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LX Basic Notn.tion 

Basic Notation  

xT 

x = (Xl 
1'" ,Xd)T 

I:r; I 
A = [ai,j]k,d

'l,]=l 

N={1,2",,} 

IR = (-00,00) 

1R+ = [0, (0) 

IRd 

(a, b) 

[a, b] 

o 
o 
~ 

n! = 1· 2"" , n 

( 
l') t,'I 
I = l!(i-l)! 

[a] 

(mod c) 

(a)+ = max(a, 0) 

transpose of a vector or matrix X;  

column vector X E IRd with ith component Xi;  

absolute value of X or Euclidean norm;  

(k x d)-matrix /-1 \vith ijth component ai,j;  

set of natural numbers;  

set of real numbers;  

set of nonnegative real numbers;  

d-dimensional Euclidean space;  

open interval a < x < b in IR;  

closed inter,ral a ~ x ~ b in 1R;  

sample space;  

empty set;  

time step size of a time discretization;  

factorial of n;  

combinatorial coefficient;  

largest integer not exceeding a E IR;  

modulo c;  

maximum of a and 0;  
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In(a) 

i.i.d. 

a.s. 

1" 
au 
ax' 

Ck(~d, ~) 

C~(lRd, ~) 

NC) 

A 

A 

E(X) 

E(X IA) 

P(A) 
B(U) 
SDE 

Basic Notatioll 

natural logarithm of a;  

independent identically distributed;  

almost surely;  

function f from Q1 into Q2;  

first derivative of f : ~ -'> ~;  

second derivative of f : ~ -'> ~;  

WI partial derivative of 1L : ~d -'> ~;  

kth order partia.l derivative of 1L with respect to Xi:  

set of k times continuously differentiable functions;  

set of k times continuously differentiable fUllctions  
which, together \vith their partial derivatives of order  
up to k, have polynomial growth;  

indicator function for event A to be true;  

Gaussian distribution function;  

collection of events, sigma-algebra;  

filtration;  

expectation of X;  

conditional expectation of X under A;  

probability of A;  

smallest sigma-algebra on U;  

stochastic differential equation;  

Letters such as K, K, C, C, ... represent finite positive real con-
stants that can vary from line to line. All these constants are 
assumed to be independent of the time step size .6.. The remain-
ing notation is either standard or will be introduced when used. 



Abstract Xl 

Abstract  

This thesis concerns the design and analysis of new discrete time approximations 
for stochastic differential equations (SDEs) driven by Wiener processes and Pois-
son random measures. In financial modelling, SDEs with jumps are often used 
to describe the dynamics of state variables such as credit ratings, stock indices, 
interest rates, exchange rates and electricity prices. The jump component can cap-
ture event-driven uncertainties, such as corporate defaults, operational failures or 
central bank announcements. The thesis proposes new, efficient, and numerically 
stable strong and weak approximations. Strong approximations provide efficient 
tools for problems such as filtering, scenario analysis and hedge simulation, while 
weak approximations are useful for handling problems such as derivative pricing, 
the evaluation of moments, and the computation of risk measures and expected 
utilities. The discrete time approximations proposed are divided into regular and 
jump-adapted schemes. Regular schemes employ time discretizations that do not 
include the jump times of the Poisson measure. Jump-adapted time discretizations, 
on the other hand, include these jump times. 

The first part of the thesis introduces stochastic expansions for jump diffusions 
and proves new, powerful lemmas providing moment estimates of multiple sto-
chastic integrals. The second part presents strong approximations with a new 
strong convergence theorem for higher order general approximations. Innovative 
strong derivative-free and predictor-corrector schemes are derived. Furthermore, 
the strong convergence of higher order schemes for pure jump SDEs is established 
under conditions weaker than those required for jump diffusions. The final part 
of the thesis presents a weak convergence theorem for jump-adapted higher or-
der general approximations. These approximations include new derivative-free, 
predictor-corrector, and simplified schemes. Finally, highly efficient implementa-
tions of simplified weak schemes based on random bit generators and hardware 
accelerators are developed and tested. 



Chapter 1 

Introduction 

1.1 Brief Survey of Results 

Before we discuss the motivation of this research and provide an overview of the 
existing literature, we give in this section a brief survey of the results presented in 
this thesis. The topic of this thesis is the numerical solution of stochastic differ-
ential equations (SDEs) with jumps. The thesis is divided into three parts. The 
first part, covering Chapters 2 and 3, discusses the class of SDEs with jumps and 
introduces the Wagner-Platen expansion along with some new results on estimates 
of multiple stochastic integrals. The second part, comprising Chapters 4, 5, 6, 7 
and 8, considers strong approximations of jump-diffusion and pure jump SDEs. 
Finally, the third part, which is composed of Chapters 9, 10, 11 and 12, introduces 
weak approximations and discusses efficient implementations of weak schemes. 

Some of the new results of this thesis have already appeared or have been accepted 
in eight refereed publications. Below, these papers are put into the context of the 
thesis. The rigorous derivation and description of the various new results did not 
allow any significantly shortened presentation of the thesis. Hmvever, a substantial 
effort has been made to present these results systematically, which should allow an 
efficient reading. 

A main result of the first part of the thesis is the derivation of new moment es-
timates (Lemmas 3.6.1 and 3.6.2) of multiple stochastic integrals with respect to 
Wiener processes, Poisson measures and compensated Poisson measures. These 
estimates constitute the core of the proof of new strong convergence theorems. We 
also present results (Lemmas 3.6.3 and 3.6.4) that will be used in the proofs of new 
weak convergence theorems. These moment estimates build on some results pre-
sented in Liu & Li (2000) and Li & Liu (2000), who consider only multiple stochastic 
integrals with respect to the Poisson random measure. Here we also consider mul-
tiple stochastic integrals with respect to the compensated Poisson measure, which 

1  



2 CHltPTEH 1. INTRODUCTION 

are necessary to prove the convergence of certain strong and weak approximations. 

There are three main results of the sccond part of the thesis. First, the order of 
convergence of regular strong Taylor approximations (Theorem 4.5.1) is established. 
A detailed proof is provided, which extends the results presented in Platen (1982a) 
and Cardoll (2004). The ncw result considers the more general case of a driving 
Poisson measure and covers also the strong convergence of regular approximations 
based on a compensated Poisson measure. 

Second, the strong convergence of the fairly general class of regular strong Ito 
approximations (Theorem 5.5.1) is derived. The corresponding strong conver-
gence theorem allows the construction of new derivative-free, drift-implicit and 
predictor-corrector schemes (see Bruti-Liberati, Nikitopoulos-Sklibosios & Platen 
(2006) and Bruti-Liberati & Platen (2007a)). The proposed innovative strong 
predictor-corrector schemes appear to be new, even for the case of pure diffu-
sion SDEs. These new schemes are of particular importance, since they combine 
the efficiency of explicit schemes and the enhanced numerical stability proper-
ties inherited from corresponding implicit schemes. Most importantly, such strong 
predictor-corrector schemes introduce quasi-implicitness also in the diffusion terms 
of the algorithm. In the context of strong approximations, this is a particularly 
difficult task that, so far, only balanced implicit schemes were able to achieve, see 
Milstein, Platen & Schurz (1998), Kahl & Schurz (2006) and Alcock & Burrage 
(2006). The new predictor-corrector methods avoid the key drawback of balanced 
implicit methods, which is the requirement for solving an algebraic equation at 
each time step. 

Third, the strong order of convergence of strong Taylor approximations for pure 
jump SDEs (Theorem 8.8.4) has been established under weaker conditions than 
usually required (see Bruti-Liberati & Platen (2007c)). We show that the differen-
tiability conditions on the jump coefficient, typical of strong convergence theorems 
for jump diffusions, are here not needed. In the special case of pure jump dynam-
ics, Lipschitz and linear growth conditions on the jump coefficient are sufficient for 
strong schemes with any order of strong convergence. 

The last part of the thesis contains two main results. First, the order of weak con-
vergence of general jump-adapted weak Taylor approximations (Theorem 10.7.1) 
has been established. The corresponding new theorem extends the results in 
Mikulevicius & Platen (1988). It covers the weak convergence of new jump-adapted 
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weak derivative-free and predictor-corrector schemes. Furthermore, new jump-
adapted simplified schemes, which use multi-point distributed random variables 
between jump times, have been proposed. 

Second, new efficient implementations of simplified weak schemes, based on multi-
point distributed random variables, have been proposed (Chapter 12). These re-
sults are discussed in the case of pure diffusion SDEs and can be readily applied 
to the diffusive part of a jump-adapted scheme when approximating SDEs with 
jumps. The main idea underlying these implementations (see Bruti-Liberati & 
Platen (2004)) is the systematic use of efficient random bit generators for the 
multi-point distributed random numbers needed in simplified weak schemes. Soft-
ware implementations are tested and the obtained speedups of up to 29 times on 
the entire simuhtion, when compared to an implementation based on Gaussian 
random variables, are reported. Finally, new hardware accelerators, based on field 
programmable gate arrays, are proposed, which provide further speedups of up to 
three times (see Tvlartini, Piccardi, Bruti-Liberati & Platen (2005), Bruti-Liberati, 
Platen, Martini & Piccardi (2005), and Bruti-Liberati, Martini, Piccardi & Platen 
(2007)) . 

1.2 Motivation 

Key features of advanced financial models are event-driven uncertainties such as 
corporate defaults, operational failures or central bank announcements. By an-
alyzing time series properties of historical prices and other financial quantities, 
many authors have argued for the presence of jumps, see Jorion (1988) for foreign 
exchange and stock markets, and Johannes (2004) for short-term interest rates. 
Jumps are also used to generate the short-term smile effect observed in implied 
volatilities of option prices, see Cont & Tankov (2004). Furthermore, jumps are 
needed to properly model credit events like defaults and credit rating changes, see 
for instance Jarrow, Lando & Turnbull (1997). The short rate, typically set by 
a central bank, jumps up or down, usually by a quarter of a percent, after some 
random waiting times, see Babbs & 'Webber (1995). Therefore, models for the dy-
namics of financial quantities specified by SDEs with jumps have become increas-
ingly popular. Models of this kind can be found, for instance, in iVIerLon (1976), 
Bjork, Kabanov & Runggaldier (1997), Duffie, Pan & Singleton (2000), Kou (2002), 
Schonbucher (2003), Glasserman & Kou (2003), Cont & Tankov (2004) and Geman 

•  



4 

r 

CHAPTER 1. INTR.ODUCTION 

& Roncoroni (2006). The areas of application of SDEs with jumps go far beyond 
finance. Other areas of application include economics, insurance, population dy-
namics, epidemiology, structural mechanics, physics, chemistry and biotechnology. 
In chemistry, for instance, the reactions of single molecules or coupled reactions 
yield stochastic models with jumps, see Turner, Schnell & Burrage (2004). 

Since only a small class of jump-diffusion SDEs admits explicit solutions, it is im-
portant to construct discrete time approximations. The topic of this thesis is the 
numerical solution of SDEs with jumps via simulation. We consider pathwise sim-
ulation, for which strong schemes are used, and Monte Carlo simulation, for which 
weak schemes are employed. Note that there exist alternative methods to Monte 
Carlo simulation that we do not consider in this thesis. These include Markov 
chain, tree, and partial differential equation methods. The class of SDEs here 
considered is that driven by vViener processes and finite intensity Poisson random 
measures. Some authors consider the smaller class of SDEs driven by Wiener pro-
cesses and homogeneous Poisson processes, while other authors analyze the larger 
class of SDEs driven by fairly general semimartingales. The class of SDEs driven 
by Wiener processes and Poisson random measures with finite intensity appears 
to be just large enough for a realistic modelling of the underlying dynamics in fi-
nance. Here continuous trading noise and few single events are typical sources of 
uncertainty. Furthermore, stochastic jump sizes and stochastic intensities, can be 
conveniently covered by a Poisson random measure. At present the development 
of a rich theory on simulation methods for SDEs with jumps, similar to that es-
tablished for pure diffusion SDEs in Kloeden & Platen (1999), is under way. This 
thesis aims to contribute to some aspects of this new theory. 

We consider discrete time approximations of solutions of SDEs constructed on time 
discretizations (tb, with maximum step size.6. E (0, .6.0 ), with.6.o E (0,1). We call 
a time discretization regular if the jump times, generated by the Poisson measure, 
are not discretization times. On the other hand, if the jump times are included in 
the time discretization, then a jump-adapted time discretization is obtained. Ac-
cordingly, discrete time approximations constructed on regular time discretizations 
are called regular schemes, while approximations constructed on jump-adapted time 
discretizations are called jump-adapted schemes. 

Discrete time approximations can be divided into two major classes: strong ap-
proximations and weak approximations, see Kloeden & Platen (1999). We say that 
a discrete time approximation yll, constructed on a time discretization (t)ll, with 
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maximum step size ~ > 0, converges with strong order '"'/ at time T to the solution 
X of a given SDE, if there exists a positive constant C, independent of ~, and a 
finite number ~o E (0,1), such that 

cA~) := VE(IXT - Yf12) ::; C~\ (1.2.1) 

for all ~ E (0, ~o). From the definition of the strong error cs(~), in (1.2.1), 
one notices that strong schemes provide pathwise approximations of the original 
solution X of the given SDE. Therefore, these methods are suitable for problems 
such as filtering, scenario and hedge simulation. and the testing of statistical and 
other quantitative methods. 

We say that a discrete time approximation y6. converges 'weakly with order j3 to 
X at time T, if for each 9 E C~U:i+l) (lR.d,lR.) there exists a positive constant C, 
independent of ~, and a finite number, .6.0 E (0, I), such that 

cw(.6.) := IE(g(XT)) - E(g(YT6.)) I S; C.6.(3, (1.2.2) 

for each.6. E (0, .6.0 ), Here C~((3+l)(lR.d,lR.) denotes the set of 2(j3 + 1) continuously 
differentiable functions which, together with their partial derivatives of order up 
to 2(,6+ I), have polynomial growth. This means that for 9 E C~((3+l)(lR.d,lR.) there 
exist constants K > °and r- EN, depending on g, such that 

la~g(y)1 ::; K(l + 1Y1 2,), (1.2.3) 

for all y E lR.d and any partial derivative a~g(y) of order j S; 2(j3 +1). Weak schemes 
provide approximations of the probability measure generated by the solution of a 
given SDE. These schemes are appropriate for problems such as derivative pricing, 
the evaluation of moments and the computation of risk measures and expected 
utilities. 

Let us briefly discuss some relationships between strong and weak approximations. 
The following remark, easily obtained by Jensen's inequality, see (1.2.10) in Ap-
pendix A, provides some insights. 

Remark 1.2.1 Let y6. be a discrete time approximation, const7'tLcted on a time 
discr'etization (t)6., with stTOng order oj convergence ,",/, see (1.2.1). Consider- a 

..  
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function 9 : JRd _ lR satisfying the Lipschitz condition 

/g(x) - g(y)/ :s; Kjx - y/, (1.2.4) 

for every x, y E IRd , where K is a positive constant. Then there exists a positive 
constant C, independent of 6., and a finite number, 6.0 E (0,1), such that 

(1.2.5) 

for each 6. E (0,6.0 ), 

Since the set of Lipschitz continuous functions includes the set C~(l1+1)(lRd, lR), Re-
mark 1.2.1 implies that if a discrete time approximation yA achieves an order I of 
strong convergence, then it also achieves at least an order j3 = I of \veak conver-
gence. We emphasize that the weak order obtained in Remark 1.2.1 is usually not 
sharp and, thus, the order of weak convergence could actually be higher than that 
of strong convergence. For instance, it is well-known and we will later show that 
the Euler scheme typically achieves strong order I = 0.5 and weak order j3 = 1.0. 

In light of Remark 1.2.1, one could think that the design of strong approxima-
tions is sufficient for any type of application, since these approximations can be 
also applied to weak problems, achieving at least the same order of convergence. 
This is of course true, but the resulting schemes might be not optimal in terms 
of computational efficiency. Let us consider as an example, the strong Milstein 
scheme for pure diffusion SDEs, see Milstein (1974). By adding the double Wiener 
integrals to the Euler scheme one obtains the Milstein scheme, thus enhancing the 
order of strong convergence from I = 0.5 to I = 1.0. Nonetheless, the order of 
weak convergence of the Milstein scheme equals f3 = 1.0, which is not an improve-
ment over the order of weak convergence of the Euler scheme. Therefore, to price 
a European call option, for example, the Euler scheme is computationally more 
efficient than the Milstein scheme, since it has fewer terms and the same order of 
weak convergence. This simple example indicates that to construct efficient higher 
order weak approximations, one should not take the naive approach of just us-
ing higher order strong approximations. Furthermore, as it will be discussed in 
Chapter 12, when designing weak schemes one has the freedom of using simple 
multi-point distributed random variables to approximate the underlying multiple 
stochastic integrals. These multi-point distributed random variables lead to highly 
efficient implementations of weak schemes. 
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1.3 Literature Review 

An extensive literature on the numerical solution of pure diffusion SDEs has been 
developed over several decades. We refer the reader to the monographs Kloe-
den & Platen (1999), Kloeden, Platen & Schurz (2003), Milstein (1995), Milstein , , 
& Tretyakov (2004), and to the surveys Platen (1999), Higham (2001), Kloeden 
(2002) and Burrage, Burrage & Tian (2004). Implementations of these methods 
with mathematical sofbvare, such as MAPLE and MATLAB, have been discussed 
in Cyganowski, Kloeden & Ombach (2001) and Higham & Kloeden (2002). Also 
relevant to our work are the monographs by Jackel (2002), Glasserman (2004), 
McLeish (2005) and Chan & Wong (2006) on Monte Carlo simulation in finance. 
Specific algorithms for the approximation of certain pure diffusion SDEs commonly 
arising in finance are described in Hunter, Jackel & Joshi (2001), Higham & Mao 
(2005), Kahl & ,hickel (2005), Lord, Koekkoek & van Dijk (2006), Joshi & Stacey 
(2007), Broadie & Kaya (2006) and Andersen (2007). More general monographs on 
computational finance, covering also tree and partial differential equations meth-
ods, include Higham (2004) and Seydel (2006). 

The literature on discrete time approximations of SDEs with jumps is still quite 
limited. In the sequel we aim to give an overview on this literature, first with focus 
on strong approximations and later on weak approximations. 

1.3.1 Strong Approximations 

The early paper by Wright (1980) considers the Euler scheme and some Runge-
Kutta type schemes for the approximation of pure jump SDEs. Some numerical 
experiments are reported, but no proofs of convergence results are provided. Platen 
(1982a) described a convergence theorem for regular strong Taylor schemes of any 
given strong order 'Y E {0.5, 1, 1.5, ...}. This paper also introduced jump-adapted 
strong Taylor approximations, which are constructed on time discretizations that 
include the jump times of the Poisson measure. Maghsoodi (1996) presented an 
analysis of some regular and jump-adapted strong discrete time approximations 
with strong order up to 'Y = 1.5. Later Maghsoodi (1998) proposed certain regular 
and jump-adapted schemes that are doubly efficient, meaning that they achieve 
strong order 'Y = 1.0 and weak order {3 = 2.0. A sequence of papers by Li & 
Liu (1997), Li, \Vu & Liu (1998) and Liu & Li (1999) discussed the approxima-

...  



8 CHAPTEI"l 1. INTRODUCTION 

tion of multiple stochastic integrals arising in higher order regular strong schemes. 
Cyganowski, Grune & Kloeden (2002) described MAPLE implementations of the 
Euler scheme and of the strong schemes presented in Maghsoodi (1996). Gardon 
(2004) proved a convergence theorem for regular strong Taylor schemes of any 
given order "( E {0.5, I, 1.5, ...}, similar to that presented in Platen (1982a). How-
ever, this result is limited to SDEs driven by Wiener processes and homogeneous 
Poisson processes. Turner, Schnell & Burrage (2004) introduced a class of Pois-
son Runge-Kutta methods for the approximation of pure jump SDEs. In a series 
of papers Higham & Kloeden (2005, 2006, 2007) proposed a fairly general class 
of implicit schemes of strong order "( = 0.5 for SDEs that are driven by Wiener 
processes and homogeneous Poisson processes. They also provided a detailed anal-
ysis of numerical stability properties. Jimenez & Carbonell (2006) proposed strong 
approximations based on some local linearization method. 

The following papers consider discrete time approximations for SDEs with jumps, 
constructed such that they satisfy criteria slightly different from that introduced 
in (1.2.1) for the classification of strong convergence. The work in Maghsoodi 
& Harris (1987) analyzed the so-called in-probability approximations for jump-
diffusion SDEs. The papers by Li (1995) and Li & Liu (2000) analyzed the almost 
sure convergence of jump-diffusion approximations. 

In the case of SDEs driven by fairly general semimartingales, the convergence of the 
Euler scheme, in terms of strong error or similar criteria for pathwise approxima-
tions, has been studied in Protter (1985), Kurtz & Protter (1991), Kohatsu-Higa 
& Protter (1994), Jacod & Protter (1998), Rubenthaler (2003), Rubenthaler & 
Wiktorsson (2003) and Jacod (2004). 

As discussed in Section 1.1, the results in the second part of this thesis extend 
the literature of strong approximations for SDEs with jumps. The results in this 
direction that are already published or accepted for publications shall be briefly 
mentioned in the following. The article Bruti-Liberati, Nikitopoulos-Sklibosios & 
Platen (2006) proposes fairly general strong schemes with order of convergence 
'1 = 1.0, including derivative-free and drift-implicit schemes. In Bruti-Liberati & 
Platen (2007c) strong schemes for pure jump SDEs are proposed and analyzed. In 
this paper a strong convergence result is obtained under weaker conditions on the 
jump coefficient than usually required for jump-diffusion SDEs. Finally, the work 
Bruti-Liberati & Platen (2007a) provides an introduction and a survey of strong 
and weak discrete time approximations for SDEs with jumps, with a discussion on 
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applications in finance and economics. 

1.3.2 Weak Approximations 

In IVlikulevicius & Platen (1988) a theorem for the weak convergence of jump-
adapted weak Taylor schemes of any weak order {3 E {l.O, 2.0, ... } was derived. 
The paper Liu & Li (2000) analyzed regular weak Taylor schemes of any weak 
order, which are based on regular time discretizations that do not include jump 
times. In this paper a weak convergence theorem and the leadi ng coefficients of 
the global error are derived for Lhe Euler method and the order 2.0 weak Taylor 
scheme. Extrapolation methods are also presented in this context. In Kubilius & 
Platen (2002) the weak convergence of the jump-adapted Euler scheme in the case 
of Holder continuous coefficients is treated. The paper by Glasserman & Merener 
(2003b) considered the weak convergence of the jump-adapted Euler and the order 
2.0 weak Taylor schemes under weakened conditions on the jump coefficient. This 
is important for the numerical approximation of jump-diffusion SDEs with state-
dependent intensities. Mordecki, Szepessy, Tempone & Zouraris (2006) analyzed 
the Euler scheme with adaptive time stepping. Broadie & Kaya (2006) developed 
exact approximations for certain specific pure diffusion and jump-diffusion SDEs 
arising in financial applications. 

The weak convergence of the Euler scheme for the approximation of SDEs driven 
by fairly general semimartingales is studied in Platen & Rebolledo (1985), Protter 
& Talay (1997), Hausenblas (2002), and Jacod, Kurtz, Meleard & Protter (2005). 
We also refer to the monograph by Janicki (1996), which considered the numerical 
approximation of SDEs driven by a-stable Levy measures. In this book a cor-
responding Euler scheme is proposed and its weak convergence in the Skorokhod 
topology is proved. The numerical solution of stochastic partial differential equa-
tions driven by Poisson random measures is considered, for instance, in Hausenblas 
(2003, 2006). 

As we shall see later, when using weak schemes one can approximate the underlying 
multiple stochastic integrals by simple multi-point distributed random variables. 
The resulting approximations are called simplified weak schemes. The last chapter 
of this thesis will consider efficient implementations of simplified weak schemes by 
using random bit generators and hardware accelerators. The related literature in 
this direction is quite limited. Random bit generators are at the heart of ran-
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dom number generation, see Knuth (1981). Nonetheless, the use of random bit 
generators to obtain multi-point distributed random numbers for simplified weak 
schemes appeared to be new when published in Bruti-Liberati & Platen (2004). We 
subsequently became aware that Milstein & Tretyakov (2004) had independently 
suggested a similar method without any actual implementation nor efficiency anal-
ysis. Also the idea of using hardware accelerators, based on field programmable 
gate arrays (FPGAs), for Monte Carlo simulation in finance, first published in 
Martini, Piccardi, Bruti-Liberati & Platen (2005), appears to be innovative. To 
our knowledge the only other article on a related topic seems to be that of Zhang, 
Leong, Ho, Tsoi, Cheung, Lee, Cheung & Luk (2005). Finally, it should be men-
tioned that random number generators on FPGAs have been proposed in Martin 
(2002), Tsoi, Leung & Leong (2003), Lee, Luk, Villasenor & Cheung (2004) and 
Lee, Villasenor, Luk & Leong (2006). 

As mentioned in Section 1.1, the third part of this thesis contributes to the lit-
erature of weak approximations in several directions. Among the results already 
published or accepted for publications, we mention the following articles. Bruti-
Liberati & Platen (2007a) and Bruti-Liberati & Platen (2007b) consider fairly gen-
eral weak approximations including new weak predictor-corrector schemes. The 
article Bruti-Libcrati & Platen (2004) proposes efficient software implementations 
of simplified schemes based on random bit generators. Finally, hardware accelera-
tors for weak simplified schemes are presented in Martini, Piccardi, Bruti-Liberati 
& Platen (2005), BruU-Liberati, Platen, Martini & Piccardi (2005), and Bruti-
Liberati, Martini, Piccardi & Platen (2007). 



Chapter 2 

Stochastic Differential Equations with 
Jumps 

This chapter introduces the class of SDEs driven by Wiener processes and finite 
intensity Poisson random measures. vVe also discuss financial applications and 
results on the existence and uniqueness of strong solutions. 

2.1 Introduction 

Let be given a filtered probability space (n, AT, A, P), with A = (At)tE[O,T] , T E 

[0, (0), satisfying the usual conditions, and a mark space (E,8(E)), with E ~ 
lR\{O}. Note that one could also use a multi-dimensional mark space without 
any complication. We define on E x [0, T] an A-adapted Poisson random measure 
p</J(dv, dt), with intensity measure q</J(dv, dt) = rjJ(dv)dt. We assume that the total 
intensity 

,\ = rjJ(E) < 00 (2.1.1) 

of P</J is finite. Thus, P</J = {P</J(t) = pcjJ(E, [0, t]), t E [0, T]} is a stochastic process 
that counts the number of jumps occurring in the time interval [0, T]. The Pois-
son random measure p</J(dv, dt) generates a sequence of pairs {(Ti, ~i)' i E {l, 2, ... , 
pcjJ(T)}}, where {Ti E [O,TJ,i E {1,2, ... ,pcjJ(T)}} is a sequence of increasing 
nonnegative random variables representing the jump times of a standard Poisson 
process with intensity)., and {~i E E,i E {1,2, ... ,pcjJ(T)}} is a sequence of inde-
pendent, identically distributed random variables. Here ~i is distributed according 
to cjJ(~v) = F(dv). Therefore, we call F(·) the distribution function of the marks. 
We can interpret Ti as the time of the ith event and the mark ~i as its amplitude. 
For a more general presentation of ranclom measures we refer to Elliott (1982). 

11  
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In this thesis we consider the d-dimensional jump-diffusion SDE 

(2.1.2) 

for t E [0, TJ, with initial value Xo E JRd, an A-adapted m-dimensional Wiener 
process W = {Wt = (Wl, ... ,wtm) , t E [0, Tn and the previously introduced 
Poisson random measure pq,. Note that in (2.1.2) we denote by X t - the almost 
sure left-hand limit of X at time t. A solution of an SDE of the type (2.1.2) is 
called jump diffusion or Ita process. 

The coefficients a(t, x) and c(t, x, v) are d-dimensional vectors of Borel measurable 
real valued functions on [0, T] x JRd and on [0, T] x JRd XE, respectively. Additionally, 
b(t, x) is a d x m-matrix of Borel measurable real valued functions on (0, T] x JRd. 
Here and in the sequel, for a given vector a we adopt the notation ai to denote its 
ith component. Similarly with bi,j we will denote the component of theith row 
and jth column of a given matrix b. 

The SDE (2.1.2) can be also written in integral form as 

t t P4>(t) 

X t = Xo +1a(s, Xs)ds + 1b(s, Xs)dWs + L C(Til X T ;-, ~i)' (2.1.3) 
o 0 i=l 

where {(Ti'~i),i E {1,2 ... ,p<t>(t))} is the above described sequence of pairs of 
jump times and corresponding marks generated by the Poisson random measure 
P<t>. Note that in this thesis we adopt the convention that the summation 'L{:jl Ci 

yields zero for all possible summands Ci if )1 > )2. Therefore, if there are no jumps 
up to time t, which means that P<t>(t) = 0, the last term in (2.1.3) vanishes. 

In the SDE (2.1.2) we have defined the impact of a jump via an Ito stochastic 
integral with respect to a Poisson random measure as 

(2.1.4) 

This stochastic integral allows us to model a rather general jump behavior. The 
only restriction we impose on the jump component is the finiteness of the total 
intensity as requested in condition (2.1.1). 

Let us consider the special case of the type of coefficient functions a(t, x) = fLX, 
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b(t, x) = (JX and c(t, x, v) = x (v - 1). Then the SDE (2.1.2) reduces to 

dXt = Xt~ (Pdt + (JdlVt +1(v -l)P<t>(dv,dt)) , (2.1.5) 

for t E [0, T] and admits the explicit solution 

p¢(t) 

X = v e(J.'-~a2)t+aWt II c. (2.1.6)t ."- 0 " '"t, 
i=l 

where the marks ~i ~ 0 are distributed according to a given probability measure 
F(dv) = <P(~v). When we choose a lognormal probability measure, which means that 
(i = In (~i) is an independent Gaussian random variable, (i rv N(t2, <;), with mean (! 

and variance <;, then equation (2.1.6) represents a specification of the jump-diffusion 
asset price model proposed in Merton (1976), known as Merton model. A simple 
case is obtained when the lognormal random variable ~i becomes degenerate, which 
is for zero variance <; = 0, where ~i = ee. If we assume a log-Laplace distribution, 
instead of a lognormal one, then we recover the Kou model proposed in Kou (2002). 

The flexibility in the definition of the jump integral (2.1.4) is illustrated in the 
following examples. 

First, one can easily construct several independent driving Poisson processes by 
splitting the mark space £ into corresponding disjoint subsets £1, ... ,£n for r EN, 
and obtaining with pj = {pi := P<t>(£j, [0, t]), t E [0, T]} the jth Poisson process 
having intensity )...1 = ¢(£j). 

It is also possible to specify a jump component with time-dependent intensity by 
choosing 

c(t, x, v) = 1{VE['l1(t),rl2(t)]}1(t, x, v), (2.1.7) 

where TJl and TJ2 are deterministic functions of time and 10 is the indicator function 
defined by 

I for v E A
{ (2.1.8)

l{vEA} = 0 for v t/:. A 

for a given set A ~ £. Then we obtain a jump integral of the form 

i t £7]2(S) 
1(8, Xs~, V)P<t> (dv, ds). 

o . 'lJ(s) 

....  
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Moreover, if we allow the functions TJl and TJ2 to be time and state-dependent, then 
we obtain a jump integral of the form 

which allows the modelling of stochastic intensity. Note that in this case the coef-
ficient function c is, in general, discontinuous in the state variable and, therefore, 
could be not Lipschitz. With the above specifications also advanced credit risk mod-
els with multiple obligors and correlated intensities, as discussed in Schonbucher 
(2003), can be modeled via the SDE (2.1.2). In the fast growing energy mar-
kets, quantities such as electricity prices are often described by rather complex 
jump-diffusion SDEs; see, for instance, Geman & Roncoroni (2006) for a class of 
jump-diffusion models that capture the typical jump reversion feature of electricity 
prices. 

Other important examples of jump diffusions of the form (2.1.2) arise in the pricing 
and hedging of complex interest rate derivatives. Vie refer to Bjork, Kabanov & 
Runggaldier (1997) for the HJM framework with jumps and to Glasserman & Kou 
(2003) for the LIBOR market model with jumps. For example, let us consider 
a specific LIBOR market model with jumps proposed in Samuelides & Nahum 
(2001) for pricing short-term interest rate derivatives. Given a set of equidistant 
tenor dates T 1 , .• . , Td+1, with Ti+ 1 - 7i = {) for i E {I, ... , d}, the components 
of the vector X t = (Xl, ... ,xt)T represent discrete compounded forward rates at 
time t, maturing at tenor dates T1 , ... ,Td , respectively. In this ca.."le the model 
is driven by one Wiener process, m = 1, and two Poisson processes, r = 2. The 
diffusion coefficient is specified as b(t, x) = crx, with cr a d-dimensional vector of 
positive numbers, and the jump coefficient is given by c(t, x) = f3x, where f3 is a 
dx 2-matrix with f3 i ,l > 0 and (3i,2 < 0, for i E {I, ... ,d}. In this way the first jump 
process generates upward jumps, while the second one creates downward jumps. 
Moreover, the marks are set to ~i = 1 so that the two driving jump processes are 
standard Poisson processes. A no-arbitrage restriction on the evolution of forward 
rates under the Td+l-forward measure, see Bjork, Kabanov & Runggaldier (1997) 
and Glasserman & Kou (2003), imposes a particular non-linear form on the drift 
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coefficient a(t,x). Its ith component is given by 

d x j d x J 
i 1 d {'""""' uX j 1 j,l uX )IT (a (t, x , ... , x ) - ~ 1 + 6x j a +,\ 1 + (3 1 + 6x j 

j=i+l j=i+l 

d 6 j 
+,\2 IT (1+(3j,2 x.)} (2.1.9)

1 + 6xJ ' 
j=i+l 

for'i E {I, ... ,d}, where ,\1 and ,\2 denote the intensities of the two Poisson pro-
cesses. A complex non-linear drift coefficient, as the one in (2.1.9), is a typical 
feature of LIB OR market models. This makes the application of numerical tech-
niques essential for the pricing and hedging of complex interest rate derivatives. 
liVe refer to Glasserman & Merener (2003b) for numerical approximations of jump-
diffusion LIB OR market models. 

2.2 Existence and Uniqueness of Strong Solutions 

Let us now state a theorem on the existence and uniqueness of strong solutions of 
SDEs with jumps. This ensures that the objects we aim to approximate are well 
defined. For the definition of strong solutions of jump-diffusion SDEs, we can refer, 
for instance, to Ikeda & Watanabe (1989). 

We assume that the coefficient functions of the SDE (2.1.2) satisfy the Lipschitz 
conditions 

la(t,x)-a(t,y)!2 -::;Cl lx-yI2, Ib(t,x) b(t,y)12 -::;C2Ix -yI2,

1ic(t, x, v) - c(t, y, v)12¢(dv) -::; C::dx - y12, (2.2.10) 

for every t E [0, T] and x, y E IRd , as well as the linear growth conditions 

la(t, x)i 2 -::; 1{1(1 + 1:£1 2 ), Ib(t, x)!2 < 1{2(1 + IxI 2 ), 

l'c(t,x,vW¢(dv) -::; 1{3(1 + IxI 2 ), (2.2.11) 

for all t E [0, T] and x E IR;.d. Note that the linear growth conditions can be usually 
derived by the corresponding Lipschitz conditions. 
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Moreover, we assume that the initial condition Xo is Au-measurable with 

(2.2.12) 

Theorem 2.2.1 Suppose that the coefficient functwns a(-), be) and cC) of the SDE 
(2.1.2) satisfy the Lipschitz conditions (2.2.10) and the linear growth conditions 
(2.2.11). Then the jump-diffusion SDE (2.1.2) admits a unique strong solution. 
Moreover, the solution X t of the SDE (2.1.2) satisfies the estimate 

E (sup IXs12j) :S: C(1 + E(jXoj2)) (2.2.13) 
O::;s::;T 

with T < 00, where C is a finite positive constant. 

Proofs of Theorem 2.2.1 can be found in Ikeda & \\Tatanabe (1989) or Situ (2005). 

For certain applications, the Lipschitz condition (2.2.10) on the jump coefficient 
c is too restrictive. For instance, for modelling state-dependent intensities, as 
discussed in Section 2.1, it is convenient to use jump coefficients that are not 
Lipschitz continuous. Athreya, Kliemann & Koch (1988) provide some results on 
the existence and uniqueness of the solution of the jump-diffusion SDE (2.1.2) when 
the jump coefficient c is not Lipschitz continuous. Glasserman & Merener (2003a) 
analyze the convergence of the jump-adapted Euler scheme, which we will discuss in 
Chapter 10, in such a case. The Yamada condition, see Ikeda & Watanabe (1989), 
provides another condition for SDEs that do not satisfy Lipschitz type conditions. 



Chapter 3 

Stochastic Expansions with Jumps 

In this chapter we present the Wagner-Platen expansion for solutions of SDEs with 
jumps. This stochastic expansion generalizes the deterministic Taylor formula and 
the Wagner-Platen expansion for diffusions to the case of SDEs with jumps. It 
allows expanding the increments of smooth functions of Ito processes in terms of 
multiple stochastic integrals. As we will see, it is the key tool for the construction 
of higher order stochastic numerical methods. 

3.1 Introduction 

Let us first rewrite the SDE (2.1.2) in a way where the jump part will be expressed 
as a stochastic integral with respect to the compensated Poisson measure 

p¢(dv, dt) := p¢(dv, dt) - </J(dv)dt. (3.1.1) 

By compensating the Poisson measure in the SDE (2.1.2), we obtain 

dXt = a(t,Xt)dt+b(t,Xt)dWt + 1c(t,Xt_,v)p¢(dv,dt), (3.1.2) 

where the compensated drift coefficient is given by 

a(t,x):= a(t, x) +1c(t,x,v)¢(dv), (3.1.3) 

for t E [0, TJ, with initial value Xo E lRd and mark space E ~ lR\{O}. Note that 
by relation (3.1.3), the Cauchy-Schwarz inequality (see (1.2.1) in Appendix A), 
and conditions (2.2.10)-(2.2.11), the compensated drift coefficient a satisfies the 
Lipschitz condition 

la(t,x) - a(t,y)1 2 ~ Klx _ y12, (3.1.4) 

17 
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for every t E [0, TJ and x, y E JRd, as well as the linear growth condition 

(3.1.5) 

for all t E (0, TJ and x E JRd. 

To construct discrete time approximations we will exploit Wagner-Platen expan-
sions of solutions of the SDE (2.1.2). \Nith these formulas we expand smooth 
functions of solutions of the SDE (2.1.2) in terms of multiple stochastic integrals. 
Note that, in a similar way as in (3.1.2), a multiple stochastic integral involving 
jumps can be defined by using as integrator either the Poisson measure P<f; or the 
compensated Poisson measure P<f;' Therefore, we will derive two different types of 
stochastic expansions. \Ne will call the former Wagner-Platen expansions and the 
latter compensated Wagner-Platen expansions. To express these expansions in a 
compact form, we will introduce below certain notation. 

3.2 Multiple Stochastic Integrals 

In this section we introduce a compact notation for multiple stochastic integrals 
that will appear in corresponding stochastic expansions. 

3.2.1 Multi-Indices 

We call a row vector a = (jl,j2, ... ,jt), where ji E {-I,O,l, ... ,rn} for i E 

{I) 2) ... , l} , a multi-index of length l := l(a) E N. Here rn represents the number 
of Wiener processes considered in the SDE (2.1.2). Then for mEN the set of all 
multi-indices a is denoted by 

Mm = {(jl, ... , jl) : ji E {-I, 0,1,2, ... , rn}, i E {I, 2, ... , l} for lEN} U {v}, 

where v is the multi-index of length zero. Later, by a component j E {I, ... , m} of 
a multi-index we will denote an integration with respect to the jth Wiener process. 
A component .i = °will denote an integration with respect to time. Finally, a 
component j = -1 will denote an integration with respect to the compensated 
Poisson measure P<f;. 

L 
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We write n(o:) for the number of components of a multi-index 0: that are equal to ° 
and 8(0:) for the number of components of a multi-index 0: that equal-l. Moreover, 
we write 0:- for the multi-index obtained by deleting the last component of 0: and 
-0: for the multi-index obtained by deleting the first component of 0:. For instance, 
assuming m = 2, 

[((0, -1, 1)) = 3 1((0,1, -1,0,2)) = 5 

n((O, -1, 1)) = 1 n((O, 1, -1,0,2)) = 2 

8((0, -1, 1)) = 1 8((0,1, -1,0,2)) = 1 

(0, -1, 1)- = (0, -1) (0,1, -1,0,2)- = (0, 1, -1,0) 

-(0, -1, 1) = (-1,1) -(0,1,-1,0,2) = (1,-1,0,2). (3.2.1) 

Additionally, given two multi-indices 0:1 = (j1,'" ,jk) and 0:2 (i l , ... ,id, we 
introduce the concatenation operator * on Mm defined by 

0:1 * 0:2 (j1,"" jk, i l ,··., il). (3.2.2) 

This operator allows us to combine two multi-indices. 

3.2.2 Multiple Integrals 

We shall define certain sets of adapted stochastic processes 9 = {g(t), t E [0, T]} 
that will be allowed to appear as integrands of multiple stochastic integrals in the 
stochastic expansions. We define 

1iv = {g: sup E(lg(t,w)l) < oo} 
tE[O,Tj 

1iCO)= {g:E(lT,g (8,W)'d8) <oo} 

T
1iC-l)= {g:E(l 1,g(8,V,w), 2<;b(dV)dS) <oo} 

1i(j) = {g: E (iT Ig(s,W) 12 dS) < oo}, (3.2.3) 

..  
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for j E {I, 2, ... 1 m}. The set Ho: for a given multi-index 0: E Mm with 1(0:) > 1 
will be defined below. 

Let p and T be two stopping times with 0 ::; p ::; T :s; T almost surely (a.s.). .For 
a multi-index 0: E Mm and an adapted process g(.) E Ho:, we define the multiple 
stochastic integral 100[g(-)]p,T recursively as 

9(T) when I = Dando: = v 

Ir: 10:- [g(-) ]p,z dz whenl;::: 1 andjl = 0 

J; 10:- [g(-)]p,z dWl1 whenl;::: 1 andjl E {I, ... 1 m} 

(3.2.4) 
where g(.) = g(·,V1' ... ,vs(a))' As previously, by z- we denote the left-hand limit 
of z. However, 0:- for a multi-index 0: has another meaning as described earlier. For 
simplicity, when it is not strictly necessary, here and in the sequel we may omit the 
dependence of the integrand process 9 on one or more of the variables VI, ••. , V8(0:) 

that express the dependence on the marks of the Poisson jump measure. 

As defined in (3.2.4), in a multi-index 0: the components that equal 0 refer to an 
integration with respect to time, the components that equal j E {I, ... , m} refer 
to an integration with respect to the jth component of the Wiener process, while 
the components that equal -1 refer to an integration with respect to the Poisson 
measure Pt/>. For instance, for m = 2 one has 

and 

Now for every multi-index 0: = (jl,' .. ,jl) E Mm with l(o:) > 1, we can recursively 
define the sets Ho: as the sets of adapted stochastic processes 9 = {g(t), t ;::: O} 

l 
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such that the integral process {Ia:- [gU]p,t> t E [0, T]} satisfies 

Ia:-[g(-)]p, E 'HUt}· (3.2.5) 

As we shall see later, it is also useful to define multiple stochastic integrals where 
the integrations are defined with respect to the compensated Poisson measure P</J 
instead of the Poisson measure Pc/;' Therefore, for a multi-index 0: E Mm and an 
adapted stochastic process 9 E 'Ha:, we define the compensated multiple stochastic 
integral 1a:[g(')]p'T recursively by 

g(T) whenl = oand 0: = v 

J; la:-[g(·)]p,z dz whenl:::: 1 andjl = 0 
1a:[g(')]p'T := 

J; fa:- [g(·)]p,z dW;l when l :::: 1andjl E {I, ... ,m} 

J; JEfa:-[gU]p,z-pc/;(dvs(a:),dz) whenl:::: landjl = -1, 
(3.2.6) 

where gO = g(., VI,"" Vs(a:)). Note that the multiple stochastic integral Ia:[g(')]p,T 
defined previously in (3.2.4) involves integrations with respect to the Poisson jump 
measure P</J, while the compensated multiple stochastic integral fe, [g(.) jp,T is defined 
in terms of integrations with respect to the compensated Poisson measure P</J. For 
instance, for m = 2 one obtains 

~O,-I,I)[g(-)]P'T = iT l z3 1J, Z
2- g(Zl' vd dZ1 P</J(dVI, dz2) dW;3' 

~2,O)[g(')]P'T = I(2,o)[g(')]p,T 

and 

~-I,-1)[g(-)]p'T = iT 11z2-1 g(ZI-, VI, V2) P</J(dVI, dzdpc/;(dv21 dz2). 

We now illustrate the obvious link between a multiple stochastic integral of the type 
(3.2.4) with respect to the Poisson jump measure P</J and a compensated multiple 
stochastic integral of the type (3.2.6) with respect to the compensated Poisson 
measure Pc/;' This link is governed by the relationship between the Poisson jump 
measure Pc/; and its compensated version P</J, see (3.1.1). 

Remark 3.2.1 Let 0: E M m , and p and T denote two stopping times with T being 
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A p -meaSl1mble and 0 S PST S T almost surely. Consider an adapted stochastic 
process 9 E Hex. Then 

25 (<»_1 

!ex[g(')]P,T = iex[gO]P,T + l: Hex,i' (3.2.7) 
';=1 

The terms Ho:,i denote multiple stochastic integrals of the adapted process g(.) that 
use as integrators the time, the Wiener processes, the Poisson jump measure P</> 
and the intensity measure ¢. A complete description of these terms could be given 
by defining recursively a new type of multiple stochastic integral. Then by using 
the relationship (3.1.1) together with (3.2.4) and (3.2.6), the terms Ho:,i could be 
completely characterized. However, since this characterization requires a rather 
technical notation, for the sake of simplicity we omit this obvious but complex 
characterization. Instead, we provide the following two illustrative examples. 

For a = (0, -1, 1) one has 

r t31 t2 1- J J £ J g(Zl' 1h) dZl ¢(dvddz2dWz p p P 3 

= I(O,-l,l)[g(')]p,T + H(O,-1,1),ll 

so that 

For a = (-1, -1) one obtains 

~-1,-1)[g(')lp'T = /.T 1/.z2-1 g(Zl-, VI, V2) P</>(dVl, dz1)p</>(dv2, dz2) 

iT 11z2-1 g(Z1-, VI, V2) Pq,(dVl, dzdprjJ(dv2' dz2) 

- /.T 11Z2 1g(Z1-, V1, V2) Pq,(dVI) dzd¢(dv2)dz2 
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-iT l1 z2-1 g(Zl' VI, V2) ¢(dvddz1p¢(dv2' dz2) 

+ iT l1 z2 1g(Zl' Vll V2) ¢(dvddz1¢(dv2)dz2 

1(-1,-1)[g(-)]P,7 + H(-l,-l),l + H(-1,-1),2 + H(-1,-1),3, 

where each term in the sum expresses the corresponding double integral. 

Similarly, we can express a multiple stochastic integral of the type (3.2.4), which 
uses as integrator for the jumps the Poisson jump measure P¢, as a sum of terms 
involving multiple stochastic integrals that use as integrators for the jumps the 
compensated Poisson measure p¢. 

Remark 3.2.2 Let a E M m ) and p and T denote two stopping times with T being 
Ap-measumble and 0 ~ p ~ T ~ T almost surely. Consider an adapted stochastic 
process 9 E Ha· Then 

2-.«')-1 

1a[g(-)]p,7 = Ia[g(-)]p,7 + L Ba,i' (3.2.8) 
i=l 

Here the terms Ba,i are multiple stochastic integrals of the process g(.) that use as 
integrators the time, the Wiener processes, the compensated Poisson measure P4> 
and the intensity measure ¢. For instance, for a = (-1, -1) one obtains 

1(-1,-1) [g(-)]P,7 1,711,z2-1 g(Zl-, VI, V2) P4>( dV1, dzdp4>(dv2 , dz2) 

1,7 l1 Z2 -1 g(Zl-, V1, v2)fJ¢(dv1' dzdp4>(dV2 , dz2) 

+17 l1 z2 1g(Z1-, V1, V2) P4>(dVl, dzd¢(dv2)dz2 

+17 l1 z2-1 g(Zl' VI, V2) ¢(dvddz1P4> (dV2' dz2) 

+17 l1 z2 1g(Zl' VI, V2) ¢(dvddz1¢(dv2)dz2 

~-1,-1)[g(')lp'7 + B(-1,-1),1 + B(-1,-1),2 + B(-1,-1),3 . 

.II.. 
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3.3 Coefficient Functions 

We need to define some sets of sufficiently smooth and integrable functions to be 
used as coefficient functions of the stochastic expansions. Let s E {O, I, ... } denote 
some integer that will become clear from the context when the following definitions 
will be applied. By £0 we denote the set of functions J(t, x, u) : [0, T] X Jl{d X [S --> 

Jl{d for which 
J(t,x+c(t,x,v),u) -J(t,x,u) (3.3.1) 

is ¢(dv)-integrable for all t E [0, T], x E IRd , U E [S and J(', ',u) E C1,2. Here 
C1,2 denotes the set of functions that are continuously differentiable with respect 
to time and twice continuously differentiable with respect to the spatial variables. 
Note that, according to the notation adopted in this thesis, ci denotes the ith 
component of the jump coefficient vector c. Moreover, with Eo we denote the set 
of functions J(t, x, u) : [0, TJ X IRd X [S --> IRd for which 

d. 8 
J(t, x + c(t, x, v), u) - J(t,x, u) - ~ c~(t, x, v) 8xJ (t, x, u) (3.3.2) 

i=l 

is ¢(dv)-integrable for all t E [0, TJ, x E Jl{d, U E [S and J(',', u) E C1,2. With £k, 
k E {I, ... ,m}, we denote the set of functions J(t, x, u) with partial derivatives 
()~d(t, x, u), i E {I, ... ,d}. With £-1 we denote the set of functions for which 

V(t,x+c(t,x,v),u) -J(t,x,u)12 (3.3.3) 

is ¢(dv)-integrable for all t E [O,T), x E Jl{d and u E [s. 

Let us now define the following operators for a function J(t, x, u) E £k: 

8 d. 8 
L(O) J(t, x, u) := 8t J(t, x, u) + ~ a~(t, x) 8xJ (t, X,1L) 

i=l 

d m 82 
1 ~~ bi,j( )b1,j() J( ) (3.3.4)+2" L... ~ t, x t, x 8Xi{)Xl t, x, U 

i,l=l j=l 

(3.3.5) 
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for k E {I, ... ,m}, and 

L~-l) f(t, x, u) := f(t, x + c (t, x, v), u) - f(t, x, u), (3.3.6) 

for all t E [0, TJ, x E rn:d and u E £s. Note that the operator in (3.3.6) adds an 
extra dependence v E £ on the mark components. Let us also define the operator 

£10) l(t, x, n) := L(O)l(t, x, n) +1{t(t,T. + o(t, x, v), n) - t (t, x, n) } ¢(dv) 

d 

a f(t,x,u) + ,"",ai (t,x)a8f(t,x,u)at ~ x~ 
i=l 

d m a2 
1 '""''""'bi,j( )bl,j() f( )+2 L ~ t, x t, x Q; QI t, x, U 

i,l=l j=l 

+1{t(t,x+c(t,x,v),u)-t(t,x,n) 

d. a }- ~ c~(t, x, v) axJ(t, x, u) ¢(dv), (3.3.7) 

for all t E [0, T], x E rn:d and u E £s, which allows us to describe conveniently the 
impact of the compensated Poisson measure. 

By using the above definitions, for all 0: = (]1,"" ]1(0:)) E Mm and a function 
f : [0, T] x rn:d ----+ rn:d , we define recursively the Ito coefficient functions 

f (t, x) for l(o:) = 0,  

fo:(t, x, u) := <L(jll f-o:(t, x, U1,"" Us(-o:)) for l(o:) ~ 1, ]1 E {O, ... ,m}  

Lt(~J-o:(t,X,Ul"" ,Us(-o:)) for l(o:) ~ 1,]1 =-1. 
(3.3.8) 

By u = (u1 , ... ,us(o:)) we denote a vector u E £s(o:). Note that the dependence 
on u in (3.3.8) is introduced by the repeated application of the operator (3.3.6). 
Additionally, we assume that the coefficients of the SDE (2.1.2) and the function 
f satisfy the smoothness and integrability conditions needed for the operators in 
(3.3.8) to be well defined, see also Remark 3.5.2. 

If we choose the identity function f(t, x) = x, then for the case d = m = 1 we can 

..  
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write the examples 

JC-l,O)(t, x, 1J.) = LS-l)a(t, x) = a(t, x + c(t, x, 1J.)) - a(t, .T), 

L(O)b(t, x) 

828 8 1 2 
~) b(t,x) + a(t,:r)~b(t,x) + -(b(t,x)) ~ 2b(t,x)
ut ux 2 ux 

and 

J(-1,-1)(t, x,u) 

c(t, x + c(t, x, 1J.2), u1) - c(t, x, 1J.1), 

For all a = (j1, ... , jl(n)) E Mm and a function J : [0, T] x IRd --+ IRd, let us also 
define recursively the compensated Ito coefficient Junctions 

J(t,:r) for l(a) = 0, 

DO) J-ct(t, x, U1,"" lIs(-a)) for l(a) 2 1, j1 = ° lc.(t, x, u) := 
LUd J-n(t, x, lI'l,"" 1J.s(-a») for l(a) 21, j1 E {l, ... ,m} 

(-1) -
LUs(a) J-ct (t, x, 1J.1, . , . , Use -a)) for l(a) 21,.h =-1. 

