Ka Band
Propagation Experiments on the Australian Low Earth Orbit Microsatellite ‘FedSat’

Thorsten Kostulski

Faculty of Engineering
University of Technology, Sydney

A Thesis Submitted for the Degree of
Doctor of Philosophy

2008
Certificate of Authorship/Originality

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Sydney, September 2008

Thorsten Kostulski
Für meine Eltern.
Acknowledgements

There are several organisations and countless people to thank who have supported and accompanied me during the course of my doctoral candidature, and even well before.

I am very grateful for the opportunity to contribute to the challenges of the ‘FedSat’ Mission — a research project otherwise rarely found in a university environment. Therefore, I would like to thank the Australian Cooperative Research Centre for Satellite Systems (CRCSS) for providing me with such a unique research platform with the capability of conducting truly original, experimental space engineering research. It has been a pleasure cooperating with the other CRCSS partners, especially with Mr Terry Kemp from the Operations Control Centre in Adelaide and with CSIRO researchers in Sydney.

However, this involvement in the CRCSS would not have been possible without the trust by the Australian Government (DEST) in my research capacity, by sponsoring me through the 'International Postgraduate Research Scholarship’ at the University of Technology, Sydney (UTS). I express my deep gratitude towards this confidence in my past (and hopefully future) contributions to Australian research.

The UTS Faculty of Engineering has been instrumental in providing an excellent research environment, for example laboratories, equipment, manufacturing support, an extensive computing infrastructure and office space. I would also like to mention the financial support I have received from the Faculty during a difficult period, which is gratefully acknowledged.

It is natural that the greatest contribution to the success of my thesis comes from the principal supervisor, A/Prof Sam Reisenfeld. In this case, the support I have received from him over all those many years, both professionally and personally, goes beyond explanation. Over the past years I have not only benefitted from his profound expertise in satellite systems design, but he has also provided very substantial financial support during my candidature through the CRCSS, despite a difficult budget situation. His qualities as a supervisor are outstanding, and without his subtle, constant motivation, encouragement and commitment of his time to me – especially before submission – this goal would have been much harder to achieve. I am sincerely grateful for that, Sam!
Going back to 1999, I first came to UTS as an undergraduate student when I participated in the exchange program between UTS and the University of Applied Sciences and Research, Aachen, Germany. That year changed my life fundamentally and clearly laid the foundations for my continued work with UTS, culminating in today’s achievement. I would like to thank the staff of the International Office (UAS Aachen), particularly the Director, Mr T. Lex, as well as Prof M. Trautwein and Prof P.M. Schoedon from the Faculty of Electrical Engineering and Information Technology for their flexibility and tremendous support for my aspirations.

Dealing with the many practical and experimental aspects of the thesis would have been unthinkable without the much earlier dedication of a few amateur radio enthusiasts, many of them with a notable background in radio frequency engineering. During my high school years, they had already recognised my interest in electronics, became my mentors and taught me countless lessons of theory and practical experimentation, resulting in my amateur radio licences DL1BF and VK2BF. People to thank in particular are Mr Horst Jackisch (DL1BQ), Mr Rolf Steins (DL1BBC), Mr Ullrich Piggen (DF3BU) and Mr Manfred van Kampen (DH5BAL).

In the absence of family, I was lucky to be cheered up and encouraged by a large circle of reliable friends in Australia. There are too many names to mention, but you all know who you are and how much I value your company. I would especially like to point out the close friendship with Heinz von Hollander, Dr Peter West and Minnie Fabiansson over all those years. However, the main reason for my persistence has been the tremendous understanding and moral support by my partner Lam Ly. A big thanks to all of you!

Finally, my parents, Martin and Christine, deserve great respect for their support of my chosen personal and professional ambitions, but I know very well that my absence from home has never been easy for them. I can always count on your unconditional love and support, especially under difficult circumstances. I regret we have rarely seen each other during the candidature, but the circumstances may change in future. My dedication of this thesis to you is just a small sign of my gratitude for what you have sacrificed for my education and wellbeing over so many years.

Thorsten Kostulski, September 2008.
Contents

List of Figures .. xix
List of Tables .. xxix
Nomenclature ... xxxi
Abstract ... xxxix

1 Introduction ... 1
1.1 Research Context and Motivation 1
1.1.1 Review of Frequency Bands used in Satellite Communications ... 2
1.1.2 Emergence and Challenges of the Ka Band in Satellite Communications ... 3
1.1.3 Demand for Ka Band Propagation Research 4
1.1.4 Ka Band on Low Earth Orbit Satellites 4
1.1.5 Role of the UTS Ka Band Propagation Experiments 5
1.2 Thesis Structure .. 5
1.2.1 Thesis Objectives .. 8
1.2.2 Nomenclature .. 9
1.3 Key Contributions ... 9
1.4 Related Publications ... 11

I Background ... 13

2 Review of Ka band Propagation Effects and Previous Experiments 15
2.1 Introduction .. 15
2.2 Ionospheric Scintillation ... 15
2.3 Significant Tropospheric Effects 16
2.3.1 Atmospheric Absorption .. 18
CONTENTS

2.3.2 Cloud Attenuation ... 18
2.3.3 Tropospheric Scintillation 18
2.4 Rain and Ice Attenuation 22
 2.4.1 Rain Attenuation ... 22
 2.4.2 Rain Climate and Contour Maps 22
 2.4.3 Rain Attenuation Modelling 23
2.5 Ka band Propagation Experiments on Geostationary Satellites 25
 2.5.1 Olympus .. 26
 2.5.2 ITALSAT .. 27
 2.5.3 ACTS .. 28
2.6 Ka band Propagation Experiments on Low-Earth Orbit Satellites ... 29
 2.6.1 Teledesic T1 ... 30
 2.6.2 Iridium .. 30
 2.6.3 ROCSAT-1 .. 31
2.7 Rain Attenuation Measurements in the Australian Region 33

3 The Australian 'FedSat' Mission 37
 3.1 The "Cooperative Research Centre for Satellite Systems" 38
 3.1.1 Organisational Structure of the CRCSS 38
 3.1.2 Key Events of the FedSat Project 40
 3.2 Orbital Dynamics of FedSat 41
 3.2.1 Launch ... 41
 3.2.2 Orbital Properties 41
 3.2.3 Implications for the Ka Band Propagation Experiment 44
 3.3 FedSat Housekeeping Functions and Payload Overview 45
 3.3.1 Satellite Structure 45
 3.3.2 Housekeeping Systems 45
 3.3.2.1 Power Supply System 48
 3.3.2.2 Data Handling System 48
 3.3.2.3 Attitude Control System 49
 3.3.2.4 Telemetry, Tracking and Control Communication System . 50
 3.3.3 Experimental Payloads 51
 3.3.3.1 Magnetometer 51
 3.3.3.2 Global Positioning System Receiver 51
 3.3.3.3 Star Camera 52
 3.3.3.4 High-Performance Computing Experiment 52
CONTENTS

3.4 Communications Payload .. 53
 3.4.1 Overview ... 53
 3.4.2 Operation Modes 53
 3.4.3 UHF Payload ... 53
 3.4.4 BBP/ADAM Payload 56
3.5 Ka Band Transponder ... 56
 3.5.1 Ka Band Modules 58
 3.5.2 Ka band Antennas 60
 3.5.3 Experimental Objectives 61
3.6 Operational Considerations and Restrictions 63
 3.6.1 On-board Power Requirements 63
 3.6.2 Satellite Attitude 64
 3.6.3 Satellite Platform Stability and Intervention 64
 3.6.4 Interference between Payloads 65
3.7 Summary - FedSat and Ka band Payload Specifications 65

Research

4 Fast-Tracking Ka Band Earth Station Development 69
 4.1 Earth Station Design Overview 69
 4.1.1 Critical Design Issues 70
 4.1.1.1 Spatial Tracking and Keyhole Problem 70
 4.1.1.2 Link Budget vs. Tracking Accuracy Requirements .. 71
 4.1.1.3 Doppler Frequency Tracking 73
 4.1.1.4 Project Completion Time 75
 4.1.1.5 Flexibility 75
 4.1.1.6 Commercial vs. In-House Design 76
 4.1.2 Spatial Tracking and Operation Modes 76
 4.1.2.1 Maintenance and Calibration 76
 4.1.2.2 Experimental Operation 77
 4.2 System Integration .. 78
 4.2.1 Indoor Unit .. 78
 4.2.2 Outdoor Unit ... 81
 4.3 Antenna and Reflector 81
 4.3.1 Reflector Type .. 81
 4.3.2 Environmental Issues 84
CONTENTS

4.4 Mechanical Subsystem .. 87
 4.4.1 Development of a Tracking Pedestal 87
 4.4.2 Electro-Mechanical Components and Servo Drives 89
 4.4.3 Feedback Encoders ... 91
 4.4.4 Antenna Position Calibration .. 91
4.5 RF Electronics Subsystem ... 93
 4.5.1 Overview ... 93
 4.5.2 Ka Band Hardware .. 94
 4.5.3 RF Circuit Implementation .. 95
 4.5.4 Doppler Shift Tracking and Compensation 98
4.6 Earth Station PC Hardware and Software Design 100
 4.6.1 PC Hardware .. 100
 4.6.2 Spatial Tracking and Automation 102
 4.6.2.1 Motion Control .. 104
 4.6.2.2 Servo Drive Tuning .. 105
 4.6.2.3 MINT Software .. 107
 4.6.2.4 Timing Automation ... 110
 4.6.3 Digital Signal Processing ... 110
 4.6.3.1 RF Power and Spectrum Measurement 113
 4.6.4 RF Control and Alarm Monitoring Software 113
 4.6.5 Support Utilities and Third-Party Software 114
4.7 Earth Station Siting .. 115
 4.7.1 Location Selection Criteria 117
 4.7.2 Limitations of the Chosen Site 118
 4.7.2.1 Obstructions .. 118
 4.7.2.2 Environment .. 120
 4.7.2.3 RF Interference .. 120
 4.7.2.4 Safety ... 122
4.8 Earth Station Deployment .. 122
 4.8.1 Integrated System Test with FedSat Communications Payload 122
 4.8.2 Surveying ... 123
 4.8.3 Connectivity and Ancillary Devices 125
 4.8.4 Functional On-Site Testing 125
4.9 Post-Deployment Design Modifications 126
 4.9.1 Improvement of the Control Loop Dynamics through Mechanical
 Changes ... 126
CONTENTS

4.9.2 Dynamic Improvement of the Pointing Accuracy 129
4.9.3 Limitation to Supervised Operation 131
4.9.4 Improvement of Sampling Interval 132
4.10 Summary - Earth Station Specifications 133

5 Earth Station Operation and Data Collection 135
5.1 FedSat Pass Characteristics 135
 5.1.1 General Statistics and Considerations 136
 5.1.2 Selection of Suitable Passes 138
 5.1.3 Pass Request and CRCSS Cooperation 139
5.2 Determination of Tracking Coordinates 139
 5.2.1 On-board GPS Receiver Data 140
 5.2.2 NORAD Two-Line Elements 140
 5.2.3 Pointing Accuracy Assessment 141
5.3 Power Measurement Calibration and Accuracy 146
 5.3.1 Ka Band Payload Transmit Power 146
 5.3.2 Satellite Attitude .. 146
 5.3.3 Squint Angle Calculation 148
 5.3.4 Antenna Radiation Pattern Modelling 152
 5.3.5 Pointing Angle Accuracy to Power Measurement Uncertainty Conversion 154
 5.3.6 Multipathing Effects 155
 5.3.7 Other Noise and Interference Sources 156
 5.3.8 Dish and Feed Horn Wetting 157
 5.3.9 Power Measurement Calibration 158
5.4 Pass Preparation and Operation 160
 5.4.1 Required Instrumentation 160
 5.4.2 Pass Preparation Routine 161
 5.4.3 Visual Observation and Recording of Received Signals 162
 5.4.4 Archival and Post-Processing of Measurements 164
 5.4.5 Collection of Meteorological Data 165
 5.4.5.1 Photography of Local Weather Conditions 166
 5.4.5.2 Weather Radar 166
 5.4.5.3 Official Weather Station and Pluviometer Records 172
5.5 Doppler Frequency Tracking Performance 174
 5.5.1 Examples of Doppler Frequency Tracking 174
CONTENTS

5.5.2 Discussion ... 175
5.6 Pass Statistics and Summary 178
5.7 Summary of Operation and Data Collection 179

6 Attenuation Data Analysis and Discussion 181

6.1 Analysis Software Development and Data Processing 181
6.2 Attenuation - Beacon Mode Examples 182
 6.2.1 Clear Sky Conditions 183
 6.2.2 Cloudy Conditions 188
 6.2.3 Rain Cells 190
6.3 Attenuation - Bent Pipe Mode Examples 194
6.4 Validation and Discussion of Results 197

7 Project Review and Suggestions 205

7.1 Difficulties Encountered 205
 7.1.1 Satellite Reliability 205
 7.1.2 Payload Interference 206
 7.1.3 Earth Station Reliability 210
 7.1.4 Mechanical Failure 210
 7.1.5 Ka band RF Electronics Failure 213
 7.1.6 Ka Band Hardware Damage 213
 7.1.7 Reflector Replacement 214
 7.1.8 Software Deficiencies 215
 7.1.9 Local Weather Pattern 215
 7.1.10 Impact on the Research Outcome 217
7.2 Suggestions for Future Earth Station Designs 218
 7.2.1 Location and Siting 218
 7.2.2 Counterweighted Pedestal 218
 7.2.3 Robustness of the Electro-Mechanical Subsystem 219
 7.2.4 Levelling and Fully Automated Operation 219
 7.2.5 Feed Blower 219
7.3 Suggestions for Operational Strategies 220
 7.3.1 Integrated Collection of Precipitation Data 220
 7.3.2 Automatic Recording of Visual Weather Observations .. 220
7.4 Summary ... 220
8 Conclusion and Suggestions for Further Work 221
 8.1 Project Outcomes .. 221
 8.2 Suggestions for Future Work 223
 8.2.1 Low Elevation Analysis 223
 8.2.2 Fade Slope Analysis .. 224
 8.2.3 Correlation with Local Precipitation Data 224
A UTS Ka Band Earth Station RF Block Diagrams 225
References 229
List of Figures

1.1 Thesis Structure ... 6

2.1 Illustration of the various contributors to path attenuation on satellite links (not to scale) [3] .. 16

2.2 Location of the earth’s ionosphere and magnetosphere in relation to a low-earth orbit (modified from [17]). The altitude ranges indicated are not precise limits, but transitional .. 17

2.3 Specific attenuation for water vapour, dry atmosphere and standard atmosphere. The absorption regions can be clearly identified, especially in the Ka band (around 22.2 GHz) due to water vapour. The Ka band uplink (UL) and downlink (DL) frequencies are also indicated (modified from [20]). 19

2.4 Cloud attenuation vs. slant path length for 15/35 GHz and clear sky and cloudy conditions [21] .. 20

2.5 Scintillation observed on a 30 GHz beacon signal under clear sky conditions (a,b), cloud (c,d) and rain (e,f) [3] ... 21

2.6 Australian rainfall rate contour map for 0.01% exceedance (in mm/h) for the average year, issued in 2007 and 2003 (modified from [27] and [26]). Significant corrections have been made for the Sydney region (red marker). 24

2.7 Illustration of the geometry for a satellite signal passing through rain 24

2.8 Cumulative attenuation results from OLYMPUS for Ku and Ka band, 1991-92 [34] ... 27

2.9 Coverage area of the ITALSAT 18.7 GHz beacon [35] 27

2.10 ACTS experimental beacon observation sites with Crane and ITU rain climate zones [38] .. 28

2.11 Cumulative 20 GHz propagation results collected from six of the ACTS observation sites [39] .. 29

2.12 Visualisation of the revised Teledesic Ka band LEO constellation with 288 satellites [44] .. 30
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.13</td>
<td>Photos of the remote and the transportable terminals for ROCSAT [47]</td>
<td>31</td>
</tr>
<tr>
<td>2.14</td>
<td>Cumulative distribution functions of the average rainfall rates (6 minute</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>intervals) recorded in Sydney 1922-1971 (49 years) [54]</td>
<td></td>
</tr>
<tr>
<td>2.15</td>
<td>Cumulative distribution functions of the average rainfall rates (6 minute</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>intervals) recorded in Sydney 1922-1998 (76 years) [56]</td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>Organisational structure of the CRCSS</td>
<td>39</td>
</tr>
<tr>
<td>3.2</td>
<td>FedSat, WEOS and Micro-Labsat mounted on the launcher’s payload separation</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>structure (Photo: JAXA)</td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>FedSat several seconds after separation, as recorded by the onboard camera</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>(Photo: JAXA)</td>
<td></td>
</tr>
<tr>
<td>3.4</td>
<td>Illustration of FedSat’s low-earth orbit (white) and the corresponding</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>visibility footprint, with elevation contours from 0° to 30° (yellow)</td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td>Orthographic map view of FedSat’s ground tracks over a period of 8 orbits.</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>Descending paths are always exposed to the sun (yellow), ascending paths</td>
<td></td>
</tr>
<tr>
<td></td>
<td>mostly in eclipse (red)</td>
<td></td>
</tr>
<tr>
<td>3.6</td>
<td>Locations of housekeeping systems and payloads within the satellite structure</td>
<td>46</td>
</tr>
<tr>
<td>3.7</td>
<td>FedSat before closure</td>
<td>46</td>
</tr>
<tr>
<td>3.8</td>
<td>FedSat (closed) with some external payload and housekeeping components</td>
<td>47</td>
</tr>
<tr>
<td>3.9</td>
<td>Definition of yaw, pitch, roll and nadir axes in relation to FedSat’s velocity vector</td>
<td>49</td>
</tr>
<tr>
<td>3.10</td>
<td>The communications payload with Ka band and UHF signal paths</td>
<td>54</td>
</tr>
<tr>
<td>3.11</td>
<td>Detailed block diagram of the UHF payload</td>
<td>55</td>
</tr>
<tr>
<td>3.12</td>
<td>The UHF payload module (Photo: ITR)</td>
<td>56</td>
</tr>
<tr>
<td>3.13</td>
<td>BBP Architecture</td>
<td>57</td>
</tr>
<tr>
<td>3.14</td>
<td>The Ka band transponder module with receive/transmit circuits and local</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>oscillators</td>
<td></td>
</tr>
<tr>
<td>3.15</td>
<td>Ka band receiver block diagram</td>
<td>58</td>
</tr>
<tr>
<td>3.16</td>
<td>Ka band transmitter block diagram</td>
<td>58</td>
</tr>
<tr>
<td>3.17</td>
<td>Ka band downconverter MMIC mounted on substrate and with external connectors (CSIRO prototype)</td>
<td>59</td>
</tr>
<tr>
<td>3.18</td>
<td>Ka band transmitter package (CSIRO prototype)</td>
<td>59</td>
</tr>
<tr>
<td>3.19</td>
<td>20 GHz compact multi-mode horn antenna for FedSat (Photo: CSIRO)</td>
<td>60</td>
</tr>
<tr>
<td>3.20</td>
<td>Antenna measurement arrangement (left) and TinSat in the anechoic chamber</td>
<td>61</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

3.21 Measured RCP and LCP gain patterns of the Ka band transmit antenna at 20.13 GHz, rotation $\phi = 0^\circ$.. 62

4.1 Commercial elevation-over-azimuth satellite tracking pedestal [80] 70
4.2 Calculated azimuth and elevation angles for an overhead pass with related angular velocities ... 71
4.3 Limitations of hemispherical coverage by an Az/El tracking system due to the keyhole problem (modified from [81]) 72
4.4 Calculated downlink Doppler shift and Doppler rate for an overhead pass .. 74
4.5 Functional block diagram of the UTS earth station 78
4.6 The indoor unit of the Ka band earth station 79
4.7 Photo of the RF Module ... 80
4.8 Outdoor unit with drive enclosure and pedestal 82
4.9 Boresight aperture and physical outline of a parabolic offset reflector 83
4.10 Illustration of the offset angle φ ... 84
4.11 1.2 m Ka band antenna system under laboratory test 85
4.12 Transmit and receive radiation patterns of the 1.2 m Ka band earth station antenna system (Prodelin) ... 86
4.13 Graphic of the X/Y mount, also indicating the coordinate system definitions (left); the finished tracking system in a laboratory test setup (right) 88
4.14 Basic technical drawing of the final X/Y pedestal design 89
4.15 Baldor AC Servo Motor and Planetary Gearbox [92] 90
4.16 Schematic diagram of the power train, brake, resolver and encoder in the housing ... 91
4.17 Earth station Ka band hardware assembly 94
4.18 Simplified downlink RF block diagram of the Ka band earth station; the coloured sections represent different intermediate frequencies 96
4.19 Simplified uplink RF block diagram of the Ka band earth station 97
4.20 Interaction between software modules and add-on boards. The bold frame indicates that those modules are required to operate in real-time 101
4.21 Image of the tracking and signal processing control software user interface (idle) ... 103
4.22 Signal flow diagram of the motion control system (fault signals not shown) 104
4.23 Screenshot of the manual NextMove™ motion control panels for testing and configuration ... 109
LIST OF FIGURES

4.24 Data flow between MINTTM, the control software and NextMoveTM before and during a tracking event) ... 109
4.25 Basic functional diagram of a direct digital synthesizer with selected AD9835 specifications (blue), (modified from [110]) ... 111
4.26 User interface of the LabView ”Control Centre Software” on PC-A 114
4.27 Screenshot of the UTS Earth Station Utility Software for coordinate conversion [115] .. 116
4.28 Drawing of the earth station site in elevation view and top view. Items 1-3 denote significant horizon obstructions... 119
4.29 Horizon chart of the obstructions surrounding the tracking antenna site 120
4.30 Map indicating the UTS City Campus, the earth station location and the surrounding environment (inset) ... 121
4.31 Ka band RF loopback test setup (left) and resulting bit error rate measurements for various tests (right) ... 123
4.32 Photos of the precision surveying campaign: overview of the location (left) and equipment (right). Some of the obstructing towers and masts can also be seen here.. 124
4.33 30 GHz transmit monitoring setup using a harmonic mixer and diplexer as a conversion circuit .. 126
4.34 X/Y position encoder, velocity and following error during a 58° to -87° test move. The vibrations in the order of ±0.05° at certain tilt angles are clearly visible, as are the velocity quantisation levels and the associated PWM control by the servo drive.. 127
4.35 3D model (left) and realisation of the modified feed assembly design, reducing the torque demand on both axes ... 128
4.36 Concept of following error elimination through frequent updates of the motor encoder value .. 129
4.37 Illustration of the periodical read-and-update procedure to instantly eliminate the following error .. 130
4.38 Satellite pass recorded by NextMoveTM, showing the X/Y axis position, velocities and following error. The difference in error between positioning moves and tracking is evident, as is the reduction of vibrations........................... 131
4.39 Algorithm improvement strategy for a shorter power sampling interval 133
5.1 PDF and CDF of maximum pass elevations over a 200-day period. The red area indicates maximum elevations below the design limit of 30°, which make up 77% of all possible passes. 136
5.2 Pass duration vs. maximum elevation for visible passes and for passes with a 30° elevation mask .. 137
5.3 Statistics of elevation angles encountered in 1-second intervals over a 100-day period ... 138
5.4 Example of NORAD two-line elements for FedSat, valid at epoch year 2005, fractional day 307.2534481 (3 Nov 2005, 06:04:57.6 UTC) 141
5.5 Conceptual illustration of the “time-referenced positional move” strategy to determine timing offsets ... 143
5.6 Illustration of the timing offset evaluation of GPS and TLE data in relation to the observed signal maximum at positions 2, 3 and 4 144
5.7 Raw telemetry of the Ka band payload transmit power (blue) during a beacon pass (top) and a bent pipe mode pass (bottom) 147
5.8 Examples of attitude telemetry recorded during two separate Ka band experiments. The $\text{Alpha}_\text{Est}0,1,2$ variables correspond to the spacecraft’s X, Y and Z axes .. 148
5.9 Illustration of the squint angle as a function of the satellite position relative to the earth station (not to scale) .. 149
5.10 Earth station and satellite position vectors for squint angle calculation in the IJK frame (not to scale) ... 150
5.11 The squint angle calculated for a particular pass as a function of time (left) and elevation angle (right) ... 152
5.12 Approximation of the Ka band antenna radiation patterns by polynomial models. The black dots represent the original gain measurements on the spacecraft antennas. ... 153
5.13 3-dimensional visualisation of the spacecraft transmit antenna model (left) and the associated contour plot, indicating the variable off-boresight gain values. ... 154
5.14 Relationship between the pointing angle accuracy, or off-boresight angle, θ and the corresponding off-boresight loss $L_{\text{off-boresight}}$ (adapted from [82]) 155
5.15 Received IF power during a pass with physical path blockage. Multipathing effects sustain signal lock (left), and loss of reception occurs during another, similar pass (right). ... 156
5.16 Power calibration procedure, consisting of receiver gain calibration and obtaining a clear sky reference level (gaseous absorption calibration) 159
5.17 Example of a pass information file. The first line provides the number of tracking elements in this pass, the earth station ID, timing reference for the first element (GPS date/time) and the increment of subsequent entries in seconds. In the body, each line indicates the X angle, Y angle and the normalised Doppler frequency. .. 162
5.18 Screen photo of the tracking software user interface during a live pass, providing timing and spatial tracking data, received spectrum display and pass progress information .. 163
5.19 The variable slant path of a LEO satellite pass allows measurements during different weather conditions .. 165
5.20 Photo of sky conditions during a pass, indicating the approximate satellite trajectory and LOS point at 8° elevation .. 166
5.21 Example of a weather radar map for the Sydney region, including a reflectivity and rain rate scale [132] .. 167
5.22 Sydney weather radar sequence of an approaching thunderstorm band, recorded over 70 minutes in 10 minute intervals .. 169
5.23 Example of horizontal (polar) and vertical radar during a severe storm event in Sydney [135]. This example also highlights the ‘shading’ effect evident at the right storm cell. .. 170
5.24 Weather radar sequence before, during and after pass #12642 in 10 minute intervals [132]. The earth station is located at the pink triangle. Frame 3 illustrates how the satellite slant path can be matched to prevailing local precipitation. .. 171
5.25 24-hour weather data recorded in the vicinity of the earth station location during a rain pass [134] .. 173
5.26 Pluviometer locations in the Sydney metropolitan area. The graphic on the left shows monthly rainfall records, while the map on the right indicates daily cumulative rainfall [118]. .. 174
5.27 Measured Doppler shift and Doppler rate tracking performance during an overhead pass. The elevation curve is also shown for reference. 175
5.28 Comparison between the measured and the calculated Doppler shifts during a bent pipe mode pass .. 176
5.29 Percentages of successful and unsuccessful experiments, also indicating the origins of malfunctions .. 178
5.30 Percentage of prevailing weather conditions during beacon and bent pipe mode experiments with data collection .. 180

6.1 Block diagram of the developed Matlab™ data import program, also indicating the different timing references .. 182
6.2 Block diagram of the Matlab™ data processing program for free space path loss and squint angle compensation, plus plotting routines 183
6.3 Run time example of the propagation data analysis software, performing various import and processing tasks .. 184
6.4 Spectrum analyser beacon observation (L band IF), indicating the decreasing Doppler shift and the signal magnitude variations (23, 20 and 7 dB C/N) .. 185
6.5 Beacon reception in clear sky conditions and 55% ground humidity on a 64° maximum elevation pass .. 185
6.6 Beacon reception in clear sky conditions and 43% ground humidity on a 83° maximum elevation pass .. 186
6.7 Beacon reception in clear sky conditions down to 7° elevation, but with multipathing effects due to obstructions. Severe scintillation is evident at low elevation angles .. 187
6.8 High-elevation beacon mode pass recorded with a full cloud cover at AOS and overhead, and clear sky on the descending path .. 189
6.9 Beacon mode experiment during a 62° elevation pass with 4/8 scattered stratocumulus cloud cover .. 189
6.10 Beacon mode experiment (61° maximum elevation) with a complete 8/8 stratus cloud cover .. 190
6.11 Beacon mode rain pass with two separate rain cells .. 191
6.12 Beacon mode power affected by scattered rain cells and a stratiform rain band .. 192
6.13 Beacon mode pass under light rain conditions, also illustrating the significance of the squint angle correction .. 193
6.14 Illustration of bent pipe mode signal transmission and reception by the same earth station .. 195
6.15 The signal received in bent pipe mode is subject to downlink attenuation, as well as re-transmitted uplink fading .. 195
6.16 Spectrogram of the bent pipe mode pass, with the detected carrier signal perfectly in the centre (Doppler compensated) .. 197
LIST OF FIGURES

6.17 The bent pipe mode signal as viewed on the L band spectrum analyser . . . 198
6.18 Rain event recorded from the ACTS 20/27.5 GHz beacons at Vancouver in 1997 [137] 198
6.19 Attenuation events recorded by JPL in Blacksburg, VA, at 14° elevation from the OLYMPUS satellite in 1991 [33] 199
6.20 Rain event (bottom) recorded from the Olympus 12, 20 and 30 GHz beacon signals (top) in Blacksburg, VA, in 1991 at 14° elevation (relative to free space). The rain rate region of interest is indicated. [139] 200
6.21 Attenuation introduced by irregular cloud formations as a function of path length (left) and elevation (right) on 15 and 25 GHz [21] 201
6.22 One-minute standard deviation of the scintillation on 20 and 27.5 GHz, measured over the ACTS satellite [141] 202
6.23 Power spectral density of the ACTS Ka band beacon signals, observed in Oklahoma and Alaska [141] 203
6.24 Proposed link margin for Ka band polar LEO satellite, including gaseous absorption and free space path loss [136] 204

7.1 Investigation of the bent pipe mode problem: a look at the spectrogram of previous passes, revealing a spurious signal close to the bent pipe mode carrier ... 207
7.2 Ka band transmit power telemetry for a bent pipe mode pass without uplink signal (arbitrary units) 208
7.3 Detail view of the FedSat communications payload, 21.4 MHz IF, and possible causes of the fault ... 208
7.4 Ka band transmit power telemetry for a bent pipe mode pass without uplink signal and without BBP signal (arbitrary units) 210
7.5 Re-verification of proper bent pipe mode operation. Note the loss of lock when the transmitter was turned off 211
7.6 Gearbox damage after a high-velocity stop, causing the shearing of several pinion teeth ... 212
7.7 Feed horn deformation after a mechanical failure of one of the supporting structures due to gale-force winds 214
7.8 Damage to the reflector surface through small ‘bubbles’, possibly resulting from bird droppings 214
7.9 Map of drought-affected areas in Australia in 2003 and 2004, indicating serious drought, severe drought and lowest rainfall on record [142] 216
7.10 Intensity-Frequency-Duration chart for statistical rainfall rate re-occurrence predictions [143] 217

A.1 Detailed block diagram of the uplink RF circuits, including manufacturer part numbers and reference power levels .. 226

A.2 Detailed block diagram of the downlink RF circuits, including manufacturer part numbers .. 227
List of Tables

1.1 Frequency band designations and primary use in satellite communications . 2
2.1 History of space-to-earth propagation studies on GEO satellites 26
3.1 CRCSS Participants (as of 2003) ... 39
3.2 Selected mid-mission orbital parameters of FedSat (7 Jun 2004) 43
3.3 Summary of FedSat specifications ... 65
3.4 Summary of Ka band payload specifications 66
4.1 Downlink Carrier-to-noise ratio calculation 82
4.2 Selected Low Noise Block (LNB) specifications 95
4.3 Selected solid-state High Power Amplifier (HPA) specifications 95
4.4 Frequency uncertainty range resulting from Ka band oscillator drifts 99
4.5 Hardware and software configuration of the earth station PCs 101
4.6 Selected specifications of the DSP board, analog interface board and DDS . 112
4.7 Earth station survey results .. 124
4.8 Summary of selected earth station specifications 134
5.1 Sources contributing to the overall pointing error 142
5.2 Coefficients for the polynomial spacecraft receive and transmit antenna models 153
5.3 Example of the archive files generated by the tracking software after a successful pass ... 164
Nomenclature

Roman Symbols

- A: Attenuation
- a_E: Equatorial Earth Radius
- c: Speed of Light
- C/N: Carrier-to-Noise Ratio
- D: Antenna Reflector Diameter
- d: Distance
- dB: Decibel
- dBm: Decibels of Milliwatts
- dBZ: Decibels of Z
- e_E: Earth Eccentricity
- El: Elevation
- f: Frequency
- G: Gain
- GHz: Gigahertz
- h: Hour, Satellite height above Sea Level
- H_0: Earth Station Height above Sea Level
- H_E: Rain Height above Sea Level
- hPa: Hectopascal
NOMENCLATURE

\begin{itemize}
\item \textit{Hz} Hertz
\item \textit{K} Kelvin
\item \textit{k} Regression coefficient, Boltzmann’s Constant
\item \textit{kHz} Kilohertz
\item \textit{km} Kilometres
\item \textit{L} Loss, Attenuation
\item \textit{Lat} Latitude
\item \textit{Lon} Longitude
\item \textit{M} Link Margin
\item \textit{m} Metres
\item \textit{MHz} Megahertz
\item \textit{min} Minutes
\item \textit{P} Transmit Power
\item \textit{P_n} Polynomial Coefficient
\item \textit{R} Vector from the Centre of the Earth
\item \textit{R_{0.01}} Rainfall Rate for 0.01\% Probability
\item \textit{s} Seconds
\item \textit{SSP} Sub-Satellite Point
\item \textit{V} Volts
\item \textit{v} Velocity
\item \textit{W} Watts
\item \textit{X} X-axis (pedestal)
\item \textit{Y} Y-axis (pedestal)
\item \textit{Z} Reflectivity Unit (in \(\mu m^3\))
\end{itemize}
Greek Symbols

\(\alpha \)
Elevation, General Angle

\(\epsilon \)
Angular Error

\(\gamma_R \)
Specific Attenuation

\(\lambda \)
Wavelength

\(\varphi \)
Compensation Angle, Feed Offset Angle

\(\rho \)
Vector between Earth Station and Satellite, Water Vapour Density

\(\theta \)
Tracking Pedestal Angle, Squint Angle

Subscripts

\(d \)
Downlink

\(ES \)
Earth Station

\(H \)
Horizon

\(Lat \)
Latitude

\(Lon \)
Longitude

\(M \)
Motor

\(P \)
Position

\(Rx \)
Receive

\(S \)
Satellite

\(tot \)
Total, Overall

\(Tx \)
Transmit

\(u \)
Uplink

\(Z \)
Zenith

Other Symbols

\(^\circ \)
Degrees
NOMENCLATURE

Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>Alternating Current</td>
</tr>
<tr>
<td>ACS</td>
<td>Attitude Control System</td>
</tr>
<tr>
<td>ACTS</td>
<td>Advanced Communication Technologies Satellite</td>
</tr>
<tr>
<td>ADAM</td>
<td>Advanced Data and Messaging</td>
</tr>
<tr>
<td>ADC</td>
<td>Analog-to-Digital Converter</td>
</tr>
<tr>
<td>ADEOS</td>
<td>Advanced Earth Observation Satellite</td>
</tr>
<tr>
<td>AEDST</td>
<td>Australian Eastern Daylight Savings Time</td>
</tr>
<tr>
<td>AEST</td>
<td>Australian Eastern Standard Time</td>
</tr>
<tr>
<td>AMSL</td>
<td>Above Mean Sea Level</td>
</tr>
<tr>
<td>AOS</td>
<td>Acquisition of Signal</td>
</tr>
<tr>
<td>AWGN</td>
<td>Additive White Gaussian Noise</td>
</tr>
<tr>
<td>AWM</td>
<td>Average-Worst-Month</td>
</tr>
<tr>
<td>BBP</td>
<td>Baseband Processor</td>
</tr>
<tr>
<td>BOM</td>
<td>Bureau of Meteorology (Australia)</td>
</tr>
<tr>
<td>bps</td>
<td>bits per second</td>
</tr>
<tr>
<td>BTU</td>
<td>British Thermal Units</td>
</tr>
<tr>
<td>C band</td>
<td>4-8 GHz frequency band</td>
</tr>
<tr>
<td>CDF</td>
<td>Cumulative Density Function</td>
</tr>
<tr>
<td>CDMA</td>
<td>Code Division Multiple Access</td>
</tr>
<tr>
<td>COTS</td>
<td>Component off-the-shelf</td>
</tr>
<tr>
<td>CP</td>
<td>Communications Payload</td>
</tr>
<tr>
<td>CRC</td>
<td>Cooperative Research Centre</td>
</tr>
<tr>
<td>CRCSS</td>
<td>Cooperative Research Centre for Satellite Systems</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>CSIRO</td>
<td>Commonwealth Scientific and Industrial Research Organisation</td>
</tr>
<tr>
<td>DAC</td>
<td>Digital-to-Analog Converter</td>
</tr>
<tr>
<td>DC</td>
<td>Direct Current</td>
</tr>
<tr>
<td>DDS</td>
<td>Direct Digital Synthesizer</td>
</tr>
<tr>
<td>DHS</td>
<td>Data Handling System</td>
</tr>
<tr>
<td>DL</td>
<td>Downlink</td>
</tr>
<tr>
<td>DPLL</td>
<td>Digital Phase Locked Loop</td>
</tr>
<tr>
<td>DSP</td>
<td>Digital Signal Processor</td>
</tr>
<tr>
<td>FedSat</td>
<td>Federation Satellite</td>
</tr>
<tr>
<td>FPGA</td>
<td>Field-Programmable Gate Array</td>
</tr>
<tr>
<td>GEO</td>
<td>Geostationary Earth Orbit</td>
</tr>
<tr>
<td>GPS</td>
<td>Global Positioning System</td>
</tr>
<tr>
<td>GSM</td>
<td>Global System for Mobile Communications</td>
</tr>
<tr>
<td>HF</td>
<td>Frequency band below 0.1 GHz</td>
</tr>
<tr>
<td>HPA</td>
<td>High Power Amplifier</td>
</tr>
<tr>
<td>HPCE</td>
<td>High Performance Computing Experiment</td>
</tr>
<tr>
<td>IF</td>
<td>Intermediate Frequency</td>
</tr>
<tr>
<td>IJK</td>
<td>Inertial Coordinate System</td>
</tr>
<tr>
<td>IST</td>
<td>Integrated Systems Test</td>
</tr>
<tr>
<td>ITR</td>
<td>Institute for Telecommunications Research, Adelaide</td>
</tr>
<tr>
<td>ITU</td>
<td>International Telecommunications Union</td>
</tr>
<tr>
<td>JAXA</td>
<td>Japan Aerospace Exploration Agency</td>
</tr>
<tr>
<td>JPL</td>
<td>Jet Propulsion Laboratory, USA</td>
</tr>
<tr>
<td>K band</td>
<td>18-24 GHz frequency band</td>
</tr>
<tr>
<td>NOMENCLATURE</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td></td>
</tr>
<tr>
<td>Ka band</td>
<td>24-36 GHz frequency band</td>
</tr>
<tr>
<td>Ku band</td>
<td>12-18 GHz frequency band</td>
</tr>
<tr>
<td>L band</td>
<td>1-2 GHz frequency band</td>
</tr>
<tr>
<td>LCP</td>
<td>Left-Hand Circular Polarisation</td>
</tr>
<tr>
<td>LEO</td>
<td>Low-Earth Orbit</td>
</tr>
<tr>
<td>LNA</td>
<td>Low Noise Amplifier</td>
</tr>
<tr>
<td>LO</td>
<td>Local Oscillator</td>
</tr>
<tr>
<td>LOS</td>
<td>Loss of Signal</td>
</tr>
<tr>
<td>MEO</td>
<td>Medium-earth orbit</td>
</tr>
<tr>
<td>MMIC</td>
<td>Monolithic Microwave Integrated Circuit</td>
</tr>
<tr>
<td>MPA</td>
<td>Medium-Power Amplifier</td>
</tr>
<tr>
<td>N</td>
<td>Coaxial RF Connector (up to 11 GHz)</td>
</tr>
<tr>
<td>NASA</td>
<td>National Aeronautics and Space Administration</td>
</tr>
<tr>
<td>NASDA</td>
<td>National Space Development Agency</td>
</tr>
<tr>
<td>NCU</td>
<td>National Central University</td>
</tr>
<tr>
<td>NewMag</td>
<td>Name of the Magnetometer Experiment onboard FedSat</td>
</tr>
<tr>
<td>NTU</td>
<td>Nanyang Technological University</td>
</tr>
<tr>
<td>OSCAR</td>
<td>Orbital Satellite Carrying Amateur Radio</td>
</tr>
<tr>
<td>PCI</td>
<td>Peripheral Component Interconnect</td>
</tr>
<tr>
<td>PCS</td>
<td>Power Conditioning System</td>
</tr>
<tr>
<td>PDF</td>
<td>Probability Density Function</td>
</tr>
<tr>
<td>PID</td>
<td>Proportional-Integral-Derivative</td>
</tr>
<tr>
<td>PLL</td>
<td>Phase Locked Loop</td>
</tr>
<tr>
<td>PWM</td>
<td>Pulse-Width Modulation</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>Q band</td>
<td>36-46 GHz frequency band</td>
</tr>
<tr>
<td>QAM</td>
<td>Quadrature Amplitude Modulation</td>
</tr>
<tr>
<td>QPSK</td>
<td>Quadrature Phase Shift Keying</td>
</tr>
<tr>
<td>QUT</td>
<td>Queensland University of Technology</td>
</tr>
<tr>
<td>RCP</td>
<td>Right-Hand Circular Polarisation</td>
</tr>
<tr>
<td>RF</td>
<td>Radio Frequency</td>
</tr>
<tr>
<td>ROCSAT</td>
<td>Republic Of China Satellite</td>
</tr>
<tr>
<td>rpm</td>
<td>Revolutions per minute</td>
</tr>
<tr>
<td>S band</td>
<td>2-4 GHz frequency band</td>
</tr>
<tr>
<td>SEZ</td>
<td>Topocentric Horizon Coordinate System</td>
</tr>
<tr>
<td>SGP4</td>
<td>Simplified General Perturbations Satellite Orbit Model 4</td>
</tr>
<tr>
<td>SIL</td>
<td>Space Innovations Ltd.</td>
</tr>
<tr>
<td>SNR</td>
<td>Signal-to-Noise Ratio</td>
</tr>
<tr>
<td>STRAP</td>
<td>Satellite Transmission Rain Attenuation Project</td>
</tr>
<tr>
<td>TDM</td>
<td>Time-division Multiplex</td>
</tr>
<tr>
<td>TDMA</td>
<td>Time-division Multiple Access</td>
</tr>
<tr>
<td>TIP</td>
<td>Telecommunications and Industrial Physics</td>
</tr>
<tr>
<td>TLE</td>
<td>Two-Line Elements</td>
</tr>
<tr>
<td>TT&C</td>
<td>Telemetry, Tracking and Control</td>
</tr>
<tr>
<td>UHF</td>
<td>0.3-1 GHz frequency band</td>
</tr>
<tr>
<td>UL</td>
<td>Uplink</td>
</tr>
<tr>
<td>UTC</td>
<td>Universal Time Coordinated</td>
</tr>
<tr>
<td>V band</td>
<td>46-56 GHz frequency band</td>
</tr>
<tr>
<td>VHF</td>
<td>0.1-0.3 GHz frequency band</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>WR28</td>
<td>Waveguide Size (26.5-40 GHz)</td>
</tr>
<tr>
<td>WR42</td>
<td>Waveguide Size (18-26.5 GHz)</td>
</tr>
<tr>
<td>WRESAT</td>
<td>Weapons Research Establishment Satellite</td>
</tr>
<tr>
<td>X band</td>
<td>8-12 GHz frequency band</td>
</tr>
</tbody>
</table>
Abstract

The emergence of the 20/30 GHz Ka band in satellite communications in recent decades has seen systems designers faced with the problem of severe signal attenuation though atmospheric effects, especially rain. Previous experimental missions, such as ACTS and OLYMPUS, have succeeded in collecting large amounts of propagation data, which has led to the development of various semi-empirical models for link design. However, all these experiments were carried out over geostationary satellites, and with a recent tendency towards constellations of low-earth orbit satellites for true global coverage and increased system capacity for real-time services, these models are in need of adaptation for variable elevation angles and the effects of rapid satellite movement.

The work contained in this largely experimental thesis presents the Australian ‘FedSat’ LEO microsatellite, carrying a Ka band beacon and a bent-pipe mode transponder, as an ideal research platform for such investigations. The in-house design, deployment and operation of a very low-cost, fast-tracking earth station is examined in-depth, and particular attention is paid to systems design aspects involving numerous hardware and software technologies, which interact with each other in a highly complex manner, for example Doppler frequency tracking, pointing accuracy control and precise signal power measurements. Prior to and during the operational phase, several crucial design improvements are discussed, implemented and verified. Successful and reliable tracking by using pointing coordinates derived from two-line elements, as opposed to GPS data, is experimentally proven.

The design of the earth station prototype is validated by the collection of Ka band propagation data in both beacon and bent pipe modes. After post-processing of the data, attenuation results for various weather conditions and down to elevation angles well below 10° are illustrated and interpreted in conjunction with the prevailing weather conditions. While a comparison with the measurements from geostationary satellites widely confirms the validity of the
results, other interesting phenomena are unveiled that require further investigation. In particular, the extent of low-angle scintillation appears to be wider band than previously reported in published literature, which is a potentially important finding.

Finally, the experience gathered during the late-stage design and the operation of the earth station gives rise to several recommendations for further design improvements and operational strategies, which may be helpful for future research groups in this field wishing to conduct similar LEO Ka band propagation experiments on a low budget.