Growth patterns along environmental gradients of tropical pomacentrid fishes

Thea Marie Drachen

Thesis submitted for the degree of Doctor of Philosophy at the University of Technology, Sydney

2008

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that this thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in this thesis.

Production Note: Signature removed prior to publication.

Acknowledgements

This thesis is dedicated to my father.

Very warm thanks to my supervisors Prof. David Booth and Dr. Peter Biro. This project started at James Cook University and Prof. Howard Choat has been a tremendous help with many bureaucratic issues. This project was made possible by an International Postgraduate Research Grant from The Australian Government and an Internationalization Grant from The Danish Government.

Thanks to Kerryn Parkinson for priceless work, to Prof. Göran Nilsson, for the project saving loan of a small propeller, to Michael Berumen for showing me the ropes of fish catching, and to Prof. Maria Byrne and Vicki Taylor-Perkins for assistance on crucial histological processing. Thanks also to Ralph Alquezar, Christa Beckmann, Emily Buckle, Will Figueira, Marcus Gregson, Peter Grønkjær, Melanie Lewis, Matt Lockett, Stephanie Mutz, Katherine Richardson, and Paul York for sparring and advice. And everlasting gratitude to Rochelle Seneviratne, who patiently answered question after bureaucratic question.

Thanks to the managers of Orpheus, One Tree, and Lizard Island Research Stations for assistance and flexibility. A special thanks to Dive Safety Officers Lyle Vail at Lizard Island and Phil Osmond at James Cook University.

Very warm thanks to my family for supporting my decision to go to the other side of the world, to my friends in Denmark for staying in touch and my friends in Australia for taking me in and to you all for keeping me sane.

But most of all, thanks to Anders, who followed me to the other side of the planet and stuck by.

Finally thanks to Skype and World of Warcraft for bridging the distance between home and home away from home, and to Red Dwarf and Star Trek: "Never give up, never surrender"!

Acknowledgements

Table of contents

Certificate of authorship	i
Acknowledgements	ii
Table of contents	iii
List of figures	vi
List of tables	viii

Chapter 1: General introduction

1.1	Life history traits and temperature	3
1.2	Local adaptation	4
1.3	Temperature change consequences	5
1.4	Aims of the thesis	5
1.5	Hypotheses	8
1.6	Structure of the thesis	9
1.7	Permits	10

Chapter 2: Comparison of the life histories of two damselfishes with different dispersal patterns from three latitudinally separate populations

	Abstract	11
2.1	Introduction	12
2.2	Materials and methods	14
2.2.1	Study areas and field sampling	14
2.2.2	Age determination	15
2.2.3	Age-based growth modeling	15
2.2.4	Determination of sex and maturity	16

2.2.5	Comparisons of age at maturity, growth, and longevity	17
2.3	Results	18
2.3.1	Growth curves and parameters	18
2.3.2	Longevity	18
2.3.3	Age and size at maturity	21
2.4	Discussion	25
2.4.1	Von Bertalanffy growth parameters	25
2.4.2	Maximum ages	26
2.4.3	Maturity	26
2.4.4	Summary	27

Chapter 3: Adaptive metabolic differences across latitudes in coral reef damselfish

	Abstract	29
3.1	Introduction	30
3.2	Materials and methods	32
3.2.1	Study areas and species	32
3.2.2	Experimental setup	32
3.2.3	Morphometrics	34
3.2.4	Statistical analyses	34
3.3	Results	34
3.4	Discussion	36

Chapter 4: Growth of juvenile damselfishes across a temperature gradient; comparison of a widely dispersing versus a brooding damselfish species from latitudinally separate populations

	Abstract	39
4.1	Introduction	40
4.2	Materials and methods	43
4.2.1	Study sites and field sampling	43

4.2.2	Husbandry	44
4.2.3	Morphometrics	44
4.2.4	Statistical analyses	45
4.3	Results	46
4.4	Discussion	49

Chapter 5: General discussion

5.1	Results summary and interpretations	54
5.2	Comparison of results of this study with previous research	56
5.3	Caveats	58
5.4	Further research	60