(3.3.9) 
Here we assume again that the coefficients of the SD E (2.1.2) and the fUIlctioIl J sat-
isfy the smoothness and integrability conditions needed for the operators in (3.3.9) 
to be well defined. For illustration, if we choose the identity function J(t, x) = x, 
then for the case d = m = 1 we can write the examples 

L~-l)a(t, x) 

a(t,x+c(t,x,11.)) -a(t,x) 

a(t, x + c(t, x, 11.)) - a(t, x) 

+1{c(t, x + c(t, x, 11.), v) - c(t, x, v)} 4>(d11.) , 



27 3.4. HIERARCHICAL AND REMAINDER SETS 

\ 
~j 

f(o,l)(t, x) 	 j}O)b(t,x)  

a a 1 2 a2  
~b(t,x) + a(t,x)a-b(t,x) + -(b(t,x)) ;:} 2b(t,x)
ut 	 x 2 uX 

+1{b(t,x+c(t,x,v)) -b(t,x)}¢(dv) 

a _ a 1 2 a2 
at b(t, x) + a(t, x) ax b(t, x) + '2 (b(t, x)) ax2b(t, x) 

+1{b(t,X+C(t,x,v)) -b(t,x) -c(t,x,V):x b(t,X)}1>(dV) 

and 
J(-l,-1)(t, x, u) = f(-l,-1)(t, x, u). (3.3.10) 

3.4 Hierarchical and Remainder Sets 

To define a Wagner-Platen expansion we finally need to select some appropriate 
sets of multi-indices that characterize its expansion part. A subset A E Mm is a 
hierarchical set if A is non-empty, the multi-indices in A are uniformly bounded in 
length, which means SUPQEAl(oo) < 00, and -00 E A for each 00 E A\{v}. 

We also define 	the remainder set B(A) of a hierarchical set A by 

B(A) = {oo E Mm\A: -00 E A}. 	 (3.4.1) 

Then the remainder set consists of all the next following multi-indices with respect 
to the given hierarchical set. 

In the following we give an example of a hierarchical set and the corresponding 
remainder set. When m = I, we will later see that the hierarchical set AE corre-
sponding to the Euler scheme is given by 

AE = {v, (-1), (0), (I)}. 

The corresponding remainder set B(AE ) is then of the form 

B(AE) = {( -1, -1), (0, -1), (1, -1), (-1,0), (0,0), (1, 0), (-1, I), (0, I), (1, I)}. 

IIIiI 
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3.5 Wagner-Platen Expansions 

We will now present the general form of Wagner-Platen expansions for the solution 
of the d-dimensional jump-diffusion SDE 

(3.5.1) 

for t E [0, TJ, with Xo E jRd, as described in (2.1.2) and (3.1.2). 

Theorem 3.5.1 For two given stopping times p and T with 0 S; p S; T S; T a.s., 
a hierarchical set A E M m , and a function f : [0, T] x jRd ----+ jRd, we obtain the 
corresponding Wagner-Platen expansion 

(3.5.2) 
aEA aE13(A) 

and the compensated Wagner-Platen expansion 

(3.5.3) 
aEA aE13(A) 

assuming that the function f and the coefficients of the SDE (3.5.1) are sufficiently 
smooth and integrable such that the arising coefficient functions fa and fa are well 
defined and the corresponding multiple stochastic integrals exist. 

Note that in (3.5.2) and (3.5.3) we have suppressed the dependence of fa and fa 
on u E [8(a) in our notation and we will do so also in the following when no 
misunderstanding is possible. 

Remark 3.5.2 Sharp conditions to be satisfied by the function f and the coeffi-
cients of the SDE (3.5.1) such that the coefficient functions fa and fa are well 
defined, and the corresponding multiple stochastic integrals exist, can be obtained 
by the definitions of the operators (3.3.4)-(3.3.7) and of the sets in (3.2.3). Alter-
natively, one can provide simple sufficient conditions. For instance, if the function 
f and the coefficients a, b, and c of the SDE (3.5.1) are 2(l(cr) + 1) times contin-
uously differentiable, uniformly bounded with uniformly bounded derivatives, then 
all coefficient functions and multiple stochastic integrals in the expansions (3.5.2) 
and (3.5.3) are well defined. 
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The proof of the Wagner-Platen expansion is based on the iterated application of 
the Ito formula. Since it is formally the same as in Platen (1982a, 1982b), it is here 
omitted. 

By choosing as function j the identity functions j(t, x) = x, we can represent the 
solution X = {Xt, t E [0, Tn of the SDE (3.5.1) by the Wagner-Platen expansion 

X T = ~ Ia[Ja(P, Xp)]P,T + ~ Ia[Ja(-, X.)]P,T (3.5.4) 
aEA aEB(A) 

and also by the compensated Wagner-Platen expansion 

XT = ~ Ia[la(P, Xp)]P,T + ~ Ia[!c,(·, X.)]p,Tl (3.5.5) 
aEA aEB(A) 

where P and T are two given stopping times with 0 :S P :S T :S T a.s. 

We remark that Wagner-Platen expansions are also generalizations of the determin-
istic Taylor formula. On the other hand, since they are obtained by an iterative 
application of the Ito formula, they generalize the Ito formula. As we shall see 
later, discrete time approximations of an Ito process will be constructed by using 
truncated Wagner-Platen expansions that neglect remainder terms. 

For instance, for the hierarchical set AE corresponding to the Euler scheme, with 
m = 1, we obtain from (3.5.4) the Wagner-Platen expansion 

X T = Xp + a(p, Xp) iT dz + b(p, Xp) iT dWz + 1,T 1c(p, X p, v)pq,(dv, dz) + R 

with remainder 

R iT is L(O)a(z, Xz)dzds + iT is L(1)a(z, Xz)dWzds 

+ 1,T 1,81L~-l)a(z, Xz)pq,(dv, dz)ds 

8+ iT 1L(O)b(z, Xz)dzdWs + 1,T 1,s L(1)b(z, Xz)dWzdWs 

+ iT is1L~-l)b(z, Xz)pq,(dv, dz)dWs 

+ iT li8 L(O)c(z, xz, v)dzpq,(dv, ds) 

..  
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+ 1T l1s L(1)c(z, X Z1 v)dW'zp"" (dv, ds) 

+ 1T118 1L~-l)C(Z, x z,v)p",,(dv, dz)p1> (du, ds). (3.5.6) 

There is an analogous Wagner-Platen expansion following from (3.5.5) where the 
Poisson measure is replaced by the compensated Poisson measure, the drift by the 
compensated drift and the Ito coefficient functions by their counterparts for the 
compensated case. Note that in this particular case (for the hierarchical set A E ), 

one can shmv that these two expansions are equivalent. However, in general these 
two expansions are different. 

3.6 Moments of Multiple Stochastic Integrals 

The lemmas in this section provide estimates of multiple stochastic integrals. These 
constitute the basis of the proofs of convergence theorems that will be presented 
later. We will consider both the case of multiple stochastic integrals fa [g(-)]P,T with 
respect to the Poisson jump measure and compensated multiple stochastic integrals 
farg(·) jp,T with respect to the compensated Poisson measure. The estimates to 
be derived in these two cases differ in the values of some finite constants, but 
show the same structural dependence on the length of the interval of integration 
(T - p). Because of the martingale property ofthe compensated Poisson measure P</J' 
the proofs flow more naturally in the case of the compensated multiple stochastic 
integral fa [g(.) jp,T' Therefore, in the following proofs we will first consider this case 
in full detail. Then, by using the decomposition 

p</J(dv, dt) = p</J(dv, dt) + ¢(dv)dt, (3.6.1) 

see (3.1.1), we will prove corresponding estimates for the case of multiple stochastic 
integrals fa [g(.) jp,r' 

The following lemma provides a uniform mean-square estimate of multiple stocha-
stic integrals. 

Lemma 3.6.1 Let a E Mm \{ v}, 9 E 1ia, 6. > 0 and p and T denote two stopping 
times with T being Ap -measurable and 0 ::; p ::; T ::; p + 6. ::; T almost surely. Then 
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i';- := E ( sup 	 Ap) ::;: 41(a)-n(a) ~l(a)+n(a)-l iT Vp,z,s(a) dz,1Ia[g(-)]p,sI2 	 (3.6.2) 
p-:::;S-:::;T 	 p 

and 

F;- := E ( sup IIa [g(·)Jp,sI2 A )p < 41(a)-n(a) ~l(a)+n(a)-l ks(a) iT V - p,z,s(a) dz , 
p-:::;S-:::;T p 

(3.6.3) 
wheTe 

Vp,z,s(n) := l' .··1 E (s,up Ig(t, al , ... "us(a)W Ap) cfJ(dv 1 ) ... cfJ(dv,,(n)) < 00 
E 	 [. PSct-:::;z 

(3.6.4) 
JOT Z E [p, T], and k = ~(4 + TA). 

Proof: We will first prove assertion (3.6.2) by induction with respect to l(o:). 

1. 	 Let us assume that l(o:) = 1 and 0: = (0). By the Cauchy-Schwarz inequality 
we have the estimate 

I'{ g(z) dzl' 0; (8 - p) .{ 19(z)12 dz. (3.6.5) 

Therefore, we obtain 

F~O) 	 = E (sup IJt g(z) dzl2 Ap) 
p-:::;S-:::;T p 

< 	 EC~\:~}S -p) [19(z)1 2 dz Ap) 

E ((T - p) .{ 19(z)12 dz Ap) 

< 	 6 E (.{ Ig(z)1 2 dz Ap) 

~ 	1T E(Jg(z)12IAp) dz 



32 CHAPTETi 3. STOCHASTIC EXPANSIONS \VITH JUIvIPS 

41(a)-n(a) 6 1(a)+n(a)-1 iT V dzp,z,s(a) , (:3.6.6) 
p 

where the interchange between expectation and integral holds by the Ap-
measurability of T and an application of Fubini's theorem. 

2. When l(o:) = 1 and a = (j) with j E {l, 2, ... 1 m}, we first observe that the 
process 

{Ia[g(')]p,tl t E [p, T]} = {it g(8) dWl, t E [p, T]} (3.6.7) 

is a local martingale. Since 9 E H(j), by (3.2.3) it is also a martingale. 
Therefore, applying Doob's inequality, see Appendix A, and Ito's isometry 
we have 

i'Y) E(sup 1 rg(z) dw:1 2 Ap)
p:;'S:;'T Jp 

< 4 E(I [ g(z) dWfl' Ap ) 

4 E (1' Lq(z)1 2 dz Ap) 

4 iT E (lg(Z)\2\Ap ) dz  

< 4 r E (SUp Ig(tW Ap) dz Jp p:;'t-:;z 

41(a)-n(a) 6 1(a)+n(a)-1 iT V dzp,z,s(a) . (3.6.8) 
p 

Here again the interchange between expectation and integral holds by the 
Ap-measurability of T and Fubini's theorem. 
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3. 	 Let us now consider the case with l (0:) = 1 and 0: = (-1). The process 

{L[g(·)]p,t, t E [p, Tn = {it 1g(s-, v) p1>(dv, ds), t E [p, Tn (3.6.9) 

is by (3.1.1) and (3.2.3) a martingale. Then, by Doob's inequality and the 
isometry for Poisson type jump martingales, we obtain 

F(-l) E 	(sup 1 t rg(z-, v) p1>(dv, dZ)1 2 Ap)T p5.S5.T Jp Jt: 
2 < 4 E (I [ Lq(2,1)) iJ.(dV,dZ)1 Ap) 

4 E (1'1jq(z, v)12 ¢(dv) dz Ap) 
4 iT 1E (lg(z,v)12IAp) ¢(dv)dz  

< 4 [ 1E C~:~)q(t, v)12 Ap) q,(dv) dz  

41(a)-n(a) i\ l(a)+n(a)-l 1T v: () dz 
U 	 P1Z1S a , (3.6.10) 

p 

since s(o:) = 1. This shows that the result of Lemma 3.6.1 holds for l(o:) = 1. 

4. 	 Now, let l(o:) = n + 1, where 0: = (jl, ... ,jn+l) and jn+l = o. By applying 
the Cauchy-Schwarz inequality we obtain 

F: = E (sup 1 t Ia-[g(·)]p,z dzl2 Ap)
p5.S5.T Jp 

< EC~~~Y-p) l' 110.[g()J",[2 dz Ap) 

E ((7 - p) 1'110 -[9(-)J",12dz Ap) 

< tl E(1'110 -[9(.)Jp"I' dz A,) 

...  
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(3.6.11 ) 

Then, by the inductive hypothesis it follows that 

11(a)~~n(a) ;\ l(oc)+n(oc)-l /7 T7 i 	 (:3.6.12)'± Ll v p,Z,8(OC) CZ, 
.p 

where the last line holds since 1(0:) 1(0:-) + 1, 71(0) 71(0:-) + 1 and 
5(0:) S(o:-). 

5. 	 Let us now consider the case when l(o:) = 17,+ 1, INhere 0: = (jl,'" ,jn+d and 
jn+l E {I, 2, ... ,m}. The process 

(3.6.13) 

is again a martingale. Therefore, by Doob's inequality and Ito's isometry we 
obtain 

F; E (sup 1 rIa-[g(·)]p,z dW1n+11 
2 Ap)

p5,ss,:r Jp 

< 4 E(I [ 1.-[gO]p" dW;"+' rAp) 

4 E (1' II.-w(·l]p"I' dz Ap) 

< 4 E(1' p~~~y"-[gO]p,.I' dz Ap) 
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4 E ((7 - p) ,~~~y'o-[q()]p,,]' Ap) 

< 4'" F: (,~~~yo- [qO]p,,]' Ap) (3.6.14) 

By the inductive hypothesis we have 

F a < 4 J\41(a~)~n(n--) J\lCa~)+n(a~)~l 1T V. d 
7 W. W. 	 p,z,s(n~) Z 

- J\ l(,,)+n(a)~l 4l(a)~n(a) 17 V 

p 

() dz 
-	 .L...l p,z,s a: , (3.6.15) 

p 

since l(o;) = l(o;-) + 1, n(o;) = n(o;-) and 8(0;) = 8(0;-). 

6. 	 Finally, let us suppose that l(o;) n + 1, where 0; (jl,'" ,jn+d and 
jn+ 1 = -1. The process 

{Ia[g(-)]p,t, t E [p, Tn 	 (3.6.16) 

is again a martingale. Therefore, by applying Doob's inequality and the 
isometry for jump martingales, we obtain 

Fa E (sup 11s1ia~[g(-,vs(a))]p,z~ p<p(dvsCa ),dZ)12 Ap)7 
p~S~T P £ 

< 4 E (I [ 1L_[g("v,(n))]p,,_ ii.(dV'(OI,dZll' Ap)  

4 E ([ 1]1~-[9(" v,(n))lp,,]' </J(dv,(al ) dz Ap)  

< 4E (11' r sup lia~[g(·,vsCa))lp,sI2¢(dvs(a))dz Ap)  
p 	 Jt: p~S~7 

4 E ((T - p) r sup Iia~ [g(., vs(a») jp,s 12 ¢(dvs(a)) Ap)Jt: p'S.S~7 

< 	 4'" iF: C~~~y, [g(" v,(al )]p,,]' Ap) 4>(dv'«'I) , (3.6.17) 

..  
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By the inductive hypothesis we have 

= 41(n)-n(n) A l(n)+n(n)-l 1T V dO' 
L.l. 	 p,z ,s( n) 'N, (:3.0.18) 

P 

since l(Q) = l(Q-)+l, n(Q) = n(Q-) and s(Q) = s(Q-)+l, which completes 
the proof of assertion (3.6.2). 

To prove assertion (3.6.:3) we can proceed in a similar way by induction ,vith respect 
I(Q). The idea, which will be used also in other lemmas, is to rewrite the Poisson 
jump measure as a sum of the compensated Poisson measure and a time integral 
as follows by (3.6.1). 

Let us consider the case of l(Q) = 1 with ex = (-1). By (3.6.1) and the Cauchy-
Schwarz inequality, we have 

2F(-l) = 
r E (sup liS I' g(z-, v) p¢(dv, dZ)1 Ap)

p~s~r p Jf 

E (sup liS I' g(z-, v) p¢(dv, dz) + is I' g(z, v) ¢(dV)dzI2 Ap) 
p~s~r p Jf 	 p Jf 

< 2E (,,~~~, Ii( 1)[g()]p,i' Ap) 
2

+2E (sup I~O)[ I' g(-,V)¢(dv)]p,rI Ap) . 	 (3.6.19)
p~S~T Jf 

By applying the estimate of the already obtained assertion (3.6.2) and the Cauchy-
Schwarz inequality, we have 

F~-l) s stl E (,,~~~.19(t'V)12 A};(dV)dZ 

+2l'.,{ E (,,~~~.Il g(t, v)<I>(dv) I' Ap) dz 
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< 4K iT ~,z,s(a) dz 

41(a)-n(a) A l(a)+n(a)-l Ks(a) jT V () dz 
U p,z,s a , (3.6.20) 

P 

with K = 1(4 + TA). 

To finalize the proof we consider the case of l(ex) = n + 1 where Q = (jl,'" ,jn+d 
with jn! 1 -1. By (3.6.1), the Cauchy-Schwarz inequality, Doob's inequality, the 
Ite) isometry and similar steps as those used in (:Hi.17) and (3.6.11), one obtains 

2F!;' E (~UI; I t r1o:_[g(-,vs(o:))]P.z_ P4)(dV S (0:),dz)1 Ap) 
P':::cS':::cT Jp J[ 

2< 2E (~up I IS r1o:_[g(-,vs(o:))]p,z_ Pq,(dV S (O:l,dZ)1 Ap)
p~S-:;T • P J[ 

+2E (sup I t r1o:-[g(-, vs(n»)]p,z_ ¢(dvS (a»)dZI 2 Ap) 
p-:;S-:;T Jp J[ 

< 8/".i 8 C~t~~Yn- [g(., ,,'(aJ)Ip.,I' Ap) 4>(dlJ'la)) 

+2A~2 r E ( sup l1n __ [g(')]p,sI2 Ap) ¢(dvs(er»). (3.6.21)J[ p-:;S-:;T 

By the induction hypothesis, we finally obtain 

Fer < 86 4l (er- )-n(a-) 6 l (er- )+n(n- )-1 i(s(er-) liT V . _ dz"'(dvs(er»)
T p,z,s(a) 'P  

E p  

+2 A 6 T 41(a-)-n(er-) 6 l(er- )+n(n-) 1Ks(n-) IjT V . _ 'Pp,z,s(n) dz-+'(dvs(a») 
[ p 

< 4l(n)-n(n) ~l(a)+n(n)-l Ks(n) jT V .() dz (3.6.22)p,z,s a , 
p 

which completes the proof of Lemma 3.6.1. 0 

The following lemma provides an estimate for higher moments of multiple stochastic 
integrals. A similar result is presented in Li & Liu (2000). 

Lemma 3.6.2 Let Q E Mm \ {v}, 9 E He" and p and T denote two stopping times 

..  
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with 1 being Ap-measurable and 0 :s: p :s: 1 :s: T almost surely. Then for any 
q E {l, 2 ... } there exist positive constants C1 and C2 independent of (I - p) such 
that 

F:- E (I lolg()]p,rj" Ap) 
< C

1 
(I - P)q(I(Q)+n(Q)-s(Q»)+S(Q)-l iT v: dz , (3.6.23)_ 	 p,Z,S(Q) 

p 

and 

F:- E (I laLqO]p"I'q Ap) 
< 	C (I - )q(I(Q)+n(Q)-s(Q»)+S(Q)-l iT v: dz 
_ 2 P 	 p,z,s(Q) , (3.6.24) 

p 

where 

Vp",,(ai :~ 1· .. 1E (19(Z' v" ... ,V,(oi) I,q Ap) 4>(dVj) ... 4>(dV,(oi) < 00 

for z E [p"l. 

Proof: We will first prove the estimate (3.6.23) by induction on l(a:). 

1. 	 Let us first prove the assertion for a multi-index a: of length one, which means 
1(a:) = 1. When l (a:) = 1 and a: = (0), by applying the Holder inequality, see 
Appendix A, we obtain 

< (I - p?q-1 iT E (lg(z)1 2q lAp) dz 	 (3.6.25) 

C(I - p)q(I(Q)+n(Q)-s(Q»)+S(Q)-liT E (lg(z)1 2q!Ap) dz. 

Note that here and in the following we denote by C any finite positive constant 
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independent of (T - p). 

2. 	 For l(a) = 1 and a = (j), with j E {1,2 ... , m}, we obtain, see Krylov 
(1980), Corollary 3, page 80, 

F;i1 :~ E (I 1'g(Z)dWf Ap) 
< 2q(2q - l)q(T - p)q~l 1T E (lg(z)1 2q lAp) dz (3.6.26) 

C(T - p)q(l(Oi)+n(u)~s(u))+S(Oi)~l 1T E (lg(z)1 2q IA ) dz.p 

:3. For 	l(ci') = 1 and C1' = (-1), let llS define 

X T 	 = r r g(z-, 'U )p¢(dv, dz).J	 J£p 

By applying ItO's formula to I:G T 12'1 together with the Holder inequality, we 
obtain 

IxT I2q r 1(Il;z~ + g(z-, v)1 2q- Ixz_12q )p¢(dv, dz)Jp £ 

< (22q~1 - 1) 1T llxz~ 12'1 p¢(dv, dz) 

+22q- 1 1T1Ig(z-, v)1 2qp¢(dv, dz). (;3.6.27) 

Therefore, by the properties of the Poisson jump measure, we have 

E(lxTI2q IAp) :::; 	 (22q~1 - 1)'\ 1T E(lxzI 2q IAp) dz 

+22q~1 1T1E(lg(z, v)1 2q IAp)¢(dv) dz, (3.6.28) 

where we recall that ,\ = ¢(£) is the total intensity. Moreover, let us note 
that, by the first line of (3.6.27) and the properties of the Poisson jump 
measure, we obtain 

E(lxTI2Q IAp) = 1T1E ( (Ixz+ g(z, v) 12q Ixz 12Q ) lAp) ¢(dv) dz, 
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which proves the continuity of E(lxT I2Q IAp ) as a function of T. Therefore, 
by applying the Gronwall inequality (1.2.9) in Appendix A to (3.6.28), we 
obtain 

< exp {(22q - 1 - 1) A (T - p)} 22q - 1 

X 1T 1E(lg(z, v)1 2q IAp)¢(dv) dz 

< exp {(22q - 1 - 1) AT} 22q - 1 

x 1T 1E(lg(z, v)1 2q IAp)¢(dv) dz 

C (T - p)q(l(a)+n(a)-s(a))+S(a)-1 (3.6.29) 

2x [ 1E(19(2, v.,(<») 1, Ap) 4>(dV,(u») dz. 

Finally, by (3.1.1), the Holder inequality, (3.6.29) and (3.6.25), we obtain 

p( -1) = 
T E (11' .l g(Z~, v)p¢(dv, dz) ~ [ 1g(2, v)4>(dv) dzI 2Q Ap) 

22q< - 1{ E (11' 19(Z~'V)P¢(dV,dZf Ap) 

+E (11' 1g(z, v)4>(dv) df Ap ) } 

T x {1 1E (Ig(z, v)1 2Q lAp) ¢(dv) dz 

+[ E (11 g(z,v)4>(dvJi" Ap) dZ} 



41 

r  

3.6. AI0l\1ENTS OF MULTIPLE STOCHASTIC INTEGRALS 

4. 	 Let us now consider the case 1(0:) = n + 1 and 0: = (jl,'" ,jn+d, with 
jn+l = O. By (3.6.25) and the inductive hypothesis, we get 

F; .~ E (I 1'Iu-Lq(')lp"df Ap) 

< (7 - p)'q-l [ E (IIo_[9(')lp,,1 2Q Ap) ds 

< C (T - p)2q-l (T _ p)q(l(a- l+n(a- l-s(a- l)+s(a- l-1 

x iT is Vp,z,s(a- ldz ds 

C ( - )q (l(a)+n(al-s(al) +s(a)-1 1T V d (3.6.30)T P 	 p,z,s(a) z, 
p 

where the last line holds since 1(0:) = 1(0:-) + 1, n(o:) = n(a-) + 1 and 
s(o:) = s(o:-). 

5. 	 When l(o:) = n + 1 and 0: = (jl, ... ,jn+d, with jn+l E {1,2, ... , m}, by 
(3.6.26) and the inductive hypothesis, we obtain 

F,u .~ E (I 1'Iu-[g()]p"dw;n+f Ap) 

< 2q (2q - 1)q(7 - p)q.l [ u .LQ(.)]p,,1 2Q Ap) dsE (II
< C (T - p)q-l (T _ p)q(l(a-)+n(a-)-s(a-l)+s(a-)-l 

x iT is Vp,z,s(a-)dz ds 

C ( - )q(l(a)+n(a)-s(a))+s(a)-llT V d 
T P 	 p,z,s(a) z, 

p 

where the last line holds since 1(0:) = 1(0:-) + I, n(o:) = n(o:-) and s(o:) = 
s(o:-). 

6. 	 Finally, let us suppose that 1(0:) = n + 1 and 0: = (jl," . ,jn+d, with jn+l = 
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-1. By (3.6.29) and the inductive hypothesis, we obtain 

F; '... E(I'{11".[9(', V,(a))]p.,.p.(dv.,(a) ,dsf Ap) 

< c.{1E (11a.[9(" V,(a))]'" I" Ap) 4>(dV,(a)) ds 

< C (7 _ p)q(l(a-)+n(a-)-s(a-l)+s(a-)-l 

x iT is 1Vp,z,s(o:-)¢(dVs(a»)dzds 

C ( - )q(l(a)+n(0:)-8«(\'))+s(n l - l l T V d< 7 P p,z,s(n) Z, (3.6.:31) 
p 

where the last line holds since l(o:) = l(o:-) + 1, n(o:) = n(o:-) and s(o:) = 

s(o:-) + I, and this completes the proof of the assertion (3.6.23). 

The assertion (3.6.24) can be proved similarly by induction on [(0:). The case 
of l(o:) = 1 with 0: = (-1) has been already proved in (3.6.29). The case of 
l(o:) = n + I, with 0: = (jl,'" ,jn+d and jn+l = -I, can be proved by using 
(3.1.1), the Holder inequality, the inductive hypothesis, (3.6.30) and (3.6.31). This 
completes the proof of Lemma 3.6.2. 0 

Let us introduce some notation needed for the following lemma. For any z E IR, let 
us denote by [z] the integer part of z. Moreover, for a given integer pEN we will 
use the set Ap of multi-indices 0: = (jl,'" ,jl) of length [ ::s p with components 
ji E {-I, O}, for i E {I, ... , l}. For a given function h : [p,7] X IRd -----t JR, to be 
defined in the lemma below, and a multi-index 0: E Ap , we consider the coefficient 
function J(\' defined in (3.3.9), with f( t, x) = h(t, x). For instance, if 0: = ( -1,0,0), 
then Ja(t, X t ) = L~-l)'DO) DO)h(t, X t ). 

Furthermore, for pEN, we denote by cP,2p ([p,7] x IRd,IR) the set of functions 
that are p times continuously differentiable with respect to time and 2p times 
continuously differentiable with respect to the spatial variables. 

By using Lemma 3.6.2 we prove the following result similar as in Liu & Li (2000). 

Lemma 3.6.3 Consider 0: E MmJ p = l(o:) - [1(a)~n(a)L and let p and T be two 
stopping times with 7 being Ap-measurable and 0 ::s p ::s T ~ T almost surely. 
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Moreover, define the process Z = {Zt = h(t, X t ), t E [p, T]}, with h E Cp,2p([p, T] x 
1Ftd ,1Ft). Assume that there exist a finite positive constant K such that for any 
a E Ap we have the estimate E(.1c~(t,Xt)2'Ap) ::; K a.s. fort E [p,T]. Additionally, 
consider an adapted process g(-) E Hc" where 9 = g(., v) with v E [s(a). If there 
exists a positive, ¢(dv)-integrable function K(v) such that E(g(t, v)2IAp) < K(v) 
a.s faT t E [p, TJ, then we obtain 

jE(ZT Z,[g(-)]PJIAp) j ::; C1 (T - p)l(a), (3.6.32) 

and 
jE(ZT Ia[gC)]p'TIAp) I::; C2 (T - p)l(a), (3.6.33) 

where the positive constants C1 and C2 do not depend on (T - p). 

Proof: Let us first prove the assertion (3.6.32) by induction on lea). For leo:) = 0 
we can prove (3.6.32) by applying the Cauchy-Schwarz inequality 

IE(ZTg(T)IAp)!::; VE(Z;IAp)JE(9(T)2IAp)::; C, 

where we denote by C any constant that does not depend on (T - p). However, it 
may depend on a, "\, T, hand g. 

Now consider the case l(a) = n + 1. By Ito's formula we have 

ZT Zp + iT L(O) h(z, Xz)dz +t iT L(i) h(z, Xz)dW; 
p i=l p 

+ iT 1L,~-l) h(z, Xz_)p¢(dv, dz), 

where the operators L(i), with i E {O,l, ... ,m}, and L~-l) are defined in (3.3.4)-
(3.3.6). 

1. If ex = (jll ... ,jl+d with jl+1 = -1, we can write 

la[g(')]p'T = iT 1Ia-[gU]p,z-P<t>(dv,dz) -iT 1Ia-[g(')]p,z¢(dv)dz. 

~ 
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By the product rule of stochastic calculus we obtain 

ZTIa(g(-)]p'T = iT {(L(O)h(z, Xz))!a[g(-)]p,z 

-h(z, X z)1Ia- [g(-)]p,z~(dv) }dz 

+t.{ (L(i1h(z, Xo)) Io[g(·)]",dW; 

+ iT 1{h(z, Xz-)Ia-[g(-)]p,z-

+(L~-l)h(z, Xz-))Ia[g(-)]p,z-

+(L~-l)h(z, Xz-))fa-[g(-)]p,z- }p¢(dv, dz).  

Therefore, by the properties of Ito's integral and the induction hypothesis we 
have 

IE (ZTfa[g(-)]P,TIAp) I - I-iT E(h(z,xz)1fa_[g(')]p,z¢(dv)IAp)dz 

+ iT 1EUh(z,xz) + LS-1)h(z,Xz)} 

xfa-[gC)]p,zIAp )¢(dv)dz 

+ iT E((L(O)h(z,)'C))L[g(-)]p,zIAp)dz 

+ iT 1E((L~-l)h(z,Xz))!a[g(·)]p,zIAp)¢(dv)dzl 

< C (7 - pt+1 

+ iT IE( (i}O)h(z, X z)) Ia[gO]p,zIAp ) /dz, (3.6.34) 

where we have used the equality (3.3.7). 

Note that j)O)h E O-1,2(p-l)([p,T] x lRd,lR) and we have the estimate 
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for t E [p, T]. Therefore, by the same steps used so far, we can show that 

IE ( (DO) h(T, Xz) )la[g(· )]p,zIAp) I (3.6.35) 

z::; C (z - p)n+l + l IE( (DO) (DO) h(Zl' XzJ) ) Ia[gO]p,zl lAp) !dzl, 

for Z E [p,TJ. 

By using (3.6.35) in (3.6.34), we obtain 

IE (ZTfa[gU]p,TIAp) I 
::; C(T - p)n+l (3.6.36) 

+ r t2jE ( (1)0) (DO) h(Zl' X Z1 ))) Z,[gU]p,zIIA p) jdz1dz2.J Jp p 

By applying again this procedure for p - 2 times and by using the Cauchy-
Schwarz inequality ·we obtain 

IE( ZTfa[g(.)]p'TIAp) j 

::; C (T - p)n+l 

+jT ... jZ21E(Jap(Zl,Xzl)Zx[gO]p,zIIAp)ldZl" .dzp 
p p 

::; C (T _ p)n+l 

+ IT···lz2 [E(Jap(Zl,XZl)2IAp)]~ 
1 

X [E( (Ia[g(')]p,zl)2 IAp )] '2 dz1 .•. dzp , (3.6.37) 

where CY p is defined as the multi-index with length p and all zeros, which 
meaIlS l(CYp ) = n(cyp ) = p. Therefore, Jap(t, Xt) denotes the stochastic process 
resulting from applying p times the operator L(O), see (3.3.7), to h(t, Xt). Note 
that C denotes here a different constant from that in (3.6.34). 

Finally, by applying the result (3.6.23) of Lemma 3.6.2, with q 1, to the 
last term in (3.6.37) and considering that one has the estimates 
E(Jap(t, Xt)2IAp) ::::: K < 00 and E(g(t, v)2IAp) ::::: K(v) a.s. for t E [p, TJ, 

..  
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with K(v) ¢(dv)-integrable, we obtain 

1T 1Z2 l(a)+n(n)+K p ... p (T - p) dZ l ... dzp2 

< C(T_p)l(ex),  

which proves the case of a = (jl," . ,jl+d with jl+l = -1.  

2. If a = (jl,'" ,jl+d with jl+1 = 0, we can write 

The product rule for stochastic integrals yields 

ZT1ex[g(')]p,T = iT {(L(O)h(z, Xz))I.[g(·)]p,z + h(z,Xz)Ia-[g(·)]p,z }dz 

+f 1T (L(i)h(z, X z)) Ia[g(-)]p,zdW; 
i=l p 

Therefore, similar to (3.6.34), by the properties of Ito's integral and the 
induction hypothesis one obtains 

IE(ZTla[gO]p,TIAp) 1 ::; C (T - pt+1 

+ iT IE( (L(O) h(z, X z))Iex[bO]p,zIAp) Idz. 

Then, by applying again this procedure for p - 1 times, and by using the 
Cauchy-Schwarz inequality and the same estimates as before, we have 

1 

x [E( (Iex [gU]p,zl)2 IAp )]:2 dz1 ... dzp 

< C (T _ p)l(a), 
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where lap (t, Xd denotes the stochastic process resulting from applying p 

times the operator L(O), see (3.3.4), to h(t, X t ). 

3. 	 Let us finally consider the case a = (jl,"" jl+d with jl+l (j) and j E 

{I, ... ,m}. Here, we have 

L[gC)]P,T = 17 l,-[g(-)]p,zdH'!. 

Therefore, by applying the product rule for stochastic integrals we obtain 

Z7 I ", [g(. )]P,T 1T { (L(O) h(z, Xz)) !",[gU]p,z + (LU) h(z, X z )) !",- [gU]p,z }az 

+t 1,7 (L(i) h(z, X z )) L[gC)]p,zdvV; 
;=1 p 

+17 h(z, Xz)!",-[g(')L,zdH'1 

+j'7 r {(L~-l)h(z,Xz_))!",[g(-)lp,z_ }pq;(dv,dz). 
p J[ 

Again, by the properties of the ItO integral and the induction hypothesis we 
have 

!E(ZT!",[g(')]P,7I A p)! S C(T_p)n+l 

+ 1,T !E( (L(O)h(z, Xz))!",[g(')]p,zIAp) !dz, 

as in the previous case of a = (jl,'" ,jl+l) with jl+1 = O. Therefore, in the 
same way, we can obtain the assertion (3.6.32). 

To prove the estimate (3.6.33) we need only to check the case of l(O') = n + 1 with 
a = (h,··. ,jn+d and jn+l = -1. 

ill 
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By using the product rule of stochastic calculus one obtains 

Zr1a[g(')]p,T = iT (L(O)h(z, Xz))la[g(-)]p,zdz 

+t iT (L('i) h(z, X z ) )lc,[g(· )]p,zdW; 
i=l p 

+ iT 1{h(z,Xz-)Ia-[g(·)]p,z- + (L~-l)h(z,Xz_))la[g(-)]p,z_ 

+(L~-l) h(z, X z-)) Ia- [g(·)]p,z- }p</>(dv, dz). 

By the properties of Ito integrals and the induction hypothesis we obtain 

IE(ZT1a[g(,)]p'TIAp) I = liT 1E({h(z,Xz)+L~-l)h(z,XJ}  

X 10 _ [g(. )]p,zIAp) </J(dv)dz  

+ iT E((L(O)h(z,Xz ))la[g(')]p,zIAp)dz 

+ iT 1E((L~,-l)h(z,Xz))Ia[g(·)]p,zIAp)</J(dv)dzl 

< C(T _ p)n+l 

+ iT IE((DO) h(z, X z ) )la[g(·)]p,zIAp) !dz, (3.6.38) 

where we have used again the equality (3.3.7). 

From this point we can proceed in the same way as in the proof of assertion (3.6.32). 
This completes the proof of Lemma 3.6.3. 0 

We also propose the following lemma, similar to a result in Liu & Li (2000).

Lemma 3.6.4 Let a E M m , p and T denote two stopping times with T being Ap-
measurable and 0 ::; P ::; T ::; T almost surely. Moreover, let h = {h(t), t E [p, Tn 
be an adapted process such that E (h( t )2IAp) ::; K < 00 for t E [p, T]. Additionally, 
consider an adapted process g(-) E Hal where 9 = g(-, v) with v E £s(a). If for a 
given q E {1, 2 ...} there exists a positive, </J(dv) -integrable function K (v) such that 
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E(g(t, V)2S(a)+3QIAp) < K(v) a.s. for t E [p, TJ, then we obtain 

i':: := E ( h(T) l.fa [g(.) jp,T rq lAp) ::; C 1 (T - p)q (l(a)+n(a)-s(a») +s(a) , (3.6.39) 

and 

F:: 	:= E ( h(T) I Ia [g(-) jp,T 12q lAp) ::; C2 (T - p)q (l(a)+n(a)-s(a») +s(a) , (3.6.40) 

where the positive constants C1 and C2 do not depend on (T - p), 

Proof: We first prove the estimate (3.6.39) by induction with respect to s(a). 

1. 	 If s(a) 0, then by the Cauchy-Schwarz inequality and Lemma 3.6.2 we 
obtain 

F: = E (h(T) 1a[g(')]p'TI 2Q IAr,)1 

< [E (h(T)2IAp) ]! [E (ll,[g(-)]p,TI 1Q lAp) ]! 
< C (T _ p)Q(I(a)+n(a»). 

Note that here and in the following we denote again by C any positive con-
stant that does not depend on (T - p). 

2. 	 Let us consider the case s(a) = s E {I, 2, ... }. 

By the relationship 3.2.7 and some straightforward estimates we obtain 

F:: ::; C{ E (h(T) IIa[g(-)]p,TI 2q lAp) 

25 (ct) -1 

+ 	L E (h(T) IHa,;j2q lAp) }, (3.6.41 ) 
i=1 

where terms Ha,i are described in Remark 3.2.1. 

Since s(a) = s E {1,2, ... }, we can write a = aj * (-1) * a2* (-1) ... * 
(-1) *as+l, where s(aj) = 0 for j E {1,2, ... ,s + I} and * denotes the 
concatenation operation on multi-indices defined in (3.2.2). 

~  
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Thus, 
pq,(r)

L f al [gC) ]p,rp 
i=p<t> (p)+ 1 

where Ti, with i E {I, 2, ... ,pq,(T)}, are the jump times generated by the 
Poisson measure. Similarly, one can show that 

pq,(r) 

fa[gC)]p,r = L fal[g(')]p,r, fa2 ;ri,ri+I'" Ias+l;ri+s_l,r, 
i=pq,(p)+l 

where fo);ri,Ti+l = faj [l]ri,Ti+1 denotes the multiple stochastic integral for the 
multi-index Qj over the time interval [Ti, Ti+d. Let us note that fa[g(')]P,T = 0 
if Pq,([p, T)) < 8. Therefore, by the Cauchy-Schwarz inequality and Lemma 
3.6.2, we obtain 

xp(Pq,([p, T)) = n) 

< e->.(r-p) L(n - 8+ 1)2q-l ('\(T:' p)f nfl [E (h(T)2IAp) ] ~ 
n~s i=l 

1 1 

X [E (I fal [gO]p,ri 1
8q lAp) r[E (I I02;Ti,Ti+1116q lAp) ] 8 

2S+X ... x [E (I IQs+I;ri+s_l,T 1 3q lAp) ] ~ 

< Ce->.(r-p) ~(n _ 8 + 1)2q-l (.\(T - p)f 
L.t n! 
n~s 

n-s+1 
X L (T - p)q L;:t: (l(ai)+n(a;)) 

i=l 
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< C (T _ p)q (l(a)+n(a)-s(a)) +8(a). (3.6.42) 

Note that the last line of (3.6.42) follows by 

I)n - s + 1)2qAn(T - p)n-s 
n2s n! 

~ (A) S L00 

(j + 1)2q (j + s) ... (j + 1) (A (T ~ p)) j 
j=O J! 

00 

~ K L(j + s?q+s (A(T - p)Y 
j=O j1 

<: K {t, (>'(T ~ p)V -I t,lq+< (>'(T ~ p)V} 

= K eA(r-p) (1 + B2q+8 (>,(T - p))) 

<_ K e).,(r-p) , 

where we denote by Bn(x) the Bell polynomial of degree n, see Bell (1934). 

To complete the proof we have to show that the bound (3.6.42) also holds 
for the other terms in (3.6.41). Note that, as shown in Remark 3.2.1, the 
terms Ha,i, for i E {I, ... , 2 8 (a) - I}, involve multiple stochastic integrals 
with the same multiplicity l(Q) of the multiple stochastic integrals Ia and 
replace some of the integrations with respect to the Poisson jump measure 
p¢ with integrations with respect to time and to the intensity measure <p. 
Therefore, by following the steps above, one can easily establish the bound 
(3.6.42) for all terms in (3.6.41). This completes the proof of Lemma 3.6.4. 
o 

3.7 Weak Truncated Expansions 

In this section we present weak truncated Wagner-Platen expansions that will be 
used in the construction of weak schemes for Monte Carlo simulation . 

..  
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For (3 E {1, 2, ... } we define the hierarchical set 

rf3 = {ex E Mm : l(o:) ::; (3}. (3.7.1) 

By (3.7.1) and (3.4.1) the corresponding remainder set is then 

(3.7.2) 

We consider the truncated weak Ito- Taylor expansion 

TJt = L Ia[Ja(O, Xo)]o,t, (3.7.3) 
aEf/3 

for t E [0, T], where fa are the Ito coefficient functions defined in (3.3.8) corre-
sponding to f (t, x) = x. Moreover, we assume that the coefficients of the SDE 
(2.1.2) are sufficiently smooth and integrable such that for any ex E r f3 UB(rf3 ) 
the coefficient functions fa are well defined and all the multiple stochastic integrals 
exist. We also have the truncated compensated weak Ito- Taylor expansion 

Tit = L Ia[ia(O, XO)]O,h (3.7.4) 
aEf/3 

for t E [0, T], where ia are the Ito coefficient functions defined in (3.3.9) corre-
sponding to f(t,x) = x. 

In what follows we shall fix a (3 E {1, 2, ...} and write 

1Jt = L Ia [Ja (Xo)]t, (3.7.5) 
aEf,(J 

and 

Tit = L Ia[ia(Xo)]h (3.7.6) 
aEf,(J 

for t E [0, T]. Let us denote by Xi the solution of the SDE (2.1.2) that starts from 
d 

Y E lR at time t = 0. 

Lemma 3.7.1 Let (3 E {1, 2, ...} and T E (0, (0) be given and suppose that the 
drift) diffusion and jump coefficients of the SDE (2.1.2) are smooth enough to 
apply the Wagner-Platen expansions with hierarchical set r f3, see also Remark 3.5.2. 
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Then we have 
X;o -17t = L Ia[Ja(X.xO)]t (3.7.7) 

aEB(f,6) 

and 
X;O - ift = L la[ia(XXO)]t, (3.7.8) 

aEB(f,6) 

for all t E [0, T]. 

Proof: By using (3.7.5) we obtain 

X;O - 17t X;O - Xo - (7]t - Xo) 

X;o - Xo - L Ia[Ja(Xo)k (3.7.9) 
aEf,6\{v} 

Moreover, by the Wagner-Platen expansion (3.5.4) and (3.7.1) we have 

X;o - Xo L Ia[Ja(Xo)]t + L Ia[Ja(XxO)Jt. 
aEf,6\{v} aEB(f,6) 

Inserting the last equation in (3.7.9) we obtain (3.7.7). In the same way one can 
prove (3.7.8) 0 

By similar arguments as those used in the standard proof of the existence and 
uniqueness of the solution of the SDE (2.1.2), see Ikeda & Watanabe (1989), one 
obtains the following lemma. 

Lemma 3.7.2 Let T E (0, 00) be given and assume that the drift, diffusion and 
jump coefficients of the SDE (2.1.2) satisfy Lipschitz and linear growth conditions. 
Then, for each p E {I, 2, ...} there exists a constant K E (0, 00) such that 

E( sup IXiI2Q!Ao) :::; K(1 + iyI2Q), (3.7.10) 
O:<:;t:<:;T 

for all y E JRd, t E [0, T] and q E {I, ... ,p}. 

~  
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Chapter 4 

Regular Strong Taylor Approximations 

In this chapter ,ve present regular strong approximations obtained directly from 
a truncated Wagner-Platen expansion. The desired strong order of convergence 
determines how many terms of the stochastic expansion one should include in the 
approximation. \Ve call these schemes TeglLla:r strong approximations as opposed 
to the jump-adapted strong approximations that will be presented in Chapter 6. 
The term rcg'ulaT refers to the time discretizations used to construct these approx-
imations. These are called regular because they do not include the jump times 
of the Poisson random measure. A convergence theorem for approximations of 
any given strong order of convergence r E {0.5, 1, 1.5,2, ...} will be presented at 
the end of this chapter. Some of the results in this chapters have been published 
in Bruti-Liberati, Nikitopoulos-Sklibosios & Platen (2006) and 8ruti-Liberati & 
Platen (2007 c). 

4.1 Introduction 

First we consider, for simplicity, the one-dimensional SDE, d - 1, in the form 

dXt = a(t, Xt)dt + b(t, XddWt + i c(t, X t-, v) pq,(dv, dt), (4.1.1) 

for t E [0, T], with Xo E IR and VV = {Wt, t E [0, T]} an A-adapted one-dimensional 
Wiener process. As previously, we assume an A-adapted Poisson measure pc/)(dv, dt) 
with mark space E ~ IR\{O}, and with intensity measure ¢(dv) dt = A F(dv) dt, 
where F(·) is a given probability distribution function for the realizations of the 
marks. 

55 
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The SDE (4.l.1) can be written in integral form as 

X t = X o + ta(s,Xs)ds+ tb(s,Xs)d~Vs+ t rc(s,Xs_,v)pq,(dv,ds)Jo Jo Jo Jt: 
t t P<t>(t) 

= Xo +1a(s, Xs)ds +1b(s, Xs)dWs + ~ C(Ti' x T;-, ~i)' (4.l.2) 

where {(Ti' ~i)' i E {l,2 ... ,Pq,(t)} } is the double sequence of jump times and 
corresponding marks generated by the Poisson random measure. We express the ith 
mark at time Ti by ~i E [,. For simplicity, we have assumed a one-dimensional mark 
space [, ~ lR.\{O}. IVlulti-dimensional mark spaces can be similarly considered. 

The case of a mark-independent jump size, which means c(t,x,v) = c(t,x), is of 
particular interest as it simplifies the derivation and the implementation of nu-
merical schemes. Therefore, we also consider a one-dimensional SDE with mark-
independent jump size, which, in integral form, is given by 

(4.l.3) 

Later, we will present strong Taylor approximations for ad-dimensional SDE, as 
introduced in Section 2.1, given by 

(4.1.4) 

for t E [0, T], with Xo E IRd and W = {TVt = (W/, ... ,wtm)T, t E [0, T]} an 
A-adapted m-dimensional Wiener process. Moreover, p¢ is again an A-adapted 
Poisson measure. Here a(t, x) and c(t, x, v) are d-dimensional vectors of real valued 
functions on [0, T] X IRd and on [0, T] x IRd X [" respectively. Furthermore, b(t, x) is 
a d x m-matrix of real valued functions on [0, T] x lR.d . We recall that in this thesis 
we use superscripts to denote vector components. 

Moreover, we consider a regular time discretization °= to < tl < ... < tN = T, 
on which we will construct a discrete time approximation yb. = {~b., t E [0, Tn of 
the solution of the SDE (4.1.4). For a given maximum time step size 6. E (0,1) we 
require the regular time discretization 

(t)b. = {O = to < tl < ... < tN = T}, ( 4.1.5) 
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to satisfy the following conditions: 

P(tn+1 - tn :::; 6) = 1, ( 4.1.6) 

where 
tn+l is Atn - measurable, (4.1.7) 

for n E {O, 1, ... , N - I} and 

TZ,t := max{n E {O, I, ... } : tn :::; t} < 00 a.s., (4.1.8) 

denoting the largest integer n such that tn :::; t, for all t E [0, T]. Such a time 
discretization is called regular, as opposed to the jump-adapted one to be presented 
later in Chapter 6, because it does not include the jump times generated by the 
Poisson measure. For instance, we could consider an equidistant time discretization 
with nth discretization time tn = n6, n E {O, 1, ... ,N}, and time step size 6 = ii. 
However, the discretization times could also be random, as needed if one wants 
to employ a step size control. Conditions (4.1.6),(4.1.7) and (4.1.8) pose some 
restrictions on the choice of the random discretization times. Condition (4.1.6) 
requests that the maximum step size in the time discreti7:ation cannot be larger 
than 6. Condition (4.1.7) ensures that the length 6 n = tn+l - tn of the next 
time step depends only on the information available at the last discretization time 
tn. Condition (4.1.8) guarantees a finite number of discretihation points in any 
bounded interval [0, tl. 
For simplicity, when describing the schemes we will use the abbreviation 

f = f(tn, Yn) (4.1.9) 

for a function f when no misunderstanding is possible. For the jump coefficient we 
may also write 

c(v) = C(tnl Y;ll v) and C(~i) = c(tn' Y;" ~i)' (4.1.10) 

if convenient, where ~i is the 'ith mark of the Poisson measure. Similarly, \ve write 

c'(v) = c'(tn , Yn , v) and C'(~i) = c'(tn , Y;" ~i)' (4.1.11) 

Note that here and in the sequel the prime' in (4.1.11) denotes the derivative with 
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respect to the second argument, which is the spatial variable. Moreover, we will 
omit mentioning the initial value Yo and the step numbers n E {O, 1, ... ,N} if this 
is not confusing. 

4.2 Euler Scheme 

The simplest scheme is the well-known Euler scheme, which, in the one-dimensional 
case d = m = 1) is given by the algorithm 

P4>(t n +1) 

Yn + a~n + b~Wn + L C(~i)' (4.2.1) 
i=p¢(tn)+l 

for n E {O, 1, ... ,N - I} with initial value Yo = Xo. Note that a = a(tn' }~t), b = 
b(tn' Yn), c(v) = c(tn' Yn,v) and c(~d = c(tn' Yr"~'i)' according to the abbreviation 
defined in (4.1.9)-(4.1.11). Here 

(4.2.2) 

is the length of the time step size [tn' tn+ll and 

(4.2.3) 

is the nth Gaussian N(O, ~n) distributed increment of the Wiener process W, 
n E {O, 1, ... , N - 1}. Furthermore, 

p¢(t) = p¢(£, [0, t]) ( 4.2.4) 

represents the total number of jumps of the Poisson random measure up to time t, 
which is Poisson distributed with mean At. Finally, 

(4.2.5) 

is the ith mark of the Poisson random measure p¢ at the ith jump time Ti, with 
distribution function F(·). The Euler scheme (4.2.1) generally achieves a strong 

http:4.1.9)-(4.1.11
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order of convergence 'Y = 0.5, as will be shown at the end of this chapter. 

When we have a mark-independent jump size, which means c(t, x, v) = c(t, x), the 
Euler scheme reduces to 

Yn+l = Yn + a.6.n + b.6.Wn + c/J.Pn' (4.2.6) 

where 
.6.Pn = p<//tn+l) - p¢(tn) ( 4.2.7) 

follows a Poisson distribution with mean A.6.n . 

In the multi-dimensional case ,vith scalar driving Wiener process, which means 
Tn = 1, and mark-dependent jump size, the kth component of the Euler scheme is 
given by 

p¢(tn+ J) 

"rk yk k A bk A Lll 
1 n+ 1 = n + a un + U + L Ck(~i)' ( 4.2.8) VV n 

i=p¢(tn)+l 

for k E {I, 2, ... ,d}, where ak, bk, and ck are the kth components of the drift, 
diffusion and jump coefficients, respectively. 

In the multi-dimensional case with scalar 'Wiener process, Tn = 1, and mark-
independent jump size, the kth component of the Euler scheme is given by 

Y,~1 = Y,; + ak.6.n + bk.6.vVn + ck.6.Pn' (4.2.9) 

for k E {l,2, ... ,d}. 

For the general multi-dimensional case with mark-dependent jump size the kth 
component of the Enler- scheme is of the form 

m p¢(tn+ll 

Y k _yk kA '\"'bk,jAWj '\'" k(t)
n+1 - n + a Un + ~ U n + ~ C <"'i, 

j=1 i=p1>(t n )+l 

where ak and ck are the kth components of the drift and the jump coefficients, 
respectively, and bk,j is the component of the kth row and jth column of the 
diffusion matrix b, for k E {I, 2, ... , d}, and j E {I, 2, ... , Tn}. Moreover, 

vV j.6. vvTj = tn+l - ltVj (4.2.10)n tn 
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is the N(O, 6,n) distributed nth increment of the jth \Viener process. We recall 
that 

(4.2.11) 

is the ith mark generated by the Poisson random measure. 

