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LX Basic Notn.tion 

Basic Notation  

xT 

x = (Xl 
1'" ,Xd)T 

I:r; I 
A = [ai,j]k,d

'l,]=l 

N={1,2",,} 

IR = (-00,00) 

1R+ = [0, (0) 

IRd 

(a, b) 

[a, b] 

o 

o 
~ 

n! = 1· 2"" , n 

( 
l') t,'I 
I = l!(i-l)! 

[a] 

(mod c) 

(a)+ = max(a, 0) 

transpose of a vector or matrix X;  

column vector X E IRd with ith component Xi;  

absolute value of X or Euclidean norm; 


(k x d)-matrix /-1 \vith ijth component ai,j;  

set of natural numbers; 


set of real numbers; 


set of nonnegative real numbers; 


d-dimensional Euclidean space; 


open interval a < x < b in IR; 


closed inter,ral a ~ x ~ b in 1R; 


sample space; 


empty set; 


time step size of a time discretization; 


factorial of n;  

combinatorial coefficient; 


largest integer not exceeding a E IR; 


modulo c; 


maximum of a and 0; 




- 

x 

In(a) 

i.i.d. 

a.s. 

1" 
au 
ax' 

Ck(~d, ~) 

C~(lRd, ~) 

NC) 

A 

A 

E(X) 

E(X IA) 

P(A) 
B(U) 
SDE 

Basic Notatioll 

natural logarithm of a;  

independent identically distributed; 


almost surely; 


function f from Q1 into Q2;  

first derivative of f : ~ -'> ~; 


second derivative of f : ~ -'> ~; 


WI partial derivative of 1L : ~d -'> ~; 


kth order partia.l derivative of 1L with respect to Xi:  

set of k times continuously differentiable functions; 


set of k times continuously differentiable fUllctions 


which, together \vith their partial derivatives of order 


up to k, have polynomial growth; 


indicator function for event A to be true; 


Gaussian distribution function; 


collection of events, sigma-algebra; 


filtration; 


expectation of X; 


conditional expectation of X under A;  

probability of A;  

smallest sigma-algebra on U;  

stochastic differential equation; 


Letters such as K, K, C, C, ... represent finite positive real con­

stants that can vary from line to line. All these constants are 

assumed to be independent of the time step size .6.. The remain­

ing notation is either standard or will be introduced when used. 
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Abstract  

This thesis concerns the design and analysis of new discrete time approximations 

for stochastic differential equations (SDEs) driven by Wiener processes and Pois­

son random measures. In financial modelling, SDEs with jumps are often used 

to describe the dynamics of state variables such as credit ratings, stock indices, 

interest rates, exchange rates and electricity prices. The jump component can cap­

ture event-driven uncertainties, such as corporate defaults, operational failures or 

central bank announcements. The thesis proposes new, efficient, and numerically 

stable strong and weak approximations. Strong approximations provide efficient 

tools for problems such as filtering, scenario analysis and hedge simulation, while 

weak approximations are useful for handling problems such as derivative pricing, 

the evaluation of moments, and the computation of risk measures and expected 

utilities. The discrete time approximations proposed are divided into regular and 

jump-adapted schemes. Regular schemes employ time discretizations that do not 

include the jump times of the Poisson measure. Jump-adapted time discretizations, 

on the other hand, include these jump times. 

The first part of the thesis introduces stochastic expansions for jump diffusions 

and proves new, powerful lemmas providing moment estimates of multiple sto­

chastic integrals. The second part presents strong approximations with a new 

strong convergence theorem for higher order general approximations. Innovative 

strong derivative-free and predictor-corrector schemes are derived. Furthermore, 

the strong convergence of higher order schemes for pure jump SDEs is established 

under conditions weaker than those required for jump diffusions. The final part 

of the thesis presents a weak convergence theorem for jump-adapted higher or­

der general approximations. These approximations include new derivative-free, 

predictor-corrector, and simplified schemes. Finally, highly efficient implementa­

tions of simplified weak schemes based on random bit generators and hardware 

accelerators are developed and tested. 
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