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The futuristic vision of industrial robotic systems that operate in complex, unstructured
and diverse environments is beginning to become a reality due to the advances in comput-
ing, sensing and control. Automatically acquiring the structure and the properties of an
environment in a timely manner is one of the key tasks that need to be accomplished in
many field robotics applications. This thesis presents a novel and efficient approach to the
exploration of three-dimensional (3D) environments using an industrial robot manipulator.
The approach presented combines the objectives of 3D map building and surface material-
type identification. The manipulator is manoeuvred through a sequence of viewpoints that
are selected to maximise the quality of the map generated, minimise the time taken for the
exploration, as well as minimise the uncertainty of the surface material type estimation,

all whilst avoiding potential collisions between the manipulator and the environment.

The thesis first focuses on acquiring the geometry of surfaces in the environment while
exploring the industrial robot manipulator’s collision-free configuration space. Ellipsoidal
virtual bounding fields are positioned around the manipulator’s links so that distance
queries can be performed and collisions with obstacles in the environment or unexplored
space are avoided. Information theory is used to measure the information remaining on
the geometric map and the manipulator’s configuration space. A sampling strategy is used
to select candidate viewpoints which are predicted to reduce the information remaining
to measure. Each viewpoint enables the manipulator to position and orientate a sensor
so that environment data can be gathered. The candidate viewpoint solutions can then
be ranked based upon the exploration objectives. The collected sensor data is fused into
a map. The map is then segmented into groups of Scale-Like Discs (SLDs), which are

generated via principal component analysis.

Once the surface geometry becomes available, a strategy is required to maximise the ac-
curacy of the surface material-type identification. Surface material-type identification is
made possible through intensity measurements, which indicate the reflectivity of the sur-
face when illuminated by an infra-red laser. Thus, identification is significantly influenced
by the relative geometry between the sensor and the surface to be identified. Information
theory is used again to determine surfaces which have not had their surface material-
type identified. Appropriate viewpoints facilitating accurate identification are selected by

solving an optimisation problem using the Levenberg-Marquardt algorithm.



iv

This two-stage exploration approach is shown to successfully determine viewpoints en-
abling an accurate environmental map to be generated. The proposed algorithms and
approaches are integrated into the system, Autonomous eXploration to Build A Map
(AXBAM). Extensive experimental studies have been conducted on a complex steel bridge
structure using a Denso industrial robot that has been equipped with a laser range finding

sensor. These experimental studies demonstrate the efficacy of the AXBAM system.
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UTS University of Technology, Sydney
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Nomenclature

Cwi

dist(

QL

)

General Formatting Style

A scalar valued function

A vector valued function

Transpose

Absolute value

Vector length and normalised vector

Covariance matrix

A diagonalised matrix

Entropy of a random variable Y

Independent variables signifying the last index of a set or to refer to
a count

Probability of discrete state x;

Conditional probability of z, given evidence z

Piecewise division i.e. ith vector element divided by ith element of

another vector

Specific Symbol Usage

The ith geometric region of interest

Weighting co-efficient of the ith region of interest

The minimum algebraic distance to all unsafe points in an environ-
ment for all of a manipulator’s encompassing ellipsoids, as a function
of the manipulator pose, Cj

C-space node set interfered with by voxel j
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Nomenclature

xviii

o

Pa
PUX =Jz,)

PUOM =7z,,)

ith Stage One objective function

ith Stage Two cost function, optimal value, g; =0

Sum of squared cost functions

Geometric information remaining (i.e. uncertainty) of state of geo-
metric environment X

C-space information remaining in all voxels (in Euclidean space) be-
cause of uncertainty in C-space C

Material-type information remaining about state of voxels containing
surfaces in an environment M

Voxel’s index

Sensing viewpoints iterator during exploration

Likelihood of traversing a C-space node, ¢;, (i.e. a manipulator pose)
during a random trajectory

Number of points in a point cloud or vertices in a mesh map
Feasible poses (i.e. nodes) sampled from C-space solution space Q
Count of C-space nodes interfered with by voxel j

Number of surface voxels requiring material-type identification
Number of map segments the environment is divided up into
Number of small SLDs

Number of surface material-type states

Number of unknown voxels in an environment
Number of voxels in an environment

A vector position variable (point or vertex) [x,y,z]T

A vector (or set) of 3D points or vertices

Point where end-effector tool (sensor or maintenance) is directed
Probability that the jth voxel’s occupancy state variable /X, is in a
possible occupancy state

Probability of jth voxel state variable, M being a possible material-

type



Nomenclature

xix

P(z.)

