Australian Height Datum (ahd)
SWL measured from top of collar unless indicated otherwise
two attempts were made to intersect possible string gravel seepage lines for establishing a background

SAMPLE NO:

NIL

bore – both attempts unsuccessful; these holes not completed with piezometers; similar soil conditions in each – this log CB borehole

APPENDIX I

SITE INVESTIGATION INFORMATION CHELTENHAM CEMETERY, ADELAIDE, SA, (HEL) H

Figure I.1 Historical Perspective of HEL - 1949 (aerial photography South Australian (S.A.) Government)

Figure I.2 Piezometer Locations at HEL (aerial photo base – S.A. Dept. Environment and Natural Resources, 1995)

Table I.1 Rainfall Data (HEL) – Period of Study and Overall, including full month before sampling and final month; for Station 23034, Adelaide Airport (BOM, 2001)

measurements in mm

Rainfall

Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Ann
1997	47.2	25.8	4.4	5.2	51.4	30.2	19.4	78.8	72.6	69.4	44.4	18.2	467
1998	7	20.4	8.8	95.2	26.2	74.4	44.8	44.6	49.4	43.8			
# readings	43	43	44	44	44	44	44	44	44	44	43	43	42
minimum	0.3	0	0	0.8	4.4	7.2	18.2	14.6	13.1	0.8	1	2.4	245.2
maximum	62.3	103.2	112.2	158.8	125.4	137.8	118	103.8	113.6	90.4	94.9	90.4	730.8
average	18.6	18.7	20.8	36.8	55.4	54.4	63.3	51.3	46.3	38.9	24.9	24.7	450.4
median	15.0	11.4	17.2	29.4	52.0	44.9	60.9	46.6	44.7	40.7	21.2	18.0	454.3

Evaporation

= · up or u													
Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Ann
1997	292.6	244.2	184.4	124.6	59.6	57.8	59.2	83.8	86.8	173.2	211.4	217.2	1794.8
1998	265.4	216.8	193.8	113	77.8	55.6	49.8	74.6	118.6	153.2			
# readings	17	17	17	17	17	17	17	17	17	17	17	16	16
lowest	220	185.4	142.8	106.4	59.6	48.4	49.8	72.8	85.2	132.4	154.6	183.4	1537.6
highest	332.6	284.8	236.4	139.8	106.2	64.6	73.6	111.8	136.6	199.8	271.2	298.6	2106.8
average	268.8	232.9	197.3	125.1	79.8	55.3	60.1	83.7	111.2	168.4	212.8	244.6	1844.0
median	269.8	239.0	198.8	126.8	78.2	54.8	59.4	81.0	114.4	169.2	212.6	247.0	1852.4

Table I.2 Summary of Hydraulic Test Data

Slug Tests

K in m/sec

Well	Bouwer & Rice	Cooper et al.	Hvorslev	Comments
H1	6.92E-06			
H2	5.98E-06			
H3	2.92E-05			
H4	4.84E-06			
H5	2.86E-05			
H6	4.07E-05			
H7	1.40E-05			

NATIONAL STUDY OF CEMETERY GROUNDWATERS UNIVERSITY OF TECHNOLOGY, SYDNEY emetery: Cheltenham Cemetery						
Cheltenham	Cemetery					H1
adjacent to Office area, High St., on Drive A, east side, south Path 1						RL * m (ahd) Est. 6.0
Unde	dale Drillers Pt	ty Ltd				Date Drilled:
od: 150 m	m solid flight a	uger – no cas	ing			19/9/96
ype: 50mm PV	C class 18,	Collar:		Screen Le	ngth:	Supervised By:
PVC screen 0	5mm slots	-0.05	m	3.0	m	BBD
water made filter pack screen m	Depth m					
pack to 1.9	0 - 1.0 1.0 - 6.0					
scr 2.9 -5.9	6.0	complete, so	ome	cavein		
	UNIVERSIT Cheltenham (adjacent to C Path 1 Under od: 150 m ype: 50mm PVC PVC screen 0. water made filter pack screen m pack to 1.9	UNIVERSITY OF TECHNO Cheltenham Cemetery adjacent to Office area, Hig Path 1 Underdale Drillers Prode: 150 mm solid flight a type: 50mm PVC class 18, PVC screen 0.5mm slots water made filter pack screen m pack to 1.9 0 - 1.0 1.0 - 6.0	Cheltenham Cemetery adjacent to Office area, High St., on Drive Path 1 Underdale Drillers Pty Ltd de: 150 mm solid flight auger – no case sype: 50mm PVC class 18, PVC screen 0.5mm slots water made filter pack screen m pack to 1.9 O - 1.0 It br silty case of the property of the pr	Cheltenham Cemetery adjacent to Office area, High St., on Drive A, Path 1 Underdale Drillers Pty Ltd d: 150 mm solid flight auger – no casing ype: 50mm PVC class 18, PVC screen 0.5mm slots water made filter pack screen m pack to 1.9 O - 1.0 dk br silty caly 1.0 - 6.0 lt br silty caly	UNIVERSITY OF TECHNOLOGY, SYDNEY Cheltenham Cemetery adjacent to Office area, High St., on Drive A, east side, so Path 1 Underdale Drillers Pty Ltd d: 150 mm solid flight auger – no casing ype: 50mm PVC class 18, Collar: Screen Le PVC screen 0.5mm slots -0.05 m 3.0 water made filter pack screen m pack to 1.9 0 - 1.0 dk br silty caly 1.0 - 6.0 lt br silty caly	Cheltenham Cemetery adjacent to Office area, High St., on Drive A, east side, south Path 1 Underdale Drillers Pty Ltd d: 150 mm solid flight auger – no casing ype: 50mm PVC class 18, PVC screen 0.5mm slots water made filter pack screen m pack to 1.9 O - 1.0 1.0 – 6.0 Underdale Drillers Pty Ltd Depth Description Depth Description Description

DATE	TIME	SWL#	SAMPLE NO/S
13/2/97	n/a	4.18	nil
30/6/97	13:27	4.49	H1/2
23/9/97	12:01	4.26	H1/3
23/2/98	15:20	4.36	H1/4
27/7/98	12:09	4.25	H1/5
1/10/98	15:08	3.97	H1/6

Initial Water Chemistry Sample No: H1/2

Date:	30/6/	/97	Analyte v	values in mg/L			
pН	7.8	7.8 units		4310	μS/cm		
Eh	138	mV	O_2	n/a	% Sat		
Temp	20.3	°C	BOD	15	mg/L		
Na	904.8		C1	622			
K	13.4		HCO ₃	1360			
Ca	33.	4	SO_4	184.0			
Mg	68.	3	NO ₂ -N	0.004			
NH ₄	0.5	9	NO ₃ -N	0			
TOC	28.	0	PO ₄	0			

*RL is approximate at collar-natural junction; referenced to Australian Height Datum (ahd) Notes: # SWL measured from top of collar unless indicated otherwise

NA		-	OF CEMET					Borehole
Cemetery:	Chelte	nham C	emetery					H2
Location:	drive A	A south:	side at Path 22	2,'C' section	n			RL * m (ahd) Est. 5.9
Driller:		Underd	ale Drillers Pt	y Ltd				Date Drilled:
Drilling Metho	od:	150 mm	n solid flight a	uger – no c	asing			19/9/96
Piezometer T	ype: 50m	m PVC	class 18,	Colla	r:	Screen L	ength:	Supervised By:
	PVC sci	reen 0.5	mm slots	-0.05	m	3.0	m	BBD
Casing, lift, soil samples m	water n filter p screen	ack	Depth m	Description				
	pack to 0 scr 3.0 –		0-0.5 0.5-2.8 2.8-6.0 6.0	dk br top: red-br sil: various re complete	ty clay ed-br cl	ays & sand	y clays	

DATE	TIME	SWL#	SAMPLE NO/S
12/2/97	n/a	4.22	H2/1
30/6/97	10:35	4.55	H2/2
23/9/97	10:16	4.33	H2/3
23/2/98	15:15	4.43	
26/7/98	16:32	4.33	
2/10/98	n/a	3.90	H2/7

Initial Water Chemistry Sample No:

Date:	12/2	/97	Analyte v	values in mg/L		
pН	7.4	units	EC	1820	μS/cm	
Eh	230	mV	O_2	46.2	% Sat	
Temp	24.1	°C	BOD	<2	mg/L	
Na	85.	.2	C1	168.6		
K	2.:	5	HCO ₃	n/a		
Ca	8.8	8	SO_4	71.3		
Mg	9.	8	NO ₂ -N	0.006		
NH ₄	0.0)1	NO ₃ -N	1.9		
TOC	3.3	2	PO ₄	3.2		

Notes: *RL is approximate at collar-natural junction; referenced to Australian Height Datum (ahd) # SWL measured from top of collar unless indicated otherwise

H2/1

N.			OF CEMET					BOREHOLE
Cemetery:	Chelt	enham C	emetery	-				Н3
Location:	drive	B west s	ide, north of	Row 18, Se	ection '	В'		RL * m (ahd)
D :11		77 1 1	1 D 111 D	T + 1				Est. 6.0
Driller:	. 1.		ale Drillers Pt	•				Date Drilled:
Drilling Meth			n solid flight a			~ T		19/9/96
Piezometer 7	• 1		,	Colla	r:	Screen L	ength:	Supervised By:
			mm slots	-0.05	m	3.0	m	BBD
Casing, lift, soil samples m		made pack en m	Depth m	Description				
s 1.5 H3/1	pack to	2.15	0 -1.5	dk br san	dy silty	clay		
s 3 H3/2	∇ 4.3		1.5 - 6.0	d & lt br	mot saı	ndy clays, so	ometime	s sandy
s 6 H 3/3	scr 3.0	-6.0	6.0	complete				

DATE	TIME	SWL#	SAMPLE NO/S
12/2/97	n/a	4.39	H3/1
30/6/97	14:38	4.67	H3/2
23/6/97	15:45	4.45	H3/3
23/2/98	10:19	4.52	H3/5
27/7/98	12:09	4.42	H3/6
2/10/98	13:02	4.13	H3/7

Initial Water Chemistry Sample No:

Date:	12/2	2/97	Analyte v	Analyte values in mg/L				
pН	7.6 units		EC	4140	μS/cm			
Eh	114	mV	O_2	20.2	% Sat			
Temp	25.9	°C	BOD	<2	mg/L			
Na	691.8		C1	563.0				
K	8.	5	HCO ₃	1391				
Ca	14	.7	SO_4	179.3				
Mg	39.3		NO ₂ -N	0.005				
NH ₄	0.1	16	NO ₃ -N	2.1	•			
TOC	1.	4	PO_4	1.5				

*RL is approximate at collar-natural junction; referenced to Australian Height Datum (ahd) # SWL measured from top of collar unless indicated otherwise **Notes:**

H3/1

NA	NATIONAL STUDY OF CEMETERY GROUNDWATERS UNIVERSITY OF TECHNOLOGY, SYDNEY							Borehole	
Cemetery:	Cheltenh	nam Ce	emetery					H4	
Location:	drive C w	west si	de , north of I	Path 6, Sect	ion 'I	,		RL * m (ahd) Est. 5.5	
Driller:	Ur	nderda	ale Drillers Pt	y Ltd				Date Drilled:	
Drilling Metho	od: 15	50 mm	solid flight a	uger – no ca	sing			19/9/96	
Piezometer T				Collar	:	Screen Lo	ength:	Supervised By:	
	PVC scree	en 0.5r	nm slots	-0.05	m	3.0	m	BBD	
Casing, lift, soil samples m	water mad filter pac screen n	ck	Depth m	Description					
	pack to 1.4 scr 2.5 – 5.5		0 - ca 0.3 0.3 - 4.0 4.0 - 5.5 5.5	It br sandy It br sandy It br silty of complete	silty	clay			

DATE	TIME	SWL#	SAMPLE NO/S
12/2/97	n/a	3.74	nil
1/7/97	08:15	4.10	nil
23/9/97	14:53	3.90	nil
23/2/98	13:58	3.91	H4/5
26/7/98	16:05	3.86	
2/10/98	08:52	3.50	H4/7

Initial Water Chemistry Sample No:

Date:	23/2	2/98	Analyte values in mg/L				
pН	8 units		EC	$2670 \mu S/c$			
Eh	42	mV	O_2	n/a	% Sat		
Temp	28	°C	BOD	>19	mg/L		
Na	192	2.3	Cl	160			
K	5.	.5	HCO ₃	1000			
Ca	9.	.7	SO_4	86			
Mg	15	.7	NO ₂ -N	0			
NH ₄	()	NO ₃ -N	3			
TOC	ç)	PO ₄	0			

Notes: *RL is approximate at collar-natural junction; referenced to Australian Height Datum (ahd) # SWL measured from top of collar unless indicated otherwise

H4/5

NA	NATIONAL STUDY OF CEMETERY GROUNDWATERS UNIVERSITY OF TECHNOLOGY, SYDNEY						BOREHOLE	
Cemetery:	Cheltenl	ham Co	emetery					Н5
Location:	drive C	west si	ide, north of	Path 30, Sect	ion 'l	M'		RL * m (ahd) Est. 5.3
Driller:	U	Jnderda	ale Drillers Pt	y Ltd				Date Drilled:
Drilling Metho	od: 1	150 mm	n solid flight a	uger – no cas	ing			20/9/96
Piezometer T				Collar:		Screen Le	ength:	Supervised By:
	PVC scre	een 0.51	mm slots	-0.05	m	3.0	m	BBD
Casing, lift, soil samples m	water ma filter pa screen	ack	Depth m	Description				
s 2 H5/1	pack to 1.7 scr 3.0 – 6	7	0 – 1.9 1.9 – 6.0 6.0	It br silty cl silty & sand complete so	ly cla			

DATE	TIME	SWL#	SAMPLE NO/S
12/2/97	n/a	3.76	H5/1
1/7/97	10:37	4.10	H5/2
23/9/97	14:25	3.90	H5/3
23/9/98	12:29	3.92	H5/5
26/7/98	15:56	3.86	
2/10/98	10:10	3.51	H5/7

Initial Water Chemistry Sample No: H5/1

Date:	12/2	/97	Analyte v	values in mg/L	
pН	7.6	units	EC	3770	μS/cm
Eh	208	mV	O_2	22.9	% Sat
Temp	23.6	°C	BOD	<2	mg/L
Na	592	.0	C1	213.6	
K	9.1		HCO ₃	1170.4	
Ca	23.	1	SO_4	52.2	
Mg	51.	5	NO ₂ -N	0.006	
NH ₄	0.4	1	NO ₃ -N	0	
TOC	0.4	1	PO_4	6.2	

*RL is approximate at collar-natural junction; referenced to Australian Height Datum (ahd) Notes: # SWL measured from top of collar unless indicated otherwise

N.	NATIONAL STUDY OF CEMETERY GROUNDWATERS UNIVERSITY OF TECHNOLOGY, SYDNEY						BOREHOLE		
Cemetery:	Chelt	enham C	emetery					Н6	
Location:	drive	C east si	de, adjacent a	and north o	f Row	43, Section	'O'	RL * m (ahd) Est. 5.8	
Driller:		Underd	ale Drillers Pt	y Ltd				Date Drilled:	
Drilling Meth	od:	150 mn	n solid flight a	uger – no c	asing			20/9/96	
Piezometer 7				Colla	r:	Screen L	ength:	Supervised By:	
	PVC s	creen 0.5	mm slots	-0.05	m	3.0	m	BBD	
Casing, lift, soil samples m	filter	made pack en m	Depth m			Descr	ription		
s 4 H6/1	pack to	1.8	$0 - ca \ 0.5$	dk br loar	ny clay	with charc	oal piece	es	
s 6 H6/2			0.5 - 4.0	mod stiff		clay			
	scr 3.0	-6.0	4.0 - 6.0	silty sand					
			6.0	complete					

DATE	TIME	SWL#	SAMPLE NO/S
12/2/97	13:00	4.08	H6/1
30/6/97	15:36	4.48	H6/2
23/9/97	13:23	4.22	H6/3
20/2/97	15:09	4.22	
27/7/98	16:30	4.13	H6/6
2/10/98	11:25	3.94	

Initial Water Chemistry Sample No: H6/1

Date:	12/2	/97	Analyte v	values in mg/L	
pН	7.8	units	EC	6200	μS/cm
Eh	9	mV	O_2	7.9	% Sat
Temp	24.0	°C	BOD	<2	mg/L
Na	419	.1	C1	448.4	
K	6.0)	HCO ₃	926.6	
Ca	25.	0	SO_4	88.4	
Mg	59.	0	NO ₂ -N	0.002	
NH ₄	0.4	9	NO ₃ -N	0	
TOC	1.		PO ₄	7.0	

Notes: *RL is approximate at collar-natural junction; referenced to Australian Height Datum (ahd) # SWL measured from top of collar unless indicated otherwise

N.	NATIONAL STUDY OF CEMETERY GROUNDWATERS UNIVERSITY OF TECHNOLOGY, SYDNEY						BOREHOLE	
Cemetery:		enham C						Н7
Location:	drive	D west s	ide, between	Rows 42 +	43			RL * m (ahd)
								Est. 5.5
Driller:			ale Drillers Pt	•				Date Drilled:
Drilling Meth			n solid flight a	uger – no c	asing			20/9/96
Piezometer 7	Гуре: 501	nm PVC	class 18,	Colla	r:	Screen L	ength:	Supervised By:
	PVC s	creen 0.5	mm slots	-0.05	m	3.0	m	BBD
Casing, lift, soil samples m		made pack en m	Depth m	Description				
	pack to	1.0	0 - 0.4	dk br sand	dy clay	topsoil		
	∇ ca 3.0)	0.4 -5.5	red-br cla	-			
	scr 1.8	- 4.8	5.5	complete	but sul	ostantial cav	ein/	

DATE	TIME	SWL#	SAMPLE NO/S
13/2/97	n/a	4.01	H7/1
1/7/97	08:26	4.68	
24/7/97	18:00	4.14	H7/3
23/2/98	11:41	4.18	H7/5
27/7/98	13:18	4.03	H7/6
1/10/98	17:57	3.83	H7/7

Initial Water Chemistry Sample No: H7/1

Date:	13/2	/97	Analyte v	values in mg/L	
pН	7.5 units		EC	1738	μS/cm
Eh	137	mV	O_2	39.1	% Sat
Temp	27.2	°C	BOD	<2	mg/L
Na	268	.8	C1	52.5	
K	16.	.8	HCO ₃	460.9	
Ca	32.	.7	SO_4	22.0	
Mg	60.	9	NO ₂ -N	0.003	
NH_4	0.2	.7	NO ₃ -N	0	
TOC	1.0	5	PO ₄	4.4	

Notes: *RL is approximate at collar-natural junction; referenced to Australian Height Datum (ahd) #SWL measured from top of collar unless indicated otherwise background bore in NE corner

APPENDIX J

SITE INVESTIGATION INFORMATION GUILDFORD CEMETERY, PERTH, WA, (GUI) G

Figure J.1 Historical Perspective of GUI – 1948 (aerial photography Western Australian (W.A.) Government)

Figure J2 Piezometer Locations at GUI (aerial photo base – W.A. Dept. of Land Administration, 1996)

Table J.1 Rainfall & Evaporation (Class A Pan) Data Period of Study and Overall including full month before sampling and final month for Station 09021, Perth Airport (BOM, 2001)

measurements in mm

Rainfall

Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Ann
1996											44.6	16.8	889.2
1997	0.8	7.8	27.6	26.4	77.6	105.6	121.6	124.8	105.6	31.6	6.6	0	636
1998	2.6	0	29.8	12.4	78.8	128.4	103	155.6	114.4				
# readings	54	54	54	54	55	55	55	55	55	54	54	54	53
lowest	0	0	0	0	15	65.3	63.8	23.2	11.5	1.3	1.3	0	523.8
highest	72.6	150.4	61.9	113.3	229	424.1	446.7	340.3	163	124.8	80.7	65.5	1164.7
average	6.8	16.1	15.0	41.8	105.2	173.1	161.9	118.6	71.0	47.2	26.2	11.4	797.8
median	1.8	6.5	9.7	35.9	106.8	173.7	158.4	112.4	66.0	41.6	22.8	8.5	791.2

Evaporation

= , top or to													
Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Ann
1996											209.6	290	2359.8
1997	385	280.6	266.2	147	104.4	58.8	77	86.6	101.2	186.4	209.2	307.4	2209.8
1998	323.4	276	251.2	153.4	93.4	64.7	58.6	81.8	115.8	189.1	233.2		
#readings	17	17	17	17	17	17	17	17	17	17	17	16	16
lowest	260.2	201.2	187.6	127.8	75.6	55.4	53	67	89.8	43.3	188.9	245	1870.8
highest	385	355.2	305.6	190.8	129	92.4	91.8	93.8	125	189.1	254.8	342.6	2359.8
average	321.9	279.2	246.4	157.9	97.1	68.3	67.8	83.0	109.1	156.0	216.3	274.5	2084.9
median	327.2	276.4	251.2	155.8	95.6	65.8	67.2	84.6	111.2	163.3	212.0	266.0	2073.9

Table J.2 Summary of Hydraulic Test Data

Slug Tests

K in m/sec

Well	Bouwer & Rice	Cooper et al.	Hvorslev	Comments
G1	1.74E-06			
G3	6.94E-07			
G5	n/a			too quick for any method
G8	4.47E-06			

NA			ERY GROUNDW DLOGY, SYDNEY			Borehole	
Cemetery:	Guildford Cer	netery				G1	
Location:	background c	lustered piezor	area	RL * m (ahd) 15.522			
Driller:	GFWA	•				Date Drilled:	
Drilling Metho	od: 200 mr	n hollow flight	t auger – no casing	7		13/11/96	
Piezometer T	er Type: 50mm PVC class 18, Collar: Screen Length:					Supervised By:	
	PVC screen 0.5	mm slots	0.74 m	1.5	m	BBD	
Casing, lift, soil samples m	water made filter pack screen m	Depth m	Description				
samples in s 1.0 G1/1 s 2.0 G1/2 s 2.8 G1/3 s 3.0 G1/4 s 3.7 G 1/5 s 6.0 G1/6	pack to 3.1 ∇ 2.9 scr 4.5 – 6.0	0 - 0.3 0.3 - 2.7 2.7 - 2.8 2.8 - 5.5 5.5 - 6.1 6.1	loose It grey find ye fine-med sand beige gravelly sa yel silty coarse s yel-br clayey co- complete, refusa	d and, pebbles and arse sand	to 15 m	nm diam	

DATE	TIME	SWL#	SAMPLE NO/S
15/11/96	n/a	3.74	G1/1
10/2/97	n/a	4.74	G1/2
3/7/97	09:12	5.58	G1/3
26/9/97	14:31	4.05	G1/4
24/2/98	12:40	6.18	G1/5
25/7/98	10:03	6.53	nil
25/9/98	12:46	4.10	G1/7

Initial Water Chemistry Sample No: G1/1

Date:	15/11	1/96	Analyte v	Analyte values in mg/L				
pН	7.3 units		EC	903 μS/c				
Eh	142	mV	O_2	29.3	% Sat			
Temp	17.5	°C	BOD	n/a	mg/L			
Na	100.8		C1	n/a				
K	5.2		HCO ₃	163.4				
Ca	69.	.0	SO_4	n/a				
Mg	13.8		NO ₂ -N	0.315				
NH_4	0.74		NO ₃ -N	6.3				
TOC	n/a		PO ₄	n/a				

Notes: *RL is approximate at collar-natural junction; referenced to Australian Height Datum (ahd) # SWL measured from top of collar unless indicated otherwise

G1 and G2 are clustered for background bores

bores G1 & G2 are completed with bentonite seal of $0.3\ m$ thickness

Na			OF CEMET					Borehole
Cemetery:	Guild	ford Cen	netery					G2
Location:	backg	ground clustered piezometer above 'Greek Orthodox' area						RL * m (ahd) 15.497
Driller:		GFWA						Date Drilled:
Drilling Metho	od:	200 mn	n hollow flight	t auger – no	casing	2		13/11/96
Piezometer Ty	ype: 50n	nm PVC	class 18,	Colla	r:	Screen Lo	ength:	Supervised By:
	PVC sc	creen 0.5	mm slots	0.69	m	3.0	m	BBD
Casing, lift, soil samples m	water filter scree	pack	Depth m	Description				
	pack to scr 2.0 - bentonit	5.0		for detail	log see	e G1		

DATE	TIME	SWL#	SAMPLE NO/S
15/11/96	n/a	3.69	G2/1
10/2/97	n/a	4.77	
30/7/97	08:14	dry	
26/9/97	13:55	3.99	G2/4
24/2/98	12:35	dry	
25/7/98	10:04	dry	
25/9/98	12:02	4.89	G2/7

Initial Water Chemistry Sample No: G2/1

Date:	15/11	./97	Analyte v	Analyte values in mg/L				
pН	5.8 units		EC	266.8	μS/cm			
Eh	211 mV		O_2	11.7	% Sat			
Temp	19.6	°C	BOD	n/a	mg/L			
Na	27.7		C1	n/a				
K	2.5	5	HCO ₃	19.5				
Ca	8.1		SO_4	n/a				
Mg	7.9		NO ₂ -N	0.047				
NH ₄	0.02		NO ₃ -N	7.9				
TOC	n/a		PO_4	0.4				

*RL is approximate at collar-natural junction; referenced to Australian Height Datum (ahd) **Notes:** # SWL measured from top of collar unless indicated otherwise

G1 and G2 are clustered for background bores

bores G1 & G2 are completed with bentonite seal of 0.3 m thickness

N.				ERY GROUNDW. OLOGY, SYDNEY			BOREHOLE	
Cemetery:	Guild	ford Cer	netery				G3	
Location:		W corner	•	edge of 'General l	F' Section		RL * m (ahd) 12.605	
Driller:		GFWA		Date Drilled:				
Drilling Meth	thod: 200 mm hollow flight auger – no casing						13-14/11/96	
Piezometer 7	Piezometer Type: 50mm PVC class 18, Collar: Screen Length:						Supervised By:	
	PVC screen 0.5mm slots 0.73 m 1.5 m					m	BBD	
Casing, lift, soil samples m	water filter scree	pack	Depth m	Description				
s 2 G3/1 s 3.5 G3/2 s 6.0 -6.5	pack to	2.2	$ \begin{array}{c} 0 - 0.2 \\ 0.2 - 3.5 \\ 3.5 - 6.0 \end{array} $	It grey fine sand yel med sand white silty sand				
G3/3	scr 4.5	-6.0	6.0 – 6.5 6.5	stiff grey-green s complete	sandy clay			

DATE	TIME	SWL#	SAMPLE NO/S
15/11/96	n/a	2.70	
11/2/97	n/a	3.20	
2/7/97	n/a	dry	
27/9/97	11:50	3.23	
24/2/98	08:52	dry	
23/7/98	15:55	4.34	G3/6
25/8/98	14:45	3.44	G3/7

Initial Water Chemistry Sample No: G3/6

Date:	23/7	/98	Analyte values in mg/L				
pН	6.0	units	EC	366	μS/cm		
Eh	60	mV	O_2	n/a	% Sat		
Temp	20.8	°C	BOD	5.0	mg/L		
Na	21.0		C1	20.0			
K	10.	.2	HCO ₃	24.3			
Ca	11.	.9	SO_4	9.0			
Mg	16.	.3	NO ₂ -N	0.019			
NH ₄	0.3	3	NO ₃ -N	17.0			
TOC	5.0	0	PO ₄	3.9			

*RL is approximate at collar-natural junction; referenced to Australian Height Datum (ahd) **Notes:** # SWL measured from top of collar unless indicated otherwise

G3 and G4 were clustered as lowest-most bores

bore G3 was re-drilled twice as the bottom caved-in

G3 & G4 bores required extensive de-sludging on numerous occasions – prevented early sampling

N.	NATIONAL STUDY OF CEMETERY GROUNDWATERS UNIVERSITY OF TECHNOLOGY, SYDNEY							Borehole
Cemetery:	Guild	lford Cen	netery					G4
Location:		W corner	of cemetery of G4	edge of 'G	eneral	F' Section		RL * m (ahd) 12.609
Driller:		GFWA						Date Drilled:
Drilling Meth	od:	200 mn	n hollow fligh	t auger – no	casing			13-14/11/96
Piezometer 7				Colla	r:	Screen L	ength:	Supervised By:
	PVC so	creen 0.5	mm slots	0.49	m	3.0	m	BBD
Casing, lift, soil samples m	water filter scree	pack	Depth m			Descr	ription	
	pack to	0.6		see log fo	or G3			
	scr 1.3 -	-4.3	4.3	complete	in sand	ls		

DATE	TIME	SWL#	SAMPLE NO/S
15/11/96	n/a	2.637	
11/2/97	n/a	3.54	G4/2, G84/2
2/7/97	10:06	3.90	G4/3
27/9/97	12:17	2.97	G4/4
24/2/98	08:52	4.31	
23/7/98	11:53	4.26	
25/8/98	14:08	3.37	G4/7

Initial Water Chemistry Sample No:

Date:	11/2	/97	Analyte v	values in mg/L		
pН	5.8	units	EC	607	μS/cm	
Eh	226	mV	O_2	40.8	% Sat	
Temp	26.5	°C	BOD	<5	mg/L	
Na	22.8		C1	33.1		
K	11.	.7	HCO ₃	20.5		
Ca	22.	.3	SO_4	<1		
Mg	22.	.7	NO ₂ -N	0		
NH ₄	0		NO ₃ -N	32.2		
TOC	20.	.0	PO ₄	1.0		

*RL is approximate at collar-natural junction; referenced to Australian Height Datum (ahd) **Notes:** # SWL measured from top of collar unless indicated otherwise

G4/2

G3 and G4 were clustered as lowest-most bores

bore G3 was re-drilled twice as the bottom caved-in

G3 & G4 bores required extensive de-sludging on numerous occasions -prevented early sampling

NATIONAL STUDY OF CEMETERY GROUNDWATERS UNIVERSITY OF TECHNOLOGY, SYDNEY						BOREHOLE	
Cemetery:	Guildford Cer		-				G5
Location:	adjacent to N	W boundary be	elow "Musl	im' Se	ction		RL * m (ahd) 11.718
Driller:	GFWA						Date Drilled:
Drilling Metho	od: 200 mm	n hollow flight	auger – no	casing	7		13/11/96
Piezometer T	ype: 50mm PVC	class 18,	Colla	r:	Screen Le	ength:	Supervised By:
	PVC screen 0.5	mm slots	0.71	m	3.0	m	BBD
Casing, lift, soil samples m	water made filter pack screen m	Depth m	Description				
s 4.4 G5/1	pack to 0.8 V 1.8 scr 1.3 – 4.3	0 – 0.3 0.3 – 4.4 4.4		ge med	ich fine sand fine sand ay	I	

DATE	TIME	SWL#	SAMPLE NO/S
15/11/97	n/a	1.72	
10/2/97	n/a	2.60	G5/2
2/7/97	13:05	2.90	G5/3
26/9/97	15:27	2.13	G5/4, G555/4
24/2/98	09:00	3.35	G5/5
23/7/98	11:21	3.20	G5/6
29/7/97	08:34	4.37	G5/7

Initial Water Chemistry

Date:	10/2/	97	Analyte v	values in mg/L		
pН	5.8	units	EC	667	μS/cm	
Eh	174	mV	O_2	11.2	% Sat	
Temp	28.9	°C	BOD	<5	mg/L	
Na	40.3		C1	31.1		
K	11.	6	HCO ₃	14.0		
Ca	43.	9	SO_4	<1		
Mg	23.	0	NO ₂ -N	0.013		
NH ₄	0.50	0	NO ₃ -N	23.7		
TOC	23.	0	PO_4	4.7		

*RL is approximate at collar-natural junction; referenced to Australian Height Datum (ahd) # SWL measured from top of collar unless indicated otherwise Notes:

Sample No:

G5/2

NATIONAL STUDY OF CEMETERY GROUNDWATERS UNIVERSITY OF TECHNOLOGY, SYDNEY							BOREHOLE	
Cemetery:		ford Cen		-				G6
Location:	adjac	ent to Ka	lamanda Road	d and W en	trance	on North sid	de	RL * m (ahd)
Driller:		GFWA						13.830 Date Drilled:
Drilling Metho	od:		n hollow flight	auger – no	casing	<u> </u>		13/11/96
Piezometer T				Colla		Screen L	ength:	Supervised By:
	PVC so	creen 0.5	mm slots	0.73	m	3.0	m	BBD
Casing, lift, soil samples m	water filter scree	pack	Depth m	Description				
s 2.0 G6/1 s 3.9 G6/2 s 5.4 G6/3	pack to ∇ 2.7 scr 2.4 -		0-0.3 0.3-2.3 2.3-5.4 5.4	It grey or yel-br fin fine white complete	e sand	ne sand		

DATE	TIME	SWL#	SAMPLE NO/S
15/11/96	n/a	3.51	
10/2/97	n/a	4.30	G6/2
2/7/97	10:50	4.82	G6/3
27/9/97	08:37	4.00	G6/4
24/2/98	16:43	4.96	G6/5
23/7/98	10:45		
28/9/97	07:48	4.43	G6/7

Initial Water Chemistry Sample No:

Date:	10/2	/97	Analyte v	values in mg/L	
pН	6.8	units	EC	1061	μS/cm
Eh	38	mV	O_2	20.6	% Sat
Temp	25.1	°C	BOD	<5	mg/L
Na	64	.5	Cl	103.6	
K	1.	2	HCO ₃	97.4	
Ca	27	.8	SO_4	28.9	
Mg	10	.2	NO ₂ -N	0.005	
NH_4	1.	0	NO ₃ -N	10.4	•
TOC	30	.0	PO_4	12.0	

*RL is approximate at collar-natural junction; referenced to Australian Height Datum (ahd) # SWL measured from top of collar unless indicated otherwise Notes:

G6/2

NATIONAL STUDY OF CEMETERY GROUNDWATERS UNIVERSITY OF TECHNOLOGY, SYDNEY						BOREHOLE	
Cemetery:	Guildford Cer	netery	-				G 7
Location:	adjacent to SV	V corner of 'R	oman Cath	olic D'	Section		RL * m (ahd)
	<u> </u>						13.286
Driller:	GFWA						Date Drilled:
Drilling Metho		n hollow flight			3		14/11/96
Piezometer Ty	ype: 50mm PVC	class 18,	Colla	r:	Screen L	ength:	Supervised By:
	PVC screen 0.5	mm slots	0.78	m	3.0	m	BBD
Casing, lift, soil samples m	water made filter pack screen m	Depth m	Description				
,	pack to 0.5 ∇ 1.7 1.2 – 4.2	0 – 0.2 0.2 – 4.2 4.2	It grey fin white clay complete		e sand; cavi	ng at 1.7	

DATE	TIME	SWL#	SAMPLE NO/S
15/11/96	n/a	2.65	
11/2/97	09:10	3.45	G7/2, G14/2
3/7/97	10:23	3.88	G7/3, G777/3
27/9/97	10:50	3.15	G7/4
24/2/98	12:00	4.19	
23/7/98	09:09	4.22	G7/6
29/9/97	10:31	3.36	G7/7

Initial Water Chemistry

Date:	11/2	/97	Analyte v	values in mg/L	
pН	6.0	units	EC	611	μS/cm
Eh	223	mV	O_2	30.5	% Sat
Temp	27.4	°C	BOD	<5	mg/L
Na	63.1		C1	37.1	
K	6.2	2	HCO ₃	42.9	
Ca	12.	9	SO_4	14.3	
Mg	184	4	NO ₂ -N	0.005	
NH ₄	0.38		NO ₃ -N	3.3	
TOC	20.	.0	PO_4	5.0	

Notes: *RL is approximate at collar-natural junction; referenced to Australian Height Datum (ahd) # SWL measured from top of collar unless indicated otherwise

Sample No:

G7/2

NATIONAL STUDY OF CEMETERY GROUNDWATERS UNIVERSITY OF TECHNOLOGY, SYDNEY							BOREHOLE	
Cemetery:	T							G8
Location:			dary fence, en	d of road b	etween	"Roman Ca	atholic	RL * m (ahd)
	H and	l F' Secti						13.822
Driller:		GFWA						Date Drilled:
Drilling Meth			n hollow flight			3		14/11/96
Piezometer T				Colla	r:	Screen L	ength:	Supervised By:
	PVC so	creen 0.5	mm slots	0.68	m	3.0	m	BBD
Casing, lift, soil samples m	water filter scree	pack	Depth m	Description				
s 5 G8/1	pack to	2.3	0 - 0.3	organic lt	grey fi	ine sand		
s 5.6 G8/2	∇ 3.1		0.3 - 4.0	yel & yel	-br fine	-med sand		
	scr 2.6 -	- 5.6	4.0 - 5.6	yel claye	y sand			
			5.6	complete	in stiff	grey-green	sandy c	lay

DATE	TIME	SWL#	SAMPLE NO/S
15/11/96	n/a	3.29	
11/2/97	n/a	4.18	G8/2
2/7/97	15:42	4.52	G8/3
27/9/97	09:32	3.67	G8/4
24/2/98	10:53	4.81	G8/5, G888/5
23/7/98	13:30	4.84	G8/6
24/9/98	09:33	3.95	G8/7

Initial Water Chemistry

Date:	11/2	2/97	Analyte values in mg/L			
pН	6.4	units	EC	449	μS/cm	
Eh	164	mV	O_2	62.8	% Sat	
Temp	n/a	°C	BOD	<5	mg/L	
Na	31.6		Cl	31.9		
K	4.2		HCO ₃	74.0		
Ca	11.5		SO ₄	13.1		
Mg	22.1		NO ₂ -N	0.195		
NH ₄	0.24		NO ₃ -N	9.2		
TOC	33.0		PO_4	5.5		

Notes: *RL is approximate at collar-natural junction; referenced to Australian Height Datum (ahd) # SWL measured from top of collar unless indicated otherwise

Sample No:

G8/2

APPENDIX K SUMMARY OF ALL SOIL TEST RESULTS

Notes to Table K.1 – All Soil Results

Soil samples were collected either during the preliminary investigation of each site by pitting or large diameter augering, or, during the installation of piezometers. All samples are disturbed. They are grab samples which were collected immediately after exposure on-site and placed into a labeled, new, sealed plastic bag until examined. All soil analyses were carried out in laboratories at UTS. Site borehole and trench/pit logs are found in the individual site Appendices (B – J) and indicate the location of each sample. No samples were recovered from existing graves or disturbed gravefill – all represent original soils (or piezometer filter pack).

Some errors in the various processes associated with the soil testing;: for example, in the sample numbering system, the calculation of CEC, missed testing. Where there is uncertainty in the data the result space is blank. The filter sands were not tested for all parameters. "n/a" means not available or not measured.

Notation for the data headed "Sat'd/vadose etc"

ua the sample is from the underlying aquifer – saturated zone (for

SPR, NEW, CEN)

X the sample is from the saturated zone

EXP BH the sample was taken from an exploratory borehole drilled

prior to the establishment of sampling wells

PIT the sample was taken from an exploratory pit dug with a

backhoe prior to the establishment of sampling wells

TRENCH the sample was taken from a sampling drainage trench during

construction

W6 indicates the constructed seepage well; used in order to avoid

confusion

Notation for the data headed "Description"

br brown

concentration/s, concretions concs

diam diameter dk dark

Feox iron oxide/s

1t light material mat medium med mottled mot occ occasional quartz qtz very V yellow yel

Notation for the data headed "Colour"

Colour was determined using the Munsell Soil Colour Charts

Notation for the data headed "Grading"

The particle size distribution is reported as Cumulative Percentage Retained on the relevant sieve size.

Sieve sizes are in phi units [-log₂(size in mm)]

To calculate permeabilities substitution of sizes was necessary: >-4.0 phi to 4.76 mm; <4.0 phi to 0.03 mm.

Notation for the data headed "USCS Classification"

The soils have been classified according to the scheme know as the USCS. Single, dual, or couple pairs of letter symbols are used to denote the soil type. Table K.2 sets out the key descriptors used and their meanings (US Bureau of Reclamation, 1960). The first letter is the most important in characterising the soil.

Table K.2 USCS Symbols and Descriptions

USCS symbol	Description				
G	gravel; coarse particles > 4.76 mm diameter				
S	sand; a coarse particle larger than 0.074 mm diameter and				
	smaller than 4.76 mm				
M	silt; a fine particle – nonplastic, demonstrate dilatancy,				
	physically unstable when wet				
C	clay; extremely fine particles which behave plastically				
W	well graded; that is a regular mixture of particle sizes				
P	poorly graded; that is very even-sized particles				
SW	well-graded clean sand				
SP	poorly graded clean sand				
SM	sand with silty fines				
SC	sand with clayey fines				
Н	fine soil with high liquid limit (high compressibility)				
L	fine soil with low liquid limit (low compressibility)				
ML, CL	silts or clays with low plasticity; >50% of particles are				
	fine				
МН, СН	silts or clays with high plasticity; >50% of particles are				
	fine				
	common boundary classifications, or soils showing a range of properties:-				
SP-SM, SP-SC,	SC-CL, SC-ML, ML-MH, CL-CH, ML-CL, MH-CH				

Notation for the data headed "k - intrinsic permeability (Krumbein and Monk, 1942), cm²,

> Krumbein and Monk's original work reported results in units of darcys; these have been converted to units of cm². (1 darcy = $9.87 \times 10^{-9} \text{ cm}^2$)

Notation for the data headed "K - hydraulic conductivity (after Hubbert's method), m/sec"

> k from the previous data was converted to K by multiplying by $(\rho_w.g/\mu)$, where ρ_w the density of water (usually 998.2 kg/m³ at 20 °C) and μ the dynamic viscosity (usually 1.008 x 10⁻³ kg/m.s at 20 °C) at the temperature, pressure and TDS required. g the value of gravity was taken as 9.806 m.s⁻². In general, applying corrections to constants for conversion purposes has little practical value given that g, TDS (affecting density), and the governing conditions vary from place to place. However, because of the amount of data available in this Study more precise values of K were calculated using representative site data (Table K.3).

Table K.3 Representative Temperature, Density and Viscosity Values

	ground	groundwater		ater TDS	density*	dynamic*
site	tempera	ature °C	(calculat	ed) mg/L		viscosity
	range	median (#)	range	median (#)	kg/m3	cP**
BOT	12.4-27.5	20.7 (46)	187-738	334 (40)	998.06	0.990
WOR	13.1-24.3	18.1 (47)	59-637	173 (41)	998.58	1.06
MEL	15.3-23.5	19.9 (13)	750-2596	1293 (7)	998.23	1.01
SPR	14.0-18.8	16.4 (36)	103-3984	902 (28)	998.88	1.10
NEW	11.3-21.9	16.9 (37)	828-8120	3990 (27)	998.79	1.08
LAU	9.7-21.3	14.0 (38)	169-2779	847 (20)	999.24	1.17
CEN	16.8-25.3	20.3 (30)	3723-	8644 (21)	1004.0	1.00
			15964			
HEL	19.5-28.5	21.7 (30)	661-2989	2095 (23)	997.85	0.967
GUI	15.9-28.9	20.0 (36)	154-626	301 (26)	998.21	1.01

^(#) refers to the number of measurements considered

** 1cP (centipoise) = $1 \text{N.s/m}^2 \times 10^{-3} = \text{kg/m.s} \times 10^{-3}$

Notation for the data headed "Chemistry"

EC is reported in units of: μS/cm pH is reported in units

CEC is reported in units of: meg/100 g dry soil

^{*} approximate values given for the median groundwater temperature; at TDS < 7000 mg/L the density variation compared to pure water is considered unimportant (Hem, 1989)

Notation for the data headed "Qualitative Mineralogy Components from XRD Analysis"

Alb	albite	Ka-s	kaolinite - several forms
Ana	anatase	Mic	microcline
Anth	anorthite	Mont	montmorillonite
Arag	aragonite	Mus	muscovite
Bar	barite	Mus2	muscovite - two forms
Ber	beryl	Mx-fel	mixed feldspars
Cal	calcite	Nac	nacrite
Dic	dickite	Orth	orthoclase
Dol	dolomite	Phlog	phlogopite
Gib	gibbsite	Pre	prehenite
Goe	goethite	Pyr	pyrite
Graph	graphite	Qtz	quartz
Gren	greenalite	Rut	rutile
Gyp	gypsum	Sid	siderite
Hem	haematite	?Act	actinolite?
III	illite	?Fay	fayalite?
III-Na	illite - sodium rich	?Mic	microcline?
Ka	kaolinite		

Figure K.1 Representative XRD Records for Site Soils

The following 18 graphs are selected, representative X-Ray Diffraction patterns for sites' soils. The plots have horizontal axes of '2 Theta (Θ)" varying between 2° – and 40° ; and vertical axes indicating relative counts.

The peaks represent accumulated counts from crystal planes with the appropriate dspacing. Some peaks are particularly associated with certain minerals; some peaks have been labelled according to the Qualitative Mineralogy Components from XRD Analysis (Table K.1).

The data graphs presented are for the soils:-B1/2, B2/2, W4/2, W6/2, M3/2, S1/3, S9/1, S12/4, N2/2, NT3/3, L2/1, L5/2, C1/1, C6/1, H2/1, H5/1, G1/5, G6/2

Table K.1 All Soil Results							
Cemetery:	BOTANY CEME	ETERY					
Sample #	B1/1	B1/2	B2/1	B2/2	B2/3	B3/1	
Sat'd/vaodse etc					X		
Sample Date	6/12/96	6/12/96	4/10/96	4/10/96	4/10/96	11/10/96	
Depth	0.8-1.0	1.0-1.1	0.6	2.1	3.05-3.25	1.5-1.7	
Description	yel-white fine	occ pebble, It	white fine sand	yel fine sand	yel med sand	dk grey med-	
	sand	biege sand				fine sand	
Colour	2.5Y 7/2	2.5Y 8/2	2.5Y 8/1	2.5Y 8/6	2.5Y 8/6	2.5Y 3/1	
Grading							
>-2.25							
-2.0							
-1.5							
-1.0		0.0				0.0	
-0.5		0.3				0.1	
0.0		0.8	0.0		0.0	0.3	
0.5		2.6	0.0	0.0	0.1	0.7	
1.0		16.9	1.7	0.5	1.1	5.1	
1.5		44.9	18.0	11.9	14.2	29.9	
2.0		74.1	67.8	67.7	63.5	72.8	
2.5		89.6	93.2	96.0	93.5	92.4	
3.0		92.8	96.1	98.2	96.9	94.3	
3.5		94.5	96.9	98.5	97.7	95.3	
4.0		95.5	97.4	98.6	97.9	95.9	
<4.0		98.4	98.7	98.8	98.1	98.3	
Field Water Conte	nt - representat	ive %					
	13	16	0	2	15	14	
USCS Classification							
USCS	SP	SP	SP	SP	SP	SP	
Calculated Perme							
k - intrinsic perme	ability (Krumbe						
		3.18E-07	3.13E-07	3.16E-07	2.96E-07	3.18E-07	
K - hydraulic cond	luctivity (after h						
		3.15E-04	3.09E-04	3.12E-04	2.93E-04	3.14E-04	
Chemistry							
EC	444.0	327.0	6.7	9.4	42.5	72.8	
pH	4.3	4.0	6.4	7.2	5.2	6.8	
CEC	39	16	6	17	6	31	
Extracted exchange	Jeanie Cations I	2.54E-03			2.73E-03	3.60E-03	
	4 225 04		6.035.03	4.25E.02			
K	1.32E-04	5.17E-03	6.93E-03	1.35E-02 1.45E-01	1.60E-03	2.33E-03	
Ca Ma	3.66E-02 1.06E-03	1.13E-01	9.85E-02		7.46E-02	8.30E-02	
Mg Al	1.06E-03 1.86E-04	2.93E-03 2.51E-04	2.48E-03 2.03E-04	3.44E-03	2.52E-03 3.54E-04	4.45E-03	
Sr	9.86E-05	2.96E-04	3.06E-04	6.12E-04 4.22E-04	3.54E-04 2.34E-04	2.28E-04 2.44E-04	
Qualitative Minera				7.22L-U4	2.J4L-U4	4.77L-U4	
Major	Qtz	Qtz	Qtz	Qtz	Qtz	Qtz	
majoi	QIZ	QIZ	QIZ	QLZ	QIZ	QLZ	
Minor	Orth	Ka		Gib			
	Ka			III			
	ixa						
Very Minor		Orth	Orth	Orth	Alb	Ka	
		0141	0.01	Alb	, 115	134	
				Ka, Anorth			
	l .	l .	l	130, 73101111	1	1	

Cemetery:	BOTANY CEMI	T.				
Sample #	B6/1	B6/2	B7/1	B7/2	B7/3	B8/1
Sat'd/vaodse etc		X				X
Sample Date	4/10/96	4/10/96	5/12/96	5/12/96	5/12/96	3/12/96
Depth	1.4-1.6	2.4 - 2.6	1.7 - 1.8	2.3	1.0 - 1.4	3.6 - 3.7
Description	dk br fine sand	orange-br clayey sand	dk yel-br med sand	It beige med- fine sand	white fine sand	beige med sand
Colour Grading	5YR 3/3	7.5YR 5/8	10YR 5/6	2.5Y 8/2	2.5Y 8/1	2.5Y 8/4
>-2.25						
-2.0						
-1.5		0.0				
-1.0		0.3				0.0
-0.5	0.0	0.3	0.0			0.0
0.0	0.0	0.4	0.0	0.0	0.0	0.8
0.5	1.3	1.5	0.0	0.0	0.0	2.9
	11.8		3.5		6.5	17.3
1.0 1.5	44.1	8.9	29.6	4.1		50.8
		39.4		31.3	33.1	
2.0	80.1	79.9	76.4	77.9	75.8	82.6
2.5	91.0	93.0	96.6	95.4	94.8	96.4
3.0	98.1	99.3	97.6	97.3	96.5	97.5
3.5	99.3	99.9	98.0	98.0	97.0	97.9
4.0	100.0	100.1	98.1	98.2	97.3	98.1
<4.0	101.8		98.7	98.6	98.3	98.3
Field Water Conte	•	1				
	6	20	8	16	0	16
USCS Classification	on					
USCS	SP	SP	SP	SP	SP	SP
Calculated Perme	ability Paramet	ers				
k - intrinsic perme	ability (Krumbe	ein an <mark>d Monk,</mark>	1942), cm2			
	3.87E-07	3.86E-07	3.69E-07	3.74E-07	3.55E-07	4.50E-07
K - hydraulic cond	luctivity (after I	lubbert's meth	od), m/sec			
-	3.83E-04	3.81E-04	3.65E-04	3.70E-04	3.51E-04	4.45E-04
Chemistry						
EC		56.9	36.9	39.3	12.7	22.1
pH		5.5	6.9	6.9	6.5	5.5
CEC	16	14	18	6	19	3
Extracted exchange						
Na	3.30E-03	3.50E-03	1.57E-03	2.73E-03	4.15E-03	
K	3.61E-03	7.28E-04	1.11E-03	5.81E-04	4.06E-03	6.94E-04
Ca	1.35E-01	7.33E-02	8.93E-02	8.91E-02	1.06E-01	1.10E-01
Mg	7.24E-03	3.57E-03	3.03E-03	3.62E-03	2.90E-03	3.03E-03
Al	4.19E-04	2.70E-04	2.63E-04	3.01E-04	4.76E-04	2.84E-04
Sr	3.41E-04	2.18E-04	2.03E-04 2.78E-04	2.74E-04	3.29E-04	3.24E-04
Qualitative Minera				2.176-04	0.202-04	J.27L-04
Major	Qtz	Qtz	Qtz	Qtz	Qtz	Qtz
majoi	QIZ	QίΖ	QIZ	QIZ	QIZ	QίΖ
Minor						III
Very Minor	Orth	Mus		Orth	Orth	Orth

1	T		T		
Cemetery:	BOTANY CEMI	ETERY			
Sample #	B9/1	B9/2	Bsand#1	1	
Sat'd/vaodse etc	DOLL	DUIZ	D3dHU# I	+	
	0/40/00	0/40/00	F (4.0.100		
Sample Date	6/12/96	6/12/96	5/12/96		
Depth	1.5	2.8	n/a		
Description	br med-fine	br-yel med	med-fine		
	sand	sand	quartz sand		
Colour	10 YR4/4	10YR 6/8	n/a		
Grading					
>-2.25					+
-2.0					
-1.5					
-1.0	0.0	0.0	0.0		
-0.5	0.1	0.0	0.8		
0.0	0.4	0.4	48.3		
0.5	3.4	2.0	90.1		
1.0	24.5	11.9	99.7		
1.5	60.5	30.9	100.3		
			100.5		-
2.0	88.4	50.6			
2.5	97.6	96.1			
3.0	97.6	100.2			
3.5	97.8				
4.0	97.9				
<4.0	98.8				
Field Water Conte		ive %			
	6	14	0		
USCS Classification		14	U		
		0.5			
USCS	SP	SP	SP		
Calculated Perme					
k - intrinsic perme			1942), cm2		
	5.55E-07	2.90E-07	4.21E-06		
K - hydraulic cond	luctivity (after h	lubbert's meth	od), m/sec		
	5.48E-04	2.86E-04	4.16E-03		
Chemistry					
EC	24.1	27.2	5.7		+
pH	7.0	5.7	5.9		
CEC	20	7	11		
Extracted exchange	geable cations				
Na		3.02E-03	1.73E-03		
K	2.95E-03	4.92E-04	2.57E-04		
Ca	9.75E-02	1.03E-01	7.15E-02		
Mg	2.65E-03	3.41E-03	1.98E-03		
Al	3.56E-04	2.93E-04	2.77E-04		
Sr	2.75E-04	3.22E-04	2.19E-04		+
Qualitative Minera					
			Allalysis		
Major	Qtz	Qtz		1	-
				1	
Minor	Ka	Mont			
	Gib				
Very Minor	III			1	
. 5. 7	Mus			+	1
	IVIUS			+	
				1	-
				-	1

Comotonii	WORONORA G	ENEDAL				
Cemetery: Sample #	WORONORA G W1/1	W1/2	\\\\1\2	W2/1	W2/2	W4/1
Sample # Sat'd/vaodse etc	W1/1 PIT	W1/2 PIT	W1/3 PIT	VV2/1 PIT	W2/2 PIT	VV4/1
Sample Date	25/11/96	25/11/96	25/11/98	25/11/96	25/02/96	10/12/96
	25/11/96	25/11/96 0.5 - 1.0	1.0 - 1.2	0.2 - 1.1	25/02/96	10/12/96
Depth Description			mot red-br, yel-		white & beige	red-br & grey
Description	stiff grey sandy clay; occ red-br	mot sandy	br and grey	grey sandy		mot sandy clay
	3.	•	0 ,	• •	clayey sand	mot sandy ciay
	mots	clay, rootlets	sandy clay	clay with		F
	and			with Feox		Feox concs.
	concretions			concs		
Colour	10YR7/1	10YR 6/8	10YR 7/3 -	10YR7/4-7/6	2.5YR 8/1	2.5YR 7/6-6/4
Grading			5Yr 5/8			
>-2.25						
-2.0						
-1.5						0.4
-1.0						3.1
-0.5						21.7
0.0						35.6
0.5						46.0
1.0						55.8
1.5						63.4
2.0						69.9
2.5						78.0
3.0						85.7
3.5						91.6
4.0						95.7
<4.0		• 0/				100.4
Field Water Conte				40		
11000 01 16 41	22	0	9	10	9	8
USCS Classification						
U50.5	01	01		00.01		014.00
	CL	CL	CL	SC-CL	SC-CL	SM-SC
Calculated Perme	ability Paramete	ers		SC-CL	SC-CL	SM-SC
	ability Paramete	ers		SC-CL	SC-CL	
Calculated Perme k - intrinsic perme	ability Paramete ability (Krumbe	ers in and Monk, 1	942), cm²	SC-CL	SC-CL	SM-SC 1.59E-07
Calculated Perme	ability Paramete ability (Krumbe	ers in and Monk, 1	942), cm²	SC-CL	SC-CL	1.59E-07
Calculated Perme k - intrinsic perme K - hydraulic cond	ability Paramete ability (Krumbe	ers in and Monk, 1	942), cm²	SC-CL	SC-CL	
Calculated Perme k - intrinsic perme K - hydraulic conc	ability Paramete ability (Krumbe luctivity (after H	ers in and Monk, 1 lubbert's metho	942), cm ² od), m/sec			1.59E-07 1.47E-04
Calculated Perme k - intrinsic perme K - hydraulic conc Chemistry EC	ability Paramete ability (Krumbe luctivity (after H	ers in and Monk, 1 lubbert's metho 50.8	942), cm ² od), m/sec	34.6	31.0	1.59E-07 1.47E-04 65.8
Calculated Perme k - intrinsic perme K - hydraulic conc Chemistry EC pH	ability Paramete ability (Krumbe luctivity (after H	ers in and Monk, 1 lubbert's metho 50.8 6.3	942), cm ² od), m/sec	34.6 7.1	31.0 6.3	1.59E-07 1.47E-04 65.8 5.5
Calculated Perme k - intrinsic perme K - hydraulic conc Chemistry EC pH CEC	ability Paramete ability (Krumbe luctivity (after H 59.0 4.9 193	sin and Monk, 1 lubbert's metho 50.8 6.3 7	942), cm ² od), m/sec	34.6	31.0	1.59E-07 1.47E-04 65.8
Calculated Perme k - intrinsic perme K - hydraulic cond Chemistry EC pH CEC Extracted exchange	ability Parameterability (Krumber luctivity (after H	ers in and Monk, 1 lubbert's metho 50.8 6.3 7 n mg/L	942), cm ² od), m/sec 50.4 6.1	34.6 7.1	31.0 6.3 48	1.59E-07 1.47E-04 65.8 5.5 16
Calculated Perme k - intrinsic perme K - hydraulic cond Chemistry EC pH CEC Extracted exchange	ability Parameter eability (Krumber luctivity (after H 59.0 4.9 193 geable cations i 4.52E-03	sin and Monk, 1 lubbert's metho 50.8 6.3 7 n mg/L 6.27E-03	942), cm ² od), m/sec 50.4 6.1	34.6 7.1 138	31.0 6.3 48 2.34E-03	1.59E-07 1.47E-04 65.8 5.5 16
Calculated Perme k - intrinsic perme K - hydraulic cond Chemistry EC pH CEC Extracted exchange Na K	ability Parameter eability (Krumber ductivity (after H 59.0 4.9 193 geable cations i 4.52E-03 2.16E-03	50.8 6.3 7 n mg/L 6.27E-03 1.69E-03	942), cm ² od), m/sec 50.4 6.1 6.21E-03 2.36E-03	34.6 7.1 138	31.0 6.3 48 2.34E-03 7.22E-04	1.59E-07 1.47E-04 65.8 5.5 16 5.02E-03 1.67E-03
Calculated Perme k - intrinsic perme K - hydraulic cond Chemistry EC pH CEC Extracted exchange Na K Ca	ability Parameter eability (Krumber luctivity (after H 59.0 4.9 193 geable cations i 4.52E-03 2.16E-03 6.26E-02	50.8 6.3 7 n mg/L 6.27E-03 1.51E-01	942), cm ² od), m/sec 50.4 6.1 6.21E-03 2.36E-03 1.16E-01	34.6 7.1 138 1.61E-03 1.26E-01	31.0 6.3 48 2.34E-03 7.22E-04 7.08E-02	1.59E-07 1.47E-04 65.8 5.5 16 5.02E-03 1.67E-03 1.60E-01
Calculated Perme k - intrinsic perme K - hydraulic cond Chemistry EC pH CEC Extracted exchang Na K Ca Mg	ability Parameter ability (Krumber ability (Krumber Buctivity (after Handler Buctivity (after Ha	50.8 6.3 7 n mg/L 6.27E-03 1.51E-01 2.97E-02	942), cm ² od), m/sec 50.4 6.1 6.21E-03 2.36E-03 1.16E-01 2.78E-02	34.6 7.1 138 1.61E-03 1.26E-01 3.70E-02	31.0 6.3 48 2.34E-03 7.22E-04 7.08E-02 8.74E-03	1.59E-07 1.47E-04 65.8 5.5 16 5.02E-03 1.67E-03 1.60E-01 1.39E-02
Calculated Perme k - intrinsic perme K - hydraulic cond Chemistry EC pH CEC Extracted exchang Na K Ca Mg Al	ability Parameter ability (Krumber ability (Krumber Buctivity (after Handler Buctivity (after Ha	50.8 6.3 7 n mg/L 6.27E-03 1.69E-03 1.51E-01 2.97E-02 2.62E-04	942), cm ² od), m/sec 50.4 6.1 6.21E-03 2.36E-03 1.16E-01 2.78E-02 3.02E-04	34.6 7.1 138 1.61E-03 1.26E-01 3.70E-02 1.71E-04	31.0 6.3 48 2.34E-03 7.22E-04 7.08E-02 8.74E-03 2.02E-03	1.59E-07 1.47E-04 65.8 5.5 16 5.02E-03 1.67E-03 1.60E-01 1.39E-02 3.03E-04
Calculated Perme k - intrinsic perme K - hydraulic cond Chemistry EC pH CEC Extracted exchang Na K Ca Mg Al Sr	### April 19 ##	50.8 6.3 7 n mg/L 6.27E-03 1.51E-01 2.97E-02 2.62E-04 4.75E-04	942), cm ² od), m/sec 50.4 6.1 6.21E-03 2.36E-03 1.16E-01 2.78E-02 3.02E-04 3.92E-04	34.6 7.1 138 1.61E-03 1.26E-01 3.70E-02	31.0 6.3 48 2.34E-03 7.22E-04 7.08E-02 8.74E-03	1.59E-07 1.47E-04 65.8 5.5 16 5.02E-03 1.67E-03 1.60E-01 1.39E-02
Calculated Perme k - intrinsic perme K - hydraulic cond Chemistry EC pH CEC Extracted exchang Na K Ca Mg Al Sr Qualitative Minera	ability Parameter ability (Krumber ability (Krumber Buctivity (after House 1930) 1930 1931 1931 1931 1931 1931 1931 1931	50.8 6.3 7 n mg/L 6.27E-03 1.69E-03 1.51E-01 2.97E-02 2.62E-04 4.75E-04 nents from XRE	942), cm ² od), m/sec 50.4 6.1 6.21E-03 2.36E-03 1.16E-01 2.78E-02 3.02E-04 3.92E-04 O Analysis	34.6 7.1 138 1.61E-03 1.26E-01 3.70E-02 1.71E-04 4.18E-04	31.0 6.3 48 2.34E-03 7.22E-04 7.08E-02 8.74E-03 2.02E-03 2.15E-04	1.59E-07 1.47E-04 65.8 5.5 16 5.02E-03 1.67E-03 1.60E-01 1.39E-02 3.03E-04 4.96E-04
Calculated Perme k - intrinsic perme K - hydraulic cond Chemistry EC pH CEC Extracted exchang Na K Ca Mg Al Sr	### April 19 ##	50.8 6.3 7 n mg/L 6.27E-03 1.51E-01 2.97E-02 2.62E-04 4.75E-04	942), cm ² od), m/sec 50.4 6.1 6.21E-03 2.36E-03 1.16E-01 2.78E-02 3.02E-04 3.92E-04	34.6 7.1 138 1.61E-03 1.26E-01 3.70E-02 1.71E-04 4.18E-04	31.0 6.3 48 2.34E-03 7.22E-04 7.08E-02 8.74E-03 2.02E-03 2.15E-04	1.59E-07 1.47E-04 65.8 5.5 16 5.02E-03 1.67E-03 1.60E-01 1.39E-02 3.03E-04 4.96E-04
Calculated Perme k - intrinsic perme K - hydraulic cond Chemistry EC pH CEC Extracted exchang Na K Ca Mg Al Sr Qualitative Minera	ability Parameter ability (Krumber ability (Krumber Buctivity (after House 1930) 1930 1931 1931 1931 1931 1931 1931 1931	50.8 6.3 7 n mg/L 6.27E-03 1.69E-03 1.51E-01 2.97E-02 2.62E-04 4.75E-04 nents from XRE	942), cm ² od), m/sec 50.4 6.1 6.21E-03 2.36E-03 1.16E-01 2.78E-02 3.02E-04 3.92E-04 O Analysis	34.6 7.1 138 1.61E-03 1.26E-01 3.70E-02 1.71E-04 4.18E-04	31.0 6.3 48 2.34E-03 7.22E-04 7.08E-02 8.74E-03 2.02E-03 2.15E-04	1.59E-07 1.47E-04 65.8 5.5 16 5.02E-03 1.67E-03 1.60E-01 1.39E-02 3.03E-04 4.96E-04
Calculated Perme k - intrinsic perme K - hydraulic cond Chemistry EC pH CEC Extracted exchang Na K Ca Mg Al Sr Qualitative Minera	ability Parameter ability (Krumber ability (Krumber Buctivity (after House 1930) 1930 1931 1931 1931 1931 1931 1931 1931	50.8 6.3 7 n mg/L 6.27E-03 1.69E-03 1.51E-01 2.97E-02 2.62E-04 4.75E-04	942), cm ² od), m/sec 50.4 6.1 6.21E-03 2.36E-03 1.16E-01 2.78E-02 3.02E-04 3.92E-04 O Analysis Qtz	34.6 7.1 138 1.61E-03 1.26E-01 3.70E-02 1.71E-04 4.18E-04 Qtz Ka	31.0 6.3 48 2.34E-03 7.22E-04 7.08E-02 8.74E-03 2.02E-03 2.15E-04 Ka	1.59E-07 1.47E-04 65.8 5.5 16 5.02E-03 1.67E-03 1.60E-01 1.39E-02 3.03E-04 4.96E-04 Qtz Ka
Calculated Perme k - intrinsic perme K - hydraulic cond Chemistry EC pH CEC Extracted exchang Na K Ca Mg Al Sr Qualitative Minera	ability Parameter ability (Krumber ability (Krumber Buctivity (after House 1930) 1930 1930 1930 1930 1930 1930 1930 1930	50.8 6.3 7 n mg/L 6.27E-03 1.69E-03 1.51E-01 2.97E-02 2.62E-04 4.75E-04	942), cm ² od), m/sec 50.4 6.1 6.21E-03 2.36E-03 1.16E-01 2.78E-02 3.02E-04 3.92E-04 O Analysis Qtz Ka	34.6 7.1 138 1.61E-03 1.26E-01 3.70E-02 1.71E-04 4.18E-04 Qtz Ka	31.0 6.3 48 2.34E-03 7.22E-04 7.08E-02 8.74E-03 2.02E-03 2.15E-04	1.59E-07 1.47E-04 65.8 5.5 16 5.02E-03 1.67E-03 1.60E-01 1.39E-02 3.03E-04 4.96E-04
Calculated Perme k - intrinsic perme K - hydraulic cond Chemistry EC pH CEC Extracted exchang Na K Ca Mg Al Sr Qualitative Minera	ability Parameter ability (Krumber ability (Krumber Buctivity (after House 1930) 1930 1930 1930 1930 1930 1930 1930 1930	50.8 6.3 7 n mg/L 6.27E-03 1.69E-03 1.51E-01 2.97E-02 2.62E-04 4.75E-04	942), cm ² od), m/sec 50.4 6.1 6.21E-03 2.36E-03 1.16E-01 2.78E-02 3.02E-04 3.92E-04 O Analysis Qtz	34.6 7.1 138 1.61E-03 1.26E-01 3.70E-02 1.71E-04 4.18E-04 Qtz Ka	31.0 6.3 48 2.34E-03 7.22E-04 7.08E-02 8.74E-03 2.02E-03 2.15E-04 Ka	1.59E-07 1.47E-04 65.8 5.5 16 5.02E-03 1.67E-03 1.60E-01 1.39E-02 3.03E-04 4.96E-04 Qtz Ka
Calculated Perme k - intrinsic perme K - hydraulic cond Chemistry EC pH CEC Extracted exchang Na K Ca Mg Al Sr Qualitative Minera Major	ability Parameter ability (Krumber ability (Krumber ability (Krumber Buctivity (after House 193 and 19	50.8 6.3 7 n mg/L 6.27E-03 1.69E-03 1.51E-01 2.97E-02 2.62E-04 4.75E-04 nents from XRE	942), cm ² od), m/sec 50.4 6.1 6.21E-03 2.36E-03 1.16E-01 2.78E-02 3.02E-04 3.92E-04 O Analysis Qtz Ka III-Na	34.6 7.1 138 1.61E-03 1.26E-01 3.70E-02 1.71E-04 4.18E-04 Qtz Ka	31.0 6.3 48 2.34E-03 7.22E-04 7.08E-02 8.74E-03 2.02E-03 2.15E-04 Ka Qtz	1.59E-07 1.47E-04 65.8 5.5 16 5.02E-03 1.67E-03 1.60E-01 1.39E-02 3.03E-04 4.96E-04 Qtz Ka
Calculated Perme k - intrinsic perme K - hydraulic cond Chemistry EC pH CEC Extracted exchang Na K Ca Mg Al Sr Qualitative Minera	ability Parameter ability (Krumber ability (Krumber ability (Krumber ability (After House and A.9 193 193 193 194.52E-03 1.46E-03 1.44E-02 1.44E-02 1.00E-04 100Gical Compor Qtz	50.8 6.3 7 n mg/L 6.27E-03 1.69E-03 1.51E-01 2.97E-02 2.62E-04 4.75E-04 nents from XRE Qtz	942), cm ² od), m/sec 50.4 6.1 6.21E-03 2.36E-03 1.16E-01 2.78E-02 3.02E-04 3.92E-04 O Analysis Qtz Ka	34.6 7.1 138 1.61E-03 1.26E-01 3.70E-02 1.71E-04 4.18E-04 Qtz Ka	31.0 6.3 48 2.34E-03 7.22E-04 7.08E-02 8.74E-03 2.02E-03 2.15E-04 Ka Qtz Mus	1.59E-07 1.47E-04 65.8 5.5 16 5.02E-03 1.67E-03 1.60E-01 1.39E-02 3.03E-04 4.96E-04 Qtz Ka
Calculated Perme k - intrinsic perme K - hydraulic cond Chemistry EC pH CEC Extracted exchang Na K Ca Mg Al Sr Qualitative Minera Major	ability Parameter ability (Krumber ability (Krumber ability (Krumber Buctivity (after House 193 and 19	50.8 6.3 7 n mg/L 6.27E-03 1.69E-03 1.51E-01 2.97E-02 2.62E-04 4.75E-04 nents from XRE	942), cm ² od), m/sec 50.4 6.1 6.21E-03 2.36E-03 1.16E-01 2.78E-02 3.02E-04 3.92E-04 O Analysis Qtz Ka III-Na	34.6 7.1 138 1.61E-03 1.26E-01 3.70E-02 1.71E-04 4.18E-04 Qtz Ka	31.0 6.3 48 2.34E-03 7.22E-04 7.08E-02 8.74E-03 2.02E-03 2.15E-04 Ka Qtz	1.59E-07 1.47E-04 65.8 5.5 16 5.02E-03 1.67E-03 1.60E-01 1.39E-02 3.03E-04 4.96E-04 Qtz Ka