In the multi-dimensional case with mark-independent jump size we obtain the kth 
component of the Euler scheme 

m 

yk = yk + ak6, + ~ bk ,j6,Wj + ck6,pn+l n n 6 n n, 
j=l 

for k E {1,2, ... ,d}. 

The Euler scheme includes only the time integral and the stochastic integrals of 
multiplicity one from the \Vagner-Platen expansions (3.5.4) and (3.5.5), which both 
give the same truncated expansion. As we will see later, it can be interpreted as 
the order 0.5 strong Taylor scheme. In the following we will use the Wagner-Platen 
expansion (3.5.4) for the construction of strong Taylor schemes. Similarly, one can 
start from the compensated Wagner-Platen expansion (3.5.5) obtaining slightly 
different compensated Taylor schemes, as will be discussed later. 

4.3 Order 1.0 Taylor Scheme 

When accuracy and efficiency are required, it is important to construct numerical 
methods with higher strong order of convergence. This can be achieved by adding 
more terms of the Wagner-Platen expansion (3.5.4) to the scheme. In this way, it is 
possible to derive the order 1.0 strong Taylor scheme, which, in the one-dimensional 
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case, d = m = 1, is given by 

I tn 1 lYn+1 Yn + a.6.n + b.6.Wn + + c(v) p¢(dv, dz) 
tn E: 

+bb'ltn +1 lZ2 dW(zddW(Z2) 
tn tn 

+ Itn 1 11z2 
+ bc'(v)dW(Zl)P¢(dv, dz2) 

tn E: tn 

+ I tn 
+

1 l z2 r {b(tn, Yn + c(v)) - b }p¢(dv, dzddW(Z2) (4.3.1) 
tn tn E:J 

+ Itn 
+

1 11z2 1{C(tn' Yn + c(vd, V2) - C(V2) }P¢(dVl' dzdp¢(dv2' dz2), 
tn E: tn E 

where 

b"-b'( )_8b(t,x) d '()'_'( )_8c(t,x,v). - t, x - 8 x an c v . - c t, x, v - . (4.3.2) 

For simplicity, the abbreviation (4.1.9)-(4.1.11) were used in (4.3.1). The scheme 
(4.3.1) achieves strong order I = 1.0, as we will see later. It represents a general-
ization of the Milstein scheme, see Milstein (1974), to the case of jump diffusions. 

In view of applications to scenario simulations, a main problem concerns the gen-
eration of the multiple stochastic integrals appearing in (4.3.1). By application of 
Ito's formula for jump-diffusion processes, see Ikeda & Watanabe (1989), and the 
integration by parts formula, we can simplify the four double stochastic integrals 
appearing in (4.3.1) and rewrite the order 1.0 strong Taylor scheme (4.3.1) as 

Pq,(tn+l) bb' 2 

Yn +1 Yn + a.6.n + b.6.Wn + L C(~i) + 2 ((.6.Wn) - .6.n) 
i=pq,(tn )+l 

Pq,(tn+ll 

+b L c'(~J(W(Ti) - W(tn)) 
i=pq,(tn )+ 1 

P4>(tn +ll 

+ L {b(Yn + C(~i)) - b} (W(tn+l) - W(Ti)) 
i=pq,(tn)+l 

P4>(tn+ll pq,(Tj) 

+ L L {C(Yn + C(~i),~j) - C(~j)}' (4.3.~)) 
j=P4>(tn )+l i=P4>(tn )+l 

http:4.1.9)-(4.1.11
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This scheme is readily applicable for a scenario simulation. 

In the special case of a mark-independent jump coefficient, c(t, x, v) = c(t, x), the 
order 1.0 strong Taylor scheme reduces to 

+{b(tn, Yn + c) - b} 1(-1,1) + {C (tn' Yn + C) - C} 1(-1,-1), (4.3.4) 

with multiple stochastic integrals 

1(1,-1) := 

The level of complexity of the scheme (4.3.1), even m the simpler case (4.3.4) 
of mark-independent jump size, is quite substantial when compared to the Euler 
scheme (4.2.6). Indeed, it requires not only function evaluations of the drift, diffu-
sion and jump coefficients, but also evaluations of their derivatives. The calculation 
of derivatives can be avoided by constructing derivative-free schemes that will be 
presented in the next chapter. 

We point out that the simulation of some of the multiple stochastic integrals is 
computationally demanding. The generation of 1(1,1) and 1(-1,-1) is straightforward 
once we have generated the random variables .6. TAfn and !:::..Pn. The generation of 
the mixed multiple stochastic integrals 1(1,-1) and 1(-1,1) is more complex since 
it requires to keep track of the jump times between discretization points for the 
evaluation of TAfT;' Conditioned on the number of jump events realized on the time 
interval (tn, tn+1], the jump times are independent and uniformly distributed on 
this interval. Therefore, once we have generated the number of jumps !:::..Pn, we can 
sample !:::..Pn independent outcomes from a uniform distribution on (tn' tn+1l in order 
to obtain the exact location of the jump times. However, from the computational 
point of view, this demonstrates that the efficiency of the algorithm is heavily 
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dependent on the level of the intensity of the Poisson measure. 

For the special case of a mark-independent jump coefficient, the number of calcu-
lations involved in an algorithm as the Euler scheme (4.2.6) does not depend on 
the level of the intensity. Note that we are here neglecting the additional time 
needed to sample from a Poisson distribution with higher intensity. On the other 
hand, even in this special case, for the scheme (4.3.4) the number of computations 
is directly related to the number of jumps because of the generation of the two 
double stochastic integrals 1(1,-1) and 1(-1,1)' Therefore, this algorithm is not effi-
cient for the simulation of jump-diffusion SDEs driven by a Poisson measure with 
high intensity. 

It is, in principle, possible to derive strong Taylor schemes of any given order, as 
will be demonstrated later in Section 4.5. However, the schemes become rather 
complex. Moreover, as explained above, for SDEs driven by high intensity Poisson 
measures, these schemes are computationally inefficient. For these reasons we will 
not present in this section any scheme with order of strong convergence higher 
than I = 1.0. For the construction of higher order schemes, we refer to Chapter 6, 
where we will describe jump-adapted approximations that avoid multiple stochastic 
integrals involving the Poisson measure. This makes it much ea~ier to derive and 
implement these schemes. 

0.9 

0.8 

0.7 
:x: 

0.6 

0.5 

0.4 

T 

Figure 4.:3.1: A path of the Merton model 

Let us illustrate the higher accuracy achieved by the order 1.0 Taylor scheme on 
a scenario simulation. We consider the SDE (2.1.5) describing the Merton model 

10 
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with constant jump coefficient c(t, x) = 'ljJx. \Ve use the following parameters: 
Xo = 1, fJ = 0.05, a = 0.2, 1jJ = -0.25, T = 10 and A = 0.3. In Figure 4.3.1 
we show a path X = {Xt, t E [0, IOn of the Merton model by using the explicit 
solution (2.1.6). 

In Figure 4.3.2 we show the accuracy of the Euler scheme and of the order 1.0 
Taylor scheme in approximating the true solution X on the same sample path 
shown in Figure 4.3.1, when a time step size .6. = 0.5 is used. We plot the error 

1

(IXtn - 1"';" 12) '2, for n E {O, 1, ... ,nT}, generated by these schemes. One clearly 
notices the higher accuracy of the order 1.0 Taylor scheme. 

-+-Euler 

* OneTaylor 

0.02 ........*... it' ...*.... * .... 'It•... ,- *"....... ....* -,ft-
'/t .•...*.. '" 

o 10 
T 

Figure 4.3.2: Strong error for the Euler and the order 1.0 strong Taylor schemes 

In the multi-dimensional case with scalar Wiener process, m = I, and mark-
dependent jump size, the kth component of the order 1.0 strong Taylor scheme 
is given by the algorithm 
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+1tn+l1z2 f {bk(tn,yn+C(v)) -bk}p¢(dv, dzddW(Z2) 
tn tn if 

1+1t71.+ fl z2 f{ck(tn,Yn +C(Vl),V2) -Ck(v2)} 
tn if tn if 

X P¢(dVl' dz l ) p¢(dV2, dz2), ( 4.3.6) 

where ak, bk , and ck are the kth components of the drift, diffusion and jump 
coefficients, respectively, for k E {I, 2, ... ,d}. Similar to (4.3.3) we can rewrite 
also this scheme in a form that is readily applicable for scenario simulation. 

For the multi-dimensional case with one driving Wiener process and mark-independent 
jump size the kth component of the order 1.0 strong Taylor scheme simplifies to 

k k k k k ~ 13bk 
Yn+l Yn + a 6 n + b 6.Wn + c 6.pn + L b 3x1 I(l,l) 

1=1 

d 3 k 

+ L bl 3~1 1(1,-1) + {bk(tn' Yn + c) - bk} I(-l,l) 
1=1 

+{Ck(tn' Yn +c) - ck} 1(-1,-1), ( 4.3.7) 

for k E {I, 2, ... ,d}. Here the four double stochastic integrals involved can be 
generated as described in (4.3.5). 

In the general multi-dimensional case the kth component of the order 1.0 strong 
Taylor scheme is given by 

1tn+1 m fY:+1 Y:+ak6.n+~bk,j6W~+ tn ifCk(V)p¢(dv,dz) 

Z2m d 3bk ,h 1tn+1 1+ L L bi,jl--;;;- dWh (zddWj2 (Z2) 
jl,h=l i=l 3 tn tn 

tn+1 Z2 m d 3ck (v)+ L L 1 iFf1 bi,h dWjl(zdp¢(dv, dz2),L;  

jl=l i=l tn f tn  

m ltn +! f lZ2+t; tn if tn {bk,h(tn,Yn+C(v)) -bk,jl}p¢(dv,dz2)dVl1h (Z2) 
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(4.:3.8) 

for k E {1, 2, ... ,d}. 

In the multi-dimensional case with mark-independent jump size, the kth component 
of the order 1.0 strong Taylor schem.e is given by 

Y:+1 ~~ + ak 6.n + L
m 

bk,j 6. TV; + ck6.Pn 
j=1 

(4.~L9) 

+ L
m 

{bk'.it (tn' Yn + c) - bk,)l }I(-l,jd + {ck(tn' 4t + c) - k}I(-l,-l)'c
]1 =1 

forkE{1,2, ... ,d}. 

The considerations on the generation of the mixed multiple stochastic integrals 
involving Wiener processes and the Poisson random measure, presented for the 
one-dimensional case, apply in a similar way to the implementation of the scheme 
(4.3.9). Indeed, 

for)1 E {1, ... ,m}. Moreover, in (4.3.9) we also require the multiple stochastic 
integrals 

IU1 ,j2) = l tn 
+ 

1 l z2 dWj1 (zddWJ2 (Z2), (4.3.10) 
tn tTl, 

for )1,)2 E {l, ... ,m}. When)1 = )2, the corresponding double Wiener integral is 
given by 

(4.3.11) 

However, when )1 =I )2, this integral cannot be easily expressed in terms of the 
increments .6. W~l and .6.W~2 of the corresponding Wiener processes. Nonetheless, 
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employing the Karhunen-Loeve expansion, see Kloeden & Platen (1999), it is 
possible to generate approximations of the required multiple stochastic integrals 
with the desired accuracy. An alternative and simpler way to approximate these 
multiple stochastic integrals is the following: we apply the Euler scheme to the 
SDE which describes the dynamics of the required multiple stochastic integrals 
with a time step size 0 smaller than the original time step size 6. Since the Euler 
scheme has strong order of convergence I = 0.5, by choosing 6 = 6 2 , the strong 
order I = 1.0 of the scheme is preserved, see Milstein (1995) and Kloeden (2002). 

The compensated strong Taylor schemes that arise from the compensated \V"agner-
Platen expansion (3.5.5) are generally different from that arising from the Wagner-
Platen expansion (3.5.4) used in this section. For illustration, we describe now the 
order 1.0 compensated strong Taylor scheme in the special case d = m = 1. This 
is given by 

j tn+l r 
Yn+l Yn + a6n + b6lVn + tn iE c(v) p¢ (dv, dz) 

I tn+1 jZ2
+bb' dW(Zl )dW(Z2) 

tn tn 

I tn+ll1z2+ bc'(v)dW(zdp¢(dv, dz2) 
tn E tn 

+ Itn + 1jZ2 ( {b(tn , Yn + c(v)) - b }p¢(dv, dzddW(Z2) (4.3.12) 
tn tn iE 

n 1+ jt + ljz2 1{C(tn' Yn + c(vd, V2) - C(V2) }P¢(dVl' dzdp¢(dv2' dz2). 
tn E tn E 

For application in scenario simulation, the generation of a stochastic integral in-
volving the compensated Poisson measure p¢ is implemented as follows: one should 
first generate a corresponding multiple stochastic integral with jump integrations 
with respect to the Poisson jump measure p¢ and then subtract its mean, which 
is given by the corresponding multiple stochastic integral with the integrations 
with respect to the Poisson jump measure p¢ replaced by integrations with respect 
to time and the intensity measure <p, see (3.1.1). For example, to generate the 
stochastic integral j tn+ll c(v)p¢(dv,dz), 

tn [; 
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we use the representation 

tn+! rc(v) p</J(dv, dz) = jtn+l rc(v) p</J(dv, dz) _jtn+l 1c(v) </J(dv)dz.j ~ h ~ h ~ E 
(4.3.13) 

We recall, that, according to (4.1.10), we have used the abbreviation c(v) = 
c(tn' Yn , v). Therefore, last term on the right-hand side of (4.3.13) is Atn -measurable, 
but its implementation generally requires a numerical integration at each time step. 

To compare the computational effort required by the order 1.0 compensated strong 
Taylor scheme (4.3.12) with that of the order 1.0 strong Taylor scheme (4.3.1), let 
us rewrite the former with integrations with respect to the Poisson jump measure 
P</J. In this case order 1.0 compensated strong Taylor scheme is given by 

Yn+1 = Yn+a6.n+b6.Wn+jtn+l rc(v)p</J(dv,dz) 
tn JE 

1+bb'jtn+ jZ2 dW(Zl)dW(Z2)  
tn tn  

+ l~n+l linz2 bc'(v)dvV(Zl)Pq,(dv, dz2) 

+ i~n+l inz21 {b(tn, Yn + c(v)) - b}Pq,(dVl dzddW(Z2) 

+ i~n+l linz21 {C(tn' Yn + c(vd, V2) - C(V2) }p</J(dvll dzdp</J(dv2, dz2) 

_ltn 1 l1z2+ bc'(v)dW(zd¢(dv)dz2  
tn E tn  

Therefore, the implementation of the order 1.0 compensated strong Taylor scheme 
has the same computational effort of the order 1.0 strong Taylor scheme plus that 
required for the generation of the last four terms in (4.3.14). Note that both 



4A. COlvIMUTA'TIVIT'[ CONDITIONS 69 

schemes have the same order of strong convergence r = 1.0. Nonetheless, the 
compensated strong Taylor schemes might be more accurate when dealing with 
high intensity jump diffusions. However, we leave a comparison of the accuracy of 
these schemes for further research. 

4.4 Commutativity Conditions 

As previously discussed, higher order Taylor schemes, even with mark-independent 
jump size, become computationally inefficient when the intensity of the Poisson 
measure is high. In this case the number of operations involved is almost pro-
portional to the intensity level. Also the jump-adapted schemes to be presented 
in Chapter 6 show a strong dependency in their efficiency on the intensity of the 
jumps. 

By analyzing the multiple stochastic integrals required for the scheme (4.3.4), we 
observe that the dependence on the jump times affects only the mixed multiple 
stochastic integrals 1(1,-1) and 1(-1,1)' Hmvever, since by (4.3.5) we have 

1(-1,1) = .6.pn.6.Wn - 1(1,_1), 

the sum of these integrals is obtained as 

1(1,-1) + 1(-1,1) = .6.pn .6.Wn, (4.4.1) 

which is independent of the particular jump times. Let us consider a one-dimensional 
SDE with mark-independent jump size, c(t, x, v) = c(t, x), satisfying the jump com-
mutativity condition 

oc(t, x) ( ) ( )b(t,x) ~L =b t,x+c(t,x) -b t,x , ( 4.4.2) 

for all t E [0, T] and x E :n:t. In this case the order 1.0 strong Taylor scheme (4.3.4) 
depends only on the sum 1(1,-1) + 1(-1,1) expressed in (4.4.1). One does not need 
to keep track of the exact location of the jump times. Hence, its computational 
complexity is independent of the intensity level. This is an important observation 
from the practical point of view. If a given SDE satisfies the jump commutativity 
condition (4.4.2), then considerable savings in computational time can be achieved. 
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When we have a linear diffusion coefficient of the form 

(4.4.3) 

with b(t, x) > 0, as it frequently occurs in finance, the jump commutativity condi-
tion (4.4.2) implies the following ordinary differential equation (ODE) for the jump 
coefficient: 

oc(t, x) b2 (t) c(t, x) 
(4.4.4) 

ox hI (t) + b2 ( t) x ' 
for all t E [0, T] and x E R Therefore, for linear diffusion coefficients of the form 
(4.4.3) the class of SDEs satisfying the .iump commutativity condition (4.4.2) IS 

identified by mark-independent jump coefficients of the form 

(4.4.5) 

where K(t) is an arbitrary function of time. 

For instance, the SDE (2.1.5) with mark-independent, multiplicative jump size 
c(t,x,v) = x(3, for (J 2: -1, satisfies the jump commutativity condition (4.4.2). 
The corresponding order 1.0 strong Taylor scheme is given by 

Another interesting example that arises in the financial literature is the square root 
diffusion coefficient 

(4.4.7) 

see Cox, Ingersoll & Ross (1985), Duffie & Kan (1994) and Platen (2001). If 
b1(t) =I 0 for t E [0, T], we have the ODE 

oc(t,x) -Ix + c(x) - Vx (4.4.8) 
ox Vx 

and, thus, for the jump commutative case (4.4.2), the jump coefficient is of the 
form 

!£ill.c(t, x) = eK(t) + 2 e 2 Vi, (4.4.9) 
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b(t,;r) c(t. :r) 
b1 (t) l{(t) 

b1 (t) + b2 ( t) :r e K ( t ) ( b1 ( t) + b2 ( t) :c) 
. [(It) 

2b3(t) Jbl (t) + b2(t):r bAt) e h (t) + 2e- Jb , (t) + b2(t)T 
b1(t)(l- e-J') log{l + eJ((t) - e-:l;+ KiI)} 

_ :1[(1):1 ~. 
-~e-2-:r2 + 3t K(L):r2 -

b1 (t):r 2 
3 

e2K(t) - 2e K (t)x ± :!;~ 

Table 4.1: Coefficients satisfYing the jump commutativity condition. 

In Table 4.4 we present some diffusion coefficients from models proposed in the 
finance literature together with the corresponding jump coefficients that satisfy 
the jump commutative condition (4.4.2). 

In the multi-dimensional case with scalar Wiener process and mark-independent 
jump size we obtain the jump commutativity condition 

~ 1 ack(,t,x) k( ()) k( )~ b (t, x) axl = b t, x + c t, x - b t, X (4.4.10) 
l=l 

for k E {I, 2, ... ,d}, t E [0, TJ and x E JRd. 

For the general multi-dimensional case, one can show that the sum of two multiple 
stochastic integrals with respect to the jl th component of the Wiener process and 
the Poisson measure, given by 

J(jI,-I) + J(-I,jll = 6Pn 6W~1, (4.4.11) 

is independent of the particular jump times. Therefore, for a general multi-dimensional 
SDE with mark-independent jump size, we obtain the jump commutativity condi-
tion t bl,h (t, x) ac~~; x) = bk,iI (t, x + c(t, x)) - bk,jl (t, x) (4.4.12) 

1=1 

for j1 E {I, 2, ... ,m}, k E {I, 2, ... ,d}, t E [0, T] and x E JRd. Thus, once the 
diffusion coefficients are specified, a solution of the first order semilinear d x m-
dimensional system of partial differential equations (PDEs) (4.4.12) provides a 
d-dimensional commutative jump coefficient. Note that the system (4.4.12) has 
d x m equations and only d unknown functions. Therefore, even for simple diffusion 
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coefficients, there may not exist any jump coefficient satisfying (4.4.12). 

Consider, for instance, the multi-dimensional case with additive diffusion coefficient 
b(t, x) = b(t). The jump commutativity condition (4.4.12) reduces to the m x d 
system of first order homogeneous linear PDEs 

(4.4.13) 

for] E {l,2, ... ,m}, k E {l,2, ... ,d}, t E [O,T] and x = (X 1,X2, ... ,Xd)T E 

JRd. An additive jump coefficient c(t,x) = c(t) satisfies the condition (4.4.13). 
In the scalar case, m = I, or in the trivial case where bi,jl(t) = bi,h(t) for all 
i E {1,2, ... ,d}, ]1,)2 E {1,2 ... ,m} and t E [O,TJ, we obtain the solution 

ck(t, x) = f(t, y) ( 4.4.14) 

for k E {I, ... ,d}. Here y = (y1, ... ,yd-1)T E JRd-1 has components 

and f : [0, T] x Jl{d-l is an arbitrary function, differentiable with respect to the 
second argument y. 

Let us consider the multi-dimensional, multiplicative diffusion coefficient b( t, x), 
where the element in the ith row and jth column is given by bi,j(t, x) = a-i,j(t)Xi, 
with a-i,j(t) E JR for i E {I, 2, ... , d} and) E {1,2 ... , m}. In this case the jump 
commutativity condition (4.4.12) reduces to the m x d system of first order linear 
PDEs 

(4.4.15) 

for) E {I, 2, ... , m}, k E {I, 2, ... ,d}, t E [0, T] and x = (xl, x2 , ... , xdf E JFtd. 
In the scalar case, with m = 1, or in the trivial case where a-i,jl (t) = a- i ,j2 (t) for 
i E {I, 2, ... , d}, j1,)2 E {I, 2 ... , m} and t E [0, TJ, we obtain the solution 

(4.4.16) 
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for k E {I, ... , d}. Here y = (yl, . .. , yd-l) T E lRd- l has components 

. 0"i+1(t) 
y~ = (Xl) --;;T(t) x'i+l 

and f : [0, T] X lRd- 1 is an arbitrary function, differentiable with respect to the 
components of the second argument y. 

We now discuss some commutativity conditions involving only the diffusion coeffi-
cients. These can be found also ill Kloeden & Platen (1999), in the context of the 
approximation of pure diffusion SDEs. As noticed in Section 4.3, when we have 
a multi-dimensional driving Wiener process, the corresponding order 1.0 strong 
Taylor scheme requires multiple stochastic integrals with respect to the different 
components of the Wiener process. In general, these can be generated only re-
sorting to approximations, such as the Karhunen-Loeve expansion, see Kloeden & 
Platen (1999). However, in the special case of a diffusion commutativity condition, 
where 

L j1 bk,jZ(t, x) = Lh bk,j1(t,X) ( 4.4.17) 

for )1,)2 E {1,2, ... ,m}, k E {1,2, ... ,cl}, t E [O,T] and x E lRd, it is possible 
to express all the double \Vicner integrals in terms of the increments 6.W~1 and 
6.W;iz of the Wiener processes. Therefore, for a multi-dimensional SD E satisfying 
the diffusion commutativity condition (4.4.17), the jump commutativity condition 
(4.4.12) and with mark-independent jump size, we obtain a computationally effi-
cient order 1.0 strong Taylor scheme, whose kth component is given by 

m 

yk yk + ak6. + '" bk,j 6.W j + ck6.pn+l n n L n n 
j=1 

1 m d 8bk,jz { }+- '" '" bi ,jl __ 6.Wj1 6.Wjz - 6.2 L L 8xi n n n 
j!.lz=1 i=l 

+ Lm 

{bk,il (tn, Yn + c) - bk,il} ( 6.pn 6.W~1) 
j1=1 

+~ {ck ( tn, Yn + c) - ck } ( (6.Pn ) 2 - ~Pn) , (4.4.18) 

for k E {I, 2, ... ,d}. For instance, the special case of additive diffusion and jump 
coefficients, which means b(t, x) = b(t) and c(t, x) = c(t), satisfies all the required 
commutativity conditions and therefore leads to an efficient order 1.0 strong Taylor 
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scheme. Note that in this particular case the last two lines of (4.4.18) equal zero 
and, thus, only double stochastic integrals with respect to Wiener processes are 
needed. 

From this analysis it becomes clear that when selecting a suitable numerical scheme 
for a specific model it is important to check for particular commutativity properties 
of the SDE under consideration to potentially save computational time. 

4.5 Convergence Results 

In this section we introduce strong Taylor approximations and compensated strong 
Taylor approximations of any given strong order, E {a.5, 1, 1.5,2, ... }. The key 
results underlying the construction of these strong approximations are the Wagner-
Platen expansions (3.5.4) and (3.5.5) presented in Chapter 3. Including in a scheme 
enough terms from these expansions, we can obtain approximations with the desired 
order of strong convergence. More precisely, for an order, E {a.5, 1, 1.5,2, ...} 
strong Taylor scheme we need to use the hierarchical set 

1
Ay ={a EM: l(a) + n(a) ::; 2, or l(a) = n(a) =, + '2}' (4.5.1) 

where l(a) denotes again the length of the multi-index a, and n(a) the number of 
its components equal to zero. Note that in Chapter 3 we have derived two types 
of Wagner-Platen expansions; the first uses the Poisson measure as integrator of 
jump type and the second employs the compensated Poisson measure as integrator 
involving jumps. Therefore, we will obtain two different types of strong approx-
imations; the strong Taylor approximations and the compensated strong Taylor 
approximations. 

For a time discretization with maximum step size 6. E (0,1), we define the order 
, strong Taylor scheme by the vector equation 

Y~l = Yn~ + L fa [Ja(tn, Yn~)Ln,tn+l = L la [Ja(tn, Yn~)Ln,tn+l (4.5.2) 
aEA,.\{v} aEAy 

for n E {O, 1, ... ,nT - 1}. Similarly, we define the order , compensated strong 
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Taylor scheme by the vector equation 

Yn~l = ynLl + L ia [Ja(tn, YnLl)] L ia [Ja(tn,YnLl)] (4.5.3)
tn,tn+l tn,tn+laEA-y\{v} aEA-y 

fornE {O,l, ... ,nT-1}. 

Equations (4.5.2) and (4.5.3) provide recursive numerical routines generating ap-
proximate values of the solution of the SDE (4.1.1) at the time discretization points. 

In order to asses the strong order of convergence of these schemes, we define, 
through a specific interpolation, the oreier I strong Taylor' approximation y6 = 
{~6, t E [0, Tn, by 

~6 = L Ia [Ja (tnt 1 ~:,)lt,'t,t ( 4.5.4) 
nEfi-y 

and the ordcT I compensated stTOng Taylor approximation y6 = {Yt6 , t E [0, Tn, 
by 

6 ~ - - 6 
~ = L In [Ja (tnt '~nt )k't J ( 4.5.5) 

aEA-y 

for t E [0, T], starting from a given Ao-measurable random variable Yo, where nt 
was defined in (4.1.8). 

These two approximations define stochastic processes y6 = {1~6, t E [0, Tn, 
whose values coincide with the ones of the order I siTOng Taylor scheme (4.5.2) 
and of the order I compensated stTOng Taylor' scheme (4.5.3), respectively, at the 
time discretization points. Between the discretization points the multiple stochastic 
integrals have constant coefficient functions but evolve randomly as a stochastic 
process. 

The strong order of convergence of the compensated strong Taylor schemes pre-
sented above can be derived from the following theorem. This convergence the-
orem will enable us to construct a compensated strong Taylor approximation 
y6 = {~6, t E [0, T]} of any given strong order I E {0.5, 1, 1.5,2, ... }. 

Theorem 4.5.1 For given I E {0.5, I, 1.5,2, ... }, let y6 = {~6, t E [0, T]} be the 
order I compensated strong Taylor appmximation defined in (4.5.5), corTesponding 
to a time disC'retization with maximum step size 6. E (0,1). We assume that 

E(IXoI2) < 00 and E(IXo - yoLlj2) :::; K l 6.2/. ( 4.5.6) 
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Moreover, suppose that the coefficient functions fn satisfy the following conditions: 

For 0: EAT" t E [0, TJ, v. E [s(a) and.T, y E IFtd the coefficient function l" sat-
isfies the Lipschitz type condition 

(4.5.7) 

where (K1 (v.)r is ¢(d11. 1) X ... x ¢(dus(ct)) -integrable. 

For all 0: E AI UB(Ar) we assume 

i_a E C1,2 and (4.5.8) 

and for 0: E AI UB(A,), t E [0, T], 11. E [s(a) and:r: E IFtd , we require 

(4.5.9) 

Then the estimate 
E( sup IXz - Y/~12IAo) :::; K3/.':,.'! ( 4.5.10) 

o::;z::;r 

holds, where the constant K3 does not depend on /.':,.. 

Remark 4.5.2 By using the definitions of the operators (3.3.4)-(3.3.7) and of the 
sets in (3.2.3)' it is possible to obtain conditions on the coefficients a, band c 
of the 3DE (3.5.1) which imply conditions (4.5.7)-(4.5.9) on the coefficient func-
tions fa. For instance, if the drift, diffusion and jump coefficients of the 3DE 
(2.1.2) have 2(t + 2) times continuously differentiable components ak , bk,j, ck , for 
all k E {I, 2 ... ,d} and j E {1, 2 ... ,m}, that are uniformly bounded with uniformly 
bounded derivatives, then conditions (4.5.7)-(4.5.9) are fulfilled. 

Theorem 4.5.1 generalizes a similar result for pure diffusions described in Kloeden 
& Platen (1999). The proof will be given at the end of this chapter in Section 4.7. 
A related result, with slightly different conditions, was published without proof in 
Platen (1982a). 

Theorem 4.5.1 establishes the order of strong convergence of the order 'Y com-
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pensated strong Taylor approximation defined in (4.5.5). The following corollary 
permits us to obtain the order of strong convergence of the strong Taylor schemes 
presented in this chapter. 

Corollary 4.5.3 Let yl:. = {~l:., t E [0, T]} be the order'Y strong Taylor approxi-
mation (4.5.4). Assume that the Ito coefficient functions f 0: satisfy the conditions 
of Theorem 4.5.1. Then, if also the conditions on the initial data (4.5.6) hold, we 
obtain the estimate 

E( sup jXz-Yzl:.j2) :S;K6', (4.5.11) 
OSzST 

where K is a finite positive constant independent of 6. 

A similar result, limited to SDEs driven by Wiener processes and homogeneous 
Poisson processes, is presented in Cardon (2004). 

4.6 Lemma on Multiple Ito Integrals 

We present here a lemma on multiple stochastic integrals that we will need in the 
proof of Theorem 4.5.1. This lemma can be also used for other approximations. 

Lemma 4.6.1 For a given multi-index a E Mm \ {v}, a time discretization (t)l:. 
with 6 E (0,1) and 9 E Ho: let 

"Vto,u,s(o:):= r... rE ( sup Ig(z, VI, ... ,Vs (a))j2 Ato) ¢(dv I ) ... ¢(dvs(a)) < 00,is is toSzSu 

(4.6.1) 

( ••-1 2 )
Ft := E sup L Ia[g(-)]tn,tn+l + Io:[g(-)]tnz,z Ato ( 4.6.2) 

toSzSt n=O 

and 

F," := E (SUp I:' I"Lq(·)I,.,t" " + Ia[gOI,"". 2At") . (4.6.3) 
toSzSt n=O 

http:jXz-Yzl:.j2
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Then 

~ {(t - t ) .6.2(1(0:)-1) 1,t \l du when: /(0:) = n(o:)Fa < 0 to to,u,s(o:)  

t - 41(a)-n(0:)+2 .6.1(0:)+n(0:)-1 ft V, du 
J to to,u,s(a) when: l(o:) 1= n(o:) 

and 

(t - t ) .6.2(1(0:)-1) 1,t V; du 	 when: l(o:) = n(o:)Fer 	< a to to,u,8(a){ 
t 	 - 41(0:)-n(0:)+2 (;8(0:) .6.1(o:)+n(a)-l 1,t V; du 

to 	 to,u,s(n) when: l(o:) 1= n(o:) 

almost surely, for every t E [to, TJ. Here (; = 4 + ).,(1' - to). 

Proof: Let us first prove the assertion of the lemma for Ft. 

1. 	 By definition (4.1.8) of n z we get, for Z E [tn' t n+l), the relation tnz = tn. 
Then, for a multi-index 0: = (jl,'" ,jn) with jn = 0, we obtain 

nz-lL fo:[g(')k,tn+1 + fa [g(')]tnz>z 
n=O 

(4.6.4) 

The same type of equality holds analogously for every jn E {-I, 0, I, ... ,m}. 

2. Let us first consider the case with l(o:) = n(o:). By the Cauchy-Schwarz 
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inequality we have 

Ft = 	 E (SUp liz la-[gO]tnu,U dul2 Ato)
to:<oz:<ot to  

z < E ( 	 sup (z ~ to) i 11a- [g(. )ltnu;uI2du Ato)
to:<oz:<Ot to 

< (t -	 to) P; ([IJo-lg(')k.,ul' du A,,) 
(t ~ to) 	 t E (11a- [gC)]tnu,uI2IAto) du 

Jto 

< (t ~ to) it E ( sup 11a- [gC)] tnu,zI2 Ato) du 
to tnu :<OZ:<OU 

(t - to) 1>(Ec'~~~.fQ-Ig()I'nn,,121A,nn) A,") du, 

(4.6.5) 

where the last line holds because to ::; tnu a.s. and then Ato C Atnu for 
U E [to, t]. Therefore, applying Lemma 3.6.1 to 

E ( sup Ila-[gOku,zI2 Atnu ) 	 (4.6.6)
tnu:<OZ:<OU 

yields 

Ft < 	 (t ~ to) 41(a-)-n(a-)  

x lt E ((U - t )l(a-)+n(a-)-l i U V; _ dz A ) du nu tn " ,z,s(a ) to 
to tnu 

< (t ~ t 	) 41(a-)-n(a-) it E ((u - t )l(a-)+n(a-) V; . _ IA ) du° 	 nu t",,,,,u,s(a) to 
to 

< (t - t°) 41(a-)-n(a-) .6,.1 (a- )+n(a-) it E (v.tnu ,u,s(a)_ IAto ) du , (4.6.7) 
to 

where the last line holds as (u - tnJ ::; .6,. for u E [to, t] and t E [to, T] . Since 
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Ato ~ A tnu ' we notice that for u E [to) t] 

E (V;nv ,u,s(a-1IAto) 

- E ( 1···1E c.~~~<" [g( z, v', ... ,v,(a- l)[' IAt,..) 

x ¢(dv' ) ... ,p(dv'ia- l) At,) 

= r ... rE(E ( sup )g(z, VI, ... , vs(a-l)12jAtn1J) Ata)J[ J[ tnu"'Z"'U 

X ¢(dVl) ... ¢(dvs(a- l ) 

r... rE ( s.up Ig(z, VI, ... , vs (a- l )1 2 \Ato ) ¢(dv 1 ) ... ¢(dvs(a- J)J[ J[ tnu"'z",u 

< { ... { E ( sup Ig(Z, VI) ... ,vs (a-J)1 2 \Ato ) ¢(dVl) ... ¢(dvs(a- l )Jf J[ to"'z",u 

1!;o,u,s(a-)' 	 (4.6.8) 

I t then follows 

F a < (t-t) 41(a-)-n(a-) Al(a-)+n(a-J 1t TT du t _ ' -0 U Vto,u,s(a-) 
to 

= 	 (t - to) 6. 2(I(a)-I) 1t V;o,u,s(a) du, (4.6.9) 
to 

since l(o:-) = n(o:-), 8(0:) = 8(0:-) and this completes the proof for the case 
l(o:) = n(o:). 

3. 	 Let us now consider the case with a multi-index 0: = (jl, ... , jl) with I(0:) =1= 

n(0:) and jl E {1, ... , m}. In this case the multiple stochastic integral is a 
martingale. Hence, by Doob's inequality, Ito's isometry and Lemma 3.6.1 we 
obtain 

aFt	 1E(SUP rlx_[g(')]tnu,udW~112 Ato) 
to",z",t Jto 

< 4 E (I [L [g()J,..,u dW,~' I' At,) 
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< 4it E (lla-[g(')]tnu,uI2IAto) du  
to  

4 1:E(E (I [a-lgOI,"",,, I' IAt"") A,,) du 

< 4 1>(E C~~r,u I[a- [g( )It""" I' IAt"" ) A"}U 

< 4 41(a-)-n(a-) 

i	 l(a-)+n(a-)-l l. u 
X t E ( (u-tnJ 	 Ytnu.z,s(a-)dzAto ) du 

to tnu 

< 4 41(a- )-n(a-) .6.1(a- )+n(a-) It V; _ duto,u,s(a ) 
to 

41(a)-n(a) .6.1(a)+n(a)-1 lt Yto,u,s(a-) du 
to 

< 41(a)-n(a)+2 .6.1(a)+n(a)-1 it V; () du 
to,u,S a , 	 ( 4.6.10) 

to 

where the last passage holds since 8(0:) = 8(0:-). This completes the proof 
in this case. 

4. 	 Let us now consider the case with a multi-index 0: = (jl,'" ,jd with l(o:) -=1= 

n(o:) and jl = -1. The multiple stochastic integral is again a martingale. 
Therefore, by Doob's inequality, Lemma 3.6.1 and steps similar to the previ-
ous case we obtain 

Ft = E (sup liz fla_[g(.,vs(a»)ku,u_P<p(dvs(a),du)12 Ato) 
toSzSt to J[ 

< 4E (I it 11a- [g(" v'Cal )1,"" ,"- p,,(dv,Cal, du) I' At,) 

41t f E (11a-[g(·, vs(a»)lt"u,uI 2IAto) ¢(dvs(a») du 
to J[ 

4 tic E ( E (ila- [g(, v,cal)I,"",ul'IA,"") At},(dV,Cal) du 

< 	 41t f E(E ( sup Jla-[g(·) vs(a»)ltnu,zI2IAtnu) Ato) ¢(dvs(a») du 
to 	J[ tnuSzSU 
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X it1E ((U - t )I(a- )+n(n- )-1 l U V; _dz A ) A-.(dvs(a») dun" 	 tn" ,z,s(a ) to If' 
~ 	 E ~ 

< 41(a-)-n(a-)+1 6,1(o:-)+n(a-) itlE(V; '. -lA )A-.(dvs(O:))du.tnu,u,s(n) to If' 
to E 

(4.6.11; 

Hence, using (4.6.8) we have 

FO < 41(a-)-n(a-)+1 6,1(o:-)+n(n-) it 1. V; _ A-.(dvs(a)) du t - to,u,s(a ) If' 
to E 

41(a)-n(a) 6,1(a)+n(a)-l it V; du 
to,u,s(0:) 

to 

< 41(a)-n(n)+2 J\ l(n)+n(n)-l it V; du 
L\ to,u,s(a) 	 (4.6.12) 

to 

since l(O') = l(O'-) + 1, n(O') = n(O'-), 8(0') = 8(0'-) + 1 and this completes 
the proof in this case. 

5. 	 Finally, we assume that 0' = (jl,'" ,jl) with l(O') =1= n(O') and.it = O. 
It can be shown that the discrete time process 

{Lk 

7a[g(- )ltn,tn.+l ,k E {O, 1 ... )nT - I}} (4.6.13) 
n=O 

is a discrete time martingale.  

Using Cauchy-Schwarz inequality we obtain  

< 2E (:~,~t ~ 1.[g(')ltn""" 2 At,) 
+2 E (sup IL~[g(-)ltnz,zI2IAto). 	 (4.6.14) 

to~z~t 
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Applying Doob's inequality to the first term of the equation (4.6.14) we have 

E (,::'~~, ~ Ia Lq ( )] '",'"H ' A,") 

< 4 E ( '~ [0 [q(,) !",,"+' , A,") 

< 4E ([I ~ L[g()],,,.t"H I' 
nt-2 

+21 L la[gU]tn,tn+l1 E(11a[gUktt-1,tnt 11Atnt -1) 
n=O 

+E ([Io[g(, )],",-, ,'", I'IA,",-,) 1IA,") 

< 4E([I~ [aLq()]''''"HI' 

+E (17"[q()],,,,_,,,,,, I'IA,",-,) 11.4,0)' 	 ( 4.6.15) 

Here the last line holds by the discrete time martingale property of the in-
volved stochastic integrals, which is E(la[g(')]tnt-1,tntIAtnt_1) = o. 
Then by applying Lemma 3.6.1 we obtain 

E C~;~, ~ [,[g(,)],",,"+, ' A,") 
< 4E( [I ~ [o[g()J,.",,+,I' 

+4l (a)-n(a) A l(a)+n(a)-l l tnt if, ( ) dU] At ) 
Ll. tnt-l,UjS a 0 

tnt -1 

< 4 E ( [I ~ JaLq( )1",,«+, I' 

ltnt - 1 

+41(a)-n(a) A l(a)+n(a)-l if, ,( ) du 
Ll. 	 tnt -2 JU,S 0' 

tnt -2 
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+41(a:)-n(a) Lll(a:)+n(a)-l ltn t V; dU] A )tnt -2,u,s(a) .l-ttO' ( 4.6.16) 
tnt -1 

where the last passage holds since Vtnt _l,u,s(a) ::; Vt nt _2,U,S(a:). Applying this 
procedure repetitively and using (4.6.8) we finally obtain 

E (sup
to:Sz:St 

< 41(a:)-n(a)+1 6.1(a)+n(a)-1 E (it V; du A )to,u,s(a) to 

it V; 

to 

= 41(a:)-n(a:)+1 A l(a)+n(a:)-l du 
Ll to,U,s(O') . (4.6.17) 

to 

For the second term of equation (4.6.14), by applying the Cauchy-Schwarz 
inequality, similar steps as the ones used previously and Lemma 3.6.11 we 
obtain 

::; E ( sup (z - tnJ lZ IIO'-[g(o)]tnz ,ul2 du Ato) 
to:Sz:St tn. 

<: f'., [E (EC.~~~<u IIa-[g(-)k.."I'iA,," ) A~) du 

u<_ 6. 41(a-)-n(0'-) Ll1(0'-)+n(0'-)-1 it E (l V; _ dz A ) du 
tnu ,z,s(0' ) to 

to tnu. 
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< " 41(a- )-n(a-) l:!.l(a- )+n(a-)-1 l:!.lt V, (_) du 
_ L.l. to ,tl,.s a: 

to 

- 41(a)-n(a) "1(a)+n(a)-l it v,t () du 
- L.l. ,o,u,s Q:: (4.6.18) 

to 

where the last passage holds since l(o:) = l(o:-) + 1, n(o:) = n(o:-) + 1 and 
8(0:) = 8(0:-). 

Therefore, combining equations (4.6.17) and (4.6.18) we finally obtain 

c2 (4f(al-n(al+1 l:!.f(o:)+n(c.)-l j.t V, . () duFt' < to,u 1 S a: 
to 

+ 41(a)-n(a) 6 1(a)+n(a)-1 1t V, dU)
to,u,s(a) 

to 

< 41(a)-n(a)+2 6 1(a)+n(a)-1 it V, .( )du
to)u,s a , (4.G.19) 

to 

which completes the proof of the lemma for FTa. 

Let us now prove the assertion for F;. The case of l(o:) = n(o:) has been already 
proved since F: = F;. 

Consider now the case of 1(0:) > n(o:) + 8(0:) with 0: = (jl,'" ,jl)' Note that in 
this case at least one of the elements of the multi-index 0: belongs to {I, ... , m} 
and, thus, the process 

k

{L Ia[g(')]tn,tn+l ,k E {O, 1 ... , nT - I}} ( 4.6.20) 
n=O 

is a discrete time martingale. 

If jl = 0, then using similar steps as in (4.6.14)-(4.6.19) we obtain 

F" < 41(,,)-n(a)+2 l:!.1(a)+71(a)-l Ks(a) 1t V, du 
t to;u,s(a) 

to 

< 41(a)-n(a)+2 61(a)+71(a)-1 es(a) 1t v, .( )clu
tu,u,s Q: (4.6.21) 

to 

where k = ~(4 + >'(T - to)), see Lemma 3.6.1, and e= 4 + >'('1' - to). 

http:4.6.14)-(4.6.19
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If jl E {1, ... , m}, then by similar steps as in (4.6.10) we obtain 

pC\' < 41(a)-n(a)+2 .61(a)+71(C\')-1 j(s(c'-) it V; du 
t - to,u,s(o:) 

to 

< 41(a)-n(a)+2 6 1(a)+n(a)-1 es(a) it V; du 
to,u,s(o:) . (4.6.22) 

to 

If jl = -1, then by the decomposition (3.6.1) and the Cauchy-Schwarz inequality 
we obtain 

For the first term on the right-hand side of (4.6.23) by similar steps as those used 
in (4.6.11) and (4.6.12), we obtain 

< 41(a)-n(a) 6 1(a)+n(a)-1 j(s(a)-1it V; duo _ tu,u,s(a) ( 4.6.24) 
to 

For the second term on the right-hand side of (4.6.23) by similar steps as those 
used in (4.6.5)-(4.6.9), we obtain 

t:::; A(t - to)41(a)-n(a)-1 6 1(0:)+n(0:)-1 j(s(a)-1i vto,u,s(a) duo (4.G.25) 
to 

By combining (4.6.23), (4.6.24) and (4.6.25), we obtain 

tFa < !43 
(4 + A(T - t ))41(0:)-n(a)+2 6 1(a)+n(0:)-1 j(s(a)-1i V; du t - a to,u,s(a) 

to 
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< 41(a)-n(a)+2 A l(a)+n(a)-l 1(s(a) 1t V; () du 
Ll to,u,s a 

to 

j .t 
< 41(a)-71,(c<)+2 A l(n)+71,(n)-l c's(a) V; d.u 

L..l. to,'u,s(a)' ( 4.6.26) 
to 

Let us finally consider the case of l(o:) = n(a) + s(a) with s(o:) ~ 1. By using the 
relationship (3.2.8) one can rewrite the multiple stochastic integrals 1a[gO]tn,tn+l 

appearing in Ft as sum of 28(0'.) multiple stochastic integrals involving integrations 
with respect to the compensated Poisson measure P4> and to the product of time and 
the intensity measure 4>(-). Therefore, by applying the Cauchy-Schwarz inequality 
and similar steps as used before, we obtain 

F a < 2s(a)4l (a)-n(a)+2 t:.l(a)+n(a)-l 1(s(a) 1t V; du 
t to,'U,s(a) 

to 

41(a)-n(a)+2 6 1(a)+n(a)-1 cs(a) 1t l'to,'U,s(a) duo (4.6.27) 
to 

This completes the proof of Lemma 4.6.1. 0 

4.7 Proof of Theorem 4.5.1 

Before proceeding to the proof of Theorem 4.5.1, we present a lemma on the second 
moment estimate of the order I compensated strong Taylor approximation (4.5.5) 

Lemma 4.7.1 Under the conditions of Theorem 4.5.1, we obtain 

E( sup IYzt:.12IAo) ::; C(1 + IYot:.1 2 ), (4.7.1) 
O:S=z:S=T 

where yt:. is the order I compensated strong Taylor approximation (4.5.5). 

Proof: 

Note that the order I compensated strong Taylor approximation yt:. at time t E 

[0, T] is given by 

nt-l }7t:. t:. ~ - t:. ~ - t:.{} t = Yo + ~ ~ 10'. [J", (tn , ~Jk,tn+l + 1a[Ja(tnt , ~nJk't,t . 
aEAI'\{v} n=O 
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Therefore, we have 

ECO~~~T Ill," 121Ao) 	 < E C~~~TC1+ Ill," I') Ao) 

< E( sup (1 + /YOll + L {'t1 L[iAtn1 ~~)k,tn+l
O~z~T aEA-r\{v} n=O 

< 	 E (.~~~T (1 + 21Yo"I' + 21 J~~{") 
(~ Ia [laCt,,, y;~) j,.,t.+ t + Io [ja (tn" Y,~J It., " } I') Ao) 

< 	 C1 (1+ IYo" I') + 2 K J;~{"} t: (.~~~T 

1~I Ia[jaCtn' y;~)It.".+> + L[J.(tn, , y;:-, )It.", I' Ao), 
(4.7.2) 

where K is a positive constant depending only on the strong order r of the approx-
imation. By Lemma 4.6.1 and the linear growth condition (4.5.9) we obtain 

:::; C1(1 + lyolll2) + 2 K1 .. L {iT r... r 
aEA-r\{v} 0 Js Js 

x E C~~~Y" (z ,Y,") I' AO) 1>(dv I) .1>(dv'{'}) d" } 
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:s; C1 (1 + IYo~12) + 2 K1 

X L {1···lK2(V1, ... ,VS(Q))¢(dV1) ... ¢(dVS(Q)) 
QEA,\{v} 

x [ E (.~~~u (1+ !Y."I') Ao) dU} 

S C1 (1 + !y"(O)I') + C, [ E (.~~~u (1 + 1y;"I') AO) <iu. 

(4.7.:3) 

Then by applying the Gronwall inequality, we obtain 

E ( sup IYz~ 121Ao) < C (1 + IYo~ 12), (4.7.4) 
O::;z::;T 

where C is a positive finite constant independent of D.. 0  

Now by using Lemma 4.6.1 and Lemma 4.7.1, we can finally prove Theorem 4.5.1.  

Proof:  

1. 	 With the Wagner-Platen expansion (3.5.4) we can represent the solution of 
the SDE (2.1.2) as 

X T 	 = I: L[icAp, XP)]P,T + L ]Q[iQ(-, X)]p,T' (4.7.5) 
QEA-y 	 QEB(A-y) 

for any two stopping times p and T with 0 ::; P ::; T ::; T a.s. Therefore, we 
can express the solution of the SDE (2.1.2) at time t E [0, T] as 

X t Xo + I: {'f ]0: [io:(tn) XtJ]tn,tn+l + 100[J0:(tnt , XtnJ]tntot} 
o:EA,\{v} n=O 

nt~l 	 } 

+ L { I: 1, [ic"C ,X)]tn,tn+l + ]0: [io: (-, X.)]tnt,t , (4.7.6) 
o:EB(A-y) n=() 

where nt is defined as in equation (4.1.8).  

We recall from (4.5.3) that the order I compensated strong Taylor approxi-



90 CHAPTEH 4. REGULAR STRONG D\YLOH APPROXIJvIATIONS 

mation yl). at time t E [0, T] is given by 

From the moment estimate (2.2.13) provided by Theorem 2.2.1 we have 

(4.7.8) 

By Lemma 4.7.1, we obtain a similar uniform estimate for the second moment 
of the approximation yl). 

(4.7.9) 

2. 	 Let us now analyze the mean square error of the order "( compensated strong 
Taylor approximation yf!... By (4.7.6), (4.7.7) and Cauchy-Schwarz inequality 
we obtain 

E( sup JXo - Yal).O:S;z:S;t 
nz-l 

+ L {L Ia[lAtn, XtJ - ia(tn, ~~)k,tn+l 
aEA'Y\{v} n=O 

+Ia[ia(tnz, XtnJ - ia(tnz ,~~Jltnz'z} 

+ ~ {~Ia[ia(-'X.)k,tn+l + Ia[iaCX.)kz,z}1 2 AO) 
aEB(A'Y) n=O 

(4.7.10) 
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for all t E [0, TJ, where Sf and Ut are defined as 

Sf := E ( sup Itl fe. [fa(tn> XtJ - fa(tn1 ~~)]
O:Sz:St 	 n=O t n ,tn+l 

+Io [lo(tn.,Xt • .l- lo(t•• ,y,~.lL.... J' lAo), (4.7.11) 

UtU := E (sup It.-.1YetUu(-,X.)k,tn+l + Iet [!c,(-,x.)lt"z>zj2 AO). 
O:Sz:St 	 n=O 

(4.7.12) 

:3. By using again Lemma 4.6.1 and the Lipschitz condition (4.5.7) we obtain 

Set 
t E (O~~~t I'~ L [1o(t", X,J- l.u", y,~)L,"+, 

+Iu [Ja(tnz , X tnz ) - fu(t nz ,~~z)] j2JAO) 
tnz1Z 

< C4 t f ... f E(sup Ifa(tnz,XtnJ - Ja(tnz , ~~)12 AO)Jo J£ J£ O:Sz:Su 

x ¢(dv 1 ) .•. ¢(dvs(a) )du 

< C4 f ... f (Kl(vl, ... ,vs(u)))2¢(dvl) ... ¢(dvs(a))J£ JE 

x Jot E ( sup IXtnz - ~~J2 AO) du 
O<z<u 

(4.7.13)< c51t Z(u) duo 

Applying again Lemma 4.6.1 and the linear growth condition (4.5.9) we ob-
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tain 

< C5 /::,.,p(0l) 1... 1K2 (vI, ... , VS(Ol) )4;(dv1) ... 4;(dVS(Ol)) 

x l'E(.~~~y + IX,I') An) d" 

(4.7.14)< Co '"w(a) (t + l' E C~~~u IX, 1'1 An) du). 

where  
2/(ex) - 2 : l(ex) = n(ex) 

1jJ(ex) = { 
l(ex) + n(ex) - 1 : I(ex) =I- n(ex). 

Since we are now considering ex E B (AI' ), we have that 1(ex) :2: "( + 1 when 
l(ex) = n(ex) and l(ex) + n(ex) :2: 2"( + 1 when l(ex) =I- n(ex), so that 1jJ(ex) :2: 2"(. 
Therefore, by applying estimate (2.2.13) of Theorem 2.2.1 we obtain 

Ut < C6 /::,.21' (t + it Ct (1 + IXoI2)du) 

< C7 /::,.21' (1 + IXoI2). (4.7.15) 

4. Combining equations (4.7.10), (4.7.13) and (4.7.15) we obtain 

By equations (4.7.8) and (4.7.9) Z(t) is bounded. Therefore, by the Gronwall 
inequality we have 

(4.7.17) 
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Finally, by assumption (4.5.6), we obtain 

E( sup IXz - Y/"12IAo) = jZ(T) :s; K3 6.\ (4.7.18) 
OC=;zC=;T 

which completes the proof of Theorem 4.5.1. 0 

Remark 4.7.2 Note that the same result as that in Theorem 4.5.1 holds also for 
the order I strong Taylor approl;imation (4.5.4) as mentioned in Corollary 4.5.3. 
The proof uses analogous steps as those used in the proof described above. 
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Chapter 5 

Regular Strong Ito Approximations 

In this chapter we describe regular strong approximations that are more general 
than the regular strong Taylor approximations presented in the previous chapter. 
These approximations belong to the class of regular strong Itt) schemes, which in-
cludes derivative-free, implicit and predictor-corrector schemes. Some of the results 
to be presented in this chapter have been published in Bruti-Liberati, Nikitopoulos-
Sklibosios & Platen (2006). A working paper, Bruti-Liberati & Platen (2007d), on 
strong predictor-corrector methods is in preparation. 

5.1 Introduction 

The first types of schemes that we describe in this chapter are the so-called derivative-
free schemes. Higher order strong Taylor schemes, as the order 1.0 strong Taylor 
scheme presented in Section 4.3, are rather complex as they involve the evalua-
tion of derivatives of the drift, diffusion and jump coefficients at each time step. 
For the implementation of general numerical routines for the approximation of 
jump-diffusion SDEs, without assuming a particular form for the coefficients, this 
constitutes a serious limitation. In principle, one is required to include a symbolic 
differentiation into a numerical algorithm. For these reasons, we present in this 
chapter derivative-free strong schemes that avoid the computation of derivatives. 

In the second part of this chapter we present implicit schemes. As shown in Hof-
mann & Platen (1996) and in Higham & Kloeden (2005, 2006), when one has 
multiplicative noise explicit methods show narrow regions of numerical stability. 
We emphasize that SDEs with multiplicative noise are typically used when mod-
elling asset prices in finance. They also arise in other important applications such 
as hidden Markov chain filtering, see Elliott, Aggoun & Moore (1995). In order 
to construct approximate filters, one needs a strong discrete time approximation 
of an SDE with multiplicative noise, the Zakai equation. Moreover, in filtering 

95  
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problems for large systems it is often not possible to use small time step sizes, as 
the computations may not be performed fast enough to keep pace with the arrival 
of data. Therefore, for this kind of applications, higher order schemes with wide 
regions of numerical stability are crucial. To overcome some of these problems, we 
describe implicit schemes that have satisfactory numerical stability properties. 

As discussed above, explicit schemes have narrower regions of numerical stability 
than corresponding implicit schemes. For this reason implicit schemes for diffusion 
and jump-diffusion SDEs have been proposed. Because of their improved numer-
ical stability properties, implicit schemes can be used with much larger time step 
sizes than those required by explicit schemes. However, implicit schemes carry, in 
general, an additional computational burden since they usually require the solu-
tion of an algebraic equation at each time step. Therefore, in choosing between 
an explicit and an implicit scheme one faces a trade-off between computational 
efficiency and numerical stability. Additionally, as will be explained later, when 
designing an implicit scheme, it is not easy to introduce implicitness in the diffusion 
coefficient. This is due to problems that arise with the reciprocal of Gaussian ran-
dom variables. For these reasons, we will present new predictor-corrector schemes 
that aim to combine good numerical stability properties and efficiency. A detailed 
investigation of the numerical stability properties of predictor-corrector schemes is 
left for future research. 

5.2 Derivative-Free Order 1.0 Scheme 

By replacing the derivatives in the order 1.0 strong Taylor scheme, presented in 
Section 4.3, by the corresponding difference ratios, it is possible to obtain a scheme 
that does not require the evaluation of derivatives and achieves the same strong or-
der of convergence. However, to construct the difference ratios we need supporting 
values of the coefficients at additional points. 

In the one-dimensional case, d = m = 1, the derivative-free order 1.0 strong scheme, 
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is given by 

Yn+1 = Yn+a~n+b~Wn+ltn+l rc(v)p¢(dv,dz) 
tn ls 

(b(tn , Y.:) - b) to", t' 
+ 	 ~ .ftn ltn dW(zd dW(Z2) 

I tn+1lj'Z2 (c(tn,Yn, v) -c(v)) 
+ 	 r;s:- dW(zd p¢(dv, dz2)tn S tn V Un 

n z2+ 	 t +1 l r {b(tn, Yn + c(v)) - b} p¢(dv, dzJ dVV(Z2) (5.2.1)ltn tn ls 
+ 	 tn+l r t2 r {c(tn, Yn + C(V2), vd c(vd }P¢(dVl' dz1 )p¢(dv21 dz2),

.ftn .fs .ftn .fs 

with the supporting value 
Yn=Yn+b~. (5.2.2) 

The scheme (5.2.1)-(5.2.2) generally achieves a strong order ~( = 1.0 and is a gener-
alization of a corresponding scheme proposed in Platen (1984) for pure diffusions. 

We can simplify the double stochastic integrals appearing in (5.2.1) 1 as in Section 
4.3, and rewrite the derivative-free order 1.0 strong Taylor scheme as 

Pt/>(tn+l) (b(tn1 Yn) - b) 2 

Yn +1 Yn + a~n + bflWn + L. C(~i) + VE;, ((llWn) - fln)2 	 fln 
i=pq,(tn )+1 

Pt/>(tn+l) (C(tnlYnl~i)-C(~i)) 
+ L VE;, (W(Ti) - W(tn)) 

i=p,p(tn)+l n  

p,p(tn+Il  

+ L {b(Yn+C(~i)) -b}(W(tn+1 ) - W(Ti)) 
i=pq,(tn )+1  

Pq,(tn+Il Pq,(Tj)  

+ L L {c(Y" + C(~i)' ~j) - C(~j) }, 	 (5.2.3) 
j=pq,(tn)+l i=pq,(tn )+1 

with supporting value (5.2.2), which can be directly used in a scenario simulation. 



98 CHAPTEH 5. REGULAR STRDNG ITO APPROXD\.IATIONS 

As discussed in Section 4.4, in the case of mark-independent jump size it is recom-
mended to check the particular structure of the SDE under consideration. Indeed, 
we derived the jump commutativity condition (4.4.2) under which the order 1.0 
strong Taylor scheme (4.3.4) exhibits a computational complexity that is indepen-
dent of the intensity level of the Poisson random measure. 

For the derivative-free order 1.0 strong scheme (5.2.1)-(5.2.2) with mark-independent 
jump size, the derivative-free coefficient of the multiple stochastic integral 1(1,-1), 

which is of the form 
c(tn' y';:) - c(tn' Yn) 
~ 

depends on the time step size .0..n . On the other hand, the coefficient of the multiple 
sto chastic integral 1(_ 1,1) , 

is independent of.0..n- Therefore, it is not possible to directly derive a commuta-
tivity condition similar to (4.4.2) that permits to identify special classes of SDEs 
for which the computational efficiency is independent of the jump intensity level. 

For instance, for the SDE (2.1.5) with mark-independent jump size c(t, x, v) = 1; p, 
with p ~ -1, the derivative-free order 1.0 strong scheme is given by 

(5.2.4) 

with the supporting value 
(5.2.5) 

Since the evaluation of the multiple stochastic integrals 1(1,-1) and Ie -1,1), as given 
in (4.3.5), depends on the number of jumps, the computational efficiency of the 
scheme (5.2.4)-(5.2.5) depends on the total intensity A of the jump measure. 

Let us consider the special class of one-dimensional SDEs satisfying the jump com-
mutativity condition (4.4.2) , which we recall here in the form 

ac(t, x) ( ) ( )b(t,x) ax =b t,x+c(t,x) -b t,x, (5.2.6) 
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for all t E [0, T] and x E JR. Under this condition, we should first derive the order 
1.0 strong Taylor scheme, using the relationship 

1(1,-1) + 1(-1,1) = 6Pn 6Wn, (5.2.7) 

obtaining 

bb' 
Y~'+1 Yn + a6n + b6Wn + c6Pn + 2{(6Wn)2 - 6 n} (5.2.8) 

{ ( ~,)} Al {C(tn ,Yn +C)-C}{()2 }+ b tn, Yn + C - b 6.pn u Un + ... 6.Pn - 6.Pn , 

w here we have used again the abbreviation (4.1. 9). Then, we replace the derivative 
b' by the corresponding difference ratio and obtain a derivative-free order 1.0 strong 
scheme 

Yn+1 Yr! + a6.n + b6.Wn + c.6.pn 

+{b(tn'~- b} {(6Wn)2 _ 6 n} + {b(tn' Yn + c) - b}6.Pn6.Wn2,6n 

+ {c(tn' Yn + c) - c} {(6.PrY _ 6.Pn}, (5.2.9)
2 

with supporting value given in (5.2.2). The computational efficiency is here inde-
pendent of the intensity level. 

Let us discuss an even more specific example. For the SDE (2.1.5) with c(t, x, v) = 

x /3, for /3 ~ -1, we can derive the derivative-free order 1.0 strong scheme, which, 
due to the multiplicative form of the diffusion coefficient, is the same as the order 
1.0 strong Taylor scheme (4.4.6). 

In the multi-dimensional case with scalar Wiener process, which means m = 1, 
and mark-dependent jump size, the kth component of the derivative-free order 1.0 
strong scheme is given by 

Y:+ 1 = y; + ak6 n + bk6.Wn +I tn 
+

1 l ck(v) p</J(dv, dz) 
tn [; 

(bk(tn' Yn) - bk ) Itn+llz2 + ~ dW(zr) dW(Z2) tn tn 

http:b}6.Pn6.Wn
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(5.2.10) 

with the supporting value (5.2.2). 

As noticed for the one-dimensional situation, even in the case of mark-independent 
jump size, it is not possible to derive a jump commutativity condition similar to 
(4.4.10), since the coefficient of the multiple stochastic integral I(1,-l) depends on 
the time step size 6 n . However, as shown in Section 4.4, it makes sense to consider 
the special class of multi-dimensional SDEs with a scalar Wiener process and mark-
independent jump size characterized by the jump commutativity condition 

~ 1 ack (, t, x) k ( ) k ( )Lb(t,x) axl =b t,x+c(t,x) -b t,x (5.2.11) 
1=1 

for k E {I, 2, ... ,d}, t E [0, T] and x E JRd. Using the relationship (5.2.7) one can 
derive, in this case, an order 1.0 strong Taylor scheme 

(5.2.12) 

whose computational complexity is independent of the intensity A. Replacing the 
coefficient 

~ b1 abk 

L axl 
1=1 

by the corresponding difference ratio, we obtain a derivative-free order 1.0 strong 
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Taylor scheme of the form 

Y:+l Y: + ak6.n + bk 6.Wn + Ck 6.pn 

+ {bk(tn,Yn) - bk} {(6.vVn? _ 6.n} + {bk(tn, Yn + c) - bk}6.Pn 6.Wn
2,/6.n 

+ {ck(tn' Yn + c) - ck} {(6.Pn? _ 6.Pn}, (5.2.13)2 

with supporting value (5.2.2), for k E {I, 2, ... 1 d}. The computational complexity 
of the scheme (5.2.13) is independent of the jump intensity level. 

In the general multi-dimensional case the kth component of the derivative-free 
order 1.0 strong scheme is given by 

tnY:+ 1 y;: + ak6.n + LIn bk,j 6.W~ + l +1 l ck(v) pcf;(dv, dz) 
J=1 tn £ 

1 m ltn+l1z2 
+ J6. jl~l tn tn {bk,]l (tnl ynj2 ) - bk,il }dWjl (zddWj2 (Z2)n 

+ LIn l tn +1 JErl z2 { ck,jl (tn' YnJ2. ) - ck,jl } dHljl (zl)p¢(dv, dz2) 
jl=1 tn E tn 

+ LIn I tn+1 JFrl z2 {bk,h (tnl Yn + c(v)) - bk,il }Pcf;(dv, dz2)dWj1 (Z2) 
jl =1 tn £ tn 

+ltn 1 fl Z2 
+ f {Ck(tn,Yn+c(vd,V2) -Ck(v2)} 

tn tnJ£ J£ 
X P¢(dV1l dzd P<f;(dV2l dz2), (5.2.14) 

for k E {I, 2, ... , d}, with the vector supporting values 

Yn j = Yn + b1 ~, (5.2.15) 

for j E {l,2, ... ,m}. 

As shown in Section (4.4), for the special class of general multi-dimensional SDEs 
with mark-independent jump size, satisfying the jump commutativity condition 

d ack (t x) . ( ). ( )Lbl,JI(t, x) ax; =bk,Jl t,x+c(t,x) _bk,Jl t,x (5.2.16) 
l=1 
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for j1 E {I, 2, ... , m}, k E {I, 2, ... , d}, t E [0, T] and x E IRd , it is possible to derive 
an order 1.0 strong Taylor scheme whose computational complexity is independent 
on the intensity level. Here one needs to use the relationship 

for j1 E {I, 2, ... ,Tn}. Then, by replacing the coefficients involving the derivatives 
by the corresponding difference ratios, we obtain a derivative-free order 1.0 strong 
scheme that shows a computational complexity independent of the jump intensity 
level. This scheme is given by 

Y:+1 'y~lk + ak6 n + Lm 

bk,j 6 Hf~ + ck 6pn 
j=1 

m 

+L {bk,jl(tn, y;, + c) - bk,jl }6Pn 6Hl~1 
j=l 

(5.2.17) 

for k E {I, 2, ... , d}, with the vector supporting values (5.2.15). For the generation 
of the multiple stochastic integral I(j!"i2) ' for .h,,12 E {I, 2, ... ,d}, we refer to 
Section 4.4. 

For the special case of a multi-dimensional SDE satisfying the jump commutativity 
condition (5.2.16), the diffusion commutativity condition 

(5.2.18) 

for jll12 E {I, 2, ... ,m}, k E {I, 2, ... , d}, t E [0, T] and x E IRd , and with mark-
independent jump size, we obtain an efficiently implement able derivative-free order 
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1.0 strong scheme. Its kth component is given by 

m 

yk yk + ak~ +"" bk,j ~W j + ck ~pn+1 n n ~ n n 
j=1 

+~ .f {bk,jl(tn, Yn12 ) - bk,jl(tn, Yn)} {~W~l ~W~2 -~n} 
Jl ,J2=1 

+ Lm 

{bk,jl(tn' Yn + c) - bk,jl} (~Pn ~W~I) 
jl=1 

+~ {ck(tn' Yn + c) - ck} ((~Pn)2 - ~Pn)' (5.2.19) 

for k E {I, 2, ... ,d}, with the vector supporting values (5.2.15). 

5.3 Drift-Implicit Schemes 

In general, given an explicit scheme of strong order I it is usually possible to obtain 
a similar drift-implicit scheme of the same order. However, since the reciprocal of 
a Gaussian random variable does not have finite absolute moments, it is not easy 
to introduce implicitness in the diffusion coefficient. Regions of numerical stability 
of drift-implicit schemes are typically wider than those of corresponding explicit 
schemes. Therefore, the former are often more suitable for a range of problems than 
corresponding explicit schemes. In this section we present drift-implicit strong 
schemes. In Higham & Kloeden (2005, 2006, 2007), a class of implicit methods 
of strong order I = 0.5 for jump-diffusion SDEs has been proposed. A detailed 
stability analysis shows that these schemes have good numerical stability properties. 
In the following we focus on drift-implicit schemes of strong order I = 0.5 and ,= 1.0 for the jump-diffusion SDE (4.1.4). 
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5.3.1 Drift-Inlplicit Euler Scheme 

In the one-dimensional case, d = m = 1, by introducing implicitness in the drift of 
the Euler scheme (4.2.1), we obtain the drift-implicit Euler scheme, 

p¢(tn+ll 

}~+1=YrL+{Oa(tn+l,YrL+d+(1-0)a}.0.n+b.0.Wn+ L ck(~d, (5.3.1) 
i=p¢(tn )+ 1 

where the parameter 0 E [0,1] characterizes the degree of implicitness and we have 
used the abbreviation defined in (4.1.9). For 0 = 0 we recover the Euler scheme 
(4.2.1), while for e= 1, we obtain a fully drift-implicit Euler scheme. The scheme 
(5.3.1) achieves a strong order of convergence r = 0.5. This scheme was proposed 
and analyzed in Higham & Kloeden (2006) for SDEs driven by \Viener processes 
and homogeneous Poisson processes. It generalizes the drift-implicit Euler scheme 
for pure diffusions presented in Talay (1982b) and Milstein (1988). 

By comparing the drift-implicit Euler scheme (5.3.1) with the Euler scheme (4.2.1), 
one notices that the implementation of the former requires an additional computa-
tional effort; an algebraic equation has to be solved at each time step. This can be 
performed, for instance, by a Newton-Raphson method. In special cases, however, 
the algebra.ic equation may admit an explicit solution. Note that the existence 
and uniqueness of the solution of this algebraic equation is guaranteed by Banach's 
fixed point theorem, see for instance Evans (1999), for every 

1
.0.< --- ..fRo' 

where]{ is the Lipschitz constant appearing in the Lipschitz condition (2.2.10) for 
the drift coefficient a. 

When we have a mark-independent jump size we obtain the drift-implicit Euler 
scheme 

(5.3.2) 

In the multi-dimensional case with scalar Wiener process, m = 1, and mark-
dependent jump size, the kth component of the drift-implicit Euler scheme is given 

!" 

http:algebra.ic
http:1=YrL+{Oa(tn+l,YrL+d+(1-0)a}.0.n+b.0.Wn


105 5.3. DRIFT-IlvIPLICIT SCHEMES 

by 

p.p(tn+l) 

Y:+1 = Y: + {8 ak (tn+1' Yn+1) + (1 - B) ak } ~n + bk~Wn + L Ck(~i)' 
i=p.p(tn )+l 

for k E {I, 2, ... ,d}. 

In the case of a mark-independent jump size the k-th component of the drift-implicit 
Euler scheme (5.3.3) reduces to 

Ynk+1 = y;~ + {8 a k (tn+l' Y,,+d + (1 - 8) a k } 6" + 1l6TVn + ck 6p"J (5.3.3) 

for k E {I J 2, ... , d}. 

For thc general multi-dimensional case with mark-dependent jump size the kth 
component of the drift-implicit Euler scheme is of the form 

Tn p¢(tn+1l 

Y:+ 1 = y;~ + {8ak(tn+ll Y,,+d + (1- 8)ak} ~n + Lbk,j6W~ + L ck(~i)' 
j=l i=p¢(tn )+ 1 

for k E {I, 2, ... , d} and j E {I, 2, ... 1 m}. 

Finally, in the multi-dimensional case with mark-independent jump size the kth 
component of the dr-ift-implicit Euler- scheme is given by 

Y;~t-l = y;~ + {e ak (tn+l1 Y,,+l) + (1 - 8) ak } ~,,+ Lm 

bk,j 6W; + ck 6p", 
j=l 

for k E {I, 2, ... , d}. 

5.3.2 Drift-Implicit Order 1.0 Scheme 

In a similar way as for the Euler scheme, by introducing implicitness in the drift 
of the order 1.0 strong Taylor scheme presented in Section 4.3, we obtain the drift-
implicit order 1.0 strong scheme. 

In the one-dimensional case, d = m = I, the drift-implicit unler 1.0 strong scheme 
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is given by 

+ l~n+l 1c(v) p<f;(dv, dz) + bb'l"tn+l 1:2 dW(Zl)dvV(Z2) 

+ tn+l r r 2 bC'('u)dW(zdp<f;(dv,dz2)it" if; itn 
+ 1,:n+1 !~21 {b(tn' Yn + c(v)) - b}P¢(dVl dz1 )dW(Z2) (5.3.4) 

+ tn+1 r r 2 r{C(tn' Yn + c(vd, V2) - C(V2) }Pq,(dVl' dzr)p<f;(dv2' dz2 ),itn if;itn i£ 
where 

'( ) '( ) oc(t,x,v)b':= b'(t,x) = ObX'X) and C v := C t, x, v:= ox . (5.3.5) 
x 

For simplicity, we have used the convention (4.1.9). Here the parameter 0 E [0,1]' 
characterizes again the degree of implicitness. This scheme achieves a strong order 
of convergence T = 1.0. Note that the degree of implicitness, 0, can, in principle, be 
also chosen greater than one if this helps to stabilize numerically the scheme. This 
scheme generalizes a first order drift-implicit scheme for pure diffusions presented 
in Talay (1982a) and Milstein (1988). 

One can simplify the double stochastic integrals appearing in the scheme (5.3.4) 
as shown for the order 1.0 strong Taylor scheme (4.3.3). This makes the resulting 
scheme more applicable in scenario simulation. 

The jump commutativity condition (4.4.2), presented in Section 4.4, also applies to 
drift-implicit schemes. Therefore, for the class of SDEs identified by the jump com-
mutativity condition (4.4.2) the computational efficiency of drift-implicit schemes 
of order T = 1.0 is independent of the intensity level of the Poisson measure. For 
instance, for the SDE (2.1.5) with c(t, x, v) = x f3 and f3 ~ -1, it is possible to 
derive a drift-implicit order 1.0 strong scheme, given by 

(5.3.6)  
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which is efficient also in the case of a high intensity jump measure. Note that B 
should be chosen different from (p,6 n )-1, which automatically arises for sufficiently 
small step sizes 6 n . 

In the multi-dimensional case with scalar Wiener process, m = 1, and mark-
dependent jump size, the kth component of the drift-implicit order 1.0 strong 
scheme is given by 

Ynk+l = Y/:+{Bak(tn+l'Yn+d+(1-B)ak}6n +bk6Wn 

l tn+ 1 1 d l tn+ 1 l z2 8bk 
+ tn £ ck(v) p<f;(dv, dz) + ~ tn tn bl 8xldW(zddW(Z2) 

d ltn+ll1z2 8ck (v)+ L bl ,Li dW(zdp<f;(dv, dz2) 
l=1 tn £ tn  

tn 1 + l + l z2 1{bk(tn' Yn + c(v)) - bk}p<f;(dv, dzddW(z2) 
tn tn £ 

z21+ltn 
+ fl f {Ck(tn'Yn + C(Vd,V2) -Ck(V2)} 

t" tnJ£ J£ 
XP<f;(dVl, dzdp<f;(dv2, dz2 ), (5.3.7) 

for k E {I, 2, ... ,d}. 

For the special class of multi-dimensional SDEs with scalar Wiener process and 
mark-independent jump size, satisfying the jump commutativity condition (5.2.11), 
the kth component of the drift-implicit order 1.0 strong scheme, given by 

Y/:+1 Y/: + {B ak(tn+1) Yn+d + (1 - B) ak} 6 n + bk6Wn 

k 1 ~ l 8bk {( )2 }+c ~Pn + - ~b!:li 6Wn - ~n (5.3.8)
2 uX 

l=1 

+ {bk(tn) Yn + c) - bk}6Pn ~Wn + {ck(tn) Yn,,+ c) - ck} {(~Pn)2 - ~Pn}' 

shows a computational efficiency independent of the jump intensity level. 

In the general multi-dimensional case the kth component of the drift-implicit order 
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1.0 strong scheme is given by 

Y;+1 = Y; + {e ak(tn+l' Yn+d + (1 - e) ak} 6.n + L
m 

bk,j 6.w~ 
j=1 

x p",(dv, dz2) dW j1 (Z2) 

+l tn
+ 

1 fl z2 f{ck (tn ,Yn +c(vd,v2 ) -Ck (v2 )} 
tn tniE iE 

(5.3.9) 

for k E {1,2, ... ,d}. 

In the implementation of drift-implicit schemes for multi-dimensional SDEs it is 
important to exploit the specific structure of the SDE under consideration. For 
instance, for multi-dimensional SDEs satisfying the diffusion commutativity con-
dition (5.2.18) as well as the jump commutativity condition (5.2.16) and with 
mark-independent jump size, we obtain an efficiently implementable drift-implicit 
order 1.0 strong scheme, whose kth component is given by 

Y;+l = Y; + {e ak(tn+1' Yn+1) + (1 - e) ak} 6.n + L
m 

bk,j 6.W~ 
j=1 

+ Lm 

{bk,jl (tn' Yn + c) - bk,j1} ( 6.pn 6.W~1) 
j1=1 

(5.~~.10) 
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for k E {I, 2, ... ,d}. The special case of additive diffusion and jump coefficient, 
which means b(t,x) = b(t) and c(t, x) = c(t), satisfies all the required commuta-
tivity conditions and, therefore, leads to an efficient drift-implicit order 1.0 strong 
scheme. 

5.4 Predictor-Corrector Schemes 

The following new strong predictor-corrector schemes are designed to retain the 
numerical stability properties of similar implicit schemes, while avoiding the addi-
tional computational effort required for solving an algebraic equation in each time 
step. This is achieved with the following procedure implemented at each time step: 
At first an explicit scheme is generated, the so-called predictor, and afterwards a 
de facto implicit scheme is used as corrector. The corrector is made explicit by 
using a predicted value Yn-t-1, instead of Yn-t-1. Additionally, with this procedure 
one avoids the problem of the reciprocal of Gaussian random variables and can 
introduce "implicitness" also in the diffusion coefficient, as will be shown below. 

Another advantage of predictor-corrector methods is that the difference Zn+l := 

Yn-t-1 - Yn+1 between the predicted and the corrected value provides an indication 
of the local error. This can be used to implement more advanced schemes with 
step size control based on Zn+ 1. 

5.4.1 Predictor-Corrector Euler Scherne 

In the one-dimensional case, d = Tn 1, the family of predictor-corrector Euler 
schemes, is given by the corrector 

Yn-t-1 1";1 + {e(1)(tn-t-1 1 }~+d + (1 - 8)a1)} 6 n 
p¢(tn+Il 

+ {1]b(tn-t-1' Yn-t-d + (1- 71)b} 6Hln + L C(~i)' (5.4.1) 
i=p¢(t,,}+l 

where 0'1) = a - 1]b bl , and the predictor 

p¢(tn+tl 
Yn-t-1 = 1";, + a6n + b6Wn + L C(~i)' (5.4.2) 

i=p¢(tn)-t- 1 
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Here the parameters e, rJ E [0, 1] characterize the degree of implicitness in the drift 
and in the diffusion coefficients, respectively. \Ale remark that with the choice of 
77 > 0 one obtains a scheme with some degree of implicitness also in the diffusion 
coefficient. This was not achievable with the drift-implicit schemes presented in 
Section 5.3. The scheme (5.4.1)-(5.4.2) has a strong order of convergence ~( = 0.5, 
as will be shown in Section 5 ..5.3. 

For the general multi-dimensional case, the kth component of the family of predictor-
corrector Euler schemes, is given by the corrector 

(5.4.3) 
m Pal (t,,+1) 
~ {bk,)(. ,-;r) (1 )lk,j} A TXl)+ ~ rJ t,,+l) 1,,+1 + - 77 [) Ll.VY" + L Ck(~i)' 
)=1 

for e,rJ E [0,1]' where 

(5.4.4) 

and the predictor 

Pa\(tn +ll

L ck(~i)' (5.4.5) 
j=l 

5.4.2 Predictor-Corrector Order 1.0 Scheme 

As explained above, it is challenging to design an efficient higher order strong 
scheme with good numerical stability properties. To enhance the numerical sta-
bility properties of the order 1.0 strong Taylor scheme (4.3.1) we have presented 
the drift-implicit order 1.0 strong Taylor scheme (5.3.4). However, this scheme is 
computationally expensive, since it generally requires the solution of an algebraic 
equation at each time step, In the following we propose the predictor-corrector 
order 1.0 strong scheme which combines good numerical stability properties and 
efficiency. 

In the one-dimensional case, d = m = 1, the predictor-corrector order 1.0 strong 

 
l 
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scheme is given by the corrector 

Yn+l Yn + {o a(tn+l' Yn+d + (1- 0) a} ~n + b~Wn 

+ I tn+1 1c(v) p¢(dv, dz) + bb' I tn+1 l z2 dW(zddll1(z2) 
~ E in ~ 

I tn+l11z2+ bc'(v)d{¥(Zl)P¢(dv, dz2)tn [; tn 
+ Itn+l1z2 f {b(tn' Yn + C(V)) - b }p¢(dv, dz1 )(HV(Z2) (5.4.6)tn tn JE 

tn++ I 1 l1z21' {C(tn' Yn + c(vd, V2) - c(V2) }p¢(dVl' dzd P¢(dV2' dz2),tn tnE E 

and the predictor 

I tn 1 lYn+l Yn+a~n+b~Wn+ + c(v)p¢(dv,dz) 
tn E 

I tn+l1z2 
+bb' tn in dl~!(zddl¥(z2) 

I tn+l11z2+ bc'(v)dW(Zdp¢(dv, dz2)tn tnE 

tn+ I + 1j'Z2 f {b(tn, Yn + C(V)) - b }p¢(dv, dz1 )dW(Z2) (5.4.7)tn tn JE  

tn z2+l +l fl f {C(tn,Yn + C(Vd,V2) -c(v2)}p</J(dvl,dzl)P</J(dv2,dz2)'tn JE tn Jt: 
Here the parameter 0 E [0, 1] characterizes the degree of implicitness in the drift 
coefficient. This scheme attains strong order 'Y = 1.0, as will be shown in Section 
5.5.3. For the generation of the multiple stochastic integrals involved, note that 
these can be simplified as shown for the order 1.0 strong Taylor scheme (4.3.3). 

For the general multi-dimensional case, the kth component of the predictor-corrector 
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order 1.0 strong scheme is given by the corrector 

Yn~l = Y: + {8 ak(tn+l1 Yn+d + (1 ~ 8) ak } J3.n + Lm 

bk,j J3.W~ 
j=l 

+t,tH 1f {bkJ• (tn' Yn + c(v)) ~ bk ,;' } 

X p¢(dv, dz2)dW j1 (Z2) 

(5.4.8) 

and the predictor 

(5.4.9)  
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with eE [0,1]' for k E {I, 2, ... ,d}. 

The considerations mentioned in the discussion on the generation of multiple sto-
chastic integrals for the order 1.0 strong Taylor scheme (4.3.8) apply also here. 
In particular, if the SDE under analysis satisfies the diffusion commutativity con-
dition (5.2.18) together with the jump commutativity condition (5.2.16) and has 
mark-independent jump size, then we obtain an efficiently implement able predictor-
corrector order 1.0 strong scheme. Its kth component is given by the corrector 

Y:+l Y: + {e ak(tn+l1 }~,+d + (1 - 0) ak } 6.n + L
Tn 

bk,j 6.vV~ 
j=1 

1 m d .. obk,j2 { . . }+ck 6.p + - '" '" b',]l -- ,0. WJl 6.WJ2 - 6.n 2 ~ ~ ox i n n n 
jl,i2=1 i=l 

+ Lm 

{bk,jl (tn' Yn + c) - bk'h} (,0.Pn,0. W~l) 
j1=1 

+~ {Ck(tnl Yn + c) - ck } ((6.Pn)2 - 6.Pn) 1 (5A.I0) 

and the predictor 

m 

17k yk + ak6. + '" bk,j 6.wj + Ck6.pn+1 n n ~ n n 
j=1 

1 m d obk,h { }+- '" '" bi,jl __ 6.Wh 6.Wh - 6.2 ~ ~ oxi n n n 
jdFl i=] 

+ Lm 

{bk ,j1 (tn' Yn + c) - bk,jl} (6.Pn 6.W;1) 
j1=1 

+~ {Ck(tnl Yn + c) - ck } ((,0.Pn)2 - 6.Pn) 1 (5.4.11 ) 

with e E [0,1]' for k E {I, 2, ... ,d}. In the special case of additive diffusion 
and jump coefficient, b(t, x) = b(t) and c(t, x) = c(t), which satisfies all the re-
quired commutativity conditions, we obtain an efficient predictor-corrector order 
1.0 strong scheme. 

We remark that as in the predictor-corrector Euler scheme also in the predictor-
corrector order 1.0 strong scheme one can introduce quasi-implicitness into the 
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diffusion part. 

It shall be emphasized that predictor-corrector schemes with higher strong order 
can be easily constructed. They provide numerically stable, efficient and conve-
niently implement able discrete time approximations of jump diffusions that can be 
recommended in many cases as simulation studies will demonstrate. 

5.5 Convergence Results 

In this section we consider general strong schemes, the strong Ito schemes, con-
structed with the same multiple stochastic integrals underlying the strong Taylor 
schemes (4.5.3), presented in Section 4.5, but with various approximations for the 
different coefficients. Under particular conditions on these coefficients, the strong 
Ito schemes converge to the solution X of the SDE (2.1.2) with the same strong 
order "'( achieved by the corresponding strong Taylor schemes. In principle, we can 
construct more general strong approximations of any given order as those already 
presented in this chapter. In particular, we will show that derivative-free, drift-
implicit, and predictor-corrector schemes are strong Ito schemes. Again we will 
discuss two different types of schemes; those based on the Wagner-Platen expan-
sion (3.5.4) and those based on the compensated Wagner-Platen expansion (3.5.5). 

For a regular time discretization (t).6. with maximum step size ,6. E (0,1), as the 
one introduced in (4.1.5), we define the order "'( stTOng Ito scheme by the vector 
equation 

Yn~l = Yn~ + L Ia [ha,nLn,tn+1 + R n , (5.5.1) 
aEA,,\{v} 

and the order "'( compensated strong Ito scheme by 

(5.5.2) 

with n E {O, 1, ... ,nT - I}. We assume that the coefficients ha,n and hQ,n are 
Atn -measurable and satisfy the Elstimates 

(5.5.3) 
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and 
E ( max Iha,n - fa(tn' YnW) ~ C(u) 6.2,,-1f;(a) (5.5.4)

O~n~nT-l ' 

respectively, for all a E A,,\{v}, \vhere C £s(a) ~ lR is a ¢(&u)- integrable 
function. Here 

2l(a) - 2 '.vhen l(o) = n(a)
{

1jJ(a) = l(a) + n(a) - 1 when l(o:) ~ n(a). 

Additionally, R" and Rn are assumed to satisfy 

E (max '" Rk 2) <- J( .6.2" , (5.5.5)
l~n~nT ~ 

O~k~n-l 

and 

E (max '" Rk 2) ~ J( 6. 2" (5.5.6)
l~n~nT ~ 

O~kSn-l 

where J( is a finite positive constant independent of 6.. 

Now we formulate a convergence theorem that will enable us to construct strong 
Ito schemes of any given strong order, including derivative-free, drift-implicit and 
predictor-corrector schemes. 

Theorem 5.5.1 Let Y~ = {Yn~' n E {O, 1, ... , nT}} be a discrete time approxima-
tion generated via the order I compensated strong Ito scheme (5.5.2), Jor a given 
regular time discretization (t)~ with maximum time step size 6. E (0,1), and Jor 
IE {0.5,l,1.5,2, ...}. IJthe conditions oJ Theorem 4-5.1 are satisfied, then 

E ( max jXtn - Y!' 12) ~ J( .6.", (5.5.7) 
OSn~nT 

where K is a finite positive constant independent oj .6.. 

Proof: Since we have already shown in Theorem 4.5.1 that the compensated strong 
Taylor scheme (4.5.3) converges with strong order I, here it will be sufficient to 
show that the compensated Ito scheme (5.5.2) converges with strong order I to the 
corresponding compensated Taylor scheme. 

1 
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-.6.
By Y we denote here the compensated strong Taylor scheme (4.5.3). Let us also 
assume, for simplicity, that Yo = Yo. Then by application of Jensen's inequal-
ity together with the Cauchy-Schwarz inequality, we obtain for all t E [0, T] the 
estimate 

n 1 2)+Kl E ( max ~ Rn . (5.5.8)
l<n<nt L.......  

- - k=O 

By applying Lemma 4.6.1, condition (5.5.6), the Lipschitz condition (4.5.7), as well 
as condition (5.5.4), we obtain 

Ht ~ K2 L {t r... r (E( max Il,(tk1 Y~) - ia(tk ) ~.6.)12)Jo ~ ~ l~n~nu 
aEAI'\{v} 

+EC~',',~~" 11n(tk' Y.') - iin,nl') )4>(dVl)", 4>(dv,(n») du }M(n) + K3 /o," 

< K51t EC~~~u IY~ - Yk.6.1 2 )du x L ~1j;(a) + K6 ~2'Y 
nEAt\{v} 

From the second moment estimate (4.7.1) on the compensated strong Taylor scheme 
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y.6. in Lemma 4.7.1 and a similar estimate on the compensated strong Ito scheme 
Y'\ one can show that Ht is bounded. Therefore, by applying the Gronwall in-
equality to (5.5.9), we obtain 

Ht :::; Ks 6,2"'( eK7t . (5.5.10) 

-.6. IISince we have assumed Yo = Yo , we get 

E( max IY~ - Yn~ 12) :::; K 6,2,. (5.5.11)
O::;n::;nT 

Finally, by the estimate of Theorem 4.5.1 we obtain 

IE( max IXt - ylll2) = E( max IXtn - Y~ + Y~ - l~f' 12 ) :s: K 6,',V O::;n::;nT n n O::;n::;nT 

(5.5.12) 
which finalizes the proof of Theorem 5.5.1. 0 

By the same arguments used above, one can show the following result. 

Corollary 5.5.2 Let yll = {Ynll, n E {O, 1, ... ,nT}} be a discrete time approx-
imation generated by the order I strong Ito scheme (5.5.1). If the conddions of 
Corollary 4.5.3 are satisfied, then 

E ( max IXtn - Ynll l2 ) :::; K 6,', (5.5.13)
O::;n::;nT 

where K is a finite positive constant independent of 6,. 

5.5.1 Derivative-Free Schemes 

The strong Ito schemes (5.5.2) and (5.5.1), and the convergence Theorem 5.5.1 
and the Corollary 5.5.2 allow us to asses the strong order of convergence of general 
approximations. In this section we show how to rewrite derivative-free schemes, 
including those presented in Section 5.2, as strong Ito schemes. 

We recall here that in the one-dimensional case the derivative-free order 1.0 strong 
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scheme, presented in Section 5.2, is given as 

with the supporting value 
(5.5.15) 

From the deterministic T<'lylor expansion, we obtain 

b(tn1 Y n) = b(tn' Yn) + b'(tn, Yn){Yn - Yn} 

bll(tn' Yn + 8(Yn - Yn)) {_ }2 
( h r u0.0. ·1{~)+ 2 Y n - Yn , 

with 
'( ) 3 b(t, .'1:) b"( 0)'= 32b(t, x)b t, x:= 3 x and t,:r. 3x2 (5.5.17) 

and 

e(tn' Yn,v) + e'(tn, Yn,v) {Yn - Yr,} 
e" (tn' Yn + 8(Yn - Yn), v) {_ }2

/ + 2 Y n - Yn , (5.5.18) 

with 
'( )._8e(t,x,v) 1/( ) ._ 32c(t, x, V)e t,x,v.- 8x and c t,x,V.- 8x2 (5.5.19) 

for every vEE and some corresponding 8E (0,1). 
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Therefore, we can rewrite the scheme (5.5.14) as 

Yn+l Yn + I CO )[h(O),n]tn,tn+l + I{l)[h(l),nltn,tn+l + I C-1)[hC- l ),n]tn,tn+l 

+I(1,dh(l,l),nltn,t n +l + 1(1,_1) [h(l,-l),nk,tn +1 

+I( -l,l),n [he -l,I),nk,tn+l + 1(-1,-/1) [h( -l,-l),nltn,tn+ll (5.5.20) 

with 

h(O),n = a(tn' Yr,), h(l),n = b(tn' Y,,), h(-I),n = c(t,,, Y,l' v), 

h(1,-l),71 = k {c(trt, Y 71 ,v) - c(tn' Y71 , v) }, 

h(-l,l),71 = b(tn' Y" + C(tnl Y71l v)) b(t71' Y'n), 

h(-l,-l),n = C(tn' Yn + c(tn, Yr" V2), VI) - c(tnl Ynl vl), 
h(1,I),n = k{ b(tnl Y n) - b(tnl Yn)}. 	 (5.5.21) 

Only for 0' = (1,1) and 0' = (1, -1) the coefficients ha,n are different from the 
coefficients fa,n of the order 1.0 strong Taylor scheme (4.3.1). Therefore, to prove 
that the scheme (5.5.14)-(5.5.15) is an order 1.0 strong Ito scheme, it remains to 
check condition (5.5.3) for these two coefficients. 

By the linear growth condition (4.5.9) of Theorem 4..5.1, we have 

Ib(tnl Yn)2b" (tnl Yn + eb(tnl Y"h/~) 12 ~ 	 Kl (1 + IYn1 4 ) K2 (1 + IYn1 2 ) 

C1 (1 + IYnl 2 + IYnl4 + IYnI G) . 

(5.5.22) 

In a similar way we also obtain 

Ib(tnl YrYc" (tnl Y" + eb(tn' y~) ~, v) r~ C2 (v) (1 + 1Y,,1 2 + IYn l4 + IYnI 6 ) 

(5.5.23) 
where C2 (v) : £ --;. lR is a ¢(dv)- integrable function. 

Following similar steps as the ones used in the first part of the proof of Theorem 

1 

http:5.5.14)-(5.5.15
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4.5.1) one can show that 

(5.5.24) 

for q E N. Therefore) assuming E(lYoI 6 ) < 00, by conditions (5.5.22), (5.5.23) and 
(5.5.24), we obtain 

:s; K Ll (1 + E(IYoI6)) 

:s; K !::,2 "(-1/1(0:). (5.5.25) 

We also have 

(5.5.26) 

where C(v) : £ ~ ~ is a ¢(dv)- integrable function, which shows that the scheme 
(5.5.14) is a strong Ito scheme of order, = 1.0. 

In a similar way one can show that also some other higher order derivative-free 
strong schemes for general multi-dimensional SDEs can be expressed as strong Ito 
schemes and, therefore, achieve the corresponding strong order of convergence. 

5.5.2 Drift-Implicit Schemes 

As explained in Section 5.3, for any strong Taylor scheme of order, it is usually 
possible to obtain a corresponding drift-implicit scheme. Due to problems with 
the reciprocal of Gaussian random variables in a scheme, one usually introduces 
implicitness only in the drift terms, see Higham & Kloeden (2005, 2006). An 
exception are balanced implicit methods where the implicitness is brought also 
into the diffusion terms. We refer to Milstein, Platen & Schurz (1998), Kahl & 
Schurz (2006) and Alcock & Burrage (2006) for balanced implicit schemes for pure 
diffusion SDEs. Drift-implicit schemes of order, can be derived by an application 
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of a Wagner-Platen expansion to the drift terms of a correspondent strong Taylor 
scheme of order 'Y. If we apply the Wagner-Platen expansion (3.5.4) to the drift 
term a, then we can write 

a(t, Xt) a(t + 6, Xt+6) - L(oJa(t, X t)6 - L(1)a(t, Xt) (lV(t + 6) - W(t)) 

jt+6 r 
- t Jf L~-l)a(t,Xt)p<J;(dv,dz) - R 1 (t), (5.5.27) 

where 

t 6RI (t) t + t L(O) L(O)a(u, Xu)du + t L(I) L(OJa( u, Xu)dWu 1 {1S 1S 
+18 1L~~l) L(O)a(u, Xu-)P<t>(dVI, du) } ds 

+ It 
t+b. {ISt L(O) L(l)a(u, Xu)du + ISt L(I) L(1)a(u, Xu)dWu 

+ IS 1L~~l) L(1)a(Xu _ )P¢(dVl' du) } dWs 

s+ It+6 1{1S
- L(O)L~~l)a(u,Xu)du+1- L(l)L~~l)a(u,Xu)dWu 

+ 1s-1 L~~l) L~~l)a(u, Xu-)P<J;(dVl, d'U)} P<J;(dV2 1 ds) (5.5.28) 

and the operators L(O), L(1) and Li-l) are defined in (3.3.4), (3.3.5) and (3.3.6), 
respectively. 

In the one-dimensional case, for any e E [0,1]' we can rewrite the Euler scheme 
(4.2.1) as 

Yn+1 = Yn + {8 a(tn' Yn) + (1 - 8) a(tn' Yn)} 6 n + b6vVn 

l tn+1 r 
+ if: c(tn' Yn1 V) p<J;(dv, ds). (5.5.29) 

tn [. 

By replacing the first drift coefficient a(tn' Yn ) with its implicit expansion (5.5.27), 
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we obtain 

Yn+1 = Yn + {o a(tn+1' Yn+d + (1 ~ G) a }6n + b6Wn 

tn 1+l + ( c(tn' Yn , v)p",(dv, ds) 
tn J£ 

Here we have written a = a(tn, Yn ) and b = b(tn' }~,) according to the abbreviation 
introduced in (4.1.9). 

The terms in the last line of equation (5.5.30) are not necessary for a scheme with 
strong order 'Y = 0.5. Therefore, they can be discarded when deriving the implicit 
Euler scheme (5.3.1), which yields 

(5.5.30) 

Note that the drift-implicit Euler scheme (5.5.30) is well defined for time step size 

16<--
~ VRo' 

where K is the Lipschitz constant appearing in the Lipschitz condition (2.2.10) 
for the drift coefficient a. As previously mentioned, Banach's fixed point theorem 
ensures existence and uniqueness of the solution Yn +1 of the algebraic equation in 
(5.5.30). 

By applying the same arguments to every time integral appearing in a higher order 
strong Taylor scheme, even in the general multi-dimensional case, it is possible to 
derive multi-dimensional higher order implicit schemes as) for instance, the drift-
implicit order 1.0 strong scheme (5.3.9). 

To prove the strong order of convergence of such drift-implicit schemes it is sufficient 
to show that one can rewrite these as strong Ito schemes. The drift-implicit Euler 
scheme (5.5.30), for instance, can be written as an order 0.5 strong Ito scheme 
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i 

Yn+l = Yn + 1(0) [h(O),n]tn,tn+l + 1(1) [h(l),n]tn,tn+l + 1(-l)[h(-l),n]tn,tn+l + Rn (5.5.31) 

with 

h(O),n = a(tn' Yn), h(l),n = b(tn' Yn), h(-l),n = c(tn' Yn, v), (5.5.32) 

and 
Rn = e6 n (a(tn+l' Yn+l) - a(tn' Yn)). (5.5.33) 

Since the coefficients ha,n are the same as those of the Euler scheme (4.2.1), it 
remains to check condition (5.5.6) for the remainder term Rn. Following similar 
steps as the ones used in the proof of Lemma 4.7.1, one can derive the second 
moment estimate 

E (o~~~_1IYnI2) :s; K(l + E(IYoI2)). (5.5.34) 

We refer to Higham & Kloeden (2006) for details of the proof of this estimate in 
the case of the drift-implicit Euler scheme for SDEs driven by Wiener processes 
and homogeneous Poisson processes. 

By applying the Cauchy-Schwarz inequality, the linear growth condition (2.2.11) 
and the estimate (5.5.34), we obtain 

E ( max ~ Rk 2)
l~n~nT ~ 

O~k~n-l 

= E (max L e6k (a(tk+l' Yk+1)- a(tk' Yk)) 2)l<n<nT - - O~k~n-l 

:s; E (l~~~T ( L le6kl2) ( L la(tk+l' Yk+d - a(tk' Yk)1 2 )) 
O~k~n-l O~k~n-l 

:S KM ( CkE, 6.,) C,E,'a(t,,}, Yk+1l - a(t" Ykll2) ) 
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<; K L'> r: C"J:T_,la(tki "Y'Il) - a(t" Ye)I') 

::::; K 6.E ( L IYk+1 - }TkI2) . (5.5.35) 
O:<Sk:<SnT-l 

Since nT < 00 almost surely, see (4.1.8), we can write 

EC'k~_lIYk+l - Ykl') 

~ r; c<~ -1 1Yk+1 - Y,I') x PenT ~ i) 

~ ~ E ('{;-l E (IYk+1 - Ykl'IA,)) Xpen,. ~ i), (5.5.:\01 

where we have used the properties of conditional expectations. 

By the Cauchy-Schwarz inequality, Ito's isometry and the linear growth conditions, 
one obtains 

E (IYk+l - Ykl2lAtk) 

<; J( { F: (I f" (B(a( t'+1 'yk+l) a(t" Y,J) I a(t,,Y,J) dz!' IA,) 
+ L E (lZ~[JQ(tk' Yk )k,tk+1 rIAtk) } 

QE{( -l),(l)} 
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::; K{~ Jtktk+l E( (1 + IYk+l12) + (1 + IYk I2) IAtk )dz 

+ L ltk+l 1E ((1 + Iykn IAtk ) 4>(dvS(a))dz} 
aE{(-l),(l)} tk £ 

::; K(l + O~~~i IYnI 2 ) (tk+l - tk) (5.5.37) 

for k E {I, ... )i} with i E N. 

Finally, by combining (5.5.35), (5.5.36) and (5.5.37) and by using the second mo-
ment estimate (5.5.34), we obtain 

E ( max Rk 2) 
l:Sn:SnT L 

O:Sk:Sn-l 

::; K~~ E ((1 + max 1}~~12) L - x P(nT = i)(t k +1 t k ))
~ 0<'11<2 
i=l - - O:Sk:Si-l 

::; K ~ (1 + E (I Yo 12) )T L
(Xl 

P (nT = i) 
i=l 

< K~ = K~2"1 (5.5.38)- , 

for I = 0.5.  

Therefore, the convergence of the drift-implicit Euler scheme follows from Corollary  
5.5.2 since we have shown that it can be rewritten as a strong Ito scheme of order 
I = 0.5. In a similar way it is possible to show that the drift-implicit order 1.0 
strong scheme (5.3.9) can be rewritten as an order I = 1.0 strong Ito scheme. 

5.5.3 Predictor-Corrector Schemes 

In this section we show how to rewrite predictor-corrector schemes as strong ItO 
schemes and how to derive the corresponding orders of strong convergence. 

Let us consider the family of strong predictor-corrector Euler schemes (5.4.1)-
(5.4.2). We recall that in the one-dimensional case, d = Tn = 1, this scheme is 



126 CHAPTER. 5. HEGULAH STHONG ITCJ APPROXIAIATJONS 

given by the corrector 

p,p(tn+ll 

+ {r;b(tn+l' Yn+1) + (1 - 77)b} 6 vVn + L C(~i)' (5.5.39) 
i=p,p(tn )+l 

where 0,1) = a - r;b 6', and the predictor 

p¢(tn+ll 

Yn+1 = }~! + a6n + 661Vn + L C(~i)' (5.5.40) 
i=p,p(L n )+ 1 

This scheme can be written as an order 0.5 strong Ito scheme given by 

with 

h(1),n = b(tnl Yn), (5.5.42) 

and 

Rn = R 1 n + R2 n + R3 n + R4 n (5.5.43)
• 1 ) J , 

with 
R1,n = e { a(tn+ll Yn+d - a(tn1 Yr!) }6n) (5.5.44) 

R2 ,n = -er; { b(tn+1l Yn+d b'(tn+1l Yn+d - b(tnl Yn) b'(tn1 Yn)}6n1 (5.5.45) 

R3,n = -r; b(tnl Yn) b'(tn) Yn)6nl (5.5.46) 

and 
(5.5.47) 

Since the coefficients hO/.,n are the same as those of the Euler scheme, which is the 
strong Taylor scheme of order 'Y = 0.5, one needs to show that the remainder term 
Rn satisfies condition (5.5.5). 

We will also need the following second moment estimate on the numerical approx-
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imation Yn , where 

E C~~~;-l lyn !2) :::; K (1 + E(IYoI2)). (5.5.48) 

This estimate can be proved by similar steps as those used in the proof of Lemma 
4.7.1. 

By the Cauchy-Schwarz inequality, the Lipschitz condition on the drift coefficient 
and equation (5.5.40), we obtain 

E ( max ~ Rl,k 2)
l~n~nT ~ 

O::;k::;n-l 

= E (max ~ B{a(tk+1 , }\+d _ a(tk, Yk)}l::::. k 2)
l::;n::;nT ~ 

O~k~n-l 

:::; E (l~~~T ( L lBl::::.kl2) ( L la(tk+1 , Yk+d - a(tk' Yk)1 2)) 
O~k~n-l O::;k~n-l 

<:; KM ( Ck~T-l L'.k) Ck~T-l la(tkH, Yk+ll - a(tk' Ykl l') ) 

<:; K L'. E C"~.-l la(tk +1> Yk+ll - a(tk> Yk ) I') 
<:; K L'.E Ck~T_IIYk+1 -Ykl')  

:::; K I::::. E (L L Ja [10 (tk, Ykllt"t,+, ')  
O::;k~nT-l aEAo.5\{V} 

:::; K I::::. L E ( L !la[]a(tk, Yk)]tk.tk+112) . (5.5.49) 
aEAo.5\{V} O~k~nT-l 
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Since nT < 00 almost surely, see (4.1.8), we can write 

E Ck~-l IL[J.(t" Yk)],."",I') 

~ 't E C.,f1,-1 JI.II. (tk> Ye)]."" .. I') x i)PenT ~ (5.5.50) 

~ 't E C;f1,-l E (I 1.ll.(tk , Yk)]..'H' I' lA,,) ) x PenT ~ i) 
for every Ct E Ao.s \ {v}. In the last line of (5.5.50) we have applied standard 
properties of conditional expectations.  

By using the Cauchy-Schwarz inequality for 0: = (0), the Ito isometry for 0: = (j)  
and j E {-l, l}, and the linear growth conditions (4.5.9), we obtain  

E (jIa[ia(tk' YtJltk,tk+1 rIAtk) 

::; L:,n(n) ltk+1 rE (I.ln(tk' Ylk)1 2 jAtk ) ¢(dvs(a))dztk J£ 
(5.5.51) 

for k E {O, 1) ... )i} and i EN.  

By (5.5.49), (5.5.50), (5.5.51) and (5.5.48), we obtain  

E ( max I:: R1,k 2)
l<n<nT 
- - O~k~n-l 

:::; ]{D. I:: ),sea) D.n(a) 

nEA o.5\{V} 

x 't E ([ E ((1 + IYn • I') IAtnJ dZ) x P('VJ' ~ i) 

:::; ]{ 6. I:: ),s(n) 6.neal f (i E (1 + max. IYnI2 ) dz x P(nT = i)Jo O~n~~ 
aEAo.5\{V} i=l 
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= 
::; K~ L N(a)~n(a)(1 + E (IYoI2))TLP(nr = i) 

aEAo.s\{v} 'i=l 

<- K~ = K~2'Y , (5.5.52) 

for 'Y = 0.5. 

Note that in Theorem 4.5.1 and in Theorem 5.5.1 we assumed that the coefficient 
function fa satisfies the Lipschitz condition (4.5.7) for every a E A". If instead we 
require this condition to hold for every a E AO.5 UB(Ao.5), then by considering the 
coefficient function corresponding to the multi-index (1,1) E B(Ao.5 ), we see that 
the coefficient b b' satisfies the Lipschitz type condition (4.5.7). Therefore, with 
similar steps as in (5.5.49), (5.5.50) and (5.5.51), we obtain 

E (max ~ R2 k2) <- K ~ = K ~2'Y , (5.5.53)
l~n~nT ~ , 

O~k~n-l 

for 'Y = 0.5. 

By the linear growth condition on the coefficient b b', which follows from condition 
(4.5.9), and the second moment estimate (5.5.48), one can show that 

< K ~ = K ~2'YE (max L R3 k2) - , (5.5.54)
l<n<nT ' - - O~k~n-l 

for 'Y = 0.5. 

By Doob's inequality, Ito's isometry, the Lipschitz condition on the diffusion coef-
ficient and (5.5.40), we obtain 

E (max ~ R4,k 2)
l<n<nT ~ - - O~k~n-l 

tk+l 
= E max ~ 1] 1 (b(tk+l' Yk+d - b(tk' Yk))dWz 2)(l<n<nT ~ - - O~k~n-l tk 

:S 4E (If (b(tn<+1> Yn.+l) - b(tn<> YnJ)dW.i') 

j  
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= 4iT E (lb(tnz +1 , Ynz+d - b(tnz' YnJI 2 ) dz 

~ K iT E (IYnz+l - Ynz 12) dz 

~ K iT E ( L la[la(ln" Yn.)],."'",H ') dz. (5.5.55) 
aEAo.5\{V} 

By the Lipschitz condition, the estimate (5.5.51) and the second moment estimate 
(5.5.48), we have 

~ K L )..s(a) 6.n(a)+l (1 + E(jYoj2)) T 
a:EAo.5 \ { v} 

<- K6. = K6?'! , (5.5.56) 

for 'Y = 0.5. 

Finally, by combining the estimates (5.5.52)-(5.5.53)-(5.5.54) and (5.5.56) we have 
shown that the family of predictor-corrector Euler schemes (5.4.1}-(5.4.2) can be 
rewritten as an order 'Y = 0.5 strong Ito scheme. Therefore, it achieves strong order 
'Y = 0.5. 

Also in the general multi-dimensional case one can analogously rewrite the family 
of predictor-corrector Euler schemes (5.4.3)-(5.4.5) and similarly the predictor-
corrector order 1.0 strong scheme (5.4.10)-(5.4.11) as Ito scheme of order I = 0.5 
and I = 1.0, respectively. Finally, strong predictor-corrector schemes of higher 
strong order can be derived by similar methods as the ones used above. 

1 

http:5.4.10)-(5.4.11
http:5.5.52)-(5.5.53)-(5.5.54


Chapter 6 

Jump-Adapted Strong Approximations 

This chapter describes jump-adapted strong schemes. The term jump-adapted 
refers to the time discretizations used to construct these scheme. These discretiza-
tions are called jump-adapted because they include all jump times generated by 
the Poisson jump measure. The form of the resulting schemes is much simpler than 
that of the regular schemes presented in Chapters 4 and 5. However, jump-adapted 
schemes are not efficient for SDEs driven by a Poisson measure with high total in-
tensity. In this case, regular schemes are usually preferred. Some of the results 
of this chapter have been presented in Bruti-Liberati, Nikitopoulos-Sklibosios & 
Platen (2006) and in Bruti-Liberati & Platen (2007c). 

6.1 Introduction 

In principle, by including enough terms from Wagner-Platen expansions, it is possi-
ble to derive regular strong Taylor schemes of any given order of strong convergence, 
as shown by Theorems 4.5.1 and 5.5.1. However, as noticed in Section 4.3, even for 
a one-dimensional SDE, higher order schemes can be quite complex in that they 
involve multiple stochastic integrals jointly with respect to the Wiener process, the 
Poisson random measure and time. In particular, when we have a mark-dependent 
jump size the generation of the required multiple stochastic integrals involving the 
Poisson measure can be complicated. 

As noticed before, there are applications, such as filtering, in which we are able to 
construct the multiple stochastic integrals directly from data. In these cases the 
proposed strong schemes can be readily applied. However, for scenario simulation 
we need to generate the multiple stochastic integrals by using random number gen-
erators. To avoid the generation of multiple stochastic integrals with respect to 
the Poisson jump measure, Platen (1982a) proposed jump-adapted approximations 
that significantly reduce the complexity of higher order schemes. A jump-adapted 

131  

-~  



132 CHA.PTER 6. JUMP-ADAPTED STRONG APPROXIJ\;fATIONS 

time discretization makes these schemes easily implement able for scenario simula-
tion also in the case of a mark-dependent jump size. Indeed, between jump times 
the evolution of the SDE (4.1.4) is that of a diffusion without jumps and can be 
approximated by standard schemes for pure diffusions, as presented in Kloeden & 
Platen (1999). At jump times the prescribed jumps are performed. As we will 
show in this chapter, it is possible to develop tractable jump-adapted higher or-
der strong schemes also in the case of mark-dependent jump sizes. The required 
multiple stochastic integrals involve only time and Wiener process integrations. 

In this chapter we consider a jump-adapted time discretization °= to < tl < 
... < tnT = T, on which we construct a jump-adapted discrete time approximation 
y6. = {~6., t E [0, T]} of the solution of the SDE (4.1.4). Here 

nt := max{n E {O, 1, ... } : tn ::; t} < 00 a.s. (6.1.1) 

denotes the largest integer n such that tn ::; t, for all t E [0, T]. We require the 
jump-adapted time discretization to include all the jump times {Tl' T2," ., Tp.p(T)} 

of the Poisson random measure p</;. Moreover, as defined in Section 4.1, for a given 
maximum step size 6. E (0,1) we require the jump-adapted time discretization 

(t)6. = {O = to < tl < ... < tnT = T}, (6.1.2) 

to satisfy the following conditions: 

P(tn+1 - tn ::; 6.) = 1, (6.1.3) 

and 
tn+1 IS Atn - measurable, (6.1.4) 

for n E {O, 1, ... ,nT - I}, if it is not a jump time. 

For instance, we could consider a jump-adapted time discretization (t)6.. constructed 
by a superposition of the jump times {Tl' T2, •.. , Tp.p(T)} of the Poisson random 
measure p</; to a deterministic equidistant grid with nth discretization time n6., 
n E {O, 1, ... , N} and time step size 6. = t. This means that we add all random 
jump times to an equidistant grid, as the one presented in Section 4.1. In this way 
the maximum time step size of the resulting jump-adapted discretization equals 6.. 

Within this time grid we can separate the diffusive part of the dynamics from the 
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jumps, because the jumps can arise only at discretization times. Therefore, between 
discretization points we can approximate the diffusive part with a strong scheme 
for pure diffusion processes. We add the effect of a jump to the evolution of the 
approximate solution when we encounter a jump time as discretization time. We 
remark that with jump-adapted schemes a mark-dependent jump coefficient does 
not add any additional complexity to the numerical approximation. Therefore, 
in this section we consider the general case of a jump-diffusion SDE with mark-
dependent jump size given in (4.1.4). 

For convenience we set Yt n = }~l and define 

Ytn +1- lim Ys., 
s1l'tn +l 

as the almost sure left-hand limit at time tn +1 . Moreover, to simplify the notation, 
we will use again the abbreviation 

! = !(tn , Yt n ) (6.1.5) 

for any coefficient function ! when no misunderstanding is possible, see (4.1.9). 
Furthermore, we will omit to mention the initial value Yo and the time step num-
bers n E {O, 1, ... ,nT} if this is convenient. However, we will aim to show the 
dependence on marks if this is relevant. 

We will use again the operators 

8 d. a 
L(O)f(t,x) 8t!(t,x) + Lat(t,x)8xif(t,x) 

i=1 

1 d m .. . 82
+'2 L Lb't'](t,x)br'](t,x) <::l __;<::l_;!(t,x) (6.1.6) 

i,r=l j=1 

d 8 
L(k)f(t,x):= Lbi ,k(t,x)8xJ (t,x), forkE{I, ... ,m} (6.1.7) 

i=1 

for all t E [0, T] and x E IRd , similar as in the pure diffusion case, see Kloeden & 
Platen (1999). 

Essentially, in the remainder of this chapter we review strong discrete time ap-
proximations for the diffusion part of the given SDE, as described in Kloeden & 
Platen (1999). Additionally, at each jump time of the driving Poisson measure 

...  
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we introduce a time discretization point in the jump-adapted discretization and 
approximate the jump as required. 

6.2 Taylor Schemes 

In this section we present jump-adapted strong approximations whose diffusion 
part is given by the truncated Wagner-Platen expansion for pure diffusions. 

6.2.1 Euler Scheme 

For the one-dimensional case, which means d = m = 1, we present the jump-adapted 
Euler scheme given by 

(6.2.1) 

and 
(6.2.2) 

where 
(6.2.3) 

is the length of the time step size [tn' tn+!J and 

(6.2.4) 

is the nth Gaussian N(O, ~tJ distributed increment of the Wiener process W, 
n E {O, 1, ... , N -I}. Note that we wrote a = a(tn' ytJ and b = b(tn' ytJ according 
to the abbreviation (6.1.5). The impact of jumps is obtained by (6.2.2). If tn+! is 
a jump time, then 

(6.2.5) 

and 

(6.2.6)  
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If tn+l is not a jump time one has 

Ytn+l = Ytn+ (6.2.7)1-, 

as 1p,p(dv, {tn+d) = O. (6.2.8) 

Therefore, the strong order of convergence of the jump-adapted Euler scheme is 
'Y = 0.5, resulting from the strong order of the approximation (6.2.1) of the diffusive 
component. 

For instance, for the SDE (2.1.5), the jump-adapted Euler scheme is given by 

Ytn+l - = Ytn + f-L Yt n 6:. tn + a Ytn6:.Wtn (6.2.9) 

and 

Ytn+l = Ytn+1 - + Ytn+l-l v pq,(dv, {tn+!})' (6.2.10) 

In the multi-dimensional case with scalar Wiener process, which means m = 1, the 
kth component of the jump-adapted Euler scheme is given by 

yk = yk + ak6:. + bk6:.W: (6.2.11)tn+l- tn tn tn 

and 
(6.2.12)~:+1 = ~:+1- +1Ck(tn+l' Ytn+1-, v)pq,(dv, {tn+d), 

for k E {I, 2, ... ,d}, where ak, bk, and ck are the kth components of the drift, the 
diffusion and the jump coefficients, respectively. 

For the general multi-dimensional case the kth component of the jump-adapted 
Euler scheme is of the form 

m 

y:k = y:ktn + ak6:. tn + '" L..... bk,j 6:.Wtnj (6.2.13)tn+l-
j=l 

and 

~:+1 = ~:+l- +1Ck(tn+l' Ytn+1-, v) pq,(dv, {tn+l}), (6.2.14) 

where ak and ck are the kth components of the drift and the jump coefficients, 
respectively. Furthermore, bk,j is the component of the kth row and jth column of 

.I
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the diffusion matrix b, for k E {1, 2, ... , d}, and j E {l, 2, ... ,m}. Additionally, 

(6.2.15) 

is the N(O, D. tn ) distributed nth increment of the jth Wiener process. 

6.2.2 Order 1.0 Taylor Scheme 

As the order of convergence of jump-adapted schemes is, in general, the one induced 
by the approximation of the diffusive part, by replacing the diffusive part of the 
jump-adapted Euler scheme with the order 1.0 strong Taylor scheme for diffusions, 
see Kloeden & Platen (1999), we obtain the jump-adapted order 1.0 strong Taylor 
scheme. 

For a one-dimensional SDE, d = m = 1, we can derive the jump-adapted order 1.0 
strong Taylor scheme given by 

(6.2.16) 

and (6.2.2), which achieves strong order 'Y = 1.0. This scheme can be interpreted 
as a jump-adapted version of the Milstein scheme for pure diffusions, see Milstein 
(1974). 

The comparison of the jump-adapted order 1.0 strong scheme (6.2.16) with the 
regular order 1.0 strong Taylor scheme (4.3.1), shows that jump-adapted schemes 
are much simpler. These avoid the problem of the generation of multiple stochastic 
integrals with respect to the Poisson measure. 

For instance, for the SDE (2.1.5), describing the Merton model, we have the jump-
adapted order 1.0 strong Taylor scheme of the form 

(6.2.17) 

and (6.2.10). 

For the multi-dimensional case with scalar Wiener process, which means m = 1, 
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the kth component of the jump-adapted order 1.0 strong Taylor scheme is given by 

k k k k 1 ~ l obk (( )2 )~n+1- ~n + a ~tn + b ,6.Wtn + 2 ~ b oxl ,6.~Vtn - ,6.tn (6.2.18) 
1=1 

and (6.2.12)' for k E {I, 2, ... ,d}. 

In the general multi-dimensional case the kth component of the jump-adapted order 
1.0 strong Taylor scheme is given by 

m . . m 	 d .. o~~ 
yk = y:k + ak ,6. + '" bk,J .6..HfJ + '" '" (b2')1 --.) Ie. .) (6.2.19)t,,+1- tn tn 	 ~ In ~ ~ ax' )),]2 

j=l j1,j2=1 i=l 

and (6.2.14), for k E {I, 2, ... , d}. For the generation of the multiple stochastic 
integrals I(ji,h) we refer to Section 4.4. 

If we have a multi-dimensional SDE satisfying the diffusion commutativity condi-
tion, where 

V1bk'h(t,X) = L j2 bk,j1(t,X) (6.2.20) 

for j1,]2 E {1,2, ... ,m}, k E {1,2, ... ,d}, t E [O,Tj and x E IRd, then it is possible 
to express all the multiple stochastic integrals in terms of the increments ~wi: 
and ~Wi: of the Wiener process. Therefore, we obtain an efficiently implement able 
jump-adapted order 1.0 strong Taylor scheme, whose kth component is given by 

m . 1 m d obk,)2 { 	 }y:k = y:k + ak ~ +'" bk,j~WJ + _ '" '" bi,h __ ~Wj1 ~Wh - ,6.
t n+1- tn tn 	 ~ tn 2 L.....t ~ oxt tn tn In 

j=l h,]2=l i=1 

and (6.2.14), for k E {I, 2, ... , d}. The special case of additive diffusion noise, which 
means b(t, x) = b(t), satisfies the required commutativity condition and, therefore, 
leads to an efficient jump-adapted order 1.0 strong Taylor scheme. Note that this 
holds for general jump coefficients, unlike the case of regular strong schemes in 
Chapter 4. 

6.2.3 Order 1.5 Taylor Scheme 

If we approximate the diffusive part of the SDE (4.1.4) with the order 1.5 strong 
Taylor scheme, see Kloeden & Platen (1999), then we obtain the jump-adapted 

--------------------------_._ _-.. 
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order 1.5 strong Taylor scheme. 

In the autonomous one-dimensional case, d = m = I, the jump-adapted order 1.5 
strong Taylor scheme is given by 

y - 7 bb' (( A)2 ) f 
t n +l- - ) tn + a~tn + b~Wtn + 2" u TVtn - ~tn + a b~Ztn 

ll )+~ (aa f + ~b2afl) (~t )2 + (ab l + ~b2 b (~IVt ~t - ~Zt )2 2· n 2 n n '1 

+~b (bb" + b12 ) {~(~1iVtJ2 - ~tn } ~TVtn' (6.2.21) 

and (6.2.2), where we have used the abbreviation defined in (6.1.5). Here we need 
the multiple stochastic integral 

(6.2.22) 

One can show that ~Ztn has a Gaussian distribution with mean E(~ZtJ = 0, vari-
ance E((~Ztn?) = ~ (~tnY and covariance E(~Ztn ~1iVtJ = ~ (~tJ2. Therefore, 
with two independent N(O, 1) distributed standard Gaussian random variables U1 

and U2 , we can obtain the required correlated random variables ~Ztn and ~H1tn 
by setting: 

(6.2.23) 

For example, for the SDE (2.1.5) of the Merton model the terms involving the 
random variable ~Ztn cancel out, thus yielding the rather simple jump-adapted 
order 1.5 strong Taylor scheme 

a2 Yt ( 2 )Yin+!- = Yin + J-t Yin Lltn + aYin ~Wtn + T (LlWtn ) - ~tn 

+J-t2;n (~tJ2 + J-ta Ytn(~Wtn~tJ 
(6.2.24) 

and (6.2.10). 

For the multi-dimensional case with scalar Wiener process, m = 1, the kth com-
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ponent of the jump-adapted order 1.5 strong Taylor scheme is given by 

y:ktn+l - y:k + ak~ tn + bk~Win + ~ 2 L(I) bk{ (~W )2 _ ~ tn }tn in 

+L(1) ak~Z + L(O) bk{~W ~ _ ~Z } + ~ L(O) ak(~ )2tn tn tn tn 2 tn 

+~ L(1) L(1) bk { ~ ( b. W,") 2 - b.,. } b.W,. (6.2.25) 

and (6.2.12), for k E {l, 2, ... ,d}, where the differential operators LO and L1 are 
defined in (6.1.6) and (6.1.7), respectively. 

In the general multi-dimensional case the kth component of the jump-adapted order 
1.5 strong Taylor scheme is given by 

y:k y:k + ak~ + ~ L(O) ak(~ )2
in+l- in tn 2 tn 

+Lm 

(bk,j~wL + L(O)bk,jlcO,j) + LU)akI(j,O») (6.2.26) 
j=1 

rn 'm 

+ L LUll bk ,j2I(h,h) + L L(jil L(h) bk,h I U1 ,h,j3) , 

}I,h=1 jl,j2,j3=1 

and (6.2.14), for k E {I, 2, ... , d}. 

The double stochastic integrals appearing in the jump-adapted order 1.5 strong 
Taylor scheme can be generated as discussed in Section 4.3. We refer to Kloeden 
& Platen (1999) for the generation of the required triple stochastic integrals and 
for diffusion commutativity conditions that reduce the complexity of this scheme. 

Constructing strong schemes of higher order is, in principle, not difficult. However, 
as they involve multiple stochastic integrals of higher multiplicity, they can become 
quite complex. Therefore, we will not present here any scheme of strong order 
higher than I = 1.5. Instead we refer to the convergence theorem to be presented 
in Section 6.7 that provides the methodology for the construction of jump-adapted 
schemes of any given strong order. 
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6.3 Derivative-Free Schemes 

As noticed in Section 5.2, it is convenient to develop higher order numerical ap-
proximations that do not require the evaluation of derivatives of the coefficient 
functions. Within jump-adapted schemes, it is sufficient to replace the numerical 
scheme of the diffusive part with an equivalent derivative-free scheme. We refer to 
Kloeden & Platen (1999) for derivative-free schemes for diffusion processes. 

6.3.1 Derivative-Free Order 1.0 Scheme 

For a one-dimensional SDE, d = m = 1, the jump-adapted derivative-free order 1.0 
strong scheme, which achieves a strong order r = 1.0, is given by 

1 - ( 2 )+2~{b(tn' Ytn) - b} (6T¥tn) - 6 tn , (6.3.1) 

and (6.2.2) with the supporting value 

(6.3.2) 

In the multi-dimensional case with scalar Wiener process, which means m = 1, 
the kth component of the jump-adapted derivative-free order 1.0 strong scheme is 
given by 

(6.3.3) 

and (6.2.12), with the vector supporting value 

(6.3.4) 

for k E {1,2, ... ,d}. 

In the general multi-dimensional case the kth component of the jump-adapted 

l 
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derivative-free order 1.0 strong scheme is given by 

m 

y' k y'k + ak ~tn+l tn + "" bk,j ~W Jtn L tn 
j=l 

1 I: {ko,]2 -JO1 kh }+__ m vz;;:, jl,j2=1 b (tn' YtJ - b' (tn, YtJ I(jI,]2) , (6.3.5) 

and (6.2.14), with the vector supporting value 

Y;n = 'Ytn+ b1 ~) (6.3.6) 

for k E {1, 2, ... , d} and for j E {1, 2, ... , 'Tn}. The multi pIe stochastic integrals can 
be generated, as in Section 4.3, by Karhunen-Loeve expansions. The diffusion com-
mutativity condition presented in Section 6.2 may apply also here and, therefore, 
can lead to efficiently implementable jump-adapted derivative-free schemes. 

6.3.2 Derivative-Free Order 1.5 Scheme 

In the autonomous one-dimensional case, d = m = 1, the jump-adapted derivative-
free order 1.5 strong scheme is given by 

Ytn + - Ytn + b~Wtn + r. ~ {a(Y~) - a(Y~J} ~Ztn1 

tn 

+~ {a(Y~) + 2a + a(Y~J } ~tn 

+ =-- {b(Y~) - b(Y~J} ((~WtJ2 - Ll t") 
tn 

+ =-- {b(Y~) + 2b + b(Y~J } (~Wtn~tn - ~ZtJ 
tn 

+ =-- [b(<I>~) - b(<I>~J - b(Y~) + b(Y~J]
tn 

x {~(LlWtJ2 - ~tn } ~Wtn' (6.3.7) 

and (6.2.2), with 
-± 
Y tn = 'Yt n + a~tn ± b~Wtn' (6.3.8) 

.Ii  
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and 
(6.3.9) 

The multiple stochastic integral 6Zt" = 1(1,0) can be generated as in (6.2.23). 

6.4 Drift-Implicit Schemes 

As previously discussed, for applications such as filtering it is crucial to construct 
higher order schemes with wide regions of numerical stability. To achieve this 
one needs to introduce implicitness into the schemes. For deriving jump-adapted 
drift-implicit schemes, it is sufficient to replace the explicit scheme for the diffusive 
part by a drift-implicit one. We refer to Kloeden & Platen (1999) for drift-implicit 
methods for SDEs driven by Wiener processes only. 

6.4.1 Drift-Implicit Euler Scheme 

For a one-dimensional SDE, d = 1n = 1, the jump-adapted drift-implicd Euler 
scheme is given by 

(6.4.1) 

and (6.2.2), where the parameter 8 E [0,1] characterizes the degree of implicitness. 

In the multi-dimensional case with scalar Wiener noise, Tn = 1, the kth component 
of the jump-adapted drift-implicit EuleT scheme is given by: 

(6.4.2) 

and (6.2.12), for k E {1,2, ... ,d}. 

In the multi-dimensional case the kth component of the jump-adapted drift-implicit 
Euler scheme is given by 

r;;:+1- =~: + {8 ak (tn+l' "Ytn +1-) + (1 - 8) ak } L\tn + L
m 

bk,j L\WL, 
j=l 

and (6.2.14), for k E {I, 2, ... ,d}. 
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6.4.2 Drift-Implicit Order 1.0 Scheme 

By using a drift-implicit order 1.0 strong scheme for the diffusive part, we obtain 
a jump-adapted drift-implicit order 1.0 strong scheme. 

For a one-dimensional SDE, d = rn = 1, the jump-adapted drift-implicit order 1.0 
strong scheme is given by 

Yln+1 - Yl" + {Ba(tn+1' Yl n + 1-) + (1- B) a} 6 tn + b6Wtn 

bb' ( T 2 )+2 (6H/ tJ - 6 tn (6.4.3) 

and (6.2.2), which achieves strong order 'Y = l.0. 

In the multi-dimensional case with scalar Wiener process, m = 1, the kth compo-
nent of the jump-adapted drift-implicit order l.0 strong scheme is given by 

~:+l- ~: + {Bak(tn+1' Yl n + I-) + (1- B) ak} 6 tn + bk6Wtn 

1 d 8bk 
+- L bl ~ ((6iVtn )2 - 6 t,,) (6.4.4)

2 {h
[=1 

and (6.2.12), for k E {I, 2, ... ,d}. 

In the general multi-dimensional case, the kth component of the jump-adapted 
drift-implicit order 1.0 strong scheme is given by 

~:+l- = ~: + {Bak(tn+1' Y~n+I-) + (1- B)ak} 6 tn + L
m 

bk ,j6WL 
j=1 

m d .. 8bk 'h)
+ L L (b")1 8x i I(jl,h) (6.4.5) 

11,j2=1 i=l 

and (6.2.14), for k E {I, 2, ... ,d}. 

6.4.3 Drift-Implicit Order 1.5 Scheme 

We present here a jump-adapted drift-implicit order 1.5 strong Taylor scheme.  

In the autonomous one-dimensional case, d m 1, the jump-adapted drift- 

J  
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implicit order 1.5 strong scheme in its simplest form is given by 

Ytn + '21 {a(Ytn+l-) + a} .6. tn + b.6.Wtn + 2bY ((.6.WtJ2 - .6.tn ) 

+ (ab' + ~b2 bll ) (.6.Wtn .6.tn - .6.ZtJ + a' b { .6.Ztn - ~.6.Wtn.6.tn } 

+~b (bbll + (b')2) {} (.6.WtJ2 - .6.tn } .6.Wtn , (6.4.6) 

and (6.2.2), and achieves strong order 'Y = 1.5. 

Finally, we remark that balanced implicit methods, see Milstein, Platen & Schurz 
(1998), Kahl & Schurz (2006) and Alcock & Burrage (2006), can be used to obtain 
a numerically stable approximation of the diffusion part. We do not discuss these 
methods here, due to the limited space available. In general, when using balanced 
implicit methods, one has still to solve an algebraic equation at each time step. 
The following class of predictor-corrector methods avoids this extra computational 
effort. 

6.5 Predictor-Corrector Schemes 

As previously discussed, predictor-corrector schemes combine good numerical sta-
bility properties with efficiency. In this section we present new jump-adapted 
predictor-corrector schemes with strong order of convergence 'Y E {0.5, I}. 

6.5.1 Predictor-Corrector Euler Scheme 

In the one-dimensional case, d = m = I, the family of jump-adapted predictor-
corrector Euler schemes is given by the corrector 

Ytn + 1 - = Yn + {BaT}(tn+l' Ytn+1-) + (1- 8)aT}} .6.tn 

+ {17b(tn+1' Ytn+l-) + (1 -17)b} .6.Wtn , (6.5.1) 

where aT} = a - 17b b', the predictor 

(6.5.2)  

http:6.Wtn.6.tn
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and (6.2.2). The parameters 0,7] E [0,1] characterize the degree of implicitness 
in the drift and in the diffusion coefficients, respectively. This scheme achieves a 
strong order of convergence r = 0.5. 

For the general multi-dimensional case, the kth component of the family of jump-
adapted predictor-corrector Euler schemes is given by the corrector 

~:+l- ~: + {Oa~(tn+1' Ytn+l-) + (1- e)a~} ~tn 

-+ Lm 

{77bk ,j (tn+1, Ytn + l ) -+ (1 - 7] )bk,j} ~vVL, (6.5.~3) 
j=l 

for 0,7] E [0, 1], where 

m d 

a1) = a - 77 . L L bk,jl obk,h (6.5.4) 
)1,)2=1 i=l OX'i ' 

the predictor 
m 

f':k = y:k -+ ak~ + """" bk,j ~W j (6.5.5)tn+l - tn. tn 6 tn' 
)=1 

and (6.2.14). 

6.5.2 Predictor-Corrector Order 1.0 Scheme 

Here we present the jump-adapted predictor-corrector order 1.0 strong scheme. For 
a one-dimensional SDE, d = m = 1, it is given by the corrector 

Ytn +1 - = Ytn-+{ea(tn+1,Ytn+l-)-+(l-e)a}~tn 

-+b~Wtn + 2bb' 
((~WtJ2 - b.tn ) , (6.5.6) 

the predictor 

~ bb' ( 2 )Ytn+l - = Ytn -+ a~tn + b~Wtn -+ 2 (~WtJ - ~tn (6.5.7) 

and (6.2.2). The parameter 0 E [0,1] characterizes again the degree of implicitness 
in the drift coefficient. This scheme attains a strong order r = 1.0. 

In the general multi-dimensional case, the kth component of the jump-adapted 

.II  
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predictor-corrector order 1.0 strong scheme is given by the corrector 

m 

(6.5.8) 

the predictor 

(6.5.9) 

and (6.2.14), for k E {1, 2, ... ,d}. For the generation of the multiple stochastic 
integrals I(jl,h) we refer again to Section 4.4. 

For SDEs satisfying the diffusion commutativity condition (6.2.20), as in the case 
of an additive diffusion coefficient b(t, x) = b(t), we can express all the multiple 
stochastic integrals in terms of the increments 6.Wi: and 6.wI: of the Wiener 
process. This yields an efficiently implementable jump-adapted predictor-corrector 
order 1.0 strong scheme, whose kth component is given by the corrector 

the predictor 

and (6.2.14), for k E {1, 2, ... ,d}. 

We remark that, as in Section 5.5.3, we can also make the diffusion part quasi-
implicit to obtain better numerical stability. 
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6.6 Exact Schemes 

In this section we discuss the strong approximation of a special class of SDEs 
under which jump-adapted schemes have no discretization error. As will become 
clear later, in this case it is not necessary to request a maximum time step size ,6., 

see condition (6.1.3). Here the jump-adapted time discretization will be given by 
a superposition of the jump times generated by the Poisson measure and the times 
at which we are interested in sampling the simulated values of the solution X. For 
instance, if one needs the value of the jump-diffusion X only at the final time T, 
then the jump-adapted time discretization is given by 0 = to < t1 < ... < tnT = T, 
where nT is defined in (4.1.8) and the sequence t1 < ... < tnT - 1 equals that of the 
jump times 71 < ... < 7p q,(T) of the Poisson measure p¢>o 

Let us first present an illustrative example. Consider the jump-diffusion SDE with 
multiplicative drift and diffusion coefficients and general jump coefficient c(t, x, v), 
given by 

dXt = /-LXtdt + (J XtdWt + i c(t, X t-, v) p¢>(dv, dt). (6.6.1) 

Because of the general form of the jump coefficient c, the SDE (6.6.1) does rarely 
admit an explicit solution. However, on the above described jump-adapted time 
discretization, we can construct the jump-adapted scheme given by 

Ytn+l- = Yt e(p-!a2)botn+O"boWtnn , (6.6.2) 

and 

Ytn+l = Ytn+ + i c(tn+1' Ytn+l-,v)p¢>(dv, {tn+1})' (6.6.3)1 -

Since we are using the explicit solution of the diffusion part, see (2.1.6), no dis-
cretization error is introduced between jump times. Moreover, since by equation 
(6.6.3) the jump impact is added at the correct jump times, even at the jump times 
we do not introduce any error. Therefore, we have described a way to express the 
solution of the jump-diffusion SDE (6.6.1) that does not generate any discretization 
error. 

This approach can be generalized for cases where we have an explicit solution of 
the diffusion part of the SDE under consideration. In the general case, we recall 

...  
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here the d-dimensional jump-diffusion SDE 

(6.6.4) 

that we aim to solve. One should then check whether this SDE belongs to the 
special subclass of jump-diffusion SDEs for which the corresponding diffusion SDE 

dZt = a(t, Zt)dt + b(t, ZddWt1 (6.6.5) 

admits an explicit solution. If this is the case, then we can construct, as in (6.6.2)-
(6.6.3), a jump-adapted scheme without discretization error. For explicit solutions 
of pure diffusions SDEs we refer to Chapter 4 of Kloeden & Platen (1999). 

As previously noticed, if the SDE under consideration is driven by a Poisson mea-
sure with high intensity, then a jump-adapted scheme may be computationally too 
expensive. In such a case, one may prefer to use a regular scheme that entails a 
discretization error but permits to use a coarser time discretization. 

6.7 Convergence Results 

In this section we present a convergence theorem for jump-adapted approximations 
that allows us to asses the strong order of convergence of the schemes presented in 
this chapter. 

We consider here a jump-adapted time discretization (t),t,., as defined in (6.1.2). Let 
us recall that by "jump-adapted" we mean that the time discretization includes all 
jump times {Tl' T2, ... ,Tp<J;(T)} of the Poisson measure p¢. As explained in Section 
6.1, by construction the jumps arise only at discretization points. Therefore, be-
tween discretization points we can approximate the stochastic process X with a 
strong Taylor scheme for diffusions. For this reason we use here a slightly modified 
notation compared to the one introduced in Chapter 3, as will be outlined below. 

For mEN the set of all multi-indices a that do not include components equal to 
-1 is now denoted by 

R = {(Jl,'" ,jl) : ji E {O, 1,2, ... ,m}, i E {I, 2, ... , l} forl E N} U {v}, 

where v is the multi-index of length zero. 

l 
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We also recall the operators 

L(0) ( ) ._ at f t,x + '"' ~ai( )~ (t,xf t,x .- !!.- ( ) 
d 

t,x axJ ) 
i=l 

1 d m a2 
+2 L L bi,j (t, x)br,j (t, x) cL; cLo f(t, x) (6.7.1) 

i,r=l j=l 

and 
d a 

L(k) f(t, x) := L bi,k(t, x) axJ(t, x) (6.7.2) 
i=l 

for k E {l, ... ,m} and a function f(t, x) : [0, T] x ]Rd ----7]Rd from C1,2.  

For all a = (jl,' .. ,jl(a)) E Mm and a function f : [0, T] x IRd IRd, we define ----7 

recursively the Ito coefficient functions fa 

f(t,X) for l(a) = 0,
{ (6.7.3)fa(t, x):= LUI) f-a(t, x) for l(a) ~ 1, 

assuming that the coefficients of the SDE (2.1.2) have the differentiability needed 
for the operators in (6.7.3) to be well defined. 

Given a set A c Mm, we also define the remainder set B(A) of A by 

B(A) = {a E Mm\A: -a E A}. 

Moreover, for every 'Y E {0.5, 1, 1.5,2, ... } we define the hierarchical set 

~ ---- 1AI' = {a EM: l(a) + n(a) :s; 2"( or l(a) = n(a) = 'Y + 2}' 

Then for a jump-adapted time discretization with maximum time step size ,6. E 

(0,1) we define the jump-adapted order'Y strong Taylor scheme by 

ltn+l- = ltn + L fa(tn' ltJla (6.7.4) 
aEA'Y\{v} 

and 

ltn+l = ltn+1- +1c(tn' ltn+1-, v) p",(dv, {tn+d), (6.7.5) 

where fa is the multiple stochastic integral of the multi-index a over the time 

..  
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period (tn' tn+ll and for n E {O, 1, ... , nr - I}. 

To asses the order of strong convergence of these schemes, we define through a 
specific interpolation the jump-adapted order I strong Taylor approximation by 

Yt = L Ia [Jo: (tnt , YtnJltnl,t (6.7.6) 
aEAI' \ {v} 

since there are no jumps between grid points. 

We can now formulate a convergence theorem for jump-adapted schemes similar to 
a result in Platen (1982a). 

Theorem 6.7.1 For a given I E {0.5, 1, l.5, 2, ... }, let yb. = {Y;b., t E [0, T]} be 
the jump-adapted order I strong Taylor approximation c07Tesponding to a jump-
adapted time discretization with maximum step size 6. E (0,1). We assume that 

(6.7.7) 

Moreover, suppose that the coefficient functions fa satisfy the following conditions: 

~ 

For a E A'Y' t E [0, Tl and x, y E JRd, the coefficient fa satisfies the Lipschitz 
type condition 

(6.7.8) 

For all a E A'Y UB(~) we assume 

and (6.7.9) 

and for a E ~UB(~), t E (0, T] and x E JRd, we require 

(6.7.10) 

Then the estimate 
E( sup IXs - Y';;b.121~) :S K36,'Y (6.7.11) 

O:S:s:S:T 

holds, where the constant K3 does not depend on 6.. 
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Remark 6.7.2 Instead of conditions (6.7.8)-(6.7.10) on the coefficients fa, one 
can derive analogous conditions on the coefficients a, band c of the SDE (3.5.1), 
see also Remark 4.5.2. 

Proof: Since the jump-adapted time discretiz-;ation contains all jump times of the 
solution X of the SDE (2.l.2), with the aid of the Wagner-Platen expansion for 
diffusion processes we can write 

nt- 1 

X t Xo + L {L In [fn (tn, XtJk,tn+l + Ia[fa(tnt , XtnJltnt,t} 
nEA-y \ {v} n=O 

nt --1 

+ L {L In [fn C, X)k"tn+l + Ia[fn(-, X)]tnt,t} 
nEB(A,,) n=O 

+ It 1c(tn"Xtnz-,v)pc/J(dv,dz), (6.7.12) 

for t E [0, T]. 

The jump-adapted order I strong Taylor scheme can be written as 

nt- 1 

Yt = Yo + L {L {,[fa(tn, YtJ]tn,tn+l + In [fn (tnt , }~nJltnt,t} 
aEA"I \ {v} n=O 

+ r rc(tnz' Ytnz -' v)pc/J(dv, dz) (6.7.13)Jo JE 
for every t E [0, T]. 

From the estimate of Theorem 2.2.1 we have 

E(o~~1~TIXzI21Ao) ~ C(1+E(IXoI2)). (6.7.14) 

Moreover, with similar steps as those used in the proof of Lemma 4.7.1, we can 
show the estimate 

EC~~~TIY/'12IAo) ~ C(l + E(lY06 2 (6.7.15)1 )). 

-

http:6.7.8)-(6.7.10
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The mean square error is given by 

nz-l 

+ L {L Io:[Ja(tn , XtJ - fn(tn' ~~)]tn,t"+l 
nEA,),\{v} n=O 

nz-l 

+ L {L Ia[Jn(·,X)]t",tn+l + Ia[Ja(·,X.)]tnz,z} 
aEB(A')') n=O 

+[ 1{c(tn., x,.", v) - c(tn", Yr."-, v)} p.(dv, dull' An)  

< C3 { Ixo - Yat,,12 + .?= s~ + ~ u;: + Pt} (6.7.16)  
aEA,),\{v} nEl3(A')') 

for all t E [0, T], where Sf, utn and Pt are defined by 

(6.7.17) 

(6.7.18) 
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and 

P, :- E (.~~~, I [ 1{c(tn., x,•. -, v) - C(tn., ¥t..-, v)} p,,(dv, du)I' An) . 
(6.7.19) 

Therefore, the terms Sf and Ut can be estimated as in the proof of Theorem 4.5.1, 
while for Pt, by applying Jensen's and Doob's inequalities, Ito's isometry for jump 
processes, the Cauchy-Schwarz inequality and the Lipschitz condition (2.2.10), we 
obtain 

Pt E (sup liz r {C(tnu,Xtnu-'V) -c(tnu,Ytnu-,v)}p¢(dv,du) 
O:::;z:::;t 0 Jf: 

+ [ 1{C(tn.. X'''_' v) ... c(tn., Y,n,,-, v) } ¢(dv)dul' An) 

< 8 p; (Ill {c(tn., X,,,._, v) - c(tn" ,¥t.,,-, v)} v,,(dv, dUll' AO) 

12 E (d~:d{£ {c( tn", X"n ,v) - c(tnn , Y,.,,-, v l } ¢(dvldul' At) 
< 8E (llIC(tn.,X'nn-,V) - c(tnn , Y,,,,, .. ,v)I' ¢(dv)du AO) 

+2,\ tE (l.£lc(tn., X,." _, v) -c(tn., ¥tn"., v)1 2 ¢(dv) dll AU) 

< K E (lIX,.. Y,..-I' dll AO)  

< C lt Z(u)du. (6.7.20)  

Therefore, since by (6.7.14) and (6.7.15) Z(t) is bounded, by applying the Gronwall 
inequality to (6.7.16) we can complete the proof of Theorem 6.7.1. 0 

Theorem 6.7.1 establishes the order of strong convergence of the jump-adapted 
strong Taylor schemes presented in Section 6.2. To prove the order of strong 
convergence of the other jump-adapted schemes in this chapter, one can define the 
jump-adapted order' I strong Ito scheme, with I E {a.5, 1, 1.5, ... }, constructed by 

.
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the following procedure: The diffusion part is approximated by an order r strong 
Ito scheme for pure diffusions, see Kloeden & Platen (1999), and the jump part is 
generated as in (6.7.5). 

One can prove the strong order of convergence of the jump-adapted order r strong 
Ito scheme by first showing that this scheme converges, with strong order r, to the 
jump-adapted order r strong Taylor scheme. This can be done by using similar 
steps as those described in the proof of Theorem 5.5.1. Thus, since Theorem 6.7.1 
establishes the strong order of convergence of jump-adapted strong Taylor schemes, 
this yields also the strong order r of the corresponding jump-adapted strong Ito 
scheme. Finally, the strong order of the jump-adapted derivative-free, implicit and 
predictor-corrector schemes presented in this chapter can be shown by rewriting 
these schemes as jump-adapted strong Ito schemes. 



Chapter 7 

Numerical Results on Strong Schemes 

This short chapter provides some numerical results for the application of the strong 
schemes presented in Chapters 4, 5 and 6. We investigate the accuracy of strong 
schemes, while a study of the numerical stability properties is left for future re-
search. 

7.1 Introduction 

We study the strong approximation of the one-dimensional linear SDE 

dXt = X t - (Wit + adWt +1(v - 1) p<f;(dv, dt)) (7.1.1) 

for t E [0, T] and Xo > 0, which is that of the Merton model introduced in (2.1.5). 
We recall that this SDE admits the explicit solution 

P<t>(t) 

X t = Xo e(J.t-~0"2)t+o-Wt II ~i' (7.1.2) 
i=l 

where the marks ~i are distributed according to a given probability measure F(dv) = 
¢(~v) and P¢ = {P<f;(t) , t E [0, T]} denotes a Poisson process with intensity). = 
¢(£) < 00. 

We consider the following schemes with strong order , = 0.5: the regular and 
jump-adapted versions of the Euler, the drift-implicit Euler, and the predictor-
corrector Euler schemes. Moreover, we study the following schemes with strong 
order, = 1.0: the regular and jump-adapted order 1.0 Taylor schemes and the 
jump-adapted drift-implicit order 1.0 scheme. We also present the jump-adapted 
order 1.5 Taylor scheme, which attains strong order 'Y = 1.5. VVe report the strong 
error 

cs(~) = VE(IXT - YfI 2 ), (7.1.3) 

155  
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as defined (1.2.1), when comparing the results of these strong schemes with the 
closed form solution (7.1.2). The strong error I':s(.6) is estimated by running an 
extremely large number of simulations. The exact number depends on the scheme 
implemented. It will always be chosen such that the statistical errors become 
negligible when compared to the systematic errors caused by the time discretization. 
In the corresponding plots we show the logarithm log2(t:s(L}.)) of the strong error 
versus the logarithm log2(.0.) of the time step size. By using log-log plots, the 
slopes of the estimated error lines will indicate the orders of strong convergence 
attained. Vie will first consider the case of a driving jump process with a small 
intensity A = 0.0.5. Later, to illustrate the impact of frequent jumps on the strong 
error, we will use a jump process with a higher intensity. 

7.2 The Case of Low Intensities 

In this section we select the following default parameters: /-L = 0.05, (5 = 0.15, 
Xo = 1, T = 1 and A = 0.05. At first we consider the case of the SDE (7.1.1) with 
degenerate marks, that is ~i = '!jJ > 0, with '!jJ = 0.85. This reduces the SDE (7.1.1) 
to an SDE with mark-independent jump coefficient c(t, x, v) = x('!jJ -1) = -0.15x. 

In Figure 7.2.1, we report the results obtained from the regular and jump-adapted 
Euler schemes, the regular and jump-adapted drift-implicit Euler schemes, and 
the regular predictor-corrector Euler scheme. We do not report in Figure 7.2.1 
the results of the jump-adapted predictor-corrector scheme because its accuracy is 
indistinguishable from that of the jump-adapted Euler scheme. Note that, here and 
in the rest of this chapter, the implicitness parameters are set to () = 77 = 0.5. All 
schemes achieve an order of strong convergence of about 'Y = 0.5. This is consistent 
with the strong orders proved in the previous chapters. Moreover, all schemes 
except the regular predictor-corrector Euler scheme have very similar accuracy. 
The regular predictor-corrector Euler scheme is significantly more accurate than 
the other schemes for all time step sizes considered. 

Let us now analyze the strong errors generated by the regular and jump-adapted 
order 1.0 Taylor schemes, the jump-adapted drift-implicit order 1.0 scheme, and 
the jump-adapted order 1.5 Taylor scheme. In Figure 7.2.2 we report the results 
for these schemes, along with those of the regular predictor-corrector Euler scheme, 
already plotted in Figure 7.2.1. We omit from Figure 7.2.2 the result of the regular 
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order 1.0 Taylor scheme, since its accuracy is almost indistinguishable from that 
of its jump-adapted version. We notice that the jump-adapted order 1.0 Taylor 
scheme and the jump-adapted drift-implicit order 1.0 scheme achieve strong order 
one in accordance with the convergence theorems proved in Chapters 4, 5 and 6. 
The jump-adapted drift-implicit order 1.0 scheme is more accurate. In this plot 
we can notice that the accuracy of the regular predictor-corrector Euler scheme, 
for the selected time step sizes, is similar to that of first order schemes. Of course, 
since its strong order of convergence equals I = 0.5, for smaller time step sizes it 
becomes less accurate than first order schemes. Finally, the most accurate scheme 
for all time step sizes considered is the jump-adapted order 1.5 Taylor scheme, 
which achieves an order of strong convergence of about ,= L5. 
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Figure 7.2.1: Log-log plot of strong crror versus time stcp si:;;c (constant marks) 

Let us now consider the case of lognormally distributed marks. Here the logarithm 
of mark (i = In (~i) is an independent Gaussian random variable, (i rv N((!, ~), with 
mean (! = -0.1738 and standard deviation ~ = 0.15. These parameters imply 
that the expected value of the marks equals E(~) = 0.85. 

In Figure 7.2.3, we plot the results obtained from the regular and jump-adapted 
Euler schemes, the regular and jump-adapted drift-implicit Euler schemes, and the 
regular predictor-corrector Euler scheme. Also in this case the results for the jump-
adapted predictor-corrector Euler scheme are indistinguishable from those of the 
jump-adapted Euler scheme and, thus, we omit them. We remark that these results 
are very similar to those obtained in Figure 7.2.1 for the case of constant marks, 

...  
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Figure 7.2.2: Log-log plot of strong error versus time step size (constant marks) 

thus confirming that the orders of convergence derived in the previous chapters 
hold also in the case of random marks. Again all schemes considered achieve a 
strong order of about "( = 0.5. Moreover, the regular predictor-corrector Euler 
scheme is the most accurate. The remaining schemes have similar accuracy, with 
the regular Euler scheme the least accurate and the jump-adapted drift-implicit 
Euler scheme the most accurate. In Figure 7.2.4 we report the results for the 
regular predictor-corrector Euler, the jump-adapted order 1.0 Taylor, the jump-
adapted drift-implicit order 1.0, and the jump-adapted order 1.5 Taylor schemes. 
The results are again very similar to those obtained for the case of constant marks, 
reported in Figure 7.2.2, with all schemes achieving the prescribed orders of strong 
convergence. 

7.3 The Case of High Intensities 

Let us now consider the strong errors generated by the strong schemes analyzed in 
the previous section, when using the relative large intensity A = 2. The remaining 
parameters of the SDE (7.1.1) are set as in the previous section. 

In Figure 7.3.5 we show the results for the regular and jump-adapted Euler scheme, 
the regular and jump-adapted predictor-corrector Euler schemes and the jump-
adapted drift-implicit Euler schemes. Note that the error generated by the regular 

l 



159 7.3. THE CASE OF HIGH INTENSITIES 

-6 

~~~~~:':~:..~:~~ .:- . 

~~~~:('::--' 
~.~7 

, ... ->~.'"  

..............-- ,.'-o ~ ~ ~ 
~ .-.,~.;, ..._",,- _.W 

Cf) _ 8 
N 

01 

...:l 
o ... -

-+- Eu ler 

-9 ..... JAEuler• 
• PredCorr 

-.- J-.- ImpEul 

.-' • JAlmpEul 
-10 t- ~ 

-4 -3 -2 -1 0 
L092dt 

Figure 7.2.3: Log-log plot of strong error versus time step size (lognormal ma.rks) 

-8 

_.-..-

-.,- -
.. *.- .. " 

-10" •. - -_... 
~ o * . .-------'.----.-/ 
~  
~  
W ..1&- ........ -----

IZl I *. 
'" -1201 o ------------

...:l 
_---- -+- JA1Taylor 

.... -.................... ..... 
_k  

.. JAlImp-14 

----_ .......---
• PredCorr .,.._ .........................  -- .....~ JAl . 5Taylor 

-16 I- _-------
'"-'--
-4 -3 -2 -1 

L092dt 

Figure 7.2.4: Log-log plot of strong error versus time step size (lognormallnarks) 

drift-implicit scheme is very similar to that of the regular Euler and, thus, is here 
omitted. All schemes achieve orders of strong convergence of about "( = 0.5. Here 
we can clearly notice that jump-adapted schemes are more accurate than regular 
schemes. This is due to the simulation of the jump impact at the correct jump times 
in jump-adapted schemes. Moreover, we report that drift-implicit schemes are the 
least accurate, while predictor-corrector schemes are the most accurate schemes. 
In Figure 7.3.6 we show the results for the jump-adapted predictor-corrector Euler 
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scheme, the jump-adapted order 1.0 Taylor scheme, the jump-adapted drift-implicit i 
order 1.0 scheme, and the jump-adapted order 1.5 Taylor scheme. Also here all 
schemes achieve the orders of strong convergence expected from the theory. Note 
that while in the low intensity case the accuracy of the regular and jump-adapted 
versions of the order 1.0 Taylor scheme were very similar, in the high intensity case 
the jump-adapted version is more accurate. We point out that the jump-adapted 
order 1.5 Taylor scheme is the most accurate for all time step sizes considered. 
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Finally, in Figures 7.3.7 and 7.3.8 we report the strong errors for all schemes ana-
lyzed in this chapters in the case of lognormal marks. The results are again very 
similar to those obtained in the case of constant marks. In particular, we report 
that all schemes achieve the orders of strong convergence proved in Chapters 4, 5 
and 6. 
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Chapter 8 

Strong Approximation of Pure Jump 
Processes 

In this chapter we consider strong discrete time approximations of pure jump SDEs. 
The schemes to be presented are special cases of those considered in Chapters 4, 5 
and 6 when the drift and the diffusion coefficients equal zero. The particular nature 
of the pure jump dynamics simplifies the implementation of corresponding higher 
order strong schemes. Additionally, as we will see at the end of this chapter, strong 
orders of convergence are derived under weaker assumptions than those needed in 
the jump-diffusion case. Most results of this chapter have been published in Bruti-
Liberati & Platen (2007c). 

8.1 Introduction 

We now present strong numerical approximations of pure jump SDEs. Such SDEs 
arise, for instance, when using a birth and death process or, more generally, a 
continuous time Markov chain. They play an important role in modelling credit 
rating changes, bio-chemistry reactions and other areas of applications, see Turner, 
Schnell & Burrage (2004). The piecewise constant nature of pure jump dynamics 
simplifies the resulting numerical schemes. For instance, jump-adapted approxi-
mations, constructed on time discretizations including all jump times, produce no 
discretization error in this case. Therefore, in the case of low to medium jump 
intensities one can construct efficient schemes without discretization error. In the 
case of high intensity jump processes, jump-adapted schemes are often not feasi-
ble. However, we will demonstrate that one can derive higher order discrete time 
approximations whose complexities turn out to be significantly lower than that 
of numerical approximations of jump diffusions. In the case of SDEs driven by 
a Poisson process, the generation of the multiple stochastic integrals required for 
higher order approximations is straightforward, since it involves only one Poisson 
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distributed random variable in each time step. Moreover, the simple structure of 
pure jump SDEs permits us to illustrate the use of a stochastic expansion in the 
derivation of higher order approximations. At the end of the current chapter, we 
show that higher strong orders of convergence of discrete time approximations for 
SDEs driven purely by a Poisson random measure can be derived under weaker 
conditions than those typically required for jump diffusions. 

8.2 Pure Jump Model 

Let us consider a counting process N = {Nt, t E [0, Tn, which is right-continuous 
with left-hand limits and counts the arrival of certain events. Most of the following 
analysis applies for rather general counting processes. However, for simplicity, we 
take N to be a Poisson process with constant intensity A E (0,00) that starts at 
time t = °in No = 0. It is defined on a filtered probability space en, AT) A, P) 
with A = (At)tE[o,Tj satisfying the usual conditions. Note that we can rewrite the 
Poisson process in terms of the Poisson random measure introduced in Chapter 2 
by setting 

Nt = ]Jq\(E, [0, t]), (8.2.1) 

for t E [0, T]. An alternative representation of the Poisson process is provided by a 
Poisson random measure with mark space E = {1} and intensity measure <p({1}) = 
A. The Poisson process N = {Nt, t E [0, Tn generates an increasing sequence 
(TdiE{1,2, ...,NT} of jump times. For any right-continuous process Z = {Zt, t E [0, Tn 
we define its jump size 6. Zt at time t as the difference 

(8.2.2) 

for t E [0, TJ, where Zt- denotes again the left-hand limit of Z at time t. Thus, we 
can write 

for t E [0, T]. 

For a pure jump process X = {Xt, t E [0, Tn that is driven by the Poisson process 
N we assume that its value X t at time t satisfies the SDE 

(8.2.3) 

l 
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for t E [0, T] with deterministic initial value Xo E JR. This is a special case of the 
SDE (2.1.2), where the drift coefficient a and the diffusion coefficient b both equal 
zero and the jump coefficient c is mark-independent. 

The jump coefficient c : [0, T] x lR. -----+ lR. is again assumed to be Borel measurable, 
Lipschitz continuous, such that 

ic(t,x) -c(t,y)i:S J(ix-yi, 

and to satisfy the growth condition 

iC(t, x) i2 :S J( (1 + ixi2) 

for t E [0, T] and X, y E lR. with some constant J( E (0, (0). 

To provide for later illustration a simple, still interesting example, let us consider 
the linear SDE 

dXt = X t - 'l/J dNt (8.2.4) 

for t E [0, T] with Xo > °and constant 'l/J E lR.. This is a degenerate case of the 
SDE (2.1.5), with drift coefficient a(t, x) = 0, diffusion coefficient b(t, x) = °and 
mark-independent jump coefficient c(t, x) = x'l/J. By application of the Ito formula 
one can demonstrate that the solution X = {Xt, t E [0, T]} of the SDE (8.2.4) is a 
pure jump process with explicit representation 

X t = Xo exp{Nt In('l/J + I)} = Xo ('l/J + I)Nt (8.2.5) 

for t E [0, T]. 

8.3 Jump-Adapted Schemes 

We consider a jump-adapted time discretization °= to < tl < ... < tnT = T, where 
nT is defined in (4.1.8) and the sequence tl < ... < t nT - 1 equals that of the jump 
times 71 < .,. < TNT of the Poisson process N. On this jump-adapted time grid 
we construct the jump-adapted Euler scheme by the algorithm 

}~+l = Y~, + c t1Nn , (8.3.6) 

...  
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for n E {O, 1, ... ,nT - I}, with initial value Yo = X o, where .6.Nn = Ntn+l - Ntn 
is the nth increment of the Poisson process N. Between discretization times the 
right-continuous process Y is set to be piecewise constant. Note that here and in 
the sequel, when no misunderstanding is possible, we use the previously introduced 
abbreviation c = c(tn' Yn). 

Since the discretization points are constructed exactly at the jump times of N, 
and the simulation of the increments Nti+1 - Nt, = 1 of N can be made exact, 
the jump-adapted Euler scheme (8.3.6) produces no discretization error. Let us 
emphasize that this is a particular feature of jump-adapted schemes when applied 
to pure jump SDEs. In the case of jump-diffusion SDEs, the jump-adapted schemes 
in Chapter 6 typically produce a discretization error. 

For the implementation of the scheme (8.3.6) one needs to compute the jump times 
Ti, i E {I, 2 ... ,NT}, and has then to apply equation (8.3.6) recursively for every 
i E {O, 1, 2 ... ,nT - I}. One can obtain the jump times via the corresponding 
waiting times between two consecutive jumps by sampling from an exponential 
distribution with parameter A. 

The computational effort when running the algorithm (8.3.6) is heavily dependent 
on the intensity /\ of the jump process. Indeed, the average number of steps and, 
thus, of operations is proportional to the intensity A. Below we will introduce alter-
native methods suitable for large intensities, based on regular time discretizations. 

8.4 Euler Scheme 

In this section we develop discrete time strong approximations whose computational 
complexity is independent of the jump intensity level. 

We consider an equidistant time discretization with time step size .6. E (0, 1) as in 
Chapter 4. The simplest strong Taylor approximation Y = {Yt, t E [0, Tn is the 
Euler scheme, which is given by 

(8.4.7) 

for n E {O, 1, ... ,nT - I} with initial value Yo = Xo and .6.Nn = Ntn+1 - Ntn . Be-
tween discretization times the right-continuous process Y is assumed to be piecewise 
constant. 

l 
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By comparing the scheme (8.4.7) with the algorithm (8.3.6), we notice that the 
difference in the schemes consists in the time discretization. We emphasize that 
the average number of operations and, thus, the computational complexity of the 
Euler scheme (8.4.7) is independent of the jump intensity. Therefore, a simulation 
based on the Euler scheme (8.4.7) is feasible also in the case of jump processes with 
high intensity. However, while the jump-adapted Euler scheme (8.3.6) produces no 
discretization error, the accuracy of the Euler scheme (8.4.7) depends on the size 
of the time step .6. and the nature of the jump coefficient. 

For example, for the linear SDE (8.2.4) the Euler scheme (8.4.7) has the form 

Yn+l = Yr, + Yr, '~) .6.Nn = Yn (1 + '!jJ.6.Nn) (8.4.8) 

for n E {O, 1, ... , nT - 1} with Yo = Xo. Since the equidistant time discretization 
tn = .6.n of this Euler scheme does not include the jump times of the underlying 
Poisson process, we have an approximation error. 

Theorem 4.5.1 shows that the Euler approximation (8.4.7) achieves strong order 
of convergence I = 0.5. This raises the question of constructing higher order dis-
crete time approximations for the case of pure jump SDEs. The problem can be 
approached by a stochastic expansion for pure jump SDEs that we will describe 
below. This expansion is a particular case of the Wagner-Platen expansion (3.5.4) 
for jump diffusions presented in Chapter 3. Therefore, the resulting strong approx-
imations are particular cases of the strong schemes presented in Chapter 4. 

8.5 Wagner-Platen Expansion 

Since the use of the Wagner-Platen expansion for pure jump processes is not com-
mon in the literature let us first illustrate the structure of this formula for a simple 
example. For any measurable function f : lR -+ lR and a given adapted counting 
process N = {Nt, t E [0, T]} we have the representation 

f(Nt ) = f(No) + L .6. f(Ns ) (8.5.9) 
sE (O,t] 

...  
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for all t E [0, TJ, where L:::..f(Ns ) = f(Ns ) - f(Ns -). VIe can formally write the 
equation (8.5.9) in the form of an SDE 

for t E [0, T]. This equation can also be obtained from the Ito formula for semi-
martingales, see Protter (2004), for the case with jumps. 

Obviously, the following difference expression L:::..N f (Ns -) defines a measurable func-
tion, as long as 

L:::..N f(N) = f(N + 1) - f(N) (8.5.10) 

is a measurable function of N. By using this function we can rewrite (8.5.9) in the 
form 

f(Nt ) = f(No) + r EN f(Ns -) dNs (8.5.11) 
i(o,t] 

for t E [0, T]. Since liN f (Ns -) is a measurable function we can apply the formula 
(8.5.11) to ENf(Ns -) in (8.5.11), which yields 

J(Nt) = f(No) + r ENf(No)dNs + r r (ENr f(Nsl-)dNsldNs2
i(o,t] i(o,t] i(0,S2) 

f(No) + liNf(No) r dNs + 1 1 (liNrf(Ns1 -)dN,'ldN.'2
i(o,t] (O,t] (0,82) 

(8.5.12) 

for t E [0, T]. Here (liN) q deno~s for an integer q E {I, 2, ... } the q times consecu-

tive application of the function L:::..N given in (8.5.10). Note that a double stochastic 
integral with respect to the counting process N naturally arises in (8.5.12). One can 
now continue in (8.5.12) to apply the formula (8.5.11) to the measurable function 
(EN)2 f(Ns1 -), which yields 

with remainder term 

for t E [0, T]. In (8.5.13) we have obtained a double integral in the expansion part. 

l 
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Furthermore, we have a triple integral in the remainder term. We call (8.5.13) a 
Wagner-Platen expansion of the function fe) with respect to the counting process 
N. Its expansion part only depends on multiple stochastic integrals with respect to 
the counting process N. These are weighted by some constant coefficient functions 
with values taken at the expansion point No. It is clear how to proceed to obtain 
higher order Wagner-Platen expansions by iterative application of formula (8.5.11). 

Fortunately, the multiple stochastic integrals that arise can be easily computed. It 
is straightforward to prove by induction, see Engel (1982), that 

j. dNs = Nt 
(O,t] 

r r dNsl dNs2 = ~ Nt (Nt - 1), 
J(D,tl J(0,S2) 2. 

r r { dNsl dNs2 dNs3 = 3\ Nt (Nt - 1) (Nt - 2), 
J(O,t] J(D,S3) J(0,S2) . 

j' 1 1 {(~t) for Nt 2: l 
... dNsl ••• dNs1 _ 1 dNsl = (8.5.14) 

(O,tJ (O,sd (0,S2) 0 otherwise 

for t E [0, T] and l E {1,2 ... }. Here we have used the common combinatorial 
abbreviation 

'l 2."(.) 
(8.5.15)l = l!(i - l)! 

for i 2: l with 0 ! = 1. 

With (8.5.14) we can rewrite the Wagner-Platen expansion (8.5.13) in the form 

= ~ (Nt) + (_)2 1(No) (Nt) + R3 {t),1(Nt ) f{No) + 6N f{No) 1 6N 2 

where 
EN 1{No) = EN 1(0) = 1(1) - 1(0), 

(EN) 2 1{No) = 1(2) - 21(1) + 1(0). 

In the given case this leads to the expansion 

1 -
f(Nt ) = 1(0) + (J(1) - 1(0)) Nt + (1(2) - 2 f{l) + 1(0)) 2" Nt (Nt - 1) + R3(t) 

.....  



170 CHAPTER 8. STRONG SCHEMES FOR PURE JUMP PROCESSES 

for t E [0, T]. More generally, by induction it follows the Wagner-Platen expansion 

(8.5.16) 

with 

for t E [0, T] and l E {O, 1, ...}, where (.6. N)O J(No) = J(No). By neglecting the 
remainder term in (8.5.16) one does not consider the occurrence of a higher number 
of jumps and obtains a useful truncated Taylor approximation of a measurable 
function J with respect to a counting process N. Note that in (8.5.16) the truncated 
expansion is exact if no more than l jumps occur until time t in the realization of 
N. Consequently, if there is a small probability that more than l jumps occur 
over the given time period, then the truncated Wagner-Platen expansion can be 
expected to be quite accurate under any reasonable criterion. 

Similar to (8.5.16) let us now derive a vVagner-Platen expansion for functions of 
solutions of the general pure jump SDE (8.2.3). vVe define similarly as above the 
measurable function .6.N J(.) such that 

(8.5.17) 

for all t E [0, T]. In the same manner as previously shown, this leads to the 
expansIOn 

J(Xo) + r .6.N J(Xs-) dNs 
J(O,t] 

f(Xo) + r (fiN J(Xo) + r (.6. NrJ(XS1 -) dNsl) dNs2 
J(O,t] J(O"'2) 

J(Xo) + LI (fiN) kJ(Xo) r ... r dNsl ••• dNsk + R~~l 
k=l J(O,t] J(O,S2) 

(8.5.18) 

with 

l 
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for t E (O,T] and l E {l,2, ... }. One notes that (8.5.18) generalizes (8.5.16) in a 
simple fashion. 

Let us give an illustration. For the particular example of the linear SDE (8.2.4) we 
obtain for any measurable function f the function 

3.N f(X.,.-) = f(X.,.- (1 + 1j;)) - f(X.,.-) 

for the jump times T E [0, T] with 6N.,. = 1. Therefore, in the case l = 2, we get 
from (8.5.18) and (8.5.14) the expression 

f(Xt ) f(Xo) + (J(Xo(1 + 1j;)) - f(Xo)) (Nt - No) 

+ (f(Xo(1 + ,t/J)2) - 2 f(Xo(1 +ifJ)) + f(Xo)) 

1 -3 
X - (Nt - No) ((Nt - No) - 1) + RI t2 ' 

for t E [0, T], By neglecting the remainder term Rj,t we obtain, for this simple 
example, a truncated Wagner-Platen expansion of f(Xt ) at Xo. Let us emphasize 
that in the derivation of the expansion (8.5.18) only measurability of the function f 
and the coefficients (3. N rf(-), for k E {I, ... ,l} is required. This contrasts with 
the case of diffusion and jump-diffusion SDEs where differentiability conditions are 
needed to obtain a Wagner-Platen expansion. 

8.6 Order 1.0 Strong Taylor Scheme 

The Euler scheme (8.4.7) can be interpreted as being derived from the expansion 
(8.5.18) applied to each time step by setting f(x) = x, choosing l = 1 and neglecting 
the remainder term. By choosing l = 2 in the corresponding truncated Wagner-
Platen expansion, when applied to each time discretization interval [tn' tn+lJ with 
f(x) = x, we obtain the order 1.0 strong Taylor approximation 

Yr,+l = Yn + c6Nn + (C(tn' Yr, + c) - c) -1 
(6.Nn) (6Nn - 1)2 . 

for n E {O, 1, ... ,nT -I} with}() = Xo and 6.Nn = Ntn+l - Ntn . 

In the special case of our linear example (8.2.4), the order 1.0 strong Taylor ap-

..  
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proximation turns out to be of the form 

(8.6.19) 

for n E {O, 1, ... ,nT - I} with Yo = Xo. 

1 r:--.:====;:-..~-::": ~.. -::-:.-=---'=-
I --+- Exact 

0.8 
.... - 1Taylor 

0.6 

i ..i _.- - ._._.,_. __ 
0.4 

I 

0.2 .-._. __ ._._._-, 
• 

o . . ......•....................... ···4  

. " 
0.2 0.4 0.6 0.8 

time 

Figure 8.6.1: Exact solution, Euler and order 1.0 Taylor approxirnaJions. 

For the linear SDE (8.2.4) and a given sample path of the Poisson process, we 
plot in Figure 8.6.1 the exact solution (8.2.5), the Euler approximation (8.4.8) 
and the order 1.0 strong Taylor approximation (8.6.19). We selected a time step 
size .6. = 0.25 and the following parameters: Xo = 1, T = 1, 'IjJ = -0.15 and 
A = 20. Note in Figure 8.6.1 that the order 1.0 strong Taylor approximation is 
at the terminal time t = 1 rather close to the exact solution. It appears visually 
better than the Euler approximation, which becomes even negative. Theorem 4.5.1, 
presented in Chapter 4, and Theorem 8.8.4, to be presented in Section 8.8, provide 
a firm basis for judging the convergence of such higher order schemes. 

8.7 Order 1.5 and 2.0 Strong Taylor Schemes 

If we use the truncated Wagner-Platen expansion (8.5.18) with l = 3, when applied 
to each time interval [tn' tn+d with j(x) = x, we obtain the order 1.5 strong Taylor 
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approximation 

Yrt+l Yn + c6Nn + {C(tn' Yr. + c) - c} (6:71 ) 

+{c(tn' Yn + c+ c(tn, Yn + c)) - 2 c(t71' Yn + c) + c} (6:71 ) 

for n E {O, 1, ... ,nT -I} with Yo = Xo. 

In the case of our particular example (8.2.4), the order 1.5 strong Taylor approxi-
mation is of the form 

Yn+1 = Yn{1 + Vi 6Nn + ~2 ( 6:n) + ~3 (6:n) } 

for n E {O, 1, ... ,nT - I} with Yo = Xo. 

To construct an approximation with second order of strong convergence we need 
to choose l = 4 in the truncated expansion (8.5.18) with f(x) = x. Then we obtain 
the order 2.0 strong Taylor approximation 

Yrt+l Yn + c6Nn + { C(Yn + C(~1)) - c(Yrt) }(6~n ) 

+{C(tn,Y71+C+C(tn,y71+C)) -2c(t71,Yn +C) +c}(6;n) 

+{c(tn1 Yrt + c+ c(tn1 Yn + c) + c(tn1 Yn + c+ C(tnl ~1 + c))) 

-3c(tn' Yn + C+ c ( tn, Yn + c) ) + 3 c ( tn, Yn + c) - c} (6:n) 

for n E {O, 1, ... ,nT -I} with Yo = Xo.  

For the linear SDE (8.2.4) the order 2.0 strong Taylor approximation is of the form  

~1+1 = Yn{1+ '~ 6Nn + ~2 ( 6~n) + ~3 (6:,,) + ~4 (6:,,)} 
for n E {O, 1, ... ,nT -I} with Yo = Xo . 

...  
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8.8 Convergence Results 

It is desirable to be able to construct systematically highly accurate discrete time 
approximations for solutions of pure jump SDEs. For this purpose we use the 
Wagner-Platen expansion (8.5.18) to obtain the order r strong Taylor scheme for 
pure jump processes, for T' E {0.5, I, 1.5, ... }. 

In this section we consider a pure jump process described by a more general SDE 
than the SDE (8.2.3) considered so far in this chapter. For the pure jump SDE 
(8.2.3) driven by one Poisson process it is possible, as shown above, to derive 
higher order strong schemes that involve only one Poisson random variable in each 
time step. However, it is important to study also more general multi-dimensional 
pure jump processes, which allow the modelling of more complex quantities as, 
for instance, state-dependent intensities. For this reason, we consider here the 
d-dimensional pure jump SDE 

(8.8.20) 

for t E [0, T], with Xo E If{d. Here the jump coefficient c and the Poisson random 
measure are defined as in (2.1.2). Note that the mark space [; of the Poisson 
random measure can be made multi-dimensional or split into disjoint subsets and, 
thus, can generate several sources of jumps. The case of a multi-dimensional SDE 
driven by several Poisson processes is a specific case of the SDE (8.8.20). The SDE 
(8.8.20) is equivalent to the jump-diffusion SDE (2.1.2) when the drift coefficient 
a and the diffusion coefficient b equal zero. Note that birth and death processes 
and, more generally, continuous time Markov chains can be described by the SDE 
(8.8.20). 

Theorem 4.5.1, presented in Chapter 4, establishes the strong order of convergence 
of strong Taylor approximations for jump-diffusion SDEs. When specifying the 
mentioned theorem to the case of SDEs driven by pure jump processes, it will turn 
out that it is possible to weaken the assumptions on the coefficients of the Wagner-
Platen expansion. As we will see below, the Lipschitz and growth conditions on 
the jump coefficient are already sufficient to establish the convergence of strong 
Taylor schemes of any given strong order of convergence '"Y E {0.5, I, 1.5,2, ...}. 
Differentiability of the jump coefficient is not required. This is due to the structure 
of the increment operator L~-1), see (3.3.6), naturally appearing in the coefficient 

l 
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of the Wagner-Platen expansion for pure jump processes. 

For a regular time discretization (t).6. with maximum step size .6. E (0,1) we define, 
the order 1 strong Taylor scheme for pure jump SDEs by 

h-l1tn+l1 l s1 1Yn~ 1 Ynll + I.= . . . ( 	 , VO)L(-1) ) k C ( tn, Ynll 
k=O tn 	 E tn E 

pq,(dvO,dsO) .. . pq,(dv\dsk ), (8.8.21) 

for n E {O, 1, ... ,nT - I} and "I E {0.5, 1, 1.5, ... }. Here we have used the notation 

c(tn' ynll , Va) whenk = a  
(L(-I))kC(t yll va) '= L (-I) ( yll 0) n, n 1 • vI C tn, n ,V whenk = 1 

L (-I) ( (L(-I) ( yll 0)))
'Uk • • • 	 vI C tn, n' V whenk E {I, ...}, 

(8.8.22) 
where the increment operator L(-I) is defined in (3.3.6). 

The following three lemmas show that for SDEs driven by pure jump processes, 
Lipschitz and growth conditions provide sufficient conditions for Theorem 4.5.1 to 
guarantee the corresponding strong of strong convergence. 

Lemma 8.8.1 Assume that the jump coefficient satisfies the Lipsch'itz condition 

Jc(t, x, u) -	 c(t, y, u)J :::::; KJx - yJ, (8.8.23) 

for t E [0, T], x, y E lRd and u E [;, with some constant K E (0,00). Then for any 
"I E {0.5, 1, 1.5, ...} and k E {O, 1,2, ... ,2"1-1} the kth coefficient (L( _1))k c(t, x, u) 
of the order "I strong Taylor scheme, satisfies the Lipschitz condition 

i (L(-I))k c(t,x,u) - (L(-I)/ c(t,y,u)i:::::; Ckix - yl, (8.8.24) 

for t E [0, TJ, x, Y E lRd , U E [;k and some constant Ck E (0,00) which only depends 
on k. 

Proof: We prove the assertion (8.8.24) by induction with respect to k. For k = 0, 
by the Lipschitz condition (8.8.23) we obtain 

i(L(-I))O c(t, x, u) - (L<-I))O c(t, y, u)1 = Ic(t, x, u) - c(t, y, u)i :::::; K Jx - yJ . 

.wIIIIII  
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For k = l + 1, by the induction hypothesis, Jensen's inequality, see Appendix A, 
and the Lipschitz condition (8.8.23) we obtain 

1(£(-1»)1+1 C(t, X, U) - (£(-1»)1+1 C(t, y, U)\ 

I (£ (_1»)1 ( (.) ,) (£(_l»)l ct,x,U( )ct,X+Ct,:L,V ,U -

- (£(-1»)1 C(t, y + C(t, y, V), U) + (£(-1»)1 C(t, y, U) I 

< C11X - y + (C(t, X, V) - C(t, y, V)) 1+ CllX - yl 
< 2 GII:C - y I+ CI f{ IX - y I 

G[+l Ix - yl, 

which completes the proof of Lemma 8.8.1. D 

Lemma 8.8.2 Ass1Lme that the jump coefficient satisfies the growth condition 

(8.8.25) 

fortE [O,T] andxE]Rd anduEE, with some constantK E (0,00). Thenforany 
, E {0.5, 1, 1.5, ...} and k E {O, 1,2, ... ,2,-1} the kth coefficient (£(_l»)k c(t, X, u) 
of the order, strong Taylor scheme, satisfies the growth condition 

(8.8.26) 

for t E [0, TL x, y E ]Rd, U E £k and some constant Ok E (0, (0) which only depends 
on k. 

Proof: We prove the assertion of Lemma 8.8.2 by induction with respect to k. For 
k = 0, by applying the growth condition (8.8.25) we obtain 

For k = l + 1, by the induction hypotheses, Jensen's inequality and the growth 

l 
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condition (8.8.25) we obtain 

1 (L(-1)) I+1 c(t, x, 'U) 12 
1 (LC-1)) I C(t, x + C(t, x, v), u) - (L(-1)) I C(t, x, u) 12 

< 2 ( c\ (1 + 1x + c(t, x, v) 12) + Ol (1 + 1X 12) ) 

< 2(01(1 + 2(lx12 + Ic(t, x, v)12)) + 01(1 + IxI2)) 
< 01+1 (1 + IxI2), 

which completes the proof of Lemma 8.8.2. 0 

Lemma 8.8.3 Let us assume that 

E(IXoI2) < 00 (8.8.27) 

and the jump coefficient satisfies the Dipschitz condition 

lc(t, x, u) - c(t, y, u) I :::; }(l Ix - yl (8.8.28) 

and the growth condition 

Ic(t, x, U)12 :::; }(2 (1 + Ix1 2) (8.8.29) 

for t E [0, TJ, x, Y E 1R.d , and u E £, with constants }(1,}(2 E (0,00). Then for any 
, E {0.5, 1, 1.5, ...} and k E {a, 1,2, ... ,2,-1} the kth coefficient (L(-l))k c(t, x, u) 
of the order, strong Taylor scheme satisfies the integrability condition 

(LC-l))k c(., x,·) E 1ik, 

for x E IR;.<i, where 1ik is the set of adapted stochastic process 9 = {g(t), t E [0, T]} 
such that 

E (IT 11sk 1.. ·15219(s, VI, ... , v\ W)12¢(dvI)dS l ... ¢(dVk) dSk) < 00. 

Proof: By Lemma 8.8.2 for any, E {a.5, 1, 1.5, ...} and k E {O,l,2, ... , 2, - I} 
the kth coefficient (LC-l))k c(t, x, u) of the order, strong Taylor scheme satisfies 

.. 
--- - -_ .. 
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the growth condition 

(8.8.30) 

for t E [0, TJ, x, Y E IRd and u E £k, with the constant Ok E (0,00). Therefore, 
for any roy E {0.5, 1, 1.5, ... } and k E {O, 1,2, ... ,2roy - 1}, by condition (8.8.30) and 
Fubini's theorem we obtain 

¢(duO) dso . .. ¢(duk ) ds k ) 

:s; E (I T 11sk 1··.181 1Ok(1 + IX soI2)¢(duO) dso . .. ¢(duk ) dSk ) 

~ (T)..)k (~ lT18k l s1 2):s; C k - k-r - + Ck . . . E sup IXzl dso · .. dSk < 00. 
. 0 ° 0 O:S;z:S;T 

The last passage holds, since conditions (8.8.27), (8.8.28) and (8.8.29) ensure that 

E (sup IXzI2) < 00, 
zE[O,T] 

see Theorem 2.2.1. This completes the proof of Lemma 8.8.3. 0 

We emphasize that in the case of pure jump SDEs, unlike the more general case of 
jump diffusions, no extra differentiability conditions on the jump coefficient care 
required when deriving higher order approximations. 

Theorem 8.8.4 For given roy E {0.5, 1, 1.5,2, ... }, let y~ = {Y~(t), t E [0, Tn be 
the order roy stTOng Taylor scheme (8.8.21) for the SDE (8.8.20) corresponding to 
a time discretization (t)~ with maximmn step size 6. E (0,1). We assume for the 
jump coefficient c(t, x, v) the Lipschitz condition (8.8.23) and the growth condition 
(8.8.25) . Moreover, suppose that 

and 

Then the estimate 

l 
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holds, wheTe the constant K does not depend on 6.. 

Proof: The proof of Theorem 8.8.4 is a direct consequence of the convergence 
Theorem 4.5.1 for jump diffusions presented in Chapter 4. This is the case because 
by the Lemmas 8.8.1, 8.8.2 and 8.8.3, the coefficients of the order, strong Taylor 
scheme (8.8.21) satisfy the conditions required by the convergence Theorem 4.5.1. 
Note that the differentiability condition in Theorem 4.5.1, 'where f-a E C1,2 for 
all 0: E A')' UB(A')') , is not required for pure jump SDEs. This condition is used 
in the proof of the general convergence Theorem 4.5.1 only for the derivation of 
the Wagner-Platen expansion. In the pure jump case, as shown in Section 8.5, 
one needs only measurability of the jump coefficient c to derive the corresponding 
Wagner-Platen expansion. 0 

Theorem 8.8.4 states that the order, strong Taylor scheme for pure jump SDEs 
achieves a strong order of convergence equal to ,. In fact Theorem 8.8.4 states 
that the strong convergence of order, is not just at the endpoint T but it is also 
uniform over all time discretization points. Thus, by including enough terms from 
the Wagner-Platen expansion (8.5.18) we are able to construct schemes of any given 
strong order of convergence, E {a.5, 1, 1.5, ...}. Note that Theorem 8.8.4 applies 
to solutions of multi-dimensional pure jump SDEs. 

For the mark-independent pure jump SDE (8.2.3) driven by one Poisson process, 
the order, strong Taylor scheme (8.8.21) reduces to 

2')' 

(8.8.31)Yn"., = Yn" + ~ (iiN) k!(Yn") (tl:n) 
for n E {O, 1, ... ,nT - I}, with f(x) = x, where the operator 6. N is defined in 
(8.5.17). In this case the generation of the multiple stochastic integrals involved is 
straightforward, since only one Poisson distributed random variable at each time 
step is required, as we have seen in (8.5.14). This allows the above schemes to 
be easily implemented. Such an implementation is more complex in the case of 
genuine jump-diffusion SDEs and it is worth to know the advantages that one has 
when deriving higher order strong Taylor schemes for pure jump SDEs . 

..  ._-----
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1 



Chapter 9 

Regular Weak Taylor Approximations 

As pointed out in the introduction, it is a much easier task to approximate the 
probability measure generated by a jump diffusion than approximating its paths. 
Only weak approximations are needed to achieve this goal. In this chapter we 
present regular weak approximations obtained directly from a truncated Wagner-
Platen expansion. The desired weak order of convergence determines which terms 
of the stochastic expansion one has to include in the approximation. These weak 
Taylor schemes are different from the regular strong Taylor schemes presented in 
Chapter 4. The construction of weak schemes requires a separate analysis. A 
convergence theorem, useful to construct weak Taylor approximations of any given 
weak order of convergence (3 E {1, 2, ... }, will be presented at the end of this 
chapter. 

9.1 Introduction 

As in Chapter 4, we first consider the one-dimensional, d = m = 1, jump-diffusion 
SDE 

dXt = a(t, Xt)dt + b(t, X t)dl¥t +1c(t, x t-, v) p¢(dv, dt), (9.l.1) 

for t E [0, T], with Xo E ffi., where VV = {Wt, t E [0, Tn is a one-dimensional 
Wiener process and p¢(dv, dt) is a Poisson measure. Later, we will consider the 
autonomous d-dimensional jump-diffusion SDE 

dXt = a(Xt)dt + b(Xt)dWt +1c(Xt -, v) p¢(dv, dt), (9.l.2) 

for t E [0, T], with Xo E ffi.d. As in Chapter 4, we will consider both the case of a 
scalar Wiener process, m = 1, and that of an m-dimensional Wiener process. Note 
that in the case of an autonomous multi-dimensional SDE, we can always recover an 
SDE with time-dependent coefficients by considering the time t as first component 

181  
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of the process X. Moreover, we remark that we will often treat separately the 
simpler case of a mark-independent jump coefficient c(t, x, v) = c(t, x). 

For the following discrete time approximations, we consider a regular time dis-
cretization (tb with maximum time step size 6, as defined in Chapter 4, that 
does not include the jump times of the Poisson measure. We recall that we use the 
notation 6 n = tn+1 - tn· 

9.2 Euler Scheme 

Due to the nature of the Wagner-Platen expansion, which approximates the diffu-
sion and jump features, the simplest useful weak Taylor approximation coincides 
with the simplest useful strong Taylor approximation: the Euler scheme (4.2.12), 
presented in Chapter 4. Nonetheless, we will prove at the end of this chapter that 
the Euler scheme attains an order of weak convergence (3 = 1.0, as opposed to a 
strong order '1 = 0.5, shown in Chapter 4. 

We recall that in the general multi-dimensional case the kth component of the 
Euler scheme is given by 

m p.p(tn+ll 

Y:+1 Y:+ak6 n + Lbk,j6T~i~+ L Ck(~i)' 
j=1 

for k E {1,2, ... ,d}, where we have used the abbreviations defined in (4.1.9)-
(4.1.11). 

9.3 Order 2.0 Taylor Scheme 

We have seen that the Euler scheme is the simplest Taylor scheme both for strong 
and weak approximations. Note that one can simplify the Euler scheme further by 
using discrete random variables, as will be discussed in Chapter 12. When higher 
accuracy is required and, thus, a scheme with higher order of convergence is sought, 
then it is important to distinguish between strong and weak schemes. Indeed, by 
adding to the Euler scheme the four multiple stochastic integrals appearing in the 
order 1.0 strong Taylor scheme presented in Section 4.3, we improve the order of 
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strong convergence from, = 0.5 to , = 1.0. However, it can be shown that the 
order 1.0 strong Taylor scheme has generally the same order of weak convergence 
(3 = 1.0 as the Euler scheme. This indicates that the construction of efficient 
higher order weak schemes requires rules that are different from those used for 
strong schemes. At the end of this chapter we present a convergence theorem for 
weak Taylor approximations. It provides a rule for selecting from the Wagner-
Platen expansion the multiple stochastic integrals needed to achieve a given order 
of weak convergence (3 = {1.0, 2.0, ... }. In this way, we obtain the order 2.0 weak 
Taylor scheme, which, in the one-dimensional case, d = m = 1, is given by 

Yn +1 Yn +aLln +bLlM1n + tn+l I'c(v)prt>(dv,dz)itn it: 
tn+l jZ2  

+bb' j tTl tn dWZl dWZ2  

+ jtn+l I' t2 bc'(v)dWZ1Prt>(dv, dz2)tn i£ itn 
+jtn+ljZ2 f {b(tn,Yn+C(v)) -b}prt>(dv,dzdd~VZ2tn tn it: 

n+ jt + 
1 l1 z2 1{C(tn,Yn + C(Vd,V2) -c(v2)}prt>(dvl,dzdprt>(dv2,dz2) 

tn £ tn £ 

( aa a" ) jtn+l l z2 I tn+ jZ2+ at + a a' + 2"b2 
tn tn dz1dz2+ a' b tn 

1 

tn dWZl dZ2 

( ab b" ) jtn+l JZ2 + 	 at + a b' + 2b2 dz1dWZ2  
tn t'n  

tn+l fjZ2 (ac(v) c"(v) )+ j tn i£ tn ---at + a c'(v) + -2-b2 dz1P",(dv, dz2) 

+jtn+ljZ2 f {a(tn,Yn + c(v)) -a}p",(dv,dzr)dz2) (9.3.1) 
tn tn it: 

where we have used the abbreviated notation (4.1.9)-(4.1.11), and we have denoted 
the partial derivative with respect to time with gt' This scheme will be shown to 
achieve weak order (3 = 2.0. Note that to achieve second order of weak convergence, 
we have added all nine double stochastic integrals to the Euler scheme. The order 
2.0 weak Taylor scheme was presented in Liu & Li (2000). It generalizes a scheme 
for pure diffusion SDEs presented in Milstein (1978) and mentioned in Talay (1984). 

III!IIIIIIII 
-------~--
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The scheme (9.3.1) is rather complex, as it involves all nine possible double sto-
chastic integrals with respect to time, Wiener processes and the Poisson random 
measure. By Ito's formula, the integration by parts formula and using (9.3.1), we 
can rewrite the order 2.0 wea.k Taylor scheme as 

P<t>(tn+1l b b' 2 

- Yn + a.0.n + b.0.l1fn + I: C(~i) + 2 ((.0.Wn) - .0.n) 
i=p<t>(tn )+1 

p<t>(tn+d  

+b I: C'(~i)(WTi - Wtn)  

i=p</>(t n )+ 1 

p</>(tn+ll 

+ I: {b(Yn + C(~i)) - b} (Wtn+! - lVTJ 
i=p<t>(t n )+ 1 

p</>(tn+d P</>(Tj) 

+ I: I: {C(Yn + c(~i)' ~j) - C(~j) } 
j=p</>(tn )+l i=p<t>(tn )+1 

P<t>(t n+ll 

+ I: {a(Yn + r(~i)) - a} (tn+l - Ti), (9.3.2) 
i=p<t>(tn)+l 

which is readily applicable for weak approximation and , thus, for Monte Carlo 
simulation. The correlated Gaussian random variables .0.Wn = Wtn+1 - Wtn and 

(9.3.3) 

can be generated as in (6.2.23). The order 2.0 Taylor scheme for the for the SDE 

l 
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(2.1.5) is given by 

p.p(tn+d 

Yn+l Yn + ~Y,,6n + oYn6Wn + Y" L (~i - 1) 
i=p.p(tn)+l 

2 p.p(tn+1) 

+~ Yn((6Wn? - 6 n) + aY,l 6Wn L (~i - 1) 
i=p¢(tn )+ 1 

P.p(tn+1) P</J(T; ) 

+Yn L L (~i - 1)(~j - 1) 
j=P</J(t n )+1 i=p.p(t '1 )+1 

2 p.p(tn+d 

+~ Yn(6n ? + ~aYn6Wn6n + f-J,Yn6 n L (~i - 1). (9.3.4) 
i=p.p(tn )+l 

In the special case of a mark-independent jump coefficient e(t,x,v) = e(t,x), the 
order 2.0 weak Taylor scheme reduces to 

Yn+l Yn + a6 + b6Wn + e6Pn + bb' 1(1,1) + be' 1(1,-1)  

+{b(tn' Yn + c) - b} 1(-1,1) + {C (tn' Yn + e) - c} 1(-1,-1)  

1 (aa ,a" 2) 'b (ab ,b" 2) I +2 at + aa + 2b 1(0,0) + a 1(1,0) + at + ab + 2b (0,1) 

( ae e" ) { }+ at + ae' + 2b2 1(0,-1) + a(tn' Yn + e) - a 1(-1,0), (9.3.5) 

where the multiple stochastic integrals 1(1,1), 1(1,-1), 1(-1,1) and 1(-1,-1) are defined 
in (4.3.5) and 

6 2  
1(0,0) := ds l ds2 = ---I!.  

tn tn 2  
1.tn+1182 

1.t'1+1182 
1(1,0) := dWS1 dS2 = 6Zn  

tn tn  

s2j tn +1 l1(0,1) := ds 1dWS2 = 6 n 6Wn - 1(1,0) 
tn tn 

tn+1 182 pq,(tn+l) 

1(0,-1) := 1 dS 1P4>(£, ds2 ) = L Ti - 6Pn tn 
tn tn i=p</J(t '1 )+1 

dill  
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(9.3.6) 

Even in the case of mark-independent jump sizes, the computational complexity 
of the order 2.0 weak Taylor scheme depends on the intensity of the Poisson jump 
measure. Indeed, as already discussed in Section (4.3), for the generation of double 
stochastic integrals involving the Poisson measure the random variables 6.Wn and 
6.Pn are not sufficient. In this case one needs also the location of jump times in 
every time interval (tTq tn +1], with n E {O, ... ,nT - I}. 

Let us consider the autonomous multi-dimensional SDE (9.1.2) with scalar vViener 
process, m = 1. The kth component of the order 2.0 weak Taylor scheme is given 
by 



187 9.3. ORDER 2.0 TAYLOR SCHKME 

tn+l rjZ2 d l ack(v) d 82ckCU) blbi 

+ j tn iE tn (~a axl + ~ 8x1axi 2 )dz1Pq,(dv,dz2) 

tn+l jZ21+ j {ak(tn,Yr,+c(v)) -ak}pq,(dv, dzddz2 , (9.3.7) 
tn tn E 

for 	k E {I, 2, ... ,d}, where ak , bk , and ck are the kth components of the drift, 
diffusion and jump coefficients, respectively. Note that the multiple stochastic 
integrals can be generated similarly as in the one-dimensional case. 

In the general multi-dimensional case, the kth component of the order 2.0 weak 
Taylor scheme is given by 

m I tn rYn~l Ynk + ak6.n + ~bk,j6.W~ + tn + 1 

iE ck(v)pq,(dv,dz) 

m ltn+ljz2+ 	'"""' LUt)bk,]2 dW
ZI 
j1 dW

Z2 
j26 

}I,j2=1 tn tn 

m 	 jtn+l r jZ2
+ L if: L(j!lck(v) dwl:pq,(dv,dz2) 

jl=1 tn [; tn 

1 l1z2+ Lm jtn + Li- 1)bk,jlpq,(dv, dz2 ) dwl; 
)1=1 tn [; tn 

n 1+ j t + 11z2 1Li~1)Ck(V2)Pq,(dv1' dzdpq,(dv2' dz2) 
tn [; tn [; 

m jtn+l lZ2 m ltn+1 jZ2+ L LU)ak dWll dZ2 + L L(O)bk,j dZ1d~V12 
j=1 tn tn j=1 tn tn 

+L(OJak tn+1jZ2 dz1dz2 + l tn+1l1Z2 L(O)ck(v)dz1Pq,(dv, dz2)l tn tn tn E tn 

I tn+l1z21+ 	 Li-lJakpq,(dv, dzddz2, (9.3.8) 
tn tn E 

for k E {I, 2, ... ,d}, where the operators LU), with j E {-I, ... ,m}, are defined 
in (3.3.4)-(3.3.6). 

In the multi-dimensional case with mark-independent jump size, the kth component 

...  
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of the order' 2.0 weak Taylor scheme simplifies to the algorithm 

Yn"'+l = Ynk + ak~n + L
m 

bk,j 6.W~ + ck6.pn 
j=l 

m m 

+ L
m 

{bk,jl (tn' Yn + c) - bk,jl }1(-l,jd + {Ck(tn' Yn + c) - ck}1(-1,-1) 
JI=1 

j=1 j=1 

(9.3.9) 

for k E {I, 2, ... ,d}. All multiple stochastic integrals that do not involve Wiener 
processes can be generated as in the one-dimensional case (9.3.5). For those in-
volving one Wiener process, we can use the relations 

1 . = ~p¢(tn+1) W j A LV]
(],-1) i...J Z=p¢(tn )+l Ti - UPn v tTl. 

for j E {I, 2, ... ,m} and n E {O, 1, ... ,nT - I}. Recall that, for every j E 

{I, 2, ... ,m}, the random variable 6.Z~ has a Gaussian distribution with mean 
E(6.Z~) = 0, variance E((6.Z~)2) = ~ {6.n)3 and covariance E(6.Z~ 6.WD = 
~ (6.n)2. Therefore, with 2m independent N(O, 1) distributed standard Gaussian 
random variables Ul,j and U2,j, for j E {1, 2, ... ,m}, we obtain the required ran-
dom variables by the transformation 

(9.3.11) 

Finally, the generation of the multiple stochastic integrals I(jl,J2) , with j 1,]2 E 

{1, 2, ... ,m}, generally requires an approximation such as the Karhunen-Loeve 
expansion proposed in Kloeden & Platen (1999). 

l 
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9.4 Commutativity Conditions 

As discussed in the previous section, the generation of multiple stochastic integrals 
required in the order 2.0 weak Taylor scheme is computationally demanding. Let 
us now discuss some commutativity conditions under which the complexity of the 
order 2.0 weak Taylor scheme is reduced. 

The computational complexity of the order 2.0 weak Taylor scheme generally de-
pends on the intensity of the Poisson measure. Indeed, as previously discussed, 
the generation of the double stochastic integrals 1(1,-1), 1(-1,1), 1(0,-1) and 1(-1,0) 

requires the knowledge of the exact location of the jump times in the time interval 
[tn' tn+1]' However, the sum of the above first two double integrals is given by 

1(1,-1) + 1(-1,1) = 6Pn6Wn, (9.4.1) 

which yields an expression that is independent of the particular values of the jump 
times. Additionally, by (9.3.6) the sum of the above last two double integrals is 
obtained as 

1(0,-1) + 1(-1,0) = 6pn6 n, (9.4.2) 

which is also independent of the jump times. Therefore, in the one-dimensional 
case with mark-independent jump coefficient c(t, x, v) = c(t, x), we can formulate 
the first jump commutativity condition 

b(t,x)ac~:_x) =b(t,x+c(t,x)) -b(t,x) (9.4.3) 

and the second jump commutativity condition 

ac(t, x) +a(t,x) ac~:_x) + b2(~x)a2~~~~x) =a(t,x+c(t,x)) -a(t,x), (9.4.4) 

for all t E (0, T] and x E 1ft 

The first jump commutativity condition (9.4.3) has been already discussed in Chap-
ter 4. We refer to Section 4.4 for a table of selected diffusion coefficients and cor-
responding jump coefficients satisfying the jump commutativity condition (9.4.3). 
Note that in this case the implementation of the order 2.0 weak Taylor scheme 
does not require sampling the Wiener process at all jump times. The second jump 
commutativity condition (9.4.4) expresses a relationship in the form of a PDE in-

..  
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volving the drift, diffusion and jump coefficients. If also this condition is satisfied, 
then one needs only to sample the Gaussian random variable 6.Wn and the Poisson 
random variable 6.pn at each time step. In this special case the above algorithm is 
very efficient also for SDEs driven by a Poisson measure with high intensity. 

In the multi-dimensional case with mark-independent jump size, we also need to 
generate the multiple stochastic integrals I(j,-l) and I(-1,j), for j E {1, ... , m}. As 
discussed in Section 4.4, the sum of two multiple stochastic integrals with respect 
to the jth component of the Wiener process and the Poisson measure is given by 

(9.4.5) 

which is independent of the particular jump times. Therefore, we obtain the first 
jump commutativity condition 

(9.4.6) 

and the second jump commutativity condition 

(9.4.7) 

for j E {1, 2, ... ,m}, k E {1, 2, ... ,d}, t E [0, T] and x E JRd. Here the differential 
operator L(O) is defined in (3.3.4). Note that the above commutativity conditions 
consist in two systems of d x m equations each. Therefore, even for simple given 
drift and diffusion coefficients, there may not exist any jump coefficients satisfying 
(9.4.6) or (9.4.7). 

To simplify also the generation of the double Wiener integrals I(jl,h) for j1, j2 E 

{1, ... ,m}, one should check if the SDE under consideration satisfies the diffusion 
commutativity condition 

(9.4.8) 

for j1,j2 E {1, 2, ... , m}, k E {1, 2, ... , d}, t E [0, T] and x E JRd, see also (4.4.17). 
In this situation, as discussed in Section 4.4, the double Wiener integrals can be 
expressed in terms of the increments 6.W~l and 6. W~2 of the Wiener processes, 
that is 

(9.4.9) 

I 
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}or a multi-dimensional SDE satisfying the commutativity conditions (9.4.6)-(9.4.8) 
and with mark-independent jump size) the order 2.0 weak Taylor scheme reduces 
to 

m 

yk yk + ak11 + ~ bk,j 11Wi + ckI1pn+1 n n ~ n n 
j=1 

1 m d . obk,j2 { } +2 L L bi,)l axi I1W~I I1W~2 - 6 n  

]1,)2=1 ~=1 

m 

+ L {bk,jI (tn)Yn + c) ~ bk,j1} (I1Pn I1W~l)  
j1=1  

1 m d a k 

+2 {Ck(tn) Yn + c) ~ ck} ((I1Pn)2 - I1Pn) + L L bi,j a: l I1Z~ 
)=1 1=1 

~ (abk,j ~ I obk,j ~~ a2 bk,j bi ,j1 b/,j1) {j j}
+~ a + ~a a I + ~~ !:l 1 2 6Wn 6 n ~ I1Zni!:lt X (JX(JXj=1 1=1 i,I=lj1=1 

aak d 1 oak d m a2 ak bi,jIb/,j[ (I1 n)2
+(7ft + La axt + L L axiaxl 2 )-2-

1=1 i,I=1j1=1 

+{ak(tn) Yn + c) ~ ak}I1Pnl1n) (9.4.10) 

for k E {I, 2, ... , d}, We will prove the weak order of convergence of the above 
schemes below in Section 9,5, 

9.5 Convergence Results 

First let us prepare some results that will be used to establish the order of weak 
convergence of regular weak Taylor approximations. 

Consider the Ito process 

x;,y = Y + it a(X~'Y)du + it b(X~'Y)dWu +it1c(X~:!!, v)pq,(dv, du) (9,5.1) 

for z ::; t ::; T, which starts at time z E [0, T] in y E JRd. This process has the same 

J .. 
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solution as the Ito process X = {Xt, t E [0, T]}, which solves the SDE (2.1.2). 

For a given jJ E {I, 2, ... } and a function g E C~U3+ 1) (JR.d , JR.) we define the functional 

(9.5.2) 

for (z, y) E [0, T] X JR.d. Then we have 

(9.5.3) 

We will need the following lemma, see tvIikulevicius & Platen (1988), Lemma 4.3, 
and Mikulevicius (1983), involving the operator 

i}O)f(z, y) = L(O) f(z, y) + 1L~-l) f(z, y)¢(dv) (9.5.4) 

for a sufficiently smooth function f, see (3.3.7). 

Lemma 9.5.1 Let us assume that the dr-zft, diffusion and jump coefficients of the 
SDE (2.1.2) have components ak,bk,j,ck E C~U1+l)(JR.d,JR.) for- all k E {1,2 ... ,d} 
and j E {1,2 ... , m} with unifor-mly bounded der-ivatives. Then the functional u 
defined in (9.5.2) is the unique solution of the J(olmogomv backwar-d par-tial integro 
differ-ential equation (PIDE) 

i}0) u(z, y) = ° (9.5.5) 

for- all (z, y) E (0, T) X JR.d with terminal condition 

u(T,x) =g(x) (9.5.6) 

for x E JR.d, with DO) defined in (3.3.7). Mor-eover-, we have 

(9.5.7) 

for each z E [0, T]. 

Proof: Mikulevicius & Platen (1988) showed that u(z,·) E C~(.B+l)(JRd, JR) for each 
z E [0, T]. Moreover, note that by the Markov property of X we obtain that 
u(z) := u(z, X~'Xo) equals E(g(XT )IAz) for z E [0, T]. Therefore, one can show 
that u(z) forms a martingale. By application of Ito's formula to u(t,X:'Y), for 

l 
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o :::; s < t :::; T we obtain 

u(t, xt,y) u(s, y) + it L(O),u,(z, X;'Y)dz 

+f It L(j)u(z, X;'Y)dwl +It r L~-l)U(Z, X;,Y)p</J(dv, dz), 
j=l S 8 Jf 

where the operators L(O), Lei) with j E {I, ... ,m} and L~-l) are defined in (3.3.4), 
(3.3.5) and (3.3.6), respectively. 

By the martingale property of u(t) = u(t, X~,XO), the function u satisfies the PIDE 
L(C)1L(z, y) + Jf L~-l)U(Z, y)¢(dv) = DO)u(z, y) = 0 for all (z, y) E (0, T) X JRd. 0 

Remark 9.5.2 For simplicity, we have assumed that the Ito process (9.5.1) can 
reach any point in JRd. If instead the Ito process (9.5.1) can take values only in 
a subset of JRd, then (9.5.5) and (9.5.6) of Lemma 9.5.1 hold only in this subset 
of ]Rd. This is sufficient since in the convergence theorems to be presented we will 
need the relations (9.5.5) and (9.5.6) only for values of (t, x) E (0, T) x]Rei that can 
be reached by the Ito process (9.5.1). 

By an application of Ito's formula, we obtain the following result. 

Lenlma 9.5.3 For all n E {I, ... ,nT} and y E ]Rei, we have 

E(U(tn' XJ:-l,Y) - u(tn - 1 , y) !Atn _ = O. (9.5.8)1 ) 

Proof: By Ito's formula we obtain 

l tn 

u(t xtn-l,Y) u(t y) + L(O)u(z Xtn-loY)dz n, tn n-l, , z 

ltn 

tn-l 

m+:L L(j)u(z, X!n-l'Y)dWI 
j=l tn-l 

+ ltn r L~-l)U(Z, X!n-t,Y)p</J(dv, dz). 
tn-l Jf 

Therefore, by applying the expected value, (3.3.4)-(3.3.7), and using (9.5.5) and 
properties of the Ito integral we obtain (9.5.8). 0 

..
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By using the notation introduced in Section 3.4, we define for every p E {I, 2, ...} 
the hierarchical set 

rB={aEM:l(a)~p}, (9.5.9) 

which will give us the rule for the construction of regular weak Taylor approxima-
tions of weak order p. 

Given a regular time discretization (t).6., with maximum step size .6. E (0, I), we 
define the order p weak Taylor scheme by the vector equation 

Y,~1 = Yn.6. + L Ia [.fa (tn, Y,~)Ln,tn+l = L In [fa (tn, }~~)LTL,tn+l' (9 ..5.10) 
aEfiJ\{v} nErO 

for n E {O, 1, ... ,fLy - I} with f(t, x) = x, as defined in (3.3.8). Similarly, we 
define the order p compensated weak Taylor scheme by the vector equation 

for n E {O, 1, ... ,nT - I} with f(t, 1;) = x in (3.3.9). 

For simplicity, for the next and the following theorems we will assume an au-
tonomous multi-dimensional jump-diffusion SDE. This formulation is not restric-
tive, since we can always rewrite an SDE with time-dependent coefficients as an 
autonomous one by modelling the time t as first component of the process X. 
However, these strong conditions on the time component can be relaxed in a direct 
proof for the non-autonomous case. 

We now present the following convergence theorem which states that, under suitable 
conditions, for any given p E {I, 2, ...} the corresponding order p compensated 
weak Taylor scheme (9.5.11) achieves the weak order of convergence p. 

Theorem 9.5.4 For given (3 E {l, 2, ... }, let y.6. = {YnA , n E {O, 1, ... ,nT} } be 
the order (3 compensated weak Taylor approximation defined in (9.5.11) correspond-
ing to a regular time discretization with maximum time step size .6. E (0,1). 

We assume that E(IXoli) < 00, for i E {l, 2, ...}, and for any g E c;,(f3+ 1) (lRd, IR) 
there exists a positive constant C, independent of .6., such that 

(9.5.12) 

1 



195 9.5. CONVERGENCE RESULTS 

Moreover, suppose that the drift) diffusion and jump coejficients are Lipschitz con-
tinuous with components a\ bk,j, ck E C;,(,6+1) (IRd , IR) for all k E {I,2 ... , d} and 
j E {I, 2 ... , m} and the coefficients leX) with f (t, 1;) = x, satisfy the linear growth 
condition 

lle,(t, x)1 :s; K(l + Ix!), (9.5.13) 

with K < 00, for all t E [0, T], x E IRd and 0; E r {3 U8(r;3). 

Then for any function g E C;,({3+1) (IRd , lR.) there exists a positive constant C) inde-
pendent of .6.) such that 

jE(g(XT)) - E(g(Yn~))1 :S C.6.,6. (9.5.14) 

Remark 9.5.5 Note that the linear growth condition (9.5.13), on the coefficient 
functions Jo:, is satisfied if) for instance, the drift) diffusion and jump coefficients 
are uniformly bounded. 

Remark 9.5.6 By replacing the conditions on the compensated Ito coefficient func-
tions Jo: with equivalent conditions on the Ito coefficient functions fo:, one can show 
that for a given f3 E {I, 2, ...} also the order f3 weak Taylor scheme (9.5.10) attains 
the weak order of convergence f3. 

Theorem 9.5.4 is an extension of the weak convergence theorem for diffusion SDEs 
presented in Kloeden & Platen (1999). The following proof of Theorem 9.5.4 has 
also similarities to the one given in Liu & Li (2000). 

Proof: For ease of notation, when no misunderstanding is possible, we write Y for 
y.6.. By (9.5.3) and the terminal condition of the Kolmogorov backward equation 
(9.5.6) we can write 

H := !E(g(YnT))-E(g(XT))! 

IE(u(T, YnT ) - u(O, Xo)) I· (9.5.]5) 

Moreover, by (9.5.12), (9.5.8), (9.5.7) and the deterministic Taylor expansion we 
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obtain 

H < E(~(U(tn,Y,')-U(tn-"Yn-I))) +K6,.~ 

E ( ~ (u(tnYn) - 'u(t,,, X::-"y" , ))) + K 6,.P 

< Hl+H2+K~f3, (9.5.16) 

where 

(9.5.17) 

and 

nT { d 1 82E ( ~ ~ - ( . .U(t xtn-l,Yn-l + () (1': _ xtn-l,Yn-l )))L L 2 0 to J n, tn n n tn 
n=l i,j=l Y Y 

(9.5.18) 

Here, according to the notation introduced in Section 2, we have used a superscript 
to denote vector components of Y and X. Moreover, ()n is a d x d diagonal matrix 
with 

()~,k E (0, 1) (9.5.19) 

for k E {I, ... , d}. 

Note that by Lemma 3.7.1 we have 

xtn-l,Yn-l _ 1': = ~ I [f (Xtn-1,Yn-l)] (9.5.20)tn n L a Ja. tn-l,tnl 
aEB(ff.l) 

where B(rf3) = {a: l(a) = /3+ I}. Moreover, similar to Lemma 3.7.2, by the linear 
growth condition (9.5.13) on fa one can show that for every p E {I, 2, ...} there 
exist constants K and r such that for every q E {1, ... ,p} 
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Therefore, by (3.7.10) and (9.5.13) for every ex E r i3 UB(r11) and P E {I, 2, ...} 
there exist constants K and r such that 

E(IJu(x!n~l,Yn~l )1 2q) ~ K(1 + iYoI2r ) (9.5.21) 

for every n E {I, ... ,nT} and Z E [tn-I, tn]. 

We can now apply (9.5.20) and since (9.5.21) holds, also Lemma 3.6.3, to obtain 

nT d 

Hl < 
E 

( 

~~ {n:I(~f3+1} 
E((~u(t xtn~l,Yn~l))1 [p(xtn~1,Yn~1)] IA )1)I ayZ n, tn n n· t",-1tn~1,tn 

nT d ) 
(< K E ~~ {a:I(~I1+l} (tn - tn _ 1)!3+1 

< K 6.11 . (9.5.22) 

To estimate H2 we can apply (9.5.20) and, since (9.5.21) holds, also Lemma 3.6.4 
to obtain 

nT { d 1 a2 
H2 < E ( " ,,- ( . .u(t xtn~l,Yn-l + e (y. _ x tn-I,Yn-1)))

~ ~ 4 a za n, tn n tnJ n 
n=l ;,j=1 y y 

x [(Y~ - x:;:"-'Y" , )' + (Y~ - xl~t"->.Y"-' )'] } ) 

nT { d 1 a2E ( " ,,- ( . .u(t Xtn-1,Yn-l + e (y. _ Xtn-1,Yn-l)))
~ ~ 2 a ta J n, tn n n tn 
n=1 i,j=1 y Y 

x (Y~ - x:;:"-"Y"-')' } ) 

TtT { d 

a
< KE 

( ~ i~ {U:l(~!3+l}  
2  x E (I . . U(t Xtn-1,Yn-l + e (y. _ xtn-l,Yn-l) IayZayJ n, tn n n tn 

111 ____ _ 
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(9.5.23) 

Finally, by combining (9.5.16), (9.5.22) and (9.5.23) we complete the proof of The-
orem 9.5.4. 0 

Remark 9.5.7 Note that the proof of Theorem 9.5.4 holds also for the wider class 
of test Junctions 9 EC~k+l(lRd,lR) with k /3+ 1- [P~l], see Lemma 3.6.3. 

1 



Chapter 10 

Jump-Adapted Weak Approximations 

In this chapter we consider weak approximations constructed on jUIIlp-adapted time 
discretizations similar to those presented in Chapter 6. Since the jump-adapted 
discretization includes the jump times of the Poisson measure, we can use an ap-
proximation for the pure diffusion part between discretization points. As noticed in 
Chapter 6, higher order jump-adapted schemes avoid multiple stochastic integrals 
involving the Poisson random measure. Only multiple stochastic integrals with 
respect to time and Wiener processes, or their simplifications, are required. This 
leads to easily implementable schemes. However, jump-adapted weak approxima-
tions are computationally demanding when the intensity of the Poisson measure is 
high. 

10.1 Introduction 

The weak jump-adapted schemes to be presented are constructed on jump-adapted 
time discretizations. We recall that a jump-adapted time discretization 

(t) 6. = {O = to < t 1 < . . . < tnT = T}, (10.1.1) 

with maximum step size ~, includes all the jump times {71' 72, ... ,7P4>(T)} of the 
Poisson random measure p</>. Moreover, as previously discussed in Chapter 6, we 
assume that such a jump-adapted time discretization satisfies the following condi-
tions: 

P(tn +1 - tn ::s: ~) = I, (10.1.2) 

and 
tn+ 1 is At" - measurable, (10.1.3) 

for n E {O, 1, ... ,nT - I}, if it is not a jump time. 

199  
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10.2 Taylor Schemes 

10.2.1 Euler Scheme 

The simplest jump-adapted weak Taylor scheme is the jump-adapted Euler' scheme 
presented in Chapter 6. vVe recall that in the general multi-dimensional case the 
kth component is given by 

m 

y:k = yk + ak 6 + '""""' bk,j 6 W j (10.2.1)fn + 1 - tn tn L tn 
j=l 

and 

~k = ~k _ + 1Ck(tn+l' Yt"+1-' v) pr:/J(dv, {tn+d), (10.2.2)n+l n+! 
E 

where 6 tn = tn+l - tn and 6~VL = W"in+! - WL .N"(O, 6 tJ with j E {I, ... ,m}.rv 

According to the notation introduced in Chapter 4, we have used the abbreviations 
a = a(YtJ and b = b(Y~J. Also in the sequel, when no misunderstanding is possible, 
for any coefficient function f along with its derivatives we will write f = f(YtJ. 

The impact of jumps is generated by equation (lO.2.2). If tn+l is a jump time, then 
IE p</>(dv, {tn+d) = 1 and 

while if tn+1 is not a jump time one has Ytn+1 = }~n+l-' as IE p</>(dv, {tn+d) = O. 
Therefore, the weak order of convergence of the jump-adapted Euler scheme is 
f3 = 1.0 and, thus, equals the weak order of the Euler scheme used in (lO.2.1) for 
the diffusive component. 

As will be shown below, for weak convergence it is possible to replace the Gaussian 
distributed random variables by simpler multi-point random variables that satisfy 
certain moment conditions. For instance, in the Euler scheme we can replace the 
random variables ~WL by simpler random variables ~wL that satisfy the moment 
condition 

(10.2.3) 

for some constant K independent of~. In this case the order of weak convergence of 
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the Euler scheme is still (3 = 1.0. For instance, we can replace the random variables 
~WL by the simpler two-point distributed random variables ~Wi,tn' with 

-- r;\ 1
P(~wg,tn = ±y ~tJ = 2' (10.2.4) 

for j E {I, ... , m}. This yields the jump-adapted simplified Euler scheme, whose 
kth component is given by 

m 

y:k = y:k + ak l::.. + '" bk,j 6 W/ (10.2.5)t,,+1- tn tn L 2,tn 
j=l 

together with (10.2.2). This scheme achieves weak order of convergence {3 = 1.0. In 
this way, we have obtained a scheme with the same order of weak convergence of the 
Euler scheme that requires only the generation of simple two-point distributed ran-
dom variables. As will be discussed in Chapter 12, multi-point distributed random 
variables as (10.2.4) can be generated very efficiently via random bit generators, 
see Bruti-Liberati & Platen (2004). Moreover, the use of hardware accelerators, see 
Bruti-Liberati, Martini, Piccardi & Platen (2007), can further improve the speed 
of the simulation of multi-point distributed random variables. 

10.2.2 Order 2.0 Taylor Scheme 

By using an order 2.0 weak Taylor scheme for the diffusive part, we can derive 
the jump-adapted order 2.0 weak Taylor scheme. In the one-dimensional case, 
d = m = 1, it is given by 

Ytn+l- Ytn+ a6tn + b~Wtn + b~' ( (6WtJ2 - ~tn) + a'b~Ztn (10.2.6) 

1 (3a a" 2) 2 (3b b" 2) {I I+2 3t + aa + 2b 6 tn + 3t + ab + 2b 6Wtn~tn - 6ZtJ 

and 

Ytn+1 = Ytn +1 - +1c(tn+1' Yt n +1-,v)p",(dv, {tn +1}), (10.2.7) 

and achieves weak order {3 = 2.0. Here ~Ztn represents the double Ito integral 
defined in (6.2.22). Therefore, the required random variables 6TVtn and 6Ztn can 
be generated as in (6.2.23). The jump-adapted order 2.0 weak Taylor scheme was 
first presented in Mikulevicius & Platen (1988). It generalizes a second order weak 
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scheme for pure diffusion presented in J'v1ilstein (1978). 

If we compare the regular order 2.0 weak Taylor scheme (9.3.1) with the jump-
adapted order 2.0 weak Taylor scheme (10.2.6)-(10.2.7), then we notice that the 
latter is much simpler since it avoids multiple stochastic integrals with respect to 
the Poisson measure. 

Also in this case, since we are constructing weak schemes, we have some freedom in 
the choice of the underlying random variable. The jump-adapted simplified order 
2.0 weak scheme is given by 

and (10.2.7). To obtain second order of weak convergence, the random variable 
~Wtn should be A tn+1-measurable and should satisfy the moment condition 

IE(~Wtn)1 + IE((~Wtn)3) I+ IE((~Wtn)5) I 
+IE((~Wtn)2) - ~tnl + IE((~WtnY) - 3~;J ~ KtJ.3 (10.2.9) 

for some constant K independent of tJ.. Note that if we choose independent ran-
dom variables ~Wtn' n E {O, ... , nT - I}, we automatically obtain the required 
A tn+1-measurability. The moment condition (10.2.9) is satisfied, for instance, by 
a Gaussian N(O, tJ.tn ) distributed random variable, but also by a three-point dis-

---. 
tributed random variable ~W3,tn , where 

(10.2.10) 

Note that the jump-adapted simplified order 2.0 weak scheme (10.2.8) reqmres 
only one random variable at each time step. Therefore, it is computationally more 
efficient than the jump-adapted order 2.0 weak Taylor scheme (10.2.6). Moreover, 

---. 
when using three-point distributed random variables ~W3,tn , some highly efficient 
implementations via random bit generators and hardware accelerators can be used, 
as will be described later in Chapter 12. 

In the multi-dimensional case with a scalar Wiener process, m = 1, the kth COffi-



203 10.2. 1~4YLOR SCHEl'vlES 

ponent of the jump-adapted order 2.0 weak Taylor scheme is given by 

L(1)bk 

~:+1- ~: + ak 6 tn + bk61Vt" + -2- ( (6TVt,,)2 - 6 tn ) + L(l)ak6Ztn 

L(O) k 

+---i-6;n + L(O)bk {6Wtn 6 tn - 6Ztn } (10.2.11) 

and (10.2.2), where the operators L(O) and L(1) are defined in (3.3.4) and (3.3.5). 

In the general multi-dimensional case, the kth component of the jump-adapted 
order 2.0 weak Taylor scheme is of the form 

L(O)ak 
y:k y:k + ak6 + __6 2 (10.2.12)tn+l- tn tn 2 tn 

m 'm 

+ '"' (bk,j6vVj + L(O)bk,jJ(o ') + LU)ak[("O») + """' L(jdbk,hJ(, ')~ tn ,J ], ~ Jl,]2 
j=1 jt,j2=1 

and (10.2.2), where the operators L(O) and L(j), with j E {l, ... ,m}, are as 
above. The multiple stochastic integrals J(O,j) and J(j,O) , for j E {I, 2, ... ,m}, 
can be easily generated as in (9.3.10). However, the generation of the multiple 
stochastic integrals involving two components of the Wiener process, J(jl,h)' with 
j1, j2 E {I, 2, ... ,m}, is not straightforward. In the special case of commutative dif-
fusion noise (4.4.17), one can express these multiple stochastic integrals in terms of 
the Gaussian increments of the Wiener processes 6 VV;

T/, 
. In the general case, as ex-

plained in Chapter 4, one could use an approximation such as the Karhunen-Loeve 
expansion. However, since we are interested in a weak approximation, we can in-
stead replace the multiple stochastic integrals by corresponding simple multi-point 
distributed random variables satisfying certain moment conditions. In this way, we 
obtain the jump-adapted simplified order 2.0 weak scheme with kth component of 
the form 

L(O) k m 6 
y:k y:k + ak6 + __a_ 62 + """' {bk,j + ~(L(O)bk,j + L(j)ak)}6Wj 

tn +l- tn tn 2 tn ~ 2 tn 
j=1 

+~ ~ L(jl)bk,h (6Wj1 6WJ2 + V/ 1,)2) (10.2.13)2 ~ tn tn tn 
)r,j2=1 

and (10.2.2), where 6wL, with j E {I, 2, ... , m}, are independent random vari-
ables such as (10.2.10), satisfying the moment condition (10.2.9). Additionally, 

JIll 
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V"t,h are independent two-point distributed random variables given by 

(10.2.14) 

for )2 E {I, ... ,)1 - 1} 
(10.2.15) 

and 
(10.2.16) 

for j2 E Ul + 1, ... ,m} and)l E {1, ... ,m}. 

10.2.3 Order 3.0 Taylor Scheme 

By including in the diffusive component all multiple stochastic integrals of mul-
tiplicity three with respect to time and Wiener processes, one obtains the jump-
adapted order 3.0 weak Taylor scheme. In the general multi-dimensional case, its 
kth component is given by 

(10.2.17) 
m m 

m m m 

and (10.2.2). Because of the difficulties in the generation of multiple stochastic 
integrals involving different components of the Wiener process, this scheme is usu-
ally too complex for a practical implementation. However, in the following we will 
consider some special cases that lead to implement able schemes with third order 
of weak convergence. These schemes generalize those in Platen (1984), presented 
for pure diffusion SDEs. 

In the one-dimensional case, d = m = 1, by approximating the multiple stochastic 
integrals with Gaussian random variables, we obtain a jump-adapted order 3.0 weak 
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scheme given by 

Yn+1 Yn + a6 + b6Wtn + 21 
L(1)b {(6~Vtn? - 6 tn } 

+L(1)a6Ztn + ~L(O)a(6tJ2 + L(0)b{6Wt" 6 tn - 6Ztn } 

+~ (L(O) L(O)b + L(O) L(1la + L(l) L(O)a) {6Hftn (6 tnY} 

+~(L(l)J)1)a+L(1)L(O)b+L(O)L(1)b){(6HI )2_6 } 6 6 tn tn tn 
+~L(0)L(O)a(6 )J + ~L(1)L(1)b {(6w' )2 - 36 } 6W, 11 0 218)6 tn 6 tn tn th~ . . 

and (10.2.2), where 6TVtn and 6Ztn are the correlated Gaussian random variables 
of the type defined in (6.2.23). 

To construct a third order simplified method, the required simplified random vari-
abIes .6.Wn need to satisfy the following moment condition 

IE(6WtJI + IE((6WtJ3) I+ IE((6WtJ5)/ + IE((6WtnY) I 
+IE((6Wtn ?) - 6 tnl + IE((.6.WtJ4) - 36ZJ 

+IE((6Wt,ji) - 156~J < K63, (10.2.19) 

see Theorem 10.7.1. 

In Hofmann (1994) a four-point distributed random variable 6W4,tn that satisfies 
condition (10.2.19) was proposed, where 

P(6W4,tn = ±V3+v'6~) =~. =,  

P(6W4,tn = ±V3 - v'6~) = __1 (10.2.20)  

However, since the probabilities in (10.2.20) are not rational numbers, the corre-
sponding four-point distributed random variable cannot be efficiently implemented 
by the method based on random bit generation that will be discussed in Chap-
ter 12. Instead, we present an alternative five-point distributed random variable 

Ii
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that still satisfies condition (10.2.19) and is suitable for a highly efficient imple-
mentation based on random bit generators, see Bruti-Liberati, Martini, Piccardi & 
Platen (2007). This five-point distributed random variable has been independently 
suggested in Milstein & Tretyakov (2004). The jump-adapted simplified order 3.0 
weak scheme is then given by 

Yn+1 = + a6 + b6W5 ,tn + ~L(l)b { (~W5,tn) 2 - 6 tn } + ~L(O)a6tYn 

+~L(1)a { 6W5 ,tn + ~6W2,tn} 6 tn 

and (10.2.2). It involves the five-point distributed random variables 6W--5,tn and 
the two-point distributed random variables ~W2,tn' see (10.2.4), and achieves an 
order of weak convergence f3 = 3.0. 

10.3 Derivative-Free Schemes 

In the previous section we explained how to construct jump-adapted weak Taylor 
schemes with higher order of weak convergence p. However, the jump-adapted 
order 2.0 and order 3.0 weak Taylor schemes require the computation of derivatives 
of the drift and diffusion coefficients. In this section we present higher order weak 
schemes that avoid the computation of derivatives. 

In the one-dimensional, autonomous case, d = m = 1, the jump-adapted order 2.0 
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derivative-free weak scheme is given by 

1 (- ) 1(-+ -~ )Y;n+l~ = Ytn+"2 a(YtJ+a 6 tn + 4 b(YtJ+b(YtJ+2b 6Wtn 

+~(b(Y:) - b(Y~)) ((6WtJ 2 - 6 tn ) (6 t11 ) ~~ 

and 

Ytn+l = Y;n+l~ + 1c(tn+1' Ytn+l~' v)p¢(dv, {tn +1}), (10.3.1) 

with supporting values 

Y tn = Ytn + a6tn + b6Wtn , 

and 
-± ~ Y tn = Ytn + a6 tn ± by 6 t'1 . 

This scheme attains weak order f3 = 2.0 and generalizes a scheme for pure diffusions 
presented in Platen (1984). 

If we replace the Gaussian random variables 6 Wtn by the three-point distributed 
random variables 6W3,tn defined in (10.2.10), we obtain the jump-adapted simplified 
order 2.0 derivative-free weak scheme that still achieves weak order f3 = 2.0. 

In the autonomous, multi-dimensional case, the kth component of the jump-adapted 
order 2.0 derivative-free weak scheme is given by 

k k 1 ( k - k)~n+l- ~n + 2" a (Y tn ) + a 6 tn 

+~ t {(bk,j(R:,j) + bk,j(R;~j) + 2bk,j)6WL 
j=l 

m 

+ I: (bk,j(ULr) + bk,j(U~·r) + 2bk ,j)6W/n (6tn r!} 
r=1  
r=l=j  

JIll 
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+~ t {(bk,j(R~,j) - bk,j(R~,j)) ((~wL) 2 - ~tn) (10.3.2) 
j=1 

+ L 
m 

r=l 
r-j.j 

and 

~~+l = ~:+l- +1ck (tn+l' Yt"+1-) v) p1>(dv, {tn+l}), (lO.3.3) 

for k E {I, ... , d}. The supporting values are 

'Tn 

Ytn = Yt" + a~tn + L~~WL, 
j=1 

and 

Moreover, ~WL should be an independent Atnn -measurable random variable sat-
isfying the moment condition (10.2.9). For instance, one can choose independent 
Gaussian N(O, ~tn) distributed random variables or three-point distributed ran-
dom variables of the form (10.2.10). Furthermore, ~:~j are the previously used 
two-point distributed random variables defined in (lO.2.14)-(10.2.16). 

10.4 Predictor-Corrector Schemes 

As discussed in Chapter 5, it is important to develop schemes with wide regions 
of numerical stability. Predictor-corrector schemes have good numerical stabil-
ity properties as discussed in Chapter 5 for the case of strong approximations. 
Furthermore, they are computationally efficient. Since the difference between the 
predicted and the corrected values provides an indication of the local error, one 
can also design advanced schemes with step size control. 

The diffusive component of jump-adapted weak predictor-corrector schemes is de-
rived in the following way. The corrector equation is obtained by using the Wagner-
Platen expansion for pure diffusions in implicit form. However, this implicit scheme 

http:lO.2.14)-(10.2.16
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is made explicit by using the predictor equation to generate the next value. More-
over, the predictor component of the scheme is derived by the Wagner-Platen ex-
pansion for pure diffusions. 

10.4.1 Order 1.0 Predictor-Corrector Scheme 

In the one-dimensional case, d = m = 1, the jump-adapted predictor-corrector Euler 
scheme is given by the corrector 

Ytn+1 - = Ytn+ ~{a(Y;n+l-) + a}~tn + b~Wtn' (10.4.1) 

the predictor 

Y;n+l- = Yt n + a~tn + b~vVtn , (10.4.2) 

and the jump condition 

lin+! = lin+!- +1c(tn+1 , lin+1 -, v) pq,(dv, {tn+1})' (10.4.3) 

By introducing some effects of implicitness in the diffusion part of the corrector, we 
obtain, for 0, TJ E [0,1]' a family of jump-adapted order 1.0 weak predictor-corrector 
schemes with corrector 

lin+ 1 - = lin + {8o{ftn+ 1 -) + (1 - 0) a}~tn + {17b(Y;n+l-) + (1 - 17) b}~Win' 

where a = a - 17bb', predictor 

Y;n+!- = lin + a~tn + b~W tn , 

and (10.4.3). Note that this family of Euler schemes coincides with the family 
of jump-adapted predictor-corrector Euler schemes (6.5.1)-(6.5.2), which achieve 
strong order f = 0.5. However, the order of weak convergence of this family of 
schemes equals /3 = 1.0. Moreover, if we replace the Gaussian random variables 
~Wtn by the two-point distributed ones ~W2,tn defined in (10.2.4), we obtain a 
family of jump-adapted simplified order 1.0 weak predictor-corrector schemes that 
still attain weak order /3 = 1.0. The family of order 1.0 weak predictor-corrector 
schemes generalizes the family of schemes presented in Platen (1995) for pure dif-
fusion SDEs. 

..  
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In the general multi-dimensional case, we can construct a family of jump-adapted 
order 1.0 weak predictor-corrector schemes. Its kth component is given by the 
corrector 

+Lm 

{r;bk ,j(tn+1' Ytn+1 ) + (1- r;)bk,j} 6wL, (10.4.4) 
j=l 

for (), r; E [0, 1], where 

(10.4.5) 

Here we use the predictor 

m 

~ktn+l- = y;ktn + ak 6 tn'+ '" bk,j6Wj (10.4.6)tn ~ 
j=l 

and the jump condition 

(10.4.7) 

The random variables 6wL, with j E {I, ... , m} and n E {O, 1, ... nT - I}, can 
be chosen, for instance, as independent Gaussian N(O, 6 tJ distributed random 
variables or two-point distributed random variables (10.2.4). 

10.4.2 Order 2.0 Predictor-Corrector Scheme 

By using higher order weak schemes for the diffusive component of the predictor 
and the corrector algorithms, we obtain predictor-corrector schemes of higher weak 
order. In the autonomous one-dimensional case, d = m = 1, a jump-adapted order 
2.0 weak predictor-corrector scheme is obtained by setting as corrector 

1 
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with 

Wtn = b6.Wtn + b;' {(6.Wtn )2 - 6.n} + ~{ab' + ~b"b2 } 6.Hltn 6.tn 

and as predictor 

- 1 , A 1{ , 1" 2}( )2
Yin+!- = Yin + a6.tn + Wtn + "2 a buWtn 6.n +"2 aa + "2 a b 6. tn 

together with (10.4.3). Here the Gaussian random variable 6.Wtn can be replaced, 
for instance, by the three-point distributed random variable 6.W3,tn defined in 
(10.2.10). 

In the general multi-dimensional case, the kth component of the jump-adapted 
order 2.0 weak predictor-corrector scheme has corrector 

k k - k} k1{ k~n+ j - = ~n +"2 a (tn+ 1, Yin+ 1 -) + a 6. tn + Wtn' 

with 

Wk ~{bk,j+!L(O)bk,j6. }6.Wj
tn ~ 2 tn tn 

j=l 

+~ ~ L(jl)bk,h (6.Wjj 6.Wh + V/I,j2)2 ~ tn tn tn , 
jI,j2=1 

predictor 

y:k =y,k+ak6. +Wk +!L(O)ak(6. )2+!~L(j)ak6.Wj 6. tn+1- tn tn tn 2 tn 2 ~ tn tn 
j=l 

and uses (10.4.7). The random variables 6.WL, with) E {I, ... ,m} and n E 

{O, 1, ... ,nT - I}, can be chosen as independent Gaussian N(O, 6.t ,,) distributed 
random variables or three-point distributed random variables (10.2.10). The two-
point distributed random variables ~~I'J2, )1,)2 E {I, ... ,m}, are defined in (10.2.14)-
(10.2.16) . 

..  
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10.5 Exact Schemes 

We now discuss a special class of SDEs for which it is possible to develop jump-
adapted schemes that do not generate any discretization error. Similar to Section 
6.6, we introduce a specific jump-adapted time discretization, obtained by a super-
position of jump times generated by the Poisson measure and times at which we 
are interested in sampling the simulated values of the solution X. Between jump 
times the SDE is assumed to have an explicit transition density. 

Let us consider the d-dimensional jump-diffusion SDE 

(10.5.1) 

for t E [0, T] and Xo E lRd , that we aim to solve. We have already discussed in 
Section 6.6 the case when the corresponding diffusion SDE 

(10.5.2) 

admits an explicit solution. Now we assume less because we only require that 
the transition density of Zt is explicitly known. Then we can construct an exact 
jump-adapted weak scheme. 

Since we are here interested in weak approximations, we can construct exact jump-
adapted schemes for a wider class of jump-diffusion SDEs than in Section 6.6. Let 
us first present an illustrative example: Consider the jump-diffusion SDE given by 

(10.5.3) 

where 0, b, (J E lR and 20b > (J2. In this case the corresponding diffusion, given by 

(10.5.4) 

describes a square-root process, see Cox, Ingersoll & Ross (1985). The transition 
density of Z is known in closed form. The distribution of Zt given Zs, with s < t, 
is a non-central chi-square distribution, see Platen & Heath (2006). Therefore, we 
can construct a jump-adapted weak scheme given by 

(10.5.5) 
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and 

¥tn.+! = ¥tn.+!- +1c(tn+l,¥tn.+l-,v)p,p(dv,{tn+l})' (10.5.6) 

Here X2 ( 0, ltn ), with n E {O, ... , nT - I}, denote independent non-central chi square 
distributed random variables with degrees of freedom 

5 = 4ab 
(J2 

and non-centrality parameter 

It = 4ae-aL:.tn 

n. (J2 (1 	_ e-aL:.tn ) rtn · 

In this way, the jump-adapted weak scheme (10.5.5)-(10.5.6) is exact in the seIlse 
that it does not generate any weak error. In fact, we obtain the result that at the 
discretization points the distribution of the numerical approximation Y coincides 
with that of the solution X of (10.5.3). 

This approach can be generalized to the case of d-dimensional jump-diffusion SDEs 
of the type (10.5.1). In modelling, one should check wether the dynamics under 
consideration could be modelled by an SD E that belongs to the special subclass of 
jump-diffusion SDEs whose corresponding diffusion SDE (10.5.2) admits a closed 
form transition density. 

10.6 	 Convergence of Jump-Adapted Weak Tay-
lor Approximations 

In this section we present a convergence theorem for jump-adapted weak Taylor 
approximations of any weak order of convergence (3 E {I, 2 ...}. This theorem 
covers the convergence of the schemes presented in Section 10.3. The results of this 
section resemble in most parts those from Mikulevicius & Platen (1988) and are 
here included for completeness. Moreover, they will be needed in the next section, 
where we will generalize these results to general jump-adapted approximations. 

As suggested in Platen (1982a), we define a jump-adapted time discretization 0 = 
to < tl < ... < tnT = T with maximum step size 6 E (0,1), with nt defined in 
(4.1.8). The term jump-adapted indicates that all jump times {Tl' T2, ... Tp¢(T)} 

... 

http:e-aL:.tn
http:4ae-aL:.tn
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of the Poisson measure pq, are included in the time discretization. Moreover, we 
require a maximum step size 6. E (0,1), which means that P(tn+l - tn :::; 6.) = 1 
for every n E {O, 1,2, ... ,nT -I}, and, if the discretization time tn+! is not a jump 
time, then tn+l should be Atn-measurable. Let us also introduce an additional 
filtration 

(10.6.1) 

for every n E {O, 1, ... ,nT}' We assume that tn+l is Atn -measurable. We also 
assume a finite number of time discretization points, which means nt < 00 a.s. 
for t E [0, T]. The superposition of the jump times with an equidistant time 
discretization, as discussed in Chapter 4, provides an example of such jump-adapted 
time discretization. 

We recall that for mEN we denote the set of all multi-indices ex that do not 
include components equal to -1 by 

Mm = {(j1,'" ,jl) : ji E {O, 1,2, ... , m}, i E {l, 2, ... , l} for! E N} U {v}, 

where v is the multi-index of length zero, see Section 6.7. 

Given a set A c M m, the remainder set B(A) of A is defined by 

B(A) = {ex E Mm\A: -ex E A}. 

Moreover, for every (3 E {I, 2, ...} we define the hierarchical set 

r,6 = {ex E Mm : l(ex) :::; (3}. 

For a jump-adapted time discretization (t)Ll., with maximum time step size 6. E 

(0,1), we define the jump-adapted order (3 weak Taylor scheme by 

Ytn+l - = Ytn+ 2::= f 0: (tn, YtJ 10: (10.6.2) 
O:Er{.l\{v} 

and 

Ytn+l = Ytn+1 - +1c(tn' Ytn+ 1 -, v) pq,(dv, {tn+d), (10.6.3) 

where 10: is the multiple stochastic integral of the multi-index ex over the time 
period (tn' tn+1], n E {O, 1, ... , nT - I}, and f 0: are the corresponding I to coefficient 

l 
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functions defined in (3.3.8) with f(t, x) = x . 

Now we can formulate a convergence theorem for jump-adapted schemes similar to 
that in Mikulevicius & Platen (1988). 

Theorem 10.6.1 For a given (3 E {I, 2, ... }, let Y~ = {~~, n E {O, 1, ... , nT}} 
be the order (3 jump-adapted weak Taylor scheme (10.6.2)-(10.6.3) corresponding to 
a jump-adapted time discretization with maximum step size 6. E (0, 1). We assume 
that E (I XO Ii) < oo! JOT' i E {I, 2, ... }, and Yo":; converges weakly to Xo with order (J. 

Moreover, suppose that the driJt, diffusion and jump coefficients have components 
ak, bk,j, ck E C~((3+1) (]Rd,]R) Jor all k E {I, 2, ... ,d} and j E {I, 2, ... ,rn} and the 

coefficients foo with f(t, x) = x, satisJy the linear growth condition IJa(t, y)1 :s; 
K(l + Iy!), with K < 00, JOT all t E [0, T], y E jRd and Q' E r(3, see also Remark 
9.5.5. 

Then Jor any Junction g E C~(!3+1) there exists a positive constant C, independent 

oj 6., such that 
IE(g(Xr)) - E(g(~~))1 :s; C6.(3. 

First we present some results in preparation of the proof of Theorem 10.6.1, see 
also Mikulevicius & Platen (1988). 

Lennna 10.6.2 For all n E {I, ... , nT} and y E ]Rei, we have 

E(u(trtl Xf:=l,y) - U(tn-l' y) + it" rLS- 1)u(z, x!n-l'Y)¢(dv)dz!Atn _ 1 ) = 0, 
tn-l J£ 

(10.6.4) 
where the process xs,y = {xt,y) t E [0, T]}, Jor (s, y) E [0, t] X jRd, is defined in 

(9.5.1). 

Proof: Note that since all jump times are included in the time discretization, 
then X;n-l,Y evolves as a diffusion in the time interval (tn-l1 t n ), for every n E 

......  
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{I, ... ,nT}' Therefore, by Ito's formula we obtain 

u(tn' X::~l'Y) = U(tn-ll y) + tn L(O)u(z, X;n-l'Y)dz 
Jtn-l 

where the operators L(O), LU), L~-l) and DO) are defined in (3.3.4)-(3.3.7). 

We complete the proof of the lemma by applying the expected value, using the 
result (9.5.5) and the properties of Ito's integral. 0 

Lemma 10.6.3 For each p E {I, 2, ... } there exists a finite constant K such that 

(10.6.5) 

for all q E {I, ... ,p} and n E {I, ... , nT}, where Atn _ is defined in (10.6.1).1 

Proof: Since there are no jumps between discretization points, the proof of (10.6.5) 
follows from that of a similar lemma in the pure diffusion case, see Kloeden & Platen 
(1999). 

Let us also define the process T/ja = {"lja (t), t E [0, T]} by 

"lja(t) = T/ja(tn) + L Ia[ja(tn,T/ja(tn))]tn,t 
aEr/l\{v} 

+ r rc(z, T/ja.(z-) , v)pq,(dv, dz), (10.6.6)J(tn,t] J£ 

for n E {O, ... ,nT - I} and t E (tn' tn+1), with T/ja(O) = Yo. Note that 

(10.6.7) 

J  



)NS 10.6. CONVERGENCE OF .JUiVlP-ADAPTED vVEAK TAYLOR SCHEMES 217 

for every n E {O, ... ,nT}' 

The following result is shown in Mikulevicius & Platen (1988). 

Lemma 10.6.4 For each P E {I, 2, ... } there exists a finite constant K such that 
jar every q E {I, ... ,p} 

E( sup !T]j a(t)12q) ~ K(l + IYoI2q). (10.6.8) 
O"5,t"5,T 

We shall also write 
A={1,2, ... ,d}1 

and 
I 

F'p(y) = II yPh (10.6.9) 
h=l 

for all y = (yI, ... ,yd)T E ~d and P= (PI,." ,Pz) E A where l E {I, 2 ...}. 

Lemma 10.6.5 For each p E {I,2 ... } there exist finite constants K and l' E 
{I,2 ... } such that 

r~l !E(!Fp(T]ja(Z) - ~~Jrq + IFp(X!nz,Yt~z - ~~J 12QIAtnz) I 
< K(I + 11":.6. 12r) (t - t )qZ (10.6.10) _ tnz nz+l n z 

jar each l E {I, ... , 2({3 + I)}, q E {I, ... ,p}, if E A and Z E [0, TJ, where Fp is 
defined in (10.6.9). 

Proof: Note that at discretization times the estimate (10.6.10) is trivial since 
t yL'.

T]J'a{z) =~.6. and X znz , tnz =~.6. for Z E {to, t l , ... , tnT}' Moreover, since jump
nz nz 

times arise only at discretization times, we can obtain the estimate (10.6.10) by 
Ito's formula as in the case of pure diffusion SDEs, see Kloeden & Platen (1999).0 

Lemma 10.6.6 For each if E A, l E {I, ... , 2{3 + I}, n E {I, 2, ... ,nT} and 
Z E (tn-I, tn) there exist two finite constants K and r E {I, 2, ... } such that 

.6.) (tn-l,Yt~_l .6. )1- )1IE ( ( - ~n-l Fp Xz - A tn 1Fp T]ja(z) - ~n-l _ 

.:::; K(I + 1~~_lIT) 6f3 (z - tn-d. (10.6.11) 

..  
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Proof: Since the time discretization includes all jump times, the proof of the 
lemma follows from that of pure diffusion SDEs, see Kloeden & Platen (1999).0 

Now we can prove Theorem 10.6.1. 

Proof:[Proof of Theorem 10.6.1] By (9.5.3) and the terminal condition of the Kol-
mogorov backward equation (9.5.6) we obtain 

H .- IE(g(~~T)) - E(g(XT)) ' 

IE(u(T, ~~T) - u(O, Xo)) ,. (10.6.12) 

Note that for the ease of notation we will write Y for yt. when no misunderstanding 
is possible. Since Yo converges weakly to Xo with order (3 we obtain 

H < }; (t, (u(t,,, Y,J - ,,(tn, Y,,,-) + u(t", Y,,, -) - U(t,,-1, rL)) ) 

+K 6(3. (10.6.1:3) 

By (10.6.4) we can write 

H < E (~ [{u(t", Y,J - u(tn' Y,,,-) + u(tn , Y,,,) - U(t"_,, Y;,,_,)} 

{ ( X tn-I,Ytn-l) ( ~/)- U tn, tn - - U tn-I, Itn_l 

Note that by (10.6.7) and the properties of the stochastic integral with respect to 
the Poisson measure, we have 

nT 

E(L {U(tn' ytJ - u(tn' ytn-)}) 
n=l 

E( lT 1L~-I)U(Z, 'l]ja(Z- ))pljJ(dv, dz)) 

E(lT 1L~-l)U(Z,'l]ja(z))¢(dv)dz). 

I 
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Therefore, we obtain 
H ::; HI + H2 + K 6.(3, (10.6.14) 

where 

HI E ( ~ [(u( t,,, "._) - u(tn, "._,)) 

vrtn-1'Y'n_l) ( Y; ))])-	 ( 'U (tn, At n - - 'U tn, tn-l (10.6.15) 

and 

Hz IE([1[(L~-1)U(Z, ryja (z)) - L~ 1)u(z, ".J) 

- (L~-I)U(Z, x!.. ,y,.. ) - L~-I)U(Z, ".J) j<P(dV)dZ) 1(10.6. J6) 

1. 	Let us note that by (9.5.7) the function 'U is smooth enough to apply the 
deterministic Taylor expansion. Therefore, by expanding the increments of 'U 
in HI we obtain 

nT 	 { 2(3+1 1 _ 
(HI = IE ~ [~l!~ (a~'U(tn' Yt n - 1 )) Fp(Ytn - - Ytn - + Rn(Ytn-)]l ) 

2(3+1 

- [L l~ L (at'U(tn1 Ytn-l )) Fp(X::=l'Ytn-1 - Ytn-J 
1=1 pEPl 

+R.,.(x:: 4 ,.-, )1 } ). 	 (10.6.17) 

where the remainders are 

Rn(Z) 1, \1 L at'U(tn' Ytn - + 8rJ,n(Z)(Z - Ytn - l ))of 0 1 l 

pEP2{(3+l) 

x Fj";(Z - Ytn-1 ) 	 (10.6.18) 

for Z = Ytn - and X::=1,Yt n - 1, respectively. Here 8p,n(Z) is a d x d diagonal 
matrix with 

8~J"(Z) E (0,1) (10.6.19)
PIn 
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for k E {1, ... ,d} . 

Therefore, we have 

(10.6.20) 

By (10.6.18), the Cauchy-Schwarz inequality, (9.5.7), (10.6.19) and (10.6.10) 
we obtain 

< K L [E(jaeu(tn' Yt n - + ep,n(Ytn-)(Ytn - - Ytn-J) j2IAtn _1 1 )] 2 

1 

< K [E (1 + IYtn_1 12r + IYtn- - Ytn - 1 j2T IAtn-1 ) ] 2 

1 

x [E(jFp(Ytn- - Ytn_Jj2IAtn_1)]2 

< K (1 + jYtn _ 1 j2T) (tn - tn_1)iJ+1, (10.6.21) 

using the estimate 

for every n E {1, ... ,nr}. 

In a similar way, by (10.6.18), the Cauchy-Schwarz inequality, (9.5.7), (10.6.19), 

1 
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(10.6.9) and (10.6.5) we have 

E(IR (xtn-l,Ytn-I)!!X )n tn - tn-I 

< K L [E(latu(tn, Ytn-1 

PEP2((3+1) 

+8- (xtn-l,Ytn-1 )(xtn-l,Ytn-1 _ Y; )) 12 1X )] 2 
1 

p,n tn- tn- tn-l tn-1 

X [E(IF_(xtn-l,Ytn-l _ y; )121X )] ~ P t n - t,,_1 tn-I 

< K[E(l+lY; 12r+lxtn-l,Ytn-l_Y; 12r lX )]21 

t n -l t n - tn-l tn -l 

- 1X [E(IX tn=1,Ytn - Y; 14U3+1) IX )] ~ tn tn-l tn-l 

< K(l + !Y 12r) (t - t ),6+1 	 (10.6.22)tn -l n n-l 

for every n E {I, ... ,nT}' Here we have used the estimates 

E(lxtn=l,Ytn-112TIA ) < K(l + IY; 12r)tn t n -1 - tn-I' 

and 
F_(Xtn- 1 ,y,tn-l _ Y; ) \2 < K X I tn - 1 ,y;tn_1 _ Y; 14(13+1)I p t,,- tn-I - tn- tn-I' 

for every n E {I, ... , nT}, with pE P2(,6+1)' 

Finally, by applying the Cauchy-Schwarz inequality, (9.5.7), (10.6.7), (10.6.11), 
(10.6.21), (10.6.22) and (10.6.8) to (10.6.20) we obtain 

nT 

HI ::; E(KL (1 + IYtn_11 2r )Ll,6(tn - tn-I)) 
n=1 

< K Ll,6 (1 + E( O~~~T IYin 12r) ) 

< K Lli3 (1 + I Yo 127') ::; K Lli3. (10.6.23) 

2. 	 Let us now estimate the term H2 in (10.6.14). By the smoothness of the 
function u, see (9.5.7), and of the jump coefficient c, we can apply the deter-

•  
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ministic Taylor formula and obtain 

( 
{2,6+1 1T 

H2 = E 11 [I: Ti I: (atL~-1)u(z, YtnJ) Fp(T]Ja(Z) - Yt"J 
o E [=1 pEPl 

+Rnz (Tlja (Z))] 

+R,., (X:""Y,., )1 } ,(,(riv )dz ) 

T (2,6j1 1 
< liE t; If ~ latL;-l)u(z, Y,•.) I 

x IE ( Fp(T]Ja(Z) - YtnJ - Fp(x;nz,Ytnz - YtnJ IAtnz ) I (10.6.24) 

+E (I R,., (1)j. (z)) IA,.,) + E (I Ii., (x:·"y,·, )IA,.,) ) ,pCdv )dz, 

We can estimate the remainders, as in (10.6.21) and (10.6.22), for every  
Z E [0, T] by  

E(!Rnz(T]ja(Z))IAtnz) :s: K(l + Ytnz 12r) (z - tnJ,6+1 (10.6.25)  

and  

(10.6.26) 

Then, by applying the Cauchy-Schwarz inequality, the polynomial growth 
conditions of u(t, .), see (9.5.7), and of the jump coefficient c, (10.6.19), 
(10.6.11), (10.6.25), (10.6.26) and (10.6.8) to the estimate (10.6.24), we ob-

1 
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tain 

H2 =:; K IT l E(1 + IYtnz 12r)6(3 (z - tnz )¢(dv)dz 

< K6(3 	rT E(I+ max IYtJ2r)(z-tnz )dzJo O~n~nT 

< K6(3. 	 (10.6.27) 

3. Finally, by (10.6.14), (10.6.23) and (10.6.27) we obtain 

IE(g(YtnT)) - E(g(XT))1 ::; K 6 f3.D 

10.7 	 Convergence of Jump-Adapted Weak Ap-

proximations 

In this section we present a convergence theorem for general jump-adapted weak 
approximations of any weak order of convergence {3 E {I, 2 ...}. This theorem 
requires certain conditions to be satisfied by the increments of a given discrete 
time approximation in order to obtain a jump-adapted approximation of weak 
order {3 E {I, 2, ...}. It covers the convergence of the schemes presented in this 
chapter. 

Let us consider a jump-adapted discrete time approximation y~ = {~~, n E 

{O, 1, ... ,nT} } corresponding to a jump-adapted time discretization with maxi-
mum step size 6 E (0,1). We simulate the jump impact as before by 

~~+1 = ~~+1- + l c(tn' ~~+l_,v)p¢(dv, {tn+d), (10.7.1) 

for n E {O, 1, ... ,nT - 1}. Note that we use here the same notation y.6. as that 
used in (10.6.2)-(10.6.3) for the jump-adapted weak Taylor scheme. However, 
the jump-adapted approximation considered now is more general since we do not 
specify its evolution between discretization points. The scheme (10.6.2)-(10.6.3) is 
a special case of the approximation considered here. The theorem below will state 
the conditions for obtaining weak order of convergence /3 E {I, 2, ...}. 

"  
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First, let us formulate an important condition on the evolution of y~ is the fol-
lowing. Define a stochastic process T)ja = {1]ja(t), t E [0, T]} such that for every 
n E {O, ... ,nT} 

(10.7.2) 

and 
(10.7.3) 

Assume that the process 1]ja = {T)ja(t),t E [O,T]} satisfies Lemmas 10.6.4 with re-
spect to the initial value Yo of the general jump-adapted approximation considered 
here. Moreover, we require that the process 1]ja satisfies also Lemmas 10.6.5 and 
10.6.6, where Y is again the general jump-adapted approximation under consider-
ation. Then we can formulate the following convergence theorem. 

Theorem 10.7.1 Let us as assume that E(IXoli) < 00 for i E {I, 2, ...}, and 
that YoLl. converges weakly to Xo with order fJ E {I, 2, ...}. Suppose that the 
drift, diffusion and jump components ak , bk,j, ck , respectively, belong to the space 
C~(!Hl) (JRd , JR), for all k E {I, 2, ... ,d} and j E {I, 2, ... ,m}, and the coefficients 
fa, with f(t, x) = x, satisfy the linear growth condition Ifa(t, y)1 :s; K(l + jyi), with 
K < 00, for all t E [0, T], y E JRd, and a E [',8, see also Remark 9.5.5. 

Moreover, assume that for each p E {I, 2 ...} there exist constants K < 00 and 
r E {I, 2, ...}, which do not depend on 6., such that for each q E {I, ... ,p} 

(10.7.4) 

(10.7.5) 

for n E {O, 1, ... ,nT -I}, and 

(~~~"- - ~~'Ph) - II 
I 

( L Ia [J;h(tn' ~~)Ln,tn+1) IAtn) I 
h=l aEr{3\{v} 

(10.7.6) 

for all n E {O, 1, ... ,nT-I} and (Pi,'" ,PI) E {I, ... ,d}l, wherel E {l, ... ,2fJ+1} 
and Y Ll.,Ph denotes the Ph th component of Y Ll. . 

Then for any function g E C~(!J+l) (JRd , JR) there exists a positive constant C, inde-

1 
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pendent of ,6" such that 

IE(g(XT)) - E(g(~~T))1 S; C,6,(3. (10.7.7) 

Theorem 10.7.1 states the conditions on a discrete time approximation so that it 
can be to approximate the diffusion component of a jump-adapted scheme. The 
most important condition is the estimate (10.7.6). It requires the first 2(3 + 1 
conditional moments of the increments of the diffusion approximation to be close 
to those of the truncated Wagner-Platen expansion for pure diffusions. Examples 
of corresponding weak schemes in the pure diffusion case will be given in the next 
chapter. 

To prove Theorem 10.7.1, let us define 

T/~,f3 = Y + L Ia[Ja(tn , y)ltn-l,tn, (10.7.8) 
aEfi3\{v} 

for n E {I, ... ,nT} and y E IRd. 

Proof: [Proof of Theorem 10.7.1J Note that in the following we will write Y for ylI.. 
By (9.5.3) and (9.5.6) we obtain 

H := IE(g(YtnT)) - E(g(XT)) I 
!E(u(T, YtnT ) -u(O,Xo))j. (10.7.9) 

Moreover, since Yo converges weakly with order (3 to Xo we obtain 

H < IE (~ (u(tn , YiJ - u(tn , Yi.-) + u(t,,, Yi. -) - u(tn - 1 , Yi.-,)) ) 

+K ,6,fJ. (10.7.10) 

By (10.6.4), the definition of T/ja and (10.7.2)-(10.7.3), we obtain 

1IIIIIIII  
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H < E (t, [Iu(tn' It,,) - u(tn' It,, -) + u(tn' It,,-) - U(tn-l, It,,_.)}  

X tn-l,Ytn-l) ( lJ) - {U t( n) tn- - U tn-I, .ltn_l 

nT 

+ 2:: [(U(tn)Ytn-) - U(tn) Ytn-J) - (U(tn' X::=1,Ytn-1) U(tn)Ytn-J) ] 
n=l 

(10.7.11) 

where 

H, - E( t. [(u(t,,, It,,-) - u(tn' It,,_.)) 

- (u(tn, ry~;;-') - u(tn> Y,,,-.) ) l) , (10.7.12) 

nT 

(E ~ [(u(tn' 77~:;-1) - u(tro Ytn-J) 

- ( u(tn' X::-·,Y,,,.) - u(tn> Y",-.)) 1 ) (10.7.13) 

and 

H3 J<;( [ D(L~-I)U(Z,ryjn(Z)) - L~-I)U(Z,lt"J) 

- (L~-1)U(Z, X:"..y,,,,) - L~-I)U(Z, It,,J)1¢(dv)dZ) (10.7.14) 

j  
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By applying the deterministic Taylor expansion to the increments in HI and H2 , 

we obtain the following estimate, see Kloeden & Platen (1999), 

IIi :s; K.6./3 (10.7.15) 

for i E {I, 2}. The estimate of 1I3 follows as in the estimate (10.6.24) of Theorem 
10.6.1, since 'T/ja satisfies Lemmas 10.6.4, 10.6.5 and 10.6.6. This completes the 
proof of Theorem 10.7.1.D 

10.7.1 Simplified and Predictor-Corrector Schemes 

Theorem 10.7.1 can be used to establish the order of weak convergence of the 
jump-adapted approximations presented in the current chapter. To do so, we 
should first construct a stochastic process 'T/ja which satisfies properties (10.7.2)-
(10.7.3) and Lemmas 10.6.4, 10.6.5 and 10.6.6. Then, we have to show that the 
increments of the approximation between discretization points satisfy conditions 
(10.7.5) and (10.7.6). Finally, we need to check the regularity of the approximation 
with condition (10.7.4). 

Let us consider, for example, the jump-adapted predictor-corrector Euler scheme 
(10.4.1)-(10.4.2). We can define the following stochastic process 'T/ja = {7]ja(t) , t E 
{O, T]} by 

'T/ja(t) = 'T/ja(tn) + ~{a(~ja(t)) + a(7]ja(tn) }(t - tn) + b('T/ja(tn))(Wt - WtJ 

+ f f C(Z,7]ja(z-),v)p</>(dv,dz), (10.7.16) 
J(tn,t] J £ 

and 

~ja(t) = t,ja(tn) + a(7]ja(tn)) (t - tn) + b(7]ja(tn)) (Wt - WtJ (10.7.17) 

for n E {O, ... , nT - I} and t E (tn' tn+l], with 'T/ja(O) = Yo. By construction, 
7}ja satisfies conditions (10.7.2)-(10.7.3). Conditions (10.7.4) and (10.7.5) can be 
shown by using the linear growth conditions on the coefficients a and b and the 
properties of the increments of Wiener processes. Furthermore, condition (10.7.6) 
holds with {J = 1.0, as in the case of pure diffusion SDEs, see Kloeden & Platen 
(1999). Finally, one has to show that the process 7]ja defined in (10.7.16) satisfies 

-------oJI 
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Lemmas 10.6.4, 10.6.5 and 10.6.6 with j3 = 1.0. This result can be obtained by 
using the linear growth conditions (2.2.11) on the coefficients a and b, the Wagner-
Platen expansion and the properties of the increments of Wiener processes. Thus, 
the weak order of convergence j3 = 1.0 of the jump-adapted predictor-corrector 
Euler scheme is established. 

The order of weak convergence of other jump-adapted predictor-corrector and 
derivative-free schemes, as presented in this chapter, can be established in a similar 
way. Also the general multi-dimensional case can be handled similarly. 

To show the order of weak convergence of simplified jump-adapted schemes, based 
on multi-point distributed random variables, one has to construct a process 'f]ja 
that satisfies conditions (10. 7.2)~(10.7.3). For example, when considering the jump-
adapted simplified Euler scheme (10.2.5) in the one-dimensional case, we can define 

+1 ( c(z, 'fJja(z-), v)p¢(dt!, dz), (10.7.18) 
(tn,t] Js 

for n E {O, ... , nT -I} and t E (tn' tn+1], with 'f]ja(O) = Yo, where we have used the 
notation 

I for x 2 0 
sign(x) = { (10.7.19)

-1 for x < O. 

Then the process 'fJja satisfies conditions (10.7.2)-(10.7.3) and Lemmas 10.6.4, 
10.6.5 and 10.6.6 with j3 = 1. 

To establish the order of weak convergence of the jump-adapted simplified order 
2.0 weak scheme (10.2.8) in the one-dimensional case, we define 

'fJja(t) = 'f]ja(tn) + a(7]ja(tn))(t - tn) + b('fJja(tn))wn(t) 

+b('fJja(tn))~'(7]ja(tn)) ((wn(t)? - (t - tn)) 

+~ (a('fJja(tn))a'('fJja(tn)) + ~a"('fJja(tn))(b(7]ja(tn)))2)(t - tn? 

+~ (at (7]ja (tn)) b('fJja (tn)) + a('fJja (tn))b' (7]ja (tn)) 

+~bfl('f]ja(tn)) (b('f]ja(tn)))2)Wn(t)(t - tn) 

1 
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+ r rc(z, 7]ja(z-), v)p</J(dv, dzL (10.7.20) 
J(tn,tl ) [ 

where 

Wn(t) = ~ (l{Wt-Wtn <N-l(~h/t-tn} - l{Wt-Wtn>N-l(~h/t-tn}) (10.7.21) 

for n E {O, ... ,nT - 1} and t E (tn, tn+1], with 7]ja(O) = Yo. In (10.7.21) we have 
denoted by 1 the indicator function defined in (2.1.8) and by N-l(X) the inverse 
of the distribution function of a standard Gaussian random variable. Therefore, 
the process 7]ja satisfies conditions (10.7.2)-(10.7.3) and Lemmas 10.6.4, 10.6.5 and 
10.6.6 with f3 = 2.0. In a similar way one can use Theorem 10.7.1 to construct 
simplified weak schemes with higher order of weak convergence, as the third order 
weak schemes presented in this chapter, also in the general multi-dimensional case . 

.Jl 
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Chapter 11 

Numerical Results on Weak Schemes 

In this short chapter we present some numerical results for the weak schemes pre-
sented in Chapters 9 and 10. These complement the numerical results for strong 
schemes presented in Chapter 7. 

11.1 Introduction 

We study the weak approximation of the SDE (2.l.5), describing the Merton model, 
which is 

dXt = X t - (Mdt + CTdWt +1(v - 1) p¢(dv, dt)) , (1l.1.1) 

for t E [0, T] and Xo > o. We recall the explicit solution 

p¢(t) 

X t = Xo e(fl-~0"2)t+aWt II ~i' (11.1.2) 
i=l 

where the marks ~i are distributed according to a given probability measure F(dv) = 

¢(~v) and p¢ = {p¢(t), t E [0, T]} denotes a Poisson process with intensity A = 
¢(£) < 00. 

In this chapter we consider the several schemes with weak order of convergence 
(3 E {l.0, 2.0}. The schemes with weak order (3 = 1.0 are the following: the regular 
Euler scheme, the jump-adapted Euler scheme and the jump-adapted predictor-
corrector Euler scheme. Moreover, we consider the following schemes with weak 
order (3 = 2.0: the regular order 2.0 Taylor scheme, the jump-adapted order 2.0 
Taylor scheme and the jump-adapted order 2.0 predictor-corrector scheme. We 
study the weak error 

cw(6) = IE(g(XT)) - E(g(Y,f))j, (11.1.3) 

231 
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for certain payoff functions g, as defined in (1.2.2). We show several log-log plots 
with the logarithm of the weak error log2(Ew(~)), versus the logarithm of the 
maximum time step size log2(~)' By using log-log plots the achieved orders of 
weak convergence will appear as the slopes of the estimated error lines obtained. 
We remark that the aim of this thesis is the study of the error attributable to the 
time discretization, which we call systematic error, rather than the statistical error 
due to the Monte Carlo simulation itself. Therefore, we need to generate a large 
enough number of sample paths to ensure that the statistical error is negligible 
when compared to the systematic error. We remark that in our study, since we 
consider the properties of discrete time simulation methods, we have always used 
a "raw" Monte Carlo simulation. In practice, when solving a specific problem, 
one should apply variance reduction techniques that can drastically reduce the 
statistical errors of several orders of magnitude, see Kloeden & Platen (1999) and 
Glasserman (2004). The problem of variance reduction is not considered in this 
thesis. 

11.2 The Case of a Smooth Payoff 

At first, we consider the evaluation of E(g(XT )), where g is a smooth function. 
The smoothness of the function g is required by the convergence theorems pre-
sented in Chapters 9 and 10. Already in the case of pure diffusion SDEs, conver-
gence theorems for weak Taylor approximations typically require a certain degree 
of smoothness for the function g. For convergence results on the Euler scheme 
when the function g is non-smooth, we refer to Bally & Talay (1996a, 1996b) and 
Guyon (2006) for pure diffusion SDEs, and to Hausenblas (2002) for pure jump 
SDEs. An important application of Monte Carlo simulation with smooth payoff 
functions is the evaluation of Value at Risk via the simulation of moments, as in 
Edgeworth expansions and saddle point methods, see Studer (2001). Another appli-
cation involving smooth payoff functions arises when evaluating expected utilities 
by simulation. 

Let us consider the estimation of moments of the solution X at a final time T. For 
the SDE (11.1.1), we obtain, via its closed form solution (11.1.2), the expression 

(11.2.4) 
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for kEN, so that the weak error cw(..6.) can be estimated according to (11.1.3). 
In the following example we choose the function g(x) = X4, so that we estimate 
the fourth moment of the solution X at a given maturity date T. We select the 
following default parameters: f.L = 0.05, ()" = 0.15, ,\ = 0.05, Xo = 1 and T = 4. 

We first consider the case of a mark-independent jump coefficient c(t, x) = x(1jJ-l), 
which is equivalent to the case of constant marks ~i = 1jJ > 0, and we set 1jJ = 0.85. 
Therefore, at each jump time the value of X drops by 15%. In Figure 11.2.1 we 
report the results for the regular Euler, the jump-adapted Euler, and the jump-
adapted predictor-corrector Euler schemes. Here and in the sequel of this chapter, 
the implicitness parameters have been set to e = 0.5 and 'r/ = O. The slopes of 
the lines in Figure 11.2.1 are about one, which means that these schemes achieve 
an order of weak convergence {3 = 1.0. This is in accordance with the theorems 
presented in the previous chapters. Furthermore, the accuracies of the regular and 
the jump-adapted Euler schemes are very similar. The jump-adapted predictor-
corrector Euler scheme, instead, is more accurate. 
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Figure 11.2.1: Log-log plot of weak error versus time step size (fourth moment with 
constant marks) 

In Figure 11.2.2 we show the errors generated by the regular order 2.0 Taylor, the 
jump-adapted order 2.0 Taylor and the jump-adapted order 2.0 predictor-corrector 
schemes. Here we can see that the order of convergence achieved is about {3 = 2.0, 
as suggested by the convergence theorems of previous chapters. Also in this case, 
the predictor-corrector scheme is more accurate than the corresponding explicit 
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Figure 11.2.2: Log-log plot of weak error versus time step size (fourth moment with 
constant marks) 

schemes. Finally, in Figure 11.2.3 we plot the second order schemes together with 
the regular Euler and the jump-adapted predictor-corrector Euler schemes. This 
figure highlights the higher accuracy of schemes with second order of weak conver-
gence. Furthermore, we report that the jump-adapted order 2.0 predictor-corrector 
scheme is the most accurate among all schemes implemented. 
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Let us now consider the case of lognormally distributed marks, where the logarithm 
of the mark (i = In (~i) is an independent Gaussian random variable, (i rv N({], <;), 
with mean (] = -0.1738 and standard deviation ~ = 0.15. This implies that at 
a jump date the value of X drops on average by 15%, since E(~) - 1 = -0.15. In 
Figure 11.2.4 we report the results for the regular Euler scheme, the jump-adapted 
predictor-corrector Euler scheme, the regular and jump-adapted order 2.0 Taylor 
schemes, and the jump-adapted order 2.0 predictor-corrector scheme. The accuracy 
of these schemes in the case of lognormally distributed jump sizes is almost the 
same as that achieved in the case of a mark-independent jump coefficient. Here 
all schemes achieve the orders of weak convergence prescribed by the convergence 
theorems in Chapters 9 and 10. 
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Figure 11.2.4: Log-log plot. of ,\leak error versus time st.ep size (fourt.h moment with 
lognormal marks) 

11.3 The Case of a Non-Smooth Payoff 

We now consider the case of a non-smooth payoff function g when computing the 
price of a European call option. The convergence theorems presented in Chapters 
9 and 10 do not cover the case of a non-differentiable payoff as the one studied 
in this section. It seems that there does not exist in the literature a reasonably 
general convergence theorem for weak Taylor approximations in the case of non-
smooth payoff functions, even when considering SDEs without jumps. The existing 

•  
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results are limited to the Euler scheme for pure diffusion SDEs, see Bally & Talay 
(1996a, 1996b) and Guyon (2006), and to the Euler scheme for pure jump SDEs, 
see Hausenblas (2002). It is, however, interesting to obtain some numerical results 
that could indicate the theoretical performance of the weak schemes presented in 
this thesis when applied to the non-smooth European call option payoff g(XT ) = 
e-rT(XT - K)+ = e-rTmax(XT - K,O). Here r is the risk-free rate and K the 
strike price. Often, the presence of jumps causes market incompleteness and, thus, 
precludes the possibility of perfect hedging. We refer to the monograph Cont & 
Tankov (2004) for a discussion on pricing and hedging in incomplete markets with 
jumps. Here we assume for simplicity, as in Merton (1976), that the jump risk is 
non-systematic and, thus, diversifiable. In our example the price of a European 
call option is given by 

(11.3.5) 

where the drift p, of the process X equals r - q - A(E(~) - 1)), and q is the 
continuous dividend yield provided by the security X. 

In the case of the SDE (11.1.1), where the logarithm of the mark (i = In (~i) is a 
Gaussian random variable (i N(g, c;) with mean g and variance c;, we obtain a rv 

closed form solution, see Merton (1976), given by 

where X = AE(~). Here 

is the Black-Scholes price of a call option with the parameters specified as 

In( iP-) + (p,j + 1-2 )Td1 ·- --~--~~~--
,J - O"jVT ' 

fmT =r_q_'(E(C)_l)+jln:C€) d 2 2+j<; Wd2,j = d1,j - O"jV 1 , p,j /\ ~ an O"j = a T' e 
recall that we denote by NO the probability distribution of a standard Gaussian 
random variable. 

Let us first consider the case of constant marks ~i = 'IjJ > 0, with 'IjJ = 0.85 as 
in the previous section. Moreover, we set r = 0.055, q = 0.01125, A = 0.05, 
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(J = 0.15, Xo = 100 and K = 100. Note that this implies a risk-neutral drift 
f.1 = r - q - )..(1/) - 1) = 0.05, which equals that used in the previous section. 

In Figure 11.3.5 we consider the case of a mark-independent jump coefficient for 
the regular and jump-adapted Euler schemes, and the jump-adapted predictor-
corrector Euler scheme. All these schemes achieve, in our study, an order of weak 
convergence of about one. The regular and the jump-adapted Euler schemes achieve 
first order of weak convergence, with the regular scheme being slightly more ac-
curate. The jump-adapted predictor-corrector Euler scheme is far more accurate 
than the explicit schemes here considered. Its order of convergence is about one, 
with an oscillatory behavior for large time step sizes. 
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Figure 11.3.5: Log-log plot of weak error versus time step size (ca.ll payoff with constant 
ma.rks) 

Figure 11.3.6 shows the accuracy ofthe regular order 2.0 Taylor, the jump-adapted 
order 2.0 Taylor and the jump-adapted order 2.0 predictor-corrector schemes. All 
schemes numerically attain an order of weak convergence equal to (3 = 2.0. In this 
example the jump-adapted order 2.0 Taylor scheme is the most accurate. Finally, 
in Figure 11.3.7 we report the results of these second order schemes together with 
those of the regular Euler and jump-adapted predictor-corrector Euler schemes. 
We clearly notice the difference in accuracy between first order and second order 
schemes. However, we emphasize the excellent performance of the jump-adapted 
predictor-corrector Euler scheme already for large step sizes. This scheme has an 
accuracy similar to that of some second order schemes. The jump-adapted order 

..  



238 CHALPTER 11. NUAJERJCAL RESULTS ON WEAK SCHE!vIES 

-3 

-4 

-5 
H o 
H 
H 
riI - 6:s: .. 

N 
O"l o 
..:l -7 ..  

- 8 
--+- 2Taylor 

JA2Taylor 
-9 

.. JA2PC 

L ~ .. 
o 0.5 1.5 2 

Figure 11.3.6: Log-log plot of weak error versus time step size (call payoff with constant 
marks) 

2.0 Taylor scheme is the most accurate for all time step sizes considered. 

We have also tested the above mentioned schemes in the case of lognormal marks, 
where In (~i) rv N((}, .;), with mean (} = -0.1738 and standard deviation "fl = 0.15. 
In Figure 11.3.8 one can notice that the numerical results are practically identical 
to those reported in Figure 11.3.7 for the case of constant marks. 
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Let us now test the weak schemes proposed when approximating the SDE (11.1.1), 
for the case of lognormal marks, by using parameter values fitted from real market 
data. We use here the risk-neutral parameters reported in Andersen & Andreasen 
(2000) from call options on the S&P 500 in April 1999. The risk-free rate and 
the dividend yield are given by r = 0.0559 and q = 0.01114, respectively. With 
a least-square fit of the Merton model (2.1.5) to the mid implied Black-Scholes 
volatilities of the S&P 500 in April 1999, Andersen & Andreasen (2000) obtained 
the following parameters: (J = 0.1765, A = 0.089, (! = -0.8898 and .j( = 0.4505. 
The last two parameters are the mean and standard deviation of the logarithm of 
the marks, In(~i)' These imply that at jump times the S&P 500 drops on average by 
54.54%. Note, that these are risk-neutral parameters, and they would have different 
values under the real-world probability measure. By a general equilibrium analysis 
Andersen & Andreasen (2000) show that these estimated parameters lead to a 
reasonable level of risk aversion. 

In Figure 11.3.9 we show the results for the regular Euler scheme, the jump-adapted 
predictor-corrector Euler scheme, the regular and jump-adapted order 2.0 Taylor 
schemes, and the jump-adapted order 2.0 predictor-corrector schemes, when pric-
ing an at-the-money call option ''lith maturity time T = 4. Vie report that the 
regular Euler scheme and the jump-adapted Euler scheme, which is not shown in 
the figure, achieve first order of weak convergence, with the jump-adapted Euler 
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scheme being slightly less accurate than its regular counterpart. The regular and 
jump-adapted order 2.0 Taylor schemes and the jump-adapted order 2.0 predictor-
corrector scheme are significantly more accurate and achieve an order of weak 
convergence of about j3 = 2.0. We emphasize that the jump-adapted predictor-
corrector Euler scheme achieves in this example a remarkable accuracy. For large 
time step sizes it is as good as some second order schemes, with an estimated error 
slope of about two. By analyzing also other numerical experiments, we conjecture 
that for smaller time step sizes the jump-adapted predictor-corrector Euler scheme 
recovers the first order of weak convergence achieved in the case of smooth payoff 
functions. 

In summary, the obtained numerical results indicate that predictor-corrector schemes 
are very accurate, still when using large time step sizes. This effect is expected 
to be even more pronounced when approximating non-linear multi-dimensional 
SDEs. Also, Hunter, Jackel & Joshi (2001) report that the predictor-corrector Eu-
ler scheme is very accurate when pricing interest rate options under the diffusion 
LIBOR market model. Finally, we remark that in this chapter we have analyzed 
only the accuracy and not the CPU time needed to run the algorithms. This is 
of course strongly dependent on the specific implementation and on the problem 
at hand. However, we remark that predictor-corrector schemes are only slightly 
computationally more intensive than the corresponding explicit schemes, as they 
use the same random variables. 
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Chapter 12 

Efficiency of Implementation 

In this chapter we discuss efficient implementations of discrete time weak approxi-
mations for pure diffusion SDEs that exploit the architecture of a digital computer. 
First we propose an efficient software implementation of simplified weak schemes 
based on random bit generators (RBGs). Then we discuss hardware accelerators 
based on field programmable gate a'rrays (FPGAs). 

As discussed in the previous chapter, a pure diffusion approximation is required be-
tween jump times when using a jump-adapted scheme. Therefore, the methods to 
be presented can be readily applied to the diffusion part in a jump-adapted scheme. 
Some of the results in this chapter are from Bruti-Liberati & Platen (2004) and 
Bruti-Liberati, Martini, Piccardi & Platen (2007). The use software-based RBGs 
for the simulation of simplified weak Taylor schemes has been independently sug-
gested in Milstein & Tretyakov (2004). The analysis of the computational efficiency 
and the implementation design are the objectives of this chapter. 

12.1 Introduction 

In order to achieve a required order of weak convergence one can approximate 
the random variables in a weak Taylor scheme by appropriate discrete random 
variables, see Chapter 10. For instance, instead of a Gaussian increment one can 
employ in an Euler scheme a much simpler two-point distributed random vari-
able. The aim of this chapter is to show that an implementation of such simplified 
schemes based on RBGs significantly increases the computational efficiency of the 
corresponding Monte Carlo simulation. 

A numerical approximation genemted by a simplified Euler scheme is equivalent 
to a random walk. Therefore, its possible states and corresponding probabilities 
are similar to those of binomial trees. However, while one has to face the curse of 
dimensionality when generating trees, simplified weak simulation methods employ 
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forward algorithms that generate paths with complexity increasing only polyno-
mially with the dimension. This makes the simplified weak simulation method an 
efficient tool for high dimensional problems. As we will discuss later in Section 
12.4, the numerical properties of simplified methods are similar to those of trees. 
For instance, we will observe an oscillatory convergence in the case of a Monte 
Carlo simulation of a European call option, a well-known effect for tree methods, 
see, for instance, Boyle & Lau (1994). 

12.2 Simplified Weak Schemes 

Let us consider for simplicity the autonomous one-dimensional pure diffusion SDE 

(12.2.1) 

for t E [0, T], with Xo E ffi., where W = {WtJ t E [0, Tn is a standard one-
dimensional Wiener process. The SDE (12.2.1) is a special case of the multi-
dimensional jump-diffusion SDE (2.1.2) when omitting the jump coefficient, that 
is when c(t, x, v) = O. Note that the results of this chapter also apply to the 
diffusive part of simplified jump-adapted approximations of the multi-dimensional 
jump-diffusion SDE (2.1.2), see Chapter 10. 

For simplicity, let us assume an equidistant time discretization with nth discretiza-
tion time tn = n6. for n E {a, 1, ... , N} where 6. = ~ and N E {I, 2, ... }. In the 
following we will discuss weak Taylor schemes and their corresponding simplified 
versions for the one-dimensional pure diffusion SDE (12.2.1). These schemes are 
special cases of the schemes presented in Chapter 10. 

The simplest weak Taylor scheme is the Euler scheme, which has weak order of 
convergence {3 = 1.0. It is given by the algorithm 

(12.2.2) 

where 6.Wn = Wtn+l - Wtn is the Gaussian increment of the Wiener process W = 
{Wt, t E [0, T]} for n E {O, 1,2 ... , N - I} and Yo = Xo. Here we have used the 
abbreviations a = a(Yn) and b = (Yn ) according to the notation introduced in 
(4.1.9). 

http:CHA.PTEB.12
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If one uses in the above Euler scheme instead of the Gaussian random variables 
simpler multi-point distributed random variables, then one can still obtain the same 
weak order of convergence f3 = 1.0, see Theorem 14.5.2 in Kloeden & Platen (1999). 
Furthermore, in Chapter 10 we have shown that this result still holds true when 
the simplified Euler scheme is used as diffusion approximation in a jump-adapted 
scheme. For the Euler method these simpler random variables need to satisfy the 
moment condition (10.2.3). This allows us to replace the Gaussian increment .6.Wn 
in (12.2.2) by a two-point distributed random variable .6.W2 ,n, where 

--- r;;: 1P(.6.W2,n = ±v.6.) = 2' (12.2.3) 

We then obtain the simplified Euler scheme 

Yn +1 = Yn + a.6. + b.6.W2,n' (12.2.4) 

Here the first three moments of the \Viener process increment .6.Wn match those 
of .6.W2,n, that is 

E(.6.Wn) = E(.6.W2,n) = 0 E((.6.Wn)2) = E((.6.W2,n)2) =.6. 

E((.6.Wn)3) = E((.6.W2,n)3) = O. (12.2.5) 

The order 2.0 weak Taylor scheme is given by 

1 1 ( 1 )Yn+1 = Yn + a.6. + b.6.Wn + "2b'b {((.6.Wn )2) -.6.} +"2 aa' + 2afl b2 .6.2 

+a'b .6.Zn + (ab' + ~bflb2) {.6.Wn .6. - .6.Zn} , (12.2.6) 

where .6.Zn represents the double Ito integral 

l tn+lls2  
.6.Zn = dWS1 ds2 , 

tn tn 

see also (6.2.22). Note that for SDEs driven by multi-dimensional Wiener processes, 
the order 2.0 weak Taylor scheme involves certain multiple stochastic integrals that 
are not Gaussian distributed. However, in the implementation of these schemes one 
can use Gaussian distributed random variables matching enough moments of these 
multiple stochastic integrals, see condition (10.7.6). For the purpose of the analysis 
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of this chapter, the term weak Taylor scheme will be used to denote a weak Taylor 
scheme using Gaussian random variables for the approximation of the underlying 
multiple stochastic integrals. 

In (12.2.6) 	we can also replace the Gaussian random variables ,0.Wn and b.Zn by---expressions that use a three-point distributed random variable ,0.W3 n with, 

---	 ;;::;-A 1 ---P(,0.vV3,n = ±v 3b.) = 6' P(,0.W3,n = 0) = 3'2 (12.2.7) 

Then we 	obtain the simplified order 2.0 weak scheme 

(12.2.8) 

Since the three-point distributed random variable b.W3,n is such that the first five 
moments of the increments of the schemes (12.2.6) and (12.2.8) are matched, see 
condition (10.7.6), then the simplified order 2.0 weak scheme (12.2.8) attains weak 
order (J = 2.0. 

By adding more terms from the Wagner-Platen expansion for pure diffusions and 
approximating the arising multiple stochastic integrals with Gaussian random vari-
ables, we obtain the following order 3.0 weak scheme given by 

Yn+1 = 	 Yn + a,0. + bb.Wn + ~L(I)b {(b.Wn)2 - b.} 

+L(l)ab.Z + !L(O)a,0.2 + L(O)b {,0.W: b. - b.Z }n 2 n n 

+~ (L(O) L(O)b + L(O) L(lla + L(1) L(O)a) {b.Wn ,0.2} 

+~ (L(I) L(1)a + L(1) L(O)b + L(O) L(1)b) {(b.Wn? - b.} b. 

+~ L(O) L(O)a b.3 + ~ L(1) L(1)b {(,0.vVn? - 3,0.} b.W n1 (12.2.9) 

where L(O) 	 and L(1) are differential operators defined by 

(12.2.10) 

see also (3.3.4)-(3.3.5). This scheme achieves an order of weak convergence (J = 3.0. 
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To construct a third order simplified method, it is sufficient to use multi-point 
distributed random variables that match the first seven moments of the Gaussian 
ones, see condition (10.2.19). As discussed in Chapter 10, Hofmann (1994) proposed 
the four-point distributed random variable (10.2.20) that satisfies this moment 
condition. However, such a four-point distributed random variable cannot be easily 
implemented by the method described below because its probability values are 
not rational numbers. Nonetheless, we can use the five-point distributed random 
variable .6.W5,n, with 

-	 r;;-;\ 1 - rA 9P(.6.W5n 	= ±v6.6.) = -, P(.6.W51l = ±v.6.) = -,, 30 	 ,. 30 
~. 1 

P(.6.1V5,n = 0) = 3' (12.2.11) 

see also Bruti-Liberati, Martini, Piccardi & Platen (2007). This five-point dis-
tributed random variable matches the first seven moments of the Gaussian ones 
and is suitable for a highly efficient implementation based on RBGs. The corre-
sponding simplified order 3.0 weak scheme is given by 

y: +a.6.+b.6.1~5 +-L(1)b1 .6.W,5 -.6.} 1- {( _)2 +-L(0)a.6.2Yn+l 	 n ,n 2 ,n 2 

1 {- 1 -} 1 {- 1-}+-L(1)a 	 .6.W,5 + -.6.W2 .6. + -L(O)b .6.W,5 - -.6.W2 .6.2 ,n J3 ,n 2 ,n J3 ,n 

+~ (L(O)L(O)b+ L(0)L(1)a+ L(l)L(O)a) .6.W5,n.6.2 

+~ (L(1) L(I)a + L(1) L(O)b + L(O) L(1)b) {(.6.W5 ,n? - 6.} 6. 
+~L(O)L(0)a.6.3 + ~L(l)L(I)b {(6.W5,n)2 - 36.} .6.W5,n, (12.2.12) 

where .6.W2,n is the two-point distributed random variable defined in (12.2.3). This 
order 3.0 simplified weak scheme achieves an order of weak convergence f3 = 3.0. 

12.3 	 Multi-Point Random Variables and Ran-
dom Bit Generators 

As discussed above, the random variables appearing in simplified weak schemes 
are multi-point distributed. Therefore, highly efficient implementations of Monte 
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Carlo simulations using simplified weak schemes require fast multi-point random 
number generators. These can be obtained by RBGs. In this case RBGs substitute 
the Gaussian random number generators needed for weak Taylor schemes. 

The multi-point distributed random variables and the corresponding RBGs to be 
presented can be applied to any weak scheme, including derivative-free, predictor-
corrector and implicit schemes. As shown in Chapter 10, the above described 
schemes can be used as diffusion components in corresponding jump-adapted schemes 
for the approximation of the multi-dimensional jump-diffusion SDE (2.1.2). 

An RBG is an algorithm that generates a bit 0 or 1 \'lith probability 0.5. Random 
bits can be obtained on a digital computer via the so-called shift register generator. 
This generator, used in digital communication, see Golomb (1964), relies on the 
theory of primitive polynomials modulo 2. These are special polynomials of the 
form 

n-l n y()X = 1 + Cl X + ... + Cn-l X + X , (12.3.13) 

with coefficients Ci = {O, I}. A primitive polynomial modulo 2 of order n defines a 
recurrence relation for obtaining a new bit from the n preceding ones with maximal 
period, which is 2n - 1. The recurrence is given by 

(12.3.14) 

where ak+1 is the new bit obtained from the preceding ones, ai, with i E {n, ... ) I} 
and k > n. Equation (12.3.14) can be rewritten as 

(12.3.15) 

where E9 is the "exclusive or" operator. Thus, RBGs can be efficiently implemented 
in C or C++ via bitwise operations, see Press, Teukolsky, Vetterling & Flannery 
(2002). For a study of random number generators based on primitive polynomials 
modulo 2 we refer to Tausworthe (1965). 

For a first order simplified scheme, as the simplified Euler scheme (12.2.4), each bit 
obtained from the RBG is used to generate a value for the two-point distributed 
random variable 6.i¥2,n by a simple look-up operation (0 ~ +JK, 1 ~ -JK). For 
a second order simplified scheme, as (12.2.8), one bit is not sufficient to generate a 
value for the required three-point distributed random variable .6.W3,n- However, a 
sequence of three generated random bits can be used to obtain eight equiprobable 

J 
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combinations. Two of these combinations are discarded by an acceptance-rejection 
method. Then we use four of the remaining six combinations to generate the 0 
value for the random variable and one combination each for obtaining the values 
+J3~ and -..;3"3:. For the third order simplified scheme (12.2.12), the random 

.-. 
variable ~W5,n is five-point distributed with the probability distribution (12.2.11). 
In this case, a sequence of five random bits is used to generate 32 equiprobable 
combinations. The acceptance-rejection method discards two of them, uses ten to 
generate the 0 value, nine each for values +V6 and -V6, and one each for values 
+)66 and -v'6E. 

12.4 Software Implementation 

12.4.1 Random Bit Generators in C++ 

In the following we report a comparative study on the efficiency of a software 
implementation in C++ of the above described schemes. The reference personal 
computer (PC) used in this study is a Pentium 2.4 Ghz (CPU id: x86 Family 15 
Model 2 Stepping 7) and the C++ compiler is the Mingw port of GCC (GNU 
Compiler Collection). 

A widely used and efficient method to generate a pair of independent standard 
Gaussian random variables is the polar Marsaglia-Eray method coupled with a lin-
ear congruential random number generator, as described in Press, Teukolsky, Vet-
teriing & Flannery (2002). In our comparative study we use, as Gaussian random 
number generator, the routine gasdev, see p. 293 of Press, Teukolsky, Vetterling & 
Flannery (2002). Note that the period of this Gaussian random number generator 
equals 231 . \lYe refer to Devroye (1986) for alternative Gaussian random number 
generators. 

For an unbiased comparison, we have implemented an REG based on the following 
primitive polynomial modulo 2 of order 31: 

y(x) = :C31 + x3 + 1. (12.4.16) 

In this way, the REG has period 231 - 1, which is virtually the same as that of 
the Gaussian random number generator. As explained in the previous section, by 

-' 
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simple look-up operations and acceptance-rejection methods, we can obtain the 
multi-point distributed random numbers required in simplified weak schemes. 

The C++ implementation ofthe two-point random number generator, see (12.2.3), 
is reported in Figure 12.4.1. It is based on a similar code presented by Press, 
Teukolsky, Vetterling & Flannery (2002). 

int rbit 1per31 (unsigned long & iseed) 
{ unsigned long newbit; 

newbit = ((iseed» 30)& 1) 
~ ((iseed > > 2) & 1); 
iseed = (iseed < < 1) I newbit; 
returnint(newbi,t); } 

Figure 12.4.1: C++ code of the two-point random number generator. 

On the test computer the CPU time needed to generate 100 million random num-
bers with the polar Marsaglia-Bray method amounts to 41.6 seconds. The two-point 
random number generator, described above, is almost 47 times faster using only 
0.89 seconds. 

As discussed in the previous section, for simplified methods of higher order, similar 
multi-point random number generators can be constructed. For the simplified 
order 2.0 weak scheme (12.2.8) it is sufficient to use a three-point random number 
generator. A corresponding code is presented in Figure 12.4.2. It produces three 
bits coupled with an acceptance-rejection method. On the test computer the CPU 
time needed to generate 100 million random numbers with this generator amounts 
to 6.96 seconds, which is still almost 6 times faster than the polar Marsaglia-Bray 
method. 

int rbit3per3l(unsigned long & iseed) 
{ int xl = 1, x2 = 1, x3 = O·, 

while ( (xl = = 1&& x2 = = 1&& x3 = = 0) 
II (x 1 = = 0 && x2 = = 1 && x3 = = 1)) 
{ xl = rbit1per31(isccd); 

x2 = rbit1per31(isccd); 
x3 = rbit1per31(iseed);} 
return xl - x3; } 

Figure 12.4.2: C++ code of the three-point random number generator. 

Now we present some numerical results for the Euler and the order 2.0 weak Taylor 
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schemes, as well as for their simplified versions. As test dynamics we choose an 
SDE with multiplicative noise, where 

dXt = pXtdt + (J XtdWt (12.4.17) 

for t E [0, T] and Xo E lEt The SDE admits the closed form solution 

X T = Xo exp { (p - ~2) T + (J WT } . (12.4.18) 

Let us analyze the CPU time needed to run a Monte Carlo simulation that computes 
the payoff of a call option with 400000 paths and 128 time steps. We report a CPU 
time of 22 and 23.5 seconds for the Euler scheme and the order 2.0 weak Taylor 
scheme, respectively. The corresponding simplified versions only require 0.75 and 
4.86 seconds, respectively. Thus, for the Euler method the simplified version is 
about 29 times faster than the Gaussian one. The simplified order 2.0 weak scheme 
is nearly five times faster than the order 2.0 weak Taylor scheme. 

12.4.2 Experimental Results 

We now present some numerical results on the accuracy of the Euler scheme, the 
order 2.0 weak Taylor scheme and their simplified versions when applied to the 
SDE (12.4.17). As in the previous chapter, we show several log-log plots with 
the logarithm, log2(cw(6)), of the weak error, as defined in (1.2.2), versus the 
logarithm, 10g2(6), of the maximum time step size 6. Additionally, we will show 
some plots of the relative weak error, that is 

IE (g (XT )) - E (g (YT )) I (12.4.19)E(g(XT )) , 

with a fixed time step size 6. 

The Case of a Smooth Payoff Function 

We first study the computation of E(g(XT )), where g is a smooth function and 
X T is the solution of the SDE (12.4.17). Note that the estimation of the expected 
value of a smooth function of the solution X arises, for instance, when computing 
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expected utilities. Another important application is the calculation of Value at 
Risk via the simulation of moments, as applied in Edgeworth expansions and saddle 
point methods, see Studer (2001), Therefore, we consider here the estimation of 
the kth moment E«XT )k) of X T at time T, for kEN. 

By (12.4.18) we obtain the kth moment of X T in closed form as 

(12.4.20) 

for k E :N. 

The particular structure of the SDE (12.4.17) allows us to obtain a closed form 
solution also for the estimator of the kth moment provided by the Euler and the 
order 2.0 weak Taylor schemes, and by their simplified versions. 

Let us rewrite the Euler scheme (12.2.2) as 

N-l p,T
YT = Yo IT (1 + Ii + aflWn), (12.4.21) 

n=O 

where flWn are i.i.d Gaussian N(O, fr) random variables and N = f. Note that 

k! (T)kI2 
E (flWn)k) = { (k/2)!2k/2 N for k even (12.4.22) 

o for k odd. 

By the independence of flWn , for n E {O, 1, ... , N - I} and (12.4.22) we obtain 

E((y,)k) = (Yo)kE (IT, (1+ ': +O"C,Wn)k) 

(YO)k IT, E ((1+ ': +uc,Wn)k) 

(YO)k IT, t G) (1 + '~ t-iuiE ((C, W,J i ) (12.4.23) 

k ([k/2l (k) ( P,T) k-2q (2q)! (a2T) q) N 
(Yo) L 2 1 + N ! 2N 

q=O q q 

We recall that by [z] we denote the integer part of z E lR and by G), for i 2: I, the 
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combinatorial coefficient, see (8.5.15). 

Similarly, for the simplified Euler scheme (12.2.4) we obtain 

E ((Yrl') ~ (Yo)k E (g(l+ ~ +o"L>IV"n)k) 

[k I2l( . ) ( T) k-2q ( )2 q) N 
(YO)k ( ~;q 1 + ~ <J: ' (12.4.24) 

where 6 W2 ,n is the two-point distributed random variable given in (12.2.3). Here 
we have used the result 

for k even 
(12.4.25)R ((L>IV"n)') ~ { qt'  

for k odd. 

By comparing (12.4.23) to (12.4.24), we notice that the Euler scheme and the 
simplified Euler scheme give the same estimator for the expectation E( (YT)k) with 
k E {I, 2, 3}. 

Let us now rewrite the order 2.0 weak Taylor scheme (12.2.6) for the SDE (12.4.17) 

as 
N-I 

YT = Yo II (hI + h26Wn + h3 (6Wn)2) ) (12.4.26) 
n=O 

with 

a2) T f-L2 T2 T a2 

hI = 1 + ( f-L - 2" N + 2 N2) h2 = a + f-La N and h3 = 2' (12.4.27) 

By the independence of 6Wn, for n E {O, 1, ... )N - I} and (12.4.22) we obtain 

N-l

E((YT/) = (YO)k II E((hI + h26Wn + h3 (6Wn)2)k)  
n=O  

N-l k ()
(Yo)k g~ ~ hi-iE ((h26Wn + h3 (6Wn)2)i) 

N-l k· i. 

(YO)k II L (~)hi-'iL (;)h;-jh~E ((6VVn )i+j ) 

n=O l=O J=O 
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x E ((L'.Wn)'(q+l+1))) 

(Yr)k (~ (k) h k- 2q ~ (2q) h 2(q-l) h 21 (2(q + l) )1 (~) q+l 
o L..t 2q 1 L..t 2l 2 3 (q+l)l 2N 

q=O 1=0  

[(k-l)/2] q  

+ '"' ( k ) h k-(2q+1) '"' (2q + 1) h2(q-l) h21+1 
L..t 2q + 1 1 L..t 2l + 1 2 3 
q=O 1=0 

X(2(q+l+1))1 (~)q+l+l)N (12.4.28)
(q + 1+ 1)1 2N 

For the order 2.0 simplified weak scheme (12.2.8), with the three-point distributed 
random variable .0,W3,n, see (12.2.7), we obtain 

(12.4.29) 

where we have used the result 

~ (~) k/' for k even (12.4.30) 
o for k odd, 

for k{l,2 .. .}. Therefore, the order 2.0 weak Taylor scheme and the simplified 
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order 2.0 weak scheme provide the same estimate for E((YT)k) with k E {1,2}. 

In the following, we consider the estimation of the fifth moment, that is E((YT)5). 
We consider the following parameters: Xo = 1, p, = 0.1, a = 0.15, T = 1. Note 
that by comparing the closed form solution (12.4.20) with the estimators (12.4.23), 
(12.4.28), (12.4.24) and (12.4.29), we can compute explicitly the weak error £w(L~) 
for the Euler and the order 2.0 weak Taylor schemes, as well as for their simplified 
verSIons. 

In Figure 12.4.3 we show the logarithm l092(Ew(f~)) of the weak error for the Euler 
and the order 2.0 weak Taylor schemes together with their simplified versions versus 
the logarithm l092(6) of the time step size. Note that the Euler and the simplified 
Euler schemes reproduce in the log-log plot the theoretically predicted weak order 
f3 = 1.0. Furthermore, the order 2.0 weak Taylor scheme and its simplified version 
achieve a weak order of f3 = 2.0, as expected. The errors generated by the simplified 
schemes are very similar to those of the corresponding weak Taylor schemes. 

o 

-5 

'"' - 10 
o 
'"' I'iI '"' 

N 

tn _15 o 
...:l  

-+-- Euler  

SEuler-20 

"-11- 2Taylor 

S2Taylor 

-10 -8 -6 -4 -2 o 
L092dt 

Figure 12.4.3: Log-log plot of the weak error for the Euler, the simplified Euler, the 
order 2.0 weak Taylor and t.he simplified order 2.0 \veak schemes 

We know that simplified schemes achieve the same order of weak convergence as 
their counterparts based on Gaussian random variables. However, it is useful to 
check whether there is a significant loss in accuracy when the time step size 6 is 
large. 

In the following we analyze the relative weak error when estimating the fifth mo-

.01. 
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ment in our example. This means that we consider the quantity 

IE ((XT)5) - E ((YT)5) I (12.4.31) E((XT)5) , 

where the parameters are set as before with T E [1/365,3] and (5 E [0.05,0.5]. 
Moreover, we use only one time step, which means that the time step size 6 used 
for the discrete time approximation YT equals T. In Figure 12.4.4 we report the 
relative error generated by the Euler scheme. For small values of the time to 
maturity T and of the volatility (5, the Euler scheme is very precise even by using 
only one time step, as considered here. For instance, when the maturity time is 
set to 2/12 and the volatility to 0.1 we obtain a relative error of 0.13%. When 
the time to maturity and the volatility increase, the accuracy of the Euler scheme 
is not satisfactory. For instance, for T = 3 and (5 = 0.5 the relative weak error 
amounts to 99 .6%. In Figure 12.4.5 we report the relative weak error generated 
by the simplified Euler scheme for the same parameter values. The results are 
similar to those obtained in Figure 12.4.4 for the Euler scheme based on Gaussian 
random variables. Finally, Figure 12.4.6 reports the difference of the relative errors 
generated by the simplified Euler scheme and by the Euler scheme. Here we can 
notice that the loss in accuracy due to the use of simplified schemes does not exceed 
4%. 

Figure 12.4.4: Relative error for the Euler scheme with .6. = T 

The relative errors generated by the order 2.0 weak Taylor scheme and its simplified 
version are significantly smaller than those reported for the Euler and the simplified 
Euler schemes. However , the qualitative behavior with respect to the values of the 
time to maturity T and the volatility (5 is similar. In Figure 12.4.7 we report the 
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Figure 12.4.5: Relative error for the simplified Euler scheme 'with 6. = T 

Figure 12.4.6: Relative error of the simplified Euler scheme minus the relative error of 
the Euler scheme 

relative error of the simplified order 2.0 weak scheme minus the relative error of the 
order 2.0 weak Taylor scheme for the same parameters considered in the previous 
plots. Also in this case the loss in accuracy generated by the multi-point distributed 
random variables is limited for all parameter values tested. 

We also report that we obtained similar results when estimating higher moments. 
For instance, in Figure 12.4.8 we plot the difference in the relative errors of the 
simplified Euler scheme and of the Euler scheme for the tenth moment. 
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Figure 12.4.7: Relative error of the simplified order 2.0 weak scheme minus the relative 
error of the order 2.0 weak Taylor scheme 

Figure 12.4.8: Relative error of the simplified Euler scheme minus the relative error of 
t.he Euler scheme for the tenth moment 

The Case of a Non-Smooth Payoff 

In option pricing we are confronted with the computation of expectations of non-
smooth payoffs. Note that typically weak convergence theorems for discrete time 
approximations require smooth payoff functions. We refer to Bally & Talay (1996a, 
1996b) and Guyon (2006) for weak convergence theorems for the Euler scheme in 
the case of non-smooth payoff functions. 

To give a simple example, let us compute the price of a European call option. In 
this case we assume that the dynamics of the SDE (12.4.17) is specified under 
the risk neutral measure, so that the drift coefficient fJ equals the risk-free rate 
r. In this case the price of the European call option is given by the expected 
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value of the continuous but only piecewise differentiable payoff e-p.T (XT - K)+ = 

e-J-LT max{XT - K,O) with strike price K. By (12.4.18), we obtain 

CT,K(X) := E(e-p.T(XT - K)+) = XoN(dd - Ke-P.T N(d2 ), (12.4.32) 

In (~ )+(p.+ ,,2 )T trrwhere d1 = K _ 1m 2 and d2 = d1 - ay T. 

For this particular example the estimator of the simplified Euler scheme and that 
of the simplified order 2.0 weak scheme can be obtained in closed form. For the 
simplified Euler scheme we obtain 

( p,T fT) N-iCT,K(Y) e~:T t, (~) ( Yo 1+ N +yiV 

p,T T i 
+ 

X(l+JV-~N)-K) ( 12.4.33) 

For the simplified order 2.0 weak scheme we have 

e-p.T ~ (N)4N-j~ (j) (YrhN-j(h +h fiT +h 3T)j-iCT,I{ (Y) 6N ~. ~ i OIl 2 N 3 1\ r 
. 0 J . 0 l'J= ~= 

+
3T 3T i 

x (hl - h2 fiN + h3J1j) - K) , (12.4.34) 

where hI, h2 and h3 are defined in (12.4.27). 

For the Euler scheme and the order 2.0 Taylor scheme, we resort to Monte Carlo 
simulation to obtain an estimate of the expected value E(e-p.T(YT - K)+). Note 
that the number of generated sample paths used in the following numerical ex-
periments is large enough to ensure that the statistical error is negligible when 
compared to the systematic error. In the special case of one time step, that is 
~ = T, the estimator of the call price for the Euler scheme and for the order 2.0 
weak Taylor scheme can be obtained in closed form. For the Euler scheme with 
one time step we have 

CT,K(Y) = e-p.T ( (Yrl(l + {IT) - K)N(b) + YoaflN'(b)) J 

http:SOFTVv~4.HE
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with 
b = K - Yo (1 + flT) and 

YoaJT 
for x E JR. For the order 2.0 weak Taylor scheme with one time step, if 

we obtain 

CT,K(Y) c- 1JT ( (Yo(h1 + h:3) - K)(N(b_) +N(b+)) 

+Yo ( (N' (b+) - N'(b_)) (h2 + h3 (b+ - b_) ) ), 

where 
b _ - YOh2 ± J(YOh2 )2 - 4Xoh3(Yohl - K) 
±- 2~~ , 

and hI, h2 and h3 are defined in (12.4.27). If instead 

then we have 

These closed form solutions allow us to show the weak error generated by these 
schemes, when 6. = T, avoiding any statistical error that would arise from a Monte 
Carlo simulation. Note that for some range of parameters used in our study the 
weak error is very small and it would be unfeasible to use Monte Carlo simulation 
to obtain an estimate with a negligible statistical error. 

In Figure 12.4.9 we show the log-log weak error plot of an at-the-money call payoff 
with strike K = Xo. The Euler and the simplified Euler schemes have a very similar 
accuracy and generate a weak order (3 = 1.0 with the log-error forming a perfect 
line in dependence on the log-time step size. The order 2.0 weak Taylor scheme 
is more accurate and achieves an order of weak convergence of about (3 = 2.0. 
The accuracy of the simplified order 2.0 weak scheme is comparable to that of its 
Gaussian counterpart, but its convergence is much more erratic. 

We report that when testing these schemes with different sets of parameters, we 
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Figure 12.4,9: Log-log plot of the weak errol' for the Euler, the simplified Euler, the 
order 2.0 weak Taylor and the simplified order 2.0 weak Taylor schemes 

notice that simplified schemes have an accuracy similar to that of corresponding 
schemes based on Gaussian random variables, but their convergence exhibits oscil-
lations. This effect seems to be more pronounced in the simplified order 2.0 weak 
Taylor scheme, but it is also present when using the simplified Euler scheme. 

As mentioned earlier, the simplified Euler scheme and the simplified order 2.0 
weak schemes are approximately equivalent to certain binomial and trinomial trees, 
respectively. The erratic behavior of the weak error is due to the discrete nature 
of the multi-point distributed random variables used. This appears to be the same 
effect that was noticed for tree methods in Boyle & Lau (1994). 

As in the previous section, we now compare for a wide range of parameters the 
accuracy of weak Taylor schemes to that of simplified weak Taylor schemes when 
using only one time step. We consider the relative weak error, 

ICT,K(X) - CT,K(Y) I (12.4.35)CT,K(X) , 

with Xo = Yo = 1, J-l = 0.1, CJ E [0.05, 0.5]' K E [0.88,1.12] and T = 3/12. In 
Figure 12.4.10 we report the relative error generated by the Euler scheme. We 
notice that for small values of the volatility and large values of the strike the 

http:0.88,1.12
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relative error increases by up to 70%. Figure 12.4.11 shows the relative error for 
the simplified Euler scheme, which is extreme for large strikes and small volatilities. 
Also in this case the loss in accuracy due to the use of the two-point distributed 
random variables (12.2.3) is rather small outside a region of high strike prices and 
low volatilities. Note that since we are using only one time step, for every value 
of K ~ Yo(l + MT + o-VT) all sample paths of the simplified Euler scheme finish 
out-the-money and, thus, the expected call payoff is evaluated to zero. On the 
other hand, some of the paths generated by the Euler scheme end up in-the-money, 
providing a positive value for the expected call payoff which is, thus, closer to the 
exact solution. Note, however, that in this region the exact value of the expected 
payoff is very small. For instance, for K = 1.05 and 0- = 0.05 the exact value 
equals 0.00236768. Thus, the absolute error generated by the simplified Euler 
scheme remains under control. 

Figure 12.4.10: Relative error for the Euler scheme with L\ = T 

In Figures 12.4.12 and 12.4.13 we report the difference between the relative error of 
the simplified Euler scheme and that of the Euler Scheme with a medium maturity 
T = 1 and a long maturity T = 4, respectively. Again we can see that the 
accuracy of schemes based on simplified random variables is similar to that of 
schemes based on Gaussian random variables. Furthermore, we notice that for 
certain sets of parameters the simplified Euler scheme is even more accurate than 
the Euler scheme. 

Finally, we have conducted similar numerical experiments comparing the accuracy 
of the order 2.0 weak Taylor scheme to that of the simplified order 2.0 weak scheme. 
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Figure 12.4.11: Relative error for the simplified Euler scheme with 6. = T 

We report that also in this case the loss in accuracy due to the use of the three 
-point distributed random variable (12.2.7) is quite smalL 

Figure 12.4.12: Relative error of the simplified Euler scheme minus the relative error of 
the Euler scheme for T = 1 

The experimental results of this section suggest that the accuracy of weak schemes 
based on multi-point distributed random variables is similar to that of weak Taylor 
schemes based on Gaussian random variables. The loss in accuracy, which is due to 
the use of multi-point random variables, is for typical parameters below 10% when 
measured in terms of relative errors. We have also reported that in some particular 
cases the accuracy of simplified weak schemes is superior to that of weak Taylor 
schemes. Therefore, thanks to high speedups in execution, the proposed RBGs 
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Figure 12.4.13: Relative error of the simplified Euler scheme minus the relative error of 
the Euler scheme for T = 4 

when combined with simplified schemes can significantly enhance the efficiency of 
typical Monte Carlo simulations in finance. 

12.5 Hardware Accelerators 

In this section we propose a fast generator of multi-point distributed random num-
bers on a field programmable gate array (FPGA) and describe its system perfor-
mance in a PC architecture. The proposed approach has been tested over a wide 
variety of parameters, including different multi-point random variables and corre-
sponding weak Taylor schemes. It proved capable of achieving speedups of up to 
ten times with respect to an optimized software-only implementation. 

12.5.1 System Architecture 

Our ultimate goal is to substantially speed up the above described Monte Carlo 
simulations by moving the random number generation from software to a dedicated 
hardware platform. More precisely, we aim to move the whole generation of multi-
point distributed random numbers from the host processor to a dedicated hardware 
unit. This approach is advantageous in applications in which a relevant percent-
age of time is taken by the generation of random numbers. However, there exist 
critical performance challenges at the system level. As the typical generation time 
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for a software implementation can be as short as a few nanoseconds per number, 
the dedicated hardware solution must avoid any system-level bottlenecks to prove 
competitive. 

II IHost Processor FPGA 

l Daughter board 
..,-_.... _----,._---_."-' --.-..--...--"'.---

r,,"dolll numbers (ellcoded j l 
PCI Bus 

Figure 12.5.14: The system architecture 

Our basic idea for a PC environment is that of implementing the hardware "accel-
erator" as a daughter board on the PCI (peripheral component interconnect) bus, 
Revision 2.2. For details on the PCI Bus Revision 2.2 we refer to PCI Local Bus 
Specification Revision 2.2, PCI-SIG, 2000. The daughter board hosts the random 
number generator, not to be confused with the RBG which is just a part of it. The 
random number generator is implemented on an FPGA and returns the generated 
numbers to the simulation software through the PCI bus. Figure 12.5.14 shows our 
proposed system architecture for a PC platform. We can divide the system oper-
ations in four phases. In phase 1, the FPGA generates a set of random numbers 
in an average time TFPGA per number. In phase 2, the FPGA transfers such a set 
in a compact, combinatorially encoded format to the host memory via burst bus 
cycles operated under DMA (direct memory access) for maximum communication 
efficiency in an average time Tcomm per number. The combinatorial encoding works 
as follows. Any given multi-point distributed random variable has a small finite set 
of n possible values, with each value typically represented as a 32-bit floating point 
datum. We can encode each value by combinatorial encoding with [log2 n] bits, 
where [a] denotes the smallest integer greater than or equal to a. Accordingly, the 
amount of random numbers that we are able to pack and transfer in a single PCI 
data phase (32 bits of data over 30 ns) is much larger than that possible with the 
native floating point representation (only one number per data phase). In phase 3, 
the host processor is ready to serve the requests for random numbers from the sim-
ulation software. At each request, the host processor decodes one encoded number 
and returns it to the caller in an average time Tdcc per number. In phase 4, the host 
processor uses the random numbers in an average time Tuse per number. In this 
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way, the simulation software sees the system through the same function interface 
of a conventional software-only implementation and requires no further modifica-
tions. More importantly, we coordinate these phases into a pipeline so that the 
simulation software uses the current set of generated random numbers (phase 4) 
while the FPGA concurrently produces a new set (phase I), thus obtaining a sig-
nificant speedup. Figure 12.5.15 shows how the various phases occur with respect 
to time. It can be seen that if T FPGA is less than T use , then phase 1 is completely 
hidden by phase 4 and thus adds no time to the total execution time. With a 
more aggressive implementation, also phases 2 and 3 could have been considered 
for pipelining with other phases. In particular, phase 2 could be overlapped with 
phase 1 by means of a double-buffer implementation on the FPGA. At its turn, 
phase 3 could be overlapped with phases 1 and 2 by a double-buffer implementation 
in the host memory. Note that phase 3 cannot overlap with phase 4 as they both 
require the same resource, the host processor. It can be shown that such changes 
could result in hiding Tcomm completely in the overall execution time. On the other 
hand, Tdcc will instead increase due to the increased complexity of a multiple-buffer 
implementation, thus compromising the speedup. For this reason, we decided to 
limit pipelining to the two main phases, 1 and 4. 

Time 

Figure 12.5.15: The various phases with respect to time 

The complete time models for the simulation are given in the following. First, we 
can define Tgen as the average time spent for generating a multi-point distributed 
random number and Tuse as the average time spent by the rest of the simulation 
software in using it. If generation and use are sequential, we can write: 

(12.5.36) 

where Texe is the average total execution time per number.  

In the case of a conventional software implementation the above model holds and  
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Tgen = Tgensw is the time taken by the execution of a function that generates and 
returns one multi-point distributed random number to the caller. 

With our system, instead, the simulation software uses the current set of random 
numbers while the FPGA concurrently generates a new set. In this way, if the 
generation time on the FPGA, TFPGA , is shorter than the use time, Tuse , the former 
does not add up to the total execution time. Such a constraint was largely satisfied 
in all our experiments. Hence, (12.5.36) still holds with Tgen = TgellH\V given by: 

TgenH\V = Tcomm + Tdcc , if TFPGA < