Numerical Solution of Stochastic Differential Equations with Jumps in Finance

A Thesis Submitted for the Degree of Doctor of Philosophy

by

Nicola Bruti-Liberati B.Sc.(Bocconi University, Milan) M.A. (Columbia University, New York) Nicola.BrutiLiberati@student.uts.edu.au

in

School of Finance and Economics University of Technology, Sydney PO Box 123 Broadway NSW 2007, Australia

July 31, 2007

Certificate

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirement for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

> Signed Production Note: Signature removed prior to publication.

Date 3/8/2007

Acknowledgements

I would like to thank my supervisor, Professor Eckhard Platen, for his guidance throughout my PhD studies. I am very grateful to him for sharing his deep knowledge in stochastic numerical methods and finance, for teaching me the principles of research and academic status, and for giving me the opportunity of several academic visits abroad. I would also like to thank my co-supervisor, Associate Professor Erik Schlögl, for his additional supervision.

I have also benefited from discussions with Giovanni Barone-Adesi, Lorenzo Casavecchia, Carl Chiarella, Ernst Eberlein, Paul Embrechts, Damir Filipovic, David Heath, Christina Nikitopoulos-Sklibosios, Massimo Piccardi, Andrea Roncoroni and Wolfgang Runggaldier. A special thank goes to Hardy Hulley, who has given me many useful advices on several technical aspects of this thesis.

I would like to thank Sandro Salsa and Emilio Barucci for their hospitality during several visits at Politecnico di Milano.

The financial assistance received with the scholarships of the Quantitative Finance Research Centre and of Bocconi University is greatly appreciated. Additionally, I acknowledge the financial support that I received from the School of Finance and Economics, from the Financial Integrity Research Network, from the Faculty of Business and from the Vice-Chancellor to attend various conferences.

Finally, I would like to thank my family for their continual support and visits from another continent, and Ellie for being always supportive and for her love.

Contents

Ba	Basic Notation ix										
Abstract xi											
1	Intr	oduction	1								
	1.1	Brief Survey of Results	1								
	1.2	Motivation	3								
	1.3	Literature Review	7								
		1.3.1 Strong Approximations	7								
		1.3.2 Weak Approximations	9								
2	Sto	chastic Differential Equations with Jumps	11								
	2.1	Introduction	11								
	2.2	Existence and Uniqueness of Strong Solutions	15								
3	Sto	chastic Expansions with Jumps	17								
	3.1	Introduction	17								
	3.2	Multiple Stochastic Integrals	18								
		3.2.1 Multi-Indices	18								
		3.2.2 Multiple Integrals	19								
	3.3	Coefficient Functions	24								

CONTENTS

	3.4	Hierarchical and Remainder Sets	27
	3.5	Wagner-Platen Expansions	28
	3.6	Moments of Multiple Stochastic Integrals	30
	3.7	Weak Truncated Expansions	51
4	D		
4	кеg	gular Strong Taylor Approximations	55
	4.1	Introduction	55
	4.2	Euler Scheme	58
	4.3	Order 1.0 Taylor Scheme	60
	4.4	Commutativity Conditions	69
	4.5	Convergence Results	74
	4.6	Lemma on Multiple Itô Integrals	77
	4.7	Proof of Theorem 4.5.1	87
-	-		~ ~
5	Reg	gular Strong Itô Approximations	95
5	Reg 5.1	gular Strong Itô Approximations	95 95
5	0		
5	5.1	Introduction	95
5	5.1 5.2	Introduction	95 96 103
5	5.1 5.2	Introduction Introduction Derivative-Free Order 1.0 Scheme Drift-Implicit Schemes	95 96 103 104
5	5.1 5.2	Introduction Introduction Derivative-Free Order 1.0 Scheme Derivative-Free Order 1.0 Scheme Drift-Implicit Schemes Scheme 5.3.1 Drift-Implicit Euler Scheme 5.3.2 Drift-Implicit Order 1.0 Scheme	95 96 103 104
5	5.1 5.2 5.3	Introduction Introduction Derivative-Free Order 1.0 Scheme Introduction Drift-Implicit Schemes Introduction 5.3.1 Drift-Implicit Euler Scheme 5.3.2 Drift-Implicit Order 1.0 Scheme Predictor-Corrector Schemes Introduction	95 96 103 104 105
5	5.1 5.2 5.3	Introduction Introduction Derivative-Free Order 1.0 Scheme Introduction Drift-Implicit Schemes Introduction 5.3.1 Drift-Implicit Euler Scheme 5.3.2 Drift-Implicit Order 1.0 Scheme Predictor-Corrector Schemes Introduction	95 96 103 104 105 109
5	5.1 5.2 5.3	Introduction	95 96 103 104 105 109
5	5.15.25.35.4	Introduction	95 96 103 104 105 109 110 1110

		5.5.3	Predictor-Corrector Schemes	125				
6	Jun	mp-Adapted Strong Approximations						
	6.1	Introd	$uction \ldots \ldots$	131				
	6.2	Taylor	Schemes	134				
		6.2.1	Euler Scheme	134				
		6.2.2	Order 1.0 Taylor Scheme	136				
		6.2.3	Order 1.5 Taylor Scheme	137				
	6.3	Deriva	tive-Free Schemes	140				
		6.3.1	Derivative-Free Order 1.0 Scheme	140				
		6.3.2	Derivative-Free Order 1.5 Scheme	141				
	6.4	Drift-I	mplicit Schemes	142				
		6.4.1	Drift-Implicit Euler Scheme	142				
		6.4.2	Drift-Implicit Order 1.0 Scheme	143				
		6.4.3	Drift-Implicit Order 1.5 Scheme	143				
	6.5	Predic	tor-Corrector Schemes	144				
		6.5.1	Predictor-Corrector Euler Scheme	144				
		6.5.2	Predictor-Corrector Order 1.0 Scheme	145				
	6.6	Exact	Schemes	147				
	6.7	Conve	rgence Results	148				
7	Nur	nerical	Results on Strong Schemes	155				
	7.1	Introd	uction	155				
	7.2	The C	ase of Low Intensities	156				
	7.3	The C	ase of High Intensities	158				
8	Stro	ong Scł	nemes for Pure Jump Processes	163				

CONTENTS

	8.1	Introduction	163
	8.2	Pure Jump Model	164
	8.3	Jump-Adapted Schemes	165
	8.4	Euler Scheme	166
	8.5	Wagner-Platen Expansion	167
	8.6	Order 1.0 Strong Taylor Scheme	171
	8.7	Order 1.5 and 2.0 Strong Taylor Schemes	172
	8.8	Convergence Results	174
9	Reg	ular Weak Taylor Approximations	181
	9.1	Introduction	181
	9.2	Euler Scheme	182
	9.3	Order 2.0 Taylor Scheme	182
	9.4	Commutativity Conditions	189
	9.5	Convergence Results	191
10	Jum	p-Adapted Weak Approximations	199
	10.1	Introduction	199
	10.2	Taylor Schemes	200
		10.2.1 Euler Scheme	200
		10.2.2 Order 2.0 Taylor Scheme	201
		10.2.3 Order 3.0 Taylor Scheme	204
	10.3	Derivative-Free Schemes	206
	10.4	Predictor-Corrector Schemes	208
		10.4.1 Order 1.0 Predictor-Corrector Scheme	209
		10.4.2 Order 2.0 Predictor-Corrector Scheme	210

10.5 Exact Schemes
10.6 Convergence of Jump-Adapted Weak Taylor Approximations 213
10.7 Convergence of Jump-Adapted Weak Approximations
10.7.1 Simplified and Predictor-Corrector Schemes $\ldots \ldots \ldots 227$
11 Numerical Results on Weak Schemes 231
11.1 Introduction \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 231
11.2 The Case of a Smooth Payoff
11.3 The Case of a Non-Smooth Payoff
12 Efficiency of Implementation 243
12 Introduction 243 12.1 Introduction 243
12.2 Simplified Weak Schemes
12.3 Multi-Point Random Variables and Random Bit Generators 247
12.4 Software Implementation
12.4.1 Random Bit Generators in C++ $\ldots \ldots \ldots \ldots 249$
12.4.2 Experimental Results
12.5 Hardware Accelerators
12.5.1 System Architecture
12.5.2 FPGA Implementation
12.5.3 Experimental Results
13 Conclusions and Further Directions of Research 277
13.1 Conclusions
13.2 Further Directions of Research

A Appendix: Inequalities

 $\mathbf{281}$

vii

CONTENTS

A.1	Finite Inequalities	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•		281
A.2	Integral Inequalities			•				•					•	•									•	281
A.3	Martingale Inequalities													•		•								283

Basic Notation

$x^{ op}$	transpose of a vector or matrix x ;
$x = (x^1, \dots, x^d)^ op$	column vector $x \in \mathbb{R}^d$ with <i>i</i> th component x^i ;
x	absolute value of x or Euclidean norm;
$A = [a^{i,j}]_{i,j=1}^{k,d}$	$(k \times d)$ -matrix A with ij th component $a^{i,j}$;
$\mathbb{N} = \{1, 2, \ldots\}$	set of natural numbers;
$\mathbb{R}=(-\infty,\infty)$	set of real numbers;
$\mathbb{R}^+ = [0,\infty)$	set of nonnegative real numbers;
\mathbb{R}^{d}	<i>d</i> -dimensional Euclidean space;
(a,b)	open interval $a < x < b$ in \mathbb{R} ;
[a,b]	closed interval $a \leq x \leq b$ in \mathbb{R} ;
Ω	sample space;
Ø	empty set;
Δ	time step size of a time discretization;
$n! = 1 \cdot 2 \cdot \ldots \cdot n$	factorial of n ;
$\binom{i}{l} = \frac{i!}{l!(i-l)!}$	combinatorial coefficient;
[a]	largest integer not exceeding $a \in \mathbb{R}$;
$(\mathrm{mod}c)$	modulo c ;
$(a)^+ = \max(a, 0)$	maximum of a and 0;

$\ln(a)$	natural logarithm of a ;
i.i.d.	independent identically distributed;
a.s.	almost surely;
$f: Q_1 \to Q_2$	function f from Q_1 into Q_2 ;
f'	first derivative of $f : \mathbb{R} \to \mathbb{R};$
f''	second derivative of $f : \mathbb{R} \to \mathbb{R};$
$rac{\partial u}{\partial x^i}$	<i>i</i> th partial derivative of $u : \mathbb{R}^d \to \mathbb{R}$;
$\partial_{x^i}^k u ext{ or } \left(rac{\partial}{\partial x^i} ight)^k u$	k th order partial derivative of u with respect to x^i ;
$\mathcal{C}^k(\mathbb{R}^d,\mathbb{R})$	set of k times continuously differentiable functions;
$\mathcal{C}^k_P(\mathbb{R}^d,\mathbb{R})$ 1 $_A$	set of k times continuously differentiable functions which, together with their partial derivatives of order up to k , have polynomial growth; indicator function for event A to be true;
$\mathcal{N}(\cdot)$	Gaussian distribution function;
\mathcal{A}	collection of events, sigma-algebra;
$\underline{\mathcal{A}}$	filtration;
E(X)	expectation of X ;
$E(X \mid \mathcal{A})$	conditional expectation of X under \mathcal{A} ;
P(A)	probability of A ;
$\mathcal{B}(U)$	smallest sigma-algebra on U ;
SDE	stochastic differential equation;

Letters such as $K, \tilde{K}, C, \tilde{C}, \ldots$ represent finite positive real constants that can vary from line to line. All these constants are assumed to be independent of the time step size Δ . The remaining notation is either standard or will be introduced when used.

Abstract

This thesis concerns the design and analysis of new discrete time approximations for stochastic differential equations (SDEs) driven by Wiener processes and Poisson random measures. In financial modelling, SDEs with jumps are often used to describe the dynamics of state variables such as credit ratings, stock indices, interest rates, exchange rates and electricity prices. The jump component can capture event-driven uncertainties, such as corporate defaults, operational failures or central bank announcements. The thesis proposes new, efficient, and numerically stable strong and weak approximations. Strong approximations provide efficient tools for problems such as filtering, scenario analysis and hedge simulation, while weak approximations are useful for handling problems such as derivative pricing, the evaluation of moments, and the computation of risk measures and expected utilities. The discrete time approximations proposed are divided into regular and jump-adapted schemes. Regular schemes employ time discretizations that do not include the jump times of the Poisson measure. Jump-adapted time discretizations, on the other hand, include these jump times.

The first part of the thesis introduces stochastic expansions for jump diffusions and proves new, powerful lemmas providing moment estimates of multiple stochastic integrals. The second part presents strong approximations with a new strong convergence theorem for higher order general approximations. Innovative strong derivative-free and predictor-corrector schemes are derived. Furthermore, the strong convergence of higher order schemes for pure jump SDEs is established under conditions weaker than those required for jump diffusions. The final part of the thesis presents a weak convergence theorem for jump-adapted higher order general approximations. These approximations include new derivative-free, predictor-corrector, and simplified schemes. Finally, highly efficient implementations of simplified weak schemes based on random bit generators and hardware accelerators are developed and tested.