L. MILIOTORY	WODONODA	CENEDAI				
Cemetery: Sample #	WORONORA G		\\/E/4	\MEIO	\MGI4	MEIO
Sample # Sat'd/vaodse etc	W4/2	W4/3	W5/1 PIT	W5/2 PIT	W6/1	W6/2
	10/12/06	10/12/06		25/11/96	25/11/06	25/11/06
Sample Date	10/12/96 2.1	10/12/96	25/11/96 0.5 - 0.8	1.4	25/11/96 1.0 - 2.0	25/11/96 2
Depth Description		2.9				
Description	red-beige clayey sand,	white sandy clay occ red-br	red-br & grey mot sandy clay	yel-br silty?	firm yel-br sandy clay with	red-br, yel-br &
	occ FeOx piths		mot sandy ciay	ciay	rootlets	· .
	OCC FEOX PILITS				TOOLIELS	sandy clay
		& Feox concs				Feox concs
						and stains
			->/		101/5 0/0	
Colour	5Yr 8/3	7.5YR 8/1	5YR 8/2	7.5YR 6/8	10YR 6/8	2.5YR 4/8
Grading						
>-2.25						
-2.0						
-1.5						
-1.0						
-0.5						
0.0						
1.0 1.5						
2.0						
2.0						
3.0						
3.5						
4.0						
4.0 <4.0						
Field Water Conte	nt - renresentat	ive %				
. Icia Water Conte	4	9	9	10	11	16
USCS Classification		3	3	10	11	10
USCS	ML-CL	CL	SC-CL	ML-CL	SC-CL	SC-CL
Calculated Perme			00 OL	IIIL OL	33 OL	55 52
	ability Paramen					i .
k - intrinsic nerma	-		942) cm²			
k - intrinsic perme	-		942), cm²			
_	ability (Krumbe	ein and Monk, 1				
k - intrinsic perme K - hydraulic cond	ability (Krumbe	ein and Monk, 1				
K - hydraulic cond	ability (Krumbe	ein and Monk, 1				
_	ability (Krumbe	ein and Monk, 1		67.4	44.4	
K - hydraulic cond	ability (Krumbe	ein and Monk, 1 Hubbert's metho	od), m/sec	67.4 6.4	44.4 6.8	
K - hydraulic cond	ability (Krumbe luctivity (after H	ein and Monk, 1 Hubbert's metho	od), m/sec 22.6			
K - hydraulic cond Chemistry EC pH CEC	ability (Krumbe luctivity (after H 71.2 4.9 21	sin and Monk, 1 Hubbert's metho 36.2 6.1 13	od), m/sec 22.6	6.4	6.8	
K - hydraulic cond Chemistry EC pH	ability (Krumbe luctivity (after H 71.2 4.9 21	sin and Monk, 1 Hubbert's metho 36.2 6.1 13	od), m/sec 22.6	6.4	6.8	
K - hydraulic cond Chemistry EC pH CEC Extracted exchange	rability (Krumber ductivity (after F 71.2 4.9 21 geable cations	sin and Monk, 1 Hubbert's metho 36.2 6.1 13	22.6 5.7	6.4 64	6.8	
K - hydraulic cond Chemistry EC pH CEC Extracted exchange	rability (Krumber Huctivity (after Hucti	ain and Monk, 1 Hubbert's metho 36.2 6.1 13 in mg/L 3.28E-03	22.6 5.7 2.75E-03	6.4 64 3.06E-03	6.8 17 5.50E-03	
K - hydraulic cond Chemistry EC pH CEC Extracted exchange Na K	71.2 4.9 21 geable cations 5.93E-03 2.09E-03	36.2 6.1 13 in mg/L 3.28E-03 2.21E-03	22.6 5.7 2.75E-03 1.54E-03	6.4 64 3.06E-03 5.07E-03	6.8 17 5.50E-03 1.06E-03 7.93E-02 3.09E-02	
K - hydraulic cond Chemistry EC pH CEC Extracted exchang Na K Ca	71.2 4.9 21 geable cations 5.93E-03 2.09E-03 1.27E-01	36.2 6.1 13 in mg/L 3.28E-03 2.21E-03 8.11E-02	22.6 5.7 2.75E-03 1.54E-03 9.74E-02	6.4 64 3.06E-03 5.07E-03 1.12E-01	6.8 17 5.50E-03 1.06E-03 7.93E-02	
K - hydraulic cond Chemistry EC pH CEC Extracted exchang Na K Ca Mg Al Sr	71.2 4.9 21 geable cations 5.93E-03 2.09E-03 1.27E-01 1.55E-02 3.33E-04 4.30E-04	36.2 6.1 13 in mg/L 3.28E-03 2.21E-03 8.11E-02 1.22E-02 4.61E-04 2.49E-04	22.6 5.7 2.75E-03 1.54E-03 9.74E-02 8.44E-03 2.57E-04 2.86E-04	6.4 64 3.06E-03 5.07E-03 1.12E-01 1.81E-02	6.8 17 5.50E-03 1.06E-03 7.93E-02 3.09E-02	
Chemistry EC pH CEC Extracted exchange Na K Ca Mg Al	71.2 4.9 21 geable cations 5.93E-03 2.09E-03 1.27E-01 1.55E-02 3.33E-04 4.30E-04	36.2 6.1 13 in mg/L 3.28E-03 2.21E-03 8.11E-02 1.22E-02 4.61E-04 2.49E-04	22.6 5.7 2.75E-03 1.54E-03 9.74E-02 8.44E-03 2.57E-04 2.86E-04	6.4 64 3.06E-03 5.07E-03 1.12E-01 1.81E-02 1.62E-04 3.34E-04	6.8 17 5.50E-03 1.06E-03 7.93E-02 3.09E-02 2.16E-04	
K - hydraulic cond Chemistry EC pH CEC Extracted exchang Na K Ca Mg Al Sr	71.2 4.9 21 geable cations 5.93E-03 2.09E-03 1.27E-01 1.55E-02 3.33E-04 4.30E-04	36.2 6.1 13 in mg/L 3.28E-03 2.21E-03 8.11E-02 1.22E-02 4.61E-04 2.49E-04	22.6 5.7 2.75E-03 1.54E-03 9.74E-02 8.44E-03 2.57E-04 2.86E-04 O Analysis	6.4 64 3.06E-03 5.07E-03 1.12E-01 1.81E-02 1.62E-04	6.8 17 5.50E-03 1.06E-03 7.93E-02 3.09E-02 2.16E-04 3.06E-04	Ka
K - hydraulic cond Chemistry EC pH CEC Extracted exchang Na K Ca Mg Al Sr Qualitative Minera	71.2 4.9 21 geable cations 5.93E-03 2.09E-03 1.27E-01 1.55E-02 3.33E-04 4.30E-04 slogical Composite	36.2 6.1 13 in mg/L 3.28E-03 2.21E-03 8.11E-02 1.22E-02 4.61E-04 2.49E-04	22.6 5.7 2.75E-03 1.54E-03 9.74E-02 8.44E-03 2.57E-04 2.86E-04 O Analysis	6.4 64 3.06E-03 5.07E-03 1.12E-01 1.81E-02 1.62E-04 3.34E-04	6.8 17 5.50E-03 1.06E-03 7.93E-02 3.09E-02 2.16E-04 3.06E-04	Ka Qtz
K - hydraulic cond Chemistry EC pH CEC Extracted exchang Na K Ca Mg Al Sr Qualitative Minera	71.2 4.9 21 geable cations 5.93E-03 2.09E-03 1.27E-01 1.55E-02 3.33E-04 4.30E-04 llogical Compos	36.2 6.1 13 in mg/L 3.28E-03 2.21E-03 8.11E-02 1.22E-02 4.61E-04 2.49E-04 Ments from XRD	22.6 5.7 2.75E-03 1.54E-03 9.74E-02 8.44E-03 2.57E-04 2.86E-04 O Analysis	6.4 64 3.06E-03 5.07E-03 1.12E-01 1.81E-02 1.62E-04 3.34E-04	6.8 17 5.50E-03 1.06E-03 7.93E-02 3.09E-02 2.16E-04 3.06E-04	
K - hydraulic cond Chemistry EC pH CEC Extracted exchang Na K Ca Mg Al Sr Qualitative Minera	rability (Krumber) Total Augustivity (after File Augu	36.2 6.1 13 in mg/L 3.28E-03 2.21E-03 8.11E-02 1.22E-02 4.61E-04 2.49E-04 Ments from XRD	22.6 5.7 2.75E-03 1.54E-03 9.74E-02 8.44E-03 2.57E-04 2.86E-04 O Analysis	6.4 64 3.06E-03 5.07E-03 1.12E-01 1.81E-02 1.62E-04 3.34E-04	6.8 17 5.50E-03 1.06E-03 7.93E-02 3.09E-02 2.16E-04 3.06E-04 Qtz Ka Mus Goe	Qtz Orth
K - hydraulic cond Chemistry EC pH CEC Extracted exchang Na K Ca Mg Al Sr Qualitative Minera	rability (Krumber) 71.2 4.9 21 geable cations in 5.93E-03 2.09E-03 1.27E-01 1.55E-02 3.33E-04 4.30E-04 llogical Composition (City Ka	36.2 6.1 13 in mg/L 3.28E-03 2.21E-03 8.11E-02 1.22E-02 4.61E-04 2.49E-04 Ments from XRD	22.6 5.7 2.75E-03 1.54E-03 9.74E-02 8.44E-03 2.57E-04 2.86E-04 O Analysis Qtz Ka	6.4 64 3.06E-03 5.07E-03 1.12E-01 1.81E-02 1.62E-04 3.34E-04	6.8 17 5.50E-03 1.06E-03 7.93E-02 3.09E-02 2.16E-04 3.06E-04 Qtz Ka	Qtz
K - hydraulic cond Chemistry EC pH CEC Extracted exchang Na K Ca Mg Al Sr Qualitative Minera Major	rability (Krumber) Total Augustivity (after Figure 1997) Total Augustivity (after Figure 1997)	36.2 6.1 13 in mg/L 3.28E-03 2.21E-03 8.11E-02 1.22E-02 4.61E-04 2.49E-04 Ments from XRD	22.6 5.7 2.75E-03 1.54E-03 9.74E-02 8.44E-03 2.57E-04 2.86E-04 O Analysis Qtz Ka	6.4 64 3.06E-03 5.07E-03 1.12E-01 1.81E-02 1.62E-04 3.34E-04 Ka	6.8 17 5.50E-03 1.06E-03 7.93E-02 3.09E-02 2.16E-04 3.06E-04 Qtz Ka Mus Goe	Qtz Orth
K - hydraulic cond Chemistry EC pH CEC Extracted exchang Na K Ca Mg Al Sr Qualitative Minera	rability (Krumber) Total Augustivity (after Figure 1997) Total Augustivity (after Figure 1997)	36.2 6.1 13 in mg/L 3.28E-03 2.21E-03 8.11E-02 1.22E-02 4.61E-04 2.49E-04 Ments from XRD	22.6 5.7 2.75E-03 1.54E-03 9.74E-02 8.44E-03 2.57E-04 2.86E-04 O Analysis Qtz Ka	6.4 64 3.06E-03 5.07E-03 1.12E-01 1.81E-02 1.62E-04 3.34E-04 Ka Qtz	6.8 17 5.50E-03 1.06E-03 7.93E-02 3.09E-02 2.16E-04 3.06E-04 Qtz Ka Mus Goe	Qtz Orth
K - hydraulic cond Chemistry EC pH CEC Extracted exchang Na K Ca Mg Al Sr Qualitative Minera Major	rability (Krumber) Total Augustivity (after Figure 1997) Total Augustivity (after Figure 1997)	36.2 6.1 13 in mg/L 3.28E-03 2.21E-03 8.11E-02 1.22E-02 4.61E-04 2.49E-04 Ments from XRD	22.6 5.7 2.75E-03 1.54E-03 9.74E-02 8.44E-03 2.57E-04 2.86E-04 O Analysis Qtz Ka	6.4 64 3.06E-03 5.07E-03 1.12E-01 1.81E-02 1.62E-04 3.34E-04 Ka	6.8 17 5.50E-03 1.06E-03 7.93E-02 3.09E-02 2.16E-04 3.06E-04 Qtz Ka Mus Goe	Qtz Orth

Cemetery:	WORONORA G	SENERAL				
Sample #	W6/3	W6/4	W7/1	W7/2	W7/3	W9/1
Sat'd/vaodse etc	W6	XW6	PIT	PIT	W7	PIT
Sample Date	10/12/96	10/12/96	27/11/96	27/11/96	10/12/96	11/12/96
Depth	n/a		1.1	2.1	2.9	n/a
Description	white-br clayey	white fine sand		yel-br & lt-dk	yel-br sandy	sandy fill
2 coch phon	sand occ red- br concs	Willie IIIIe Galla	clay	grey mot sandy clay	clay, minor rootlets	canay nii
Colour	10Yr8/2-8/3	2.5Y 8/1	10YR 7/8-6/8	2.5YR8/3-7/4	10YR 6/8	2.5YR 8/1
Grading						
>-2.25						
-2.0						
-1.5						
-1.0		0.0		0.0		0.0
-0.5		5.1		4.7		0.1
0.0		11.4		8.9		0.0
0.5		22.2		14.5		0.1
1.0		44.3		29.2		1.6
1.5		59.5		49.3		18.4
2.0		67.8		67.2		68.5
2.5		83.0		80.4		96.2
3.0		89.1		86.6		97.6
3.5		91.6		90.3		97.9
4.0		93.6		92.6		98.0
<4.0		99.9		99.1		98.7
Field Water Conte	nt - representat	ive %				
	7	2	3	12	11	0
USCS Classification	on					
USCS	CL	SM	SC-CL	SC	SC-CL	SP
Calculated Perme	ability Paramete	ers				
k - intrinsic perme	ability (Krumbe	in and Monk. 1	942). cm ²			
		2.33E-07		1.70E-07		3.25E-07
K - hydraulic cond	luctivity (after F		od). m/sec			
,		2.15E-04		1.57E-04		3.00E-04
Chemistry						
EC		33.6	109.0	60.6	63.1	53.5
pH		6.1	6.4	5.6	5.0	6.1
CEC		J	4	67	74	11
Extracted exchange	geable cations i	n ma/L		3,		
Na	2.78E-03	3.99E-03	8.73E-03	6.26E-03	4.64E-03	2.01E-03
K	6.36E-04	2.59E-03	2.18E-03	4.73E-03	1.29E-03	7.11E-04
Ca	5.64E-02	6.85E-02	1.29E-01	1.18E-01	1.68E-02	7.25E-02
Mg	1.13E-02	3.48E-02	2.77E-02	1.33E-02	9.58E-02	2.37E-03
Al	4.71E-03	4.42E-03	1.67E-04	2.63E-04	3.14E-04	2.77E-04
Sr	1.93E-04	2.69E-04	4.22E-04	3.81E-04	1.55E-04	1.77E-04
Qualitative Minera				J.U I L-U4	1.552-04	1.776-04
Major	Ka	Qtz	Qtz	Qtz	Qtz	Qtz
major	Qtz	Ka	Ka	QIZ	Ka	QΙΖ
	QIZ	i\a	i\a		ı\a	
Minor	Mus	Orth	Goe		III	Orth
IMITIO	ivius		GUE		III	Oitii
		Goe				
		Goe				
Very Minor		Goe	Mus	Ка	Goe	Granh
Very Minor	Goe	Goe	Mus	Ka	Goe	Graph
Very Minor		Goe	Mus	Ka III Mus,Mic	Goe	Graph ?Act

Sample # M1/1	Comotonu	MEL DOLIDNE	CENEDAL CEM	ETEDV			
Sample Date	Cemetery:				MOZO	MOZ	NAO/4
Sample Date 16/12/96 16/12/98 16/12/96 16/12/		IVIT/T	IVI 1/2	IVIZ/T	IVIZ/Z	IVIZ/3	IVI3/T
Depth		16/10/06	16/10/00	16/10/06	16/10/06	16/10/06	46/40/06
Description yel-br sandy It yrf-br silty clay sand sandy clay sandy clay sandy clay sandy clay with FeOx mot with FeOx mot							
Caly Caly sand Sandy clay Caly sand Caly Caly Sandy clay Sandy clay							
Colour	Description	,	-		_	-	, 0
With FeOx mot Colour		ciay	ciay sand	sandy clay		sandy clay	sandy clay
Colour					clayey sand		
Grading				with FeOx mot			
Grading							
Grading							
		10YR 6/8	10YR 7/8-6/8	7.5YrR6/6	7.5YR 5/8	2.5Y 8/3	2.5Y 7/1
-2.0 -1.5 -1.0 -0.5 -0.0 -0.5 -1.0 -1.0 -1.0 -1.0 -1.0 -0.5 -1.0 -1.0 -1.5 -1.0 -1.0 -1.5 -1.0 -1.0 -1.5 -1.0 -1.0 -1.5 -1.0 -1.0 -1.5 -1.0 -1.0 -1.5 -1.0 -1.0 -1.5 -1.0 -1.0 -1.5 -1.0 -1.0 -1.0 -1.5 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0							
-1.5 -1.0 -0.5 -0.5 -0.0 -0.5 -0.5 -0.5 -0.5 -0	>-2.25						
-1.0 -0.5 -0.0 -0.5 -1.0 -1.0 -1.5 -1.5 -1.0 -1.5 -1.5 -1.0 -1.5 -1.0 -1.5 -1.0 -1.5 -1.0 -1.5 -1.0 -1.5 -1.0 -1.5 -1.0 -1.5 -1.0 -1.5 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0							
-0.5 0.0 0.0 0.5 0.5 0.0 0.5 0.5 0.0 0.5 0.5 0.0 0.5 0.5 0.0 0.5 0.5 0.0 0.5 0.5 0.0 0.5 0.5 0.0 0.5 0.5 0.0 0.5 0.5 0.0 0.5 0.0							
0.0 0.5 1.0 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.0 13							
0.5	-0.5						
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.0 3.5 13 12 11 9 12 10 USCS Classification USCS ML-CL CL CL CL CL CL Calculated Permeability Parameters k - intrinsic permeability (Krumbein and Monk, 1942), cm² k - hydraulic conductivity (after Hubbert's method), m/sec Chemistry EC 212.4 207.9 101.8 121.7 89.0 77.2 PH 6.8 7.8 7.3 6.9 7.7 8.1 CEC 46 11 9 12 15 32 Extracted exchangeable cations in mg/L Na 1.73E-02 3.94E-02 4.93E-02 4.93E-02 4.93E-02 3.01E-02 1.75E-01 7.52E-02 1.30E-01 1.04E-01 9.51E-02 AI 1.47E-04 2.46E-04 3.33E-04 4.97E-04 3.84E-04 3.30E-04 Qualitative Mineralogical Components from XRD Analysis Major Qtz Qtz Qtz Qtz Cyr Minor Ka Ka III Mus Ana Mus Ana Mus Ana Mus Ana Mus Ana Mus Ana Mus Ana Mus Ana Mus Ana Mus Ana							
1.5 2.0 2.5 3.0 3.5 4.0 <	0.5						
2.0 2.5 3.0 3.0 3.5 4.0 4.0 4.0 Signature Content - representative % 13 12 11 9 12 10 USCS Classification USCS Classification USCS MI-CL CL CL SC-CL CL C	1.0						
2.5 3.0 3.5 4.0 <	1.5						
3.0 3.5 4.0 <-4.0 Field Water Content - representative % 13	2.0						
3.5	2.5						
4.0	3.0						
Chemistry Chemistry CEC 46	3.5						
Time	4.0						
13	<4.0						
13	Field Water Conte	nt - representat	tive %				
USCS				11	9	12	10
Calculated Permeability Parameters K - intrinsic permeability (Krumbein and Monk, 1942), cm² K - hydraulic conductivity (after Hubbert's method), m/sec Chemistry EC 212.4 207.9 101.8 121.7 89.0 77.2 pH 6.8 7.8 7.3 6.9 7.7 8.1 CEC 46 11 9 12 15 32 Extracted exchangeable cations in mg/L	USCS Classification	on					
K - intrinsic permeability (Krumbein and Monk, 1942), cm ²	USCS	ML-CL	CL	CL	SC-CL	CL	CL
K - intrinsic permeability (Krumbein and Monk, 1942), cm ²	Calculated Perme	ability Paramet	ers				
Chemistry				942), cm ²			
Chemistry	K mamoro pormo	land, (radina)		,			
Chemistry	K - hydraulic cond	luctivity (after l	lubbert's meth	nd) m/sec			
EC 212.4 207.9 101.8 121.7 89.0 77.2 pH 6.8 7.8 7.3 6.9 7.7 8.1 CEC 46 11 9 12 15 32 Extracted exchangeable cations in mg/L Na 1.73E-02 3.94E-02 2.76E-02 4.93E-02 3.60E-02 1.59E-02 K 7.50E-04 5.54E-03 2.12E-03 8.94E-03 2.09E-03 5.52E-03 Ca 3.01E-02 1.07E-01 7.52E-02 1.30E-01 1.04E-01 9.51E-02 Mg 2.69E-02 6.11E-02 5.72E-02 6.52E-02 4.62E-02 6.51E-02 Al 1.47E-04 2.46E-04 8.84E-05 3.00E-04 2.30E-04 2.40E-04 Sr 1.48E-04 4.38E-04 3.33E-04 4.97E-04 3.84E-04 4.00E-04 Qualitative Mineralogical Components from XRD Analysis Na Ka	it - nyuruuno oone	ductivity (ditter i	lubbert 3 metri	Juj, 11//300			
EC 212.4 207.9 101.8 121.7 89.0 77.2 pH 6.8 7.8 7.3 6.9 7.7 8.1 CEC 46 11 9 12 15 32 Extracted exchangeable cations in mg/L Na 1.73E-02 3.94E-02 2.76E-02 4.93E-02 3.60E-02 1.59E-02 K 7.50E-04 5.54E-03 2.12E-03 8.94E-03 2.09E-03 5.52E-03 Ca 3.01E-02 1.07E-01 7.52E-02 1.30E-01 1.04E-01 9.51E-02 Mg 2.69E-02 6.11E-02 5.72E-02 6.52E-02 4.62E-02 6.51E-02 Al 1.47E-04 2.46E-04 8.84E-05 3.00E-04 2.30E-04 2.40E-04 Sr 1.48E-04 4.38E-04 3.33E-04 4.97E-04 3.84E-04 4.00E-04 Qualitative Mineralogical Components from XRD Analysis Na Ka	Chemistry						
pH 6.8 7.8 7.3 6.9 7.7 8.1 CEC 46 11 9 12 15 32 Extracted exchangeable cations in mg/L Na 1.73E-02 3.94E-02 2.76E-02 4.93E-02 3.60E-02 1.59E-02 K 7.50E-04 5.54E-03 2.12E-03 8.94E-03 2.09E-03 5.52E-03 Ca 3.01E-02 1.07E-01 7.52E-02 1.30E-01 1.04E-01 9.51E-02 Mg 2.69E-02 6.11E-02 5.72E-02 6.52E-02 4.62E-02 6.51E-02 Al 1.47E-04 2.46E-04 8.84E-05 3.00E-04 2.30E-04 2.40E-04 Sr 1.48E-04 4.38E-04 3.33E-04 4.97E-04 3.84E-04 4.00E-04 Qualitative Mineralogical Components from XRD Analysis Ana Qtz Ka		212 4	207.9	101.8	121 7	89.0	77.2
CEC 46							
Na	•						
Na 1.73E-02 3.94E-02 2.76E-02 4.93E-02 3.60E-02 1.59E-02 K 7.50E-04 5.54E-03 2.12E-03 8.94E-03 2.09E-03 5.52E-03 Ca 3.01E-02 1.07E-01 7.52E-02 1.30E-01 1.04E-01 9.51E-02 Mg 2.69E-02 6.11E-02 5.72E-02 6.52E-02 4.62E-02 6.51E-02 Al 1.47E-04 2.46E-04 8.84E-05 3.00E-04 2.30E-04 2.40E-04 Sr 1.48E-04 4.38E-04 3.33E-04 4.97E-04 3.84E-04 4.00E-04 Qualitative Mineralogical Components from XRD Analysis Major Qtz My-fel Qtz				3	12	10	52
K 7.50E-04 5.54E-03 2.12E-03 8.94E-03 2.09E-03 5.52E-03 Ca 3.01E-02 1.07E-01 7.52E-02 1.30E-01 1.04E-01 9.51E-02 Mg 2.69E-02 6.11E-02 5.72E-02 6.52E-02 4.62E-02 6.51E-02 Al 1.47E-04 2.46E-04 8.84E-05 3.00E-04 2.30E-04 2.40E-04 Sr 1.48E-04 4.38E-04 3.33E-04 4.97E-04 3.84E-04 4.00E-04 Qualitative Mineralogical Components from XRD Analysis Major Qtz <				2 76F_02	4 93F.02	3 60E-02	1 50E_02
Ca 3.01E-02 1.07E-01 7.52E-02 1.30E-01 1.04E-01 9.51E-02 Mg 2.69E-02 6.11E-02 5.72E-02 6.52E-02 4.62E-02 6.51E-02 AI 1.47E-04 2.46E-04 8.84E-05 3.00E-04 2.30E-04 2.40E-04 Sr 1.48E-04 4.38E-04 3.33E-04 4.97E-04 3.84E-04 4.00E-04 Qualitative Mineralogical Components from XRD Analysis Major Qtz Mus Mus III Goe Mx-fel Mx-fel Ana Ana III Orth Goe							
Mg 2.69E-02 6.11E-02 5.72E-02 6.52E-02 4.62E-02 6.51E-02 AI 1.47E-04 2.46E-04 8.84E-05 3.00E-04 2.30E-04 2.40E-04 Sr 1.48E-04 4.38E-04 3.33E-04 4.97E-04 3.84E-04 4.00E-04 Qualitative Mineralogical Components from XRD Analysis Ka Qtz Qt							
AI 1.47E-04 2.46E-04 8.84E-05 3.00E-04 2.30E-04 2.40E-04 Sr 1.48E-04 4.38E-04 3.33E-04 4.97E-04 3.84E-04 4.00E-04 Qualitative Mineralogical Components from XRD Analysis Major Qtz Qualitative Mineralogical Components from XRD Analysis Qtz Qtz </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>							
Sr 1.48E-04 4.38E-04 3.33E-04 4.97E-04 3.84E-04 4.00E-04 Qualitative Mineralogical Components from XRD Analysis Major Qtz Qtz Ka Qtz Qtz Qtz Qtz Qtz Qtz Change of Cha							
Qualitative Mineralogical Components from XRD Analysis Major Qtz Qtz Ka Qtz Qtz Qtz Qtz Qtz Qtz Qtz Conth Ka Ka Ka Ka Ka Mas III Mus-fel Mus-fel Mus-fel Mus Ana Ana <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>							
Major Qtz Qtz Ka Qtz Qtz <th></th> <th></th> <th></th> <th>l .</th> <th>4.97⊑-04</th> <th>ა.ఠ4⊏-04</th> <th>4.00⊏-04</th>				l .	4.97⊑-04	ა.ఠ4⊏-04	4.00⊏-04
Orth III Qtz Ka Ka Ka Minor Mus III Goe Mx-fel Very Minor Ka Ka III Mus Ana III Orth Goe Goe Goe Goe Goe					04-	04-	04-
Orth	wajor						
Minor Mus III Goe Mx-fel Very Minor Ka Ka III Mus Ana III Orth Goe Goe		Orth	III	Qtz		Ка	Ка
Goe Mx-fel					Orth		
Very Minor Ka Ka III Mus Ana III Orth Goe Goe	Minor			Mus			
Very Minor Ka Ka III Mus Ana III Orth Goe Goe							
III Orth Goe Goe							
	Very Minor	Ka		III	Mus		Ana
Rut		III	Orth	Goe	Goe		
			Rut				

Cemetery:	MEI BOURNE	GENERAL CEM	IFTFRY	
Sample #	M3/2	M5/1	M5/2	Msand#1
Sat'd/vaodse etc				canan i
Sample Date	16/12/96	16/02/96	16/12/96	18/12/96
Depth	2.1	0.95	1.6	n/a
Description	yel & red-br &	firm, yel-br	red & yel-br	med-fine beige
Description	grey mot	sandy clay	sandy clay	sand gravel
	coarse sandy	Sariuy Clay	Salidy Clay	pack
	-			раск
	clay		white & Feox	
			mot	
Colour	7.5YR 6/8	10YR 6/8	7.5YR 6/6	n/a
Grading				
>-2.25				
-2.0				
-1.5				
-1.0				
-0.5				0.0
0.0				1.3
0.5				47.5
1.0				94.8
1.5				99.2
2.0				99.2
2.5				99.4
3.0				
3.5				
4.0				
<4.0				
Field Water Conte	nt - representat	tive %		
	6	14	11	0
USCS Classification	on			
USCS	SC-CL	CL	SC-CL	SP
Calculated Perme	ability Paramet	ers		
k - intrinsic perme	ability (Krumbe	ein and Monk, 1	1942), cm²	
				2.21E-06
K - hydraulic cond	luctivity (after I	lubbert's meth	od), m/sec	
				2.15E-03
Chemistry				
EC	46.4	209.2	200.4	5.7
pН	7.8	8.2	8.7	6.0
CEC	27	36	3	9
Extracted exchang	geable cations	in mg/L		
Na		6.56E-02	4.92E-02	1.96E-03
K	5.64E-03	1.03E-02	1.71E-02	5.23E-04
Ca	8.99E-02	1.35E-01	8.99E-02	8.21E-02
Mg	1.53E-02	1.20E-01	7.73E-02	2.42E-03
Al	1.88E-04	1.27E-04	2.47E-04	2.69E-04
Sr	3.04E-04	5.93E-04	3.87E-04	2.39E-04
Qualitative Minera	logical Compo	nents from XRI	D Analysis	
Major	Qtz	Qtz	Qtz	
		Mus	Ka	
Minor	Ka			
Very Minor	Goe	Goe		
VCI y WIIIIOI				
very minor		Ka		
Very minor				

Cemetery:	NECROPOLIS					
Sample #	S1/1	S1/2	S1/3	S1/4	S1/5	S1/6
Sat'd/vaodse etc	31/1	31/2	31/3	31/4	31/3	31/0
Sample Date	17/10/06	17/10/06	17/12/96	47/40/06	17/10/06	47/40/06
	17/12/96	17/12/96		17/12/96	17/12/96	17/12/96
Depth	0.6	1.4	2.4		3.8	4.8
Description	red-br sandy clay	grey sandy clay with red & yel br mots	grey sandy clay, occ yel-br mot.		red-br clayey fine sand	red-br coarse med sand
Colour	2.5YR 5/8	2.5Y 7/1	2.5YR 8/2		2.5YR 5/8	2.5YR 5/8
Grading						
>-2.25						
-2.0						
-1.5						
-1.0					0.0	0.0
-0.5					8.0	3.5
0.0					16.2	9.2
0.5					24.3	16.5
1.0					38.5	33.6
1.5					60.6	61.6
2.0					79.3	83.0
2.5					87.1	91.5
3.0					90.5	93.9
3.5					92.9	95.5
4.0					94.4	96.4
<4.0					99.1	99.4
Field Water Conte	nt - representa	tive %				
	16	19	12		10	8
USCS Classification	on					
USCS	SC-CL	SC-CL	SC-CL	CL	SC	SP
Calculated Perme	ability Paramet	ers				
k - intrinsic perme			942). cm ²			
			,,		3.22E-07	4.82E-07
K - hydraulic cond	luctivity (after I	lubbert's metho	od). m/sec			
,			,,		2.86E-04	4.29E-04
Chemistry						
EC	52.4	49.3	37.8	401.0	37.9	
pН	7.0	7.2	6.0	9.1	6.8	
CEC	58	11	17		23	
Extracted exchange	geable cations	in ma/L				
Na	1.19E-02	1.21E-02	1.01E-02	4.06E-02	8.82E-03	1.18E-02
K	2.34E-03	9.63E-04	5.23E-03	1.11E-02	1.90E-03	6.86E-03
Ca	7.77E-02	7.29E-02	9.24E-02	1.50E-01	9.96E-02	1.30E-01
Mg	6.16E-02	8.20E-02	4.77E-02	7.43E-02	1.99E-02	2.01E-02
Al	1.84E-04	2.49E-04	2.51E-04	2.38E-04	2.76E-04	2.93E-04
Sr	3.10E-04	2.71E-04	3.01E-04	6.58E-04	3.20E-04	4.16E-04
Qualitative Minera						
Major	Ka	Ka	Ka	Ka	Qtz	Qtz
-	Mus	Qtz	Qtz	Anth	Ka-s	
Minor	Qtz			Qtz		Alb
	Mx-fel			Mus		Mus
				<u> </u>		
Very Minor	Goe	Orth	Ana			
		Mus				
		Gyp, Pre				

Comoto	NECDODOLIO					
Cemetery:	NECROPOLIS	00/0	00/0	00/4	00/5	00/4
Sample # Sat'd/vaodse etc	S2/1	S2/2	S2/3	S2/4	S2/5	S3/1
	47/40/00	47/40/00	47/40/00	47/40/00	17/40/00	47/40/00
Sample Date	17/12/96	17/12/96	17/12/96	17/12/96	17/12/96	17/12/96
Depth	1.1 mot red-br &	2.2	3	3.6	2.1	2
Description		grey sandy	red-br sandy	red-br sandy	yel-br sandy	red, yel-br &
	grey clay	clay, occ red-br	, ,	clay occ grey	clay	grey mot clay
		mot	mot	mot		
Colour	2.5YR 4/8	10YR 8/2	5YR 5/8	5YR 5/8	7.5yR 6/8	2.5YR 7/1
Grading						
>-2.25						
-2.0						
-1.5						
-1.0						
-0.5				1		
0.0				1		
0.5				1		
1.0						
1.5 2.0						
2.0						
3.0						
4.0 <4.0						
Field Water Conte	nt roprocontat	ivo 9/				
Field Water Conte	17	15	11	9	15	17
USCS Classification	• • •	13	11	3	13	17
USCS	CL	CL	CL	CL	SM-ML	CL
Calculated Perme	_		OL .	OL .	OIVI-IVIL	OL
k - intrinsic perme			042\ cm²			
k - munisic perme	ability (Kruilibe	in and wonk, i	942), CIII			
K - hydraulic cond	luctivity (after h	lubbert's meth	nd) m/sec			
K - Hydraulic colle	ductivity (after 1	lubbert s metric	Juj, III/Sec			
Chemistry						
EC	48.2	53.8	47.0	39.1	66.4	76.0
pH	7.2	6.5	5.6	6.3	6.0	7.2
CEC	29	15	29	16	29	18
Extracted exchange				10		10
Na Na	6.36E-03	9.79E-03	1.49E-02	1.42E-02	1.10E-02	2.80E-02
K	2.95E-03	5.44E-03	4.99E-03	1.06E-03	1.40E-03	1.19E-03
Ca	1.13E-01	7.50E-02	1.53E-01	1.86E-01	1.32E-01	7.85E-02
Mg	1.19E-01	4.18E-02	3.34E-02	2.26E-02	2.49E-02	9.87E-02
Al	1.86E-04	2.78E-04	3.87E-04	4.24E-04	2.39E-04	2.47E-04
Sr	5.19E-04	2.57E-04	5.14E-04	5.82E-04	4.19E-04	3.20E-04
Qualitative Minera						
Major	Ka	Qtz	Qtz	no file	Ka-s	Ka
-	III	Ka	Ka		Qtz	Qtz
Minor	Qtz	Orth			Nac	Mus
Very Minor	Gib					
	Dol					
	Sid					

Cemetery:	NECROPOLIS					
Sample #	S3/2	S3/3	S3/4	S4/1	S4/2	S4/3
Sat'd/vaodse etc	33/2	33/3	33/4	34/1	34/2	34/3
	47/40/06	17/10/06	17/10/06	17/12/96	17/10/06	17/10/06
Sample Date	17/12/96	17/12/96	17/12/96		17/12/96	17/12/96
Depth	2.8	3	4.8	2	2.9	4.7
Description	yel-br & grey	red-br sandy	yel-br & red &	red-br & yel-br	-	red-br occ grey
	mot sandy clay	clay, occ FeOx		& grey mot fine	0 ,	mot clayey
		piths &	sandy clay	sand	sandy clay	sand
		grey	with Feox			
		aggregates	concs			
Colour	2.5Y 8/1 &	5YR 6/8	2.5Y 7/1	10YR 7/1	7.5Yr 8/2	5YR 5/8
Grading						
>-2.25		0.0				
-2.0		9.8				
-1.5		11.9				
-1.0		14.4		0.0		0.0
-0.5		23.0		7.2		1.6
0.0		30.7		15.0		3.5
0.5		38.3		25.4		7.9
1.0		50.6		40.8		22.1
1.5		66.8		56.5		47.1
2.0		79.8				75.6
				70.7		
2.5		87.3		81.1		88.0
3.0		91.4		86.0		91.0
3.5		93.9		89.1		93.0
4.0		95.6		90.9		94.1
<4.0		99.8		99.0		98.9
Field Water Conte						
	18	12	13	13	10	7
USCS Classification	1					
USCS	SC-CL	SC	CL	SM	CL	SC
Calculated Perme						
k - intrinsic perme	ability (Krumbe	in and Monk, 1	942), cm²			
		3.42E-07		1.74E-07		3.06E-07
K - hydraulic cond	luctivity (after F	lubbert's meth	od), m/sec			
		3.05E-04		1.55E-04		2.73E-04
Chemistry						
EC	78.4	41.6	133.1	74.5	128.8	108.2
pН	6.1	5.2	7.0	7.6	6.2	6.4
CEC	129		56	14	14	14
Extracted exchange	geable cations i	in mg/L				
Na	2.04E-02	8.56E-03	1.61E-02	2.03E-02	1.89E-02	1.78E-02
						6.83E-04
K	1.59E-03	2.17E-03	7.06E-03	3.71E-03	1.81E-03	i .
K Ca	1.59E-03	2.17E-03 8.09E-02				7.28E-02
Ca	1.59E-03 2.62E-01	8.09E-02	8.60E-02	6.92E-02	8.67E-02	7.28E-02 2.34E-02
Ca Mg	1.59E-03 2.62E-01 1.01E-01	8.09E-02 2.18E-02	8.60E-02 5.82E-02	6.92E-02 5.27E-02	8.67E-02 2.57E-02	2.34E-02
Ca Mg Al	1.59E-03 2.62E-01 1.01E-01 5.80E-04	8.09E-02 2.18E-02 1.77E-04	8.60E-02 5.82E-02 1.41E-04	6.92E-02 5.27E-02 2.48E-04	8.67E-02 2.57E-02 2.59E-04	2.34E-02 2.51E-04
Ca Mg Al Sr	1.59E-03 2.62E-01 1.01E-01 5.80E-04 1.37E-03	8.09E-02 2.18E-02 1.77E-04 2.46E-04	8.60E-02 5.82E-02 1.41E-04 3.04E-04	6.92E-02 5.27E-02	8.67E-02 2.57E-02	2.34E-02
Ca Mg Al Sr Qualitative Minera	1.59E-03 2.62E-01 1.01E-01 5.80E-04 1.37E-03 logical Compo	8.09E-02 2.18E-02 1.77E-04 2.46E-04 nents from XRI	8.60E-02 5.82E-02 1.41E-04 3.04E-04 D Analysis	6.92E-02 5.27E-02 2.48E-04 2.65E-04	8.67E-02 2.57E-02 2.59E-04 2.90E-04	2.34E-02 2.51E-04 2.34E-04
Ca Mg Al Sr	1.59E-03 2.62E-01 1.01E-01 5.80E-04 1.37E-03 logical Compon	8.09E-02 2.18E-02 1.77E-04 2.46E-04	8.60E-02 5.82E-02 1.41E-04 3.04E-04 D Analysis Qtz	6.92E-02 5.27E-02 2.48E-04 2.65E-04	8.67E-02 2.57E-02 2.59E-04 2.90E-04	2.34E-02 2.51E-04 2.34E-04
Ca Mg Al Sr Qualitative Minera	1.59E-03 2.62E-01 1.01E-01 5.80E-04 1.37E-03 logical Compo	8.09E-02 2.18E-02 1.77E-04 2.46E-04 nents from XRI	8.60E-02 5.82E-02 1.41E-04 3.04E-04 D Analysis	6.92E-02 5.27E-02 2.48E-04 2.65E-04	8.67E-02 2.57E-02 2.59E-04 2.90E-04	2.34E-02 2.51E-04 2.34E-04
Ca Mg Al Sr Qualitative Minera	1.59E-03 2.62E-01 1.01E-01 5.80E-04 1.37E-03 logical Compoi Qtz Ka-s	8.09E-02 2.18E-02 1.77E-04 2.46E-04 nents from XRI	8.60E-02 5.82E-02 1.41E-04 3.04E-04 O Analysis Qtz Ka	6.92E-02 5.27E-02 2.48E-04 2.65E-04 Ka Qtz	8.67E-02 2.57E-02 2.59E-04 2.90E-04	2.34E-02 2.51E-04 2.34E-04
Ca Mg Al Sr Qualitative Minera	1.59E-03 2.62E-01 1.01E-01 5.80E-04 1.37E-03 logical Compon	8.09E-02 2.18E-02 1.77E-04 2.46E-04 nents from XRI Qtz	8.60E-02 5.82E-02 1.41E-04 3.04E-04 O Analysis Qtz Ka Goe	6.92E-02 5.27E-02 2.48E-04 2.65E-04 Ka Qtz	8.67E-02 2.57E-02 2.59E-04 2.90E-04	2.34E-02 2.51E-04 2.34E-04
Ca Mg Al Sr Qualitative Minera	1.59E-03 2.62E-01 1.01E-01 5.80E-04 1.37E-03 logical Compoi Qtz Ka-s	8.09E-02 2.18E-02 1.77E-04 2.46E-04 nents from XRI	8.60E-02 5.82E-02 1.41E-04 3.04E-04 O Analysis Qtz Ka	6.92E-02 5.27E-02 2.48E-04 2.65E-04 Ka Qtz	8.67E-02 2.57E-02 2.59E-04 2.90E-04	2.34E-02 2.51E-04 2.34E-04
Ca Mg AI Sr Qualitative Minera Major Minor	1.59E-03 2.62E-01 1.01E-01 5.80E-04 1.37E-03 logical Compoi Qtz Ka-s	8.09E-02 2.18E-02 1.77E-04 2.46E-04 nents from XRI Qtz	8.60E-02 5.82E-02 1.41E-04 3.04E-04 O Analysis Qtz Ka Goe Mus	6.92E-02 5.27E-02 2.48E-04 2.65E-04 Ka Qtz	8.67E-02 2.57E-02 2.59E-04 2.90E-04	2.34E-02 2.51E-04 2.34E-04 Ka Qtz
Ca Mg Al Sr Qualitative Minera	1.59E-03 2.62E-01 1.01E-01 5.80E-04 1.37E-03 logical Compoi Qtz Ka-s	8.09E-02 2.18E-02 1.77E-04 2.46E-04 nents from XRI Qtz	8.60E-02 5.82E-02 1.41E-04 3.04E-04 O Analysis Qtz Ka Goe	6.92E-02 5.27E-02 2.48E-04 2.65E-04 Ka Qtz	8.67E-02 2.57E-02 2.59E-04 2.90E-04	2.34E-02 2.51E-04 2.34E-04
Ca Mg AI Sr Qualitative Minera Major Minor	1.59E-03 2.62E-01 1.01E-01 5.80E-04 1.37E-03 logical Compoi Qtz Ka-s	8.09E-02 2.18E-02 1.77E-04 2.46E-04 nents from XRI Qtz	8.60E-02 5.82E-02 1.41E-04 3.04E-04 O Analysis Qtz Ka Goe Mus	6.92E-02 5.27E-02 2.48E-04 2.65E-04 Ka Qtz	8.67E-02 2.57E-02 2.59E-04 2.90E-04	2.34E-02 2.51E-04 2.34E-04 Ka Qtz

Cemetery:	NECROPOLIS					
Sample #	S5/1	S5/2	S5/3	S8/1	S9/1	S9/2
Sat'd/vaodse etc	33/1	33/2	33/3	Xua	39/1	Xua
	17/10/06	47/40/06	47/40/06	18/12/96	10/10/06	18/12/96
Sample Date	17/12/96	17/12/96	17/12/96		18/12/96	
Depth	2.1	3	4.1	6.5	7.5-8.0	14
Description	yel-br & grey	mot yel-br &	yel-br clayey	v. sticky yel-br	red-br coarse	orange-br
	mot sandy clay	0 ,	sand with occ	sandy clay	sand	clayey sand
		sandy clay	grey clay			
			peds			
Colour	10YR 5/6	10YR 7/2	10YR 6/8	10YR 6/8 -5/6	5YR 5/8	7.5YR 5/8
Grading						
>-2.25						
-2.0						
-1.5						0.0
-1.0			0.0		0.0	1.5
-0.5			5.7		11.3	3.7
0.0			17.9		25.8	6.4
0.5			29.9		36.5	11.5
1.0			45.2		52.3	18.4
1.5			65.4		72.6	25.3
2.0					87.5	
			81.9			35.7
2.5			91.7		93.1	60.1
3.0			94.1		95.2	85.2
3.5			95.5		96.3	92.8
4.0			96.4		97.0	95.4
<4.0			99.5		98.7	99.9
Field Water Conte	· ·	1				
	10	7	7	15	1	17
USCS Classification	1					
USCS	CL	CL	SP	SM-ML	SP	SC
Calculated Perme						
k - intrinsic perme	ability (Krumbe	ein and Monk, 1	1942), cm²			
			4.23E-07		5.73E-07	1.29E-07
K - hydraulic cond	ductivity (after F	lubbert's meth	od), m/sec			
			3.77E-04		5.10E-04	1.15E-04
Chemistry						
EC	30.3	19.9	16.4	30.7	26.9	27.5
pН	6.3	6.3	6.4	7.8	7.2	5.4
CEC	13	16	21	13	26	12
Extracted exchange	geable cations i	in mg/L				
Na	7.89E-03	5.02E-03		3.85E-03		4.17E-03
К	3.07E-03	5.81E-04	3.26E-04	2.96E-03	7.64E-04	9.22E-03
Ca	9.32E-02	9.04E-02	9.85E-02	7.37E-02	8.79E-02	1.00E-01
Mg	4.58E-02	2.49E-02	1.58E-02	1.69E-02	1.01E-02	5.79E-03
Al	2.14E-04	2.55E-04	1.64E-04	2.70E-04	1.52E-04	2.15E-04
Sr	3.21E-04	3.01E-04	3.13E-04	2.41E-04	2.77E-04	3.24E-04
Qualitative Minera	logical Compo	nents from XKI		1		04-
Qualitative Minera Major				III	Qtz	QLZ
Qualitative Minera Major	Qtz	Ka	Ka	III Ka	Qtz Ka	Qtz
				Ka	Qtz Ka	QIZ
Major	Qtz Ka	Ka	Ka	Ka Qtz	Ka	QIZ
	Qtz	Ka	Ka	Ka	Ka Orth	QiZ
Major	Qtz Ka	Ka	Ka	Ka Qtz	Ka	QIZ
Major Minor	Qtz Ka	Ka Qtz	Ka Qtz	Ka Qtz mus	Ka Orth	QIZ
Major	Qtz Ka	Ka Qtz Goe	Ka	Ka Qtz	Ka Orth	QIZ
Major Minor	Qtz Ka	Ka Qtz	Ka Qtz	Ka Qtz mus	Ka Orth	QIZ

Comotony	NECROPOLIS					
Cemetery:		040/0	040/0	040/4	044/4	040/4
Sample #	S10/1	S10/2	S10/3	S10/4	S11/1	S12/1
Sat'd/vaodse etc				Xua		
Sample Date	3/04/97	7/04/97	3/04/97	3/04/97	4/04/97	30/09/97
Depth	9.5	6	14	17	12.5	6-10
Description	red-br coarse sand	red-br med sandy clay	yel coarse-med sand	yel-br clayey silty sand	yel-br med sand	red-br sandy clay
Colour	2.5YR 5/8	2.5YR 4/8	10YR 6/8	10YR 5/8	7.5YR 6/8	2.5YR 5/6
Grading						
>-2.25						
-2.0						
-1.5						
-1.0	0.0		0.0		0.0	
-0.5	23.3		9.9		2.9	
0.0	43.9		23.4		18.9	
0.5	52.8		38.4		38.9	
1.0	63.1		49.1		57.1	
1.5	75.1		58.8		79.7	
2.0	85.2		69.3			
					90.6	
2.5	91.1		87.4		96.2	
3.0	94.0		94.5		97.5	
3.5	95.8		96.3		98.1	
4.0	97.0		97.1		98.5	
<4.0	100.3		99.4		99.8	
Field Water Conte	nt - representat	tive %				
	3	7	7	14	1	12
USCS Classification	on					
USCS	SP	CL	SP	SM-ML	SP	SC-CL
Calculated Perme	ability Paramet					
k - intrinsic perme			042\ cm²			
k - mumsic perme	5.61E-07	in and wonk,	2.95E-07		7 225 07	
I/ handmardia and		- 4 4 -			7.32E-07	
K - hydraulic cond		lubbert's meth			0.505.04	
	4.99E-04		2.63E-04		6.52E-04	
Chemistry						
EC	80.2	140.6	146.1	200.2	48.2	408.0
pН	5.1	4.9	5.9	6.5	7.2	6.5
CEC	22	23	37	16	25	16
Extracted exchang	geable cations	in mg/L				
Na	1.31E-02	1.69E-02	6.25E-03	1.40E-02	7.82E-03	3.06E-02
K	2.79E-03	9.84E-04		6.09E-04	7.18E-04	2.50E-03
Ca	1.25E-01	6.14E-02	6.03E-02	1.09E-01	1.24E-01	1.10E-01
Mg	2.17E-02	4.34E-02	6.21E-03	9.96E-03	1.24E-02	7.42E-02
Al	7.94E-04	1.46E-04	1.48E-04	3.08E-04	2.72E-04	3.26E-04
Sr	3.78E-04	2.38E-04	1.81E-04	3.26E-04	3.77E-04	3.89E-04
Qualitative Minera				3.20L-04	3.11L-04	3.03L-04
Major	Qtz	Qtz	Qtz	Qtz	Qtz	Qtz
Wajor	QIZ	QIZ	QIZ	QIZ	QIZ	QIZ
Minor		Ka	Ka			Ka
Very Minor	Ka					Goe

0	NECDODOLIO				
Cemetery:	NECROPOLIS	040/0	040/4	040/5	0
Sample #	S12/2	S12/3	S12/4	S12/5	Ssand#1
Sat'd/vaodse etc	00/00/07	00/00/07	00/00/07	Xua	40/40/00
Sample Date	30/09/97	30/09/97	30/09/97	1/10/97	18/12/96
Depth	15	17.5	23	27-28	n/a
Description	orange-br med-	It yel med sand		orange-br med	beige coarse-
	fine sand		sand	sand, occ yel	med sand
				mot	
Colour	5YR 6/8	2.5Y 8/3	5YR 6/8	5YR6/8 -	n/a
Grading					
>-2.25					
-2.0					
-1.5					0.0
-1.0		0.0	0.0	0.0	7.0
-0.5	0.0	0.1	0.1	0.1	67.0
0.0	0.1	2.4	0.5	1.2	96.7
0.5	3.5	20.3	4.0	4.0	98.4
1.0	48.1	47.8	24.9	13.6	99.3
1.5	80.1	67.3	57.1	35.4	99.7
2.0	93.1	86.8	89.9	76.8	99.7
2.5	96.5	97.1	98.4	94.2	99.8
3.0	97.1	98.0	99.0	96.7	99.8
3.5	97.6	98.3	99.1	97.9	99.8
4.0	98.0	98.5	99.3	98.3	99.8
<4.0	99.4	99.1	100.0	98.7	99.8
Field Water Conte			100.0	30.1	33.0
ricia Water Conte	5	1	4	13	0
USCS Classification	-		7	10	U
USCS	SP	SP	SP	SP	SW
Calculated Perme			OI .	OI .	OW
			0.42\2		
k - intrinsic perme				2 605 07	1 055 05
IZ boodeents and	7.89E-07	5.45E-07	5.52E-07	3.60E-07	1.05E-05
K - hydraulic cond				2.005.04	0.005.00
Chamainton.	7.02E-04	4.86E-04	4.92E-04	3.20E-04	9.36E-03
Chemistry	124.4	46.6	144.1	126.9	40 E
EC	134.4	46.6		6.4	12.5
pH	6.7	5.6	5.7		5.3
CEC Extracted exchange	14	7	38	34	11
	1.34E-02	n mg/L 5.27E-03	9.09E-03	6.58E-03	1.75E-03
Na					
K	1.31E-03	9.47E-04	6.84E-04	3.09E-03	8.60E-04 8.05E-02
Ca	9.49E-02	1.05E-01	8.01E-02	7.27E-02	
Mg	1.10E-02	3.96E-03	6.58E-03	4.28E-03	2.27E-03
Al Sr	1.76E-04 2.75E-04	2.51E-04 3.13E-04	1.46E-04 2.46E-04	1.45E-04	2.64E-04 2.51E-04
				2.32E-04	2.51E-04
Qualitative Minera Major			Qtz	Ot-z	
inajoi	Qtz	Qtz	QLZ	Qtz	
Minor	Ka			1	
	ixa				
Very Minor	Orth	Orth		Ka	
	Oitil	Oitil		i tu	
	<u> </u>		l .		

Cemetery:	BUNURONG M	FMORIAL PARI	K			
Sample #	N1/1	N1/2	N1/3	N1/4	N1/5	N2/1
Sat'd/vaodse etc	EXP BH					
Sample Date	27/02/97	27/02/97	27/02/97	27/02/97	17/12/96	17/12/96
Depth	1.8	2.2	2.5	1.4	4.2	2
Description	br & occ grey	mot yel-br &	grey-br silty	yel-br silty	br-yel clayey	grey occ yel
Description	mot sandy clay		clay with minor	-		mot clayey
	mot sandy ciay		,		sand	
		clay	rootlets	pebbles		sand
Colour	7.5YR 6/4	10YR 7/4	10YR 4/2	10YR 7/8	7.5YR 5/8	2.5Y 7/1
Grading		retained on sie		10111170		2.01.171
>-2.25						
-2.0						
-1.5				0.0		
-1.0				2.0	0.0	
-0.5				8.9	3.3	
0.0				17.4	6.2	
0.5				26.1	8.4	
1.0				36.8	9.9	
1.5				45.7	11.2	
2.0				53.1	12.5	
2.5				65.2	43.2	
3.0				81.5	79.3	
3.5				90.4	91.7	
4.0				93.5	95.3	
<4.0				99.9	100.6	
Field Water Conte	nt - representat	ive %		00.0	100.0	
riola Water Conto	7	5	9	10	17	12
USCS Classification	-		Ü	10		12
USCS	SC-CL	CL	CL-ML	SC	SC	SC-CL
Calculated Perme		_	OL WIL		- 00	00 02
k - intrinsic perme	•		042) am²			
k - mumsic perme	ability (Krullibe	in and wonk, i	942), CIII	1.045.07	0.425.00	
K - hydraulic cond	luativity (after b	lubbart'a math	ad) m/aaa	1.04E-07	9.42E-08	
K - Hydraulic cond	luctivity (after r	Tubbert S meth	ou), m/sec	0.455.05	9 E 4 E 0 E	
Chamiatm				9.45E-05	8.54E-05	
Chemistry EC	207.5	250.7	161.9	224.7	314.0	61.5
				221.7		
pH CEC	9.6 14	6.8	5.8	8.4	6.7	7.0
Extracted exchange			32	11	13	/ 1
	1.69E-02	n mg/L 2.07E-02	2.77E-03	1.58E-02	4.85E-03	1.69E-03
Na K	1.69E-02 1.44E-03	1.04E-03	2.48E-03	4.24E-03	4.63E-03 1.13E-02	9.65E-03
Ca	1.44E-03 1.05E-01	9.07E-02	1.16E-01	4.24E-03 1.21E-01	1.13E-02 1.13E-01	9.65E-03 8.01E-02
	2.57E-02	9.07E-02 3.47E-02			1.13E-01 1.48E-02	5.00E-02
Mg Al	2.57E-02 2.28E-04	1.42E-03	6.52E-02 1.48E-04	2.57E-02 1.61E-04	2.37E-04	1.64E-04
Sr	2.28E-04 2.80E-04	3.08E-04	4.56E-04		3.32E-04	2.79E-04
Qualitative Minera				3.17E-04	3.32E-04	∠.13⊑-04
Major	Qtz	Qtz	Qtz	Qtz	Qtz	Qtz
inajui	Ka	Ka	QIZ	QIZ	QιΖ	QIZ
	rva	rva				
Minor	Mus			Ka		orth
I I WILLIAM I	iviuo			Orth		
			I	Offil		mus
				Muc		
	Orth			Mus		Goo
Very Minor	Orth			Mus Phlog		Goe
	Orth					Goe Nac

Sat'd/vaodse etc EXP BH EXP BH EXP BH EXP BH EXP BH X EXP BH Sample Date 17/12/96 17/12/96 27/02/97 27/04/97 17/12/96 2/0 Depth 2.8 4.1 1 1.4 3.8 5 Description grey occ yel stained silty fine sand It grey fine sand stiff, red-br sandy clay yel-br pebbly clayey sand It yel-grey fine sand It br silt sand Grading 7.5YR 6/6 7.5YR 5/8 2.5Y 8/2 10Y Grading 7.2 0.0 0.0 0.0 -1.5 0.0 0.0 0.0 0.0 -1.0 0.0 4.2 0.0 0.0 1 -0.5 3.3 5.9 3.5 0.1 7 0.0 6.4 7.3 9.3 0.3 1	R 6/6
Sat'd/vaodse etc EXP BH EXP BH EXP BH EXP BH EXP BH X EXP BH Sample Date 17/12/96 17/12/96 27/02/97 27/04/97 17/12/96 2/0 Depth 2.8 4.1 1 1.4 3.8 5 Description grey occ yel stained silty fine sand It grey fine sand stiff, red-br sandy clay yel-br pebbly clayey sand It yel-grey fine sand It br silt sand Grading 7.5YR 6/6 7.5YR 5/8 2.5Y 8/2 10Y Grading 7.2 0.0 0.0 0.0 -1.5 0.0 0.0 0.0 0.0 -1.0 0.0 4.2 0.0 0.0 1 -0.5 3.3 5.9 3.5 0.1 7 0.0 6.4 7.3 9.3 0.3 1	4/97 -6 y fine R 6/6
Sample Date 17/12/96 17/12/96 27/02/97 27/04/97 17/12/96 2/0 Depth 2.8 4.1 1 1.4 3.8 5 Description grey occ yel stained silty fine sand It grey fine sand stiff, red-br sandy clay yel-br pebbly clayey sand It yel-grey fine sand It br silt sand Colour 2.5Y 7/1 2.5YR 8/2 7.5YR 6/6 7.5YR 5/8 2.5Y 8/2 10Y Grading >-2.25 -2.0 -1.5 0.0 0.0 0.0 1 -1.0 0.0 4.2 0.0 0.0 1 -0.5 3.3 5.9 3.5 0.1 7 0.0 6.4 7.3 9.3 0.3 1	R 6/6
Depth 2.8 4.1 1 1.4 3.8 5 Description grey occ yel stained silty fine sand It grey fine sand stiff, red-br sandy clay yel-br pebbly clayer sand It yel-grey fine sand It br silt sand Colour 2.5Y 7/1 2.5YR 8/2 7.5YR 6/6 7.5YR 5/8 2.5Y 8/2 10Y Grading >-2.25 -2.0 -1.5 0.0 0.0 0.0 1 -1.0 0.0 4.2 0.0 0.0 1 -0.5 3.3 5.9 3.5 0.1 7 0.0 6.4 7.3 9.3 0.3 1	R 6/6
Description grey occ yet stained silty fine sand lt grey fine sand sand	R 6/6
Colour 2.5Y 7/1 2.5YR 8/2 7.5YR 6/6 7.5YR 5/8 2.5Y 8/2 10Y Grading >-2.25 -2.0 -1.5 0.0 0.0 0.0 10.0 0.0 10.0 <th< th=""><th>R 6/6</th></th<>	R 6/6
Grading -2.25 -2.0 -1.5 -1.0 0.0 -1.5 3.3 5.9 3.5 0.0 0.1 7 7 0.0 0.3 1 1 0.0 0.3 0.0 0	.0 .0 .7 2.3
Grading -2.25 -2.0 -1.5 -1.0 0.0 -1.5 3.3 5.9 3.5 0.0 0.1 7 7 0.0 0.3 1 1 0.0 0.3 0.0 0	.0 .0 .7 2.3
>-2.25 -2.0 -1.5 0.0 -1.0 0.0 4.2 -0.5 3.3 5.9 3.5 0.1 7 0.0 6.4 7.3 9.3 0.3 11	.0 7.7 2.3
-2.0 -1.5 0.0 -1.0 0.0 4.2 0.0 0.5 3.3 5.9 3.5 0.1 7 0.0 6.4 7.3 9.3 0.3 11 12 13 14 15 16 17 18 19 10 11 12 12 13 14 15 16 17 18 10 10	.0 7.7 2.3
-1.5 0.0 -1.0 0.0 4.2 0.0 0.5 3.3 5.9 3.5 0.0 6.4 7.3 9.3 0.3 11	.0 7.7 2.3
-1.0 0.0 4.2 0.0 0.0 1 -0.5 3.3 5.9 3.5 0.1 7 0.0 6.4 7.3 9.3 0.3 1	.0 7.7 2.3
-0.5 3.3 5.9 3.5 0.1 7 0.0 6.4 7.3 9.3 0.3 1	2.3
0.0 6.4 7.3 9.3 0.3 13	2.3
	5.4
	7.9
	9.9
	3.3
	3.4
3.0 68.0 50.2 89.5 88.8 80	0.9
3.5 86.4 95.0 93.7 93.1 9	0.4
4.0 90.8 97.0 95.7 95.2 9	3.7
<4.0 99.6 99.8 100.9 100.0 10	0.7
Field Water Content - representative %	
12 13 9 22 19	8
USCS Classification	
USCS SC SC SC-CL SC SP S	M
Calculated Permeability Parameters	
k - intrinsic permeability (Krumbein and Monk, 1942), cm ²	
6.69E-08 2.71E-07 1.77E-07 1.38E-07 9.46	E-08
K - hydraulic conductivity (after Hubbert's method), m/sec	
	E-05
Chemistry	
EC 65.9 359.0 70.5 55.1 244.0 63	8.0
pH 6.9 7.1 6.0 5.7 6.8 6	.3
	13
Extracted exchangeable cations in mg/L	
	E-03
	E-04
	E-02
	E-02
	E-04
	E-04
Qualitative Mineralogical Components from XRD Analysis	
	(tz
Ка	
Minor Ka Ka Ka	
Goe Goe	
	·
Very Minor	
	ίa
	а

Cemetery:	BUNURONG M	IEMORIAL PAR	K			
Sample #	N7/2	N8/1	NT1/1	NT1/2	NT1/3	NT1/4
Sat'd/vaodse etc	Xua	Xua	TRENCH	TRENCH	TRENCH	TRENCH
Sample Date	2/04/97	2/04/97	17/12/96	17/12/96	17/12/96	17/12/96
Depth	8.3	6-7	1.8	2.2	2.9	1.4
Description	yel-br & red-br	yel-br silty fine	mot yel, red-br	red-br stained	yel br & grey	red-br clayey
2000.19.10.1	sandy silt	sand	& grey pebbly sandy clay	grey sandy clay	mot sandy clay	, ,
Colour	2.5YR 4/8 -	10YR 6/8	2.5Y 5/1	5Y 7/1	2.5YR 7/1 -	2.5YR 4/6
Grading	10YR 6/4				7.5YR 6/8	
>-2.25						0.0
-2.0						27.9
-1.5		0.0				57.7
-1.0	0.0	0.5				63.1
-0.5	4.7	4.2				68.4
0.0	6.7	7.7				71.6
0.5	9.8	10.4				73.8
1.0	12.4	12.8				76.0
1.5	14.1	14.7				79.4
2.0	16.4	17.0				81.3
2.5	55.1	43.6				86.0
3.0	86.3	75.7				89.4
3.5	90.3	88.6				90.5
4.0	92.4	93.0				91.1
<4.0	98.8	100.8				97.0
Field Water Conte						2.110
	17	17	16	17	16	3
USCS Classification						
USCS	SM	SM	CL	CL	CL	SP-SC
Calculated Perme			02			0. 00
k - intrinsic perme			942) cm ²			
K - IIIIIIIIIIII perilie	1.29E-07	7.84E-08	J42), CIII			4.23E-07
K - hydraulic cond			od) m/soc			4.23L-07
K - Hydraulic colle	1.17E-04	7.11E-05				3.84E-04
Chemistry	1.1712-04	7.112-03				3.04L-04
EC	523.0	250.8	142.6	162.9		329.0
pH	6.5	6.4	6.2	6.7		6.5
CEC	8	17	19	22		29
Extracted exchange			13	~~		23
Na Na	9.47E-03	2.62E-02	3.54E-02	4.55E-02		9.99E-03
K	7.02E-04	9.78E-04	2.80E-03	1.79E-03		2.38E-04
Ca	8.95E-02	9.76E-02	1.65E-01	1.38E-01		6.64E-02
Mg	2.76E-02	2.74E-02	1.17E-01	7.84E-02		2.22E-02
Al	1.57E-04	3.69E-04	2.65E-04	2.77E-04		2.07E-04
Sr	3.18E-04	3.36E-04	6.03E-04	4.75E-04		2.42E-04
Qualitative Minera				1.700-04		+ <u></u> -0+
Major	Qtz	Qtz	Qtz	Qtz		Qtz
inajor	QLZ	QLZ	QLE	QLE		QLZ
Minor			V-	V-		
Minor			Ka	Ka		
			Orth			
\/ A**						
Very Minor						Ka
	1	I			1	

Cemetery:	BUNURONG M	EMORIAL PAR	K			
Sample #	NT3/1	NT3/2	NT3/3	NT4/1	NT4/2	Nsand#1
Sat'd/vaodse etc	TRENCH	TRENCH	TRENCH	TRENCH	TRENCH	
Sample Date	17/12/96	17/12/96	27/02/97	27/02/97	27/02/97	27/12/97
Depth	2	3.1	2.2	1.7	1.4	n/a
Description	red-br occ grey		grey-br sandy	dk-br - grey	yel-br & It br	med-fine It yel-
2000	mot sandy clay		silt (topsoil)	sandy silt	sandy clay	white sand
			with rootlets			
Colour	7.5YR 5/6-5/8	5Y 8/1	10YR 4/2	10YR 3/1	10YR 3/2	n/a
Grading						
>-2.25			0.0	0.0		
-2.0			11.5	15.2		
-1.5			34.2	33.2		
-1.0		0.0	49.6	44.7		
-0.5		3.3	60.1	56.4		0.0
0.0		5.8	66.9	64.5		1.3
0.5		7.8	72.0	71.2		34.0
1.0		9.2	76.5	77.7		89.7
1.5		10.3	80.2	83.1		99.0
2.0		13.1	83.4	87.8		99.4
2.5		40.1	88.6	92.3		99.6
3.0		80.2	93.4	95.6		
3.5		88.5	96.2	97.4		
4.0		92.0	97.3	98.2		
<4.0		98.5	100.4	100.1		
Field Water Conte	nt - representat					
	n/a	5	3	9	14	0
USCS Classification USCS	CL	SM	SP	SP	SC-CL	SW
Calculated Perme	ability Paramete	ers				
k - intrinsic perme	ability (Krumbe	in and Monk, 1	942), cm ²			
		9.04E-08	6.35E-07	9.80E-07		2.06E-06
K - hydraulic cond	luctivity (after H	lubbert's meth	od), m/sec			
		8.20E-05	5.76E-04	8.88E-04		1.87E-03
Chemistry						
EC	136.9	183.1	147.5	190.1	203.6	9.4
pН	8.0	7.1	6.4	6.1	5.5	6.3
CEC	45	27	20	68	10	2
Extracted exchange	geable cations i	n mg/L				
Na	1.92E-02	-	1.07E-02	1.06E-02	1.72E-02	1.71E-03
K	1.45E-02		2.78E-03	1.53E-02	5.20E-03	
Ca	1.08E-01		9.93E-02	1.33E-01	1.26E-01	7.40E-02
Mg	3.84E-02		5.44E-02	4.22E-02	5.69E-02	2.30E-03
Al	2.04E-04		2.06E-04	1.68E-04	2.70E-04	2.09E-04
Sr	3.62E-04		4.10E-04	5.50E-04	4.18E-04	2.40E-04
Qualitative Minera	logical Compo	nents from XRI) Analysis			
Major	Qtz	Qtz	Qtz	Qtz	Qtz	Qtz
				Ka		
Minor	Ka		Ka			1
	Goe					
Very Minor		Ka			Ka	