¢ma:ﬂ

Pmin

{dmin,dmax}
{p’ia ﬁi: M}

Probability of jth geometric voxel interfering with a path through
C-space while taking into consideration the relative likelihood of
traversing each C-space node

Individual manipulator joint for 6DOF case i € {1,...6}

Industrial manipulator’s joint vector, [qi ... gs], also a sensing view-
point

Viewpoint solution space for manipulator pose joint vectors

Matrix of distance range values from viewpoint, when tilting scanner
through angle, o, where elements are scaler range values 7; ;

ith SLD

Homogenous end-effector robotic transformation matrix at pose @
in base coordinate frame

Homogenous transformation matrix from link ¢« — 1 to ¢ based on the
joint, g;

Homogenous transformation matrix between the end-effector and
sensor. Combined with °T’ f(Q) to describe viewpoint transforms

Approximate volume that the robot currently occupies at pose Q

New volume of geometric space sensed from the latest viewpoint

Occupancy states of jth voxel (i.e. freespace, unknown, occupied)
C-space interference states for the jth geometric voxel
Material-type states of the jth voxel (estimated as &, )

Tilting the planar laser sensor through « results in a 3D FOV
Sensing angular constraint for LRC to identify material-type

Sensing accuracy constraint for LRC
Combinations of Variables

Sensing range constraints where d must be for the LRC

ith SLD centre ‘home point’, ]52-, normal vector 77; and radius p



Nomenclature

XX

Pc,i

deis be,ia Ce,i

{Qi,ma;t s Qi,min}

{vi, Ai}

{591']‘7 5dij,

Opij, 0qis}

Manipulator’s collision avoidance ith ellipsoid centre vector, p.; =
Xesis Yeyir Ze]

The ellipsoid parameters for equatorial radii [ac i, be ;] and polar ra-
dius, c.;, that encase the ¢th manipulator joint for collision avoidance
Set of maximum and minimum physical angular limits on each joint.
qt,maz Telated to the tilting joint for 3D sensing

ith eigenvector and corresponding eigenvalue of sub-point cloud

For surfaces s; and s;: the angular difference, distance between the

centres and the planes, pose joint difference



Glossary of Terms

Blasting

Environment

Freespace

Grid

Iteration

Manipulator

Map

Node
Obstacle

Occlusion
Obstruction

Platform

Grit blasting maintenance operations on certain surfaces.

A complex 3D unstructured place in which a manipulator is posi-
tioned. Assumed to have some structural characteristics such as
planar surfaces.

Areas in the environmental model or map that are known to be
free of objects, obstacles and surfaces.

A type of representation based on OGs used to divide a space into
discrete grid cells. For 3D geometry this becomes voxels, and for
C-space this becomes nodes.

A single step or viewpoint which is determined by optimisation,
or in the case of Levenberg-Marquardt optimisation, one iteration
of the least squared optimiser.

In this thesis, this is a six-degree of freedom Denso industrial
robotic manipulator, with either a laser range scanner or a grit-
blasting tool mounted on the end-effector.

Model of the geometry and material-type of surfaces in the sur-
rounding environment.

Manipulator pose in 6D C-space.

An object within the manipulator’s workspace which a manipu-
lator can collide with.

Not visible from a viewpoint due to an obstruction.

A surface within sensing range which causes an occlusion.

The movable platform on which the robot manipulator is fixed.
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Glossary of Terms

xxii

Planning

Scaffolding

Sensor

Scale-Like Disc

Solution Space

Structural

Surface

Surface Normal

Material-type

Unstructured

Viewpoint

Voxel

The act of generating a path (and motion) course which the robot
can then follow to get between two poses.

Temporary structure built under and around the bridge to allow
maintenance by humans or robots.

Generally refers to a laser range finder which returns range values
to objects in an environment.

Small disc-shaped targets arranged in a scale-like overlapping pat-
tern to form a representation of surfaces.

All possible solutions to an optimisation problem. In this case, it
is within the physical bounds of the industrial robot manipulator’s
movements

Mainly consisting of planar surfaces in a man-made fixture such
as a bridge. This type of environment can be unstructured with
regards to a robot if it is not set up specifically for the robot.
This is the face of an object in the environment. The geometric
and material-type properties must be determined.

A 3D vector perpendicular to a surface.

The type of material on an object’s surface. Includes painted
steel, rusted steel, timber, plastic and concrete

A Real-world environment that cannot be set up to facilitate ease
of actuator movements. There are no limitations on the geometry
of the environment, although it is generally assumed to consist of
relatively smooth or planar surfaces.

A position in space and an orientation of a sensor that a cor-
responding manipulator pose can achieve, can be expressed by
the homogeneous transformation matrix, OTS(Q), or manipulator
joint vector, @

Volumetric Pixel which represents a 3D cube-like volume in Eu-

clidean space.
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