References	62
------------	----

List of figures

Fig. 1.1: Study sites along the Great Barrier Reef, Australia, at which specimens of <i>Pomacentrus moluccensis</i> and <i>Acanthochromis polyacanthus</i> were obtained	6
Fig. 2.1: View of the transverse section of a nine year old <i>P. moluccensis</i> sagittal otolith with primordium drawn in. White dots indicate yearly increments. Photo by TM Drachen	16
 Fig. 2.2: Von Bertalanffy growth functions fitted to size at age data of <i>A. polyacanthus</i> at Lizard (+), Orpheus (▲) and One Tree (■) Islands. Von Bertalanffy parameters are listed in table 2.1 	20
 Fig. 2.3: Von Bertalanffy growth functions fitted to size at age data of <i>P</i>. <i>moluccensis</i> at Lizard (+), Orpheus (▲) and One Tree (■) Islands. Von Bertalanffy parameters are listed in table 2.1. 	20
Fig. 2.4: Composition of juvenile, developing and sexually mature <i>A. polyacanthus</i> (<i>Ap</i>) and <i>P. moluccensis</i> (<i>Pm</i>) according to age at Lizard, Orpheus, and One Tree Islands.	23
Fig. 2.5: Composition of juvenile, developing and sexually mature <i>A. polyacanthus</i> (<i>Ap</i>) and <i>P. moluccensis</i> (<i>Pm</i>) according to size classes at Lizard, Orpheus, and One Tree Islands	24
Fig. 3.1: Hypothesized standard metabolic rates for the non-dispersing <i>A</i> . <i>polyacanthus</i> and the dispersing <i>P. moluccensis</i> damselfish species in relation to temperature and latitudinal locations along the Great Barrier Reef (Lizard Is. = north (warmest), Orpheus Is., and One Tree Island = south (coolest))	31

- Fig. 3.2: Setup used for measuring the oxygen consumption of damselfish. The fish is in a small enclosed chamber in a larger tank. Fresh sea water is pumped to the larger tank, with overflow over the sides to keep the temperature constant. To ensure ample oxygen in the chamber while the fish acclimates to the new surroundings, the chamber has an outlet, siphoning the water out of the chamber and an inlet letting in fresh aerated water in from the larger tank. At the start of the experiment, the in- and outlets are closed off and the oxygen meter is turned on. A small propeller on the tip of the oxygen sensor ensures that there is even distribution of the oxygen in the water of the chamber. The propeller is driven by the magnetic stirrer outside the larger tank.
- Fig. 4.1: Expected intrinsic growth rates of the non-dispersing *A. polyacanthus* and the dispersing *P. moluccensis* from One Tree Island, Orpheus Island, and Lizard Island (low-, mid-, and high latitude location) at ambient and manipulated temperatures.
 42

List of tables

Tab. 2.1: Von Bertalanffy growth parameters for <i>A. polyacanthus</i> (<i>Ap</i>) and <i>P</i> .	
<i>moluccensis</i> (<i>Pm</i>) from Lizard, Orpheus, and One Tree Islands. L_{∞} is the mean	
asymptotic standard length (mm), k describes the rate at which the growth	
curve approaches the asymptotic length, t_0 is the theoretical age (years) at	
length zero. t_{max} is the oldest observed age at each location, while mean t_{max} is	
the mean age of the oldest 10% of each population	20
Tab. 2.2: Probabilities that the von Bertalanffy growth function curves (VBGF),	
VBGF parameters (L $_{\infty}$, k, and t $_0$) and mean t _{max} values are equal between	
populations. VBGF curves and parameters tested with a Likelihood Ratio Test.	
Mean t_{max} values tested with an Analysis of Variance. Compared are A.	
polyacanthus (Ap) and P. moluccensis (Pm) from Lizard, Orpheus, and One	
Tree Islands. Significantly different values are in bold	20
Tab. 2.3: Age and size at sexual maturity of A. polyacanthus (Ap) and	
P. moluccensis (Pm) at Lizard, Orpheus, and One Tree Islands. Age/size at	
maturation is calculated as the age/size class at which $\geq 50\%$ are mature, and	
these age/size classes are also presented as percentages of the mean maximum	
age/size	22
Tab. 2.4: Probabilities that the age and size at sexual maturity are equal between	
populations. Compared are A. polyacanthus (Ap) and P. moluccensis (Pm)	
from Lizard, Orpheus, and One Tree Islands. Significantly different values are	
in bold	22
Tab. 3.1: Ages and sex ratios of the fish used for experimentation. Listed is mean	
age with minimum and maximum in parenthesis, and sex ratios	34