	T			1
Cemetery:		EMORIAL PARI	<	
Sample #	Nsand#2			
Sat'd/vaodse etc				
Sample Date	28/02/97			
Depth	n/a			
Description	beige, coarse-			
	med sand			
	inca sana			
Colour	n/a			
Grading				
>-2.25				
-2.0				
-1.5				
-1.0	0.0			
-0.5	6.5			
0.0	60.9			
0.5	86.0			
1.0	98.7			
1.5	99.7			
2.0				
2.5				
3.0				
3.5				
4.0				
<4.0				
Field Water Conte	nt - representat	ive %		
	0			
USCS Classification	on			
USCS	SW			
Calculated Perme		ers		
k - intrinsic perme			0.42\ cm²	
k - mumsic perme	4.19E-06	in and work, i	942), CIII	
K booksolis sons		-		
K - hydraulic cond		lubbert's metho	oa), m/sec	
	3.80E-03			
Chemistry				
EC	8.8			
pН	6.0			
CEC	10			
Extracted exchange		in mg/L		
Na	1.43E-03			
K	4.48E-03			
Ca	7.16E-02			
Mg	1.93E-03			
Al	2.92E-04			
Sr	2.29E-04			
Qualitative Minera		nents from XRF) Analysis	
Major		I SING HOM AIL		
major				
Minor				
Very Minor				
				_

Cemetery:	CARR VII I A M	IEMORIAL PAR	K			
Sample #	L1/1	L1/2	L1/3	L1/4	L1/5	L1/6
Sat'd/vaodse etc	L1/1	LI/Z	L1/3	L1/4	L1/5	L 1/0
Sample Date	18/02/97	18/02/97	18/02/97	18/02/97	18/02/98	18/02/97
Depth	0.8	1.1	1.7	3.1	4.7	5.3
•						
Description	firm, med br	red-br sandy	yel-br to red	red & yel fine	It yel - yel-br	It grey fine
	sandy clay	clay - clayey	yel/br occ grey	sand and	fine clayey	sandy clay
		sand	red/br mot	clayey sand	sand	
			fine sand -	with occ red-br		occ Feox red-
			clayey sand	Feox		br mottles
Colour	7.5YR6/4-5/6	2.5YR 4/6	5YR 5/6	5YR 6/6-5/6	10YR 8/6-6/6	2.5Y 8/1
Grading		2.01.11.70	3111373	0111070070	10111070070	2.0.0
>-2.25						
-2.0						
-1.5						
-1.0				0.0		
				0.0		
-0.5				5.9		
0.0				10.8		
0.5				15.1		
1.0				20.3		
1.5				27.1		
2.0				42.5		
2.5				69.4		
3.0				80.6		
3.5				86.0		
4.0				90.1		
<4.0				98.9		
Field Water Conte	nt - representat	tive %		00.0		
	17	13	11	6	9	8
USCS Classificati				-		
USCS	CL	SC-CL	SC-CL	SP	SC-CL	CL
Calculated Perme			00-0L	Oi	00-0L	OL
			2			
k - intrinsic perme	eability (Krumbe	ein and Monk, 1	1942), cm	7.045.00		
				7.91E-08		
K - hydraulic cond	ductivity (after I	lubbert's meth	od), m/sec			
				6.62E-05		
Chemistry						
EC	40.8	59.0	133.4	276.0	526.0	1031.0
рН	5.6	5.1	4.4	5.4	4.6	4.9
CEC	16	16	87	24	46	54
Extracted exchan	geable cations	in mg/L				
Na		4.18E-03	9.82E-03	3.93E-02	1.15E-02	6.57E-02
K	1.46E-03	2.02E-03	5.91E-04	2.45E-03	9.68E-05	2.13E-02
Ca	6.25E-02	5.46E-02	8.73E-02	9.95E-02	8.65E-02	1.79E-01
Mg	1.57E-02	1.02E-02	1.41E-02	3.86E-02	3.39E-02	1.13E-01
Al	4.12E-04	2.09E-02	1.93E-04	1.77E-04	2.11E-04	2.94E-04
Sr	1.99E-04	1.70E-04	2.82E-04	3.18E-04	2.55E-04	5.34E-04
Qualitative Minera				332 01		5.5.2.51
Major	Qtz	Qtz	Qtz	Qtz	Ka	Qtz
		Ka	Ka	Ka	Qtz	QιZ
	Ka		ı\a	r\a	QΙZ	
	Ka	Na				
Minor	Ka		Coo	Coo		V-
Minor	Ka	Goe	Goe	Goe		Ka
Minor	Ka		Goe	Goe Mus		Ка
		Goe	Goe	Mus		
Minor Very Minor	Goe		Goe		Orth	Ka Sid
		Goe	Goe	Mus	Orth Mus Alb	

Cemetery:	CARR VII I A M	EMORIAL PAR	K			
Sample #	L2/1	L2/2	L3/1	L3/2	L3/3	L3/4
Sat'd/vaodse etc	LZ/ I	LZ/Z	L3/ I	L3/Z	LS/S	L3/4
	10/00/07	10/00/07	10/00/07	10/00/07	18/02/97	10/00/07
Sample Date	18/02/97	18/02/97	18/02/97	18/02/97		18/02/97
Depth	2.8	3.5	1.3	1.7	2.9	3.6
Description	yel-br clayey	yel-br fine,	mod stiff mot	grey, mot red-	stiff grey sandy	
	sand occ grey	silty? sand	red-br & grey	br, clayey sand	clay with yel-br	
	mot		sandy clay		sandy	sand
					clay lenses	
Colour	10YR 7/6-6/8	10YR 6/6	2.5YR 4/6	2.5Y 7/1	2.5Y 6/1	2.5Y 7/1
Grading						
>-2.25						
-2.0						
-1.5				0.0		
-1.0				0.5	0.0	0.0
-0.5				11.8	7.0	3.5
0.0				24.3	12.8	7.4
0.5				36.4	17.8	10.9
1.0				46.7	23.8	15.4
1.5				54.9	32.4	22.2
2.0				64.8	52.4	42.0
2.5				77.5	74.7	72.2
3.0				87.4	85.8	84.8
3.5				92.3	90.7	90.9
4.0						
				96.5	94.0	96.0
<4.0	-4	.i 0/		101.0	100.5	103.6
Field Water Conte		1	04	40	4.4	4.4
	7	11	21	16	14	14
USCS Classification	,	00.01	00.01	20		0.5
USCS	SC-CL	SC-CL	SC-CL	SP	SP	SP
Calculated Perme						
k - intrinsic perme	ability (Krumbe	in and Monk, 1	1942), cm²			
				1.68E-07	1.39E-07	1.35E-07
K - hydraulic cond	luctivity (after I	lubbert's meth	od), m/sec			
				1.41E-04	1.17E-04	1.13E-04
Chemistry						
EC	403.0	213.0	120.2	145.0	267.0	373.0
pН	5.0	4.5	5.5	5.1	3.9	5.8
CEC	19	9	37	60		54
Extracted exchange						
Na	2.77E-02	3.44E-02	2.21E-02	1.06E-02	3.09E-02	2.25E-02
K	6.96E-03	7.06E-03	2.36E-03	6.18E-03	2.15E-03	1.82E-03
Ca	1.05E-01	8.77E-02	1.05E-01	9.31E-02	8.88E-02	1.02E-01
Mg	5.04E-02	4.03E-02	7.20E-02	2.62E-02	4.76E-02	4.40E-02
Al	3.23E-04	2.71E-04	3.15E-02	2.36E-04	1.72E-04	1.42E-04
Sr	3.24E-04	2.85E-04	3.81E-04	2.68E-04	2.86E-04	3.24E-04
Qualitative Minera	logical Compo	nents from XRI	O Analysis			
Major	Qtz	Ka	Qtz	Qtz	Qtz	Qtz
	Ka	Qtz	Ka		Ka	Ka
Minor				III	Orth	
				Orth	Goe	
Very Minor	Sid	Sid	Goe	Ka	Mus2	Mus2
,			Sid	Mic	Sid?	Sid?
			5.0		5.4.	5.4.
	1		1	1	l .	1

Cam-4	CADDAWLASA	EMODIAL DAD	V			
Cemetery:		EMORIAL PARI		1.4/6	1.5%	1.570
Sample #	L3/5	L4/1	L4/2	L4/3	L5/1	L5/2
Sat'd/vaodse etc	10/02/27	10/05/57	10/02/27	10/52/27	10/07/27	10/00/07
Sample Date	18/02/97	18/02/97	18/02/97	18/02/97	19/02/97	18/02/97
Depth	4.8	3.5	3.9	1.8	back & sides	1.9
Description	yel-br with grey-			stiff, red-br	yel-br sandy	dk red-br &
	red-br mot	clay with	grey mot	clayey sand -	clay - clayey	grey sandy
	clayey sand	carbonaceous	sandy clay	sandy clay	sand	clay and
		material				clayey med
						sand, occ Fe
						pisoliths
Colour	10YR 6/6	5Y 7/1	2.5Y 4/6	5YR5/4 - 5/6	10YR 6/6	5YR 5/6 - 5/8
Grading	10111070	0	2.01 .70	01110/11 0/0	10111070	0111070 070
>-2.25						
-2.0						
-1.5						
-1.0	0.0	0.0				
-0.5	4.4	17.9				
0.0	9.1	33.1			1	
0.0	16.6	44.1			+	+
1.0 1.5	24.6	54.9 62.3				
1.5 2.0	33.0					
	53.1	69.1				
2.5	73.9	77.0				
3.0	84.5	85.9				
3.5	91.4	90.4				
4.0	97.0	94.9				
<4.0	101.2	101.4				
Field Water Conte		1				
	16	16	2	15	15	8
HIGGE Classifies						
USCS Classification						
USCS	SP	SM	CL	CL	SC-CL	SC-CL
	SP		CL	CL	SC-CL	SC-CL
USCS	SP ability Paramete	ers		CL	SC-CL	SC-CL
USCS Calculated Perme	SP ability Paramete	ers		CL	SC-CL	SC-CL
USCS Calculated Perme	SP ability Parameto ability (Krumbe 1.32E-07	ers ein and Monk, 1 1.60E-07	942), cm²	CL	SC-CL	SC-CL
USCS Calculated Permer k - intrinsic perme	SP ability Parameto ability (Krumbe 1.32E-07	ers ein and Monk, 1 1.60E-07	942), cm²	CL	SC-CL	SC-CL
USCS Calculated Permer k - intrinsic perme	SP ability Paramete ability (Krumbe 1.32E-07 luctivity (after F	ers ein and Monk, 1 1.60E-07 Hubbert's metho	942), cm²	CL	SC-CL	SC-CL
USCS Calculated Permer k - intrinsic perme K - hydraulic cond	SP ability Paramete ability (Krumbe 1.32E-07 luctivity (after F	ers ein and Monk, 1 1.60E-07 Hubbert's metho	942), cm²	CL 273.7	SC-CL 340.0	SC-CL 158.7
USCS Calculated Permer k - intrinsic perme K - hydraulic cond	SP ability Paramete ability (Krumbe 1.32E-07 ductivity (after H 1.11E-04	ers ein and Monk, 1 1.60E-07 Hubbert's metho 1.34E-04	942), cm ² od), m/sec			
USCS Calculated Permer k - intrinsic perme K - hydraulic cond Chemistry EC	SP ability Paramete ability (Krumbe 1.32E-07 luctivity (after H 1.11E-04	ein and Monk, 1 1.60E-07 lubbert's metho 1.34E-04	942), cm ² od), m/sec	273.7	340.0	158.7
USCS Calculated Permer k - intrinsic perme K - hydraulic cond Chemistry EC pH	SP ability Paramete ability (Krumbe 1.32E-07 ductivity (after H 1.11E-04 652.0 4.2 41	ers ein and Monk, 1 1.60E-07 Hubbert's metho 1.34E-04 125.8 5.1 8	942), cm ² od), m/sec 211.4 5.5	273.7 4.3	340.0 3.9	158.7 4.1
USCS Calculated Permer k - intrinsic perme K - hydraulic cond Chemistry EC pH CEC	SP ability Paramete ability (Krumbe 1.32E-07 ductivity (after H 1.11E-04 652.0 4.2 41	ers ein and Monk, 1 1.60E-07 Hubbert's metho 1.34E-04 125.8 5.1 8	942), cm ² od), m/sec 211.4 5.5	273.7 4.3	340.0 3.9	158.7 4.1
USCS Calculated Permer k - intrinsic perme K - hydraulic cond Chemistry EC pH CEC Extracted exchange	SP ability Paramete ability (Krumbe 1.32E-07 luctivity (after H 1.11E-04 652.0 4.2 41 geable cations i	ers ein and Monk, 1 1.60E-07 Hubbert's metho 1.34E-04 125.8 5.1 8 in mg/L	942), cm ² od), m/sec 211.4 5.5 93	273.7 4.3 47	340.0 3.9 39	158.7 4.1 39
USCS Calculated Permer k - intrinsic perme K - hydraulic cond Chemistry EC pH CEC Extracted exchange	SP ability Paramete ability (Krumbe 1.32E-07 luctivity (after H 1.11E-04 652.0 4.2 41 geable cations i 1.76E-02	ers ein and Monk, 1 1.60E-07 Hubbert's metho 1.34E-04 125.8 5.1 8 in mg/L 2.83E-02	942), cm ² od), m/sec 211.4 5.5 93 3.11E-02	273.7 4.3 47 6.16E-02	340.0 3.9 39 1.63E-02	158.7 4.1 39 1.04E-02
USCS Calculated Permer k - intrinsic perme K - hydraulic cond Chemistry EC pH CEC Extracted exchange Na K	SP ability Paramete ability (Krumbe 1.32E-07 luctivity (after H 1.11E-04 652.0 4.2 41 geable cations i 1.76E-02 5.69E-04	ers ein and Monk, 1 1.60E-07 Hubbert's metho 1.34E-04 125.8 5.1 8 in mg/L 2.83E-02 1.78E-02	942), cm ² od), m/sec 211.4 5.5 93 3.11E-02 6.23E-03	273.7 4.3 47 6.16E-02 9.08E-03	340.0 3.9 39 1.63E-02 3.06E-03	158.7 4.1 39 1.04E-02 1.45E-03
USCS Calculated Permer k - intrinsic perme K - hydraulic cond Chemistry EC pH CEC Extracted exchang Na K Ca	SP ability Paramete ability (Krumbe 1.32E-07 luctivity (after H 1.11E-04 652.0 4.2 41 geable cations i 1.76E-02 5.69E-04 8.58E-02	1.60E-07 Hubbert's metho 1.34E-04 125.8 5.1 8 in mg/L 2.83E-02 1.78E-02 9.73E-02	942), cm ² od), m/sec 211.4 5.5 93 3.11E-02 6.23E-03 5.57E-02	273.7 4.3 47 6.16E-02 9.08E-03 1.47E-01	340.0 3.9 39 1.63E-02 3.06E-03 7.26E-02	158.7 4.1 39 1.04E-02 1.45E-03 8.84E-02
USCS Calculated Permer k - intrinsic perme K - hydraulic cond Chemistry EC pH CEC Extracted exchang Na K Ca Mg	SP ability Paramete ability (Krumbe 1.32E-07 luctivity (after H 1.11E-04 652.0 4.2 41 geable cations i 1.76E-02 5.69E-04 8.58E-02 3.86E-02	ers ein and Monk, 1 1.60E-07 Hubbert's metho 1.34E-04 125.8 5.1 8 in mg/L 2.83E-02 1.78E-02 9.73E-02 1.29E-01	942), cm ² od), m/sec 211.4 5.5 93 3.11E-02 6.23E-03 5.57E-02 1.04E-01	273.7 4.3 47 6.16E-02 9.08E-03 1.47E-01 1.93E-01	340.0 3.9 39 1.63E-02 3.06E-03 7.26E-02 5.44E-02	158.7 4.1 39 1.04E-02 1.45E-03 8.84E-02 3.44E-02
USCS Calculated Permer k - intrinsic perme K - hydraulic cond Chemistry EC pH CEC Extracted exchang Na K Ca Mg Al	SP ability Paramete ability (Krumbe 1.32E-07 luctivity (after H 1.11E-04 652.0 4.2 41 geable cations i 1.76E-02 5.69E-04 8.58E-02 3.86E-02 2.40E-04 2.67E-04	1.60E-07 Hubbert's metho 1.34E-04 125.8 5.1 8 in mg/L 2.83E-02 1.78E-02 9.73E-02 1.29E-01 3.00E-04 3.42E-04	942), cm ² od), m/sec 211.4 5.5 93 3.11E-02 6.23E-03 5.57E-02 1.04E-01 1.93E-04 2.11E-04	273.7 4.3 47 6.16E-02 9.08E-03 1.47E-01 1.93E-01 2.74E-04	340.0 3.9 39 1.63E-02 3.06E-03 7.26E-02 5.44E-02 2.07E-04	158.7 4.1 39 1.04E-02 1.45E-03 8.84E-02 3.44E-02 2.15E-04
USCS Calculated Permer k - intrinsic perme K - hydraulic cond Chemistry EC pH CEC Extracted exchang Na K Ca Mg Al Sr	SP ability Paramete ability (Krumbe 1.32E-07 luctivity (after H 1.11E-04 652.0 4.2 41 geable cations i 1.76E-02 5.69E-04 8.58E-02 3.86E-02 2.40E-04 2.67E-04	1.60E-07 Hubbert's metho 1.34E-04 125.8 5.1 8 in mg/L 2.83E-02 1.78E-02 9.73E-02 1.29E-01 3.00E-04 3.42E-04	942), cm ² od), m/sec 211.4 5.5 93 3.11E-02 6.23E-03 5.57E-02 1.04E-01 1.93E-04 2.11E-04	273.7 4.3 47 6.16E-02 9.08E-03 1.47E-01 1.93E-01 2.74E-04	340.0 3.9 39 1.63E-02 3.06E-03 7.26E-02 5.44E-02 2.07E-04	158.7 4.1 39 1.04E-02 1.45E-03 8.84E-02 3.44E-02 2.15E-04
USCS Calculated Permer k - intrinsic perme K - hydraulic cond Chemistry EC pH CEC Extracted exchang Na K Ca Mg Al Sr Qualitative Minera	SP ability Paramete ability (Krumbe 1.32E-07 luctivity (after H 1.11E-04 652.0 4.2 41 geable cations i 1.76E-02 5.69E-04 8.58E-02 3.86E-02 2.40E-04 2.67E-04 llogical Composition	ers ein and Monk, 1 1.60E-07 Hubbert's metho 1.34E-04 125.8 5.1 8 in mg/L 2.83E-02 1.78E-02 9.73E-02 1.29E-01 3.00E-04 3.42E-04 ments from XRI	942), cm ² od), m/sec 211.4 5.5 93 3.11E-02 6.23E-03 5.57E-02 1.04E-01 1.93E-04 2.11E-04 D Analysis	273.7 4.3 47 6.16E-02 9.08E-03 1.47E-01 1.93E-01 2.74E-04 5.05E-04	340.0 3.9 39 1.63E-02 3.06E-03 7.26E-02 5.44E-02 2.07E-04 2.30E-04	158.7 4.1 39 1.04E-02 1.45E-03 8.84E-02 3.44E-02 2.15E-04 2.66E-04
USCS Calculated Permer k - intrinsic perme K - hydraulic cond Chemistry EC pH CEC Extracted exchang Na K Ca Mg Al Sr Qualitative Minera	SP ability Parameter ability (Krumber 1.32E-07 ductivity (after H 1.11E-04 652.0 4.2 41 geable cations i 1.76E-02 5.69E-04 8.58E-02 3.86E-02 2.40E-04 2.67E-04 llogical Composity	ers ein and Monk, 1 1.60E-07 Hubbert's metho 1.34E-04 125.8 5.1 8 in mg/L 2.83E-02 1.78E-02 9.73E-02 1.29E-01 3.00E-04 3.42E-04 ments from XRI	942), cm ² od), m/sec 211.4 5.5 93 3.11E-02 6.23E-03 5.57E-02 1.04E-01 1.93E-04 2.11E-04 D Analysis Ka	273.7 4.3 47 6.16E-02 9.08E-03 1.47E-01 1.93E-01 2.74E-04 5.05E-04	340.0 3.9 39 1.63E-02 3.06E-03 7.26E-02 5.44E-02 2.07E-04 2.30E-04	158.7 4.1 39 1.04E-02 1.45E-03 8.84E-02 3.44E-02 2.15E-04 2.66E-04
USCS Calculated Permer k - intrinsic perme K - hydraulic cond Chemistry EC pH CEC Extracted exchang Na K Ca Mg Al Sr Qualitative Minera	SP ability Parameter ability (Krumber 1.32E-07 ductivity (after H 1.11E-04 652.0 4.2 41 geable cations i 1.76E-02 5.69E-04 8.58E-02 3.86E-02 2.40E-04 2.67E-04 llogical Composity	ers ein and Monk, 1 1.60E-07 Hubbert's metho 1.34E-04 125.8 5.1 8 in mg/L 2.83E-02 1.78E-02 9.73E-02 1.29E-01 3.00E-04 3.42E-04 ments from XRI	942), cm ² od), m/sec 211.4 5.5 93 3.11E-02 6.23E-03 5.57E-02 1.04E-01 1.93E-04 2.11E-04 D Analysis Ka	273.7 4.3 47 6.16E-02 9.08E-03 1.47E-01 1.93E-01 2.74E-04 5.05E-04	340.0 3.9 39 1.63E-02 3.06E-03 7.26E-02 5.44E-02 2.07E-04 2.30E-04	158.7 4.1 39 1.04E-02 1.45E-03 8.84E-02 3.44E-02 2.15E-04 2.66E-04
USCS Calculated Permer k - intrinsic perme K - hydraulic cond Chemistry EC pH CEC Extracted exchang Na K Ca Mg Al Sr Qualitative Minera	SP ability Parameter ability (Krumber 1.32E-07 ductivity (after H 1.11E-04 652.0 4.2 41 geable cations i 1.76E-02 5.69E-04 8.58E-02 3.86E-02 2.40E-04 2.67E-04 llogical Composity	ers ein and Monk, 1 1.60E-07 Hubbert's metho 1.34E-04 125.8 5.1 8 in mg/L 2.83E-02 1.78E-02 9.73E-02 1.29E-01 3.00E-04 3.42E-04 nents from XRI	942), cm ² od), m/sec 211.4 5.5 93 3.11E-02 6.23E-03 5.57E-02 1.04E-01 1.93E-04 2.11E-04 D Analysis Ka	273.7 4.3 47 6.16E-02 9.08E-03 1.47E-01 1.93E-01 2.74E-04 5.05E-04 Qtz Ka	340.0 3.9 39 1.63E-02 3.06E-03 7.26E-02 5.44E-02 2.07E-04 2.30E-04 Qtz Ka	158.7 4.1 39 1.04E-02 1.45E-03 8.84E-02 2.15E-04 2.66E-04 Qtz
USCS Calculated Permer k - intrinsic perme K - hydraulic cond Chemistry EC pH CEC Extracted exchang Na K Ca Mg Al Sr Qualitative Minera	SP ability Parameter ability (Krumber 1.32E-07 ductivity (after H 1.11E-04 652.0 4.2 41 geable cations i 1.76E-02 5.69E-04 8.58E-02 3.86E-02 2.40E-04 2.67E-04 llogical Composity	1.60E-07 Hubbert's method 1.34E-04 125.8 5.1 8 in mg/L 2.83E-02 1.78E-02 9.73E-02 1.29E-01 3.00E-04 3.42E-04 hents from XRI	942), cm ² od), m/sec 211.4 5.5 93 3.11E-02 6.23E-03 5.57E-02 1.04E-01 1.93E-04 2.11E-04 D Analysis Ka	273.7 4.3 47 6.16E-02 9.08E-03 1.47E-01 1.93E-01 2.74E-04 5.05E-04 Qtz Ka	340.0 3.9 39 1.63E-02 3.06E-03 7.26E-02 5.44E-02 2.07E-04 2.30E-04 Qtz Ka	158.7 4.1 39 1.04E-02 1.45E-03 8.84E-02 3.44E-02 2.15E-04 2.66E-04
USCS Calculated Permer k - intrinsic perme K - hydraulic cond Chemistry EC pH CEC Extracted exchang Na K Ca Mg Al Sr Qualitative Minera Major	SP ability Parameter ability (Krumber 1.32E-07 ductivity (after H 1.11E-04 652.0 4.2 41 geable cations if 1.76E-02 5.69E-04 8.58E-02 3.86E-02 2.40E-04 2.67E-04 llogical Composition of the composition o	ers ein and Monk, 1 1.60E-07 Hubbert's metho 1.34E-04 125.8 5.1 8 in mg/L 2.83E-02 1.78E-02 9.73E-02 1.29E-01 3.00E-04 3.42E-04 nents from XRI Qtz Ka III-Na Orth	942), cm ² od), m/sec 211.4 5.5 93 3.11E-02 6.23E-03 5.57E-02 1.04E-01 1.93E-04 2.11E-04 D Analysis Ka Qtz	273.7 4.3 47 6.16E-02 9.08E-03 1.47E-01 1.93E-01 2.74E-04 5.05E-04 Qtz Ka	340.0 3.9 39 1.63E-02 3.06E-03 7.26E-02 5.44E-02 2.07E-04 2.30E-04 Qtz Ka	158.7 4.1 39 1.04E-02 1.45E-03 8.84E-02 2.15E-04 2.66E-04 Qtz Ka Goe
USCS Calculated Permer k - intrinsic perme K - hydraulic cond Chemistry EC pH CEC Extracted exchang Na K Ca Mg Al Sr Qualitative Minera	SP ability Parameter ability (Krumber 1.32E-07 ductivity (after H 1.11E-04 652.0 4.2 41 geable cations i 1.76E-02 5.69E-04 8.58E-02 3.86E-02 2.40E-04 2.67E-04 llogical Composity	1.60E-07 Hubbert's method 1.34E-04 125.8 5.1 8 in mg/L 2.83E-02 1.78E-02 9.73E-02 1.29E-01 3.00E-04 3.42E-04 hents from XRI	942), cm ² od), m/sec 211.4 5.5 93 3.11E-02 6.23E-03 5.57E-02 1.04E-01 1.93E-04 2.11E-04 D Analysis Ka Qtz Orth	273.7 4.3 47 6.16E-02 9.08E-03 1.47E-01 1.93E-01 2.74E-04 5.05E-04 Qtz Ka	340.0 3.9 39 1.63E-02 3.06E-03 7.26E-02 5.44E-02 2.07E-04 2.30E-04 Qtz Ka	158.7 4.1 39 1.04E-02 1.45E-03 8.84E-02 3.44E-02 2.15E-04 2.66E-04 Qtz
USCS Calculated Permer k - intrinsic perme K - hydraulic cond Chemistry EC pH CEC Extracted exchang Na K Ca Mg Al Sr Qualitative Minera Major	SP ability Parameter ability (Krumber 1.32E-07 ductivity (after H 1.11E-04 652.0 4.2 41 geable cations if 1.76E-02 5.69E-04 8.58E-02 3.86E-02 2.40E-04 2.67E-04 llogical Composition of the composition o	ers ein and Monk, 1 1.60E-07 Hubbert's metho 1.34E-04 125.8 5.1 8 in mg/L 2.83E-02 1.78E-02 9.73E-02 1.29E-01 3.00E-04 3.42E-04 nents from XRI Qtz Ka III-Na Orth	942), cm ² od), m/sec 211.4 5.5 93 3.11E-02 6.23E-03 5.57E-02 1.04E-01 1.93E-04 2.11E-04 D Analysis Ka Qtz	273.7 4.3 47 6.16E-02 9.08E-03 1.47E-01 1.93E-01 2.74E-04 5.05E-04 Qtz Ka	340.0 3.9 39 1.63E-02 3.06E-03 7.26E-02 5.44E-02 2.07E-04 2.30E-04 Qtz Ka	158.7 4.1 39 1.04E-02 1.45E-03 8.84E-02 2.15E-04 2.66E-04 Qtz Ka Goe

Cemetery:	CARR VII I A M	IEMORIAL PARI	K			
Sample #	L5/3	L6/1	L7/1	L7/2	L11/1	L12/1
Sat'd/vaodse etc	L3/3	LO/ I	L//I	LIIZ	L11/1	L12/1
Sample Date	18/02/97	19/02/97	19/02/97	19/02/97	24/11/97	24/11/97
Depth	n/a	base + sides	bot	side & bot	2.5	3.5
Description	grey clayey		mot yel br - red-		br-yel fine	silty fine sand
Description		yel-br with yel-	-	-	-	-
	sand - sandy	grey mots &	br and grey	It br clayey	sand and silty	and clayey
	clay,	red-br	sandy clay	sand	sand	sand
	mot red-br &	Fe concs	& clayey sand	to sandy clay		
	rootlets	sandy clay				
Colour	10R 4/4 &	10YR6/5-5/6	10YR 5/6 -5/8	10YR6/4	10YR 6/6-5/8	7.5Y 5/5
Grading						
>-2.25						
-2.0						
-1.5						
-1.0					0.0	
-0.5					8.1	
0.0					14.5	
0.5					21.2	
1.0					31.7	
1.5					46.0	
2.0					61.2	
2.5					73.5	
3.0					79.6	
3.5					84.1	
4.0					87.1	
<4.0					98.7	
Field Water Conte	nt - representat	tive %				
	13	36	16	13	17	20
USCS Classification	on					
USCS	SC-CL	CL	SC-CL	SC-CL	SC	SC-CL
Calculated Perme	ability Paramet	ers				
k - intrinsic perme			942), cm ²			
					6.76E-08	
K - hydraulic cond	luctivity (after I	lubbert's meth	od). m/sec			
,					5.66E-05	
Chemistry						
EC	184.8	318.0	364.0	340.0	54.0	103.4
pН	4.9	5.1	5.3	4.2	5.0	6.0
CEC	-5	59	88	56	120	43
Extracted exchange	geable cations	in mg/L				
Na	1.83E-02	1.08E-02	8.95E-03	1.39E-02	4.66E-03	2.44E-02
К	6.95E-04	1.07E-03	3.27E-03	3.02E-02	7.26E-03	1.54E-02
Ca	9.33E-02	1.01E-01	9.25E-02	1.55E-01	8.45E-02	9.25E-02
Mg	4.05E-02	3.43E-02	3.06E-02	4.60E-02	1.79E-02	3.86E-02
Al	1.97E-04	2.83E-04	1.26E-04	2.90E-04	1.39E-04	4.55E-04
Sr	2.85E-04	3.06E-04	2.83E-04	4.40E-04	2.41E-04	2.79E-04
Qualitative Minera						
Major	Qtz	Ka	Ka	Qtz	Ka	Qtz
-	Ka	Qtz	Qtz		Qtz	Ka-s
	Mus2					
Minor		Pyr	Goe		Mus	Goe
		Orth				
		Mus				
Very Minor	Sid	Goe	Sid	Ka	Goe	Ana
,	Pyr?	Sid		Goe	Sid	Sid
<u> </u>	J			Sid	- 1	

Cemetery:	CARR VILLA N	MEMORIAL PAR	K			
Sample #	L12/2	L13/1	L14/1	L14/2	L16/1	L16/2
Sat'd/vaodse etc	LIZIZ	L13/1	L14/1	L14/2	L10/1	L10/2
Sample Date	24/11/97	24/11/97	24/11/97	24/11/97	24/11/97	24/11/97
Depth	4.4	2.5	3.5	5.3	2.7	4.1
Description	yel-br silty	mot yel-br &	grey and red-	red-br & grey	red-br & grey	grey-red sandy
	sand	grey sandy	br mot , clayey	mot clayey	mot clayey	clay to clayey
		clay to	fine sand	med sand	sand to	sand
		clayey sand			sandy clay with	(red-br
		with minor			Feox concs	accumulation
		roots				from above)
Colour	10YR 5/8	10YR 5/6	2.5Y 7/1	10R 6/4	2.5Y 4/8	2.5Y 4/8
Grading			& 4.5Y6/3			
>-2.25						
-2.0						
-1.5						
-1.0	0.0		0.0	0.0		
-0.5	8.9		5.8	2.9		
0.0	16.4		10.9	5.3		
0.5	23.0		15.3	7.5		
1.0	23.0		19.1	11.0		
1.5	40.1		23.4	18.2		
2.0	51.5		31.9	39.5		
2.5	68.5		59.3	71.2		
3.0	85.0		75.3	82.1		
3.5	90.9		82.5	86.8		
4.0	93.9		87.5	90.0		
<4.0	102.0		99.2	98.4		
Field Water Conte	· -					
	14	19	27	17	20	19
USCS Classificati	1					
USCS	SP	SC-CL	SC	SP	SC-CL	SC-CL
Calculated Perme						
k - intrinsic perme	ability (Krumb	ein and Monk, 1	1942), cm²			
	1.34E-07		5.33E-08	1.04E-07		
K - hydraulic cond	ductivity (after	Hubbert's meth	od), m/sec			
	1.12E-04		4.46E-05	8.70E-05		
Chemistry						
EC	179.0	70.8	57.6	45.1	45.6	68.5
pН	6.8	6.2	6.3	6.4	5.5	5.3
CEC	44	17	19	52	45	5
Extracted exchan						-
Na	2.48E-02	7.18E-03	3.31E-02	1.49E-02	5.67E-03	8.85E-03
K	1.66E-03	3.11E-03	2.21E-03	9.30E-04	2.94E-04	1.13E-03
Ca	8.27E-02	1.13E-01	1.28E-01	7.56E-02	7.26E-02	8.63E-02
Mg	3.12E-02	4.37E-02	6.13E-02	2.54E-02	2.14E-02	3.71E-02
Al	1.63E-04	1.80E-04	2.61E-04	1.79E-04	1.46E-04	2.20E-04
Sr	2.62E-04	3.15E-04	3.87E-04	2.37E-04	2.24E-04	2.82E-04
Qualitative Minera				2.07 L-07	2.2-TL-UT	2.021-07
Major	Qtz	Qtz	Qtz	Qtz	III	Qtz
	Ka	Ka	Ka	QLZ	Hal	Ka-s
	ı\a	ı\a	iNa		ı laı	1\a-5
Minor	1	Orth		K ₀	Orth	Muc
IVIIIIOI		Orth		Ka	Orth	Mus
	+	Goe		Goe		
\/	6		0.1	N.C.	12	6: 1
Very Minor	Goe	Pyr	Sid	Mus	Ka	Sid
	Sid	Sid?		Sid	Qtz	
	Mont, Bar				Sid	

Cemetery:	CARR VILLA M	IEMORIAL PARI	K	
Sample #	L16/3	Lsand#1	Lsand#2	Lsand#3
Sat'd/vaodse etc	_10,0		_Jananz	
Sample Date	24/11/97	24/11/97	18/02/97	22/09/97
Depth	5.1	n/a	n/a	n/a
Description	yel-br sandy	white-grey,	white - It grey	lithic quartz
Boodinption	clay	coarse-fine	coarse - fine,	sand
	olay	lithic qtz sand	gtz sand	Saria
		ittiio que sand	qız sanu	
0.1	5\/D 5/0	,	,	,
Colour	5YR 5/6	n/a	n/a	n/a
Grading		0.0	0.0	
>-2.25		0.0	0.0	
-2.0		12.7	8.0	
-1.5		33.5	23.7	0.0
-1.0		49.2	37.8	0.0
-0.5		61.4	52.8	15.8
0.0		70.0	65.2	73.9
0.5		76.5	77.3	95.4
1.0		82.3	85.9	99.1
1.5		86.1	89.4	99.6
2.0		89.3	91.4	
2.5		95.0	95.4	
3.0		97.3	97.1	
3.5		98.4	97.9	
4.0		98.8	98.3	
<4.0		99.5	99.2	
Field Water Conte				
	18	0	2	n/a
USCS Classification	1			
USCS	SC-CL	SP	SP	SW
Calculated Perme				
k - intrinsic perme	ability (Krumbe	in and Monk, 1	942), cm ²	
		1.59E-06	2.48E-06	5.57E-06
K - hydraulic cond	luctivity (after H	lubbert's meth	od), m/sec	
		1.33E-03	2.08E-03	4.67E-03
Chemistry				
EC	39.6	7.5	7.6	
pН	5.8	6.6	7.1	
CEC	31	1	6	
Extracted exchang				
Na	1.06E-02	1.58E-03	1.09E-03	
K	9.08E-04	3.43E-03	3.82E-03	
Ca	9.71E-02	6.50E-02	5.24E-02	
Mg	2.86E-02	1.91E-03	1.80E-03	
Al	2.93E-04	1.46E-04	2.43E-04	
Sr	2.83E-04	2.03E-04	1.66E-04	
Qualitative Minera	logical Compo	nents from XRI) Analysis	
Major	Qtz	Qtz	Qtz	
	Ka			
Minor	Goe	Orth		
	Cal			
Very Minor	Orth		Cal	
	Sid			

Cam-4	OFNITENIAL S		DV			
Cemetery:	CENTENNIAL F			00/0	00/0	00/4
Sample #	C1/1	C1/2	C2/1	C2/2	C2/3	C3/1
Sat'd/vaodse etc	0.4.100.100	0.4/0.0/0.0	00/00/00	00/00/00	00/05/00	0.4./0.0./0.0
Sample Date	21/09/96	21/09/96	20/09/96	20/09/96	20/05/96	21/09/96
Depth	2	3	2	4	4.8	3
Description		stiff, red & yel-	stiff br clay with	-	v. stiff, dense	firm, yel-br
	sandy clay with		grey and yel-br	. , ,	br clay, occ.	sandy clay
	caliche	with	mots	clay	yel sand	
	nodules to 2	caliche	minor caliche		and caliche	
	mm diam.	nodules	and charcoal		nodules	
Colour	5YR 5/6	7.5YR 5/6	7.5YR 4/4	10YR 4/6	7.5 YR 4/4	10YR 4/4
Grading						
>-2.25						
-2.0						
-1.5						
-1.0						
-0.5						
0.0						
0.5						
1.0						
1.5						
2.0						
2.5						
3.0						
3.5						
4.0						
<4.0						
Field Water Conte	nt - representat	ive %				
	2	9	16	13	10	14
USCS Classification	on					
USCS Classification	on CL	CL	CL-CH	CL-CH	CL	CL
USCS	CL		CL-CH		CL	CL
USCS Calculated Perme	CL ability Paramete	ers			CL	CL
USCS	CL ability Paramete	ers			CL	CL
USCS Calculated Permer	CL ability Paramete ability (Krumbe	ers ein and Monk, 1	942), cm²		CL	CL
USCS Calculated Perme	CL ability Paramete ability (Krumbe	ers ein and Monk, 1	942), cm²		CL	CL
USCS Calculated Permer k - intrinsic perme K - hydraulic cond	CL ability Paramete ability (Krumbe	ers ein and Monk, 1	942), cm²		CL	CL
USCS Calculated Permer k - intrinsic perme K - hydraulic cond	CL ability Paramete ability (Krumbe	ers ein and Monk, 1 lubbert's metho	942), cm ² od), m/sec	CL-CH		
USCS Calculated Permer k - intrinsic perme K - hydraulic cond Chemistry EC	CL ability Paramete ability (Krumbe luctivity (after H	ers ein and Monk, 1 lubbert's metho 567	942), cm ² od), m/sec	CL-CH	448	589
USCS Calculated Permer k - intrinsic perme K - hydraulic cond Chemistry EC pH	CL ability Paramete ability (Krumbe luctivity (after H	ers ein and Monk, 1 dubbert's metho	942), cm ² od), m/sec 743 6.8	CL-CH 378 8.4	448 8.7	589 8.0
USCS Calculated Permer k - intrinsic permer K - hydraulic cond Chemistry EC pH CEC	CL ability Paramete ability (Krumbe luctivity (after H	ers ein and Monk, 1 lubbert's metho 567 7.1 58	942), cm ² od), m/sec	CL-CH	448	589
USCS Calculated Permer k - intrinsic permer K - hydraulic cond Chemistry EC pH CEC Extracted exchange	CL ability Paramete ability (Krumbe luctivity (after H 1098 9.0 20 geable cations i	ers ein and Monk, 1 dubbert's metho 567 7.1 58 n mg/L	942), cm ² od), m/sec 743 6.8 54	378 8.4 17	448 8.7 50	589 8.0 6
USCS Calculated Permer k - intrinsic permer K - hydraulic cond Chemistry EC pH CEC Extracted exchange	CL ability Paramete ability (Krumbe luctivity (after F 1098 9.0 20 geable cations i 1.71E-02	ein and Monk, 1 Hubbert's metho 567 7.1 58 n mg/L 9.22E-03	942), cm ² od), m/sec 743 6.8 54 2.32E-02	378 8.4 17	448 8.7 50 3.67E-02	589 8.0 6
USCS Calculated Permer k - intrinsic permer K - hydraulic cond Chemistry EC pH CEC Extracted exchange Na K	CL ability Paramete ability (Krumbe luctivity (after H 1098 9.0 20 geable cations i 1.71E-02 2.29E-02	567 7.1 58 n mg/L 9.22E-03 1.90E-02	942), cm ² od), m/sec 743 6.8 54 2.32E-02 9.82E-03	378 8.4 17 1.54E-02 4.84E-03	448 8.7 50 3.67E-02 1.61E-02	589 8.0 6 3.07E-02 1.80E-02
USCS Calculated Permer k - intrinsic permer K - hydraulic cond Chemistry EC pH CEC Extracted exchange Na K Ca	CL ability Paramete ability (Krumbe luctivity (after F 1098 9.0 20 geable cations i 1.71E-02 2.29E-02 2.75E-01	567 7.1 58 n mg/L 9.22E-03 1.90E-02 3.12E-01	942), cm ² od), m/sec 743 6.8 54 2.32E-02 9.82E-03 2.43E-01	378 8.4 17 1.54E-02 4.84E-03 1.11E-01	448 8.7 50 3.67E-02 1.61E-02 4.31E-01	589 8.0 6 3.07E-02 1.80E-02 2.23E-01
USCS Calculated Permer k - intrinsic permer K - hydraulic cond Chemistry EC pH CEC Extracted exchange Na K Ca Mg	CL ability Paramete ability (Krumbe luctivity (after F 1098 9.0 20 geable cations i 1.71E-02 2.29E-02 2.75E-01 9.25E-02	567 7.1 58 n mg/L 9.22E-03 1.90E-02 3.12E-01 1.29E-01	942), cm ² od), m/sec 743 6.8 54 2.32E-02 9.82E-03 2.43E-01 1.04E-01	378 8.4 17 1.54E-02 4.84E-03 1.11E-01 6.63E-02	448 8.7 50 3.67E-02 1.61E-02 4.31E-01 1.45E-01	589 8.0 6 3.07E-02 1.80E-02 2.23E-01 1.02E-01
USCS Calculated Permer k - intrinsic permer K - hydraulic cond Chemistry EC pH CEC Extracted exchange Na K Ca Mg Al	CL ability Paramete ability (Krumbe luctivity (after F 1098 9.0 20 geable cations i 1.71E-02 2.29E-02 2.75E-01 9.25E-02 4.08E-04	567 7.1 58 n mg/L 9.22E-03 1.90E-02 3.12E-01 1.29E-01 1.88E-04	942), cm ² od), m/sec 743 6.8 54 2.32E-02 9.82E-03 2.43E-01 1.04E-01 1.58E-04	378 8.4 17 1.54E-02 4.84E-03 1.11E-01 6.63E-02 2.21E-04	448 8.7 50 3.67E-02 1.61E-02 4.31E-01 1.45E-01 6.56E-04	589 8.0 6 3.07E-02 1.80E-02 2.23E-01 1.02E-01 2.65E-04
USCS Calculated Permer k - intrinsic permer K - hydraulic cond Chemistry EC pH CEC Extracted exchange Na K Ca Mg Al Sr	CL ability Paramete ability (Krumbe luctivity (after F 1098 9.0 20 geable cations i 1.71E-02 2.29E-02 2.75E-01 9.25E-02 4.08E-04 7.58E-04	567 7.1 58 n mg/L 9.22E-03 1.90E-02 3.12E-01 1.29E-01 1.88E-04 1.01E-03	942), cm ² od), m/sec 743 6.8 54 2.32E-02 9.82E-03 2.43E-01 1.04E-01 1.58E-04 8.40E-04	378 8.4 17 1.54E-02 4.84E-03 1.11E-01 6.63E-02	448 8.7 50 3.67E-02 1.61E-02 4.31E-01 1.45E-01	589 8.0 6 3.07E-02 1.80E-02 2.23E-01 1.02E-01
USCS Calculated Permer k - intrinsic permer K - hydraulic cond Chemistry EC pH CEC Extracted exchang Na K Ca Mg Al Sr Qualitative Minera	CL ability Paramete ability (Krumbe luctivity (after F 1098 9.0 20 geable cations i 1.71E-02 2.29E-02 2.75E-01 9.25E-02 4.08E-04 7.58E-04 logical Compon	567 7.1 58 n mg/L 9.22E-03 1.90E-02 3.12E-01 1.29E-01 1.88E-04 1.01E-03 nents from XRI	942), cm ² od), m/sec 743 6.8 54 2.32E-02 9.82E-03 2.43E-01 1.04E-01 1.58E-04 8.40E-04 D Analysis	378 8.4 17 1.54E-02 4.84E-03 1.11E-01 6.63E-02 2.21E-04 3.99E-04	448 8.7 50 3.67E-02 1.61E-02 4.31E-01 1.45E-01 6.56E-04 1.01E-03	589 8.0 6 3.07E-02 1.80E-02 2.23E-01 1.02E-01 2.65E-04 7.57E-04
USCS Calculated Permer k - intrinsic permer K - hydraulic cond Chemistry EC pH CEC Extracted exchang Na K Ca Mg Al Sr	CL ability Paramete ability (Krumbe luctivity (after F 1098 9.0 20 geable cations i 1.71E-02 2.29E-02 2.75E-01 9.25E-02 4.08E-04 7.58E-04 logical Compon	567 7.1 58 n mg/L 9.22E-03 1.90E-02 3.12E-01 1.29E-01 1.88E-04 1.01E-03	942), cm ² od), m/sec 743 6.8 54 2.32E-02 9.82E-03 2.43E-01 1.04E-01 1.58E-04 8.40E-04 O Analysis Qtz	378 8.4 17 1.54E-02 4.84E-03 1.11E-01 6.63E-02 2.21E-04	448 8.7 50 3.67E-02 1.61E-02 4.31E-01 1.45E-01 6.56E-04	589 8.0 6 3.07E-02 1.80E-02 2.23E-01 1.02E-01 2.65E-04 7.57E-04
USCS Calculated Permer k - intrinsic permer K - hydraulic cond Chemistry EC pH CEC Extracted exchang Na K Ca Mg Al Sr Qualitative Minera	CL ability Paramete ability (Krumbe luctivity (after F 1098 9.0 20 geable cations i 1.71E-02 2.29E-02 2.75E-01 9.25E-02 4.08E-04 7.58E-04 logical Compon	567 7.1 58 n mg/L 9.22E-03 1.90E-02 3.12E-01 1.29E-01 1.88E-04 1.01E-03 nents from XRI	942), cm ² od), m/sec 743 6.8 54 2.32E-02 9.82E-03 2.43E-01 1.04E-01 1.58E-04 8.40E-04 D Analysis	378 8.4 17 1.54E-02 4.84E-03 1.11E-01 6.63E-02 2.21E-04 3.99E-04	448 8.7 50 3.67E-02 1.61E-02 4.31E-01 1.45E-01 6.56E-04 1.01E-03	589 8.0 6 3.07E-02 1.80E-02 2.23E-01 1.02E-01 2.65E-04 7.57E-04
USCS Calculated Permer k - intrinsic permer K - hydraulic cond Chemistry EC pH CEC Extracted exchang Na K Ca Mg Al Sr Qualitative Minera	CL ability Paramete ability (Krumbe luctivity (after F 1098 9.0 20 geable cations i 1.71E-02 2.29E-02 2.75E-01 9.25E-02 4.08E-04 7.58E-04 logical Compon	567 7.1 58 n mg/L 9.22E-03 1.90E-02 3.12E-01 1.29E-01 1.88E-04 1.01E-03 nents from XRI	942), cm ² od), m/sec 743 6.8 54 2.32E-02 9.82E-03 2.43E-01 1.04E-01 1.58E-04 8.40E-04 O Analysis Qtz Ka	378 8.4 17 1.54E-02 4.84E-03 1.11E-01 6.63E-02 2.21E-04 3.99E-04	448 8.7 50 3.67E-02 1.61E-02 4.31E-01 1.45E-01 6.56E-04 1.01E-03 Qtz	589 8.0 6 3.07E-02 1.80E-02 2.23E-01 1.02E-01 2.65E-04 7.57E-04 Qtz Cal
USCS Calculated Permer k - intrinsic permer K - hydraulic cond Chemistry EC pH CEC Extracted exchang Na K Ca Mg Al Sr Qualitative Minera	CL ability Paramete ability (Krumbe luctivity (after F 1098 9.0 20 geable cations i 1.71E-02 2.29E-02 2.75E-01 9.25E-02 4.08E-04 7.58E-04 logical Compon Qtz Cal Ka	567 7.1 58 n mg/L 9.22E-03 1.90E-02 3.12E-01 1.29E-01 1.88E-04 1.01E-03 nents from XRI Qtz Ka	942), cm ² od), m/sec 743 6.8 54 2.32E-02 9.82E-03 2.43E-01 1.04E-01 1.58E-04 8.40E-04 O Analysis Qtz Ka	378 8.4 17 1.54E-02 4.84E-03 1.11E-01 6.63E-02 2.21E-04 3.99E-04	448 8.7 50 3.67E-02 1.61E-02 4.31E-01 1.45E-01 6.56E-04 1.01E-03 Qtz	589 8.0 6 3.07E-02 1.80E-02 2.23E-01 1.02E-01 2.65E-04 7.57E-04 Qtz Cal
USCS Calculated Permer k - intrinsic permer K - hydraulic cond Chemistry EC pH CEC Extracted exchang Na K Ca Mg Al Sr Qualitative Minera	CL ability Paramete ability (Krumbe luctivity (after F 1098 9.0 20 geable cations i 1.71E-02 2.29E-02 2.75E-01 9.25E-02 4.08E-04 7.58E-04 logical Compon Qtz Cal Ka Mus	567 7.1 58 n mg/L 9.22E-03 1.90E-02 3.12E-01 1.29E-01 1.88E-04 1.01E-03 nents from XRI Qtz Ka Cal	942), cm ² od), m/sec 743 6.8 54 2.32E-02 9.82E-03 2.43E-01 1.04E-01 1.58E-04 8.40E-04 O Analysis Qtz Ka III Orth	378 8.4 17 1.54E-02 4.84E-03 1.11E-01 6.63E-02 2.21E-04 3.99E-04	448 8.7 50 3.67E-02 1.61E-02 4.31E-01 1.45E-01 6.56E-04 1.01E-03 Qtz	589 8.0 6 3.07E-02 1.80E-02 2.23E-01 1.02E-01 2.65E-04 7.57E-04 Qtz Cal
USCS Calculated Permer k - intrinsic permer K - hydraulic cond Chemistry EC pH CEC Extracted exchang Na K Ca Mg Al Sr Qualitative Minera Major	CL ability Paramete ability (Krumbe luctivity (after F 1098 9.0 20 geable cations i 1.71E-02 2.29E-02 2.75E-01 9.25E-02 4.08E-04 7.58E-04 logical Compor Qtz Cal Ka Mus Alb	567 7.1 58 n mg/L 9.22E-03 1.90E-02 3.12E-01 1.29E-01 1.88E-04 1.01E-03 nents from XRI Qtz Ka	942), cm ² od), m/sec 743 6.8 54 2.32E-02 9.82E-03 2.43E-01 1.04E-01 1.58E-04 8.40E-04 O Analysis Qtz Ka	378 8.4 17 1.54E-02 4.84E-03 1.11E-01 6.63E-02 2.21E-04 3.99E-04 Qtz Anth	448 8.7 50 3.67E-02 1.61E-02 4.31E-01 1.45E-01 6.56E-04 1.01E-03 Qtz	589 8.0 6 3.07E-02 1.80E-02 2.23E-01 1.02E-01 2.65E-04 7.57E-04 Qtz Cal
USCS Calculated Permer k - intrinsic permer K - hydraulic cond Chemistry EC pH CEC Extracted exchang Na K Ca Mg Al Sr Qualitative Minera	CL ability Paramete ability (Krumbe luctivity (after F 1098 9.0 20 geable cations i 1.71E-02 2.29E-02 2.75E-01 9.25E-02 4.08E-04 7.58E-04 logical Compon Qtz Cal Ka Mus	567 7.1 58 n mg/L 9.22E-03 1.90E-02 3.12E-01 1.29E-01 1.88E-04 1.01E-03 nents from XRI Qtz Ka Cal	942), cm ² od), m/sec 743 6.8 54 2.32E-02 9.82E-03 2.43E-01 1.04E-01 1.58E-04 8.40E-04 O Analysis Qtz Ka III Orth	378 8.4 17 1.54E-02 4.84E-03 1.11E-01 6.63E-02 2.21E-04 3.99E-04 Qtz Anth	448 8.7 50 3.67E-02 1.61E-02 4.31E-01 1.45E-01 6.56E-04 1.01E-03 Qtz Ka Mus Orth	589 8.0 6 3.07E-02 1.80E-02 2.23E-01 1.02E-01 2.65E-04 7.57E-04 Qtz Cal
USCS Calculated Permer k - intrinsic permer K - hydraulic cond Chemistry EC pH CEC Extracted exchang Na K Ca Mg Al Sr Qualitative Minera Major	CL ability Paramete ability (Krumbe luctivity (after F 1098 9.0 20 geable cations i 1.71E-02 2.29E-02 2.75E-01 9.25E-02 4.08E-04 7.58E-04 logical Compor Qtz Cal Ka Mus Alb	567 7.1 58 n mg/L 9.22E-03 1.90E-02 3.12E-01 1.29E-01 1.88E-04 1.01E-03 nents from XRI Qtz Ka Cal	942), cm ² od), m/sec 743 6.8 54 2.32E-02 9.82E-03 2.43E-01 1.04E-01 1.58E-04 8.40E-04 O Analysis Qtz Ka III Orth	378 8.4 17 1.54E-02 4.84E-03 1.11E-01 6.63E-02 2.21E-04 3.99E-04 Qtz Anth	448 8.7 50 3.67E-02 1.61E-02 4.31E-01 1.45E-01 6.56E-04 1.01E-03 Qtz	589 8.0 6 3.07E-02 1.80E-02 2.23E-01 1.02E-01 2.65E-04 7.57E-04 Qtz Cal

Cemetery:	CENTENNIAL	PARK CEMETE	RY			
Sample #	C3/2	C4/1	C4/2	C5/1	C5/2	C5/3
Sat'd/vaodse etc	03/2	04/1	04/2	03/1	03/2	03/3
Sample Date	21/09/97	21/09/96	21/09/96	20/90/96	20/09/96	20/09/96
		9.5		20/90/96	20/09/96	
Depth	2.4		11			6
Description	red-br sandy	firm-stiff yel-br	soft yel silty	stiff, grey-br	stiff, firm yel-	stiff yel-grey
	clay, claiche	silty clay	clay with grey	pebbly sandy	grye mot	sandy clay
	nodules		mot	clay	sandy clay	
		with caliche				
		nodules				
Colour	7.5YR 6/4	10YR 6/6	2.5Y 6/6	10YR 4/3	2.5Y 6/3	2.5Y 6/2
Grading						
>-2.25						
-2.0						
-1.5						
-1.0						
-0.5						
0.0			+		+	
0.5 1.0			-		+	
1.5						
2.0						
2.5						
3.0						
3.5						
4.0						
<4.0						
Field Water Conte	nt - representa					
	4.5	4.4	22	40	47	40
	15	14	23	13	17	13
USCS Classification	-		23	13	17	13
USCS	on CL	CL-CH	CL-CH	CL-CH	CL-CH	CI-CH
	on CL	CL-CH				
USCS	on CL ability Paramet	CL-CH	CL-CH			
USCS Calculated Perme	on CL ability Paramet	CL-CH	CL-CH			
USCS Calculated Perme k - intrinsic perme	on CL ability Paramet	CL-CH ters ein and Monk, 1	CL-CH 942), cm ²			
USCS Calculated Perme	on CL ability Paramet	CL-CH ters ein and Monk, 1	CL-CH 942), cm ²			
USCS Calculated Perme k - intrinsic perme K - hydraulic cond	on CL ability Paramet	CL-CH ters ein and Monk, 1	CL-CH 942), cm ²			
USCS Calculated Perme k - intrinsic perme K - hydraulic cond	on CL ability Paramet eability (Krumbe	CL-CH eers ein and Monk, 1 Hubbert's meth	CL-CH 1942), cm ² od), m/sec	CL-CH	CL-CH	CI-CH
USCS Calculated Perme k - intrinsic perme K - hydraulic cond Chemistry EC	on CL ability Paramet eability (Krumbe ductivity (after I	CL-CH ters ein and Monk, 1 Hubbert's meth	CL-CH 1942), cm ² od), m/sec	CL-CH	CL-CH	CI-CH 9.99
USCS Calculated Perme k - intrinsic perme K - hydraulic cond Chemistry EC pH	on CL ability Paramet ability (Krumber ductivity (after I 368 8.5	CL-CH eers ein and Monk, 1 Hubbert's meth	CL-CH 1942), cm ² od), m/sec 953 8.1	785 8.5	CL-CH 833 8.1	9.99 8.8
USCS Calculated Perme k - intrinsic perme K - hydraulic cond Chemistry EC pH CEC	CL ability Paramet ability (Krumbo ductivity (after I 368 8.5 60	CL-CH ters ein and Monk, 1 Hubbert's meth 623 8.6	CL-CH 1942), cm ² od), m/sec	CL-CH	CL-CH	CI-CH 9.99
USCS Calculated Perme k - intrinsic perme K - hydraulic cond Chemistry EC pH CEC Extracted exchange	cc CL ability Paramet cability (Krumbo ductivity (after I 368 8.5 60 geable cations	CL-CH ters ein and Monk, 1 Hubbert's meth 623 8.6	CL-CH 1942), cm ² od), m/sec 953 8.1 3	785 8.5 9	833 8.1 9	9.99 8.8 12
USCS Calculated Perme k - intrinsic perme K - hydraulic cond Chemistry EC pH CEC Extracted exchange	on CL ability Paramet ability (Krumber ductivity (after I 368 8.5 60 geable cations 2.26E-02	CL-CH ters ein and Monk, 1 Hubbert's meth 623 8.6	942), cm ² od), m/sec 953 8.1 3 2.93E-02	785 8.5 9	833 8.1 9	9.99 8.8 12 3.14E-02
USCS Calculated Perme k - intrinsic perme K - hydraulic cond Chemistry EC pH CEC Extracted exchange	con CL ability Paramet ability (Krumber ductivity (after I 368 8.5 60 geable cations 2.26E-02 8.60E-03	CL-CH ters ein and Monk, 1 Hubbert's meth 623 8.6 in mg/L	942), cm ² od), m/sec 953 8.1 3 2.93E-02 1.22E-02	785 8.5 9 4.07E-02 1.31E-02	833 8.1 9 3.25E-02 7.43E-03	9.99 8.8 12 3.14E-02 8.45E-03
USCS Calculated Perme k - intrinsic perme K - hydraulic cond Chemistry EC pH CEC Extracted exchange Na K Ca	CL ability Paramet ability (Krumber ductivity (after I 368 8.5 60 geable cations 2.26E-02 8.60E-03 2.26E-01	CL-CH ters ein and Monk, 1 Hubbert's meth 623 8.6 in mg/L 2.69E-04	942), cm ² od), m/sec 953 8.1 3 2.93E-02 1.22E-02 2.22E-01	785 8.5 9 4.07E-02 1.31E-02 2.79E-01	833 8.1 9 3.25E-02 7.43E-03 1.60E-01	9.99 8.8 12 3.14E-02 8.45E-03 1.64E-01
USCS Calculated Perme k - intrinsic perme K - hydraulic cond Chemistry EC pH CEC Extracted exchange Na K Ca Mg	CL ability Paramet ability (Krumber ductivity (after I 368 8.5 60 geable cations 2.26E-02 8.60E-03 2.26E-01 1.20E-01	CL-CH ters ein and Monk, 1 Hubbert's meth 623 8.6 in mg/L 2.69E-04 3.07E-04	953 8.1 3 2.93E-02 1.22E-02 2.22E-01 1.30E-01	785 8.5 9 4.07E-02 1.31E-02 2.79E-01 1.64E-01	833 8.1 9 3.25E-02 7.43E-03 1.60E-01 1.05E-01	9.99 8.8 12 3.14E-02 8.45E-03 1.64E-01 1.02E-01
USCS Calculated Perme k - intrinsic perme K - hydraulic cond Chemistry EC pH CEC Extracted exchang Na K Ca Mg Al	CL ability Paramet ability (Krumber ductivity (after I 368 8.5 60 geable cations 2.26E-02 8.60E-03 2.26E-01 1.20E-01 1.16E-04	CL-CH ters ein and Monk, 1 Hubbert's meth 623 8.6 in mg/L 2.69E-04	953 8.1 3 2.93E-02 1.22E-02 2.22E-01 1.30E-01 2.56E-04	785 8.5 9 4.07E-02 1.31E-02 2.79E-01 1.64E-01 3.02E-04	833 8.1 9 3.25E-02 7.43E-03 1.60E-01 1.05E-01 2.26E-04	9.99 8.8 12 3.14E-02 8.45E-03 1.64E-01 1.02E-01 2.55E-04
USCS Calculated Perme k - intrinsic perme K - hydraulic cond Chemistry EC pH CEC Extracted exchang Na K Ca Mg Al Sr	CL ability Paramet ability (Krumber ductivity (after I 368 8.5 60 geable cations 2.26E-02 8.60E-03 2.26E-01 1.20E-01 1.16E-04 1.02E-03	CL-CH ters ein and Monk, 1 Hubbert's meth 623 8.6 in mg/L 2.69E-04 3.07E-04 2.43E-04	953 8.1 3 2.93E-02 1.22E-02 2.22E-01 1.30E-01 2.56E-04 7.41E-04	785 8.5 9 4.07E-02 1.31E-02 2.79E-01 1.64E-01	833 8.1 9 3.25E-02 7.43E-03 1.60E-01 1.05E-01	9.99 8.8 12 3.14E-02 8.45E-03 1.64E-01 1.02E-01
USCS Calculated Perme k - intrinsic perme K - hydraulic cond Chemistry EC pH CEC Extracted exchang Na K Ca Mg Al Sr Qualitative Minera	con CL ability Paramet cability (Krumbe ductivity (after I 368 8.5 60 geable cations 2.26E-02 8.60E-03 2.26E-01 1.20E-01 1.16E-04 1.02E-03 alogical Compo	CL-CH ters ein and Monk, 1 Hubbert's meth 623 8.6 in mg/L 2.69E-04 3.07E-04 2.43E-04 nents from XRI	942), cm ² 953 8.1 3 2.93E-02 1.22E-02 2.22E-01 1.30E-01 2.56E-04 7.41E-04 Analysis	785 8.5 9 4.07E-02 1.31E-02 2.79E-01 1.64E-01 3.02E-04 1.27E-03	833 8.1 9 3.25E-02 7.43E-03 1.60E-01 1.05E-01 2.26E-04 6.81E-04	9.99 8.8 12 3.14E-02 8.45E-03 1.64E-01 1.02E-01 2.55E-04 6.63E-04
USCS Calculated Perme k - intrinsic perme K - hydraulic cond Chemistry EC pH CEC Extracted exchang Na K Ca Mg Al Sr	CL ability Paramet ability (Krumbe ductivity (after I 368 8.5 60 geable cations 2.26E-02 8.60E-03 2.26E-01 1.20E-01 1.16E-04 1.02E-03 alogical Compo	CL-CH ters ein and Monk, 1 Hubbert's meth 623 8.6 in mg/L 2.69E-04 3.07E-04 2.43E-04 nents from XRI	942), cm ² 953 8.1 3 2.93E-02 1.22E-02 2.22E-01 1.30E-01 2.56E-04 7.41E-04 D Analysis	785 8.5 9 4.07E-02 1.31E-02 2.79E-01 1.64E-01 3.02E-04	833 8.1 9 3.25E-02 7.43E-03 1.60E-01 1.05E-01 2.26E-04	9.99 8.8 12 3.14E-02 8.45E-03 1.64E-01 1.02E-01 2.55E-04
USCS Calculated Perme k - intrinsic perme K - hydraulic cond Chemistry EC pH CEC Extracted exchang Na K Ca Mg Al Sr Qualitative Minera	con CL ability Paramet cability (Krumbe ductivity (after I 368 8.5 60 geable cations 2.26E-02 8.60E-03 2.26E-01 1.20E-01 1.16E-04 1.02E-03 alogical Compo	CL-CH ters ein and Monk, 1 Hubbert's meth 623 8.6 in mg/L 2.69E-04 3.07E-04 2.43E-04 nents from XRI	942), cm ² 953 8.1 3 2.93E-02 1.22E-02 2.22E-01 1.30E-01 2.56E-04 7.41E-04 Analysis	785 8.5 9 4.07E-02 1.31E-02 2.79E-01 1.64E-01 3.02E-04 1.27E-03	833 8.1 9 3.25E-02 7.43E-03 1.60E-01 1.05E-01 2.26E-04 6.81E-04	9.99 8.8 12 3.14E-02 8.45E-03 1.64E-01 1.02E-01 2.55E-04 6.63E-04
USCS Calculated Perme k - intrinsic perme K - hydraulic cond Chemistry EC pH CEC Extracted exchang Na K Ca Mg Al Sr Qualitative Minera	CL ability Paramet ability (Krumber ductivity (after I 368 8.5 60 geable cations 2.26E-02 8.60E-03 2.26E-01 1.20E-01 1.16E-04 1.02E-03 alogical Compo	CL-CH ters ein and Monk, 1 Hubbert's meth 623 8.6 in mg/L 2.69E-04 3.07E-04 2.43E-04 nents from XRI Qtz	CL-CH 1942), cm ² od), m/sec 953 8.1 3 2.93E-02 1.22E-02 2.22E-01 1.30E-01 2.56E-04 7.41E-04 D Analysis III Qtz	785 8.5 9 4.07E-02 1.31E-02 2.79E-01 1.64E-01 3.02E-04 1.27E-03	833 8.1 9 3.25E-02 7.43E-03 1.60E-01 1.05E-01 2.26E-04 6.81E-04	9.99 8.8 12 3.14E-02 8.45E-03 1.64E-01 1.02E-01 2.55E-04 6.63E-04
USCS Calculated Perme k - intrinsic perme K - hydraulic cond Chemistry EC pH CEC Extracted exchang Na K Ca Mg Al Sr Qualitative Minera	CL ability Paramet ability (Krumbe ductivity (after I 368 8.5 60 geable cations 2.26E-02 8.60E-03 2.26E-01 1.20E-01 1.16E-04 1.02E-03 alogical Compo	CL-CH ters ein and Monk, 1 Hubbert's meth 623 8.6 in mg/L 2.69E-04 3.07E-04 2.43E-04 nents from XRI Qtz III Ka	942), cm ² 942), cm ² od), m/sec 953 8.1 3 2.93E-02 1.22E-02 2.22E-01 1.30E-01 2.56E-04 7.41E-04 D Analysis III Qtz Mus	785 8.5 9 4.07E-02 1.31E-02 2.79E-01 1.64E-01 3.02E-04 1.27E-03	833 8.1 9 3.25E-02 7.43E-03 1.60E-01 1.05E-01 2.26E-04 6.81E-04	9.99 8.8 12 3.14E-02 8.45E-03 1.64E-01 1.02E-01 2.55E-04 6.63E-04
USCS Calculated Perme k - intrinsic perme K - hydraulic cond Chemistry EC pH CEC Extracted exchang Na K Ca Mg Al Sr Qualitative Minera	CL ability Paramet ability (Krumber ductivity (after I 368 8.5 60 geable cations 2.26E-02 8.60E-03 2.26E-01 1.20E-01 1.16E-04 1.02E-03 alogical Compo	CL-CH ters ein and Monk, 1 Hubbert's meth 623 8.6 in mg/L 2.69E-04 3.07E-04 2.43E-04 nents from XRI Qtz III Ka Orth	942), cm ² 953 8.1 3 2.93E-02 1.22E-02 2.22E-01 1.30E-01 2.56E-04 7.41E-04 D Analysis III Qtz Mus Anth	785 8.5 9 4.07E-02 1.31E-02 2.79E-01 1.64E-01 3.02E-04 1.27E-03 Qtz	833 8.1 9 3.25E-02 7.43E-03 1.60E-01 1.05E-01 2.26E-04 6.81E-04 Qtz	9.99 8.8 12 3.14E-02 8.45E-03 1.64E-01 1.02E-01 2.55E-04 6.63E-04
USCS Calculated Perme k - intrinsic perme K - hydraulic cond Chemistry EC pH CEC Extracted exchang Na K Ca Mg Al Sr Qualitative Minera Major	CL ability Paramet bability (Krumbo ductivity (after I 368 8.5 60 geable cations 2.26E-02 8.60E-03 2.26E-01 1.20E-01 1.16E-04 1.02E-03 alogical Compo Qtz Mus Anth	CL-CH ters ein and Monk, 1 Hubbert's meth 623 8.6 in mg/L 2.69E-04 3.07E-04 2.43E-04 nents from XRI Qtz III Ka Orth Mus	942), cm ² 942), cm ² od), m/sec 953 8.1 3 2.93E-02 1.22E-02 2.22E-01 1.30E-01 2.56E-04 7.41E-04 D Analysis III Qtz Mus	785 8.5 9 4.07E-02 1.31E-02 2.79E-01 1.64E-01 3.02E-04 1.27E-03	833 8.1 9 3.25E-02 7.43E-03 1.60E-01 1.05E-01 2.26E-04 6.81E-04 Qtz Ka Mont III	9.99 8.8 12 3.14E-02 8.45E-03 1.64E-01 1.02E-01 2.55E-04 6.63E-04
USCS Calculated Perme k - intrinsic perme K - hydraulic cond Chemistry EC pH CEC Extracted exchang Na K Ca Mg Al Sr Qualitative Minera	CL ability Paramet ability (Krumber ductivity (after I 368 8.5 60 geable cations 2.26E-02 8.60E-03 2.26E-01 1.20E-01 1.16E-04 1.02E-03 alogical Compo	CL-CH ters ein and Monk, 1 Hubbert's meth 623 8.6 in mg/L 2.69E-04 3.07E-04 2.43E-04 nents from XRI Qtz III Ka Orth Mus Anth	942), cm ² 953 8.1 3 2.93E-02 1.22E-02 2.22E-01 1.30E-01 2.56E-04 7.41E-04 D Analysis III Qtz Mus Anth	785 8.5 9 4.07E-02 1.31E-02 2.79E-01 1.64E-01 3.02E-04 1.27E-03 Qtz	833 8.1 9 3.25E-02 7.43E-03 1.60E-01 1.05E-01 2.26E-04 6.81E-04 Qtz	9.99 8.8 12 3.14E-02 8.45E-03 1.64E-01 1.02E-01 2.55E-04 6.63E-04
USCS Calculated Perme k - intrinsic perme K - hydraulic cond Chemistry EC pH CEC Extracted exchang Na K Ca Mg Al Sr Qualitative Minera Major	CL ability Paramet bability (Krumbo ductivity (after I 368 8.5 60 geable cations 2.26E-02 8.60E-03 2.26E-01 1.20E-01 1.16E-04 1.02E-03 alogical Compo Qtz Mus Anth	CL-CH ters ein and Monk, 1 Hubbert's meth 623 8.6 in mg/L 2.69E-04 3.07E-04 2.43E-04 nents from XRI Qtz III Ka Orth Mus	942), cm ² 953 8.1 3 2.93E-02 1.22E-02 2.22E-01 1.30E-01 2.56E-04 7.41E-04 D Analysis III Qtz Mus Anth	785 8.5 9 4.07E-02 1.31E-02 2.79E-01 1.64E-01 3.02E-04 1.27E-03 Qtz	833 8.1 9 3.25E-02 7.43E-03 1.60E-01 1.05E-01 2.26E-04 6.81E-04 Qtz Ka Mont III	9.99 8.8 12 3.14E-02 8.45E-03 1.64E-01 1.02E-01 2.55E-04 6.63E-04
USCS Calculated Perme k - intrinsic perme K - hydraulic cond Chemistry EC pH CEC Extracted exchang Na K Ca Mg Al Sr Qualitative Minera Major	CL ability Paramet bability (Krumbo ductivity (after I 368 8.5 60 geable cations 2.26E-02 8.60E-03 2.26E-01 1.20E-01 1.16E-04 1.02E-03 alogical Compo Qtz Mus Anth	CL-CH ters ein and Monk, 1 Hubbert's meth 623 8.6 in mg/L 2.69E-04 3.07E-04 2.43E-04 nents from XRI Qtz III Ka Orth Mus Anth	942), cm ² 953 8.1 3 2.93E-02 1.22E-02 2.22E-01 1.30E-01 2.56E-04 7.41E-04 D Analysis III Qtz Mus Anth	785 8.5 9 4.07E-02 1.31E-02 2.79E-01 1.64E-01 3.02E-04 1.27E-03 Qtz	833 8.1 9 3.25E-02 7.43E-03 1.60E-01 1.05E-01 2.26E-04 6.81E-04 Qtz Ka Mont III	9.99 8.8 12 3.14E-02 8.45E-03 1.64E-01 1.02E-01 2.55E-04 6.63E-04

Cometer	CENTENNIAL	DADK CEMETE	DV			
Cemetery:	CENTENNIAL F			07/4	00/4	00/0
Sample #	C6/1	C6/2	C6/3	C7/1	C8/1	C8/2
Sat'd/vaodse etc	24/04/07	24/00/00	24/00/07	Xua	24/00/07	Xua
Sample Date	21/04/97	21/09/96	21/09/97	21/09/97	21/09/97	21/09/97
Depth	1.5	6.5	3.9	5	2.2	4.1
Description	red & yel-br	stiff br & grey	red-br pebbly	firm, yel-grey	firm, It br &	firm grey sandy
	sandy clay with		sandy clay-	sandy clay	grey mot	clay, yel mots
	caliche	clay	clayey sand		sandy clay	01:-1
	nodules					& caliche
						nodules
Colour	7.5YR5/6-4/6	7.5YR 5/3-5/4	5YR5/6	2.5Y 6/3	7.5YR5/4-5/6	2.5Y 6/3
Grading						
>-2.25	0.0		0.0			
-2.0	7.1		11.8	0.0		0.0
-1.5	14.8	0.0	21.3	0.0	0.0	0.0
-1.0	22.7	0.0	29.9	2.0	0.0	2.0
-0.5	40.8	20.3	41.8	23.9 37.2	18.1	21.9
0.0	50.6 58.6	35.7 46.4	50.7 57.7	48.0	31.7 41.8	34.9 46.4
		_	~···			
1.0 1.5	64.7 69.7	55.4 62.1	64.7 70.2	56.7 62.9	51.1 58.5	56.0 63.0
2.0	73.3	67.8	70.2	67.8	64.7	69.2
2.5	78.7	75.7	81.3	75.4	73.5	77.5
3.0	82.0	79.7	85.3	80.6	79.2	82.6
3.5	84.8	83.9	88.7	85.8	83.5	86.9
4.0	93.2	86.2	91.0	89.4	86.3	89.8
<4.0	98.6	97.9	99.6	98.4	99.0	98.0
Field Water Conte			55.6	50.7	55.0	55.0
in the state of the	18	16	10	19	20	16
USCS Classification						
USCS	CL	CL	CL	CL	CL-CH	CL-CH
Calculated Perme						
k - intrinsic perme			942), cm ²			
The position						
K - hydraulic cond	luctivity (after F	lubbert's metho	od), m/sec			
-	- '					
Chemistry						
EC	227.4	358	426	462	719	850
pН	7.1	8.8	8.2	8.7	8.8	7.4
CEC	55	13	52	14		12
Extracted exchange						
Na	1.22E-02	2.36E-02	3.05E-02	5.06E-02	4.43E-02	3.23E-02
K	1.74E-02	9.31E-03	4.04E-03	9.68E-03	1.09E-02	2.50E-02
Ca	3.22E-01	1.71E-01	1.32E-01	2.26E-01	2.58E-01	1.73E-01
Mg	1.32E-01	1.06E-01	7.52E-02	1.07E-01	1.13E-01	1.22E-01
Al	1.61E-04	2.29E-04	2.12E-04	2.25E-04	2.66E-04	2.14E-04
Sr Sr	1.17E-03	5.53E-04	7.42E-04	7.33E-04	8.06E-04	7.53E-04
Qualitative Minera				<u> </u>		6'
Major	Qtz	Qtz	Qtz	Qtz		Qtz
	Ka				Qtz	
Minor	Mus	V-	V-	NA	A math	Įu
Minor	Cal	Ka	Ka	Mus	Anth	III
		Alb	Anth	Cal	Mus	
Very Minor		Mus	Mont		Cal	Orth
A SI À IMILIOI		Orth	Mont			Orth Cal
						Cai

Comotoru	CENTENNIAL	PARK CEMETE	DV			
Cemetery:				Ch/2	Co.o.o.d#1	Coond#0
Sample # Sat'd/vaodse etc	Ca/1	Cb/1	Cb/2	Cb/3	Csand#1	Csand#2
	00/00/00	0.4.100.100	0.4.100.100	0.4.10.0.10.0	,	00/00/07
Sample Date	20/09/96	21/09/96	21/09/96	21/09/96	n/a	22/09/97
Depth	2	2	3	4		
Description	It yel-br sandy	red-br sandy?	red-br sandy	It br pebbly	It-br med-fine	It br med-fine
	clay	clay, calcrete	clay occ	sandy clay,	sand	sand
		nodules	pebbles	occ pebbles		
		to 6.mm diam	-	to 30mm diam		
	7 F)/D F/0	5)/D 4/4	EVD 5/0 4/0	7.5\/\D0/0.5/0	,	,
Colour	7.5YR 5/6	5YR 4/4	5YR 5/6-4/6	7.5YR6/6-5/6	n/a	n/a
Grading						
>-2.25						
-2.0						
-1.5						
-1.0					0.0	
-0.5					0.1	
0.0					22.7	
0.5					93.1	
1.0					99.3	
1.5					99.5	
2.0					99.6	
2.5					00.0	
3.0						
3.5						
4.0						
<4.0						
Field Water Conte						
	10	12	12	4	1	
USCS Classificati	_					
USCS	CL-CH	CL-CH	CL	CL	SP	SW
Calculated Perme	ability Paramet	ers				
k - intrinsic perme	ability (Krumbe	ein and Monk, 1	942), cm ²			
•					4.26E-06	
K - hydraulic cond	ductivity (after I	lubbert's meth	od). m/sec			
,					4.20E-03	
Chemistry					1.202 00	
EC	241.5	148.9	117.1	108.3	30.8	39.7
				+		
pH	7.0	6.4	8.2	8.4	7.5	8.3
CEC	45	21	20	19	9	
Extracted exchange		ın mg/L	0.005.00	7.005.00	0.005.00	
Na	1.74E-02		6.26E-03	7.60E-03	2.82E-03	
К	1.34E-02		7.46E-03	3.80E-03	1.17E-03	
Ca	2.17E-01	4.62E-04	1.42E-01	1.07E-01	9.51E-02	
Mg	7.74E-02	2.79E-04	3.51E-02	3.58E-02	7.48E-03	
Al	1.67E-04	1.78E-04	2.62E-04	2.24E-04	2.67E-04	
Sr	6.19E-04		3.26E-04	3.02E-04	3.35E-04	
Qualitative Minera	logical Compo	nents from XRI	O Analysis			
Major	Qtz	Qtz	Qtz	Qtz		
-	Ka	Mus				
	III					
Minor	Mus	Orth	Ka	Mus		
	Cal	0101	Orth	Orth		
	Jai		Alb	Orui		
Very Minor	Anorth	Mic	VID	D+		
very willior	AHORIH	IVIIC		Rut		
	-					
	A CONTRACTOR OF THE CONTRACTOR	1	i .	ii .	i .	i .

Cemetery:	CHELTENHAM	CEMETERY				
Sample #	H1/1	H1/2	H1/3	H1/4	H2/1	H3/1
Sat'd/vaodse etc	111/1	111/2	X	X	112/1	110/1
Sample Date	19/09/96	19/09/96	19/09/96	19/09/96	20/09/98	19/09/96
Depth	1	3	5	6	2	1.5
Description	yel-br sandy	yel-br pebbly	dk yel-br	v. soft, yel-br	dk yel-br	vel & red-br
Description			-	-		•
	silt, caliche	sandy clayey	clayey silt,	clayey sandy	clayey silt	sandy clay
	nodules to	silt	minor caliche	silt	minor caliche	
	3.0 mm diam		nodules to 1.5		nodules to 3.0	
			mm diam		mm diam	
Colour	7.5YR 5/8	7.5YR 4/6	7.5YR 6/4	7.5YR 5/6-5/8	7.5YR 4/3 - 4/4	7.5YR 6/4
Grading						
>-2.25						
-2.0						
-1.5						
-1.0						
-0.5						
0.0						
0.5						
1.0						
1.5						
2.0						
2.5						
3.0						
3.5						
4.0						
<4.0		4: 0/				
Field Water Conte	1	1	40	4	4.4	10
11000 01 15 15	7	6	10	4	11	10
USCS Classification	_	N/I OI	01	M 0	NAL OI	00.01
USCS	ML-CL	ML-CL	CL	ML-CL	ML-CL	SC-CL
Calculated Perme		ers				
			2			
k - intrinsic perme			1942), cm ²			
k - intrinsic perme	eability (Krumbe	ein and Monk, [^]				
	eability (Krumbe	ein and Monk, [^]				
k - intrinsic perme K - hydraulic cond	eability (Krumbe	ein and Monk, [^]				
k - intrinsic perme K - hydraulic cond Chemistry	eability (Krumbo ductivity (after I	ein and Monk, [^]	od), m/sec			
k - intrinsic perme K - hydraulic conc Chemistry EC	eability (Krumbo ductivity (after I	ein and Monk, [^]	od), m/sec 360	351	156	212.7
k - intrinsic perme K - hydraulic cond Chemistry EC pH	ductivity (after I	ein and Monk, [^]	od), m/sec 360 8.7	7.7	5.9	7.8
k - intrinsic perme K - hydraulic cond Chemistry EC pH CEC	ability (Krumbo ductivity (after I 328 7.8 41	ein and Monk, ' Hubbert's meth	od), m/sec 360			
k - intrinsic perme K - hydraulic cond Chemistry EC pH CEC Extracted exchange	ductivity (after I 328 7.8 41 geable cations	ein and Monk, ' Hubbert's meth	360 8.7	7.7 24	5.9 38	7.8 9
k - intrinsic perme K - hydraulic cond Chemistry EC pH CEC Extracted exchanges	ability (Krumbo ductivity (after I 328 7.8 41	ein and Monk, ' Hubbert's meth	360 8.7 13	7.7 24 3.32E-02	5.9 38 7.77E-03	7.8 9 3.99E-03
k - intrinsic perme K - hydraulic cond Chemistry EC pH CEC Extracted exchange Na K	328 7.8 41 geable cations 8.76E-03 2.09E-02	ein and Monk, ' Hubbert's meth	360 8.7 13 1.36E-02 4.58E-03	7.7 24 3.32E-02 7.88E-03	5.9 38 7.77E-03 1.79E-02	7.8 9 3.99E-03 1.14E-02
k - intrinsic perme K - hydraulic cond Chemistry EC pH CEC Extracted exchanges	ductivity (after I 328 7.8 41 geable cations 8.76E-03	ein and Monk, ' Hubbert's meth	360 8.7 13	7.7 24 3.32E-02	5.9 38 7.77E-03	7.8 9 3.99E-03
k - intrinsic perme K - hydraulic cond Chemistry EC pH CEC Extracted exchange Na K	328 7.8 41 geable cations 8.76E-03 2.09E-02	ein and Monk, ' Hubbert's meth	360 8.7 13 1.36E-02 4.58E-03	7.7 24 3.32E-02 7.88E-03	5.9 38 7.77E-03 1.79E-02	7.8 9 3.99E-03 1.14E-02
k - intrinsic perme K - hydraulic cond Chemistry EC pH CEC Extracted exchange Na K Ca	328 7.8 41 geable cations 8.76E-03 2.09E-02 2.55E-01	ein and Monk, ' Hubbert's meth	360 8.7 13 1.36E-02 4.58E-03 1.07E-01	7.7 24 3.32E-02 7.88E-03 2.03E-01	5.9 38 7.77E-03 1.79E-02 4.04E-01	7.8 9 3.99E-03 1.14E-02 2.62E-01
k - intrinsic perme K - hydraulic cond Chemistry EC pH CEC Extracted exchange Na K Ca Mg	328 7.8 41 geable cations 8.76E-03 2.09E-02 2.55E-01 7.21E-02	ein and Monk, ' Hubbert's meth	360 8.7 13 1.36E-02 4.58E-03 1.07E-01 4.10E-02	7.7 24 3.32E-02 7.88E-03 2.03E-01 8.64E-02	5.9 38 7.77E-03 1.79E-02 4.04E-01 5.94E-02	7.8 9 3.99E-03 1.14E-02 2.62E-01 3.73E-02
k - intrinsic perme K - hydraulic cond Chemistry EC pH CEC Extracted exchange Na K Ca Mg Al	328 7.8 41 geable cations 8.76E-03 2.09E-02 2.55E-01 7.21E-02 1.69E-04 9.83E-04	ein and Monk, ' Hubbert's meth	360 8.7 13 1.36E-02 4.58E-03 1.07E-01 4.10E-02 4.39E-04 4.01E-04	7.7 24 3.32E-02 7.88E-03 2.03E-01 8.64E-02 2.71E-04	5.9 38 7.77E-03 1.79E-02 4.04E-01 5.94E-02 3.57E-04	7.8 9 3.99E-03 1.14E-02 2.62E-01 3.73E-02 2.54E-04
k - intrinsic perme K - hydraulic cond Chemistry EC pH CEC Extracted exchang Na K Ca Mg Al Sr	328 7.8 41 geable cations 8.76E-03 2.09E-02 2.55E-01 7.21E-02 1.69E-04 9.83E-04	ein and Monk, ' Hubbert's meth	360 8.7 13 1.36E-02 4.58E-03 1.07E-01 4.10E-02 4.39E-04 4.01E-04	7.7 24 3.32E-02 7.88E-03 2.03E-01 8.64E-02 2.71E-04	5.9 38 7.77E-03 1.79E-02 4.04E-01 5.94E-02 3.57E-04	7.8 9 3.99E-03 1.14E-02 2.62E-01 3.73E-02 2.54E-04
k - intrinsic perme K - hydraulic cond Chemistry EC pH CEC Extracted exchang Na K Ca Mg Al Sr Qualitative Minera	328 7.8 41 geable cations 8.76E-03 2.09E-02 2.55E-01 7.21E-02 1.69E-04 9.83E-04 alogical Compo	ein and Monk, ' Hubbert's meth	360 8.7 13 1.36E-02 4.58E-03 1.07E-01 4.10E-02 4.39E-04 4.01E-04 D Analysis	7.7 24 3.32E-02 7.88E-03 2.03E-01 8.64E-02 2.71E-04 8.85E-04	5.9 38 7.77E-03 1.79E-02 4.04E-01 5.94E-02 3.57E-04 8.90E-04	7.8 9 3.99E-03 1.14E-02 2.62E-01 3.73E-02 2.54E-04 5.52E-04
k - intrinsic perme K - hydraulic cond Chemistry EC pH CEC Extracted exchang Na K Ca Mg Al Sr Qualitative Minera	328 7.8 41 geable cations 8.76E-03 2.09E-02 2.55E-01 7.21E-02 1.69E-04 9.83E-04 alogical Compo	ein and Monk, ' Hubbert's meth	360 8.7 13 1.36E-02 4.58E-03 1.07E-01 4.10E-02 4.39E-04 4.01E-04 D Analysis	7.7 24 3.32E-02 7.88E-03 2.03E-01 8.64E-02 2.71E-04 8.85E-04	5.9 38 7.77E-03 1.79E-02 4.04E-01 5.94E-02 3.57E-04 8.90E-04	7.8 9 3.99E-03 1.14E-02 2.62E-01 3.73E-02 2.54E-04 5.52E-04
k - intrinsic perme K - hydraulic cond Chemistry EC pH CEC Extracted exchang Na K Ca Mg Al Sr Qualitative Minera	328 7.8 41 geable cations 8.76E-03 2.09E-02 2.55E-01 7.21E-02 1.69E-04 9.83E-04 alogical Compo	ein and Monk, ' Hubbert's meth	360 8.7 13 1.36E-02 4.58E-03 1.07E-01 4.10E-02 4.39E-04 4.01E-04 D Analysis	7.7 24 3.32E-02 7.88E-03 2.03E-01 8.64E-02 2.71E-04 8.85E-04	5.9 38 7.77E-03 1.79E-02 4.04E-01 5.94E-02 3.57E-04 8.90E-04	7.8 9 3.99E-03 1.14E-02 2.62E-01 3.73E-02 2.54E-04 5.52E-04
k - intrinsic perme K - hydraulic cond Chemistry EC pH CEC Extracted exchang Na K Ca Mg Al Sr Qualitative Minera Major	328 7.8 41 geable cations 8.76E-03 2.09E-02 2.55E-01 7.21E-02 1.69E-04 9.83E-04 alogical Compo Otz Orth Mus	ein and Monk, ' Hubbert's meth	360 8.7 13 1.36E-02 4.58E-03 1.07E-01 4.10E-02 4.39E-04 4.01E-04 D Analysis	7.7 24 3.32E-02 7.88E-03 2.03E-01 8.64E-02 2.71E-04 8.85E-04 Qtz Alb	5.9 38 7.77E-03 1.79E-02 4.04E-01 5.94E-02 3.57E-04 8.90E-04	7.8 9 3.99E-03 1.14E-02 2.62E-01 3.73E-02 2.54E-04 5.52E-04
k - intrinsic perme K - hydraulic cond Chemistry EC pH CEC Extracted exchang Na K Ca Mg Al Sr Qualitative Minera Major	328 7.8 41 geable cations 8.76E-03 2.09E-02 2.55E-01 7.21E-02 1.69E-04 9.83E-04 alogical Compo Qtz Orth Mus Cal	ein and Monk, ' Hubbert's meth	360 8.7 13 1.36E-02 4.58E-03 1.07E-01 4.10E-02 4.39E-04 4.01E-04 D Analysis	7.7 24 3.32E-02 7.88E-03 2.03E-01 8.64E-02 2.71E-04 8.85E-04 Qtz Alb	5.9 38 7.77E-03 1.79E-02 4.04E-01 5.94E-02 3.57E-04 8.90E-04 Qtz	7.8 9 3.99E-03 1.14E-02 2.62E-01 3.73E-02 2.54E-04 5.52E-04
k - intrinsic perme K - hydraulic cond Chemistry EC pH CEC Extracted exchang Na K Ca Mg Al Sr Qualitative Minera Major	328 7.8 41 geable cations 8.76E-03 2.09E-02 2.55E-01 7.21E-02 1.69E-04 9.83E-04 alogical Compo Qtz Orth Mus Cal	ein and Monk, ' Hubbert's meth	360 8.7 13 1.36E-02 4.58E-03 1.07E-01 4.10E-02 4.39E-04 4.01E-04 D Analysis Qtz	7.7 24 3.32E-02 7.88E-03 2.03E-01 8.64E-02 2.71E-04 8.85E-04 Qtz Alb Ka	5.9 38 7.77E-03 1.79E-02 4.04E-01 5.94E-02 3.57E-04 8.90E-04 Qtz Ka III-Na Alb	7.8 9 3.99E-03 1.14E-02 2.62E-01 3.73E-02 2.54E-04 5.52E-04 III Qtz Ka, Alb Anth, Orth
k - intrinsic perme K - hydraulic cond Chemistry EC pH CEC Extracted exchang Na K Ca Mg Al Sr Qualitative Minera Major	328 7.8 41 geable cations 8.76E-03 2.09E-02 2.55E-01 7.21E-02 1.69E-04 9.83E-04 alogical Compo Qtz Orth Mus Cal Anorth	ein and Monk, ' Hubbert's meth	360 8.7 13 1.36E-02 4.58E-03 1.07E-01 4.10E-02 4.39E-04 4.01E-04 D Analysis Qtz Mus	7.7 24 3.32E-02 7.88E-03 2.03E-01 8.64E-02 2.71E-04 8.85E-04 Qtz Alb Ka III	5.9 38 7.77E-03 1.79E-02 4.04E-01 5.94E-02 3.57E-04 8.90E-04 Qtz Ka III-Na Alb Orth	7.8 9 3.99E-03 1.14E-02 2.62E-01 3.73E-02 2.54E-04 5.52E-04 III Qtz Ka, Alb Anth, Orth Mus
k - intrinsic perme K - hydraulic cond Chemistry EC pH CEC Extracted exchang Na K Ca Mg Al Sr Qualitative Minera Major	328 7.8 41 geable cations 8.76E-03 2.09E-02 2.55E-01 7.21E-02 1.69E-04 9.83E-04 alogical Compo Qtz Orth Mus Cal Anorth	ein and Monk, ' Hubbert's meth	360 8.7 13 1.36E-02 4.58E-03 1.07E-01 4.10E-02 4.39E-04 4.01E-04 D Analysis Qtz	7.7 24 3.32E-02 7.88E-03 2.03E-01 8.64E-02 2.71E-04 8.85E-04 Qtz Alb Ka	5.9 38 7.77E-03 1.79E-02 4.04E-01 5.94E-02 3.57E-04 8.90E-04 Qtz Ka III-Na Alb	7.8 9 3.99E-03 1.14E-02 2.62E-01 3.73E-02 2.54E-04 5.52E-04 III Qtz Ka, Alb Anth, Orth

Cometern	CHELTENIL ANA	CEMETERY				
Cemetery:	CHELTENHAM		□ 4/4	LI4/2	H5/1	LIE/4
Sample # Sat'd/vaodse etc	H3/2	H3/3 X	H4/1 X	H4/2 X	II)(CII	H6/1
Sample Date	19/09/96	19/09/96	19/09/96	19/09/96	20/09/96	20/09/96
	19/09/96	19/09/96	19/09/96	5.5	20/09/96	20/09/96
Depth			·			
Description	yel-br sandy	yel-br clayey	stiff yel-br silty	firm dk br	yel-br sandy	yel-br sandy
	silty clay, minor		clay occ	sandy silty clay	SIIL	clayey silt
	claiche	grey	pebbles	occ gravel		1
	nodules	rootlets &				
		minor gravel				
						<u> </u>
Colour	7.5YR 5/6	7.5YR 4/6	7.5YR 5/6	5YR 4/4	7.5YR 5/8	7.5YR5/6-4/6
Grading						_
>-2.25						-
-2.0	0.0					-
-1.5	0.0					_
-1.0	1.0					1
-0.5 0.0	19.9 32.2					+
0.0	43.5					+
1.0 1.5	52.9 60.5					+
2.0	67.5					+
2.5	77.3					+
3.0	82.8					+
3.5	86.6					
4.0	89.6					+
<4.0	98.6					+
Field Water Conte		ive %				+
			4.4		l	+
1	11	13	14	20	11	8
USCS Classification	7.7	13	14	20	11	8
USCS Classification	7.7	13 SC-ML	ML-CL	20 ML-CL	SC-ML	8 ML-CL
USCS	on SC	SC-ML				
USCS Calculated Perme	on SC ability Paramete	SC-ML	ML-CL			
USCS	SC ability Paramete	SC-ML	ML-CL			
USCS Calculated Perme k - intrinsic perme	SC ability Parameter (Krumber 1.15E-07	SC-ML ers ein and Monk, 1	ML-CL 942), cm ²			
USCS Calculated Perme	SC ability Parameter (Krumber 1.15E-07	SC-ML ers ein and Monk, 1	ML-CL 942), cm ²			
USCS Calculated Perme k - intrinsic perme	SC ability Paramete ability (Krumbe 1.15E-07	SC-ML ers ein and Monk, 1	ML-CL 942), cm ²			
USCS Calculated Perme k - intrinsic perme K - hydraulic cond	SC ability Paramete ability (Krumbe 1.15E-07	SC-ML ers ein and Monk, 1	ML-CL 942), cm ²			
USCS Calculated Perme k - intrinsic perme K - hydraulic cond	SC ability Paramete ability (Krumbe 1.15E-07 luctivity (after H 1.16E-04	SC-ML ers ein and Monk, 1 dubbert's meth	ML-CL 1942), cm ² od), m/sec	ML-CL	SC-ML	ML-CL
USCS Calculated Perme k - intrinsic perme K - hydraulic cond Chemistry EC	SC ability Paramete ability (Krumbe 1.15E-07 luctivity (after H 1.16E-04	SC-ML ers ein and Monk, 1 lubbert's metho	ML-CL 1942), cm ² od), m/sec	ML-CL	SC-ML 561	ML-CL 382
USCS Calculated Perme k - intrinsic perme K - hydraulic conc Chemistry EC pH	SC ability Paramete ability (Krumbe 1.15E-07 luctivity (after H 1.16E-04 202.2 7.2 15	SC-ML ers ein and Monk, 1 lubbert's metho 346 8.7 28	ML-CL 1942), cm ² od), m/sec 145.9 7.0	ML-CL 365 9.2	SC-ML 561 10.2	ML-CL 382 9.2
USCS Calculated Perme k - intrinsic perme K - hydraulic conc Chemistry EC pH CEC	SC ability Paramete ability (Krumbe 1.15E-07 luctivity (after H 1.16E-04 202.2 7.2 15 geable cations i 7.86E-03	SC-ML ers ein and Monk, 1 lubbert's metho 346 8.7 28 n mg/L 2.11E-02	ML-CL 1942), cm ² od), m/sec 145.9 7.0 13	365 9.2 16 2.12E-02	561 10.2 29 2.64E-02	ML-CL 382 9.2 3 1.80E-02
USCS Calculated Perme k - intrinsic perme K - hydraulic conc Chemistry EC pH CEC Extracted exchange	SC ability Paramete ability (Krumbe 1.15E-07 luctivity (after H 1.16E-04 202.2 7.2 15 geable cations i 7.86E-03 1.29E-02	SC-ML ers ein and Monk, 1 lubbert's metho 346 8.7 28 n mg/L 2.11E-02 2.07E-02	ML-CL 1942), cm ² od), m/sec 145.9 7.0 13 2.21E-02 2.36E-03	365 9.2 16 2.12E-02 7.40E-03	561 10.2 29 2.64E-02 8.75E-03	ML-CL 382 9.2 3
USCS Calculated Perme k - intrinsic perme K - hydraulic cond Chemistry EC pH CEC Extracted exchange	SC ability Paramete ability (Krumbe 1.15E-07 luctivity (after H 1.16E-04 202.2 7.2 15 geable cations i 7.86E-03 1.29E-02 2.50E-01	SC-ML ers ein and Monk, 1 dubbert's metho 346 8.7 28 n mg/L 2.11E-02 2.07E-02 2.27E-01	ML-CL 1942), cm ² od), m/sec 145.9 7.0 13 2.21E-02 2.36E-03 1.05E-01	365 9.2 16 2.12E-02 7.40E-03 1.70E-01	561 10.2 29 2.64E-02 8.75E-03 1.85E-01	382 9.2 3 1.80E-02 1.62E-02 2.06E-01
USCS Calculated Perme k - intrinsic perme K - hydraulic cond Chemistry EC pH CEC Extracted exchange Na K	SC ability Paramete ability (Krumbe 1.15E-07 luctivity (after H 1.16E-04 202.2 7.2 15 geable cations i 7.86E-03 1.29E-02 2.50E-01 9.19E-02	SC-ML ers ein and Monk, 1 lubbert's metho 346 8.7 28 n mg/L 2.11E-02 2.07E-02 2.27E-01 9.66E-02	ML-CL 1942), cm ² od), m/sec 145.9 7.0 13 2.21E-02 2.36E-03 1.05E-01 7.20E-02	365 9.2 16 2.12E-02 7.40E-03 1.70E-01 8.73E-02	561 10.2 29 2.64E-02 8.75E-03 1.85E-01 5.85E-02	382 9.2 3 1.80E-02 1.62E-02 2.06E-01 7.57E-02
USCS Calculated Perme k - intrinsic perme K - hydraulic cond Chemistry EC pH CEC Extracted exchang Na K Ca Mg Al	SC ability Paramete ability (Krumbe 1.15E-07 luctivity (after H 1.16E-04 202.2 7.2 15 geable cations i 7.86E-03 1.29E-02 2.50E-01 9.19E-02 2.57E-04	SC-ML ers ein and Monk, 1 dubbert's method 346 8.7 28 n mg/L 2.11E-02 2.07E-02 2.27E-01 9.66E-02 3.76E-04	ML-CL 1942), cm ² od), m/sec 145.9 7.0 13 2.21E-02 2.36E-03 1.05E-01 7.20E-02 3.15E-02	365 9.2 16 2.12E-02 7.40E-03 1.70E-01 8.73E-02 2.58E-04	561 10.2 29 2.64E-02 8.75E-03 1.85E-01 5.85E-02 1.41E-04	382 9.2 3 1.80E-02 1.62E-02 2.06E-01 7.57E-02 2.54E-04
USCS Calculated Perme k - intrinsic perme K - hydraulic cond Chemistry EC pH CEC Extracted exchang Na K Ca Mg Al Sr	SC ability Paramete ability (Krumbe 1.15E-07 luctivity (after H 1.16E-04 202.2 7.2 15 geable cations i 7.86E-03 1.29E-02 2.50E-01 9.19E-02 2.57E-04 9.04E-04	SC-ML ers ein and Monk, 1 dubbert's method 346 8.7 28 n mg/L 2.11E-02 2.07E-02 2.27E-01 9.66E-02 3.76E-04 8.33E-04	ML-CL 1942), cm ² od), m/sec 145.9 7.0 13 2.21E-02 2.36E-03 1.05E-01 7.20E-02 3.15E-02 3.81E-04	365 9.2 16 2.12E-02 7.40E-03 1.70E-01 8.73E-02	561 10.2 29 2.64E-02 8.75E-03 1.85E-01 5.85E-02	382 9.2 3 1.80E-02 1.62E-02 2.06E-01 7.57E-02
USCS Calculated Perme k - intrinsic perme K - hydraulic cond Chemistry EC pH CEC Extracted exchang Na K Ca Mg Al Sr Qualitative Minera	sc ability Paramete ability (Krumber 1.15E-07 luctivity (after H 1.16E-04 202.2 7.2 15 geable cations in 7.86E-03 1.29E-02 2.50E-01 9.19E-02 2.57E-04 9.04E-04 llogical Composition	SC-ML ers ein and Monk, 1 lubbert's metho 346 8.7 28 n mg/L 2.11E-02 2.07E-02 2.27E-01 9.66E-02 3.76E-04 8.33E-04 ments from XRI	ML-CL 1942), cm ² od), m/sec 145.9 7.0 13 2.21E-02 2.36E-03 1.05E-01 7.20E-02 3.15E-02 3.81E-04 D Analysis	365 9.2 16 2.12E-02 7.40E-03 1.70E-01 8.73E-02 2.58E-04 6.59E-04	561 10.2 29 2.64E-02 8.75E-03 1.85E-01 5.85E-02 1.41E-04 6.33E-04	382 9.2 3 1.80E-02 1.62E-02 2.06E-01 7.57E-02 2.54E-04 6.46E-04
USCS Calculated Perme k - intrinsic perme K - hydraulic cond Chemistry EC pH CEC Extracted exchang Na K Ca Mg Al Sr	SC ability Paramete ability (Krumbe 1.15E-07 luctivity (after H 1.16E-04 202.2 7.2 15 geable cations i 7.86E-03 1.29E-02 2.50E-01 9.19E-02 2.57E-04 9.04E-04 llogical Compon	SC-ML ers ein and Monk, 1 dubbert's method 346 8.7 28 n mg/L 2.11E-02 2.07E-02 2.27E-01 9.66E-02 3.76E-04 8.33E-04	ML-CL 1942), cm ² od), m/sec 145.9 7.0 13 2.21E-02 2.36E-03 1.05E-01 7.20E-02 3.15E-02 3.81E-04 D Analysis Qtz	365 9.2 16 2.12E-02 7.40E-03 1.70E-01 8.73E-02 2.58E-04 6.59E-04	561 10.2 29 2.64E-02 8.75E-03 1.85E-01 5.85E-02 1.41E-04	382 9.2 3 1.80E-02 1.62E-02 2.06E-01 7.57E-02 2.54E-04 6.46E-04
USCS Calculated Perme k - intrinsic perme K - hydraulic cond Chemistry EC pH CEC Extracted exchang Na K Ca Mg Al Sr Qualitative Minera	SC ability Paramete ability (Krumbe 1.15E-07 luctivity (after H 1.16E-04 202.2 7.2 15 geable cations i 7.86E-03 1.29E-02 2.50E-01 9.19E-02 2.57E-04 9.04E-04 llogical Compon	SC-ML ers ein and Monk, 1 lubbert's metho 346 8.7 28 n mg/L 2.11E-02 2.07E-02 2.27E-01 9.66E-02 3.76E-04 8.33E-04 ments from XRI	ML-CL 1942), cm ² od), m/sec 145.9 7.0 13 2.21E-02 2.36E-03 1.05E-01 7.20E-02 3.15E-02 3.81E-04 D Analysis	365 9.2 16 2.12E-02 7.40E-03 1.70E-01 8.73E-02 2.58E-04 6.59E-04 Ka Alb	561 10.2 29 2.64E-02 8.75E-03 1.85E-01 5.85E-02 1.41E-04 6.33E-04	382 9.2 3 1.80E-02 1.62E-02 2.06E-01 7.57E-02 2.54E-04 6.46E-04
USCS Calculated Perme k - intrinsic perme K - hydraulic cond Chemistry EC pH CEC Extracted exchang Na K Ca Mg Al Sr Qualitative Minera	SC ability Paramete ability (Krumbe 1.15E-07 luctivity (after H 1.16E-04 202.2 7.2 15 geable cations i 7.86E-03 1.29E-02 2.50E-01 9.19E-02 2.57E-04 9.04E-04 llogical Compon	SC-ML ers ein and Monk, 1 dubbert's method 346 8.7 28 in mg/L 2.11E-02 2.07E-02 2.27E-01 9.66E-02 3.76E-04 8.33E-04 ments from XRI Qtz	ML-CL 1942), cm ² od), m/sec 145.9 7.0 13 2.21E-02 2.36E-03 1.05E-01 7.20E-02 3.15E-02 3.81E-04 D Analysis	365 9.2 16 2.12E-02 7.40E-03 1.70E-01 8.73E-02 2.58E-04 6.59E-04 Ka Alb	561 10.2 29 2.64E-02 8.75E-03 1.85E-01 5.85E-02 1.41E-04 6.33E-04	382 9.2 3 1.80E-02 1.62E-02 2.06E-01 7.57E-02 2.54E-04 6.46E-04
USCS Calculated Perme k - intrinsic perme K - hydraulic cond Chemistry EC pH CEC Extracted exchang Na K Ca Mg Al Sr Qualitative Minera	SC ability Paramete ability (Krumbe 1.15E-07 luctivity (after H 1.16E-04 202.2 7.2 15 geable cations i 7.86E-03 1.29E-02 2.50E-01 9.19E-02 2.57E-04 9.04E-04 llogical Composition Ka Qtz Mic	SC-ML ers ein and Monk, 1 lubbert's metho 346 8.7 28 n mg/L 2.11E-02 2.07E-02 2.27E-01 9.66E-02 3.76E-04 8.33E-04 nents from XRI Qtz	ML-CL 1942), cm ² od), m/sec 145.9 7.0 13 2.21E-02 2.36E-03 1.05E-01 7.20E-02 3.15E-02 3.81E-04 D Analysis Qtz	365 9.2 16 2.12E-02 7.40E-03 1.70E-01 8.73E-02 2.58E-04 6.59E-04 Ka Alb	561 10.2 29 2.64E-02 8.75E-03 1.85E-01 5.85E-02 1.41E-04 6.33E-04 Qtz	382 9.2 3 1.80E-02 1.62E-02 2.06E-01 7.57E-02 2.54E-04 6.46E-04 III Ka Qtz Anth
USCS Calculated Perme k - intrinsic perme K - hydraulic cond Chemistry EC pH CEC Extracted exchang Na K Ca Mg Al Sr Qualitative Minera	SC ability Paramete ability (Krumbe 1.15E-07 luctivity (after H 1.16E-04 202.2 7.2 15 geable cations i 7.86E-03 1.29E-02 2.50E-01 9.19E-02 2.57E-04 9.04E-04 llogical Compon	SC-ML ers ein and Monk, 1 dubbert's method 346 8.7 28 in mg/L 2.11E-02 2.07E-02 2.27E-01 9.66E-02 3.76E-04 8.33E-04 ments from XRI Qtz	ML-CL 1942), cm ² od), m/sec 145.9 7.0 13 2.21E-02 2.36E-03 1.05E-01 7.20E-02 3.15E-02 3.81E-04 D Analysis	365 9.2 16 2.12E-02 7.40E-03 1.70E-01 8.73E-02 2.58E-04 6.59E-04 Ka Alb	\$C-ML 561 10.2 29 2.64E-02 8.75E-03 1.85E-01 5.85E-02 1.41E-04 6.33E-04 Qtz Orth Mic	382 9.2 3 1.80E-02 1.62E-02 2.06E-01 7.57E-02 2.54E-04 6.46E-04
USCS Calculated Perme k - intrinsic perme K - hydraulic cond Chemistry EC pH CEC Extracted exchang Na K Ca Mg Al Sr Qualitative Minera Major	SC ability Paramete ability (Krumbe 1.15E-07 luctivity (after H 1.16E-04 202.2 7.2 15 geable cations i 7.86E-03 1.29E-02 2.50E-01 9.19E-02 2.57E-04 9.04E-04 llogical Composition Ka Qtz Mic	SC-ML ers ein and Monk, 1 lubbert's metho 346 8.7 28 n mg/L 2.11E-02 2.07E-02 2.27E-01 9.66E-02 3.76E-04 8.33E-04 nents from XRI Qtz	ML-CL 1942), cm ² od), m/sec 145.9 7.0 13 2.21E-02 2.36E-03 1.05E-01 7.20E-02 3.15E-02 3.81E-04 D Analysis	365 9.2 16 2.12E-02 7.40E-03 1.70E-01 8.73E-02 2.58E-04 6.59E-04 Ka Alb Qtz Mus	561 10.2 29 2.64E-02 8.75E-03 1.85E-01 5.85E-02 1.41E-04 6.33E-04 Qtz Orth Mic Ka	382 9.2 3 1.80E-02 1.62E-02 2.06E-01 7.57E-02 2.54E-04 6.46E-04 III Ka Qtz Anth
USCS Calculated Perme k - intrinsic perme K - hydraulic cond Chemistry EC pH CEC Extracted exchang Na K Ca Mg Al Sr Qualitative Minera	SC ability Paramete ability (Krumbe 1.15E-07 luctivity (after H 1.16E-04 202.2 7.2 15 geable cations i 7.86E-03 1.29E-02 2.50E-01 9.19E-02 2.57E-04 9.04E-04 llogical Composition Ka Qtz Mic	SC-ML ers ein and Monk, 1 lubbert's metho 346 8.7 28 n mg/L 2.11E-02 2.07E-02 2.27E-01 9.66E-02 3.76E-04 8.33E-04 nents from XRI Qtz	ML-CL 1942), cm ² od), m/sec 145.9 7.0 13 2.21E-02 2.36E-03 1.05E-01 7.20E-02 3.15E-02 3.81E-04 D Analysis	365 9.2 16 2.12E-02 7.40E-03 1.70E-01 8.73E-02 2.58E-04 6.59E-04 Ka Alb Qtz Mus	\$C-ML 561 10.2 29 2.64E-02 8.75E-03 1.85E-01 5.85E-02 1.41E-04 6.33E-04 Qtz Orth Mic	382 9.2 3 1.80E-02 1.62E-02 2.06E-01 7.57E-02 2.54E-04 6.46E-04 III Ka Qtz Anth
USCS Calculated Perme k - intrinsic perme K - hydraulic cond Chemistry EC pH CEC Extracted exchang Na K Ca Mg Al Sr Qualitative Minera Major	SC ability Paramete ability (Krumbe 1.15E-07 luctivity (after H 1.16E-04 202.2 7.2 15 geable cations i 7.86E-03 1.29E-02 2.50E-01 9.19E-02 2.57E-04 9.04E-04 llogical Composition Ka Qtz Mic	SC-ML ers ein and Monk, 1 lubbert's metho 346 8.7 28 n mg/L 2.11E-02 2.07E-02 2.27E-01 9.66E-02 3.76E-04 8.33E-04 nents from XRI Qtz	ML-CL 1942), cm ² od), m/sec 145.9 7.0 13 2.21E-02 2.36E-03 1.05E-01 7.20E-02 3.15E-02 3.81E-04 D Analysis	365 9.2 16 2.12E-02 7.40E-03 1.70E-01 8.73E-02 2.58E-04 6.59E-04 Ka Alb Qtz Mus	561 10.2 29 2.64E-02 8.75E-03 1.85E-01 5.85E-02 1.41E-04 6.33E-04 Qtz Orth Mic Ka	382 9.2 3 1.80E-02 1.62E-02 2.06E-01 7.57E-02 2.54E-04 6.46E-04 III Ka Qtz Anth

	T			
Cemetery:	CHELTENHAM	CEMETER	Y	
Sample #	H6/2			
Sat'd/vaodse etc	Х			
Sample Date	20/09/96			
Depth	6			
Description	dk yel-br			
	clayey sandy			
	silt			
Colour	7.5YR 4/6			
Grading				
>-2.25				
-2.0				
-1.5				
-1.0				
-0.5				
0.0				
0.5				
1.0				
1.5				
2.0				
2.5				
3.0				
3.5				
4.0				
<4.0				
Field Water Conte	nt ronrocontat	ivo 9/		
i leiu water conte	11	106 /0		
11000 01!6:4:	* *			
USCS Classification				
USCS	SC-ML			
Calculated Perme				
k - intrinsic perme	ability (Krumbe	in and Mor	nk, 1942), cm²	
K - hydraulic cond	luctivity (after F	lubbert's m	ethod), m/sec	
Chemistry				
EC	394			
pН	8.3			
CEC	13			
Extracted exchange	geable cations i	in mg/L		
Na	1.02E-02			
K	5.20E-03			
Ca	1.44E-01			
Mg	5.45E-02			
Al	3.04E-04			
Sr	5.04E-04			
Qualitative Minera		nents from	XRD Analysis	
Major	Qtz			
	III			
	Mus2			
Minor	Orth			
19111101	Mic			
	IVIIC			
Von. Min - :	Λ ====			
Very Minor	Arag			

Cemetery:	GUILDFORD C	EMETERY					Cemetery:	GUILDFORD (CEMETERY	
Sample #	G1/1	G1/2	G1/3	G1/4	G1/5	G1/6	Sample #	G2/1	G3/1	G3/2
Sat'd/vaodse etc					Х	Х	Sat'd/vaodse etc	Х		Х
Sample Date	13/11/96	13/11/96	13/11/96	13/11/96	13/11/96	13/11/96	Sample Date	13/11/96	13/11/96	13/11/96
Depth	1	2	2.8	3	4	6	Depth	5	2	3.5
Description	yel-br med-fine	yel-br med	yel-br pebbly	yel-br pebbly	yel-br pebbly	orange-br silty	Description	yel-red-br	It br med sand	It br med sand
	sand occ	sand	fine sand	coarse sand	coarse sand	sand, occ		clayey med		
	pebbles					pebbles		sand		
Colour	10YR 5/6	10YR 6/8	10YR 6/8	10YR 7/8	10YR 6/8	7.5YR 6/6	Colour	7.5YR 6/8	10YR 7/4	10YR 8/2
Grading							Grading			
>-2.25			0.0	0.0	0.0	0.0	>-2.25			
-2.0			42.8	13.9	2.4	3.5	-2.0			
-1.5			45.8	21.7	5.5	6.7	-1.5			
-1.0	0.0	0.0	46.5	28.3	9.6	13.1	-1.0	0.0	0.0	0.0
-0.5	0.2	0.2	47.8	39.0	23.1	24.3	-0.5	2.6	0.5	0.1
0.0	2.2	2.2	49.7	46.8	35.5	34.0	0.0	11.5	1.9	1.3
0.5	11.7	10.4	54.2	51.9	43.7	42.1	0.5	23.4	12.0	8.5
1.0	27.2	22.9	60.8	57.6	50.8	51.4	1.0	44.4	29.2	21.5
1.5	46.1	36.2	68.6	65.7	59.8	62.4	1.5	61.4	43.2	36.0
2.0	65.1	54.4	78.5	75.9	71.3	75.2	2.0	76.5	58.0	52.8
2.5	80.7	73.2	89.3	86.8	83.7	84.1	2.5	87.5	71.3	70.2
3.0	92.2	93.8	96.7	93.4	91.9	94.2	3.0	92.3	88.8	89.5
3.5	95.3	98.2	98.7	95.4	94.0	96.4	3.5	94.2	92.7	93.3
4.0	96.5	100.0	99.2	96.5	95.3	97.4	4.0	95.2	94.4	94.6
<4.0	98.3		100.2	99.3	98.6	100.1	<4.0	98.5	98.5	98.3
Field Water Conte	ent - representat	tive %					Field Water Conte	nt - representa	ıtive %	
	2	1	5	8	7	12		12	10	12
USCS Classificat							USCS Classificati	on		
USCS	SP	SP	SP	SP	SP	SP	USCS	SP-SC	SP	SP
Calculated Perme							Calculated Perme			
k - intrinsic perm	eability (Krumbe	ein and Monk,	1942), cm²				k - intrinsic perme	eability (Krumb	ein and Monk, 1	942), cm²
	2.09E-07	1.68E-07	3.83E-07	3.24E-07	2.58E-07	2.68E-07		3.11E-07	1.51E-07	1.53E-07
K - hydraulic con	ductivity (after I	lubbert's meth	nod), m/sec				K - hydraulic cond	ductivity (after	Hubbert's meth	od), m/sec
	2.03E-04	1.63E-04	3.72E-04	3.14E-04	2.50E-04	2.60E-04		3.02E-04	1.46E-04	1.48E-04
Chemistry							Chemistry			
EC	15.2	11.2	13.8	17.7	16.5	27.9	EC	22.1	16.8	17.7
pН	6.6	5.6	6.8	6.3	6.0	6.6	pН	6.2	7.0	7.5
CEC	44	9	11	27	38	24	CEC	21	36	66

EXtracted eXch	angeable cations	in mg/L					EXtracted eXcha	ngeable cations	in mg/L	
Na		2.20E-03	3.30E-03		2.27E-03	5.97E-03	Na			
K	4.64E-03	5.76E-04	1.86E-04	5.50E-03	4.81E-03	9.61E-04	K	1.87E-03	2.02E-03	7.84E-04
Ca	8.41E-02	8.58E-02	8.93E-02	1.66E-01	4.96E-02	1.42E-01	Ca	1.11E-01	1.11E-01	7.66E-02
Mg	3.52E-03	3.55E-03	4.15E-03	7.84E-03	4.08E-03	1.13E-02	Mg	7.20E-03	4.01E-03	3.48E-03
Al	2.67E-04	2.70E-04	3.14E-04	2.28E-04	1.73E-04	3.07E-04	Al	2.07E-04	3.48E-04	1.67E-04
Sr	2.78E-04	2.51E-04	2.77E-04	5.29E-04	1.77E-04	4.27E-04	Sr	3.39E-04	3.92E-04	2.36E-04
Qualitative Mine	eralogical Compo	nents from XRI) Analysis				Qualitative Mine	ralogical Compo	nents from XRI	Analysis
Major	Qtz	Qtz	Qtz	Qtz	Qtz	Qtz	Major	Qtz	Qtz	Qtz
								Ka		
Minor				Ka	Ka		Minor	Orth		orth
				Gib	Mus					
					Mic					
Very Minor	Ka		Rut	Mus	Gib		Very Minor			
	Mont									
	Mus, Gib									

			Cemetery:	GUILDFORD C	EMETERY				
G3/3	G5/1	G6/1	Sample #	G6/2	G6/3	G7/1	G7/2	G8/1	G8/2
Х			Sat'd/vaodse etc	Х	Х	Х	Х	Х	Х
13/11/96	14/11/96	14/11/96	Sample Date	14/11/96	14/11/96	14/11/96	14/11/96	14/11/96	14/11/96
6.0-6.5	4.4	2	Depth	3.9	5.4	2	4.2	5	5.6
It grey clayey	grey-white med	yel-br med.	Description	It br med sand	It grey-br	yel-br coarse	It grey-br	It grey med-	It grey clayey
fine sand	clayey sand	Sand			clayey sand;	sand	clayey fine	fine clayey	med-fine sand;
							sand	sand	with
					some grey-			with minor yel-	minor yel-br
					black organic			br staining	staining
					mat				
5Y 7/1	10YR 8/2	10YR 7/6	Colour	2.5Y8/3	10YR7/2	2.5Y 8/3	2.5Y 8/2	5Y 8/1	5Y 8/1
			Grading						
			>-2.25						
			-2.0						
			-1.5						
0.0	0.0		-1.0	0.0	0.0	0.0	0.0	0.0	0.0
1.5	2.3	0.0	-0.5	0.1	1.1	0.2	2.7	3.5	2.5
3.3	5.0	0.9	0.0	1.4	2.6	5.3	10.0	16.7	9.6
7.8	9.9	5.7	0.5	4.4	6.4	18.2	26.8	35.1	28.3
17.1	18.2	17.7	1.0	11.5	15.6	33.0	50.1	49.8	42.7
28.3	32.7	37.6	1.5	25.8	32.5	52.2	71.8	62.5	52.0
39.6	56.9	68.2	2.0	56.7	62.4	69.4	83.7	71.4	59.5
57.2	76.3	86.4	2.5	81.4	84.9	82.0	91.8	83.2	76.0
86.6	86.4	93.8	3.0	91.4	92.0	91.5	96.6	91.5	88.0
89.9	89.6	96.0	3.5	94.2	94.2	93.8	98.3	93.8	91.1
91.7	91.6	96.8	4.0	95.3	95.2	95.0	99.3	95.3	93.0
98.1	98.1	98.6	<4.0	98.0	98.3	98.3	99.3	99.6	98.9
			Field Water Conte	nt - representa					
16	12	1		16	13	10	13	14	17
			USCS Classificati						
SP-SC	SP-SC	SP	USCS	SP-SM	SP-SC	SP	SP	SP	SP-SM
			Calculated Perme						
			k - intrinsic perme						
1.28E-07	1.48E-07	2.62E-07		2.04E-07	2.51E-07	2.78E-07	4.93E-07	2.63E-07	1.61E-07
			K - hydraulic cond						
1.24E-04	1.43E-04	2.54E-04		1.98E-04	2.43E-04	2.70E-04	4.78E-04	2.55E-04	1.56E-04
			Chemistry						
28.0	28.7	19.5	EC	22.0	39.3	23.7	28.0	34.5	80.8
6.8	6.4	7.0	рН	6.4	6.7	6.6	6.1	5.4	5.1
14	36	3	CEC	14	22	16	26	41	23

•			EXtracted eXcha	angeable cations	in mg/L				
3.84E-03	2.77E-03	4.61E-03	Na			3.43E-03		3.54E-03	
1.23E-03	1.03E-04	6.71E-04	K	3.52E-04	2.09E-03	2.58E-03	1.20E-03	9.31E-04	2.82E-03
8.22E-02	6.90E-02	1.16E-01	Ca	5.47E-02	9.15E-02	1.13E-01	8.66E-02	9.64E-02	1.86E-01
1.67E-02	4.05E-03	3.89E-03	Mg	2.24E-03	5.09E-03	5.06E-03	1.18E-02	1.21E-02	2.54E-02
2.73E-04	1.39E-04	3.65E-04	Al	1.48E-04	1.44E-04	3.32E-04	1.38E-04	1.32E-04	2.24E-04
2.58E-04	2.21E-04	3.62E-04	Sr	1.84E-04	2.72E-04	3.41E-04	2.67E-04	3.10E-04	5.92E-04
			Qualitative Mine	ralogical Compoi	nents from XRD) Analysis			
Qtz	Qtz	Qtz	Major	Qtz	Qtz	Qtz	Qtz	Qtz	Qtz
	B/G			Orth			Ka	Ka	Ka
									Orth
Ka			Minor	Mus	Ka	Orth		Mont	
					Gib	Alb			
Orth	Ka		Very Minor		Mus		Gib	Alb	Alb
	Orth						Orth	Cal	
	?Fay								

APPENDIX L SUMMARY OF GROUNDWATER TEST RESULTS

Table L1. Water Sample Data

Abbreviations and Notes

- SWL 'standing water level' prior to sampling, measured in depth below ground surface (metres), corrected from measurement at the top of the well collar.
- n/a the result has either been 'not attained' or has been rejected and is hence 'not available'.
- n/d bacterial analyte 'not detected' in a specific test.
- "total NOx to use" this value has been derived from a consideration of Hach testing and commercial laboratory analyses.
- "total N to use" this value has been derived from recalculation following consideration of Hach NO2, NO3, NH4 results and commercial laboratory results for Total N and Kjeldahl N.
- "total P" this value has been derived from recalculation following consideration of Hach PO4 results and commercial laboratory results for Total P.
- "HCO3 to use" this value has been derived from recalculation following consideration of all Hach alkalinity and commercial laboratory results for HCO3 or CaCO3 alkalinity.
- "high TDS flag: care balance" this flag operates if calculated TDS is greater than 1000 mg/L; at such values the validity of the ionic balance can be affected; the data was considered in the light of these results and appropriate corrections have been made where necessary. The flag 'use%bal' means that the normally derived ionic balance value is correct for assessing the total validity of the composition data.
- "low sum an/cat tolerance" this flag assisted in consideration of the total validity of the ionic balance calculation and allowed tolerances of up to +/- 12.5% where appropriate under several scenarios (see text for discussion); a value 'OK high%' applies where a tolerance >10% has been considered.
- "analysis adjustments" (last entry for all columns) meaning of abbreviations:-
 - DP some results of bacterial testing have been rejected following consideration of disinfection quality control sampling which has been retrospectively applied to all samples. Individual results in the data include the word "reject".
 - OC the organic carbon analyte has adversely affected these results; all data except some derived or calculated are relevant.

- P partial analysis; not all analytes have been obtained for various reasons, some groupings or individuals missing. Major analytes (Al, B, Ca, K, Mg, Na, Si) should be viewed with caution because ionic balance cannot be confirmed; all other analyte data is useable. The term "partial anal" appears in the results tables.
- R reject the inorganic chemical analysis as a totality; some specific analyte values may be used in individual analyses; these are:-
 - * all HACH ANALYTES NO2, NO3, NH4, PO4
 - * commercial laboratory analyses of Cl, SO₄, TOC, Hg, Br
 - * recalculated values for Total N and Total P
 - * all minor ions As, Cd, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Se, Sr, Zn.

Accuracy of Reported Data and Calculations

All data is reported at the level of accuracy applicable for the test undertaken or for the calculation made. Whereas individual analytes may have been sometimes measured or derived at a higher level of accuracy or with more significant figures, e.g. pH to 2 decimal places in the field, this has been adjusted where such a value would be inappropriate. ICP analyses, for instance, habitually return results of 4 or more significant figures; but this level of accuracy cannot be accepted when considered in the context of all the sampling, preparation and testing steps required to obtain any one result. A consequence of occasionally receiving results from commercial laboratories for minor analytes, is that the reporting levels are often higher than the concentration actually present in the sample, so that a zero result is returned. Results for bacterial testing e.g <1, <2, reflect dilution characteristics used in the various tests: for further analyses such results are treated as equal to zero.

вот														
sample#	B1/1	B111/1	B1/2	B1/3	B1/4	B1/5	B2/6	B2/666	B3/1	B3/2	B3/3	B3/4	B3/5	CONT'D: sample#
date sampled	26-Mar-97	duplicate	28-May-97	1-Aug-97	28-Oct-97	10-Mar-98	11-Aug-98	11-Aug-98	25-Mar-97	29-May-97	30-Jul-97	27-Oct-97	9-Mar-98	date sampled
SWL (m)	0.70	bacterial	0.62	0.54	0.78	0.93	3.49		1.50	1.39	1.39	1.48	1.63	SWL (m)
pump rate (L/min)	0.25	nutrients	0.17	0.92	0.28	0.08	0.92		very slow	0.47	0.43	0.33	0.15	pump rate (L/min)
FIELD PARAMETERS														FIELD PARAMETERS
EC (uS/cm)	1014		1050	1315	1216	1869	367		1116	937	1158	1140	1155	EC (uS/cm)
pH	6.7		6.5	6.9	6.4	6.6	6.0		6.3	6.4	7.1	6.7	6.2	pH
Eh (mV)	-36		-37	-3	-47	-78	82		64	67	-63	-68	-74	Eh (mV)
deg C	22.5		20.1	12.4	17.0	22.4	17.5		23.5	20.9	15.3	21.7	26.6	deg C
O2 %Sat	n/a		16.6	40.7					n/a	27.7	n/a	n/a	n/a	O2 %Sat
turbid sample														turbid sample
yellow oxidation						yellow					yellow	slight	slight	yellow oxidation
H2S presence											(pungent, putrio	d)		H2S presence
FIELD ANALYTES (mg/L)														FIELD ANALYTES (mg/L)
CO2	101		150	50	79	360	58		106	180	?12	90	22	CO2
alkalinity as CaCO3	270		206	177	258	332	21		134	141	218	258	166	alkalinity as CaCO3
HACH ANALYTES (mg/L)														HACH ANALYTES (mg/L)
NO2 - N {for ion *3.3}	0.000		0.000	0.000	0.000	0.000	0.008		0.011	0.014	0.000	0.000	0.000	NO2 - N {for ion *3.3}
NO3 - N {for ion *4.4}	0.0		0.0	0.5	1.0	0.0	9.5		0.4	1.0	0.0	0.0	0.0	NO3 - N {for ion *4.4}
NH3 - N {for ion *1.29}	1.33		2.30	1.21	0.92	0.87	1.68		1.26	6.42	n/a	8.21	1.66	NH3 - N {for ion *1.29}
PO4(3-) {for P *0.326}	1.9		14.6	0.0	0.4	0.3	0.5		1.1	1.0	n/a	0.0	0.0	PO4(3-) {for P *0.326}
total inorganic N - Hach	1.3		2.3	1.7	1.9	0.9	11.2		1.7	7.4	0.0	8.2	1.7	total inorganic N - Hach
BACTERIAL SUITE (CFU/100mL)	i													BACTERIAL SUITE (CFU/100m
BOD (mg/L)	<2		<2	3	12	3	<2		2.0	2.0	140.0	4.0	<2	BOD (mg/L)
Total Coliforms	10	10	58	2	14	<2	6		<1	38	1	60	<2	Total Coliforms
Faecal Coliforms	2	2	20	<1		<1	<1		<1	<2	<1		<1	Faecal Coliforms
Faecal Streptococci	<1	<1	<2	<1	<1	<2	<1		<1	<2	<1	<1	<1	Faecal Streptococci
E.Coli	<1	1		<1	<1	<1					<1	<1	<1	E.Coli
Pseudomonas aeruginosa			<2	<1	<1	<2	<1			<2	<1	<1	<1	Pseudomonas aeruginosa
Clostridium perfringens/spp														Clostridium perfringens/spp
Yersinia spp.				·										Yersinia spp.
Salmonella spp.														Salmonella spp.
STANDARD ANALYTE SUITE (m	g/L)			·										STANDARD ANALYTE SUITE (
total NOx to use	0.0	0.0	0.0	0.5	1.0	0.0	9.5	0.0	0.6	1.0	0.0	0.0	0.0	total NOx to use
kjeldahl N (organic N)				· · · · · · · · · · · · · · · · · · ·					1.7					kjeldahl N (organic N)
total N to use	1.3	0.7	2.3	1.7	1.9	1.1	18.0	17.0	3.5	7.4	28.0	9.2	1.7	total N to use
total P	0.6	<0.005	4.8	0.0	0.1	0.1	0.2	0.0	0.4	0.3	0.0	<0.005	0.0	total P
total organic carbon (TOC)	66.0	67.0	11.0	13.0	15.3	16.0	5.6	5.5	15.0	11.0	87.0	19.1	12.0	total organic carbon (TOC)
CI	120.0	116.0	160.0	210.0	150.0	150.0	38.5	38.5	140.0	120.0	100.0	130.0	135.0	CI

CONT'D: sample#	B1/1	B111/1	B1/2	B1/3	B1/4	B1/5	B2/6	B2/666	B3/1	B3/2	B3/3	B3/4	B3/5	CONT'D: sample#
SO4	13.0	12.0	22.0	70.0	81.0	130.0	22.2	22.2	130.0	88.0	30.0	71.0	135.0	SO4
total S - lab														total S - lab
HCO3 to use	329.7	0.0	251.2	340.0	420.0	404.8	25.1	0.0	162.9	171.9	380.0	314.6	202.4	HCO3 to use
CO3 - lab														CO3 - lab
Hg	<0.001		0.0005	<0.0005	<0.0005	<0.0005	<0.0005		<0.001	<0.0005	<0.0005	<0.0005	<0.0005	Hg
UTS - ICP ANALYTES (mg/L)														UTS - ICP ANALYTES (mg/L)
В	0.57	0.49	0.82	2.24	0.45	0.46	0.10		0.38	0.39	1.11	0.32	0.28	В
Na	119.1	119.4	130.4	152.4	128.3	157.8	19.4		110.6	87.7	85.5	89.1	105.3	Na
Mg	24.8	25.8	27.1	31.6	39.8	62.8	4.6		28.6	21.3	21.6	29.5	28.3	Mg
Al	0.2	0.2	0.2	0.7	0.3	0.2	0.1		0.2	0.3	0.7	0.3	0.2	Al
Si	1.8	1.0	3.3	4.0	3.4	4.0	4.2		1.1	3.6	4.0	3.7	4.9	Si
К	8.7	8.9	9.0	10.3	9.9	15.5	18.0		14.8	24.8	19.8	25.3	11.5	К
Ca	64.8	64.1	71.0	84.8	102.3	206.8	29.6		83.1	79.5	73.7	99.7	91.8	Са
Cr	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	Cr
Mn	1.94E-01	1.96E-01	1.99E-01	2.32E-01	2.27E-01	2.90E-01	6.10E-03		2.15E-01	1.48E-01	4.75E-01	3.42E-01	2.91E-01	Mn
Fe	8.39E+00	8.38E+00	6.21E+00	8.49E+00	1.04E+01	8.81E+00	8.74E-02		1.96E+00	7.60E-01	2.36E+01	1.71E+01	1.58E+01	Fe
Ni	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	Ni
Zn	2.05E-03	2.55E-03	1.60E-04	3.57E-03	7.09E-03	9.82E-03	3.72E-03		4.79E-03	5.81E-03	5.87E-03	1.12E-02	1.68E-02	Zn
Cu	6.91E-04	1.58E-02	1.01E-03	6.66E-04	0.00E+00	1.45E-03	n/a		1.50E-02	1.01E-02	7.23E-04	1.28E-03	2.21E-03	Cu
As	1.46E-04	1.33E-04	1.60E-04	1.70E-04	1.54E-04	2.65E-04	9.93E-05		1.72E-04	2.60E-04	1.70E-03	8.72E-04	1.45E-03	As
Se	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	Se
Sr	3.10E-01	3.21E-01	3.10E-01	3.77E-01	4.16E-01	8.22E-01	1.90E-01		3.94E-01	3.31E-01	3.17E-01	3.90E-01	3.89E-01	Sr
Мо	6.51E-04	5.86E-04	6.83E-04	5.47E-04	8.61E-04	1.66E-02	4.12E-04		4.49E-03	4.87E-03	1.18E-02	7.32E-03	5.16E-03	Мо
Cd	6.29E-05	2.95E-05	8.89E-05	3.39E-05	2.14E-04	1.05E-04	1.67E-04		5.35E-04	5.54E-04	8.42E-05	1.33E-03	1.23E-04	Cd
Pb	2.31E-04	8.82E-04	3.76E-04	3.05E-04	4.03E-04	4.52E-04	1.16E-03		1.88E-03	2.55E-03	7.07E-04	7.66E-04	6.80E-04	Pb
F by IC - if analysed														F by IC - if analysed
Br value to use	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	Br value to use
CERTIFICATES														CERTIFICATES
certificate numbers for	97-03-199	97-03-199	97-05-165	97-08-009	97-10-183	98-03-079	98-08-059	98-08-059	97-03-198	97-05-180	97-07-166	97-10-171	98-03-066	certificate numbers for
above analyses														above analyses
ELECTRONIC BALANCE (%), R	RATIOS, AND AN	IALYSIS VALIE	DITY CHECK											ELECTRONIC BALANCE (%), RA
calculated TDS (mg/L)	573		570	738	726	928	226		610	541	719	655	633	calculated TDS (mg/L)
high TDS flag;care balance	use %bal		use %bal	use %bal	use %bal	use %bal	use %bal		use %bal	high TDS flag;care balance				
sum cation millequivalents	11.106	11.079	12.090	14.209	14.685	23.169	3.299		11.877	10.690	10.607	13.173	12.504	sum cation millequivalents
sum anion millequivalents	9.119	3.522	9.549	12.991	12.882	13.582	2.651		9.390	8.136	9.674	10.302	9.936	sum anion millequivalents
low sum an/cat tolerance	OK high%	partial anal	OK high%	OK high%		OK high%	OK high%	partial anal	OK high%				OK high%	low sum an/cat tolerance
ionic balance % error	9.8	51.8	11.7	4.5	6.5	26.1	10.9		11.7	13.6	4.6	12.2	11.4	ionic balance % error
A = S/K (calc TDS/cond)	0.6		0.5	0.6	0.6	0.5	0.6		0.5	0.6	0.6	0.6	0.5	A = S/K (calc TDS/cond)
analysis adjustments		Р				R		Р		R		R		analysis adjustments

B3/6	B4/1	B4/2	B4/3	B4/4	B4/6	B5/1	B5/2	B5/3	B5/4	B5/5	B6/2	B6/3	CONT'D: sample#	B6/6	B7/1
11-Aug-98	25-Mar-97	29-May-97	30-Jul-97	27-Oct-97	10-Aug-98	25-Mar-97	28-May-97	31-Jul-97	27-Oct-97	10-Mar-98	29-May-97	31-Jul-97	date sampled	11-Aug-98	25-Mar-97
1.17	1.82	1.53	1.58	1.90	0.78	3.40	2.85	2.68	2.28	3.32	2.04	2.01	SWL (m)	1.33	1.75
1.20	0.25	0.50	0.80	0.48	0.60		0.33	1.60	0.25	0.65	0.29	1.60	pump rate (L/min)	0.86	
													FIELD PARAMETERS		
508	484	454	634	522	369	596	348	576	628	346	670	515	EC (uS/cm)	838	910
6.5	6.6	6	7.0	6.3	7.0	6.0	6.0	5.8	5.4	5.8	6.2	6.5	pH	6.4	6.3
80	-75	153	124	104	134	178	167	213	168	64	77	83	Eh (mV)	115	45
17.0	27.5	21	15.1	20.4	18.2	24.8	21.4	15.3	20.2	24.2	21.9	17.2	deg C	17.9	24.0
23.9	n/a	30	27.4			n/a	53.4	55.2	n/a	27.9	12.1	35.7	O2 %Sat	54.5	n/a
										highly colored			turbid sample		
						yellow	yellow		yellow/orange			yellow	yellow oxidation		
strong													H2S presence		
													FIELD ANALYTES (mg/L)		
38	71	65	76	52	56	34	20	84	26	n/a	221	78	CO2	214	100
186	135	104	115	112	87	49	30	12	59	40	85	53	alkalinity as CaCO3	86	178
													HACH ANALYTES (mg/L)		
0.166	0.020	0	0.007	0.005	0.002	0.009	0.007	0.002	0.000	0.000	0.001	0.004	NO2 - N {for ion *3.3}	0.003	0.007
5.6	0.0	3	1.5	0.0	4.2	0.9	3.2	15.3	6.4	0.1	3.5	7.5	NO3 - N {for ion *4.4}	4.2	5.7
2.44	0.58	0	1.48	0.35	0.15	n/a	0.90	0.29	0.20	0.17	0.73	0.51	NH3 - N {for ion *1.29}	0.23	1.72
2.3	2.8	1	1.0	3.4	1.4	n/a	13.7	0.5	0.1	4.6	0.9	1.7	PO4(3-) {for P *0.326}	0.9	1.1
8.2	0.6	2.9	3.0	0.4	4.4	n/a	4.1	15.6	6.6	0.3	4.3	8.0	total inorganic N - Hach	4.4	7.4
													BACTERIAL SUITE (CFU/100mL))	
8.0	<2	6	3.0	<2	<2	<2	<2	<2	8.0	<2	3.0	<2	BOD (mg/L)	<2	<2
40	<1	210	770	22	270	<1	<2	<1	25	<2	2	63	Total Coliforms	14	<1
<1	<1	<2	<1		<1	<1	<2	<1		<1	<2	<1	Faecal Coliforms	<1	<1
<1	<1	<2	<1	<1	4	<1	<2	<1	<1	<2	<2	<1	Faecal Streptococci	<1	<1
			<1	<1				<1	<1	<1		<1	E.Coli		
<1		<2		<1	<2		<2	<1	<1	<2	<2	<1	Pseudomonas aeruginosa	<1	
													Clostridium perfringens/spp		
													Yersinia spp.		
													Salmonella spp.		
g/L)		-											STANDARD ANALYTE SUITE (m	g/L)	
5.8	0.3	3	1.5	0.0	4.2	3.8	3.2	15.3	6.4	0.1	3.6	7.5	total NOx to use	4.2	8.1
	0.6												kjeldahl N (organic N)		8.1
10.0	1.5	3	3.0	0.8	4.4	4.3	7.1	19.0	11.0	1.8	4.3	8.0	total N to use	7.2	17.9
0.8	0.9	0.3	0.3	1.1	0.4	0.0	4.5	0.2	0.0	1.5	0.3	0.6	total P	0.3	0.4
10.0	11.0	7.5		9.6	7.4	16.0	6.6	7.4	14.1	8.0	11.0	11.0	total organic carbon (TOC)	11.0	13.0
50.5	44.0	59	59.0	50.0	32.3	95.0	52.0	72.0	89.0	44.0	69.0	48.0	CI	144.0	92.0

B3/6	B4/1	B4/2	B4/3	B4/4	B4/6	B5/1	B5/2	B5/3	B5/4	B5/5	B6/2	B6/3	CONT'D: sample#	B6/6	B7/1
50.8	15.0	22	32.0	23.0	22.6	48.0	28.0	44.0	76.0	26.0	89.0	44.0	SO4	49.5	78.0
													total S - lab		
226.3	164.4	126	200.0	190.0	106.3	60.0	37.1	34.0	47.0	49.3	103.6	96.0	HCO3 to use	104.9	216.5
													CO3 - lab		
<0.0005	<0.001	<0.0005	<0.0005	<0.0005	<0.0005	<0.001	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	Hg	<0.0005	<0.001
													UTS - ICP ANALYTES (mg/L)		
0.18	0.11	0.02	0.55	0.13	0.04	0.16	0.00	0.33	0.17	0.01	0.01	0.38	В	0.18	0.22
42.4	30.8	29.7	50.8	41.8	21.9	68.2	35.1	57.3	59.2	34.3	64.9	49.1	Na	85.3	73.2
8.1	12.9	9.9	12.8	13.3	5.7	9.0	6.2	9.8	12.2	6.2	18.5	10.0	Mg	12.9	20.6
0.1	0.2	0.3	0.5	0.4	0.0	0.3	0.3	0.8	0.4	0.3	0.3	0.4	Al	0.1	0.1
3.4	0.1	2.6	3.7	3.3	4.1	0.0	2.5	3.2	2.9	3.4	3.9	3.3	Si	3.1	0.0
15.1	8.1	8.4	11.2	9.2	6.0	14.2	11.5	12.3	17.0	8.0	13.2	8.6	К	13.7	23.8
34.5	48.6	51.2	66.8	55.9	35.0	30.9	22.6	33.5	45.4	24.0	49.7	31.9	Ca	65.6	75.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Cr	0.0	0.0
9.55E-02	6.73E-02	8.97E-04	3.77E-03	1.60E-02	8.76E-04	5.69E-03	2.38E-03	1.10E-02	2.78E-03	4.74E-03	1.23E-01	7.05E-02	Mn	1.74E-02	3.69E-01
5.45E-01	4.48E+00	9.18E-02	1.63E-01	2.57E-01	8.42E-02	3.20E-01	1.27E-01	9.75E-02	6.84E-01	3.05E-01	1.72E+00	2.87E+00	Fe	1.56E-01	1.94E+00
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Ni	0.0	0.0
9.17E-03	7.59E-03	7.53E-01	7.14E-01	5.20E-02	1.89E-01	2.39E-03	4.11E-03	1.90E-02	6.82E-03	7.79E-03	3.81E-03	4.89E-03	Zn	3.80E-03	8.26E-04
n/a	1.49E-02	1.18E-03	4.12E-03	7.43E-04	n/a	3.29E-03	2.07E-03	4.73E-03	1.26E-03	1.37E-03	8.38E-04	3.79E-03	Cu	n/a	1.08E-02
1.75E-04	1.84E-04	7.17E-05	1.12E-04	7.96E-05	7.68E-05	6.84E-05	5.75E-05	5.48E-05	6.25E-05	5.55E-05	4.90E-04	5.70E-05	As	3.15E-04	8.83E-05
0.00E+00	0.00E+00	0.00E+00	1.17E-04	0.00E+00	0.00E+00	0.00E+00	0.00E+00	9.57E-04	0.00E+00	5.82E-03	0.00E+00	0.00E+00	Se	0.00E+00	0.00E+00
1.90E-01	2.14E-01	1.65E-01	2.22E-01	1.92E-01	1.37E-01	2.04E-01	1.21E-01	2.23E-01	2.70E-01	1.36E-01	2.53E-01	1.69E-01	Sr	2.69E-01	3.62E-01
2.82E-03	4.83E-04	1.06E-03	1.18E-03	8.25E-04	1.05E-03	6.08E-05	2.27E-04	1.27E-04	1.24E-04	1.57E-04	3.38E-03	1.73E-03	Мо	2.85E-03	3.40E-04
6.65E-05	5.14E-05	1.09E-03	8.68E-04	5.21E-04	3.67E-04	2.31E-05	7.19E-04	1.45E-04	1.73E-04	4.89E-05	5.23E-04	1.06E-04	Cd	9.03E-05	3.69E-05
2.23E-03	1.45E-03	1.37E-03	1.88E-03	1.13E-03	1.31E-03	1.20E-03	9.60E-04	1.09E-03	5.73E-04	8.84E-04	4.32E-04	4.00E-04	Pb	6.16E-04	1.32E-03
													F by IC - if analysed		
0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	Br value to use	0.00E+00	0.00E+00
													CERTIFICATES		
98-08-059	97-03-198	97-05-180	97-07-166	97-10-171	98-08-043	97-03-198	97-05-165	97-07-169	97-10-171	98-03-079	97-05-180	97-07-169	certificate numbers for	98-08-059	97-03-198
													above analyses		
TIOS, AND AN	ALYSIS VALIE	ITY CHECK											ELECTRONIC BALANCE (%), RA	ATIOS, AND AN	NALYSIS VALII
353	253	257	335	293	199	325	222	332	381	187	383	284	calculated TDS (mg/L)	460	542
use %bal	use %bal	use %bal	use %bal	use %bal	use %bal	use %bal	use %bal	use %bal	use %bal	use %bal	use %bal	use %bal	high TDS flag;care balance	use %bal	use %bal
4.828	5.267	4.910	7.049	6.019	3.339	5.663	3.561	5.410	6.374	3.463	7.319	4.958	sum cation millequivalents	8.431	9.440
6.673	4.337	4.424	5.748	5.111	3.465	4.729	3.318	4.604	5.319	2.744	5.778	4.428	sum anion millequivalents	7.139	8.209
	OK high%	OK high%	OK high%	OK high%	OK high%	OK high%	OK high%			OK high%		OK high%	low sum an/cat tolerance	OK high%	
-16.0	9.7	5.2	10.2	8.2	-1.9	9.0	3.5	8.1	9.0	11.6	11.8	5.6	ionic balance % error	8.3	7.0
0.7	0.5	0.6	0.5	0.6	0.5	0.5	0.6	0.6	0.6	0.5	0.6	0.6	A = S/K (calc TDS/cond)	0.5	0.6
R											R		analysis adjustments		

B7/2	B7/3	B7/4	B7/5	B7/6	B8/1	B8/2	B8/3	B8/4	B8/5	B8/6	CONT'D: sample#	B9/1	B9/2	B9/3	B9/4
29-May-97	31-Jul-97	27-Oct-97	9-Mar-98	11-Aug-98	25-Mar-97	29-May-97	31-Jul-97	28-Oct-97	9-Mar-98	10-Aug-98	date sampled	25-Mar-97	29-May-97	1-Aug-97	28-Oct-97
1.20	1.19	1.65	1.96	1.45	2.68	2.14	2.03	2.52	3.04	1.59	SWL (m)	2.65	2.04	1.93	2.17
0.80	0.69	0.51	0.92	1.04	0.75	0.57	0.96	0.65	0.46	0.86	pump rate (L/min)		0.44	1.15	0.95
											FIELD PARAMETERS				
453	515	632	1044	578	458	732	570	444	918	638	EC (uS/cm)	607	523	364	551
6.4	6.6	6.4	6.1	6.7	6.2	6.5	6.8	6.3	6.3	6.8	pH	6.3	6.4	6.7	6.2
96	126	98	53	154	138	160	170	139	64	101	Eh (mV)	160	132	151	118
21.1	16.4	19.2	22.5	16.9	24.7	21.2	15.4	18.9	24.1	16.6	deg C	23.2	21.5	15.8	18.1
5.3	16.3	n/a	14.6	62.8	15.2	28.9	11.4	n/a	10.2	79.4	O2 %Sat	25.0	22.9	58.6	n/a
											turbid sample				
											yellow oxidation				
											H2S presence				
											FIELD ANALYTES (mg/L)				
54	140	137	101	81	62	20	69	154	104	66	CO2	75	7	90	137
88	105	56	96	58	159	162	124	119	116	135	alkalinity as CaCO3	86	90	66	72
											HACH ANALYTES (mg/L)				
0.012	0.005	0.015	0.005	0.011	0.005	0.000	0.002	0.000	0.005	0.004	NO2 - N {for ion *3.3}	0.005	0.000	0.000	0.015
4.5	4.4	6.1	1.6	5.0	0.0	7.6	4.6	0.6	4.7	3.1	NO3 - N {for ion *4.4}	0.8	18.7	3.8	2.5
0.00	0.50	2.90	0.33	0.28	0.44	0.77	0.13	0.08	1.39	0.23	NH3 - N {for ion *1.29}	0.63	0.27	0.16	0.18
0.0	1.2	0.4	0.5	0.7	4.3	0.2	2.5	1.0	0.5	1.3	PO4(3-) {for P *0.326}	2.8	2.7	0.9	3.2
4.5	4.9	9.0	2.0	5.3	0.4	8.3	4.7	0.7	6.1	3.3	total inorganic N - Hach	1.4	19.0	4.0	2.7
											BACTERIAL SUITE (CFU/100mL)			
3.0	4.0	<2	3.0	<2	<2	4.0	<2	5.0	<2	<2	BOD (mg/L)	<2	3.0	<2	<2
22	57	1	<2	30	<1	16	12	10	<2	80	Total Coliforms	<1	2	<1	1500
<2	<1		<1	<1	<1	<2	<1		<1	<1	Faecal Coliforms	<1	<2	<1	
<2	<1	<1	<1	<1	<1	<2	<1	<1	<1	1	Faecal Streptococci	<1	<2	<1	<1
	<1	<1	<1				<1	<1	<1		E.Coli			<1	<1
<2	<1	<1	<1	<1		<2	<1	<1	<1	<1	Pseudomonas aeruginosa		<2	<1	<1
											Clostridium perfringens/spp				
											Yersinia spp.				
											Salmonella spp.				
											STANDARD ANALYTE SUITE (m	ıg/L)			
4.5	4.4	6.1	1.6	5.0	1.0	7.6	4.6	0.6	4.7	3.1	total NOx to use	1.6	18.7	3.8	2.5
					1.0						kjeldahl N (organic N)	1.6			
6.1	4.9	9.0	2.3	8.9	2.5	8.3	4.7	1.0	10.0	4.4	total N to use	3.7	19.0	5.0	4.2
0.0	0.4	0.1	0.2	0.2	1.4	0.1	0.8	0.4	0.2	0.4	total P	0.9	0.9	0.3	1.0
6.0	8.7	9.0	8.5	6.4	10.0	5.0	4.8	8.7	9.8	7.0	total organic carbon (TOC)	9.1	6.0	4.7	8.8
66.0	50.0	62.0	130.0	78.0	42.0	77.0	50.0	49.0	100.0	86.0	CI	76.0	68.0	41.0	71.0

B7/2	B7/3	B7/4	B7/5	B7/6	B8/1	B8/2	B8/3	B8/4	B8/5	B8/6	CONT'D: sample#	B9/1	B9/2	B9/3	B9/4
27.0	39.0	26.0	150.0	17.0	15.0	31.0	21.0	21.0	76.0	44.3	SO4	61.0	23.0	30.0	55.0
											total S - lab				
107.3	127.8	180.0	117.0	70.7	193.6	197.5	190.0	145.1	160.9	164.8	HCO3 to use	104.9	110.2	58.0	125.0
											CO3 - lab				
<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.001	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	Hg	<0.001	<0.0005	<0.0005	<0.0005
											UTS - ICP ANALYTES (mg/L)				
0.00	0.09	2.25	1.27	0.09	0.39	1.80	0.06	0.68	0.46	0.09	В	0.33	0.21	0.88	0.40
35.6	39.3	47.6	94.7	55.0	27.8	40.0	33.3	33.6	73.4	48.8	Na	52.1	40.7	29.8	56.0
7.9	7.4	16.5	27.2	7.0	8.0	11.6	8.4	8.6	21.5	9.0	Mg	12.2	10.2	6.9	12.0
0.2	0.3	0.3	0.2	0.0	0.3	0.3	0.3	0.3	0.2	0.0	Al	0.1	0.3	0.8	0.3
3.2	3.3	4.4	4.6	3.6	2.8	9.1	4.9	4.5	3.8	4.7	Si	1.5	3.2	3.2	2.9
9.2	14.0	12.4	18.7	15.0	6.2	9.7	6.7	7.0	18.6	6.7	К	10.7	9.1	7.0	9.7
42.2	47.0	59.3	83.8	36.0	53.3	104.2	72.4	55.6	78.5	81.0	Ca	50.7	52.5	30.3	48.5
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Cr	0.0	0.0	0.0	0.0
3.20E-02	5.55E-02	3.50E-01	5.61E-01	1.73E-02	2.48E-02	7.55E-02	2.74E-03	1.29E-02	2.94E-01	9.30E-03	Mn	1.46E-02	1.04E-02	4.31E-03	1.03E-02
3.41E-01	4.61E-01	5.42E-01	3.90E-01	8.13E-02	1.80E-01	1.44E-01	2.20E-01	1.49E-01	2.69E-01	1.27E-01	Fe	1.79E-01	1.03E-01	1.25E-01	1.71E-01
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Ni	0.0	0.0	0.0	0.0
9.31E-03	1.60E-02	3.98E-02	5.85E-03	6.42E-02	1.39E-03	4.79E-03	9.94E-03	2.99E-03	1.08E-02	2.21E-02	Zn	2.44E-03	1.79E-03	2.13E-03	1.82E-02
5.31E-03	4.42E-03	1.33E-03	1.32E-03	n/a	1.47E-03	7.87E-04	2.51E-03	1.66E-03	1.20E-03	n/a	Cu	1.64E-02	6.14E-04	1.32E-03	1.36E-03
5.39E-05	1.17E-04	1.92E-04	1.26E-04	1.36E-04	4.66E-05	3.10E-04	1.22E-04	1.21E-04	7.86E-05	9.10E-04	As	6.78E-05	6.62E-05	6.94E-05	9.55E-05
0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	3.98E-03	2.29E-03	2.18E-03	0.00E+00	0.00E+00	Se	0.00E+00	1.84E-04	3.86E-04	3.09E-04
1.64E-01	1.83E-01	2.15E-01	3.43E-01	1.63E-01	1.79E-01	2.76E-01	2.20E-01	1.61E-01	3.30E-01	2.08E-01	Sr	2.23E-01	1.91E-01	1.07E-01	1.91E-01
3.16E-04	4.24E-04	1.66E-03	9.10E-04	8.99E-04	8.33E-04	1.66E-03	7.32E-04	1.24E-03	1.35E-03	7.54E-04	Mo	7.29E-04	6.68E-04	1.23E-03	1.14E-03
1.52E-04	9.05E-05	2.70E-04	9.24E-05	8.13E-05	6.80E-05	1.58E-04	3.62E-05	1.13E-04	1.71E-04	9.38E-05	Cd	5.84E-05	7.48E-05	6.91E-05	2.04E-04
1.24E-03	3.37E-03	1.62E-03	7.98E-04	1.85E-03	7.36E-04	5.75E-04	4.62E-04	5.79E-04	1.17E-03	7.70E-04	Pb	1.63E-03	5.29E-04	6.16E-04	1.08E-03
											F by IC - if analysed				
0.00E+00	Br value to use	0.00E+00	0.00E+00	0.00E+00	0.00E+00										
											CERTIFICATES				
97-05-180	97-07-169	97-10-171	98-03-066	98-08-059	97-03-198	97-05-180	97-07-169	97-10-183	98-03-066	98-08-043	certificate numbers for	97-03-198	97-05-180	97-08-009	97-10-183
											above analyses				
ITY CHECK											ELECTRONIC BALANCE (%), RA	ATIOS, AND AN	IALYSIS VALII	DITY CHECK	
267	284	353	579	284	262	407	303	255	491	376	calculated TDS (mg/L)	336	338	200	337
use %bal	high TDS flag;care balance	use %bal	use %bal	use %bal	use %bal										
4.580	5.117	6.964	11.080	5.176	4.756	8.241	5.979	5.170	9.500	7.105	sum cation millequivalents	6.147	5.520	3.663	6.152
4.504	4.669	5.685	8.841	4.092	4.807	6.599	5.365	4.272	7.393	6.310	sum anion millequivalents	5.278	5.617	3.031	5.475
OK high%		low sum an/cat tolerance	OK high%		OK high%										
0.8	4.6	10.1	11.2	11.7	-0.5	11.1	5.4	9.5	12.5	5.9	ionic balance % error	7.6	-0.9	9.4	5.8
0.6	0.6	0.6	0.6	0.5	0.6	0.6	0.5	0.6	0.5	0.6	A = S/K (calc TDS/cond)	0.6	0.6	0.5	0.6
	-			-							analysis adjustments				

B999/4 B9/5 B9/6 B11/E B11/E2* B12/6 B12/668 B12/67 P-Mar-98 10-Aug-98 22-Apr-98 22-Apr-98 10-Aug-98 10-Aug-98							
10-Aug-98 10-Aug-98 22-Apr-98 10-Aug-98 10-A	D000/4	D0/5	D0/0	D44/E	D44/E0*	D40/0	D40/000
2.43							
0.72	20-001-97				22-Api-90		10-Aug-90
585 479 554 564 826 6.2 6.5 5.8 5.7 6.7 74 142 152 132 75 23.0 18.8 23.0 23.5 17.0 12.4 67.0 n/a n/a 33.4 208 60 46 53 70 65 25 118 0.005 0.003 0.002 0.000 0.007 1.5 2.9 0.7 0.2 0.0 0.46 0.29 0.12 0.08 2.46 1.2 0.6 0.6 0.7 0.9 2.0 3.2 0.8 0.3 2.5 600 <2					0.44		
6.2 6.5 5.8 5.7 6.7 74 142 152 132 75 23.0 18.8 23.0 23.5 17.0 12.4 67.0 n/a n/a 33.4 208 60 46 53 70 65 25 118 0.005 0.003 0.002 0.000 0.007 1.5 2.9 0.7 0.2 0.0 0.46 0.29 0.12 0.08 2.46 1.2 0.6 0.6 0.7 0.9 2.0 3.2 0.8 0.3 2.5 5.0 <2		0.72	0.77	0.43	0.44	0.04	
74 142 152 132 75 23.0 18.8 23.0 23.5 17.0 12.4 67.0 n/a n/a 33.4 12.4 67.0 n/a n/a 33.4 208 60 46 53 70 65 25 118 0.005 0.003 0.002 0.000 0.007 1.5 2.9 0.7 0.2 0.0 0.46 0.29 0.12 0.08 2.46 1.2 0.6 0.6 0.7 0.9 2.0 3.2 0.8 0.3 2.5 5.0 <2		585	479	554	564	826	
23.0		6.2	6.5	5.8	5.7	6.7	
12.4 67.0 n/a n/a 33.4 208 60 46 53 70 65 25 118 0.005 0.003 0.002 0.000 0.007 1.5 2.9 0.7 0.2 0.0 0.46 0.29 0.12 0.08 2.46 1.2 0.6 0.6 0.7 0.9 2.0 3.2 0.8 0.3 2.5 5.0 <2		74	142	152	132	75	
208 60 46 53 70 65 25 118 0.005 0.003 0.002 0.000 0.007 1.5 2.9 0.7 0.2 0.0 0.46 0.29 0.12 0.08 2.46 1.2 0.6 0.6 0.7 0.9 2.0 3.2 0.8 0.3 2.5 5.0 <2 <2 <2 <7.0 600 <2 <2 <1 <2 160 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <		23.0	18.8	23.0	23.5	17.0	
70 65 25 118 0.005 0.003 0.002 0.000 0.007 1.5 2.9 0.7 0.2 0.0 0.46 0.29 0.12 0.08 2.46 1.2 0.6 0.6 0.7 0.9 2.0 3.2 0.8 0.3 2.5 5.0 <2		12.4	67.0	n/a	n/a	33.4	
70 65 25 118 0.005 0.003 0.002 0.000 0.007 1.5 2.9 0.7 0.2 0.0 0.46 0.29 0.12 0.08 2.46 1.2 0.6 0.6 0.7 0.9 2.0 3.2 0.8 0.3 2.5 5.0 <2							
70 65 25 118 0.005 0.003 0.002 0.000 0.007 1.5 2.9 0.7 0.2 0.0 0.46 0.29 0.12 0.08 2.46 1.2 0.6 0.6 0.7 0.9 2.0 3.2 0.8 0.3 2.5 5.0 <2							
70 65 25 118 0.005 0.003 0.002 0.000 0.007 1.5 2.9 0.7 0.2 0.0 0.46 0.29 0.12 0.08 2.46 1.2 0.6 0.6 0.7 0.9 2.0 3.2 0.8 0.3 2.5 5.0 <2							
70 65 25 118 0.005 0.003 0.002 0.000 0.007 1.5 2.9 0.7 0.2 0.0 0.46 0.29 0.12 0.08 2.46 1.2 0.6 0.6 0.7 0.9 2.0 3.2 0.8 0.3 2.5 5.0 <2							
0.005 0.003 0.002 0.000 0.007 1.5 2.9 0.7 0.2 0.0 0.46 0.29 0.12 0.08 2.46 1.2 0.6 0.6 0.7 0.9 2.0 3.2 0.8 0.3 2.5 5.0 <2			+				
1.5 2.9 0.7 0.2 0.0 0.46 0.29 0.12 0.08 2.46 1.2 0.6 0.6 0.7 0.9 2.0 3.2 0.8 0.3 2.5 5.0 <2		70	65		25	118	
1.5 2.9 0.7 0.2 0.0 0.46 0.29 0.12 0.08 2.46 1.2 0.6 0.6 0.7 0.9 2.0 3.2 0.8 0.3 2.5 5.0 <2		0.005	0.003	0.002	0.000	0.007	
0.46 0.29 0.12 0.08 2.46 1.2 0.6 0.6 0.7 0.9 2.0 3.2 0.8 0.3 2.5 5.0 <2							
1.2 0.6 0.6 0.7 0.9 2.0 3.2 0.8 0.3 2.5 5.0 <2			+				
2.0 3.2 0.8 0.3 2.5 5.0 <2			+		l		
5.0 <2			+				
600 <2							
		5.0	<2	<2	<2	7.0	
<1	600	<2	<2	<1	<2	160	
<1		<1	<1	<1	<1	<1	
<1	<1	<1	<1	<1	<1	<1	
0.0 1.5 2.9 0.7 0.2 0.0 0.0 2.7 3.1 5.2 0.8 0.6 2.8 2.6 0.0 0.4 0.2 0.2 0.2 0.3 0.0 7.9 9.7 6.9 6.8 13.0 13.0	<1	<1		<1	<1		
2.7 3.1 5.2 0.8 0.6 2.8 2.6 0.0 0.4 0.2 0.2 0.2 0.2 0.3 0.0 7.9 9.7 6.9 6.8 13.0 13.0	<1	<1	<2	<1	<1	<2	
2.7 3.1 5.2 0.8 0.6 2.8 2.6 0.0 0.4 0.2 0.2 0.2 0.2 0.3 0.0 7.9 9.7 6.9 6.8 13.0 13.0							
2.7 3.1 5.2 0.8 0.6 2.8 2.6 0.0 0.4 0.2 0.2 0.2 0.2 0.3 0.0 7.9 9.7 6.9 6.8 13.0 13.0							
2.7 3.1 5.2 0.8 0.6 2.8 2.6 0.0 0.4 0.2 0.2 0.2 0.2 0.3 0.0 7.9 9.7 6.9 6.8 13.0 13.0							
2.7 3.1 5.2 0.8 0.6 2.8 2.6 0.0 0.4 0.2 0.2 0.2 0.2 0.3 0.0 7.9 9.7 6.9 6.8 13.0 13.0	0.0	1.5	2.0	0.7	0.2	0.0	0.0
0.0 0.4 0.2 0.2 0.2 0.3 0.0 7.9 9.7 6.9 6.8 13.0 13.0	0.0	1.0	2.5	0.1	0.2	0.0	0.0
0.0 0.4 0.2 0.2 0.2 0.3 0.0 7.9 9.7 6.9 6.8 13.0 13.0	2.7	3.1	5.2	0.8	0.6	2.8	2.6
7.9 9.7 6.9 6.8 13.0 13.0					l		
66.0 60.0 82.0 80.0 150.0 149.0			+				
		66.0	60.0	82.0	80.0	150.0	149.0

B999/4	B9/5	B9/6	B11/E	B11/E2*	B12/6	B12/666
	24.0	43.2	105.0	105.0	34.0	66.3
	85.3	79.5	38.0	29.9	143.9	140.0
<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	
0.26	0.19	0.15	0.24	0.16	0.13	0.12
55.6	50.7	47.3	47.2	49.6	101.7	99.4
11.8	9.9	7.9	10.0	10.8	10.1	10.3
0.3	0.3	0.1	0.2	0.2	0.0	0.0
2.7	4.4	2.3	7.5	3.5	5.6	5.6
9.5	9.2	10.4	3.6	3.6	29.3	28.3
47.9	61.5	32.6	37.4	39.1	32.5	32.1
0.0	0.0	0.0	0.0	0.0	0.0	0.0
1.00E-02	2.79E-02	1.66E-02	6.50E-03	5.88E-03	8.64E-03	8.34E-03
1.36E-01	2.74E-01	8.82E-02	1.46E-01	1.34E-01	9.82E-02	9.56E-02
0.0	0.0	0.0	0.0	0.0	0.0	0.0
2.01E-02	4.30E-03	1.60E-02	6.54E-03	4.60E-03	2.43E-01	2.41E-01
2.05E-03	9.15E-04	n/a	5.70E-03	2.23E-03	n/a	n/a
7.54E-05	7.44E-05	1.56E-04	7.09E-05	6.36E-05	2.20E-04	2.09E-04
0.00E+00	0.00E+00	4.94E-03	9.44E-03	6.06E-03	3.89E-03	1.64E-03
1.90E-01	2.00E-01	1.48E-01	1.60E-01	1.55E-01	3.90E-01	3.87E-01
1.23E-03	5.16E-04	2.13E-03	1.59E-03	1.50E-03	5.69E-03	5.64E-03
1.52E-04	3.63E-05	9.72E-05	8.10E-04	3.29E-04	1.72E-04	1.56E-04
1.31E-03	7.74E-04	9.59E-04	6.02E-04	5.51E-04	1.60E-03	1.55E-03
	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
97-10-183	98-03-066	98-08-043	98-04-175	98-04-175	98-08-043	98-08-043
	284	269	320	315	450	
	use %bal					
	6.413	4.643	4.880	5.127	7.822	
	3.908	4.121	5.191	4.969	7.328	
partial anal	OK high%	OK high%		OK high%	OK high%	partial anal
	24.3	6.0	-3.1	1.6	3.3	
	0.5	0.6	0.6	0.6	0.5	_
Р	R					Р

WOR													WOR	
sample#	W1/1	W1/2	W1/3	W1/4	W1/5	W1/6	W2/1	W2/2	W2/3	W2/4	W2/5	W2/6	sample#	W3/1
date sampled	10-Apr-97	5-Jun-97	29-Jul-97	3-Nov-97	16-Mar-98	14-Jul-98	10-Apr-97	5-Jun-97	29-Jul-97	3-Nov-97	16-Mar-98	14-Jul-98	date sampled	10-Apr-97
SWL (m)	1.42	1.10	1.06	1.24	1.96	0.98	0.95	0.75	0.74	1.00	1.77	1.08	SWL (m)	0.60
pump rate (L/min)		1.00	3.33	2.22	1.15	1.00		1.00	0.96	1.90	1.41	0.62	pump rate (L/min)	0.55
FIELD PARAMETERS													FIELD PARAMETERS	
EC (uS/cm)	337	311	316	278	399	260	375	356	250.4	167.5	142.3	189.8	EC (uS/cm)	390
pH	6.2	6.3	7.1	6.1	6.3	6.3	6.4	6.3	5.8	5.5	4.9	5.3	pH	10.8
Eh (mV)	37	175	236	115	-89	-170	122	170	198	181	104	-19	Eh (mV)	36
deg C	21.8	19.1	15.1	17.1	21.4	15.5	21.0	18.1	14.7	17.6	20.7	15.4	deg C	21.6
O2 %Sat	27.5	21.4	32.1	n/a	7.0	3.1	23.5	29.2	47.2		14.0	23.3	O2 %Sat	44.3
turbid sample													turbid sample	
yellow oxidation				initially	some								yellow oxidation	
H2S presence						H2S							H2S presence	
FIELD ANALYTES (mg/L)													FIELD ANALYTES (mg/L)	
CO2	70	27	59	76	190	68	59	61	71	52	190	61	CO2	0
alkalinity as CaCO3	82	98	74	45	119	116	104	104	118	10	7	12	alkalinity as CaCO3	
HACH ANALYTES (mg/L)													HACH ANALYTES (mg/L)	
NO2 - N {for ion *3.3}	0.010	0.002	0.002	0.001	0.000	0.000	0.002	0.003	0.003	0.001	0.003	0.003	NO2 - N {for ion *3.3}	0.024
NO3 - N {for ion *4.4}	0.0	0.1	0.0	0.0	0.3	3.0	0.5	0.2	0.1	0.0	0.2	0.3	NO3 - N {for ion *4.4}	0.5
NH3 - N {for ion *1.29}	0.19	0.02	0.09	0.00	0.51	0.42	0.06	0.00	0.02	0.00	0.02	0.12	NH3 - N {for ion *1.29}	0.00
PO4(3-) {for P *0.326}	0.0	0.5	0.9	0.0	0.0	0.8	0.1	0.2	0.1	0.0	0.0	0.0	PO4(3-) {for P *0.326}	0.0
total inorganic N - Hach	0.2	0.1	0.1	0.0	0.8	3.4	0.6	0.2	0.2	0.0	0.2	0.4	total inorganic N - Hach	0.5
BACTERIAL SUITE (CFU/100mL))												BACTERIAL SUITE (CFU/100mL	-)
BOD (mg/L)	<2	3	<2	<2	<2	<2	2	<2	2	<2	<2	<2	BOD (mg/L)	2.0
Total Coliforms	4	10	>700	<1	1800	2200	18	<2	<1	<1	1	<1	Total Coliforms	6
Faecal Coliforms	<2	2	<1		310	345	<2	<2	<1		<1	<1	Faecal Coliforms	<2
Faecal Streptococci	2	20	<1	<1	244	44	<2	<2	<1	<1	<1	<1	Faecal Streptococci	<2
E.Coli		<2	<1	<1	310			<2	<1	<1	<1		E.Coli	
Pseudomonas aeruginosa	<2	<2	<1	<1	<1	<1	<2	<2	<1	<1	<1	<1	Pseudomonas aeruginosa	<1
Clostridium perfringens/spp													Clostridium perfringens/spp	
Yersinia spp.													Yersinia spp.	
Salmonella spp.													Salmonella spp.	
STANDARD ANALYTE SUITE (m	ig/L)												STANDARD ANALYTE SUITE (n	ng/L)
total NOx to use	0.0	0.1	0.0	0.0	0.3	3.0	0.5	0.2	0.1	0.0	0.2	0.3	total NOx to use	0.5
kjeldahl N (organic N)													kjeldahl N (organic N)	
total N to use	0.3	0.3	0.2	0.2	1.1	3.4	0.6	0.6	0.2	0.1	0.2	0.4	total N to use	0.5
total P	0.0	0.2	0.3	<0.005	0.1	0.3	0.0	0.1	0.0	<0.005	0.0	<0.005	total P	0.0
total organic carbon (TOC)	8.8	2.1	0.9	3.6	9.4	3.7	7.4	1.0	0.7	3.1	0.8	0.6	total organic carbon (TOC)	7.5
CI	22.0	20.0	23.0	21.0	19.7	16.0	21.0	24.0	23.0	21.0	20.5	21.0	CI	24.0

CONT'D: sample#	W1/1	W1/2	W1/3	W1/4	W1/5	W1/6	W2/1	W2/2	W2/3	W2/4	W2/5	W2/6	CONT'D: sample#	W3/1
SO4	15.0	32.0	29.0	27.0	15.3	16.0	29.0	41.0	28.0	21.0	19.4	22.0	SO4	23.0
total S - lab													total S - lab	
HCO3 to use	100.0	119.5	90.2	54.9	144.8	141.4	126.8	126.8	60.0	11.8	8.8	14.6	HCO3 to use	0.0
CO3 - lab													CO3 - lab	8.8
Hg	<0.001	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.001	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	Hg	<0.001
UTS - ICP ANALYTES (mg/L)													UTS - ICP ANALYTES (mg/L)	
В	0.31	0.05	0.17	0.07	0.14	0.03	0.18	0.04	0.12	0.05	0.09	8.18	В	0.11
Na	17.0	18.5	17.5	19.9	18.0	11.4	17.0	20.0	18.7	17.0	16.5	17.2	Na	19.0
Mg	5.6	6.2	6.2	5.8	6.5	5.7	3.3	6.1	4.6	5.0	4.4	4.6	Mg	0.6
Al	0.2	0.2	0.3	0.2	0.3	0.0	0.2	0.3	0.3	0.3	0.2	0.0	Al	0.9
Si	3.8	4.2	3.5	3.8	6.4	3.5	3.4	4.3	3.8	2.9	4.2	3.9	Si	4.7
К	10.2	6.8	5.1	6.8	14.6	6.2	12.9	10.1	5.9	4.2	2.2	3.5	К	16.0
Ca	30.8	37.6	36.3	31.7	49.7	27.2	32.8	41.8	19.7	7.6	4.0	13.6	Ca	27.8
Cr	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Cr	0.0
Mn	9.78E-02	1.49E-02	8.58E-03	1.44E-01	5.10E-02	4.12E-01	2.97E-02	2.57E-02	1.53E-02	2.56E-02	3.67E-02	1.16E-02	Mn	2.89E-03
Fe	1.10E+00	5.21E-02	1.04E-01	7.67E-01	9.64E-01	2.76E+00	1.57E-01	5.71E-02	5.20E-02	1.71E-01	3.44E-01	4.55E-02	Fe	1.16E-01
Ni	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Ni	0.0
Zn	2.04E-02	2.91E-03	7.30E-03	2.96E-02	3.68E-03	3.38E-03	1.94E-02	2.18E-03	2.72E-03	6.65E-03	1.29E-02	5.60E-03	Zn	2.15E-02
Cu	1.80E-02	1.40E-03	2.14E-02	1.13E-03	3.62E-03	n/a	2.14E-02	1.46E-03	4.59E-03	1.84E-03	1.55E-03	n/a	Cu	2.32E-02
As	7.48E-05	3.01E-05	6.32E-05	6.56E-05	2.05E-04	1.44E-04	2.72E-05	2.62E-05	5.56E-05	3.02E-05	3.70E-05	1.41E-04	As	5.39E-05
Se	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	Se	0.00E+00
Sr	9.65E-02	1.02E-01	9.34E-02	7.99E-02	1.36E-01	9.53E-02	1.53E-01	1.28E-01	6.34E-02	3.34E-02	2.13E-02	4.26E-02	Sr	2.15E-01
Мо	6.04E-04	2.88E-04	3.24E-04	1.90E-04	1.09E-03	1.96E-04	3.63E-04	8.83E-05	4.12E-05	3.02E-05	1.69E-05	8.59E-04	Мо	9.38E-04
Cd	3.31E-04	5.61E-05	3.21E-04	2.25E-04	2.99E-05	6.58E-05	3.76E-04	4.76E-05	7.41E-05	1.52E-04	1.11E-04	2.39E-04	Cd	3.00E-04
Pb	5.41E-03	3.75E-04	9.83E-04	1.70E-03	1.20E-03	6.05E-04	5.95E-03	3.16E-04	6.36E-04	5.86E-04	6.26E-04	4.78E-04	Pb	5.00E-03
F by IC - if analysed													F by IC - if analysed	
Br value to use	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	Br value to use	0.00E+00
CERTIFICATES													CERTIFICATES	
certificate numbers for	97-04-075	97-06-036	97-07-160	97-11-007	98-03-130	98-07-079	97-04-075	97-06-036	97-07-160	97-11-007	98-03-130	98-07-079	certificate numbers for	97-04-075
above analyses													above analyses	
ELECTRONIC BALANCE (%), RA	ATIOS, AND AN	IALYSIS VALII	DITY CHECK										ELECTRONIC BALANCE (%), RA	ATIOS, AND AN
calculated TDS (mg/L)	158	179	162	145	207	167	183	205	131	88	77	103	calculated TDS (mg/L)	135
high TDS flag;care balance	use %bal	use %bal	use %bal	use %bal	use %bal	use %bal	use %bal	use %bal	use %bal	use %bal	use %bal	use %bal	high TDS flag;care balance	use %bal
sum cation millequivalents	3.084	3.398	3.254	3.157	4.273	2.613	3.019	3.755	2.360	1.674	1.377	1.912	sum cation millequivalents	2.779
sum anion millequivalents	2.572	3.210	2.761	2.055	3.272	3.338	3.313	3.631	2.229	1.224	1.142	1.312	sum anion millequivalents	2.239
low sum an/cat tolerance	OK high%	OK high%	OK high%	OK high%	OK high%	OK high%	OK high%	OK high%	OK high%	OK high%	OK high%	OK high%	low sum an/cat tolerance	OK high%
ionic balance % error	9.0	2.8	8.2	21.1	13.3	-12.2	-4.6	1.7	2.9	15.5	9.3	18.6	ionic balance % error	10.8
A = S/K (calc TDS/cond)	0.47	0.58	0.51	0.52	0.52	0.64	0.49	0.57	0.52	0.52	0.54	0.54	A = S/K (calc TDS/cond)	0.35
analysis adjustments				R						R		R	analysis adjustments	R

											WOR				T
W3/3	W3/5	W3/6	W4/1	W4/2	W4/3	W4/4	W4/6	W5/1	W5/2	W5/3	sample#	W5/4	W5/5	W6/1	W6/2
30-Jul-97	17-Mar-98	15-Jul-98	11-Apr-97	5-Jun-97	29-Jul-97	3-Nov-97	15-Jul-98	11-Apr-97	5-Jun-97	30-Jul-97	date sampled	4-Nov-97	17-Mar-98	10-Apr-97	4-Jun-97
0.71	1.62	0.67	2.54	2.39	2.09	2.66	1.68	1.59	1.00	0.94	SWL (m)	1.08	1.54	0.87	0.18
2.00	0.72	0.64		1.00	1.00	0.80	0.77		0.60	1.71	pump rate (L/min)	0.80	1.39		0.52
											FIELD PARAMETERS				
517	178.4	294	922	697	509	481	1205	274	235.5	292	EC (uS/cm)	261	257	684	475
7.1	5.3	5.8	6.0	5.5	6.2	6	5.6	5.3	5.0	5.8	pH	5.5	5.2	6.6	6.2
126	100	74	166	160	146	66	83	110	213	97	Eh (mV)	65	-11	-134	10
13.1	21.5	15.9	21.6	20.9	18.1	17	18.4	24.3	18.7	13.9	deg C	19.0	24.0	23.1	17.3
20.3	1.4	13.2	33.0	32.4	31.0		24.3	10.4	1.4	13.7	O2 %Sat		0.8	6.9	2.3
									oily film		turbid sample				
											yellow oxidation	yellow		yellow	yellow/orange
											H2S presence				
											FIELD ANALYTES (mg/L)				
58	62	165	180	30	48	21	100	52	46	19	CO2	9	76	26	46
172	14	49	91	34	1	25	130	36	0	68	alkalinity as CaCO3	16	14	210	130
											HACH ANALYTES (mg/L)				
0.001	0.002	0.008	0.001	0.000	0.001	0	0.000	0.000	0.002	0.000	NO2 - N {for ion *3.3}	0.001	0.001	0.000	0.000
0.3	0.7	0.3	0.4	0.2	0.7	2	0.4	0.1	1.3	0.0	NO3 - N {for ion *4.4}	1.4	1.0	0.0	0.0
0.01	0.14	0.00	0.00	0.39	0.20	1	0.16	2.62	0.57	2.00	NH3 - N {for ion *1.29}	1.72	2.44	4.72	2.63
0.1	0.2	0.3	0.0	0.0	0.0	0	0.4	0.0	0.0	0.0	PO4(3-) {for P *0.326}	0.0	0.3	0.7	0.6
0.3	0.9	0.3	0.4	0.6	0.9	2.9	0.6	2.7	1.9	2.0	total inorganic N - Hach	3.1	3.4	4.7	2.6
											BACTERIAL SUITE (CFU/100mL	.)			
<2	<2	<2	21.0	3.0	5.0	4	5.0	10.0	3.0	4.0	BOD (mg/L)	9.0	3.0	10.0	16.0
226	<1	<1	<2	2	<1	<1	<1	<2	<2	<1	Total Coliforms	<1	<1	10	10
<1	<1	<1	<2	<2	<1		<1	<2	<2	<1	Faecal Coliforms		<1	<2	2
<1	<1	<1	<2	<2	<1	<1	<1	<2	<2	<1	Faecal Streptococci	<1	<1	<2	<2
<1	<1			<2	<1	<1			<2	<1	E.Coli	<1	<1		
<1	<1	<1	<2	<2	<1	<1	<1	<2	<2	<1	Pseudomonas aeruginosa	<1	<1	4	<2
											Clostridium perfringens/spp				
											Yersinia spp.				
											Salmonella spp.				
											STANDARD ANALYTE SUITE (m	ng/L)		0	0
0.3	0.7	0.3	0.4	0.2	0.7	2	0.4	0.1	1.3	0.0	total NOx to use	1.4	1.0		
											kjeldahl N (organic N)			4.7	2.6
0.3	0.9	0.3	0.4	0.6	0.9	3	0.6	2.7	1.9	2.0	total N to use	3.1	3.4	0.2	0.2
0.0	0.1	0.1	0.0	0.0	0.0	<0.005	0.1	<0.005	0.0	0.0	total P	0.0	0.1	12.0	8.0
0.4	0.7	0.7	19.0	2.0	3.0	9.8	4.7	9.2	2.0	1.6	total organic carbon (TOC)	11.0	1.8		1
25.0	23.3	23.0	170.0	130.0	85.0	80	260.0	25.0	26.0	24.0	CI	23.0	24.6	39.0	41.0

W3/3	W3/5	W3/6	W4/1	W4/2	W4/3	W4/4	W4/6	W5/1	W5/2	W5/3	CONT'D: sample#	W5/4	W5/5	W6/1	W6/2
28.0	20.7	24.0	72.0	77.0	57.0	50	85.0	56.0	51.0	54.0	SO4	55.0	56.2	17.0	41.0
											total S - lab				
209.7	16.6	59.7	110.9	41.9	25.0	31	159.0	43.9	0.0	45.0	HCO3 to use	19.1	16.5	256.0	158.0
											CO3 - lab				
<0.0005	<0.0005	<0.0005	<0.001	<0.0005	<0.0005	<0.0005	<0.0005	<0.001	<0.0005	<0.0005	Hg	0.0005	<0.0005	<0.001	<0.0005
											UTS - ICP ANALYTES (mg/L)				
0.04	0.06	0.05	0.11	0.04	0.04	2.12	0.14	0.43	0.66	2.16	В	0.71	0.17	0.20	0.28
22.7	20.5	19.6	69.5	84.8	67.5	61.1	134.4	30.5	30.3	27.6	Na	26.7	26.6	32.9	32.9
5.9	3.9	3.9	9.0	8.1	5.5	4.5	17.0	2.9	3.9	5.4	Mg	4.5	2.7	8.7	6.4
0.3	0.2	0.0	0.2	0.3	0.2	0.2	0.0	0.3	0.3	0.8	Al	0.3	0.2	0.2	0.4
3.8	4.1	4.3	4.0	6.2	5.1	5.5	5.7	1.9	3.4	3.4	Si	2.2	2.2	7.0	8.4
4.1	2.9	6.2	22.6	25.8	15.3	8.8	24.6	1.3	0.8	1.5	К	1.0	0.4	4.6	1.7
82.4	6.8	26.8	30.0	24.6	13.6	9.9	32.5	2.3	4.4	6.5	Ca	3.4	1.5	66.1	51.2
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Cr	0.0	0.0	0.0	0.0
3.71E-02	2.21E-01	2.98E-02	2.95E-02	9.48E-02	2.04E-01	5.88E-01	9.21E-02	1.18E-01	1.18E-02	1.68E-02	Mn	3.31E-02	1.21E-01	1.88E-01	6.54E-02
1.94E-01	1.87E+00	1.80E-01	2.37E-01	5.43E+00	2.47E+00	2.50E+01	3.51E+00	2.23E+01	8.25E+00	2.24E+01	Fe	2.47E+01	2.70E+01	2.73E+01	1.15E+01
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Ni	0.0	0.0	0.0	0.0
5.70E-03	2.62E-02	6.78E-03	1.32E-02	4.89E-03	8.69E-03	6.63E-02	8.89E-03	3.25E-02	5.02E-03	2.44E-03	Zn	6.55E-03	1.08E-02	1.85E-02	6.13E-02
3.49E-03	5.77E-03	n/a	1.36E-02	8.28E-04	5.27E-03	4.33E-04	n/a	2.46E-02	2.18E-03	8.47E-04	Cu	1.67E-04	2.40E-03	2.10E-02	3.70E-04
5.83E-05	4.86E-05	5.24E-05	7.06E-05	3.35E-05	6.40E-05	1.91E-04	1.37E-04	3.15E-04	1.27E-04	3.06E-04	As	4.08E-04	5.24E-04	4.10E-04	3.67E-04
0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.51E-03	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	Se	0.00E+00	0.00E+00	0.00E+00	0.00E+00
2.55E-01	3.21E-02	8.76E-02	1.91E-01	1.43E-01	7.93E-02	5.05E-02	1.78E-01	2.16E-02	3.01E-02	3.11E-02	Sr	2.59E-02	1.43E-02	2.22E-01	1.99E-01
2.17E-04	0.00E+00	1.55E-04	1.69E-04	2.13E-05	2.22E-05	1.54E-03	1.26E-04	3.98E-04	2.80E-04	5.49E-04	Мо	4.33E-04	0.00E+00	3.76E-04	2.70E-04
1.07E-04	1.35E-04	9.89E-05	2.87E-04	1.02E-04	1.22E-04	5.53E-04	1.05E-04	6.35E-04	1.07E-04	3.67E-05	Cd	4.44E-04	8.61E-05	4.19E-04	1.14E-03
6.20E-04	2.23E-03	2.88E-04	3.27E-03	4.55E-04	1.22E-03	1.08E-03	3.54E-04	7.61E-03	7.99E-04	5.70E-04	Pb	5.88E-04	7.38E-04	6.75E-03	5.13E-04
											F by IC - if analysed				
0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	Br value to use	0.00E+00	0.00E+00	0.00E+00	0.00E+00
											CERTIFICATES				
97-07-166	98-03-139	98-07-094	97-04-084	97-06-036	97-07-160	97-11-007	98-07-094	97-04-084	97-06-036	97-07-166	certificate numbers for	97-11-018	98-03-139	97-04-075	97-06-011
											above analyses				
ALYSIS VALID	ITY CHECK										ELECTRONIC BALANCE (%), RA	TIOS, AND AN	ALYSIS VALI	DITY CHECK	
262	96	136	445	385	269	282	637	182	139	176	calculated TDS (mg/L)	173	164	342	280
use %bal	use %bal	use %bal	use %bal	use %bal	use %bal	use %bal	use %bal	use %bal	use %bal	use %bal	high TDS flag;care balance	use %bal	use %bal	use %bal	use %bal
5.729	1.726	2.681	5.874	6.501	4.586	4.729	9.632	2.733	2.248	3.045	sum cation millequivalents	2.766	2.625	6.906	5.204
4.748	1.418	2.159	8.139	5.972	4.041	3.951	11.755	2.599	1.888	2.540	sum anion millequivalents	2.207	2.212	5.673	4.619
OK high%	OK high%	OK high%	OK high%	OK high%	OK high%		OK high%	OK high%	OK high%	OK high%	low sum an/cat tolerance	OK high%	OK high%	OK high%	
9.4	9.8	10.8	-16.2	4.2	6.3	9.0	-9.9	2.5	8.7	9.0	ionic balance % error	11.2	8.5	9.8	6.0
0.51	0.54	0.46	0.48	0.55	0.53	0.59	0.53	0.66	0.59	0.60	A = S/K (calc TDS/cond)	0.66	0.64	0.50	0.59
			R								analysis adjustments				

								WOR							
W6/3	W6/4	W6/5	W666/5	W6/6	W7/1	W7/2	W7/3	sample#	W7/4	W7/5	W7/6	W8/1	W8/2	W8/3	W8/4
29-Jul-97	3-Nov-97	16-Mar-98	16-Mar-98	15-Jul-98	11-Apr-97	5-Jun-97	30-Jul-97	date sampled	4-Nov-97	16-Mar-98	15-Jul-98	11-Apr-97	3-Jun-97	29-Jul-97	3-Nov-97
0.15	0.37	1.40		0.16	1.04	0.71	0.67	SWL (m)	0.82	2.00	0.51	2.01	0.95	0.92	1.05
1.00	0.80	0.88		1.00		1.00	2.00	pump rate (L/min)	0.83	1.42	0.55		0.80	1.00	0.89
								FIELD PARAMETERS							
440	472	498		397	390	338	324	EC (uS/cm)	225.1	273	219.3	171	124.1	137.9	109.8
7.4	6.5	6.5		6.0	6.5	6.4	6.7	pН	6.1	6.0	5.5	5.8	5.5	6.4	5.9
-34	-88	-103		-65	51	126	202	Eh (mV)	107	-21	36	176	215	185	146
14.0	20.7	22.9		13.7	17.9	18.9	13.8	deg C	18.1	22.6	16.9	22.0	19.6	15.3	17.7
14.2		7.5		3.5	17.9	28.0	33.2	O2 %Sat		7.9	27.2	43.0	49.9	46.8	
								turbid sample							
	initially							yellow oxidation							
slight	minor	faint		minor				H2S presence							
								FIELD ANALYTES (mg/L)							
23	16	75		42	56	51	74	CO2	62	n/a	28	60	24	46	52
102	142	144		88	110	90	83	alkalinity as CaCO3	41	75	35	15	5	5	4
								HACH ANALYTES (mg/L)							
0.003	0.000	0.000		0.003	0.004	0.001	0.000	NO2 - N {for ion *3.3}	0.002	0.000	0.003	0.000	0.002	0.001	0.003
1.2	3.5	0.8		0.6	0.0	0.4	0.4	NO3 - N {for ion *4.4}	0.7	0.6	0.3	0.1	0.5	0.1	0.3
2.85	3.45	3.51		2.54	0.15	0.05	0.05	NH3 - N (for ion *1.29)	0.00	0.11	0.00	0.03	0.01	0.00	0.00
0.9	0.3	0.4		0.3	0.8	0.6	0.8	PO4(3-) {for P *0.326}	0.0	0.0	0.4	0.4	0.0	0.0	0.0
4.0	7.0	4.3	0.0	3.1	0.2	0.5	0.5	total inorganic N - Hach	0.7	0.7	0.3	0.2	0.5	0.1	0.3
								BACTERIAL SUITE (CFU/100mL	-)						
6.0	13.0	<2		7.0	110.0	<2	<2	BOD (mg/L)	4.0	2.0	<2	4.0	<2	5.0	4.0
>500	<1	<1	<1	10	<2	<2	510	Total Coliforms	<1	<1	<1	<2	<2	<1	<1
<1		<1	<1	1	<2	<2	<1	Faecal Coliforms		<1	<1	<2	<2	<1	
<	<1	<1	<1	<1	<2	<2	<1	Faecal Streptococci	<1	<1	<1	<2	<2	<1	<1
<1	<1	<1	<1			<2	<1	E.Coli	<1	<1				<1	<1
<1	<1	<1	<1	<1	<2	<2	<1	Pseudomonas aeruginosa	<1	<1	<1	<2	<2	<1	<1
								Clostridium perfringens/spp							
								Yersinia spp.							
								Salmonella spp.							
1.172	3.5	0.79	0	0.593				STANDARD ANALYTE SUITE (r	ng/L)						
					0.0	0.4	0.4	total NOx to use	0.7	0.6	0.3	0.1	0.5	0.1	0.3
4.0	7.0	4.3	3.3	3.1				kjeldahl N (organic N)							
0.3	0.2	0.1	0.0	0.1	0.2	0.5	0.5	total N to use	0.7	0.7	0.3	0.2	0.5	0.1	0.3
3.5	8.6	2.6		2.7	0.3	0.2	0.3	total P	0.0	0.0	0.1	0.1	<0.005	0.0	<0.005
					21.0	1.0	0.1	total organic carbon (TOC)	6.7	1.0	0.6	9.4	<0.005	2.1	6.4
37.0	38.0	34.2		39.0	21.0	34.0	21.0	CI	23.0	22.1	23.0	19.0	20.0	18.0	17.0

W6/3	W6/4	W6/5	W666/5	W6/6	W7/1	W7/2	W7/3	CONT'D: sample#	W7/4	W7/5	W7/6	W8/1	W8/2	W8/3	W8/4
28.0	24.0	18.1		26.0	25.0	22.0	27.0	SO4	22.0	24.8	24.0	16.0	15.0	12.0	10.0
								total S - lab							
124.4	173.1	175.6	0.0	107.8	134.1	110.2	120.0	HCO3 to use	49.5	91.7	42.4	18.3	6.0	24.0	4.9
								CO3 - lab							
<0.0005	<0.0005	<0.0005		<0.0005	<0.001	<0.0005	<0.0005	Hg	<0.0005	<0.0005	<0.0005	<0.001	<0.0005	<0.0005	<0.0005
								UTS - ICP ANALYTES (mg/L)							
0.52	0.34	1.07		0.05	0.15	0.20	0.33	В	0.22	0.21	0.06	0.08	0.10	0.19	0.10
27.3	31.8	33.3		27.7	32.5	27.3	22.9	Na	22.2	27.5	23.5	13.6	13.3	12.5	12.8
6.3	6.2	6.4		5.8	4.1	3.7	3.6	Mg	2.9	2.9	2.5	2.4	2.7	3.2	2.9
0.4	0.2	0.2		0.0	0.3	0.3	0.4	Al	0.2	0.2	0.0	0.2	0.3	0.3	0.3
6.6	8.3	9.3		4.8	6.1	8.9	6.3	Si	7.0	9.2	6.0	2.3	4.3	3.7	3.4
1.7	1.5	2.5		0.8	19.9	9.0	2.7	К	1.4	1.4	4.5	6.9	2.8	5.0	1.5
39.6	43.1	41.6		27.3	38.0	35.6	35.0	Ca	22.5	23.9	15.6	9.5	6.1	7.2	3.4
0.0	0.0	0.0		0.0	0.0	0.0	0.0	Cr	0.0	0.0	0.0	0.0	0.0	0.0	0.0
4.79E-02	7.39E-02	5.07E-01		4.05E-02	4.74E-02	6.97E-02	8.80E-03	Mn	8.46E-03	6.36E-02	4.99E-03	1.16E-02	1.56E-02	8.88E-03	7.51E-03
1.63E+01	2.75E+01	2.90E+01		1.32E+01	2.57E-01	1.96E-01	1.01E-01	Fe	1.38E-01	1.83E+00	4.36E-02	8.71E-02	2.34E-02	3.20E-02	7.50E-02
0.0	0.0	0.0		0.0	0.0	0.0	0.0	Ni	0.0	0.0	0.0	0.0	0.0	0.0	0.0
7.92E-03	6.09E-03	1.23E-02		3.05E-03	1.47E-03	2.80E-03	3.25E-03	Zn	3.33E-02	3.74E-03	5.13E-03	1.63E-02	2.19E-03	3.15E-03	1.69E-02
6.92E-04	0.00E+00	4.77E-04		n/a	1.00E-03	1.20E-03	4.67E-03	Cu	3.69E-03	2.89E-03	n/a	1.98E-02	6.44E-04	3.45E-03	1.31E-03
2.93E-04	4.12E-04	4.35E-04		2.73E-04	3.91E-05	5.95E-05	5.98E-05	As	3.28E-05	6.97E-05	3.93E-05	1.42E-05	1.80E-05	4.63E-05	2.35E-05
0.00E+00	0.00E+00	0.00E+00		0.00E+00	4.99E-04	7.75E-04	8.21E-04	Se	6.62E-04	0.00E+00	5.65E-04	6.81E-04	4.72E-04	2.43E-03	1.04E-03
1.70E-01	1.61E-01	1.58E-01		1.62E-01	2.48E-01	1.93E-01	1.82E-01	Sr	1.14E-01	1.46E-01	9.27E-02	5.88E-02	3.23E-02	3.40E-02	1.89E-02
1.84E-04	2.87E-04	3.67E-04		1.16E-04	2.72E-04	2.57E-04	1.61E-04	Мо	1.86E-04	1.30E-04	6.76E-05	1.17E-04	6.75E-05	5.68E-05	5.44E-05
8.64E-05	3.78E-04	2.98E-05		5.30E-05	5.23E-05	1.68E-04	1.67E-04	Cd	2.67E-04	4.73E-05	8.30E-05	2.98E-04	8.33E-05	8.94E-05	2.47E-04
7.93E-04	3.98E-04	5.59E-04		2.32E-04	1.84E-04	1.72E-04	4.30E-04	Pb	6.28E-04	2.55E-04	2.90E-04	6.11E-03	1.97E-04	5.05E-04	9.09E-04
								F by IC - if analysed							
0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	Br value to use	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
								CERTIFICATES							
97-07-160	97-11-007	98-03-130	98-03-130	98-07-094	97-04-084	97-06-036	97-07-166	certificate numbers for	97-11-018	98-03-130	98-07-094	97-04-084	97-06-011	97-07-160	97-11-007
								above analyses							
								ELECTRONIC BALANCE (%), RA	TIOS, AND AN	IALYSIS VALIE	DITY CHECK				
237	291	270		206	226	191	173	calculated TDS (mg/L)	132	157	119	88	69	75	61
use %bal	use %bal	use %bal	use %bal	use %bal	use %bal	use %bal	use %bal	high TDS flag;care balance	use %bal	use %bal	use %bal	use %bal	use %bal	use %bal	use %bal
4.569	5.344	5.428		3.724	4.212	3.548	3.168	sum cation millequivalents	2.396	2.771	2.126	1.472	1.211	1.332	1.033
3.775	4.668	4.288		3.460	3.337	3.270	3.176	sum anion millequivalents	1.964	2.682	1.878	1.191	1.011	1.160	0.786
OK high%		OK high%	partial anal	OK high%	OK high%	OK high%	OK high%	low sum an/cat tolerance	OK high%	OK high%	OK high%	OK high%	OK high%	OK high%	OK high%
9.5	6.8	11.7		3.7	11.6	4.1	-0.1	ionic balance % error	9.9	1.6	6.2	10.6	9.0	6.9	13.6
0.54	0.62	0.54		0.52	0.58	0.57	0.53	A = S/K (calc TDS/cond)	0.59	0.57	0.54	0.52	0.56	0.54	0.55
			Р					analysis adjustments							

W8/5	W9/2	W9/3	W9/4	W9/6	W/1P
17-Mar-98	5-Jun-97	29-Jul-97	4-Nov-97	15-Jul-98	10-Apr-97
1.64	1.18	1.07	1.40	1.14	
0.36		1.00	0.45	0.89	
1070	192.2	188.9	192.6	213	
5.1	5.5	5.4	5.3	4.5	
82	72	207	121	125	
23.6	20.5	15.1	17.9	17.2	
6.1	46.7	17.7		30.4	
	slightly				
84	22	36	38	103	
7	2	nil	2	nil	
0.002	0.000	0.003	0.000	0.002	
0.4	0.0	0.0	0.1	0.2	
0.04	n/a	0.06	0.00	0.00	
0.2	n/a	1.1	0.6	0.1	
0.4	0.0	0.1	0.1	0.2	0.0
<2	<2	8.0	19.0	4.0	
<1	44	158	1	<1	2
<1	2	<1		<1	
<1	2	<1	1	<1	
<1	<2	<1	<1		
<1	<2	<1	<1	<1	
					0
0.4	0.0	0.0	0.1	0.2	
					0.0
0.4	0.2	0.1	0.1	0.2	
0.1	0.0	0.4	0.2	0.0	
0.5	0.6	2.9	6.4	1.6	
17.0	24.0	34.0	37.0	41.0	

W8/5	W9/2	W9/3	W9/4	W9/6	W/1P
9.4	28.0	22.0	22.0	24.0	
9.0	2.4	10.0	2.4	0.0	0.0
<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	
0.13	0.06	0.08	0.10	0.07	
13.8	24.8	23.9	28.8	27.9	
2.7	4.3	4.9	5.5	5.6	
0.2	0.4	0.2	0.3	0.0	
4.4	4.0	3.4	3.6	3.1	
1.6	1.6	0.5	0.5	0.4	
3.2	4.8	2.8	3.2	3.1	
0.0	0.0	0.0	0.0	0.0	
6.37E-02	2.24E-02	9.26E-03	8.07E-03	4.96E-03	
3.35E-01	5.68E-01	1.29E-01	1.66E-01	2.54E-02	
0.0	0.0	0.0	0.0	0.0	
1.72E-02	1.63E-01	1.69E-01	1.52E-01	1.35E-01	
7.08E-03	2.51E-03	6.93E-03	1.67E-03	n/a	
2.27E-05	3.55E-05	5.32E-05	2.92E-05	4.30E-05	
0.00E+00	0.00E+00	2.60E-03	2.67E-03	1.64E-03	
1.92E-02	3.50E-02	2.11E-02	2.02E-02	2.34E-02	
7.02E-05	3.11E-05	1.84E-05	2.19E-05	1.83E-05	
1.65E-04	1.84E-04	1.58E-04	2.80E-04	2.08E-04	
6.89E-04	2.67E-03	4.35E-03	4.79E-03	9.01E-03	
0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
98-03-139	97-06-036	97-07-160	97-11-018	98-07-094	97-04-075
59	95	101	110	108	
use %bal	use % bal	use % bal	use % bal	use % bal	use %bal
1.058	1.774	1.630	1.910	1.844	
0.855	1.300	1.617	1.569	1.670	
OK high%	partial ana				
10.6	15.4	0.4	9.8	4.9	
0.05	0.50	0.53	0.57	0.51	
	R				Р

MEL													
sample #	M2/1	M2/2	M2/3	M2/4	M2/5	M2/6	M2/7	M3/4	M3/5	M5/5	M6/1	M6/7	M7/1
date sampled	1-Apr-97	17-Jun-97	22-Jul-97	2-Oct-97	13-Feb-98	16-Apr-98	28-Oct-98	2-Oct-97	13-Feb-98	13-Feb-98	1-Apr-97	28-Oct-98	1-Apr-97
SWL (m)	2.41	2.75	2.84	2.67	2.66	2.77	2.33	2.63	2.60	2.74	2.45	2.05	2.90
pump rate (L/min)		0.33	0.40	vslow		1.00	1.04	vslow		v slow		0.92	
FIELD PARAMETERS													
EC (uS/cm)	2176	2240	2200	2122	1745	2059	2018	1476	1312	1232	5060	1530	6280
pH	6.9	6.8	6.8	7.1	6.8	6.7	6.8	8	6.9	6.5	7.1	7.3	7.2
Eh (mV)	-28	-100	-72	-32	-92	50	80	-47	-35	-62	-139	30	-111
deg C	23.1	17.4	15.3	16.4	21.0	19.9	15.5	18	23.0	21.2	23.5	17.0	22.6
O2 %Sat		14.1	39.2	24.8	3.0	10.2	15.2	13				2.1	
turbid sample								vdirty	v dirty				dirty
yellow oxidation	minor	yellow	yellow	light straw	yellow	light straw	light straw			minor	slight	light straw	probably
H2S presence		some											
FIELD ANALYTES (mg/L)													
CO2	390	n/a	n/a	56	n/a	n/a	38	n/a	n/a	n/a	120	67	n/a
alkalinity as CaCO3	595	610	550	682	760	762	704	n/a	680	390	830	409	n/a
HACH ANALYTES (mg/L)													
NO2 - N {for ion *3.3}	0.003	0.000	0.000	0.004	0.000	0.000	0.002	n/a	n/a	0.000	0.002	0.000	0.000
NO3 - N {for ion *4.4}	0.0	1.3	1.1	0.0	0.4	0.0	3.7	n/a	n/a	0.0	0.0	0.0	0.0
NH3 - N {for ion *1.29}	0.61	n/a	n/a	n/a	<0.1	0.08	n/a	n/a	0.10	<0.1	n/a	n/a	n/a
PO4(3-) {for P *0.326}	4.2	n/a	n/a	n/a	<0.02	0.0	n/a	0	0.3	<0.02	n/a	n/a	n/a
total inorganic N - Hach	0.6	1.3	1.1	0.0	0.4	0.1	3.7	0.0	0.1	0.0	0.0	0.0	0.0
BACTERIAL SUITE (CFU/100ml	_)												
BOD (mg/L)	>13	5	6	12	1	2	1	53	>140	9.0	<2	2.0	nd
Total Coliforms	238	0	0	3	0	1	0	5		>200 est	2	41	2
Faecal Coliforms													i
Faecal Streptococci	0	0	0	0	0	0	0			38	0	0	0
E.Coli	0	0	0	0	0	0	0	0		nd	0	0	0
Pseudomonas aeruginosa	0	0	0	0	0	0	0			9	0	0	0
Clostridium perfringens/spp	0	0	0		0					0	0		0
Yersinia spp.													
Salmonella spp.													
STANDARD ANALYTE SUITE (r	ng/L)												
total NOx to use	0.0	1.3	1.1	0.0	0.4	0.1	3.7	0	0.0	0.5	0.0	0.1	0.0
kjeldahl N (organic N)	1.2	1.3	1.2	1.2	1.0	1.0	0.8	3	7.3	1.0	1.2	0.5	1.7
total N to use	1.8	2.6	2.3	1.2	1.5	1.1	4.5	3	7.4	1.6	1.2	0.6	1.7
total P	1.4	0.0	0.1	0.1	<0.05	0.0	0.1	1.1	2.2	<0.05	<0.05	<0.05	0.1
total organic carbon (TOC)	77.0	30.0	27.0	26.0	37.0	22.0	23.0	32	28.0	18.0	11.0	11.0	35.0
CI	61.0	61.0	55.0	54.0	53.0	52.0	49.0	35	39.0	62.0	780.0	120.0	960.0

CONT'D: sample#	M2/1	M2/2	M2/3	M2/4	M2/5	M2/6	M2/7	M3/4	M3/5	M5/5	M6/1	M6/7	M7/1
SO4	450.0	320.0	310.0	300.0	270.0	250.0	270.0	110	180.0	130.0	270.0	88.0	720.0
total S - lab													
HCO3 to use	725.4	743.7	880.0	831.5	926.6	929.0	858.3	732	829.1	475.5	1011.9	498.7	n/a
CO3 - lab				0.0				<1					
Hg	<0.00005	<0.00005	<0.00005	<0.00005	0.00023	0.00014	0.00011	insufficient	0.00075	0.00014	<0.000050	0.00026	<0.000050
UTS - ICP ANALYTES (mg/L)													
В	0.45	0.61	0.50	1.14	0.56	0.32	0.39		0.63	0.48	0.74	2.37	0.62
Na	492.0	499.6	523.6	639.3	651.8	511.3	511.1		415.9	271.9	992.7	316.5	1528.9
Mg	9.8	12.2	12.7	13.8	12.3	9.6	9.3		43.7	12.5	59.5	30.7	96.8
Al	0.3	0.4	0.4	0.5	0.6	0.4	0.3		23.8	0.4	0.4	0.5	0.3
Si	7.2	10.9	10.8	12.2	12.6	8.1	8.1		45.7	8.3	6.7	10.2	5.9
К	19.3	7.6	6.9	5.8	3.7	3.8	11.8		17.0	17.1	11.6	8.1	7.2
Ca	17.3	18.9	19.2	17.6	14.1	12.5	12.1		17.5	20.9	30.0	38.1	40.9
Cr	4.05E-03	3.17E-03	2.64E-03	5.37E-03	1.94E-03	4.85E-03	5.46E-03		3.95E-02	1.74E-03	1.77E-02	3.49E-03	2.20E-02
Mn	6.62E-02	1.50E-01	1.58E-01	1.23E-01	8.55E-02	1.40E-01	3.15E-02		4.82E-01	7.43E-02	4.27E-01	1.38E-01	4.00E-01
Fe	1.24E+00	8.48E+00	6.76E+00	5.50E+00	4.91E+00	6.39E+00	1.26E+00		1.99E+01	1.79E+00	3.31E+00	1.33E+00	2.45E+00
Ni	2.18E-03	2.03E-03	2.79E-03	2.99E-03	2.14E-03	3.07E-03	2.06E-03		2.67E-02	2.97E-03	3.09E-03	2.56E-03	3.91E-03
Zn	6.04E-03	3.54E-03	8.81E-03	1.42E-02	8.16E-03	8.31E-03	7.57E-03		1.49E-01	1.72E-02	5.36E-03	3.09E-03	5.50E-03
Cu	1.03E-02	9.97E-04	1.41E-02	4.85E-03	3.74E-03	6.98E-03	n/a		7.71E-02	6.67E-03	1.65E-02	n/a	4.53E-03
As	1.46E-03	2.74E-03	3.23E-03	2.73E-03	2.09E-03	4.08E-03	8.61E-04		1.16E-03	4.99E-04	1.13E-03	6.74E-04	1.85E-03
Se	0.00E+00	0.00E+00	0.00E+00	5.70E-04	0.00E+00	3.47E-02	0.00E+00		0.00E+00	6.38E-04	2.87E-04	7.38E-04	1.95E-03
Sr	1.39E-01	1.06E-01	1.02E-01	8.72E-02	6.51E-02	9.75E-02	5.99E-02		2.30E-01	1.01E-01	3.09E-01	1.96E-01	4.58E-01
Мо	3.61E-03	2.12E-03	2.08E-03	2.14E-03	1.63E-03	2.03E-03	1.23E-03		8.54E-05	1.56E-03	3.63E-03	1.68E-03	1.78E-03
Cd	2.91E-04	7.99E-05	1.07E-04	3.44E-04	9.41E-05	5.82E-05	1.05E-04		1.87E-03	2.83E-04	7.88E-04	1.37E-04	7.39E-05
Pb	1.29E-02	1.12E-03	2.18E-03	1.98E-03	1.70E-03	1.40E-03	1.19E-03		1.58E-01	3.66E-03	2.58E-03	6.41E-04	1.10E-03
F by IC - if analysed													
Br value to use	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	3.20E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	6.70E-01	0.00E+00
CERTIFICATES													
certificate numbers for	C9703042	9705474	9706484	9708450	9802131	9803919	9810333	9708450	C9801573	9802131	C9703042	9810333	C9703042
above analyses	9703375	C9705532	C9706488	C9708452	C9801573	C9803918	C9810325	C9708452		C9801573	9703375	C9810325	9703375
ELECTRONIC BALANCE (%), RA	ATIOS, AND AN	IALYSIS VALII	DITY CHECK										
calculated TDS (mg/L)	1448	1293	1352	1430	1456	1271	1278		1216	749	2596	839	
high TDS flag;care balance	high TDS	high TDS	high TDS	high TDS	high TDS	high TDS	high TDS		high TDS	use %bal	high TDS	use %bal	
sum cation millequivalents	23.693	24.219	25.249	30.222	30.412	24.036	23.980		26.363	14.454	50.035	18.511	
sum anion millequivalents	23.113	20.666	22.507	21.398	22.328	21.900	21.735		18.447	12.249	44.211	13.474	
low sum an/cat tolerance	OK high%	OK high%	OK high%	OK high%	OK high%	OK high%	OK high%	partial anal	OK high%		OK high%	OK high%	partial anal
ionic balance % error	1.2	7.9	5.7	17.1	15.3	4.7	4.9		17.7	8.3	6.2	15.7	
A = S/K (calc TDS/cond)	0.67	0.58	0.61	0.67	0.83	0.62	0.63		0.93	0.61	0.51	0.55	
analysis adjustments				R	R			Р	R			R	Р

SPR														SPR
sample #	S1/4	S1/5	S1/7	S2/2	S2/4	S2/5	S2/7	S3/1	S3/2	S3/4	S4/2	S4/4	S4/5	sample #
date sampled	2-Oct-97	11-Feb-98	28-Oct-98	24-Jul-97	2-Oct-97	10-Feb-98	27-Oct-98	17-Jun-97	24-Jul-97	2-Oct-97	25-Jul-97	2-Oct-97	14-Feb-98	date sampled
SWL (m)	1.36	4.34	0.75	3.85	2.56	4.30	3.80	0.60	1.58	1.04	3.43	0.84	3.48	SWL (m)
pump rate (L/min)	0.72	1.94	1.20		1.20	1.00	1.33	0.50	1.00	1.33	1.00	1.20	0.40	pump rate (L/min)
FIELD PARAMETERS														FIELD PARAMETERS
EC (uS/cm)	459	474	525	933	576	583	558	895	789	608	2204	1074	1203	EC (uS/cm)
pH	7.1	6.3	6.3	6.8	7.0	6.1	5.9	6.7	6.7	6.9	6.3	7.5	7	рН
Eh (mV)	243	77	127	187	232	28	9	92	160	123	153	-85	-105	Eh (mV)
deg C	14.8	17.5	15.6	16.8	14.6	17.4	15.2	16.9	15.3	14.0	17.2	14.7	19	deg C
O2 %Sat	48.8	7.0	5.2	50.1	63.8	15.6	46.8	3.9	11.7	21.3	8.8	14.1	2	O2 %Sat
turbid sample														turbid sample
yellow oxidation											slight	slight	yellow	yellow oxidation
H2S presence														H2S presence
FIELD ANALYTES (mg/L)														FIELD ANALYTES (mg/L)
CO2	16	110	105	45	120	130	57	38	47	21	87	58	n/a	CO2
alkalinity as CaCO3	50	80	86	94	64	80	38	140	149	127	122	231	350	alkalinity as CaCO3
HACH ANALYTES (mg/L)														HACH ANALYTES (mg/L)
NO2 - N {for ion *3.3}	0.004	0.002	0.000	0.010	0.002	0.002	0.004	0.029	0.010	0.011	0.056	0.000	0	NO2 - N {for ion *3.3}
NO3 - N {for ion *4.4}	1.4	0.7	0.0	14.1	0.4	1.7	3.3	23.4	12.5	6.1	0.6	0.0	2	NO3 - N {for ion *4.4}
NH3 - N {for ion *1.29}	0.00	0.00	0.00	0.00	0.00	0.08	0.00	0.18	0.01	0.00	0.22	0.27	0	NH3 - N {for ion *1.29}
PO4(3-) {for P *0.326}	0.3	1.3	0.4	0.8	0.1	1.6	0.6	2.5	1.6	1.2	1.4	1.6	<0.02	PO4(3-) {for P *0.326}
total inorganic N - Hach	1.4	0.7	0.0	14.1	0.4	1.8	3.3	23.6	12.5	6.1	0.9	0.3	1.9	total inorganic N - Hach
BACTERIAL SUITE (CFU/100ml	-)													BACTERIAL SUITE (CFU/100m
BOD (mg/L)	5	5	4	<1	1	3.0	<1	3.0	1.0	<1	9.0	6.0	6	BOD (mg/L)
Total Coliforms	6	0	35	3	1	5	0	~2400	260	580	>241920	~2400	7	Total Coliforms
Faecal Coliforms														Faecal Coliforms
Faecal Streptococci	0	0	0	0	0	0	0	22	2	2	0	0	0	Faecal Streptococci
E.Coli	0	0	0	0	0	0	0	10	0	1	0	0	0	E.Coli
Pseudomonas aeruginosa	0	0	0	0	0	0	0	0	0	32	0	0	0	Pseudomonas aeruginosa
Clostridium perfringens/spp				0				0	0		0			Clostridium perfringens/spp
Yersinia spp.														Yersinia spp.
Salmonella spp.														Salmonella spp.
STANDARD ANALYTE SUITE (r	ng/L)													STANDARD ANALYTE SUITE (
total NOx to use	1.7	1.7	0.0	16.0	0.8	2.5	3.3	23.4	14.0	8.5	1.7	0.0	2	total NOx to use
kjeldahl N (organic N)	0.3	0.3	0.2	0.6	0.4	0.4	0.2	0.5	0.5	0.4	1.3	0.9	1	kjeldahl N (organic N)
total N to use	2.0	2.0	0.2	17.0	1.2	3.0	3.5	24.1	15.0	8.9	3.2	1.2	3	total N to use
total P	0.1	0.4	0.1	0.3	0.0	0.5	0.2	0.8	0.5	0.4	0.5	0.5	<0.05	total P
total organic carbon (TOC)	3.0	18.0	6.0	<1	5.0	18.0	3.0	<1	<1	2.0	30.0	24.0	100	total organic carbon (TOC)
Cl	70.0	75.0	55.0	110.0	74.0	81.0	88.0	62.0	64.0	42.0	390.0	88.0	120	CI

CONT'D: sample#	S1/4	S1/5	S1/7	S2/2	S2/4	S2/5	S2/7	S3/1	S3/2	S3/4	S4/2	S4/4	S4/5	CONT'D: sample#
SO4	74.0	35.0	53.0	86.0	66.0	72.0	67.0	59.0	54.0	48.0	290.0	100.0	100	SO4
total S - lab														total S - lab
HCO3 to use	90.0	97.5	104.9	114.6	104.0	98.0	46.6	170.7	181.7	195.0	180.0	378.0	427	HCO3 to use
CO3 - lab	0.0				0.0						<1	0.0		CO3 - lab
Hg	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	0	Hg
UTS - ICP ANALYTES (mg/L)														UTS - ICP ANALYTES (mg/L)
В	0.42	0.03	0.33	0.07	0.26	0.36	0.19	0.03	0.02	0.19	0.00	0.00	0.19	В
Na	71.9	80.2	74.5	133.7	96.7	98.8	77.8	128.9	130.0	122.7	545.4	197.7	253.3	Na
Mg	7.9	7.1	8.0	11.6	9.4	7.7	5.8	8.0	7.1	7.3	15.7	19.0	20.9	Mg
Al	0.3	0.2	0.2	0.3	0.3	0.2	0.3	0.5	0.3	0.4	0.4	0.3	0.3	Al
Si	9.4	10.7	9.4	8.0	10.9	12.1	17.4	7.3	7.5	9.1	12.5	5.2	7.2	Si
К	6.1	3.1	2.9	31.2	3.9	2.5	5.9	3.7	3.6	2.4	3.1	6.9	1.9	К
Ca	23.1	40.7	37.1	28.2	26.8	51.0	16.0	16.3	19.2	18.8	7.4	26.0	53.9	Са
Cr	5.46E-04	2.81E-03	1.04E-03	1.25E-03	4.66E-04	1.32E-03	8.72E-04	8.48E-04	1.12E-03	1.17E-03	8.10E-03	1.28E-03	3.84E-03	Cr
Mn	4.28E-03	5.66E-03	4.21E-02	1.20E-02	2.58E-03	2.25E-03	2.14E-03	7.85E-03	7.22E-03	3.41E-03	6.60E-02	2.92E-02	9.86E-02	Mn
Fe	6.19E-02	3.56E-02	2.27E-01	5.32E-02	5.77E-02	1.73E-01	1.76E-01	4.23E-02	5.31E-02	6.87E-02	1.06E-01	8.78E-01	1.19E+01	Fe
Ni	5.83E-04	5.75E-04	1.38E-03	1.05E-03	5.81E-04	5.82E-04	8.14E-04	5.11E-04	6.31E-04	4.59E-04	1.76E-03	1.02E-03	1.36E-03	Ni
Zn	7.97E-03	4.08E-03	6.66E-03	1.92E-03	1.24E-02	6.58E-03	6.10E-03	2.52E-03	2.35E-03	7.27E-03	4.68E-03	6.14E-03	9.39E-03	Zn
Cu	3.03E-03	2.13E-03	n/a	1.48E-03	2.33E-03	1.25E-03	n/a	2.18E-03	2.22E-03	3.17E-03	5.05E-03	1.59E-03	3.92E-03	Cu
As	5.48E-05	6.26E-05	1.55E-04	1.04E-04	7.56E-05	1.14E-04	1.19E-04	5.70E-05	8.19E-05	7.17E-05	2.04E-04	2.32E-04	6.04E-04	As
Se	2.23E-03	0.00E+00	0.00E+00	8.47E-04	2.11E-03	5.91E-04	6.12E-03	0.00E+00	1.18E-03	0.00E+00	0.00E+00	1.75E-03	0.00E+00	Se
Sr	7.65E-02	6.85E-02	7.07E-02	1.29E-01	8.75E-02	7.32E-02	4.48E-02	6.17E-02	5.40E-02	4.26E-02	2.98E-02	1.18E-01	9.92E-02	Sr
Мо	1.60E-04	1.24E-04	1.74E-04	4.08E-04	1.13E-04	1.10E-03	1.90E-04	3.24E-04	2.34E-04	2.89E-04	2.08E-04	2.61E-04	7.18E-04	Мо
Cd	1.72E-04	4.65E-05	1.16E-04	3.00E-05	1.74E-04	6.28E-05	1.56E-04	3.16E-05	2.32E-05	1.15E-04	6.17E-05	1.89E-05	2.93E-05	Cd
Pb	3.78E-03	6.52E-03	7.74E-04	1.29E-02	5.72E-03	2.82E-03	2.11E-03	7.90E-03	5.18E-03	3.38E-03	1.13E-02	4.18E-04	1.14E-03	Pb
F by IC - if analysed														F by IC - if analysed
Br value to use	0.00E+00	0.00E+00	1.50E-01	0.00E+00	0.00E+00	0.00E+00	4.00E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	Br value to use
CERTIFICATES														CERTIFICATES
certificate numbers for	9708450	9801464	9810360	9706554	9708450	9801464	9810333	9705474	9706554	9708450	C9706582	9708450	9801464	certificate numbers for
above analyses	C9708452	C9801478	C9810359	C9706553R	C9708452	C9801478	C9810325	C9705532	C9706553R	C9708452	9706579	C9708452	C9801478	above analyses
ELECTRONIC BALANCE (%), R	ATIOS, AND AN	IALYSIS VALIE	DITY CHECK											ELECTRONIC BALANCE (%), RA
calculated TDS (mg/L)	312	320	292	525	342	397	316	457	422	372	1383	633	861	calculated TDS (mg/L)
high TDS flag;care balance	use %bal	use %bal	use %bal	use %bal	use %bal	use %bal	use %bal	use %bal	use %bal	use %bal	high TDS	use %bal	use %bal	high TDS flag;care balance
sum cation millequivalents	5.123	6.205	5.863	9.013	6.456	7.581	4.847	7.252	7.330	6.988	25.536	11.727	15.959	sum cation millequivalents
sum anion millequivalents	5.100	4.532	4.405	7.797	5.193	5.563	4.944	7.517	6.846	5.853	20.107	10.810	12.583	sum anion millequivalents
low sum an/cat tolerance			OK high%	OK high%			OK high%	OK high%	OK high%		OK high%			low sum an/cat tolerance
ionic balance % error	0.2	15.6	14.2	7.2	10.8	15.4	-1.0	-1.8	3.4	8.8	11.9	4.1	11.8	ionic balance % error
A = S/K (calc TDS/cond)	0.68	0.68	0.56	0.56	0.59	0.68	0.57	0.51	0.53	0.61	0.63	0.59	0.72	A = S/K (calc TDS/cond)
analysis adjustments		R	R			R								analysis adjustments

													SPR		
S4/6	S4/7	S5/1	S5/2	S5/4	S5/7	S8/1	S8/2	S888/2	S8/4	S8/5	S8/6	S8/7	sample #	S9/1	S9/2
17-Apr-98	28-Oct-98	20-Jun-97	22-Jul-97	3-Oct-97	28-Oct-98	20-Jun-97	22-Jul-97		3-Oct-97	7-Feb-98	14-Apr-98	28-Oct-98	date sampled	20-Jun-97	25-Jul-97
4.40	0.68	3.53	3.71	3.05	2.61	4.22	4.18		3.78	4.33	4.41	3.24	SWL (m)	11.43	11.38
1.20	0.24	0.40		1.33	1.09	0.48	0.71		0.96	0.38	1.00	0.50	pump rate (L/min)	bailed	bailed
													FIELD PARAMETERS		
1261	1131	263	246.6	241.4	276	180.5	186.8		169	170.3	185.9	150.1	EC (uS/cm)	432	429
6.6	7.0	6.3	5.9	5.6	6.2	5.2	5.2		4.9	5.2	5.0	4.5	pH	4.4	5.1
-140	-71	-51	-6	228	140	162	177		238	185	142	156	Eh (mV)	233	264
18.0	15.7	15.2	15.1	14.2	15.2	17.5	15.6		15.1	18.8	17.3	15.9	deg C	16.7	14.3
16.6	1.7	10.1	14.1	69.8	61.9	28.1	25.1		27.0	44.2	45.7	31.5	O2 %Sat		
						slight			dirty	initially dirty			turbid sample	silty	silty
yellow	yellow								orange				yellow oxidation		
		minor											H2S presence		
													FIELD ANALYTES (mg/L)		
n/a	207	21	23	54	16	45	42		n/a	28	138	49	CO2	n/a	n/a
287	307	51	22	44	37	30	15		n/a	2	0	nil	alkalinity as CaCO3	n/a	n/a
													HACH ANALYTES (mg/L)		
0.000	0.000	0.000	0.000	0.002	0.004	0.002	0.003		0.001	0.001	0.002	0.004	NO2 - N {for ion *3.3}		0.002
1.2	0.0	0.0	0.0	2.2	1.5	0.0	0.0		0.2	0.1	0.3	0.0	NO3 - N {for ion *4.4}		3.5
0.30	n/a	0.63	0.91	0.00	0.00	0.27	0.00		0.00	0.00	0.00	0.11	NH3 - N {for ion *1.29}		0.00
0.0	n/a	2.6	7.1	1.6	1.2	3.5	0.1		0.0	0.0	0.0	3.9	PO4(3-) {for P *0.326}		0.3
1.5	0.0	0.6	0.9	2.2	1.5	0.3	0.0	0.0	0.2	0.1	0.3	0.1	total inorganic N - Hach	0.0	3.5
													BACTERIAL SUITE (CFU/100mL))	
8.0	5.0	nd	4.0	2.0	1.0	nd	2.0		6.0	<1	50.0	2.0	BOD (mg/L)	nd	2.0
1733	42	0	0	30	3	7	3	0	0	0	0	1	Total Coliforms	~2400	345
													Faecal Coliforms		
0	0	0	0	0	0	0	0	0	0	0	0	0	Faecal Streptococci	2	6
0	0	0	0	0	0	0	0	0	0	0	0	0	E.Coli	1	0
0	0	0	0	0	0	0	0	0	0	0	0	0	Pseudomonas aeruginosa		0
		0	0			0	0	0		0			Clostridium perfringens/spp		
													Yersinia spp.		
													Salmonella spp.		
g/L)													STANDARD ANALYTE SUITE (m	g/L)	
1.2	<0.01	0.0	0.2	3.4	1.5	0.1	0.1	0.0	0.2	0.2	0.3	0.3	total NOx to use	5.2	5.1
1.0	1.1	0.2	0.4	0.2	<0.1	0.1	0.2		0.1	0.1	0.1	<0.1	kjeldahl N (organic N)	<0.010	1.1
2.5	1.1	0.9	1.5	3.6	1.5	0.5	0.3	0.0	0.3	0.3	0.4	0.4	total N to use	5.5	6.2
<0.05	0.1	0.8	2.3	0.5	0.4	1.1	0.2		0.6	<0.05	0.1	1.3	total P	0.2	0.2
30.0	15.0	4.0	3.0	2.0	4.0	2.0	<1		2.0	<1	3.0	2.0	total organic carbon (TOC)	2.0	6.0
120.0	91.0	44.0	40.0	45.0	32.0	43.0	43.0		41.0	43.0	49.0	38.0	CI	96.0	95.0

S4/6	S4/7	S5/1	S5/2	S5/4	S5/7	S8/1	S8/2	S888/2	S8/4	S8/5	S8/6	S8/7	CONT'D: sample#	S9/1	S9/2
77.0	96.0	3.2	3.2	6.4	14.0	3.9	4.1		3.7	3.0	5.0	3.0	SO4	14.0	16.0
													total S - lab		
349.9	374.3	61.9	59.0	21.0	45.1	37.1	18.3	0.0	10.0	2.4	0.0	0.0	HCO3 to use	0.0	4.3
													CO3 - lab		<1
0.00006	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005		<0.00005	<0.00005	0.00008	<0.00005	Hg	<0.00005	<0.00005
													UTS - ICP ANALYTES (mg/L)		
0.91	0.19	0.05	2.25	0.10	0.09	0.60	0.86		0.07	0.12	0.13	0.06	В	0.28	0.45
231.3	149.0	37.2	38.9	45.6	30.1	29.5	34.2		36.1	36.0	30.8	25.0	Na	69.4	72.0
18.7	34.5	4.7	4.5	3.1	6.5	1.8	1.8		1.8	1.5	1.4	1.2	Mg	6.0	5.8
0.3	0.2	0.4	1.2	0.5	0.3	0.4	0.6		0.3	0.3	0.2	0.2	Al	0.4	0.6
23.6	7.2	18.2	20.0	19.1	5.1	23.5	23.7		24.2	24.8	29.2	21.1	Si	9.1	9.3
2.2	6.6	1.0	1.8	1.7	7.6	0.6	0.8		0.0	0.5	0.0	4.9	К	0.1	0.5
25.4	59.5	7.8	9.4	5.3	14.3	2.2	3.7		1.7	3.5	1.4	1.4	Ca	2.8	4.0
5.30E-03	2.50E-03	7.78E-04	1.09E-03	3.75E-04	8.24E-04	7.07E-04	6.72E-04		2.92E-04	7.46E-04	1.50E-03	5.84E-04	Cr	2.23E-03	1.42E-03
1.07E-01	1.01E-01	8.42E-02	7.30E-02	4.56E-03	5.54E-03	6.00E-02	6.12E-02		4.13E-02	3.93E-02	3.71E-02	1.14E-02	Mn	8.55E-03	5.42E-03
9.12E+00	4.55E+00	8.85E+00	7.85E+00	4.87E-02	1.22E-01	6.04E-01	4.90E-01		1.64E-01	1.60E-01	7.36E-02	1.09E-01	Fe	1.19E-01	1.61E-02
1.30E-03	2.08E-03	6.16E-04	6.64E-04	6.96E-04	2.30E-03	6.90E-03	8.12E-03		1.24E-02	1.24E-02	1.20E-02	6.56E-03	Ni	6.71E-03	6.36E-03
3.76E-03	6.51E-03	2.17E-03	3.15E-03	9.27E-03	1.06E-02	1.07E-02	1.30E-02		2.49E-02	2.92E-02	2.50E-02	1.38E-02	Zn	1.20E-02	9.13E-03
4.52E-04	n/a	9.50E-04	1.01E-03	8.88E-03	n/a	2.16E-03	4.96E-03		6.02E-03	9.26E-03	1.28E-02	n/a	Cu	1.31E-02	1.02E-02
7.57E-04	3.07E-04	6.87E-04	6.37E-04	4.18E-05	4.96E-05	4.06E-04	3.17E-04		1.28E-04	1.61E-04	1.25E-04	8.32E-05	As	1.43E-04	1.40E-04
0.00E+00	6.24E-03	0.00E+00	0.00E+00	2.29E-03	2.67E-04	0.00E+00	0.00E+00		1.45E-03	3.58E-03	0.00E+00	3.38E-03	Se	0.00E+00	0.00E+00
1.05E-01	1.81E-01	3.01E-02	2.24E-02	1.66E-02	7.00E-02	9.31E-03	8.38E-03		3.90E-03	7.04E-03	7.12E-03	5.34E-03	Sr	1.75E-02	1.54E-02
1.08E-03	3.18E-04	1.45E-04	6.50E-04	6.65E-06	1.60E-04	3.49E-04	2.24E-04		0.00E+00	2.16E-04	6.63E-05	3.66E-05	Мо	2.04E-04	9.83E-05
6.60E-05	1.42E-04	2.19E-05	5.79E-05	1.93E-04	1.35E-04	1.07E-04	1.31E-04		2.55E-04	4.68E-04	2.40E-04	1.49E-04	Cd	2.18E-04	1.18E-04
1.87E-04	3.26E-04	7.56E-04	6.05E-04	5.03E-03	5.47E-04	5.70E-04	5.74E-04		9.93E-04	7.70E-04	5.61E-04	1.23E-03	Pb	5.43E-03	1.41E-02
													F by IC - if analysed		
0.00E+00	5.70E-01	0.00E+00	0.00E+00	0.00E+00	1.00E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	2.10E-01	Br value to use	0.00E+00	0.00E+00
													CERTIFICATES		
C9803937	9810360	9705635	9706484	9708541	9810360	9705635	9706484	9706484	9708541	9801307	9803751	9810360	certificate numbers for	9705635	C9706582
9804031	C9810359	C9705637	C9706488	C9708480	C9810359	C9705637	C9706488		C9708480	C9801306	C9803753	C9810359	above analyses	C9705637	9706579
TIOS, AND AN	ALYSIS VALID	ITY CHECK											ELECTRONIC BALANCE (%), RA	ATIOS, AND A	NALYSIS VALI
696	626	161	170	154	140	129	123		118	115	122	103	calculated TDS (mg/L)	223	237
use %bal	use %bal	use %bal	use %bal	use %bal	use %bal	use %bal	use %bal	use %bal	use %bal	use %bal	use %bal	use %bal	high TDS flag;care balance	use %bal	use %bal
13.307	12.648	2.824	3.060	2.603	2.789	1.641	1.924		1.843	1.919	1.550	1.415	sum cation millequivalents	3.710	3.890
10.810	10.772	2.404	2.386	1.954	2.079	2.011	1.602		1.412	1.325	1.508	1.284	sum anion millequivalents	3.000	3.341
OK high%	OK high%	OK high%	OK high%	OK high%	OK high%	OK high%	OK high%	partial anal	OK high%	OK high%	OK high%	OK high%	low sum an/cat tolerance	OK high%	OK high%
10.4	8.0	8.0	12.4	14.2	14.6	-10.2	9.1		13.2	18.3	1.4	4.8	ionic balance % error	10.6	7.6
0.55	0.55	0.61	0.69	0.64	0.51	0.72	0.66		0.70	0.68	0.66	0.68	A = S/K (calc TDS/cond)	0.52	0.55
				R	R			Р		R			analysis adjustments		

S9/5	S9/6	S10/2	S10/5	S10/6	S12/5	S12/52*	S12/6	S12/62*
10-May-98	14-Apr-98	25-Jul-97	8-Feb-98	14-Apr-98	8-Feb-98	8-Feb-98	14-Apr-98	14-Apr-98
11.44	11.49	13.80	13.89	13.93	23.59	23.59	23.85	23.85
waterra hand r	grundfos		1.56	0.60	2.22	1.31	11.11	11.11
404	418	7320	6720	6330	3620	3600	3520	3590
4.7	4.3	5.4	5.7	5.8	5.7	5.7	5.8	5.7
143	169	236	192	151	201	144	158	141
18.2	17.6	14.7	18.0	16.5	18.7	18.5	16.2	16.8
48.7	58.6		49.0	36.3	24.1	26.3		29.8
		slight						
n/a	n/a	n/a	186	64	5	6	54	121
2	3	n/a	30	41	276	339	24	53
0.008	0.004	0.002	0.000	0.010	0.015	0.008	0.017	0.004
3.2	3.9	0.1	0.0	0.0	3.5	2.2	1.5	1.7
0.01	0.00	0.01	0.45	0.47	0.00	0.00	0.00	0.00
<0.02	0.0	0.5	1.4	2.6	0.0	0.0	0.8	0.2
3.3	3.9	0.1	0.5	0.5	3.6	2.2	1.5	1.7
4.0	85.0	3.0	7.0	55.0	8.0	4.0	85.0	85.0
24000	161	0	1046	16(reject)	2419	2419	291	14
0	0	20	10	0	0	0	0	0
0	0	0	1	0	0	0	0	0
0	0	0	0	0	124	74	26	0
0		0	0		0	0		
-								
4.9	5.4	0.3	0.3	0.3	3.6	2.4	2.4	2.3
0.5	0.1	0.5	0.1	0.1	0.3	0.1	0.2	0.1
5.4	5.5	0.8	0.9	0.8	3.9	2.5	2.6	2.4
<0.05	0.0	2.4	0.5	0.8	<0.05	<0.05	0.3	0.1
<1	1000.0	1.0	5.0	16.0	3.0	3.0	630.0	54.0
95.0	99.0	2400.0	2300.0	2300.0	1100.0	1100.0	1100.0	1100.0

S9/5	S9/6	S10/2	S10/5	S10/6	S12/5	S12/52*	S12/6	S12/62*
16.0	15.0	100.0	96.0	100.0	40.0	40.0	40.0	40.0
2.0	3.7	58.5	36.5	49.7	336.5	413.3	28.8	64.4
		<1						
0.00009	<0.00005	<0.00005	<0.00005	0.00014	<0.00006	<0.00005	0.0001	0.00008
0.09	0.09	0.18	0.06	0.06	0.07	0.06	0.05	0.03
77.1	66.8	1167.6	1191.1	1143.0	663.3	655.7	624.1	613.9
5.8	5.8	233.7	252.2	239.3	115.9	118.2	110.8	109.9
0.3	0.3	0.3	0.2	0.2	0.2	0.2	0.2	0.2
9.2	13.4	8.0	7.8	9.5	6.9	6.8	9.4	7.0
0.5	0.0	4.8	2.7	4.7	3.5	3.6	6.6	6.5
5.1	2.1	32.7	59.6	30.4	21.6	21.6	10.9	10.5
2.02E-03	5.87E-03	3.62E-02	3.14E-02	6.73E-02	2.18E-02	2.36E-02	4.17E-02	4.58E-02
5.91E-03	7.02E-03	8.51E-02	2.17E-02	2.59E-02	1.07E-02	8.42E-03	6.13E-03	4.99E-03
8.65E-02	2.53E-01	6.39E-02	6.59E-02	8.01E-02	8.01E-02	4.45E-02	6.61E-02	4.67E-02
2.08E-02	3.08E-02	1.04E-02	8.09E-03	1.00E-02	5.51E-03	4.56E-03	4.07E-03	3.41E-03
1.36E-02	8.97E-03	1.70E-02	1.31E-02	1.22E-02	3.70E-02	5.94E-02	1.95E-02	1.41E-02
2.18E-03	6.87E-02	5.71E-03	6.45E-03	1.34E-02	4.97E-03	3.24E-03	2.06E-02	1.31E-02
1.28E-04	2.24E-04	6.68E-04	5.01E-04	1.19E-03	3.86E-04	4.15E-04	7.06E-04	7.66E-04
1.81E-03	0.00E+00	1.31E-03	0.00E+00	0.00E+00	2.82E-03	3.92E-03	6.89E-04	5.65E-03
1.80E-02	1.96E-02	4.40E-01	3.97E-01	4.03E-01	1.81E-01	1.84E-01	1.87E-01	1.72E-01
1.09E-04	3.44E-04	1.25E-04	2.09E-04	2.72E-04	3.12E-04	3.76E-04	1.60E-04	9.01E-05
3.57E-04	6.28E-04	1.31E-04	1.19E-04	4.75E-04	1.19E-04	9.21E-05	1.04E-03	2.04E-04
2.93E-03	3.85E-03	2.61E-03	1.39E-03	2.16E-03	4.30E-04	3.75E-04	6.39E-04	3.84E-04
0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
9801464	9803751	C9706582	9801307	9803751	9801307	9801307	9803751	9803751
C9801478	C9803753	9706579	C9801306	C9803753	C9801306	C9801306	C9803753	C9803753
ITY CHECK								
232	1227	3984	3935	3871	2112	2133	2556	1979
use %bal	high TDS	high TDS	high TDS	high TDS	high TDS	high TDS	high TDS	high TDS
4.134	3.532	71.817	75.674	71.121	39.589	39.448	37.010	36.460
3.276	3.442	70.768	67.522	67.862	37.631	38.791	32.468	33.046
OK high%	OK high%	OK high%	%<5 req'd	OK high%				
11.6	1.3	0.7	5.7	2.3	2.5	0.8	6.5	4.9
0.57	2.93	0.54	0.59	0.61	0.58	0.59	0.73	0.55
	ос			DP				

NEW														NEW
sample #	N1/2	N1/3	N1/5	N1/6	N1/7	N2/2	N2/3	N2/5	N2/6	N2/7	N3/3	N3/5	N7/2	sample #
date sampled	19-Jun-97	24-Jul-97	9-Feb-98	16-Apr-98	28-Oct-98	19-Jun-97	24-Jul-97	9-Feb-98	15-Apr-98	28-Oct-98	24-Jul-97	11-Feb-98	19-Jun-97	date sampled
SWL (m)	3.63	4.51	3.61	3.78	3.67	2.85	2.85	3.09	3.21	3.22	3.65	3.45	4.91	SWL (m)
pump rate (L/min)	0.44	0.71	1.03	0.50	0.54	0.80	0.86	0.58	0.53	0.70	0.80		0.75	pump rate (L/min)
FIELD PARAMETERS														FIELD PARAMETERS
EC (uS/cm)	7820	7630	6350	6060	5200	3880	1781	6030	6000	4940	10850	9800	13320	EC (uS/cm)
рН	6.6	6.3	6.4	6.5	6.5	6.7	6.3	6.3	6.3	6.3	6.3	6.5	6.5	рН
Eh (mV)	140	116	39	104	56	141	188	55	109	30	137	28	144	Eh (mV)
deg C	17.4	15.7	18.2	18.4	17.8	16.1	14.6	18.0	17.6	16.8	15.8	18.6	17.2	deg C
O2 %Sat	39.5	8.8	10.7	18.8	17.4	66.6	70.5	28.3	23.0	24.4	3.2	4.4	9.5	O2 %Sat
turbid sample	minor		initially	initially									slight	turbid sample
yellow oxidation									initially grey	initially black				yellow oxidation
H2S presence										initially	hint			H2S presence
FIELD ANALYTES (mg/L)														FIELD ANALYTES (mg/L)
CO2	155	230	223	217	142	90	46	186	260	136	122	227	170	CO2
alkalinity as CaCO3	122	170	183	141	102	82	58	92	165	89	200	139	170	alkalinity as CaCO3
HACH ANALYTES (mg/L)														HACH ANALYTES (mg/L)
NO2 - N {for ion *3.3}	0.001	0.000	0.000	0.005	0.009	0.000	0.002	0.003	0.003	0.002	0.003	0.003	0.003	NO2 - N {for ion *3.3}
NO3 - N {for ion *4.4}	0.0	0.0	0.0	0.0	n/a	0.0	0.0	0.1	0.0	n/a	0.0	0.3	0.0	NO3 - N {for ion *4.4}
NH3 - N {for ion *1.29}	0.23	0.00	0.09	0.23	0.08	0.00	0.00	0.04	0.13	0.00	0.00	0.08	0.67	NH3 - N {for ion *1.29}
PO4(3-) {for P *0.326}	3.7	0.3	1.5	2.7	3.1	0.4	0.0	0.2	1.1	0.0	0.1	0.0	6.3	PO4(3-) {for P *0.326}
total inorganic N - Hach	0.2	0.0	0.1	0.2	0.1	0.0	0.0	0.2	0.1	0.0	0.0	0.4	0.7	total inorganic N - Hach
BACTERIAL SUITE (CFU/100mL)														BACTERIAL SUITE (CFU/100mL)
BOD (mg/L)	2		7	<2	<1	3	3	2.0	<5	2.0	1.0	3.0	1.0	BOD (mg/L)
Total Coliforms	~2400	10	59	14	0	1	2	5	167	147	0	36	816	Total Coliforms
Faecal Coliforms														Faecal Coliforms
Faecal Streptococci	26	0	0	0	0	0	0	2	0	0	0	0	4	Faecal Streptococci
E.Coli	0	0	0	0	0	0	0	0	0	0	0	0	0	E.Coli
Pseudomonas aeruginosa	0	0	0	0	0	0	0	0	0	0	0	0	0	Pseudomonas aeruginosa
Clostridium perfringens/spp	0	0	nd			0	0	nd			0	0	0	Clostridium perfringens/spp
Yersinia spp.														Yersinia spp.
Salmonella spp.														Salmonella spp.
STANDARD ANALYTE SUITE (mg	g/L)													STANDARD ANALYTE SUITE (m
total NOx to use	0.1	0.0	0.2	0.5	n/a	0.1	0.1	0.1	0.0	n/a	0.0	0.3	0.0	total NOx to use
kjeldahl N (organic N)	0.1	0.3	0.2	0.1	<0.1	0.2	0.3	0.2	0.1	0.2	<0.1	0.1	0.2	kjeldahl N (organic N)
total N to use	0.4	0.3	0.5	0.8	0.7	0.3	0.4	0.4	0.3	0.2	0.1	0.5	0.9	total N to use
total P	1.2	0.1	0.5	0.9	1.0	0.0	<0.05	<0.05	<0.005	<0.05	0.1	<0.05	2.1	total P
total organic carbon (TOC)	0.0	0.0	1.0	1.0	2.0	<1	<1	2.0	3.0	3.0	<1	43.0	<1	total organic carbon (TOC)
CI	2300.0	2300.0	2200.0	1900.0	1800.0	1200.0	510.0	1900.0	2500.0	1800.0	3500.0	3500.0	4400.0	CI

CONT'D: sample#	N1/2	N1/3	N1/5	N1/6	N1/7	N2/2	N2/3	N2/5	N2/6	N2/7	N3/3	N3/5	N7/2	CONT'D: sample#
SO4	210.0	210.0	200.0	210.0	220.0	95.0	72.0	140.0	190.0	130.0	240.0	230.0	230.0	SO4
total S - lab														total S - lab
HCO3 to use	148.7	207.3	223.1	171.9	124.4	100.0	70.7	112.2	201.2	108.5	243.8	169.5	207.3	HCO3 to use
CO3 - lab														CO3 - lab
Hg	<0.00005	<0.00005	0.00006	0.00017	0.00007	<0.00005	<0.00005	0.00054	0.00015	<0.00005	0.00006	0.00008	0.0005	Hg
UTS - ICP ANALYTES (mg/L)														UTS - ICP ANALYTES (mg/L)
В	0.13	2.31	0.36	0.44	1.94	0.09	0.79	0.15	0.19	0.77	0.58	0.19	0.13	В
Na	1420.7	1393.6	1256.3	1145.1	1126.2	564.2	308.1	1007.4	1245.0	904.2	1793.8	1369.7	2265.6	Na
Mg	146.9	145.3	127.4	112.2	103.0	81.9	49.9	196.4	224.7	144.5	275.5	292.3	369.8	Mg
Al	0.4	0.8	0.2	0.2	0.4	0.4	0.5	0.2	0.2	0.2	0.5	0.2	0.4	Al
Si	8.0	10.0	8.5	19.5	7.8	9.0	6.5	6.5	13.5	5.7	9.7	8.6	8.3	Si
К	0.7	1.5	0.5	0.9	1.4	0.3	0.6	0.3	1.1	3.1	1.3	0.5	1.4	К
Ca	55.0	59.7	97.6	43.0	46.3	31.2	19.7	143.4	91.4	70.7	129.1	254.5	161.0	Са
Cr	2.80E-02	2.94E-02	2.58E-02	5.61E-02	1.95E-03	1.24E-02	7.89E-03	2.41E-02	6.76E-02	1.93E-03	4.47E-02	4.16E-02	3.69E-02	Cr
Mn	1.55E-02	1.54E-02	8.41E-03	8.49E-03	4.27E-03	4.77E-03	2.84E-03	1.05E-02	1.51E-02	1.35E-02	1.68E-02	1.74E-02	3.25E-02	Mn
Fe	3.42E-01	3.17E-01	3.70E-01	2.92E-01	4.66E-01	5.73E-02	5.05E-02	1.46E-01	2.93E-01	5.27E-01	3.08E-01	2.68E-01	6.11E-01	Fe
Ni	2.11E-03	2.04E-03	2.12E-03	2.36E-03	1.85E-03	1.87E-03	1.38E-03	4.33E-03	6.22E-03	3.63E-03	5.43E-03	6.17E-03	8.17E-03	Ni
Zn	2.70E-03	2.79E-03	2.56E-02	5.00E-03	5.66E-03	1.70E-03	3.11E-03	5.12E-03	1.09E-02	7.47E-03	3.58E-03	1.86E-02	7.45E-03	Zn
Cu	8.67E-04	1.51E-03	6.54E-04	3.24E-03	n/a	8.55E-04	1.19E-03	1.09E-03	3.97E-03	n/a	3.16E-03	1.81E-03	1.23E-03	Cu
As	1.19E-03	1.13E-03	7.35E-04	1.12E-03	7.70E-04	3.36E-04	2.57E-04	4.89E-04	1.28E-03	7.31E-04	1.24E-03	8.88E-04	1.29E-03	As
Se	0.00E+00	0.00E+00	4.97E-04	1.39E-02	6.88E-04	0.00E+00	3.88E-03	4.74E-04	1.38E-02	1.44E-03	0.00E+00	4.01E-04	0.00E+00	Se
Sr	5.31E-01	5.66E-01	5.04E-01	5.09E-01	4.26E-01	3.31E-01	2.07E-01	7.69E-01	1.10E+00	6.44E-01	1.28E+00	1.16E+00	1.35E+00	Sr
Мо	3.75E-04	9.41E-04	7.67E-04	1.11E-03	1.52E-03	2.71E-04	3.83E-04	4.25E-04	6.95E-04	5.37E-04	4.71E-04	4.66E-04	2.44E-04	Мо
Cd	4.21E-05	5.40E-05	5.76E-05	9.42E-05	1.63E-04	3.35E-05	9.15E-05	1.25E-04	3.97E-04	9.21E-05	8.49E-05	7.20E-05	5.30E-05	Cd
Pb	9.92E-05	1.85E-04	1.27E-04	2.74E-04	5.36E-04	1.13E-04	1.56E-04	3.37E-04	4.08E-04	3.57E-04	2.80E-04	2.28E-04	2.84E-04	Pb
F by IC - if analysed														F by IC - if analysed
Br value to use	0.00E+00	0.00E+00	0.00E+00	0.00E+00	4.70E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	4.20E+00	0.00E+00	0.00E+00	0.00E+00	Br value to use
CERTIFICATES														CERTIFICATES
certificate numbers for	9705599	9706554	9801383	9803919	9810397	9705599	9706554	9801383	9803849	9810397	9706554	9801464	9705599	certificate numbers for
above analyses	C9705610	C9706553	C9801387	C9803918	C9810417	C9705610	C9706553	C9801387	C9803848	C9810417	C9706553R	C9801478	C9705610	above analyses
ELECTRONIC BALANCE (%), R	ATIOS, AND AN	ALYSIS VALII	DITY CHECK											ELECTRONIC BALANCE (%), RA
calculated TDS (mg/L)	4210	4213	3990	3511	3373	2025	1000	3446	4356	3114	6055	5773	7535	calculated TDS (mg/L)
high TDS flag;care balance	high TDS	high TDS	high TDS	high TDS	high TDS	high TDS	high TDS	high TDS	high TDS	high TDS	high TDS	high TDS	high TDS	high TDS flag;care balance
sum cation millequivalents	76.732	75.712	70.068	61.265	59.897	32.894	18.569	67.188	77.294	54.889	107.269	96.403	137.197	sum cation millequivalents
sum anion millequivalents	71.810	72.662	69.930	60.874	58.082	37.481	17.045	58.367	77.814	55.789	107.732	106.322	132.509	sum anion millequivalents
low sum an/cat tolerance	OK high%	OK high%	OK high%	OK high%	OK high%	OK high%	OK high%	OK high%	OK high%	OK high%	OK high%	OK high%	OK high%	low sum an/cat tolerance
ionic balance % error	3.3	2.1	0.1	0.3	1.5	-6.5	4.3	7.0	-0.3	-0.8	-0.2	-4.9	1.7	ionic balance % error
A = S/K (calc TDS/cond)	0.54	0.55	0.63	0.58	0.65	0.52	0.56	0.57	0.73	0.63	0.56	0.59	0.57	A = S/K (calc TDS/cond)
analysis adjustments														analysis adjustments

													NEW		
N7/3	N7/5	N7/6	N7/7	N8/2	N8/3	N8/5	N8/6	N8/7	NT1/1	NT1/2	NT1/3	NT1/5	sample #	NT1/6	NT1/7
23-Jul-97	9-Feb-98	15-Apr-98	28-Oct-98	18-Jun-97	23-Jul-97	9-Feb-98	15-Apr-98	28-Oct-98	2-Apr-97	18-Jun-97	23-Jul-97	9-Feb-98	date sampled	15-Apr-98	28-Oct-98
4.83	5.04	5.24	5.11	5.23	4.96	5.11	5.23	5.33		0.66	0.66	0.66	SWL (m)	0.64	0.64
1.40	1.00	0.70	0.44	0.40	0.50	1.05	0.69	0.46		1.00	low	0.55	pump rate (L/min)	0.60	1.40
													FIELD PARAMETERS		
13560	12270	12480	11380	11500	11570	10350	9700	9950	1528	1652	1632	1746	EC (uS/cm)	1475	1534
5.9	6	6.3	6.4	6.4	6.1	7.0	6.5	6.5	10.5	9.4	9.2	7.2	pH	8.1	6.9
124	2	117	104	-18	15	-8	42	25	-254	-108	-300	-108	Eh (mV)	-195	-130
16.3	17	16.6	17.8	17.2	15.6	16.6	16.9	17.0	19.6	11.3	13.8	21.9	deg C	19.1	16.9
4.1	0	17.7	5.0	56.1	28.8	29.7	33.0	31.2		23.2	n/a		O2 %Sat		2.5
													turbid sample		Fe pieces
									yellow	yellow	yellow	green/black	yellow oxidation	yell-green	yellow
													H2S presence		
													FIELD ANALYTES (mg/L)		
109	319	247	190	105	83	290	70	79	nil	n/a	n/a	n/a	CO2		n/a
169	152	140	154	160	186	164	141	188	170	n/a	250	300	alkalinity as CaCO3	250	n/a
													HACH ANALYTES (mg/L)		
0.001	0	0.000	0.003	0.005	0.008	0.005	0.004	0.001	0.000	0.000	0.000	n/a	NO2 - N {for ion *3.3}	0.000	n/a
0.9	0	0.0	0.0	0.0	0.0	0.0	0.4	0.1	0.0	0.0	0.0	n/a	NO3 - N {for ion *4.4}	0.0	n/a
0.50	2	1.29	0.74	0.52	0.61	1.11	0.77	0.48	n/a	n/a	n/a	2.40	NH3 - N {for ion *1.29}	3.30	2.60
1.5	3	0.0	1.8	5.0	5.6	5.3	0.0	0.1	n/a	n/a	n/a	0.0	PO4(3-) {for P *0.326}	n/a	0.0
1.4	1.6	1.3	0.7	0.5	0.6	1.1	1.2	0.6	n/a	n/a	n/a	2.4	total inorganic N - Hach	3.3	2.6
													BACTERIAL SUITE (CFU/100mL))	
	<1	<5	2.0	<25	3.0	2.0	<5	<1	15.0	12.0	12.0	11.0	BOD (mg/L)	<5	6.0
114	17	4	0	365	461	1	0	1	1	29	0	9	Total Coliforms	0	99
													Faecal Coliforms		
0	0	0	0	4	0	0	0	0	210	0	0	0	Faecal Streptococci	0	0
0	0	0	0	0	0	0	0	0	0	1	0	0	E.Coli	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	Pseudomonas aeruginosa	0	0
0	nd			0	0	nd			0	0	0		Clostridium perfringens/spp		
													Yersinia spp.		
													Salmonella spp.		
g/L)													STANDARD ANALYTE SUITE (m	g/L)	
0.9	<0.01	<0.003	<0.01	0.0	0.0	<0.01	0.4	<0.01	0.0	0.0	0.0	n/a	total NOx to use	<0.003	n/a
0.2	0	0.3	<0.1	6.8	0.3	0.3	0.2	<0.1	8.4	8.7	6.6	4.0	kjeldahl N (organic N)	5.4	4.8
1.6	2	0.3	0.8	7.3	0.9	1.5	1.4	0.5	8.4	8.7	6.6	6.4	total N to use	8.8	7.5
0.5	0.9	0.1	0.6	1.6	1.8	<0.05	0.0	0.1	0.2	0.2	0.1	<0.05	total P	0.0	0.1
<1	<1	68.0	2.0	4.0	<1	<1	65.0	1.0	78.0	75.0	61.0	93.0	total organic carbon (TOC)	43.0	42.0
4400.0	4800	4500.0	4600.0	3700.0	3700.0	3800.0	3600.0	4000.0	260.0	260.0	250.0	230.0	CI	190.0	240.0

N7/3	N7/5	N7/6	N7/7	N8/2	N8/3	N8/5	N8/6	N8/7	NT1/1	NT1/2	NT1/3	NT1/5	CONT'D: sample#	NT1/6	NT1/7
240.0	230	260.0	230.0	250.0	260.0	250.0	260.0	260.0	90.0	50.0	64.0	120.0	SO4	140.0	120.0
													total S - lab		
205.8	185	170.7	187.8	195.1	226.8	200.0	171.9	229.2	207.0	n/a	304.8	365.8	HCO3 to use	260.0	280.0
									170.0				CO3 - lab		
0.00014	<0.00005	0.00012	<0.00005	0.00021	<0.00005	0.00028	0.00037	0.00005	<0.000050	<0.00005	<0.00005	<0.00005	Hg	<0.00005	0.00008
													UTS - ICP ANALYTES (mg/L)		
0.40	0.16	0.16	0.37	1.92	0.26	0.16	0.62	0.33	0.31	0.44	0.09	0.09	В	0.06	0.14
2233.0	2265.2	2255.1	2053.4	2025.8	1904.6	1984.0	1749.2	1750.6	280.9	339.9	293.0	382.0	Na	264.3	289.5
361.7	381.1	372.9	299.9	315.7	304.5	332.4	282.9	259.3	1.6	13.0	9.9	25.6	Mg	13.3	17.5
0.4	0.2	0.2	0.2	0.3	0.3	0.2	0.2	0.2	5.3	0.8	0.9	1.1	Al	2.1	0.2
9.6	8.8	13.6	6.3	12.5	9.9	9.3	25.2	6.6	5.2	7.8	6.7	8.0	Si	9.4	4.9
1.4	0.8	2.3	10.6	1.4	1.4	0.7	1.0	11.1	16.9	13.2	13.1	6.0	К	13.4	10.3
168.1	343.5	175.7	184.5	140.5	143.8	289.3	133.6	164.8	54.5	35.8	31.7	93.9	Ca	48.1	41.1
5.47E-02	5.20E-02	1.01E-01	5.34E-02	3.17E-02	4.53E-02	4.48E-02	5.17E-02	4.22E-02	5.71E-03	3.85E-03	5.86E-03	7.02E-03	Cr	7.39E-03	3.57E-03
3.34E-02	3.54E-02	4.02E-02	3.92E-02	6.27E-02	6.03E-02	5.62E-02	4.44E-02	4.88E-02	2.66E-03	7.60E-02	7.69E-02	1.57E-01	Mn	9.80E-02	1.56E-01
6.78E-01	9.11E-01	1.13E+00	7.88E-01	1.24E+00	1.30E+00	1.07E+00	7.88E-01	1.04E+00	4.12E-01	3.88E+00	3.19E+00	9.88E+00	Fe	5.87E+00	1.13E+01
9.01E-03	7.42E-03	1.04E-02	0.00E+00	1.14E-02	1.02E-02	8.82E-03	7.51E-03	7.77E-04	1.59E-02	7.76E-03	7.04E-03	6.75E-03	Ni	8.35E-03	7.70E-03
6.80E-03	1.29E-02	1.15E-02	2.11E-02	1.05E-02	8.67E-03	6.95E-03	5.53E-03	3.66E-02	2.46E-03	2.04E-03	1.36E-03	1.05E-02	Zn	3.91E-03	9.05E-03
3.09E-03	9.52E-04	8.48E-03	n/a	7.05E-04	1.13E-03	1.03E-03	1.86E-03	n/a	1.72E-02	1.28E-03	1.56E-03	7.77E-04	Cu	4.21E-03	n/a
1.67E-03	1.51E-03	2.63E-03	1.38E-03	1.60E-03	1.61E-03	1.51E-03	1.58E-03	1.61E-03	1.18E-03	1.42E-03	1.21E-03	1.35E-03	As	1.19E-03	8.74E-04
0.00E+00	0.00E+00	7.71E-03	2.59E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	5.36E-01	2.57E-03	0.00E+00	2.46E-04	9.50E-03	Se	2.57E-02	5.23E-03
1.62E+00	1.48E+00	1.93E+00	2.14E+00	1.18E+00	1.44E+00	1.28E+00	1.14E+00	1.88E+00	2.25E-01	1.50E-01	1.67E-01	2.65E-01	Sr	2.99E-01	2.29E-01
3.42E-04	2.50E-04	6.04E-04	6.19E-03	8.86E-04	3.69E-04	3.21E-04	8.57E-04	3.20E-03	3.09E-02	1.60E-02	1.77E-02	1.41E-02	Мо	1.63E-02	1.00E-02
6.79E-05	2.63E-05	4.56E-04	0.00E+00	8.86E-05	8.58E-05	8.21E-05	1.85E-04	3.97E-04	6.22E-04	6.25E-05	1.14E-04	1.09E-04	Cd	1.06E-04	2.09E-04
4.03E-04	2.32E-04	3.82E-04	2.17E-03	4.67E-04	3.46E-04	1.62E-04	4.22E-04	4.22E-03	5.40E-03	8.70E-04	3.88E-04	5.08E-04	Pb	6.92E-04	1.43E-03
													F by IC - if analysed		
0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	Br value to use	0.00E+00	1.70E+00
													CERTIFICATES		
9706525	9801383	9803849	9810397	9705541	9706525	9801383	9803849	9810397	9703105	9705541	9706525	9801383	certificate numbers for	9803849	9810397
C9706524	C9801387	C9803848	C9810417	C9705554	C9706524	C9801387R	C9803848	C9810417	C9703075	C9705554	C9706524	C9801387R	above analyses	C9803848	C9810417
TIOS, AND AN	ALYSIS VALID	ITY CHECK											ELECTRONIC BALANCE (%), R	ATIOS, AND A	NALYSIS VALII
7511	8120	7724	7474	6571	6432	6758	6197	6556	1085		888	1149	calculated TDS (mg/L)	874	927
high TDS	high TDS	high TDS	high TDS	high TDS	high TDS	high TDS	high TDS	high TDS	high TDS	high TDS	use %bal	high TDS	high TDS flag;care balance	use %bal	use %bal
135.467	147.262	137.802	123.627	121.293	115.273	128.277	106.191	106.136	16.114		15.700	24.214	sum cation millequivalents	16.020	16.964
132.602	143.319	135.156	137.690	112.938	113.685	115.848	109.818	122.020	18.267		13.381	14.983	sum anion millequivalents	12.536	14.072
OK high%	OK high%	OK high%	OK high%	OK high%	OK high%	OK high%	OK high%	OK high%	OK high%	partial anal	OK high%	OK high%	low sum an/cat tolerance		
1.1	1.4	1.0	-5.4	3.6	0.7	5.1	-1.7	-7.0	-6.3		8.0	23.6	ionic balance % error	12.2	9.3
0.55	0.66	0.62	0.66	0.57	0.56	0.65	0.64	0.66	0.71		0.54	0.66	A = S/K (calc TDS/cond)	0.59	0.60
										Р		R	analysis adjustments		

NT2/2	NT2/3	NT2/5	NT2/6	NT2/7	NT4/2	NT4/3	NT4/5	NT4/6
18-Jun-97	23-Jul-97	9-Feb-98	15-Apr-98	29-Oct-98	18-Jun-97	23-Jul-97	11-Feb-98	16-Apr-98
0.49	0.51	0.52	0.42	0.96	0.52	0.58	1.60	1.87
1.00	1.33	1.30	1.04	1.00	1.00	0.71	1.60	1.09
1914	1631	1815	1787	1727	1382	1449	1409	1330
7.5	6.2	6.7	6.6	6.6	6.4	5.8	6.4	6.4
-132	-110	-118	-139	-128	-53	-56	-111	-116
15.7	13.3	19.4	18.1	15.4	15.8	13.4	21.3	18.7
4.6	1.6		11.4	n/a	13.9	n/a	1.3	9.9
yellow	yellow	dk yellow	yell/green		yellow	yellow	yellow	yellow
n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
n/a	460	730	690	n/a	n/a	520	550	380
0.000	0.000	n/a	0.000	n/a	0.000	0.000	n/a	0.000
0.0	5.7	n/a	n/a	n/a	0.0	0.0	n/a	0.0
n/a	n/a	6.20	n/a	6.80	n/a	n/a	5.00	0.37
n/a	n/a	0.1	<0.003	<0.02	n/a	n/a	<0.02	0.0
0.0	5.7	6.2	0.0	6.8	0.0	0.0	5.0	0.4
11.0	12.0	8.0	5.0	11.0	12.0	20.0	8.0	<2
~2400	~2400	2400	61310	16	~2400	1658	24000	345
0	0	0	40	0	62	2	2	0
0	0	0	19	0	225	5	9	0
0	0	0	0	0	230	0	18	0
0	0	U	U	U	0	0	10	U
U	Ü				Ü	0		
0.0	5.7	n/a	n/a	n/a	1.1	2.2	n/a	0.4
14.0	10.0	11.0	13.0	12.0	0.5	13.0	11.0	10.0
14.0	10.0	17.2	13.0	18.8	1.6	15.0	16.8	10.7
0.3	0.1	0.1	0.1	0.1	0.0	0.1	0.1	0.1
140.0	120.0	110.0	320.0	78.0	150.0	120.0	190.0	54.0
190.0	170.0	150.0	150.0	160.0	90.0	100.0	120.0	140.0

NT2/2	NT2/3	NT2/5	NT2/6	NT2/7	NT4/2	NT4/3	NT4/5	NT4/6
51.0	44.0	11.0	24.0	290.0	53.0	37.0	36.0	82.0
n/a	560.8	890.0	841.3	960.0	n/a	634.0	670.6	463.3
<0.00005	<0.00005	<0.00005	0.00006	0.00005	0.00056	0.00023	<0.00005	0.00005
0.26	0.07	1.08	0.04	0.10	0.16	0.81	0.37	0.08
245.4	209.3	249.1	135.2	270.7	104.2	103.9	137.9	137.8
57.2	50.4	58.4	31.9	55.1	55.7	61.5	57.6	48.4
0.8	1.1	0.4	0.3	0.2	0.7	0.9	0.4	0.3
12.5	11.8	11.1	5.7	8.4	13.2	13.5	13.5	11.7
13.6	13.4	5.7	10.4	16.9	17.9	16.6	6.7	13.6
78.1	73.4	141.3	45.6	91.6	102.9	116.1	186.4	84.8
1.40E-02	1.33E-02	1.32E-02	1.95E-02	1.27E-02	8.38E-03	9.49E-03	1.12E-02	1.36E-02
n/a	n/a	3.10E-01	3.89E-01	1.76E+00	n/a	n/a	3.10E-01	3.89E-01
8.40E+01	6.46E+01	9.69E+01	1.70E+01	7.26E+01	4.42E+01	7.71E+01	7.61E+01	1.70E+01
9.22E-03	7.75E-03	5.29E-03	7.48E-03	0.00E+00	1.98E-02	1.43E-02	5.68E-03	7.88E-03
3.48E-03	3.45E-03	3.59E-03	8.31E-03	1.16E-02	6.46E-03	7.45E-03	4.58E-03	8.37E-03
1.85E-03	1.08E-03	7.23E-04	2.99E-03	n/a	4.30E-03	2.90E-03	9.23E-04	8.11E-03
4.07E-03	3.25E-03	3.49E-03	5.22E-03	2.21E-03	2.65E-03	2.34E-03	3.74E-03	4.22E-03
0.00E+00	0.00E+00	0.00E+00	0.00E+00	6.59E-01	0.00E+00	0.00E+00	0.00E+00	9.00E-03
4.37E-01	4.26E-01	4.21E-01	5.84E-01	4.88E-01	4.63E-01	5.02E-01	4.02E-01	4.96E-01
1.10E-03	8.29E-04	1.63E-03	8.21E-04	3.13E-03	1.52E-03	9.90E-04	1.05E-03	1.02E-03
7.54E-05	2.36E-05	2.53E-05	5.76E-05	0.00E+00	7.74E-05	7.06E-05	2.27E-05	3.75E-05
3.69E-03	1.69E-03	4.75E-04	6.53E-04	1.59E-03	4.66E-03	6.01E-03	8.47E-04	6.38E-04
0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.90E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
9705541	9706525	9801383	9803849	9810397	9705541	9706525	9801464	9803919
C9705554	C9706524	C9801387R	C9803848	C9810417	C9705554	C9706524	C9801478	C9803918
ITY CHECK								
	1034	1278	1147	1527		974	1175	828
high TDS	high TDS	high TDS	high TDS	high TDS	high TDS	use %bal	high TDS	use %bal
	19.702	26.802	11.700	24.446		18.662	23.346	15.234
	15.311	19.050	18.519	26.524		13.982	15.125	13.250
partial anal	OK high%	OK high%	OK high%	OK high%	partial anal		OK high%	
	12.5	16.9	-22.6	-4.1		14.3	21.4	7.0
	0.63	0.70	0.64	0.88		0.67	0.83	0.62
Р		R	R		Р	R	R	

LAU														LAU
sample #	L2/1	L2/2	L222/2	L2/3	L2/4	L2/5	L2/6	L3/1	L333/1	L3/2	L3/3	L3/4	L3/5	sample #
date sampled	15-Jun-97	20-Jul-97	20-Jul-97	5-Oct-97	23-Nov-97	29-Mar-98	26-Oct-98	15-Jun-97	15-Jun-97	20-Jul-97	5-Oct-97	23-Nov-97	29-Mar-97	date sampled
SWL (m)	1.20	1.10		0.96	1.08	1.82	1.06	4.81		1.98	0.89	1.53	2.48	SWL (m)
pump rate (L/min)	0.33	2.20		1.04	1.13	1.50	1.25	1.42		0.50	1.20	1.11	1.57	pump rate (L/min)
FIELD PARAMETERS														FIELD PARAMETERS
EC (uS/cm)	2580	1185		1303	1566	2596	1085	7280		1553	1341	1520	1882	EC (uS/cm)
pН	5.2	5.4		5.9	6.4	5.9	5.6	4.4		5.8	6.1	6.8	6.3	рН
Eh (mV)	-39	-64		-47	-34	-155	-94	63		-53	119	39	-135	Eh (mV)
deg C	16.8	13.9		13.2	15.1	16.6	14.5	16.3		14.6	12.7	18.5	19.0	deg C
O2 %Sat	1.9	2.9		1.2	3.3	3.7	3.0	1.9		9.1	27.5	7.2	6.5	O2 %Sat
turbid sample	minor													turbid sample
yellow oxidation	yellow			yellow		minor					slight	slight	yellow	yellow oxidation
H2S presence		strong		slight	high initially									H2S presence
FIELD ANALYTES (mg/L)														FIELD ANALYTES (mg/L)
CO2	74	24		10	20	21	22	70		16	19	9	n/a	CO2
alkalinity as CaCO3	15	60		14	nil	56	57	nil		29	5	23	35	alkalinity as CaCO3
HACH ANALYTES (mg/L)														HACH ANALYTES (mg/L)
NO2 - N {for ion *3.3}	0.001	0.000	0.050	0.014	0.000	0.008	0.001	0.000		0.005	0.057	0.019	0.000	NO2 - N {for ion *3.3}
NO3 - N {for ion *4.4}	0.0	0.6	1.3	2.0	0.4	3.2	1.6	0.0		6.6	n/a	3.8	0.0	NO3 - N {for ion *4.4}
NH3 - N {for ion *1.29}	1.32	0.93	0.80	0.73	0.70	3.25	0.29	1.64		0.76	0.29	0.28	1.86	NH3 - N {for ion *1.29}
PO4(3-) {for P *0.326}	10.0	8.4	5.6	2.7	2.0	1.8	0.4	15.1		9.4	1.8	2.2	n/a	PO4(3-) {for P *0.326}
total inorganic N - Hach	1.3	1.5	2.2	2.7	1.1	6.4	1.9	1.6		7.3	0.3	4.1	1.9	total inorganic N - Hach
BACTERIAL SUITE (CFU/100ml	∟)													BACTERIAL SUITE (CFU/100mL
BOD (mg/L)	3	15	16	<2.0	<2	<2	<2	50	50	60	2	<2	<2	BOD (mg/L)
Total Coliforms	51 reject	<1	<1	<1	<1	<2	3	160 reject	190 reject	<1	<2	6	<2	Total Coliforms
Faecal Coliforms	25 reject	<1	<1	<1	<1	<2		120 reject	140 reject	<2	<2	<1	<2	Faecal Coliforms
Faecal Streptococci	<1	<1	<1	<1	<1	<2	2	30 reject	2 reject	158	<2	<1	<2	Faecal Streptococci
E.Coli	20 reject	<1	<1	<1	<1	<2	<1	10 reject	91 reject	<2	<2	<1	<2	E.Coli
Pseudomonas aeruginosa	<1	<1	<1	<1	<1	<2	<1	<1	<1	<1	<2	<1	<2	Pseudomonas aeruginosa
Clostridium perfringens/spp		0	0			15				0			0	Clostridium perfringens/spp
Yersinia spp.	<1	<1	<1					<1	n/d	<1				Yersinia spp.
Salmonella spp.	n/d	n/d	n/d					n/d	n/d	n/d				Salmonella spp.
STANDARD ANALYTE SUITE (r	ng/L)													STANDARD ANALYTE SUITE (m
total NOx to use	0.0	0.6	1.4	2.0	0.4	3.2	1.6	0.0	0.0	6.6	0.1	3.8	0.0	total NOx to use
kjeldahl N (organic N)				0.0	0.0	0.0	0.1				0.5	0.5	<1	kjeldahl N (organic N)
total N to use	3.0	1.5	2.2	2.7	1.1	6.4	2.0	2.8	2.2	7.3	0.8	4.6	2.4	total N to use
total P	3.3	2.7	1.8	0.9	0.7	0.6	0.1	4.9	0.8	3.1	0.6	0.7	0.0	total P
total organic carbon (TOC)	10.0	8.0	20.0	5.0	4.0	0.0	3.0	14.0		11.0	5.0	5.1		total organic carbon (TOC)
CI	828.9	380.4	353.3	373.0	454.0	860.0	330.0	2430.0	2504.0	430.0	357.0	371.0	565.0	CI

CONT'D: sample#	L2/1	L2/2	L222/2	L2/3	L2/4	L2/5	L2/6	L3/1	L333/1	L3/2	L3/3	L3/4	L3/5	CONT'D: sample#
SO4	21.0	12.0	140.0	9.8	14.7	13.0	9.0	98.0		12.0	26.0	38.0	30.0	SO4
total S - lab	7.5	5.3	4.6					31.7	31.5	7.6				total S - lab
HCO3 to use	18.0	73.2	n/a	30.5	28.0	68.3	69.5	0.0	n/a	35.4	26.8	53.6	90.2	HCO3 to use
CO3 - lab														CO3 - lab
Hg	<0.001			0.0001	0.001	<0.0005	0.00014	<0.001	<0.001	<0.001	0.00018	0.0005	<0.0005	Hg
UTS - ICP ANALYTES (mg/L)														UTS - ICP ANALYTES (mg/L)
В	0.56	0.05	2.28	0.69	0.47	0.27	1.01	0.26	0.17	0.96	0.36	0.23	0.14	В
Na	434.9	273.9	262.7	252.0	306.8	469.1	217.0	1294.8	1287.0	223.5	231.4	278.5	313.1	Na
Mg	34.8	19.4	19.9	19.1	24.8	38.7	16.4	174.6	171.7	26.4	22.9	23.5	30.5	Mg
Al	0.6	0.5	1.2	0.4	0.7	0.3	0.4	1.0	1.0	0.6	0.3	0.3	0.5	Al
Si	14.7	8.2	10.9	8.3	13.2	12.6	9.8	37.9	38.3	6.3	4.7	1.4	8.9	Si
К	6.3	6.7	7.2	4.1	4.9	2.5	6.7	4.0	4.1	48.6	17.5	36.0	7.7	К
Ca	8.7	4.2	6.8	5.0	5.5	8.3	10.9	16.9	16.5	19.1	22.0	18.9	19.0	Са
Cr	9.78E-03	8.66E-03	8.95E-03	1.96E-03	4.80E-03	1.01E-02	1.83E-03	2.27E-02		9.22E-03	1.01E-03	6.04E-03	1.13E-02	Cr
Mn	1.50E-01	6.61E-02	7.09E-02	5.07E-02	4.51E-02	1.24E-01	2.78E-02	4.77E-01		9.77E-02	6.51E-02	8.28E-02	2.85E-01	Mn
Fe	1.01E+01	9.97E+00	1.09E+01	1.49E+01	1.42E+01	3.94E+01	6.28E+00	1.36E+01	2.06E+01	9.49E-01	2.66E-01	5.52E-01	1.87E+01	Fe
Ni	1.61E-02	7.61E-03	8.13E-03	6.98E-03	5.13E-03	9.12E-03	4.44E-03	5.74E-02		5.03E-03	1.96E-03	1.54E-03	7.88E-03	Ni
Zn	1.72E-02	6.60E-03	6.06E-03	8.85E-03	5.07E-03	5.65E-03	5.90E-03	9.79E-02		9.05E-03	1.30E-01	5.00E-01	9.12E-03	Zn
Cu	2.77E-03	4.33E-04	2.16E-04	1.10E-03	3.00E-04	1.56E-03	n/a	1.14E-03		5.80E-04	1.17E-03	7.67E-04	1.82E-03	Cu
As	4.32E-04	3.69E-04	4.20E-04	3.05E-04	1.89E-04	4.69E-04	2.94E-04	5.25E-04		2.20E-04	1.82E-04	1.20E-04	5.85E-04	As
Se	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		9.26E-04	3.85E-03	0.00E+00	0.00E+00	Se
Sr	6.14E-02	3.34E-02	3.44E-02	2.61E-02	3.03E-02	3.89E-02	4.61E-02	1.14E-01		9.84E-02	1.09E-01	8.66E-02	1.08E-01	Sr
Мо	3.35E-04	6.29E-05	1.91E-04	3.66E-04	2.81E-04	3.31E-04	3.99E-04	1.22E-04		1.87E-04	2.73E-04	2.55E-04	2.77E-04	Мо
Cd	2.17E-04	1.37E-05	2.25E-05	1.52E-04	8.27E-05	3.01E-05	6.22E-05	1.94E-04		4.62E-05	1.46E-04	1.37E-04	4.49E-05	Cd
Pb	1.29E-03	6.70E-04	6.84E-04	9.89E-04	4.72E-46	2.38E-04	3.55E-04	2.51E-03		2.83E-03	2.48E-03	2.98E-03	2.06E-03	Pb
F by IC - if analysed				0.00E+00	0.00E+00						0.00E+00	0.00E+00		F by IC - if analysed
Br value to use	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.50E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	Br value to use
CERTIFICATES														CERTIFICATES
certificate numbers for	97.683	97.808	97.808	97.1084	97.124	42338-42343	C9810274	97.683	97.683	97.808	97.1084	97.124	42338-42343	certificate numbers for
above analyses	9701020W	C9706465	C9706465	C9708523	97-11-188	98-04-034	C9810539	9701020W	9701020W	C9706465	C9708523	97-11-188	98-04-034	above analyses
ELECTRONIC BALANCE (%), R	RATIOS, AND AN	IALYSIS VALII	DITY CHECK											ELECTRONIC BALANCE (%), RA
calculated TDS (mg/L)	1400	768		719	862	1501	649	4112		833	704	817	1041	calculated TDS (mg/L)
high TDS flag;care balance	high TDS	use %bal	use %bal	use %bal	use %bal	high TDS	use %bal	high TDS	high TDS	use %bal	use %bal	use %bal	high TDS	high TDS flag;care balance
sum cation millequivalents	22.906	14.368		13.526	16.416	25.749	11.797	72.360		14.251	13.558	15.993	18.133	sum cation millequivalents
sum anion millequivalents	24.432	12.488		11.455	13.666	25.932	10.947	71.068		13.722	11.112	12.475	18.042	sum anion millequivalents
low sum an/cat tolerance	OK high%		partial anal	OK high%	OK high%	OK high%		OK high%	partial anal	OK high%	OK high%	OK high%	OK high%	low sum an/cat tolerance
ionic balance % error	-3.2	7.0		8.3	9.1	-0.4	3.7	0.9		1.9	9.9	12.4	0.3	ionic balance % error
A = S/K (calc TDS/cond)	0.54	0.65		0.55	0.55	0.58	0.60	0.56		0.54	0.53	0.54	0.55	A = S/K (calc TDS/cond)
analysis adjustments	DP		Р					DP	P, DP					analysis adjustments

													LAU		
L3/6	L4/1	L4/2	L4/3	L4/4	L4/5	L4/6	L5/1	L5/2	L5/3	L5/4	L5/6	L6/1	sample #	L6/2	L6/3
26-Oct-98	15-Jun-97	20-Jul-97	5-Oct-97	23-Nov-97	29-Mar-98	25-Oct-98	16-Jun-97	21-Jul-97	5-Oct-97	25-Nov-97	26-Oct-98	16-Jun-97	date sampled	21-Jul-97	5-Oct-97
0.80	0.77	0.29	0.52	0.96	2.17	0.57	0.18	0.22	0.51	0.88	0.12	0.18	SWL (m)	0.16	0.49
0.88	2.00	2.40	1.62	1.57	1.20	1.20	3.00	0.80	2.18	1.00	1.04	1.00	pump rate (L/min)	1.00	1.71
													FIELD PARAMETERS		
1527	1252	1324	1173	1202	1247	995	2608	2590	1758	2374	2379	4030	EC (uS/cm)	3990	4680
6.4	6.4	6.5	6.7	7.1	6.5	6.6	5.6	5.8	6.2	7.7	6.0	4.1	pH	3.9	4.5
-23	136	72	51	9	-120	52	6	-1	-84	13	-85	367	Eh (mV)	344	166
13.8	14.4	12.9	12.1	14.7	17.8	13.0	11.3	9.7	13.3	21.3	16.2	13.2	deg C	10.2	13.9
9.1	3.7	26.6	18.8	2.3	2.4	7.0	2.0	4.3	9.6	0.8	3.9	15.2	O2 %Sat	5.2	11.0
	minor	minor											turbid sample		
	minor			minor	minor					minor	light		yellow oxidation		
							slight						H2S presence		
													FIELD ANALYTES (mg/L)		
81	90	84	32	10	34	72	40	18	26	<10	55	50	CO2	60	70
52	238	161	209	176	132	185	5	13	45	31	11	nil	alkalinity as CaCO3	nil	nil
													HACH ANALYTES (mg/L)		
0.008	0.064	0.048	0.008	0.029	0.005	0.350	0.000	0.000	0.000	n/a	0.000	0.002	NO2 - N {for ion *3.3}	0.003	0.004
5.8	4.6	8.0	n/a	1.3	0.9	1.9	0.0	1.2	n/a	n/a	1.2	2.5	NO3 - N {for ion *4.4}	0.0	n/a
0.14	1.46	0.66	0.83	0.99	0.93	0.50	0.18	0.15	0.51	n/a	0.39	0.22	NH3 - N {for ion *1.29}	0.23	0.76
0.1	18.7	3.9	2.4	3.2	3.4	1.3	0.0	1.1	1.7	n/a	0.7	0.0	PO4(3-) {for P *0.326}	0.4	0.5
5.9	6.1	8.7	0.8	2.3	1.9	2.8	0.2	1.3	0.5	0.0	1.6	2.7	total inorganic N - Hach	0.2	0.8
													BACTERIAL SUITE (CFU/100mL)		
4.0	30.0	14.0	4.0	2.0	<2	<2	31.0	22.0	2.0	3.0		10.0	BOD (mg/L)	3.0	<2.0
<1	130 reject	<1	<2	3	<2	<1	210 reject	6	<2	37		50 reject	Total Coliforms	2	<1
	97 reject	<1	<2	<1	<2		130 reject	3	<2	<1		44 reject	Faecal Coliforms	3	<1
5	110 reject	41	<2	<1	<2	<1	38 reject	5 reject	<2	<1		1 reject	Faecal Streptococci	<1	<1
<1	90 reject	<1	<2	<1	<2	<1	110 reject	3	<2	<1		21 reject	E.Coli	3	<1
<1	<1	<1	<2	<1	<2	<1	<1	<1	<2	<1		<1	Pseudomonas aeruginosa	<1	<1
		0			75			0					Clostridium perfringens/spp	0	
	<1	<1					<1	<1				<1	Yersinia spp.	<1	
	n/d	n/d					n/d	n/d				n/d	Salmonella spp.	n/d	
g/L)													STANDARD ANALYTE SUITE (m	g/L)	
8.2	4.7	8.0	0.0	1.3	0.9	2.7	0.0	1.2	0.0	n/a	1.2	2.5	total NOx to use	0.0	0.0
0.2			1.5	2.2	<1	1.1			0.0	0.0			kjeldahl N (organic N)		<1.0
8.5	6.1	8.7	2.3	4.5	4.4	4.3	1.4	1.3	0.5	0.0	1.6	2.7	total N to use	1.4	0.8
<0.05	6.1	1.3	0.8	1.1	1.1	0.4	0.3	0.4	0.6	0.0	0.2	0.3	total P	0.3	0.2
6.0	14.0	17.0	28.0	20.0		11.0	7.0	10.0	10.0	7.4		10.0	total organic carbon (TOC)	6.0	4.0
400.0	185.5	145.2	147.0	180.0	221.0	140.0	892.5	817.0	522.0	700.0	770.0	1333.0	CI	1264.6	1570.0

L3/6	L4/1	L4/2	L4/3	L4/4	L4/5	L4/6	L5/1	L5/2	L5/3	L5/4	L5/6	L6/1	CONT'D: sample#	L6/2	L6/3
53.0	72.0	4.7	84.0	85.0	100.0	63.0	4.0	2.9	6.9	3.5	n/a	7.0	SO4	8.1	5.7
	25.5	37.0					1.9	1.6				3.1	total S - lab	3.4	
63.4	290.2	196.3	353.6	304.8	256.0	225.6	5.6	16.3	54.9	53.6	13.4	0.0	HCO3 to use	0.0	0.0
													CO3 - lab		
~0.004	<0.001	<0.001	<0.00005	<0.0005	<0.0005	0.00009	<0.001	<0.001	0.00005	0.0005	n/a	<0.001	Hg	<0.001	0.00005
													UTS - ICP ANALYTES (mg/L)		
0.73	0.21	0.37	0.20	0.25	0.12	0.65	0.11	0.19	0.15	0.27	0.64	0.08	В	0.13	0.10
315.0	130.1	135.6	138.8	187.2	190.8	192.9	474.0	435.9	346.6	506.2	251.9	681.8	Na	664.7	855.1
24.9	35.8	44.0	49.2	47.5	32.4	34.2	53.0	52.0	37.7	56.1	44.4	73.7	Mg	74.5	103.6
0.3	0.5	0.4	0.3	0.3	0.3	0.3	0.4	0.4	0.4	0.3	0.3	4.6	Al	6.8	4.7
6.0	9.2	7.1	7.4	1.6	9.4	7.8	3.4	2.2	4.0	0.0	5.5	5.6	Si	5.1	5.6
7.4	42.4	26.7	23.7	19.1	12.4	7.2	2.0	2.2	2.1	2.1	6.4	4.1	К	2.6	4.3
23.1	67.2	60.1	64.0	55.4	31.3	38.8	9.7	8.2	7.5	5.9	12.6	31.6	Ca	25.0	33.0
2.06E-03	3.67E-03	2.41E-03	2.80E-03	2.74E-03	4.34E-03	2.40E-03	1.13E-02	8.43E-03	1.98E-03	8.16E-03	2.22E-03	1.67E-02	Cr	1.34E-02	9.30E-04
6.78E-02	4.86E-02	1.25E-01	5.82E-01	4.51E-01	4.90E-01	3.58E-01	1.12E-01	9.86E-02	1.50E-01	1.08E-01	9.66E-02	6.91E-01	Mn	n/a	7.63E-01
4.18E+00	2.30E-01	1.84E-01	8.02E-01	9.49E-01	4.40E+00	2.23E+00	1.30E+00	3.67E+00	9.00E+00	1.67E+01	1.15E+01	8.03E-01	Fe	1.83E+00	1.45E+01
2.49E-03	3.18E-03	2.40E-03	3.68E-03	3.41E-03	3.63E-03	2.88E-03	5.04E-03	5.89E-03	6.54E-03	8656E-03	8.52E-03	1.80E-02	Ni	1.77E-02	2.83E-02
6.97E-03	3.93E-03	3.86E-03	8.65E-03	6.57E-03	1.27E-02	5.68E-03	9.18E-03	7.46E-03	9.68E-03	4.81E-03	4.43E-03	4.09E-02	Zn	3.09E-02	5.94E-02
n/a	2.45E-03	1.15E-03	2.05E-03	1.12E-03	1.06E-03	n/a	8.17E-04	3.28E-04	2.50E-03	2.74E-04	n/a	5.65E-03	Cu	1.97E-03	1.83E-03
2.84E-04	1.27E-04	1.12E-04	1.66E-04	1.73E-04	2.75E-04	1.34E-04	2.47E-04	2.23E-04	3.13E-04	3.95E-04	4.64E-04	3.38E-04	As	2.84E-04	3.75E-04
5.26E-03	8.33E-04	0.00E+00	8.61E-04	0.00E+00	0.00E+00	0.00E+00	6.56E-04	0.00E+00	0.00E+00	0.00E+00	5.92E-03	5.35E-04	Se	0.00E+00	0.00E+00
1.78E-01	3.15E-01	2.65E-01	2.71E-01	2.17E-01	1.60E-01	2.44E-01	8.24E-02	8.39E-02	7.07E-02	6.88E-02	9.64E-02	2.17E-01	Sr	1.84E-01	2.78E-01
4.86E-04	3.42E-04	2.59E-04	3.77E-04	3.94E-04	4.10E-04	3.88E-04	9.95E-05	9.65E-05	2.14E-04	2.02E-04	3.42E-04	8.11E-05	Мо	3.48E-05	4.17E-05
9.29E-05	1.13E-04	4.23E-05	1.03E-04	1.88E-04	3.66E-05	5.11E-05	4.37E-05	4.26E-05	2.85E-04	1.69E-04	5.17E-05	3.30E-04	Cd	2.81E-04	3.49E-04
2.47E-03	1.10E-03	1.14E-03	8.45E-04	7.60E-04	1.49E-03	3.36E-04	1.56E-03	9.47E-04	3.36E-04	3.58E-04	4.19E-04	3.04E-03	Pb	2.67E-03	3.15E-03
				0.00E+00						0.00E+00			F by IC - if analysed		
7.00E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	5.40E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	2.50E+00	0.00E+00	Br value to use	0.00E+00	0.00E+00
													CERTIFICATES		
C9810274	97.683	97.808	97.1084	97.124	42338-42343	C9810274	97.683	97.808	97.1084	97.1246	C9810274	97.683	certificate numbers for	97.808	97.1084
C9810539	9701020W	C9706465	C9708523	97-11-188	98-04-034	C9810539	9701020W	C9706465	C9708523	97-11-188	C9810539	9701020W	above analyses	C9706465	C9708523
TIOS, AND AN	ALYSIS VALIE	DITY CHECK											ELECTRONIC BALANCE (%), RA	ATIOS, AND AN	NALYSIS VALII
902	722	563	704	747	731	612	1457	1348	973	1321		2165	calculated TDS (mg/L)	2066	2605
use %bal	use %bal	use %bal	use %bal	use %bal	use %bal	use %bal	high TDS	high TDS	use %bal	high TDS	high TDS	high TDS	high TDS flag;care balance	high TDS	high TDS
17.290	13.212	13.305	14.010	15.454	13.104	13.476	25.620	23.889	19.011	27.619		37.964	sum cation millequivalents	37.207	48.582
13.927	12.410	8.105	11.768	12.038	12.687	9.227	25.353	23.496	15.822	20.698		37.924	sum anion millequivalents	35.856	44.424
		OK high%					OK high%	OK high%	OK high%	OK high%	partial anal	OK high%	low sum an/cat tolerance	OK high%	OK high%
10.8	3.1	24.3	8.7	12.4	1.6	18.7	0.5	0.8	9.2	14.3		0.1	ionic balance % error	1.8	4.5
0.59	0.58	0.43	0.60	0.62	0.59	0.62	0.56	0.52	0.55	0.56		0.54	A = S/K (calc TDS/cond)	0.52	0.56
	DP	R				R	DP	DP		R	Р	DP	analysis adjustments		

											LAU				
L6/5	L6/6	L7/1	L7/2	L7/3	L7/4	L7/5	L7/6	L13/5	L13/6	L15/6	sample #	L16/6	LP/1	LP/2	LP/3
30-Mar-98	26-Oct-98	16-Jun-97	20-Jul-97	5-Oct-97	23-Nov-97	29-Mar-98	26-Oct-98	29-Mar-98	25-Oct-98	25-Oct-98	date sampled	25-Oct-98	15-Jun-97	20-Jul-97	5-Oct-97
1.26	0.98	0.21	0.18	0.37	0.74	0.73	0.38	1.91	1.83	0.58	SWL (m)	5.02			
2.18	0.96	1.00	0.95	1.76	2.14	2.50	1.50	0.78	0.96	0.68	pump rate (L/min)	0.85			
											FIELD PARAMETERS				
4410	3720	4830	4700	4590	4680	4240	4180	234	447	325	EC (uS/cm)	215.7	123.4	121	150.1
4.9	4.4	5.5	5.8	6.0	6.9	6.1	5.9	6.1	6.8	7.5	pH	6.1	7.4	7.8	7.5
18	126	-88	-97	-97	-92	-137	-95	-69	-92	-162	Eh (mV)	-147	151	89	97
21.0	15.4	13.0	9.7	12.4	15.0	18.5	13.3	16.7	12.6	14.0	deg C	13.7	8.5	6.8	
31.9	6.3	2.8	4.7	11.5	0.8	6.1	3.9	9.2	3.2	3.1	O2 %Sat	2.7	25.6	47.2	70.8
											turbid sample	minor			
			minor	light	minor	minor					yellow oxidation				
					some			slight		minor	H2S presence				
											FIELD ANALYTES (mg/L)				
16	193	19	103	12	8	13	57	36	36	30	CO2	<10	27	20	n/a
nil	nil	37	7	39	39	44	43	86	179	81	alkalinity as CaCO3	35	38	26	n/a
											HACH ANALYTES (mg/L)				
n/a	0.005	0.000	0.000	0.000	0.000	0.000	0.000	0.004	0.000	0.000	NO2 - N {for ion *3.3}	0.000	0.004	0.001	0.000
n/a	0.4	0.0	1.1	n/a	0.3	2.3	3.1	1.6	0.0	0.9	NO3 - N {for ion *4.4}	3.7	1.9	0.8	0.0
n/a	0.37	4.04	3.11	2.82	0.15	3.08	4.38	2.24	5.50	0.37	NH3 - N {for ion *1.29}	0.67	0.49	0.34	0.12
n/a	0.0	0.0	1.2	1.4	0.7	0.7	0.5	0.7	2.7	0.5	PO4(3-) {for P *0.326}	0.3	2.3	1.0	0.0
0.0	0.7	4.0	4.2	2.8	0.5	5.4	7.5	3.8	5.5	1.3	total inorganic N - Hach	4.4	2.3	1.1	0.1
											BACTERIAL SUITE (CFU/100mL)				
		100.0	40.0	4.0	3.0	6.0		<2	4.0	<2	BOD (mg/L)	<2	23.0	1.0	5.0
		4 reject	<1	<1	<1	<2		<2	2	53	Total Coliforms	5	200 reject	9	<2
		2 reject	<1	<1	<1	<2		<2			Faecal Coliforms		110 reject	9	<2
		<1	18 reject	<1	<1	<2		<2	1	6	Faecal Streptococci	<1	110 reject	39	<2
		<1	<1	<1	<1	<2		<2	<1	6	E.Coli	<1	110 reject	9	<2
		<1	<1	<1	<1	<2		<2	<1	<1	Pseudomonas aeruginosa	5	<1	<1	<2
			0			75		21			Clostridium perfringens/spp			0	
		<1	<1								Yersinia spp.		n/d	<1	
		n/d	n/d								Salmonella spp.		n/d	n/d	
								1.584	0	0.88	STANDARD ANALYTE SUITE (m	3.68	1.854	0.801	0
n/a	0.4	0.0	1.1	0.0	0.3	2.3	3.1	2.1	2.3	0.3	total NOx to use	0.2			0.0
				1.2	1.3	1.3		5.9	7.8	1.6	kjeldahl N (organic N)	4.6	2.3	1.3	0.1
n/a	0.7	4.0	4.2	4.0	1.8	6.7	7.5	0.2	0.9	0.2	total N to use	0.1	0.8	0.3	0.0
		0.4	0.4	0.5	0.2	0.2	0.2		8.0	5.0	total P	4.0	7.0	6.0	4.0
		16.0	16.0	8.0	9.6						total organic carbon (TOC)				
1450.0	1300.0	1642.0	1364.0	1510.0	1510.0	1450.0	1600.0	14.0	16.0	16.0	CI	25.0	11.9	11.6	15.0

L6/5	L6/6	L7/1	L7/2	L7/3	L7/4	L7/5	L7/6	L13/5	L13/6	L15/6	CONT'D: sample#	L16/6	LP/1	LP/2	LP/3
14.0	n/a	6.0	28.0	6.5	3.0	7.3	n/a	7.2	5.0	11.0	SO4	25.0	5.0	6.4	6.6
		2.3									total S - lab		1.8		
0.0	0.0	45.2	8.5	65.8	76.8	79.2	52.4	146.3	218.2	98.8	HCO3 to use	42.1	46.3	31.9	55.0
											CO3 - lab				
<0.0005		<0.001	<0.001	0.00009	0.0015	<0.0005		<0.0005	<0.00005	<0.00005	Hg	<0.00008	<0.001	<0.001	0.00021
											UTS - ICP ANALYTES (mg/L)				
0.12	0.60	0.04	0.12	2.11	0.19	0.06	1.93	0.11	0.81	0.39	В	0.18	0.85	0.08	0.70
753.1	291.5	842.9	789.6	795.1	1005.1	786.0	813.5	14.7	28.2	56.3	Na	62.5	11.9	10.9	14.2
86.2	64.5	86.7	83.7	83.7	103.2	84.9	78.7	17.4	21.2	10.0	Mg	1.7	4.2	4.0	4.7
2.4	2.1	0.4	0.4	0.4	0.4	0.2	0.5	0.2	0.4	0.3	Al	0.3	0.3	0.3	0.3
6.7	6.4	6.2	5.5	6.5	0.0	5.5	6.2	2.7	4.1	4.2	Si	17.6	3.5	0.8	1.3
4.1	6.7	1.3	1.1	1.0	1.2	1.5	9.8	2.9	12.0	11.6	К	5.8	3.5	3.1	2.7
26.4	21.1	13.9	12.4	11.2	10.1	9.2	13.7	10.6	24.4	42.3	Ca	4.3	11.2	11.0	13.9
1.48E-02	1.32E-02	1.63E-02	1.44E-02	2.47E-03	1.48E-02	1.65E-02	2.02E-02	8.91E-04	1.49E-04	8.07E-04	Cr	1.53E-03	2.19E-04	3.87E-04	3.70E-04
2.94E-01	9.59E-01	4.39E-01	n/a	7.37E-01	5.81E-01	3.79E-01	5.43E-01	2.94E-01	3.37E+00	3.06E-01	Mn	9.23E-02	8.46E-02	1.86E-02	2.51E-02
6.41E+01	7.16E+00	1.97E+01	1.77E+01	7.88E+01	9.53E+01	9.64E+01	9.34E+01	1.31E+01	5.75E+01	1.86E+00	Fe	1.77E+01	2.10E-01	2.94E-01	3.75E-01
2.44E-02	1.96E-02	1.65E-02	1.48E-02	1.55E-02	1.10E-02	5.68E-03	0.00E+00	2.52E-03	0.00E+00	1.33E-03	Ni	2.93E-03	8.86E-04	6.05E-04	5.69E-04
2.49E-02	5.68E-02	1.18E-02	6.98E-03	1.45E-02	1.55E-02	3.43E-03	1.23E-01	1.06E-02	1.52E-02	3.40E-03	Zn	5.67E-03	2.84E-03	4.26E-03	5.10E-03
3.19E-04	n/a	5.23E-04	1.28E-04	2.29E-04	1.76E-04	6.56E-04	n/a	2.95E-04	n/a	n/a	Cu	n/a	1.63E-03	4.68E-04	6.16E-04
5.40E-04	3.86E-03	5.47E-04	4.11E-04	5.87E-04	3.94E-04	5.71E-04	1.52E-03	1.45E-04	6.25E-04	1.00E-04	As	1.76E-04	1.28E-04	2.96E-05	8.47E-05
0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	2.87E-01	0.00E+00	3.72E-01	0.00E+00	Se	0.00E+00	0.00E+00	0.00E+00	1.47E-03
1.95E-01	2.45E-01	1.22E-01	1.11E-01	1.12E-01	1.03E-01	8.03E-04	1.21E-01	7.23E-02	1.36E-01	1.74E-01	Sr	1.25E-02	3.69E-02	3.46E-02	4.12E-02
2.80E-05	5.99E-02	8.92E-05	6.38E-05	1.48E-03	1.19E-04	1.09E-05	1.07E-02	3.95E-05	6.07E-03	2.22E-04	Мо	1.14E-04	8.82E-04	2.86E-05	4.25E-04
9.46E-05	5.94E-05	2.31E-05	1.75E-05	1.22E-04	1.72E-04	2.36E-05	0.00E+00	1.89E-05	0.00E+00	5.07E-05	Cd	5.32E-05	9.54E-05	1.44E-05	1.22E-04
1.23E-03	7.56E-03	1.61E-04	3.74E-04	1.52E-03	1.36E-03	6.24E-04	2.72E-03	4.61E-04	4.24E-03	2.85E-04	Pb	8.57E-04	3.66E-04	2.90E-04	3.11E-04
					0.00E+00						F by IC - if analysed				
0.00E+00	3.90E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	5.10E+00	0.00E+00	1.10E-01	9.00E-02	Br value to use	1.30E-01	0.00E+00	0.00E+00	0.00E+00
											CERTIFICATES				
98-04-034	C9810274	97.683	97.808	97.1084	97.124	42338-42343	C9810274	42338-42343	C9810274	C9810274	certificate numbers for	C9810274	97.683	97.808	97.1084
	C9810539	9701020W	C9706465	C9708523	97-11-188	98-04-034	C9810539	98-04-034	C9810539	C9810539	above analyses	C9810539	9701020W	C9706465	C9708523
ITY CHECK											ELECTRONIC BALANCE (%), RA	ATIOS, AND AN	IALYSIS VALI	DITY CHECK	
		2672	2340	2549	2779	2502		169	307	208	calculated TDS (mg/L)	201	91	74	87
	high TDS	high TDS	high TDS	high TDS	high TDS	high TDS	high TDS	use %bal	use %bal	use %bal	high TDS flag;care balance	use %bal	use %bal	use %bal	use %bal
		45.572	42.782	45.123	56.211	45.377		3.327	6.998	5.810	sum cation millequivalents	3.938	1.584	1.495	1.823
		47.187	39.316	43.855	43.963	42.543		3.079	4.231	5.821	sum anion millequivalents	5.345	1.404	1.073	1.462
partial anal	partial anal	OK high%	OK high%	OK high%	OK high%	OK high%	partial anal	OK high%		OK high%	low sum an/cat tolerance	OK high%	OK high%	OK high%	OK high%
		-1.7	4.2	1.4	12.2	3.2		3.9	24.6	-0.1	ionic balance % error	-15.2	6.0	16.4	11.0
		0.55	0.50	0.56	0.59	0.59		0.72	0.69	0.64	A = S/K (calc TDS/cond)	0.93	0.73	0.61	0.58
Р	Р	DP	DP				Р		R		analysis adjustments	R	DP	R	

LP/4	LP/5	LP/6
23-Nov-97	29-Mar-98	25-Oct-98
142.1	173.6	118.6
7.5	7.6	9.1
71	-20	-51
24.3	16.8	17.5
54.9	40.0	79.9
25	7	n/a
28	67	56
0.002	0.006	0.002
0.3	0.7	0.9
0.15	0.19	0.12
0.7	0.0	0.6
0.5	0.9	1.0
2.0	7.0	6.0
110	10	58
140	16	
140	14	12
87	8	14
<1	<2	<1
	1100	
0.322	0.746	0.882
<1	1.3	0.4
0.5	2.2	1.4
0.2	0.1	0.2
5.6		9.0
13.0	14.0	10.0

LP/4	LP/5	LP/6
3.6	8.7	6.0
48.8	62.2	68.3
0.005	<0.0005	<0.00005
0.21	0.09	0.16
16.0	15.6	26.1
5.1	6.9	4.2
0.3	0.2	0.3
0.0	0.4	1.4
2.2	6.6	11.3
9.0	13.9	11.1
3.87E-04	4.62E-04	4.20E-04
2.61E-02	6.03E-02	1.12E-02
8.43E-01	4.19E-01	4.81E-01
4.67E-04	1.06E-03	6.71E-04
7.69E-03	5.85E-03	3.01E-03
6.83E-04	9.91E-04	n/a
4.08E-05	6.08E-05	5.54E-05
0.00E+00	5.74E-05	0.00E+00
3.85E-01	4.82E-02	3.39E-02
7.87E-05	6.34E-05	1.66E-04
6.85E-05	4.07E-05	2.91E-05
3.95E-04	3.50E-04	2.87E-04
0.00E+00		
0.00E+00	0.00E+00	<0.02
97.124	42338-42343	C9810274
97-11-188	98-04-034	C9810539
79	102	115
use %bal	use %bal	use %bal
1.710	2.162	2.384
1.286	1.648	1.608
OK high%	OK high%	OK high%
14.1	13.5	19.4
0.56	0.59	0.97
R		R

CEN														CEN
sample #	C1/3	C1/4	C1/5	C2/1	C2/2	C2/3	C2/4	C3/1	C3/2	C3/3	C3/4	C3/5	C4/1	sample #
date sampled	29-Jun-97	24-Sep-97	22-Feb-98	17-Oct-96	14-Feb-97	29-Jun-97	24-Sep-97	17-Oct-96	14-Feb-97	29-Jun-97	24-Sep-97	22-Feb-98	17-Oct-96	date sampled
SWL (m)	3.79	3.24	3.80	1.75	2.26	2.39	2.04	1.43	2.13	2.08	1.69	2.26	2.64	SWL (m)
pump rate (L/min)		0.67	0.32			0.50	0.88			0.80	0.88	1.14		pump rate (L/min)
FIELD PARAMETERS														FIELD PARAMETERS
EC (uS/cm)	7220	6800	6200	7470	7780	7060	6890	8660	8770	8080	7750	6970	19520	EC (uS/cm)
pН	7.3	7.1	7.2	7.0	7.0	7.1	7.1	6.9	7.0	7.1	7.1	7.2	6.7	pH
Eh (mV)	3	134	80		320	88	149		182	84	166	180		Eh (mV)
deg C	17.8	20.6	25.3	18.6	23.1	19.6	19.7	19.2	25.1	19.5	18.6	23.6	22.5	deg C
O2 %Sat	27.2	38.1	5.8	5.9	10.4	3.4	18.6	81.9	39.9	13.2	18.2	43.9	64.3	O2 %Sat
turbid sample			some			initially				turbid	dirty initially			turbid sample
yellow oxidation														yellow oxidation
H2S presence														H2S presence
FIELD ANALYTES (mg/L)														FIELD ANALYTES (mg/L)
CO2	n/a	n/a	n/a	580	340	180	254	463	436	n/a	330	290	630	CO2
alkalinity as CaCO3	n/a	n/a	721	710	684	597	607	716	720	760	740	690	640	alkalinity as CaCO3
HACH ANALYTES (mg/L)														HACH ANALYTES (mg/L)
NO2 - N {for ion *3.3}	0.000	0.000	0.001	0.000	0.002	0.020	0.000	0.005	0.009	0.000	0.000	0.000	0.013	NO2 - N {for ion *3.3}
NO3 - N {for ion *4.4}	0.0	0.6	0.5	n/a	0.1	0.6	0.0	n/a	0.8	0.0	0.0	0.0	n/a	NO3 - N {for ion *4.4}
NH3 - N {for ion *1.29}	0.01	0.37	0.07	n/a	0.27	0.18	0.27	0.48	0.53	0.50	0.47	0.53	1.70	NH3 - N {for ion *1.29}
PO4(3-) {for P *0.326}	0.0	3.6	0.0	2.2	1.0	0.8	2.1	2.0	1.9	3.5	2.1	3.1	1.9	PO4(3-) {for P *0.326}
total inorganic N - Hach	0.0	1.0	0.6	0.0	0.4	0.8	0.3	0.5	1.4	0.5	0.5	0.5	1.7	total inorganic N - Hach
BACTERIAL SUITE (CFU/100mL	_)													BACTERIAL SUITE (CFU/100mL)
BOD (mg/L)	40	8	19	21	<2	<2	2.0	<2	<2	2.0	n/a	4.0	4.0	BOD (mg/L)
Total Coliforms	>180	2	1	140	0	0	0	80 reject	0	>180	3	0	0	Total Coliforms
Faecal Coliforms	25			0	0	0		0	0	0			0	Faecal Coliforms
Faecal Streptococci	8	0	0	0	0	0	0	0	0	0	0	0	0	Faecal Streptococci
E.Coli		0	0				0				0	0		E.Coli
Pseudomonas aeruginosa	<10	0	0			0	0			0	0	0		Pseudomonas aeruginosa
Clostridium perfringens/spp														Clostridium perfringens/spp
Yersinia spp.														Yersinia spp.
Salmonella spp.														Salmonella spp.
STANDARD ANALYTE SUITE (n	ng/L)													STANDARD ANALYTE SUITE (m
total NOx to use	0.0	0.6	0.5	0.0	0.1	0.6	0.0	0.0	0.8	0.0	0.0	0.0	0.0	total NOx to use
kjeldahl N (organic N)	0.6	0.4	0.2	0.3	0.4	0.2	0.3	0.3	0.4	0.3	0.2	0.1	0.4	kjeldahl N (organic N)
total N to use	0.7	1.4	0.8	0.3	0.7	1.0	0.5	0.8	1.7	0.8	0.7	0.6	2.1	total N to use
total P	0.1	0.1	0.0	0.7	0.4	0.3	0.7	0.7	0.6	1.2	0.7	1.0	0.6	total P
total organic carbon (TOC)	27.0	6.0	8.5	9.6	2.7	4.3	3.0	2.8	2.7	4.6	27.2	3.5	3.6	total organic carbon (TOC)
CI	1750.0	1730.0	1580.0		727.0	1750.0	1750.0		2216.8	2010.0	n/a	1880.0		CI

CONT'D: sample#	C1/3	C1/4	C1/5	C2/1	C2/2	C2/3	C2/4	C3/1	C3/2	C3/3	C3/4	C3/5	C4/1	CONT'D: sample#
SO4	261.0	244.0	246.0		130.6	245.0	238.0		218.4	263.0	n/a	265.0		SO4
total S - lab														total S - lab
HCO3 to use	901.0	850.0	879.1	865.6	833.9	854.0	823.0	873.0	877.8	926.6	902.2	841.3	780.3	HCO3 to use
CO3 - lab														CO3 - lab
Hg	<0.0001	<0.0001	<0.0001		<0.0001	<0.0001	<0.0001		<0.0001	<0.0001	<0.0001	<0.0001		Hg
UTS - ICP ANALYTES (mg/L)														UTS - ICP ANALYTES (mg/L)
В	2.01	1.51	1.80		0.42	1.10	1.08	1.19	0.51	1.22	1.08	1.35	2.69	В
Na	1273.1	1249.9	1201.8		279.5	1109.3	1199.8	1324.2	575.6	1354.8	1371.0	1291.5	4805.9	Na
Mg	151.3	147.3	144.2		35.9	153.3	162.1	186.6	75.1	194.4	195.4	180.5	1310.2	Mg
Al	0.9	0.5	0.4		0.1	0.3	0.2	2.9	0.1	0.4	0.2	0.2	5.6	Al
Si	14.1	12.9	14.4		1.6	12.3	13.5	19.6	3.1	13.5	12.9	13.7	35.9	Si
К	7.1	5.6	6.4		1.2	5.9	5.8	11.9	3.5	8.7	8.6	8.9	67.7	К
Ca	153.3	157.9	145.5		30.3	160.3	179.7	191.5	55.4	171.5	180.1	169.1	891.5	Са
Cr	1.70E-02	3.61E-03	1.68E-02		8.72E-03	1.69E-02	3.02E-03	4.85E-02	1.39E-02	1.92E-02	2.40E-03	1.74E-02	9.43E-02	Cr
Mn	2.73E-01	2.48E-01	1.13E-01		8.52E-02	2.90E-01	3.20E-01	4.75E-01	2.29E-01	2.58E-01	2.29E-01	4.30E-01	1.73E-01	Mn
Fe	4.19E-01	7.29E-01	6.12E-01		7.95E-02	2.72E-01	4.84E-01	7.53E-01	1.20E-01	3.34E-01	6.09E-01	2.78E-01	1.36E+00	Fe
Ni	5.00E-03	3.87E-03	2.39E-03		1.27E-03	4.52E-03	3.66E-03	7.15E-03	2.69E-03	5.69E-03	4.47E-03	4.45E-03	1.26E-02	Ni
Zn	9.52E-03	2.70E-02	1.64E-02		2.16E-03	2.77E-03	1.97E-02	2.71E-03	1.10E-02	6.58E-03	1.89E-02	1.22E-02	2.06E-02	Zn
Cu	1.48E-03	1.52E-03	1.81E-03		4.82E-03	1.07E-03	1.82E-03	1.45E-03	1.20E-03	2.38E-03	9.69E-04	1.00E-03	1.19E-02	Cu
As	5.17E-04	6.63E-04	4.43E-04		1.63E-04	4.69E-04	5.13E-04	1.30E-03	3.59E-04	5.12E-04	5.71E-04	4.19E-04	3.11E-03	As
Se	0.00E+00	0.00E+00	0.00E+00		1.30E-03	0.00E+00	0.00E+00	0.00E+00	3.70E-03	0.00E+00	0.00E+00	0.00E+00	0.00E+00	Se
Sr	1.16E+00	1.32E+00	1.32E+00		3.33E-01	1.15E+00	1.33E+00	1.83E+00	6.96E-01	1.38E+00	1.54E+00	1.44E+00	2.10E+00	Sr
Мо	2.30E-03	1.89E-03	1.25E-03		2.97E-04	3.54E-04	5.51E-04	0.00E+00	5.56E-04	5.69E-04	6.68E-04	1.02E-03	6.37E-04	Мо
Cd	2.14E-04	2.20E-04	1.29E-04		2.23E-04	3.45E-05	2.36E-04	2.42E-05	2.50E-05	8.79E-05	1.45E-04	4.63E-05	2.25E-04	Cd
Pb	1.35E-03	5.65E-04	1.47E-03		1.16E-04	6.26E-04	1.39E-03	9.23E-04	3.55E-04	1.40E-03	1.37E-03	8.69E-05	1.21E-02	Pb
F by IC - if analysed														F by IC - if analysed
Br value to use	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	Br value to use
CERTIFICATES														CERTIFICATES
certificate numbers for	89712767	14436	R002622	89620155	89703396	89712768	14436	809620153	89703397	89712769	14436	R002622	89620156	certificate numbers for
above analyses	49709001	89718625				497090002	89718627			49709003	89718627			above analyses
ELECTRONIC BALANCE (%), F	RATIOS, AND AN	IALYSIS VALII	DITY CHECK											ELECTRONIC BALANCE (%), RA
calculated TDS (mg/L)	4023	3921	3723		1564	3807	3905		3530	4420		4174		calculated TDS (mg/L)
high TDS flag;care balance	high TDS	high TDS	high TDS	high TDS	high TDS	high TDS	high TDS	high TDS	high TDS	high TDS	high TDS	high TDS	high TDS	high TDS flag;care balance
sum cation millequivalents	75.800	74.654	71.664		16.699	69.103	74.738		34.149	83.837		79.804		sum cation millequivalents
sum anion millequivalents	69.569	67.974	64.137		36.936	68.536	67.878		81.590	77.475		72.438		sum anion millequivalents
low sum an/cat tolerance	OK high%	OK high%	OK high%	partial anal	OK high%	OK high%	OK high%	partial anal	OK high%	OK high%	partial anal	OK high%	partial anal	low sum an/cat tolerance
ionic balance % error	4.3	4.7	5.5		-37.7	0.4	4.8		-41.0	3.9		4.8		ionic balance % error
A = S/K (calc TDS/cond)	0.56	0.58	0.60		0.20	0.54	0.57		0.40	0.55		0.60		A = S/K (calc TDS/cond)
analysis adjustments				Р	R			P, DP	R		Р		Р	analysis adjustments

													CEN		
C4/2	C4/3	C444/3	C4/4	C4/5	C5/1	C5/2	C5/3	C5/4	C5/5	C5/7	C7/4	C7/5	sample #	C7/7	C8/4
14-Feb-97	29-Jun-97	29-Jun-97	24-Sep-97	22-Feb-98	17-Oct-96	14-Feb-97	29-Jun-97	24-Sep-97	22-Feb-98	1-Oct-98	25-Sep-97	22-Feb-98	date sampled	1-Oct-98	24-Sep-97
3.14	3.14		2.83	1.91	6.25	1.96	2.14	1.54	1.75	1.52	1.11	1.65	SWL (m)	1.32	1.78
	0.60		0.92	0.75				1.04	0.24	0.44	1.09	0.92	pump rate (L/min)	0.65	1.14
													FIELD PARAMETERS		
22520	20940	20570	21590	17050	23050	22250	25580	22150	20680	19880	9480	8830	EC (uS/cm)	8930	12090
6.8	6.8	6.9	6.9	7.0	6.8	7.1	7.1	7.2	7.2	7.0	7.2	7.0	pH	6.9	7.4
118	183	174	246	159		519	119	514	195	461	194	100	Eh (mV)	45	353
23.2	19.7	19.7	20.9	21.3	20.2	22.6	20.3	24.7	22.5	19.1	17.4	22.2	deg C	18.4	17.5
34.8	10.3	9.2	26.3	26.9	29.4	13.4	9.9	1.8	n/a	15.4	88.6	1.3	O2 %Sat	-0.3	70.3
													turbid sample		
													yellow oxidation	minor initially	
													H2S presence		
													FIELD ANALYTES (mg/L)		
640	282		97	410	750	660	320	460	408	486	352	430	CO2	323	300
700	590		460	302	1010	970	850	1125	526	904	772	374	alkalinity as CaCO3	754	1115
													HACH ANALYTES (mg/L)		
0.005	0.021	0.026	0.003	0.002	0.000	0.015	0.006	0.001	0.001	0.054	0.001	0.001	NO2 - N (for ion *3.3)	0.000	0.003
1.8	0.4	0.8	1.4	1.7	n/a	5.6	2.1	5.0	5.1	0.0	0.0	4.0	NO3 - N {for ion *4.4}	0.0	2.1
0.80	0.46	0.61	n/a	0.82	0.95	0.75	2.68	n/a	0.35	0.00	0.26	0.76	NH3 - N {for ion *1.29}	0.03	1.77
1.9	0.9	1.3	1.2	0.5	0.5	1.2	0.6	1.2	0.6	0.0	0.0	0.5	PO4(3-) {for P *0.326}	0.0	0.3
2.6	0.9	1.5	1.4	2.5	1.0	6.4	4.8	5.0	5.5	0.1	0.3	4.8	total inorganic N - Hach	0.0	3.9
													BACTERIAL SUITE (CFU/100mL)	
16.0	3.0	2.0	9.0	1.2	47.0	3.0	5.0	5.0	15.0	11.0	5.0	<2	BOD (mg/L)	<2	2.0
20	0	0	0	1	0	0	15	0	0	0	770	0	Total Coliforms	0	>2400
2	0	0			0	0	0						Faecal Coliforms		
0	0	0	0	0		0	3	0	0	0	75	0	Faecal Streptococci	0	90
			0	0				0	0	0	23	0	E.Coli	0	3
	0	0	0	0			0	0	0	0	0	0	Pseudomonas aeruginosa	0	0
													Clostridium perfringens/spp		
													Yersinia spp.		
													Salmonella spp.		
g/L)													STANDARD ANALYTE SUITE (m	ng/L)	
1.8	0.4	0.9	1.4	1.7	0.0	5.6	2.1	5.0	5.1	0.1	0.2	4.0	total NOx to use	0.0	2.1
0.9	0.6	0.6	0.9	0.2	0.4	0.3	0.4	0.7	0.4	1.1	0.5	0.3	kjeldahl N (organic N)	0.3	1.7
3.5	1.5	2.0	3.6	2.7	1.4	6.7	5.2	6.8	5.9	1.1	1.0	5.1	total N to use	0.3	5.6
0.6	0.3	0.4	0.4	0.2	0.2	0.4	0.2	0.4	0.2	0.0	0.0	0.2	total P	0.1	0.1
16.0	4.9	4.5	5.8	5.8	15.6	2.6	5.0	4.2	7.7	7.2	5.4	4.2	total organic carbon (TOC)	3.6	9.6
7755.4	6650.0	6800.0	6940.0	6390.0		5071.4	8800.0	8190.0	7540.0	7750.0	2510.0	2500.0	CI	2610.0	3470.0

C4/2	C4/3	C444/3	C4/4	C4/5	C5/1	C5/2	C5/3	C5/4	C5/5	C5/7	C7/4	C7/5	CONT'D: sample#	C7/7	C8/4
601.9	571.0	588.0	530.0	611.0		406.9	844.0	610.0	649.0	650.0	n/a	327.0	SO4	326.0	325.0
													total S - lab		
853.5	719.3	818.0	781.0	368.2	1231.4	1182.6	1036.3	1110.0	641.3	1102.2	941.2	456.0	HCO3 to use	919.3	1359.4
													CO3 - lab		
0.0002	0.0006	0.0007	<0.0001	0.0001		0.0001	<0.0001	<0.0001	0.0009	0.0049	<0.0001	0.0002	Hg	0.0006	<0.0001
													UTS - ICP ANALYTES (mg/L)		
2.16	1.84	1.87	2.91	2.09	5.99	3.33	4.35	4.45	4.05	4.92	1.84	2.72	В	2.06	1.87
3289.2	3049.7	3136.3	3180.5	3023.0	6958.6	4281.7	4428.4	4332.5	4017.7	3882.8	1639.4	1568.7	Na	1666.0	2137.4
934.5	770.5	818.0	913.6	815.4	1661.5	924.2	1041.2	975.3	985.4	663.1	251.4	226.6	Mg	279.9	328.0
0.2	0.3	0.4	0.5	0.2	0.4	0.2	0.4	0.5	0.3	0.1	0.2	0.2	Al	0.1	0.2
8.1	13.4	13.2	18.3	15.4	15.8	6.8	10.3	14.1	11.5	9.1	18.0	17.4	Si	15.1	15.5
40.9	33.8	34.0	40.3	34.9	58.2	27.8	31.3	30.8	28.4	25.1	15.7	9.3	К	10.4	24.2
495.5	520.9	523.3	611.5	541.0	581.0	253.2	340.8	346.9	317.7	323.8	217.8	199.1	Ca	216.5	206.9
7.56E-02	6.16E-02	6.31E-02	3.78E-03	5.63E-02	8.61E-02	8.10E-02	7.12E-02	4.14E-03	6.10E-02	4.55E-02	4.01E-03	2.63E-02	Cr	2.31E-02	4.47E-03
1.70E-01	8.37E-02	8.48E-02	3.68E-01	9.31E-02	6.08E-01	1.22E-01	8.52E-01	3.11E-02	4.67E-02	2.37E-02	2.16E-01	2.77E-01	Mn	4.71E-01	4.25E-01
1.03E+00	9.69E-01	1.00E+00	1.68E+00	7.84E-01	6.77E-01	1.05E+00	6.96E-01	1.02E+00	7.05E-01	8.17E-01	5.86E-01	4.03E-01	Fe	8.45E-01	4.64E-01
1.33E-02	1.15E-02	1.16E-02	1.08E-02	8.71E-03	1.15E-02	8.96E-03	1.00E-02	7.16E-03	6.37E-03	4.34E-03	5.67E-03	5.76E-03	Ni	4.49E-03	6.80E-03
1.24E-02	1.88E-02	1.92E-02	2.60E-02	3.04E-02	1.85E-02	1.51E-02	3.41E-03	2.65E-02	1.34E-02	7.22E-03	1.25E-02	1.72E-02	Zn	7.57E-03	1.30E-02
1.59E-02	1.20E-02	1.29E-02	1.76E-03	2.66E-03	2.52E-03	3.45E-03	2.13E-03	9.98E-04	5.69E-03	n/a	8.53E-04	3.54E-03	Cu	n/a	9.91E-04
2.62E-03	2.48E-03	2.58E-03	2.43E-03	1.84E-03	2.34E-03	2.61E-03	2.21E-03	1.69E-03	1.48E-03	1.08E-03	1.46E-03	1.13E-03	As	1.74E-03	1.58E-03
0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	Se	0.00E+00	0.00E+00
4.01E+00	3.83E+00	3.91E+00	5.06E+00	4.94E+00	1.48E+00	5.02E+00	>1.7	4.91E+00	2.35E+00	1.40E+00	2.73E+00	2.34E+00	Sr	2.46E+00	2.88E+00
1.25E-03	6.97E-04	6.98E-04	1.14E-03	1.54E-03	1.98E-03	1.69E-03	1.37E-03	1.72E-03	2.07E-03	9.69E-04	2.49E-03	2.26E-03	Мо	8.28E-04	2.47E-03
3.21E-03	2.02E-04	1.94E-04	2.47E-04	7.12E-04	1.64E-04	2.42E-04	7.75E-05	1.81E-04	3.25E-04	2.91E-04	1.11E-04	1.11E-04	Cd	2.77E-04	1.28E-04
1.36E-03	4.00E-03	3.88E-03	3.45E-03	7.37E-02	1.26E-03	1.53E-03	3.96E-04	1.45E-03	9.27E-03	3.64E-03	7.21E-03	5.27E-03	Pb	4.71E-04	2.35E-03
													F by IC - if analysed		
0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	Br value to use	0.00E+00	0.00E+00
											14436	R002622	CERTIFICATES	R010275	
89703398	89712770	89712772	14436	R002622		89703399	89712771	14436	R002622	R010275	89718682		certificate numbers for		14436
	49709004	49709006	89718628				49709005	89718629					above analyses		89718630
TIOS, AND AN	ALYSIS VALIE	DITY CHECK											ELECTRONIC BALANCE (%), RA	ATIOS, AND AN	NALYSIS VALII
13523	11930	12277	12593	11611		11508	15964	15009	13858	13786		5071	calculated TDS (mg/L)	5521	7116
high TDS	high TDS	high TDS	high TDS	high TDS	high TDS	high TDS	high TDS	high TDS	high TDS	high TDS	high TDS	high TDS	high TDS flag;care balance	high TDS	high TDS
245.963	223.147	230.934	245.307	226.710		275.873	296.419	287.019	272.586	240.345		97.201	sum cation millequivalents	106.677	131.148
245.484	211.334	217.576	219.745	199.154		171.354	282.973	262.322	237.108	250.231		85.107	sum anion millequivalents	95.484	127.097
OK high%	OK high%	OK high%	OK high%	OK high%	partial anal	OK high%	partial anal	OK high%	low sum an/cat tolerance	OK high%	OK high%				
0.1	2.7	3.0	5.5	6.5		23.4	2.3	4.5	7.0	-2.0		6.6	ionic balance % error	5.5	1.6
0.60	0.57	0.60	0.58	0.68		0.52	0.62	0.68	0.67	0.69		0.57	A = S/K (calc TDS/cond)	0.62	0.59
					Р	R					Р		analysis adjustments		

C8/5	C8/7
22-Feb-98	1-Oct-98
1.91	1.34
1.33	0.41
12330	11760
7.1	7.0
136	-128
21.9	16.8
11.2	1.6
	minor
384	310
446	794
0.010	<0.005
5.6	0.0
2.01	0.90
1.1	0.0
7.6	0.9
2.0	9.0
0	0
0	0
0	0
0	0
	-
	-
5.6	0.0
1.1	1.3
8.7	2.2
0.4	0.0
8.0	10.7
3880.0	3820.0

C8/5	C8/7
370.0	372.0
543.8	968.1
0.0001	<0.0001
2.26	2.39
2462.2	2352.5
383.6	422.2
0.2	0.1
16.7	12.4
19.4	18.6
219.1	225.4
3.31E-02	3.21E-02
3.33E-01	3.94E-02
4.18E-01	1.37E+00
6.36E-03	6.22E-03
8.97E-03	3.81E-03
3.06E-03	n/a
1.40E-03	2.00E-03
0.00E+00	0.00E+00
2.74E+00	1.40E+00
1.44E-03	8.09E-04
1.04E-04	9.65E-05
1.90E-03	2.24E-04
0.00E+00	0.00E+00
R002622	R010275
DITY CHECK	
7629	7654
high TDS	high TDS
150.342	148.956
126.503	131.374
OK high%	OK high%
8.6	6.3
0.62	0.65
İ	

HEL														HEL
sample #	H1/2	H1/3	H1/5	H1/6	H1/7	H2/1	H2/2	H2/3	H2/7	H3/1	H3/2	H3/3	H3/5	sample #
date sampled	30-Jun-97	23-Sep-97	23-Feb-98	27-Jul-98	1-Oct-98	12-Feb-97	30-Jun-97	23-Sep-97	2-Oct-98	12-Feb-97	30-Jun-97	23-Sep-97	23-Feb-98	date sampled
SWL (m)	4.54	4.31	4.41	4.30	4.02	4.27	4.60	4.38	3.95	4.44	4.72	4.50	4.57	SWL (m)
pump rate (L/min)	in stages	0.13		0.16	0.37		0.30	0.60	0.70		0.43	0.51	v low	pump rate (L/min)
FIELD PARAMETERS														FIELD PARAMETERS
EC (uS/cm)	4310	4110	3780	3090	3460	1820	1595	1512	1329	4140	3820	3660	3610	EC (uS/cm)
pH	7.8	7.8	7.6	7.5	7.5	7.4	7.4	7.3	6.3	7.6	7.9	7.7	7.5	pH
Eh (mV)	138	130	27	142	150	230	159	179	145	114	177	163	10	Eh (mV)
deg C	20.3	22.7	n/a	28.2	20.9	24.1	21.6	21.0	20.5	25.9	20.9	21.6	23.8	deg C
O2 %Sat	n/a	n/a		n/a	32.8	46.2	59.4	30.8	55.4	20.2	6.9	35.1	7.4	O2 %Sat
turbid sample						slightly		slightly	slightly			dirty		turbid sample
yellow oxidation														yellow oxidation
H2S presence														H2S presence
FIELD ANALYTES (mg/L)														FIELD ANALYTES (mg/L)
CO2	n/a	n/a	n/a	290	294	n/a	186	135	157	210	150	n/a	280	CO2
alkalinity as CaCO3	n/a	n/a	926	880	884	n/a	294	351	289	960	770	n/a	804	alkalinity as CaCO3
HACH ANALYTES (mg/L)														HACH ANALYTES (mg/L)
NO2 - N {for ion *3.3}	0.004	0.000	0.003	0.003	1.070	0.006	0.005	0.009	0.013	0.005	0.010	0.002	0.007	NO2 - N {for ion *3.3}
NO3 - N {for ion *4.4}	0.0	0.4	1.2	0.9	19.0	1.9	4.7	11.4	27.7	2.1	1.2	11.4	1.2	NO3 - N {for ion *4.4}
NH3 - N {for ion *1.29}	0.59	0.01	0.03	0.11	0.01	0.26	0.53	0.00	0.00	0.16	0.23	0.00	0.36	NH3 - N {for ion *1.29}
PO4(3-) {for P *0.326}	0.0	0.0	0.2	0.0	0.0	3.2	0.0	0.0	0.0	1.5	3.0	0.0	3.2	PO4(3-) {for P *0.326}
total inorganic N - Hach	0.6	0.4	1.2	1.1	20.1	2.2	5.2	11.4	27.7	2.3	1.4	11.4	1.6	total inorganic N - Hach
BACTERIAL SUITE (CFU/100mL	_)													BACTERIAL SUITE (CFU/100mL)
BOD (mg/L)	15	7	18	4	13	<2	16	2	3.0	<2	8.0	5.0	7.0	BOD (mg/L)
Total Coliforms	>180	2000	55	79	2	<2	0	0	1	1	0	120	1600	Total Coliforms
Faecal Coliforms	1					<2	0			0	0			Faecal Coliforms
Faecal Streptococci	0	0	0	1	0	0	0	0	0	0	0	0	0	Faecal Streptococci
E.Coli		0	0	0	0			0	0			0	0	E.Coli
Pseudomonas aeruginosa	<10	0	0	17	30		12	0	13		3	40	0	Pseudomonas aeruginosa
Clostridium perfringens/spp														Clostridium perfringens/spp
Yersinia spp.														Yersinia spp.
Salmonella spp.														Salmonella spp.
STANDARD ANALYTE SUITE (n	ng/L)													STANDARD ANALYTE SUITE (m
total NOx to use	19.1	19.7	20.5	19.5	20.1	23.8	26.6	25.0	27.7	19.7	20.2	18.7	18.4	total NOx to use
kjeldahl N (organic N)	0.8	0.5	0.6	0.2	0.1	0.6	0.0	0.0	0.0	0.2	0.2	0.3	0.2	kjeldahl N (organic N)
total N to use	20.5	20.2	21.1	19.9	20.3	24.7	27.1	25.1	27.7	20.1	20.6	19.0	19.0	total N to use
total P	0.3	0.1	0.1	0.0	0.0	1.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	total P
total organic carbon (TOC)	28.0	2.7	2.4	1.7	8.1	3.2	21.2	1.3	3.0	1.4	4.4	1.5	1.7	total organic carbon (TOC)
CI	622.0	590.0	555.0	474.0	428.0	168.6	107.0	101.0	78.0	563.0	541.0	515.0	540.0	CI

CONT'D: sample#	H1/2	H1/3	H1/5	H1/6	H1/7	H2/1	H2/2	H2/3	H2/7	H3/1	H3/2	H3/3	H3/5	CONT'D: sample#
SO4	184.0	186.0	193.0	184.0	169.0	71.3	62.9	65.2	87.4	179.3	157.0	150.0	161.0	SO4
total S - lab														total S - lab
HCO3 to use	1360.0	1060.0	1130.0	1072.9	1077.8	n/a	529.0	518.0	352.4	1391.0	938.8	948.0	980.2	HCO3 to use
CO3 - lab														CO3 - lab
Hg	0.0001	0.0005	0.0001	0.088	<0.0001	<0.0001	<0.0001	0.0006	<0.0001	<0.0001	<0.0001	<0.0001	0.0002	Hg
UTS - ICP ANALYTES (mg/L)														UTS - ICP ANALYTES (mg/L)
В	3.17	3.12	3.09	2.93	3.92	0.69	2.24	2.05	2.25	1.97	2.87	4.79	2.85	В
Na	904.8	924.2	800.4	505.7	817.5	85.2	255.0	261.9	235.0	691.8	821.5	753.3	800.6	Na
Mg	68.3	74.8	66.9	59.6	75.5	9.8	37.2	39.3	49.3	39.3	50.6	48.9	52.4	Mg
Al	0.6	0.6	0.3	0.2	0.2	0.7	0.5	0.6	0.3	0.3	0.5	1.1	0.3	Al
Si	13.9	13.1	12.0	13.9	14.2	1.2	12.3	11.3	12.3	3.6	12.4	13.9	10.9	Si
К	13.4	13.4	13.9	9.7	16.0	2.5	9.8	9.5	13.6	8.5	10.9	10.3	11.2	К
Ca	33.4	36.8	32.5	26.4	36.7	8.8	51.4	52.6	76.9	14.7	24.6	26.8	25.5	Ca
Cr	8.95E-03	1.21E-02	1.53E-02	1.60E-02	7.80E-03	1.41E-03	3.18E-03	4.27E-03	3.00E-03	1.65E-02	1.21E-02	1.21E-02	1.48E-02	Cr
Mn	1.76E-02	7.01E-03	3.68E-03	4.77E-03	2.90E-03	5.61E-04	1.14E-03	1.34E-03	8.27E-04	6.77E-03	1.28E-03	5.80E-03	1.64E-03	Mn
Fe	1.96E-01	5.00E-01	2.12E-01	1.80E-01	2.71E-01	1.17E-01	1.08E-01	2.88E-01	3.99E-01	1.89E-01	8.85E-02	6.33E-01	2.40E-01	Fe
Ni	1.18E-03	1.59E-03	8.41E-04	1.14E-03	6.28E-04	5.04E-04	1.26E-03	1.23E-03	9.33E-04	1.81E-03	5.75E-04	1.15E-03	5.52E-04	Ni
Zn	4.49E-03	1.78E-02	1.54E-02	3.31E-02	3.50E-03	2.22E-03	4.02E-03	3.77E-03	3.89E-03	1.15E-02	3.62E-03	1.14E-02	5.41E-03	Zn
Cu	1.81E-03	7.69E-03	1.55E-03	n/a	n/a	2.90E-03	1.09E-03	0.00E+00	n/a	1.72E-02	4.27E-03	1.42E-03	1.06E-03	Cu
As	1.82E-04	2.31E-04	1.68E-04	3.29E-04	2.04E-04	0.00E+00	9.73E-05	9.16E-05	8.99E-05	2.19E-04	1.66E-04	3.63E-04	1.93E-04	As
Se	1.10E-02	2.64E-02	2.46E-02	1.01E-02	2.51E-02	1.63E-02	4.14E-02	7.08E-02	3.90E-02	2.49E-02	9.90E-03	2.33E-02	2.40E-02	Se
Sr	4.88E-01	5.92E-01	5.11E-01	4.50E-01	4.76E-01	1.21E-01	5.52E-01	5.92E-01	5.81E-01	3.56E-01	3.78E-01	4.58E-01	4.72E-01	Sr
Мо	3.29E-03	3.39E-03	4.21E-03	5.21E-03	3.69E-03	1.96E-04	1.20E-03	1.38E-03	1.21E-03	4.30E-03	4.35E-03	5.16E-03	6.13E-03	Мо
Cd	2.10E-04	5.09E-04	1.76E-04	8.22E-04	1.20E-04	2.88E-04	4.35E-05	7.68E-05	3.67E-04	3.23E-04	1.29E-04	1.61E-04	2.17E-04	Cd
Pb	9.92E-04	2.62E-03	1.53E-03	6.98E-03	6.78E-04	1.07E-04	4.42E-04	2.07E-04	3.29E-04	2.35E-03	6.89E-04	9.09E-04	8.40E-04	Pb
F by IC - if analysed										7.37E+00				F by IC - if analysed
Br value to use	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	Br value to use
CERTIFICATES														CERTIFICATES
certificate numbers for	89712775	15209	R002622	R008949	R010275	100397	89712776	15209	R010275	100397	89712777	15209	R002622	certificate numbers for
above analyses	49709040						49709041				49709042			above analyses
ELECTRONIC BALANCE (%), RA	ATIOS, AND AN	IALYSIS VALII	DITY CHECK											ELECTRONIC BALANCE (%), RA
calculated TDS (mg/L)	2526	2372	2239	1808	2103		891	864	818	2176	2103	2001	2095	calculated TDS (mg/L)
high TDS flag;care balance	high TDS	high TDS	high TDS	high TDS	high TDS	high TDS	use %bal	use %bal	use %bal	high TDS flag;care balance				
sum cation millequivalents	47.116	48.629	42.361	28.504	44.061		17.080	17.577	18.522	34.337	41.492	38.551	40.778	sum cation millequivalents
sum anion millequivalents	43.668	37.918	38.287	34.854	34.683		13.332	13.506	11.762	42.998	34.098	33.998	34.838	sum anion millequivalents
low sum an/cat tolerance	OK high%	OK high%	OK high%	OK high%	OK high%	partial anal	OK high%			OK high%	OK high%	OK high%	OK high%	low sum an/cat tolerance
ionic balance % error	3.8	12.4	5.1	-10.0	11.9		12.3	13.1	22.3	-11.2	9.8	6.3	7.9	ionic balance % error
A = S/K (calc TDS/cond)	0.59	0.58	0.59	0.59	0.61		0.56	0.57	0.62	0.53	0.55	0.55	0.58	A = S/K (calc TDS/cond)
analysis adjustments						Р			R					analysis adjustments

													HEL		
H3/6	H3/7	H4/5	H4/7	H5/1	H5/2	H5/3	H5/5	H5/7	H6/1	H6/2	H6/3	H6/6	sample #	H6/7	H7/1
27-Jul-98	2-Oct-98	23-Feb-98	2-Oct-98	12-Feb-97	1-Jul-97	23-Sep-97	23-Sep-98	2-Oct-98	12-Feb-97	30-Jun-97	23-Sep-97	27-Jul-98	date sampled	2-Oct-98	13-Feb-97
4.47	4.18	3.96	3.55	3.81	4.15	3.95	3.97	3.56	4.13	4.53	4.27	4.18	SWL (m)	3.99	4.06
0.54	0.42		0.27		1.00	0.25	0.45	0.38		0.92	0.65	0.50	pump rate (L/min)	0.63	
													FIELD PARAMETERS		
3000	3460	2670	1663	3770	3610	3360	3120	3150	6200	5580	5290	3980	EC (uS/cm)	4500	1738
7.5	7.3	8	7.5	7.6	7.6	7.9	7.6	7.7	7.8	7.6	7.6	7.5	pH	7.6	7.5
140	110	42	109	208	150	162	35	117	199	59	150	146	Eh (mV)	114	137
?30.2	23.5	28	20.3	23.6	20.9	20.9	23.5	20.6	24.0	21.8	21.2	28.5	deg C	22.8	27.2
33.4	4.1	n/a	n/a	22.9	33.0	48.3	11.4	17.7	7.9	5.8	21.4	?127.3	O2 %Sat	1.1	39.1
						cloudy							turbid sample		
													yellow oxidation		
													H2S presence		
													FIELD ANALYTES (mg/L)		
291	237	n/a	179	220	170	n/a	254	214	170	262	325	348	CO2	282	260
784	806	n/a	452	960	495	n/a	658	512	760	728	774	802	alkalinity as CaCO3	758	378
													HACH ANALYTES (mg/L)		
0.000	0.006	0	0.000	0.006	0.003	0.000	0.002	0.000	0.002	0.001	0.034	0.002	NO2 - N {for ion *3.3}	0.740	0.003
2.2	18.9	3	12.9	0.0	4.0	6.1	1.1	22.4	0.0	0.4	0.6	0.0	NO3 - N {for ion *4.4}	5.2	0.0
0.23	0.01	0	0.00	0.41	0.17	0.00	0.16	0.01	0.49	0.11	0.09	0.22	NH3 - N {for ion *1.29}	0.01	0.27
2.0	0.0	0	0.0	6.2	2.4	0.0	2.0	0.0	7.0	1.3	1.4	0.0	PO4(3-) {for P *0.326}	0.0	4.4
2.4	18.9	2.9	12.9	0.4	4.2	6.1	1.3	22.4	0.5	0.5	0.7	0.2	total inorganic N - Hach	6.0	0.3
													BACTERIAL SUITE (CFU/100mL))	
13.0	3.0	>19	13.0	<2	<2	7.0	6.0	<2	<2	2.0	3.0	7.0	BOD (mg/L)	4.0	<2
270	0	0	0		17	2	6	0		0	2	4	Total Coliforms	0	0
					0					0			Faecal Coliforms		0
0	0	0	0		0	0	0	0		0	0	0	Faecal Streptococci	0	0
0	0	0	0			0	0	0			0	0	E.Coli	0	
220	19	0	56		0	0	3	63		0	1	7	Pseudomonas aeruginosa	14	
													Clostridium perfringens/spp		
													Yersinia spp.		
													Salmonella spp.		
g/L)													STANDARD ANALYTE SUITE (m	ıg/L)	
19.1	18.9	13	12.9	13.3	21.9	23.0	19.8	22.4	7.1	6.9	6.7	5.2	total NOx to use	6.0	0.0
0.2	0.1	0	0.0		0.2	0.3	0.0	0.0	0.4	0.3	0.3	0.3	kjeldahl N (organic N)	0.2	0.2
19.6	19.0	13	12.9	13.7	22.3	23.3	20.0	22.4	8.0	7.3	7.1	5.7	total N to use	6.2	0.5
0.0	0.0	0.1	0.0	2.1	0.9	0.1	0.7	0.0	2.3	0.4	0.5	0.0	total P	0.0	1.4
1.9	2.4	9	4.2	1.3	3.3	2.3	1.7	1.7	1.9	3.5	1.8	4.4	total organic carbon (TOC)	3.2	1.6
530.0	498.0	160	108.0	213.6	576.0	496.0	482.0	487.0	448.4	1120.0	1060.0	953.0	CI	930.0	52.5

1940 98 626 822 1950 1700 1940																
985.9 982.7 1000 S51.1 1170.4 788.0 762.0 802.2 524.2 528.6 887.8 943.7 977.8 CO3 to use 224.2 10.001	H3/6	H3/7	H4/5	H4/7	H5/1	H5/2	H5/3	H5/5	H5/7	H6/1	H6/2	H6/3	H6/6	CONT'D: sample#	H6/7	H7/1
BSS.9 BSE.7 1000 SS1.1 1170.4 788.0 782.0 BSC.2 824.2 926.6 BST.8 943.7 877.8 HCO3 No use 824.2	170.0	164.0	86	62.6	52.2	165.0	170.0	134.0	145.0	88.4	255.0	250.0	170.0	SO4	230.0	22.0
Country Coun														total S - lab		
0.0011 0.0001 0	955.9	982.7	1000	551.1	1170.4	798.0	782.0	802.2	624.2	926.6	887.6	943.7	977.8	HCO3 to use	924.2	460.9
2.93 3.70 1.25 4.20 2.22 3.37 3.91 4.45 4.83 0.89 2.82 3.06 2.96 8 3.77														CO3 - lab		
2.33 3.70 12.5 4.20 2.22 3.37 3.91 4.45 4.83 0.89 2.22 3.06 2.96 B 3.77	0.0011	<0.0001	0	<0.0001	0.0001	<0.0001	<0.0001	0.0001	<0.0001	0.0001	<0.0001	<0.0001	0.0009	Hg	<0.0001	<0.0001
Figs 1923 3913 582.0 679.4 658.8 601.1 779.3 419.1 598.0 916.6 535.5 Ne 990.8														UTS - ICP ANALYTES (mg/L)		
Section Sect	2.93	3.70	1.25	4.20	2.22	3.37	3.91	4.45	4.83	0.89	2.82	3.06	2.96	В	3.77	1.66
1.0 1.0	768.4	827.5	192.3	391.3	592.0	679.4	658.9	601.1	719.3	419.1	958.0	919.6	535.5	Na	960.8	268.8
12.3 12.1 3.2 10.4 3.7 11.1 11.5 11.5 11.4 10.8 2.1 13.2 12.7 13.6 Si 12.2 11.9 15.4 5.5 15.7 9.1 11.7 11.0 10.5 16.2 6.0 16.9 15.5 11.7 K 20.6 12.3 16.9 9.7 20.9 23.1 36.7 36.5 3.2 5 39.7 25.0 75.8 77.9 71.2 Ca 74.5 24.6 24.1 13.2 13.6 31.6 9.7 20.9 23.1 36.7 36.5 3.2 5 39.7 25.0 75.8 77.9 71.2 Ca 74.5 24.6 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1	54.9	61.7	15.7	38.3	51.5	65.5	61.2	54.5	69.5	59.0	139.6	132.4	144.9	Mg	143.5	60.9
11.9	0.1	0.2	0.3	0.3	0.5	0.3	0.4	0.2	0.2	0.3	0.4	0.2	0.0	Al	0.1	0.4
2.35. 31.6 9.7 20.9 23.1 36.7 36.5 32.5 39.7 25.0 75.8 77.9 71.2 Ca 74.5 2.486.04 1.386.02 3.386.03 3.386.03 2.386.03 1.386.03 1.286.03 1.086.02 1.286.03 1.286.03 1.286.03 1.286.03 1.286.03 1.286.03 1.286.03 1.086.02 1.286.03 1.286.03 1.086.02 1.286.03 1.286.03 1.286.03 1.286.03 1.286.03 1.286.03 1.086.03 1.086.03 1.286.03 1.286.03 1.086.03 1.086.03 1.286.03 1.286.03 1.286.03 1.086.03 1.086.03 1.086.03 1.286.03 1.086.03 1.086.03 1.086.03 1.286.03 1.286.03 1.086.03 1.086.03 1.086.03 1.086.03 1.086.03 1.086.03 1.086.03 1.086.03 1.086.03 1.086.03 1.086.03 1.086.03 1.086.03 1.086.03 1.286.04 1.286.03 1.	12.3	12.1	3.2	10.4	3.7	11.1	11.5	11.4	10.6	2.1	13.2	12.7	13.6	Si	12.2	4.6
2.49E-02 1.35E-02 3.01E-03 3.34E-03 1.49E-03 5.27E-03 1.23E-02 1.23E-02 1.23E-02 1.23E-02 2.25E-02 2.47E-02 2.30E-02 3.47E-02 Cr 2.81E-02 3.28E-02 1.23E-03 2.25E-03 1.99E-03 1.91E-03 1.01E-02 4.08E-02 3.90E-02 2.88E-02 Mn 2.89E-02 Mn 2.89E-03 1.91E-03 2.85E-01 1.48E-01	11.9	15.4	5.5	15.7	9.1	11.7	11.0	10.5	16.2	6.0	16.9	15.5	11.7	К	20.6	16.8
2.38E-03	23.5	31.6	9.7	20.9	23.1	36.7	36.5	32.5	39.7	25.0	75.8	77.9	71.2	Ca	74.5	32.7
1.68E-01 2.67E-01 1.91E-01 3.14E-01 2.63E-01 9.94E-02 7.05E-02 3.18E-01 3.78E-01 2.04E-01 1.46E-01 2.04E-01 1.73E-01 Fe 2.85E-01 1.87E-03 1.97E-04 5.68E-04 2.52E-04 4.49E-04 1.18E-03 8.73E-04 1.22E-03 8.36E-04 6.43E-04 1.87E-03 1.91E-03 2.13E-03 2.13	2.49E-02	1.35E-02	3.01E-03	3.34E-03	2.03E-02	1.23E-02	1.08E-02	1.27E-02	1.23E-02	2.25E-02	2.47E-02	2.30E-02	3.47E-02	Cr	2.81E-02	3.64E-03
8.79E-04 5.68E-04 2.52E-04 4.49E-04 1.18E-03 1.75E-03 1.07E-02 9.96E-03 3.39E-03 1.97E-03 1.9	2.35E-03	2.86E-03	2.03E-03	1.49E-03	5.27E-03	1.23E-03	5.54E-03	1.58E-03	1.97E-03	1.01E-02	4.08E-02	3.90E-02	2.68E-02	Mn	2.89E-02	4.90E-02
6.78E-03 2.38E-03 3.36E-03 1.72E-03 1.72E-03 1.07E-02 9.96E-03 3.39E-03 1.99E-03 2.63E-02 8.39E-03 Zn 2.85E-03 6. n/a n/a 9.09E-04 n/a 1.09E-02 7.86E-04 1.56E-03 1.75E-03 n/a 6.40E-03 8.95E-04 9.34E-04 n/a Cu n/a 1. 1.32E-04 1.98E-05 4.86E-05 1.29E-04 1.52E-04 1.66E-04 2.89E-04 2.89E-04 1.90E-04 2.29E-04 2.67E-04 4.24E-04 4.98E-04 As 2.93E-04 4. 1.32E-02 1.96E-02 8.50E-03 1.35E-02 1.21E-02 9.80E-03 3.04E-02 2.80E-02 1.99E-02 0.00E+00 0.00E+00 1.71E-02 8.50E-03 1.35E-02 1.21E-02 9.80E-03 3.04E-02 2.80E-02 1.99E-02 0.00E+00 0.00E+00 1.72E-00 9.43E-01 Sr 1.03E+00 1.6 5.09E-03 4.92E-03 1.55E-04 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.57E-01 1.02E+00 1.27E-00 1.27E-00 1.27E-00 9.43E-01 Sr 1.03E+00 1.27E-04 1.22E-04 1.10E-04 8.50E-03 1.55E-04 0.00E+00 0	1.68E-01	2.67E-01	1.91E-01	3.14E-01	2.63E-01	9.94E-02	7.05E-02	3.18E-01	3.78E-01	2.04E-01	1.46E-01	2.04E-01	1.73E-01	Fe	2.85E-01	1.19E-01
n/a n/a 9.09E-04 n/a 1.09E-02 7.86E-04 1.56E-03 1.75E-03 n/a 6.40E-03 8.95E-04 9.34E-04 n/a Cu n/a 1. 3.62E-04 7.86E-05 4.86E-04 1.52E-04 1.66E-04 2.89E-04 2.38E-04 1.99E-02 2.00E-02 4.24E-04 4.98E-04 As 2.93E-04 4 1.32E-02 1.96E-02 8.50E-03 1.35E-02 1.21E-02 9.80E-03 3.04E-02 2.40E-02 2.80E-04 1.99E-02 0.00E+00 2.07E-02 1.11E-02 Se 3.54E-02 8 4.27E-01 4.54E-01 1.31E-01 5.98E-01 6.97E-03 4.97E-03 9.19E-04 2.42E-03 3.46E-03 3.18E-03 Mo 3.66E-03 3.51E-03 4.86E-03 6.27E-03 4.97E-03 9.19E-04 2.42E-03 3.46E-03 3.18E-03 Mo 3.66E-03 3.2E-04 1.27E-04 4.86E-03 1.28E-04 1.18E-04 1.18E-04 1.18E-04 1.18E-04 1.18E-04 1.18E-04 1.18E-04	8.79E-04	5.68E-04	2.52E-04	4.49E-04	1.18E-03	8.73E-04	1.22E-03	8.36E-04	6.43E-04	1.87E-03	1.91E-03	2.13E-03	2.06E-03	Ni	1.19E-03	1.14E-03
3.62E-04 7.86E-05 4.86E-05 1.29E-04 1.52E-04 1.66E-04 2.89E-04 2.38E-04 1.90E-04 2.29E-04 2.67E-04 4.24E-04 4.98E-04 As 2.93E-04 4.13E-02 1.96E-02 8.50E-03 1.35E-02 1.21E-02 9.80E-03 3.04E-02 2.40E-02 2.80E-02 1.99E-02 0.00E+00 2.07E-02 1.11E-02 Se 3.54E-02 8.42E-01 4.54E-01 1.31E-01 3.03E-01 5.89E-01 6.05E-01 6.37E-01 5.75E-01 5.76E-01 4.72E-01 1.02E+00 1.27E+00 9.43E-01 Sr 1.03E+00 1.27E-01 4.27E-01	6.78E-03	2.38E-03	3.36E-03	2.57E-03	1.72E-03	1.05E-03	1.07E-02	9.96E-03	3.39E-03	7.65E-03	1.99E-03	2.63E-02	8.39E-03	Zn	2.85E-03	6.08E-03
1.32E-02 1.96E-02 8.50E-03 1.35E-02 1.21E-02 9.80E-03 3.04E-02 2.40E-02 2.80E-02 1.99E-02 0.00E+00 2.07E-02 1.11E-02 Se 3.54E-02 8.40E-02 8.40E-02 4.72E-01 4.54E-01 1.31E-01 3.03E-01 5.89E-01 6.60E-01 6.37E-01 5.75E-01 5.75E-01 4.72E-01 1.02E+00 1.27E+00 9.43E-01 Sr 1.03E+00 6.50E-01 4.72E-01 4.72E-01 1.02E+00 1.72E+00 9.43E-01 Sr 1.03E+00 6.50E-01 4.72E-01 1.02E+00 1.72E+00 9.43E-01 Sr 1.03E+00 6.50E-01 4.72E-01 1.02E+00 1.72E+00 9.43E-01 Sr 1.03E+00 6.50E-01 4.72E-01 4.	n/a	n/a	9.09E-04	n/a	1.09E-02	7.86E-04	1.56E-03	1.75E-03	n/a	6.40E-03	8.95E-04	9.34E-04	n/a	Cu	n/a	1.08E-02
4.27E-01 4.54E-01 1.31E-01 3.03E-01 5.89E-01 6.05E-01 6.37E-01 5.75E-01 5.75E-01 4.72E-01 1.02E+00 1.27E+00 9.43E-01 Sr 1.03E+00 6.509E-03 4.92E-03 2.45E-03 7.55E-03 3.63E-03 3.51E-03 4.86E-03 6.27E-03 4.97E-03 9.19E-04 2.42E-03 3.46E-03 3.18E-03 Mo 3.66E-03 3.22E-04 1.01E-04 8.22E-05 1.55E-04 0.00E+00 0.00E+00 0.00E+00 4.67E-04 1.46E-04 1.48E-04 1.01E-04 8.68E-05 1.58E-04 Cd 1.27E-04 6.20DE-03 4.76E-04 4.52E-04 4.42E-04 9.26E-04 3.30E-04 1.59E-03 1.42E-03 4.89E-04 2.05E-03 4.95E-04 1.82E-04 1.18E-03 Pb 3.50E-04 9.26E-04 9.26E-04 3.30E-04 0.00E+00 0.00E+0	3.62E-04	7.86E-05	4.86E-05	1.29E-04	1.52E-04	1.66E-04	2.89E-04	2.38E-04	1.90E-04	2.29E-04	2.67E-04	4.24E-04	4.98E-04	As	2.93E-04	4.83E-05
5.09E-03 4.92E-03 2.45E-03 7.55E-03 3.63E-03 3.51E-03 4.86E-03 6.27E-03 4.97E-03 9.19E-04 2.42E-03 3.46E-03 3.18E-03 Mo 3.66E-03 3.22E-04 1.01E-04 8.22E-05 1.55E-04 0.00E+00 3.32E-05 2.01E-04 4.67E-04 1.46E-04 1.48E-04 1.01E-04 8.68E-05 1.58E-04 Cd 1.27E-04 6.02E-03 4.76E-04 4.53E-04 4.42E-04 9.26E-04 3.30E-04 1.59E-03 1.42E-03 4.89E-04 2.05E-03 4.95E-04 1.82E-04 1.18E-03 Ph 3.50E-04 9.00E+00 0.00E+00 0.00E	1.32E-02	1.96E-02	8.50E-03	1.35E-02	1.21E-02	9.80E-03	3.04E-02	2.40E-02	2.80E-02	1.99E-02	0.00E+00	2.07E-02	1.11E-02	Se	3.54E-02	8.93E-03
2.23E-04	4.27E-01	4.54E-01	1.31E-01	3.03E-01	5.89E-01	6.05E-01	6.37E-01	5.75E-01	5.76E-01	4.72E-01	1.02E+00	1.27E+00	9.43E-01	Sr	1.03E+00	6.05E-01
2.00E-03 4.76E-04 4.53E-04 4.42E-04 9.26E-04 3.30E-04 1.59E-03 1.42E-03 4.89E-04 2.05E-03 4.95E-04 1.82E-04 1.18E-03 Pb 3.50E-04 9. F by IC - if analysed F by IC - if analyses F by IC - if an	5.09E-03	4.92E-03	2.45E-03	7.55E-03	3.63E-03	3.51E-03	4.86E-03	6.27E-03	4.97E-03	9.19E-04	2.42E-03	3.46E-03	3.18E-03	Мо	3.66E-03	3.62E-03
Figure F	2.23E-04	1.01E-04	8.22E-05	1.55E-04	0.00E+00	3.32E-05	2.01E-04	4.67E-04	1.46E-04	1.48E-04	1.01E-04	8.68E-05	1.58E-04	Cd	1.27E-04	6.34E-04
0.00E+00	2.00E-03	4.76E-04	4.53E-04	4.42E-04	9.26E-04	3.30E-04	1.59E-03	1.42E-03	4.89E-04	2.05E-03	4.95E-04	1.82E-04	1.18E-03	Pb	3.50E-04	9.67E-04
R008949 R010275 R002622 R010275 100397 49709094 49713505 R002622 R010275 100397 89712778 15209 R008949 certificate numbers for R010275 100397 49709043 above analyses														F by IC - if analysed		7.30E-01
R008949 R010275 R002622 R010275 100397 49709094 49713505 R002622 R010275 100397 89712778 15209 R008949 certificate numbers for R010275 100397 49709043 above analyses R010275 100397 10	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	Br value to use	0.00E+00	0.00E+00
TIOS, AND ANALYSIS VALIDITY CHECK Selectronic Balance (%), RATIOS, ANALYSIS VALIDITY CHECK Selectronic Bala														CERTIFICATES		
TIOS, AND ANALYSIS VALIDITY CHECK Selection Selectronic Balance (%), RATIOS, AND ANALYSIS VALIDITY CHECK Selectronic Balance (%), RATIOS, ANALYSIS VALIDITY CHECK Selectronic Balance (%), RATIOS, ANALYSIS VALIDITY CHECK Selectronic Balance (%), RATIOS, ANALYSIS VALIDITY	R008949	R010275	R002622	R010275	100397	49709094	49713505	R002622	R010275	100397	89712778	15209	R008949	certificate numbers for	R010275	100397
2056 2106 956 939 1502 1980 1874 1752 1847 1480 2989 2901 2342 calculated TDS (mg/L) 2793 high TDS						59705648					49709043			above analyses		
high TDS high TDS use %bal use %bal high TDS	TIOS, AND AN	ALYSIS VALID	ITY CHECK											ELECTRONIC BALANCE (%), RA	ATIOS, AND AN	NALYSIS VALII
39.466 43.087 10.331 21.668 31.484 37.145 35.867 32.585 39.464 24.571 57.449 55.248 39.118 sum cation millequivalents 57.896 34.379 34.911 22.896 14.298 26.492 33.123 30.781 29.677 28.579 29.899 51.521 50.664 46.450 sum anion millequivalents 46.596 OK high% OK hig	2056	2106	956	939	1502	1980	1874	1752	1847	1480	2989	2901	2342	calculated TDS (mg/L)	2793	663
34.379 34.911 22.896 14.298 26.492 33.123 30.781 29.677 28.579 29.899 51.521 50.664 46.450 sum anion millequivalents 46.596 OK high%	high TDS	high TDS	use %bal	use %bal	high TDS flag;care balance	high TDS	use %bal									
OK high%	39.466	43.087	10.331	21.668	31.484	37.145	35.867	32.585	39.464	24.571	57.449	55.248	39.118	sum cation millequivalents	57.896	18.841
6.9 10.5 -37.8 20.5 8.6 5.7 7.6 4.7 16.0 -9.8 5.4 4.3 -8.6 ionic balance % error 10.8 0.69 0.61 0.36 0.56 0.40 0.55 0.56 0.56 0.56 0.59 0.24 0.54 0.55 0.59 A = S/K (calc TDS/cond) 0.62	34.379	34.911	22.896	14.298	26.492	33.123	30.781	29.677	28.579	29.899	51.521	50.664	46.450	sum anion millequivalents	46.596	9.670
0.69 0.61 0.36 0.56 0.40 0.55 0.56 0.56 0.59 0.24 0.54 0.55 0.59 A = S/K (calc TDS/cond) 0.62	OK high%	OK high%	OK high%	OK high%	OK high%	OK high%	OK high%	OK high%	OK high%	OK high%	OK high%	OK high%	OK high%	low sum an/cat tolerance	OK high%	OK high%
	6.9	10.5	-37.8	20.5	8.6	5.7	7.6	4.7	16.0	-9.8	5.4	4.3	-8.6	ionic balance % error	10.8	32.2
P P analysis adjustments	0.69	0.61	0.36	0.56	0.40	0.55	0.56	0.56	0.59	0.24	0.54	0.55	0.59	A = S/K (calc TDS/cond)	0.62	0.38
It I			R	R					R					analysis adjustments		R

H7/3	H7/5	H7/6	H7/7
24-Jul-97	23-Feb-98	27-Jul-98	1-Oct-98
4.19	4.23	4.08	3.88
0.25	0.50	0.21	0.36
1230	1155	853	1034
7.5	7.5	7.5	7.4
234	29	134	98
19.5	23.2	21.4	20.0
42.8	34.3	21.4	9.0
210	185	185	220
354	358	309	387
0.003	0.002	0.001	0.000
0.4	0.4	0.0	0.1
0.06	0.13	0.08	0.00
0.6	1.8	0.0	0.0
0.5	0.5	0.1	0.1
4.0	5.0	3.0	3.0
4	140	19	0
1	0	0	0
0	0	0	0
0	0	15	4
0.4	0.4	0.1	6.0
0.2	0.2	0.2	0.2
0.7	0.8	0.4	6.2
0.2	0.6	0.0	0.0
1.6	1.2	0.9	1.6
83.0	53.0	32.0	43.0

H7/3	H7/5	H7/6	H7/7
87.0	49.2	42.2	35.1
431.6	436.5	376.7	471.8
<0.0001	<0.0001	0.0048	<0.0001
2.40	2.45	1.76	2.17
202.6	205.3	124.0	199.2
41.2	39.7	45.0	53.5
0.2	0.2	0.0	0.3
10.6	11.8	11.5	11.5
12.2	12.6	11.0	18.0
35.0	35.0	30.8	45.4
6.01E-03	2.26E-03	2.55E-03	3.44E-03
2.24E-03	3.36E-03	9.33E-03	2.87E-03
1.06E-01	2.99E-01	7.77E-02	3.66E-01
7.67E-04	7.01E-04	1.10E-03	6.88E-04
1.14E-02	5.47E-03	4.16E-03	4.37E-03
1.03E-03	1.08E-03	n/a	n/a
1.40E-04	1.34E-04	9.39E-05	1.30E-04
1.60E-02	5.34E-03	0.00E+00	1.30E-02
4.48E-01	3.98E-01	3.78E-01	4.32E-01
2.97E-03	3.70E-03	2.79E-03	3.15E-03
1.64E-04	3.59E-04	2.47E-04	1.36E-04
6.96E-04	7.43E-04	5.14E-04	4.72E-04
0.00E+00	0.00E+00	0.00E+00	0.00E+00
15209	R002622	R008949	R010275
ITY CHECK			
661	599	459	633
use %bal	use %bal	use %bal	use %bal
14.306	14.325	10.936	15.856
11.274	9.759	7.956	9.684
OK high%	OK high%	OK high%	
11.9	19.0	15.8	24.2
0.54	0.52	0.54	0.61
	R	R	R

GUI														GUI
sample #	G1/1	G1/2	G1/3	G1/4	G1/5	G1/7	G2/1	G2/4	G2/7	G3/6	G3/7	G4/2	G84/2	sample #
date sampled	15-Nov-96	10-Feb-97	3-Jul-97	26-Sep-97	24-Feb-98	25-Sep-98	15-Nov-97	26-Sep-97	25-Sep-98	23-Jul-98	25-Sep-98	11-Feb-97	duplicate of	date sampled
SWL (m)	3.00	4.00	4.84	3.31	5.34	3.36	3.00	3.30	3.38	3.65	2.75	2.85		SWL (m)
pump rate (L/min)			<0.1	0.25	in stages	0.42		0.37	0.46	v low	0.27			pump rate (L/min)
FIELD PARAMETERS														FIELD PARAMETERS
EC (uS/cm)	903	1040	1127	603	965	466	266.8	267	261	366	312	607		EC (uS/cm)
pН	7.3	7.1	7.0	6.3	6.2	5.7	5.8	6.1	5.6	6.0	5.9	5.8		рН
Eh (mV)	142		15	220	84	112	211	217	134	60	150	226		Eh (mV)
deg C	17.5	28.2	15.9	19.5	n/a	20.5	19.6	19.0	19.5	20.8	20.1	26.5		deg C
O2 %Sat	29.3	43.2	n/a	29.4	n/a	18.8	11.7	68.8	74.7	n/a	56.3	40.8		O2 %Sat
turbid sample														turbid sample
yellow oxidation	minor													yellow oxidation
H2S presence														H2S presence
FIELD ANALYTES (mg/L)														FIELD ANALYTES (mg/L)
CO2	68	70	n/a	45	n/a	39	41	23	37	29	26	64		CO2
alkalinity as CaCO3	134	127	n/a	32	n/a	21	16	8	78	20	21	17		alkalinity as CaCO3
HACH ANALYTES (mg/L)														HACH ANALYTES (mg/L)
NO2 - N {for ion *3.3}	0.315	0.023	0.100	0.002	0.002	0.011	0.047	0.005	0.002	0.019	0.009	0.000		NO2 - N {for ion *3.3}
NO3 - N {for ion *4.4}	6.3	1.7	0.4	1.9	0.4	12.9	7.9	6.8	9.5	17.0	16.6	32.2		NO3 - N {for ion *4.4}
NH3 - N {for ion *1.29}	0.74	0.45	0.28	0.10	0.15	0.10	0.02	0.29	0.00	0.33	0.22	0.00		NH3 - N {for ion *1.29}
PO4(3-) {for P *0.326}	n/a	1.6	0.0	1.6	0.0	0.8	0.4	4.9	0.0	3.9	0.0	1.0		PO4(3-) {for P *0.326}
total inorganic N - Hach	7.4	2.2	0.8	2.0	0.6	13.0	8.0	7.1	9.5	17.3	16.8	32.2	0.0	total inorganic N - Hach
BACTERIAL SUITE (CFU/100ml	L)													BACTERIAL SUITE (CFU/100mL
BOD (mg/L)	n/a	<5	22	<5	n/a	<5	n/a	<5	<5	5.0		<5	<5	BOD (mg/L)
Total Coliforms		8	n/a	0	0	0		0	0	0	0	<10	<10	Total Coliforms
Faecal Coliforms		0	n/a	0	0	0		0	0	0	0	<10	<10	Faecal Coliforms
Faecal Streptococci		0	n/a	0	0	0		0	0	0	0	<10	<10	Faecal Streptococci
E.Coli				0	0	0		0	0	0	0			E.Coli
Pseudomonas aeruginosa				0	0	0		0	0	0	0			Pseudomonas aeruginosa
Clostridium perfringens/spp														Clostridium perfringens/spp
Yersinia spp.														Yersinia spp.
Salmonella spp.														Salmonella spp.
STANDARD ANALYTE SUITE (I	mg/L)													STANDARD ANALYTE SUITE (m
total NOx to use	6.6	1.7	0.5	1.9	0.4	12.9	7.9	6.8	9.5	17.0	16.6	32.2	0.0	total NOx to use
kjeldahl N (organic N)														kjeldahl N (organic N)
total N to use	7.4	4.2	1.0	3.3	0.9	13.0	8.0	9.3	11.0	24.0	18.0	45.0	43.0	total N to use
total P		0.5	0.0	0.5	0.0	0.3	0.1	1.6	<0.005	1.3	0.0	0.3	<0.005	total P
total organic carbon (TOC)		73.0	58.0	20.0	28.0	7.0		6.0	3.0	5.0	5.0	20.0	15.0	total organic carbon (TOC)
CI		133.5	160.0	100.0	150.0	70.0		30.0	30.0	20.0	20.0	33.1		CI

CONT'D: sample#	G1/1	G1/2	G1/3	G1/4	G1/5	G1/7	G2/1	G2/4	G2/7	G3/6	G3/7	G4/2	G84/2	CONT'D: sample#
SO4		66.0	95.0	43.0	65.0	28.0		10.0	9.0	9.0	8.0	<1		SO4
total S - lab														total S - lab
HCO3 to use	163.4	154.8	244.0	64.6	83.0	25.4	19.5	29.3	95.1	24.3	26.0	20.5	20.0	HCO3 to use
CO3 - lab														CO3 - lab
Hg		<0.0005	<0.0005	<0.0005	<0.0005	<0.0005		<0.0005	<0.0005		<0.0005	<0.0005	<0.0005	Hg
UTS - ICP ANALYTES (mg/L)														UTS - ICP ANALYTES (mg/L)
В	0.18	0.33	0.10	0.54	0.07	0.24	0.17	0.30	0.18	0.08	0.19	0.24		В
Na	100.8	92.0	130.0	97.7	177.2	72.17	27.7	29.9	39.8	21.0	33.5	22.8		Na
Mg	13.8	13.0	12.0	9.7	13.5	14.50	7.9	8.8	13.1	16.3	19.7	22.7		Mg
Al	0.2	0.3	0.1	0.5	0.2	0.20	0.1	0.3	0.2	0.1	0.2	0.2		Al
Si	9.4	4.9	10.0	11.1	11.3	7.97	3.7	4.4	4.8	7.7	8.7	4.9		Si
К	5.2	2.5	4.8	2.8	5.6	5.22	2.5	2.8	5.9	10.2	12.1	11.7		К
Ca	69.0	35.0	49.0	12.9	16.7	8.63	8.1	6.8	7.0	11.9	12.6	22.3		Са
Cr	5.26E-03	3.18E-03		8.53E-04	8.14E-03	1.17E-03	1.84E-03	3.75E-04	7.60E-04	1.06E-03	5.98E-04	4.19E-03		Cr
Mn	1.40E-02	4.45E-02	6.20E-02	1.60E-02	5.74E-02	1.13E-02	8.91E-03	2.51E-03	2.25E-03	7.74E-03	3.81E-03	2.95E-03		Mn
Fe	1.34E-01	3.58E-01	2.70E-01	8.65E-02	9.62E-01	2.39E-01	1.75E-02	2.45E-02	1.51E-01	1.02E-01	2.05E-01	7.67E-02		Fe
Ni	2.52E-03	1.94E-03	6.00E-03	3.20E-03	5.07E-03	3.78E-03	8.47E-04	9.37E-04	7.20E-04	1.26E-03	7.74E-04	2.10E-03		Ni
Zn	2.43E-02	5.63E-02	3.20E-01	2.36E-01	2.11E-01	1.53E-01	4.16E-02	4.30E-02	1.18E-02	3.64E-02	2.06E-02	2.58E-02		Zn
Cu	1.83E-02	1.85E-02	9.10E-03	5.40E-03	6.04E-03	n/a	2.10E-03	3.99E-03	n/a	n/a	n/a	5.17E-03		Cu
As	1.63E-04	0.00E+00		1.14E-04	2.30E-04	7.71E-05	3.79E-05	8.94E-05	4.07E-05	5.35E-05	3.76E-05	2.36E-05		As
Se	0.00E+00	0.00E+00		9.61E-04	3.65E-03	1.00E-03	0.00E+00	0.00E+00	1.47E-03	4.49E-03	1.28E-03	9.53E-03		Se
Sr	2.99E-01	1.60E-01		5.90E-02	9.92E-02	4.41E-02	6.31E-02	4.99E-02	5.69E-02	7.28E-02	5.57E-02	2.00E-01		Sr
Мо	2.48E-03	5.26E-04		5.32E-04	6.99E-04	1.37E-04	0.00E+00	2.41E-04	5.81E-05	2.43E-04	8.74E-05	2.78E-04		Мо
Cd	3.57E-04	1.88E-02		7.15E-04	3.24E-03	1.98E-04	8.99E-04	3.13E-04	1.53E-04	2.39E-04	2.47E-04	3.82E-04		Cd
Pb	2.95E-03	1.51E-02	1.00E-02	7.20E-03	1.19E-02	1.35E-03	3.11E-04	4.92E-04	4.27E-04	1.39E-03	4.93E-04	1.22E-03		Pb
F by IC - if analysed														F by IC - if analysed
Br value to use	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	2.70E-01	0.00E+00	0.00E+00	1.30E-01	2.00E-01	1.90E-01	0.00E+00	0.00E+00	Br value to use
CERTIFICATES						W98/017576			W98/017577	RN064050	RN076849			CERTIFICATES
certificate numbers for		W97/001681	W97/010882	976512W	W98/002907	RN076849		976513W	RN076849		987309W	W97/001743	W97/001747	certificate numbers for
above analyses		7005367U	97/23656	W97/017263	98/006358	987307W		W97/017264	987308W	W98/012511	98/080942	7005471N	7005471N	above analyses
ELECTRONIC BALANCE (%), R	RATIOS, AND AN	IALYSIS VALIE	DITY CHECK											ELECTRONIC BALANCE (%), RA
calculated TDS (mg/L)		504	626	341	507	278		154	197	212	203	328		calculated TDS (mg/L)
high TDS flag;care balance		use %bal	use %bal	use %bal	use %bal	use %bal		use %bal	use %bal	use %bal	use %bal	use %bal		high TDS flag;care balance
sum cation millequivalents		6.957	9.250	5.830	9.866	4.936		2.492	3.343	3.151	4.074	4.302		sum cation millequivalents
sum anion millequivalents		7.851	10.527	4.960	6.974	3.950		2.174	3.284	2.504	2.360	3.584		sum anion millequivalents
low sum an/cat tolerance	partial anal	OK high%	OK high%	OK high%	OK high%		partial anal	OK high%	OK high%	OK high%	OK high%	OK high%	partial anal	low sum an/cat tolerance
ionic balance % error		-6.0	-6.5	8.1	17.2	11.1		6.8	0.9	11.4	26.6	9.1		ionic balance % error
A = S/K (calc TDS/cond)		0.49	0.56	0.56	0.53	0.60		0.58	0.76	0.58	0.65	0.54		A = S/K (calc TDS/cond)
analysis adjustments	Р				R		Р				R		Р	analysis adjustments

													GUI		
G4/3	G4/4	G4/7	G5/2	G5/3	G5/4	G555/4	G5/5	G5/6	G5/7	G6/2	G6/3	G6/4	sample #	G6/5	G6/7
2-Jul-97	27-Sep-97	25-Sep-98	10-Feb-97	2-Jul-97	26-Sep-97		24-Feb-98	23-Jul-98	29-Jul-97	10-Feb-97	2-Jul-97	27-Sep-97	date sampled	24-Feb-98	28-Sep-97
3.21	2.28	2.68	1.89	2.19	1.62	sample	2.64	2.49	3.66	3.59	4.13	3.27	SWL (m)	3.23	3.63
0.70	0.58	0.66		0.33	0.72		0.60	0.63	0.80		0.19	0.57	pump rate (L/min)	stages	0.48
													FIELD PARAMETERS		
300	492	330	667	352	216.3		569	545	244.6	1061	736	635	EC (uS/cm)	796	975
6.1	6	5.8	5.8	5.8	5.8		5.8	5.7	5.5	6.8	6.5	6.5	pH	6.5	6.0
202	387	176	174	218	295		41	128	129	38	126	88	Eh (mV)	68	111
22.2	19	18.9	28.9	19.8	17.3		24.3	18.6	18.2	25.1	19.4	18.4	deg C	23.3	19.6
38.3	86	51.0	11.2	7.4	21.0		2.8	36.1	36.6	20.6	32.6	30.8	O2 %Sat	n/a	39.6
			minor							minor			turbid sample		
				minor	minor				some				yellow oxidation		
													H2S presence		Ī
													FIELD ANALYTES (mg/L)		Ī
24	32	36	77	30	30		35	38	n/a	64	62	34	CO2	47	46
20	8	15	12	14	5		25	18	13	80	67	62	alkalinity as CaCO3	47	38
													HACH ANALYTES (mg/L)		Ī
0.003	0	0.003	0.013	0.022	0.015		0.012	0.013	0.000	0.005	0.001	0.002	NO2 - N {for ion *3.3}	0.004	0.002
16.7	37	30.7	23.7	13.3	3.6		6.9	10.8	4.1	10.4	0.0	0.4	NO3 - N {for ion *4.4}	0.7	2.0
0.28	0	0.09	0.50	0.31	n/a		0.08	0.23	0.07	1.00	0.10	0.00	NH3 - N {for ion *1.29}	0.02	0.18
3.6		1.0	4.7	3.3	<0.005		0.0	1.7	<0.005	12.0	1.7	<0.005	PO4(3-) {for P *0.326}	0.0	1.8
17.0	37.0	30.8	24.2	13.6	3.6		7.0	11.0	4.1	11.4	0.1	0.4	total inorganic N - Hach	0.7	2.2
													BACTERIAL SUITE (CFU/100mL	.)	
<5	<5	<5	<5	<5	6.0	<5	<5	<5	<5	<5	<5	<5	BOD (mg/L)	5.0	8.0
0	0	0	8	0	0		0	0	0	6	0	0	Total Coliforms	0	0
0	0	0	0	0	0		0	0	0	0	0	0	Faecal Coliforms	0	0
0	0	0	0	0	0		0	0	0	0	0	0	Faecal Streptococci	0	0
	0	0			0		0	0	0			0	E.Coli	0	0
0	11	14		0	0		0	0	0		1	0	Pseudomonas aeruginosa	1	0
							n/d						Clostridium perfringens/spp		
					n/d				n/d				Yersinia spp.		
					n/d				n/d				Salmonella spp.		
g/L)													STANDARD ANALYTE SUITE (n	ng/L)	
16.7	37	30.7	23.7	13.3	3.6	0.0	6.9	10.8	4.1	10.4	0.0	0.4	total NOx to use	0.7	2.0
													kjeldahl N (organic N)		
19.5	37	30.8	35.0	18.1	9.0	8.5	8.3	18.0	11.0	11.4	0.3	0.4	total N to use	0.9	2.2
1.2	0.0	0.3	1.6	1.1	0.0	0.0	<0.005	0.6	0.0	3.9	0.6	0.0	total P	<0.005	0.6
4.0	6	5.0	23.0	13.0	22.0	21.0	7.0	10.0	21.0	30.0	16.0	14.0	total organic carbon (TOC)	9.0	12.0
20.0	40	60.0	31.1	30.0	20.0	20.0	80.0	80.0	20.0	103.6	130.0	150.0	CI	130.0	220.0

G4/3	G4/4	G4/7	G5/2	G5/3	G5/4	G555/4	G5/5	G5/6	G5/7	G6/2	G6/3	G6/4	CONT'D: sample#	G6/5	G6/7
9.0	12	9.0	<1	21.0	17.0	15.0	35.0	25.0	13.0	28.9	44.0	80.0	SO4	58.0	65.0
													total S - lab		
15.8	16	17.9	14.0	17.1	21.9		30.2	21.5	16.0	97.4	81.9	75.1	HCO3 to use	57.1	46.3
													CO3 - lab		
<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005		<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	Hg	<0.0005	<0.0005
													UTS - ICP ANALYTES (mg/L)		
1.90	0.22	0.12	0.11	0.64	0.14		0.07	0.03	1.79	0.07	0.29	0.10	В	1.07	0.56
14.2	23.0	33.3	40.3	33.5	18.3		72.9	51.6	24.8	64.5	85.0	79.1	Na	100.8	143.9
13.0	21.2	17.5	23.0	9.3	7.1		17.4	15.2	10.3	10.2	14.2	11.9	Mg	11.9	19.7
0.5	0.3	0.2	0.3	0.6	1.5		0.3	0.0	0.8	0.2	0.5	0.2	Al	0.4	0.2
8.7	6.6	5.7	6.3	6.3	5.9		5.3	4.4	7.2	3.3	8.3	6.8	Si	8.5	8.4
14.3	17.8	13.9	11.6	4.0	1.8		7.2	2.8	3.2	1.2	1.6	1.1	К	2.3	3.3
11.9	26.7	16.1	43.9	16.1	13.7		23.2	19.2	16.4	27.8	37.6	34.3	Са	35.8	51.6
4.94E-04	3.19E-04	8.72E-04	2.09E-03	6.00E-04	4.89E-04		3.47E-03	2.35E-03	7.19E-04	3.09E-03	2.15E-03	6.69E-04	Cr	2.04E-03	2.33E-03
3.62E-04	6.92E-03	3.49E-03	1.13E-03	3.38E-04	1.02E-03		2.65E-03	1.54E-03	1.31E-03	8.03E-03	6.30E-03	7.54E-03	Mn	2.82E-03	2.45E-03
6.05E-02	6.05E-02	1.26E-01	8.36E-02	1.24E-02	4.31E-02		5.84E-02	4.25E-02	2.50E-01	1.70E-01	1.49E-02	1.65E-01	Fe	3.14E-01	2.25E-01
4.77E-04	9.02E-04	2.26E-03	1.23E-03	5.46E-04	5.66E-04		4.67E-04	7.13E-04	8.18E-04	1.35E-03	1.10E-03	1.13E-03	Ni	1.07E-03	1.27E-03
6.20E-03	1.23E-02	1.08E-02	6.54E-03	5.83E-03	1.12E-02		8.79E-03	3.99E-03	9.76E-03	1.23E-02	1.47E-02	4.79E-02	Zn	1.88E-02	3.89E-02
3.80E-03	2.74E-03	n/a	2.60E-03	8.09E-03	1.33E-02		1.76E-03	n/a	n/a	3.52E-03	1.13E-03	1.49E-03	Cu	1.90E-03	n/a
1.81E-04	4.16E-05	3.20E-05	0.00E+00	1.00E-04	4.21E-05		6.54E-05	7.76E-05	2.38E-04	0.00E+00	9.81E-05	9.51E-05	As	1.20E-04	1.04E-04
0.00E+00	2.61E-04	0.00E+00	0.00E+00	0.00E+00	0.00E+00		0.00E+00	2.53E-03	2.36E-04	0.00E+00	0.00E+00	1.76E-03	Se	2.63E-03	8.07E-04
1.07E-01	2.70E-01	1.16E-01	1.55E-01	4.59E-02	4.24E-02		8.73E-02	6.42E-02	5.18E-02	1.56E-01	1.82E-01	1.73E-02	Sr	1.60E-01	2.96E-01
1.06E-03	9.97E-05	9.84E-06	5.47E-05	3.53E-04	8.13E-05		9.43E-05	1.35E-04	1.08E-03	2.65E-04	5.02E-04	1.88E-04	Мо	1.04E-03	3.98E-04
3.44E-04	1.94E-04	1.21E-04	1.66E-04	3.84E-04	1.35E-04		1.26E-04	1.63E-04	1.15E-04	4.80E-03	1.31E-04	2.51E-04	Cd	1.84E-04	1.23E-04
5.81E-04	7.74E-04	1.30E-03	8.73E-05	1.76E-03	2.05E-03		1.66E-03	7.56E-04	1.15E-03	4.48E-04	2.31E-04	6.66E-04	Pb	5.06E-04	5.66E-04
													F by IC - if analysed		
0.00E+00	0.00E+00	1.80E-01	0.00E+00	0.00E+00	0.00E+00		0.00E+00	3.50E-01	7.00E-02	0.00E+00	0.00E+00	0.00E+00	Br value to use	0.00E+00	1.00E+00
		W98/017579							W98/017703				CERTIFICATES		W98/017704
974293W	976537W	RN076849	W97/001682	974294W	976515W	W97/017266	98/006358	RN064050	98/081215	W97/001683	974295W	976538W	certificate numbers for	W98/002941	98/081215
W97/010811	W97/017386	987310W	7005367U	W97/010812	W97/017265		981629W	W98/012512	RN076850	7005367U	W97/010813	W97/017387	above analyses	98/006527	RN076850
TIOS, AND AN	ALYSIS VALIE	ITY CHECK											ELECTRONIC BALANCE (%), RA	TIOS, AND AN	IALYSIS VALII
186	309	293	330	218	153		294	291	170	368	375	411	calculated TDS (mg/L)	386	556
use %bal	use %bal	use %bal	use %bal	use %bal	use %bal	use %bal	use %bal	use %bal	use %bal	use %bal	use %bal	use %bal	high TDS flag;care balance	use %bal	use %bal
2.723	4.576	4.086	6.206	3.217	2.283		5.986	4.547	2.928	5.166	6.854	6.190	sum cation millequivalents	7.270	10.595
2.310	4.256	4.405	2.937	2.613	1.532		3.972	3.993	1.395	6.235	5.980	7.159	sum anion millequivalents	5.861	8.646
OK high%		OK high%	OK high%	OK high%	OK high%	partial anal	OK high%	OK high%	OK high%	OK high%	OK high%		low sum an/cat tolerance	OK high%	
8.2	3.6	-3.8	35.8	10.4	19.7	-	20.2	6.5	35.5	-9.4	6.8	-7.3	ionic balance % error	10.7	10.1
0.62	0.63	0.89	0.50	0.62	0.71		0.52	0.53	0.69	0.35	0.51	0.65	A = S/K (calc TDS/cond)	0.48	0.57
			R		R	Р	R		R	R			analysis adjustments		

											GUI				
G7/2	G14/2	G7/3	G777/3	G7/4	G7/6	G7/7	G8/2	G8/3	G8/4	G8/5	sample #	G888/5	G8/6	G8/7	
11-Feb-97	11-Feb-97	3-Jul-97	3-Jul-97	27-Sep-97	23-Jul-98	29-Sep-97	11-Feb-97	2-Jul-97	27-Sep-97	24-Feb-98	date sampled	24-Feb-98	23-Jul-98	24-Sep-98	
2.71	duplicate	3.85		2.33	3.44	2.58	3.50	3.84	2.99	4.13	SWL (m)	second	4.16	3.27	
		0.50		0.28	0.54	0.66	0.33	0.25	0.38	0.13	pump rate (L/min)	sample	v low	0.68	
											FIELD PARAMETERS				
611		764	745	559	642	298	449	300	777	386	EC (uS/cm)		414	667	
6.0		6.1	6.1	6.0	5.6	5.5	6.4	6.5	6.5	6.2	pH		5.8	6.3	
223		-37	-47	205	123	143	164	163	180	134	Eh (mV)		-53	17	
27.4		20.8	20.7	22.3	20.5	20.6	n/a	20.8	19.7	26.3	deg C		19.0	19.5	
30.5		36.1	33.0	93.9	30.3	32.1	62.8?	18.3	30.9	n/a	O2 %Sat		n/a	1.7	
		minor		minor			some			some	turbid sample				
										minor	yellow oxidation				
		minor									H2S presence				
											FIELD ANALYTES (mg/L)				
66		58		52	45	34	71	22	54	47	CO2		29	72	
35		41	41	17	23	11	61	56	73	40	alkalinity as CaCO3		73	131	
											HACH ANALYTES (mg/L)				
0.005		0.004	0.005	0.004	0.107	0.010	0.195	0.046	0.156	0.094	NO2 - N {for ion *3.3}		0.000	0.010	
3.3		4.2	2.8	21.4	13.4	10.5	9.2	13.5	12.9	23.3	NO3 - N {for ion *4.4}		1.6	15.7	
0.38		2.82	2.92	0.17	0.21	0.07	0.24	0.03	0.17	0.02	NH3 - N {for ion *1.29}		0.21	0.09	
5.0		4.0	4.5	0.0	2.3	1.2	5.5	0.6	<0.005	0.0	PO4(3-) {for P *0.326}		0.0	0.6	
3.7	0.0	7.1	5.7	21.6	13.7	10.6	9.7	13.6	13.2	23.4	total inorganic N - Hach	0.0	1.8	15.8	
											BACTERIAL SUITE (CFU/100mL	.)			
<5	<5	14.0	<5	6.0	<5	<5	<5	<5	<5	<5	BOD (mg/L)		<5	8.0	
<10	<10	0	0	0	0	0	<10	0	0	0	Total Coliforms	0	0	0	
<10	<10	0	0	0	0	0	<10	0	0	0	Faecal Coliforms	0	0	0	
<10	<10	<2	0	0	0	0	<10	<2	0	0	Faecal Streptococci	0	0	0	
				0	0	0			0	0	E.Coli	0		0	
		<2	0	0	0	0		<2	0	0	Pseudomonas aeruginosa	0	10	0	
											Clostridium perfringens/spp	outyricum dete	cted)		
											Yersinia spp.				
											Salmonella spp.				
											STANDARD ANALYTE SUITE (m	ng/L)			
3.3	0.0	4.2	2.8	21.4	13.5	10.5	9.4	13.5	13.1	23.4	total NOx to use	0.0	1.6	15.7	
											kjeldahl N (organic N)				
5.0	5.1	7.1	6.2	23.0	17.0	11.0	9.7	13.6	13.2	47.0	total N to use	0.0	1.8	16.0	
1.6	0.0	1.3	1.5	0.0	0.8	0.0	1.8	0.2	0.0	0.0	total P		0.2	0.2	
20.0	26.0	19.0	21.0	14.0	7.0	5.0	33.0	22.0	25.0	8.0	total organic carbon (TOC)		13.0	20.0	
37.1		140.0	140.0	70.0	90.0	30.0	31.9	30.0	110.0	10.0	CI		50.0	50.0	

G7/2	G14/2	G7/3	G777/3	G7/4	G7/6	G7/7	G8/2	G8/3	G8/4	G8/5	CONT'D: sample#	G888/5	G8/6	G8/7
14.3		62.0	55.0	37.0	40.0	27.0	13.1	19.0	46.0	11.0	SO4		31.0	32.0
											total S - lab			
42.9	43.0	50.2	50.0	43.9	28.3	13.3	74.0	87.8	134.1	30.8	HCO3 to use	0.0	88.8	159.7
											CO3 - lab			
<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	Hg		<0.0005	<0.0005
											UTS - ICP ANALYTES (mg/L)			
0.05		0.15	0.08	0.10	0.03	0.34	0.08	0.12	2.11	0.17	В		0.07	0.28
63.1		90.5	91.6	51.7	57.8	21.7	31.6	32.06	69.2	15.98	Na		32.4	56.0
18.4		25.1	25.3	26.5	21.6	16.1	22.1	29.60	47.9	14.94	Mg		19.9	62.1
0.3		0.7	1.8	0.3	0.0	0.3	0.4	1.31	0.3	0.50	Al		0.1	0.2
4.1		4.9	5.4	3.9	3.8	5.3	8.7	10.80	9.4	5.56	Si		5.7	12.3
6.2		9.1	9.1	7.7	9.2	7.7	4.2	6.23	3.6	4.01	К		6.6	6.4
12.9		8.8	8.7	14.7	10.8	8.6	11.5	11.28	19.4	4.97	Ca		5.9	14.0
3.13E-03		2.58E-03	2.55E-03	9.83E-04	3.38E-03	1.02E-03	1.86E-03	7.37E-04	9.06E-04	3.14E-04	Cr		2.12E-03	1.28E-03
3.00E-03		6.98E-04	1.62E-04	1.58E-03	1.51E-03	1.38E-03	1.01E-02	4.55E-03	3.90E-03	5.02E-03	Mn		1.88E-02	4.48E-03
3.59E-02		9.03E-01	9.42E-01	1.01E-01	7.22E-02	1.39E-01	8.72E-02	1.11E-02	3.17E-01	1.67E-01	Fe		5.36E+00	9.43E-01
1.15E-03		8.07E-04	5.83E-04	6.82E-04	5.19E-04	4.45E-04	1.43E-03	6.67E-04	9.01E-04	5.89E-04	Ni		1.21E-03	7.48E-04
3.14E-02		1.22E-02	8.25E-03	7.36E-02	8.04E-03	5.75E-03	3.36E-02	1.18E-02	1.98E-02	1.85E-02	Zn		2.53E-02	2.80E-02
1.74E-02		1.90E-03	6.56E-04	2.39E-03	n/a	n/a	2.83E-03	1.12E-03	1.41E-03	2.84E-03	Cu		n/a	n/a
0.00E+00		9.45E-05	7.57E-05	5.37E-05	8.53E-05	8.55E-05	0.00E+00	1.98E-05	2.15E-04	4.80E-05	As		1.70E-04	7.77E-05
0.00E+00		0.00E+00	0.00E+00	0.00E+00	7.98E-04	0.00E+00	0.00E+00	0.00E+00	1.42E-03	0.00E+00	Se		0.00E+00	0.00E+00
4.77E-02		4.94E-02	4.79E-02	5.88E-02	5.53E-02	2.89E-02	4.57E-02	4.47E-02	7.33E-02	3.18E-02	Sr		2.11E-02	4.67E-02
6.47E-05		1.82E-04	1.26E-04	1.28E-04	1.66E-04	2.28E-04	2.22E-04	1.62E-04	1.58E-03	3.17E-04	Мо		1.99E-04	2.93E-04
2.34E-03		8.87E-05	3.31E-05	4.12E-04	1.52E-04	6.97E-05	1.26E-03	1.59E-04	2.61E-04	6.98E-04	Cd		1.11E-04	8.66E-05
9.73E-04		8.96E-04	4.53E-04	1.12E-03	3.66E-04	5.95E-04	3.80E-04	6.44E-04	8.48E-04	6.88E-04	Pb		2.61E-03	6.39E-04
											F by IC - if analysed			
0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	3.00E-01	7.00E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	Br value to use	0.00E+00	1.40E-01	2.00E-01
						W98/017705					CERTIFICATES			W98/017706
W97/001744	W97/001746	974328W	974330W	976539W	RN064050	98/081215	W97/001745	974296W	976540W	98/006358	certificate numbers for	981631w	RN064050	98/081215
7005471N	7005471N	97/23607	97/23607	W97/017388	W98/012513	RN076850	7005471N	W97/010814	W97/017389	981630W	above analyses		W98/012514	RN076850
DITY CHECK											ELECTRONIC BALANCE (%), RA	ATIOS, AND AN	IALYSIS VALII	DITY CHECK
219		415	409	336	323	172	232	254	443	276	calculated TDS (mg/L)		215	386
use %bal	use %bal	use %bal	use %bal	use %bal	use %bal	use %bal	use %bal	use %bal	use %bal	use %bal	high TDS flag;care balance	use %bal	use %bal	use %bal
5.120		6.994	7.172	5.403	5.091	2.936	3.933	4.702	8.070	2.339	sum cation millequivalents		3.718	8.475
2.443		6.491	6.256	4.984	4.904	2.419	3.231	3.661	7.185	2.678	sum anion millequivalents		3.642	5.853
OK high%	partial anal	OK high%	OK high%		OK high%		low sum an/cat tolerance	partial anal	OK high%					
35.4		3.7	6.8	4.0	1.9	9.7	9.8	12.4	5.8	-6.8	ionic balance % error		1.0	18.3
0.36		0.54	0.55	0.60	0.50	0.58	0.52	0.85	0.57	0.72	A = S/K (calc TDS/cond)		0.52	0.58
R	Р										analysis adjustments	Р		R

APPENDIX M SUMMARY OF USA COURT REPORTS

Table M1. USA Federal and State Court Cases Concerning Cemeteries and Ground and Surface Waters

Date Ref.	Jurisdiction	Case And Ref. #1	Concerns And Findings	Expert Testimony
December, 1860,	Supreme Court	Henry S. Clark V. David	Clark's property has well 35 ft and 72 ft downhill from	
decided	Of North	Lawrence, Trustee.	cemetery in sands and gravel; interments 3 ft from boundary	
	Carolina, Raleigh	[No number in Original]	fence at depths $3-4$ ft Limited interments at present but	
		[59 N.C. 83; 1860 N.C.	objection to further burials pursued. Insufficient evidence of	
		Lexis 20; 6 Jones Eq. 83]	likely groundwater pollution; case allowed to be retried if this	
			is available	
November Term,	Supreme Court	The City of Greencastle v.	Likely injury to homeowner's well and springs by new	1 x Professor of
1864	Of Indiana	Hazelett.	cemetery establishment. No satisfactory proof and application	Geology
		[23 Ind. 186]	of law regarding surface streams not applicable to	
			underground streams.	
December, 1880,	Supreme Court	Kingsbury v. Flowers.	Kingsbury seeks to restrain Flowers from future burials in	
decided	Of Alabama	[No Number In Original]	private cemetery alleges nearby wells – about 188 ft and 272	
		65 Ala. 479; 1880 Ala.	ft at an elevation of 4-5ft lower, where water level is at 26 ft	
		Lexis 81	will be affected. Already has a diversionary drian for surface	
			water; insufficient evidence	
October 16,	Supreme Court of	Jacob Jung et al. v. J. C. Neraz	Landholder seeks to restrain Roman Catholic Church from	
1888, adopted	Texas	No. 6013	establishing a graveyard on adjoining land because of likely	
		71 Tex. 396; 9 S.W. 344; 1888	pollution of wells; failed because cemetery not yet established	
		Tex. Lexis 1156		
June 30, 1881,	Supreme Court	Uriah Upjohn v. The Board of	Location of cemetery will affect drinking water wells;	Various professors and
submitted	Of Michigan	Health of the Township of	complained off act was not a public nuisance and was partly	physicians
October 5, 1881,		Richland et al.	coerced by plaintiff; there is likely to be some effect but	
decided		[no number in original]	plaintiff has a more closely located barnyard of greater effect;	
		46 Mich. 542; 9 N.W. 845;	evidence needed of subsurface water movement	
		1881 Mich.		

1 20	S C	C D. D 1 V. Tl	G 1	D41 - 11 -4
January 20, 1896	Supreme Court Of Illinois	George D. Barrett et al. V. The	Sewers – subsoil drains to be constructed under a cemetery,	Bacteriologist
1890	Of Illinois	Mount Greenwood Cemetery Association et al.	particularly swampy areas and drained into nearby brook used for iceworks 4 miles from it and affecting other nearby land.	
		159 Ill. 385; 42 N.E. 891; 1896 Ill.	Held that a likelihood of pollution by decomposing bodies	
		1890 III.	exists. Comprehensive analytical statements made by legal fraternity.	
E-1	C	Jacob I I arres et al. Ameralla a		3 x medical
February 23,	Supreme Court Of Nebraska	Jesse L Lowe et al., Appellees,	Extension to longterm cemetery challenged because of likely	doctors/scientists and
1899, filed	Of Nebraska	v. Prospect Hill Cemetery	pollution to wells and other matters. Cemetery on crest of hill	
illed		Association, Appellant, et al. No. 8654.	with all-round drainage to below. Considerable conflict over	probably other scientists.
		2.27.22.1	nature of the soil – eventually held to be a highly porous	scientists.
		58 neb. 94; 78 n.w. 488; 1899 neb.	clay/loess, not dry. Physicians evidence that previous disease probably traceable to the old cemetery infecting wells.	
		Subsequent Appeal	Development prohibited.	
December 6,	Supreme Court	No. 14,188.	Development promoted.	
1905, filed	Of Nebraska	75 Neb. 85; 106 N.W. 429;		
1903, 11160	Of Neoraska	1905 Neb.		
July 11, 1900	Supreme Court	Wahl v. Methodist	4 yo cemetery with 79 interments said to cause pollution to	2 x medical doctors - 1
July 11, 1900	Of Pennsylvania	Episcopal Cemetery	neighbours' wells - 1 of these at 100ft. Pollution by	had done limited
	Orremisyrvama	Association of	decomposition products could not be proved, in fact most	percolation tests, 1 x
		Williamstown	evidence supported the concept of water improvement due to	minister with
		No. 17	the tended grounds of the cemetery; underlying geology not	experiences of wells in
		197 Pa. 197; 46 A. 913	properly considered. (This is an important case with useful	cemeteries
		157 1 a. 157, 40 M. 515	deductive reasoning - but suffers from lack of adequate	connectives
			hydrogeological knowledge.)	
June 3,	Supreme Court	Elvina Braasch et al.,	New cemetery in elevated position about 100 ft above land	2 x medical doctors - 1
1903	Of Nebraska	Appellants, V.	with wells in clayey loess; 570 ft to nearest well from	attempted expertise in
		Cemetery Association	cemetery boundary, land slope 20°, wells draw water from	hydrology
		of The Evangelical	gravelly and sandy layer at about 23 - 25ft depth; dismissed	, 8,
		Lutheran Christ	"technical" evidence not well regarded	
		Society Of Norfolk,		
		Nebraska, et al.,		
		Appellees.		
		No. 12,829.		
		69 Neb. 300; 95 N.W. 646		

October 29, 1904, decided January 29, 1908, decided	Court Of Civil Appeals Of Texas Supreme Court Of Texas	J. T. Elliott, et al., v. W. S. Ferguson, et al. [no number in original] 37 Tex. Civ. App. 40; 83 S.W. 56; 1904 Tex. App. Subsequent Appeal No. 1788 101 Tex. 317; 107 S.W. 51; 1908 Tex.	Proposed cemetery located on a hill with underlying sandy and gravelly soils; groundwater said to become polluted; evidence insufficient; location of effected lands not properly established; evidence not clear-cut as to effects	1 physician and a water supply contractor
October, 1906, decided	Supreme Court Of Iowa, Des Moines	Henry N. Payne et al., V. Town Of Wayland, Appellant. 131 Iowa 659; 109 N.W. 203; 1906	Proposed enlargement of existing cemetery between two drainage lines. Claim of potential pollution of springs, streams and wells if interment allowed. Soils are shallow 4' with 8/10" black loam over sandy clay. Some interpretation errors in perched water tables. Potential nuisance allowed.	Scientific evidence
January 28, 1908, decided	Court Of Appeals Of Kentucky	Long v. Louisville & Nashville R. R. Co. [No Number In Original] 128 Ky. 26; 107 S.W. 203; 1908 Ky. Lexis 27	Buried cattle carcass in railway easement pollutes spring/well of adjacent landholder at 70 ft downhill; question of negligence and compensation to be retried	
May 27, 1910, original opinion filed	Supreme Court Of Minnesota	Adelia Nelson V. Swedish Evangelical Lutheran Cemetery Association Nos. 16,550 - (69) 111 Minn. 149; 126 N.W. 723; 1910 Minn	Soil of the locality is composed of a porous, unstratified, clayey deposit – loess, containing sand and gravel lenses, but upper parts generally impervious; water abstracted from about 40ft in a well 150ft from cemetery; controversy as to whether formation was actually glacial till	Geologists and physicians
September 13, 1910	Supreme Court Of Oklahoma	Clinton Cemetery Association Et al. V. Mcattee. No. 1398. 27 Okla. 160; 111 P.	Development of new slightly elevated land - subsurface and surface drainage said to influence drinking well located 182ft from nearest burial which was already at least 36 years old (no previous ill effects reported); action dismissed - demurrer allowed	

January 18, 1912, decided	Supreme Court Of Alabama	Bellview Cemetery Co. v. McEvers. [No Number In Original] 174 Ala. 457; 57 So. 375; 1912 Ala. Lexis 10	Appeal against action by landholder to prevent establishment of cemetery because of possible injury. proposed cemetery land is topographically higher and said to be "swampy and of quagmire nature". Disallowed	
April 12, 1911	Supreme Court Of Georgia	Harper et al. V. City Of Nashville et al. 136 Ga. 141; 70 S.E. 1102	Location of a cemetery said to cause effect on surface and underground waters of neighbour and affect drinking wells; dismissed	
July 18, 1916	Supreme Court Of Missouri, Division Two	W. C. Mullins V. Mount Saint Mary's Cemetery Association et al; Appellant. 268 Mo. 691; 187 S.W. 1169	Sewerage costs for the cemetery were commensurate with others in the area; the need for the works in part being occasioned by the existence of the cemetery - the sewers removing excess runoff	
July 30, 1918	Supreme Court Of Oklahoma	City Of Tulsa et al. V. Purdy. No. 8991 73 Okla. 98; 174 P. 759	Location of an elevated cemetery extension said to cause effect on surface and underground waters of neighbour and affect drinking wells; nearest interment about 100 ft,; good groundwater source; apparent location akin to drainage basin; quantifiable damage - not an equity issue	
November 22, 1922, argued	Supreme Judicial Court Of Massachusetts	Mary A. Manning v. Woodlawn Cemetery Corporation [no number in original] 245 Mass. 250; 139 N.E. 830; 1923 Mass.	Cemetery operators had channeled stormwater into a pond which overflowed into ditches emptying onto a neighbour's land causing a nuisance	
January 22, 1923	Supreme Court Of Arkansas	McDaniel v. Forrest Park Cemetery Company 156 Ark. 571; 246 S.W. 874	Seepage of decomposition products would ruin drinking wells on adjacent land; not proved the soil is probably too impervious to at least 15ft; subsurface flow direction not established (no distances given); probable injury not proved	3 x Professors of Geology, State Sanitary Engineer, Drainage Engineer, Bacteriologist
Feb. 23, 1923, decided	Court Of Civil Appeals Of Texas, San Antonio	Farb et al. v. Theis et al. No. 6965 250 S.W. 290; 1923 Tex. App.	Proposed cemetery extension claimed to contribute polluted groundwaters to a nearby stream used for drinking and stock water; insufficient evidence presented – assertions not sufficient	

April 14, 1927	Court Of Appeals Of Tennessee, Western Section	E. A. Reid, et al. v. Memphis Memorial Park. 5 Tenn. App. 105; 1927 Tenn. App.	Complainants tried to stop cemetery development adjoining their lands (54.25 acres total) because said to pollute groundwater. Soil loess – impervious red clay. Wells located 85ft deep at 100 ft (nearest) others deeper than 200 ft at 250ft, 600ft and 1500 ft distances. Evidence claimed contamination risk up to ½ mile radius. 25ft buffer zone designed into plans. Case dismissed no evidence of likely pollution. Very lengthy argument by many expert witnesses; some conflicting.	Geologists x 2 or more, Bacteriologists, sanitary Engineer, Mining Engineer/Geologist, State Hydrologist, State Chief Chemist/Bacteriologist, cemetery Landscape Architect
April 16, 1927	Court Of Appeals Of Georgia	Fairview Cemetery Co. v. Wood et al. 17672. 36 Ga. App. 709; 138 S.E. 88	New cemetery in soils above fractured limestone hosting springs leading to surface drainage, streams, wells and springs used for drinking water, 200 ft to nearest burial from stream, disposition of strata unknown; evidence regarded as " vague, uncertain, and conjectural to show any actual present contamination of the water"; original orders reversed	2 x physicians
February 13, 1929	Supreme Court Of North Carolina	Board Of Health Of Buncombe County, The City Of Asheville et al. v. R. J. Lewis And Lewis Memorial Park Company. 196 N.C. 641; 146 S.E. 592	New cemetery in located on the 14 - 16 square mile watershed of Beaverdam Creek, which flows through Beaverdam Valley and is part of township water supply, is not a nuisance	
September 8, 1930	Supreme Court Of Washington, Department Two	E. O. Hite et al., Appellants, v. Cashmere Cemetery Association et al., Respondents. Samuel Reid, Appellant, v. Cashmere Cemetery Association et al., Respondents No. 22434 158 Wash. 421; 290 P. 1008	Extension to cemetery by joining two land tracts which also contain water wells, alleged pollution; 20ft downward percolation in sandy soils and 200-300ft lateral percolation required, dry climate; dismissed - no equity for nuisance	

September 12, 1930	Supreme Court Of California	Kenneth Carter et al., Appellants, v. A. H. Chotiner et al., Respondents L. A. No. 10526 210 Cal. 288; 291 P. 577; 1930 Cal.	Location of a cemetery on neighbouring land said that it will cause well pollution; existence of cesspools close to wells noted; no nuisance or pollution threat proved despite consideration of land slope, soil thickness etc. 40ft buffer zone enforced around inside edge of cemetery; conflicting hydrogeological evidence	Sets of experts on either side presented technical arguments of equal weight
July 11, 1933	Supreme Court Of Georgia	Hall et al. v. Moffett et al. No. 9308. 177 Ga. 300; 170 S.E. 192	New private cemetery, no evidence to support contention of injurious to health; dismissed	
March 11, 1948, decided	Supreme Court Of South Carolina	Young et al. v. Brown 16058 212 S.C. 156; 46 S.E.2d 673; 1948 S.C.	Large tract of land in semi-rural area to be converted to cemetery. Not a nuisance per se reaffirmed; proof of likelihood of groundwater pollution would also be needed to prevent any such developments.	
Argued January 3, 1949	The Supreme Court Of Pennsylva nia	Young et al., Appellants, v. St. Martin's Church et al 361 Pa. 505; 64 A.2d 814; 1949 Pa.	Neighbourhood seeks to prevent establishment of churchyard in area of residential character. One reason is potential contamination of springs: this cause dismissed.	
July 11, 1951	Court Of Civil Appeals Of Texas, San Antonio	Jones et al. v. Highland Memorial Park No. 12266 242 S.W.2d 250; 1951 Tex. App.	Proposed cemetery on ground with high watertable (2.5 – 6 ft); neighbours have nearby, shallow water wells (approx 11 ft deep); insufficient evidence to prove likely effect; stormwater also runs off adversely but likely to be unpolluted	
June 19, 1953	Court Of Appeals Of Kentucky	McCaw et al. v Harrison et al. [no number in original] 259 S.W.2d 457; 1953 Ky.	Cemetery development over cavernous limestone, shallow soils, stock and drinking water abstracted from this formation well at 500 ft from cemetery. Boundary; opposing technical argument – plaintiff's representatives allege that 50ft is sufficient sanitary distance; development allowed	an eminent Geologist, a Pathologist, Embalmer, and a Cemetery Manager; a Civil Engineer, specializing in sanitary engineering, and a Professor of Bacteriology

June 1, 1959, Opinion delivered	Supreme Court Of Arkansas	North Hill Memorial Gardens v. Hicks No. 5-1882 230 Ark. 787; 326 S.W.2d 797; 1959	Neighbours try to prevent establishment of cemetery on grounds that activities will pollute groundwater and runoff; expert testimony that the cemetery plots would not contaminate the wells and that the surface drainage is away from the houses which border the cemetery.	Sanitary Engineers for the State Health Department
April 12, 1965, decided	Supreme Court Of Mississippi	O. D. Lauck, D.B.A. Meridian Memorial Park Cemetery v Gilbert No. 43226 252 Miss. 371; 173 So. 2d 626; 1965 Miss.	Cemetery wrongfully obstructed drainage ditch from land above causing flooding above; ordered to maintain drains and pay damages	Civil Engineer- re drainage
March 10, 1972	United States District Court For The Middle District of Tennessee, Nashville Division	Woodlawn Memorial Park Of Nashville, Inc. v. L & N Railroadco., Inc. Civ. A. No. 5060 377 F. Supp. 932	Flooding of cemetery due to alteration of lands and drainage by nearby railroad and developments; concluded that cemetery drainage was inadequate for the storm event; action dismissed	
June 4, 1973	Court Of Appeals Of Missouri, Kansas City District	Jack Genova, Respondent, v. City Of Kansas City, Missouri, Appellant No. 25947 497 S.W.2d 555	Cemetery failed to maintain its drainage lines so that when an exceptionally heavy rainfall occurred a neighbour's land was flooded.	

Notes to Table M1

^{#1.} the legal reference cited refers to that from the bibliographic database Lexis-Nexis (1999 and 2001)
#2. where imperial units were originally used in the legal arguments these have been maintained; for conversion to metric units: 1 ft = 0.3048 m, 1 square mile = 2.59 km