Tab. 4.1: Study sites with latitude, mean sea surface temperatures, sampling dates,	
and number of fish sampled and in the statistical analyses. $Ap = A$.	
polyacanthus, Pm = P. moluccensis. Temperature data obtained from	
www.reeffutures.org, now moved to www.aims.gov.au. Temperatures are	
from 2001-2003. Pelorus Island serves as temperature proxy for Orpheus	
Island, Heron Island is proxy for One Tree Island. Pelorus Island is one km	
north of Orpheus Island, Heron Island is 10 km NW of One Tree Island.	
Temperatures between the islands are significantly different (one tailed T-test,	
P<0.0001)	43
Tab. 4.2: Least squares means of the growth ((log(final mass/initial mass))/day) of	
A. polyacanthus and P. moluccensis from Lizard Island, Orpheus Island and	
One Tree Island	46
Tab. 4.3: Comparisons of Least Squares Means, listed are results of t-test (3 digits)	
and probabilities (5 digits) of equal growth rates between A. polyacanthus (Ap)	
and P. moluccensis (Pm) from Lizard Island, Orpheus Island and One Tree	
Island at the two temperatures tested at each location	48

General abstract

The goal of this thesis is to evaluate latitudinal patterns in the life history traits, standard metabolic rates, and growth potential of two geographically widespread damselfishes, the dispersing *Pomacentrus moluccensis* (Bleeker 1853) and the brood-caring *Acanthochromis polyacanthus* (Bleeker 1855) between Lizard Island, Orpheus Island, and One Tree Island along the Great Barrier Reef, Australia (14° 41' S, 18° 37' S, and 23° 30' S).

P. moluccensis displayed no clear latitudinal maximum age (7-10 years) or asymptotic size (57.3 mmSL +/-3.0) difference, between Lizard, Orpheus, and One Tree Islands. Based on experimental manipulations of water temperature at the three islands the metabolic rate at a given temperature (e.g. 27° C) was significantly lower at the lowest latitude Lizard Island (0.048 mgO₂/g fish/hour) compared to mid- and high-latitude Orpheus and One Tree Islands (0.088 mgO₂/g fish/hour +/-0.004). Regardless of location, the growth of *ad libitum* fed juveniles was consistently higher at higher temperatures (0.0641-0.1190 log(g_(final)/g_(initial))/day), indicating higher potential growth rates at lower latitudes.

A. polyacanthus displayed a lower asymptotic size at the highest latitude One Tree Island (72.5 mm SL) compared to Orpheus and Lizard Islands (86.9 mmSL +/-2.3) though the maximum age was the same across latitudes (8-10 years). The metabolic rate at a given temperature (e.g. 27°C) was consistently significantly higher at higher latitudes (0.053-0.106 mgO₂/g fish/hour). The growth of *ad libitum* fed juveniles was significantly lower at Lizard Island (0.0575 log(g_(final)/g_(initial))/day +/-0.0057) than Orpheus and One Tree Islands (0.1303 log(g_(final)/g_(initial))/day +/-0.0153). These two results in conjunction may indicate that *A. polyacanthus* maintenance costs are low at low latitudes through low metabolism, but has simultaneously reduced its ability to speed up growth rates in periods of abundant food, such as coral spawning (Oct-Nov).

Over the coming century rapid climate change is predicted to increase the average sea-surface temperatures on the GBR, with possible migration of widely distributed species from warmer areas of their distribution to colder. The ensuing

changes in reaction norms due to a lateral shift will largely depend on their current geographical and temperature ranges. Based on the results of this study, it appears that *P. moluccensis* might be able to tolerate a transition to warmer habitats, while *A. polyacanthus*, more adapted to its local habitat, would be less able to adjust to a change in temperature regime.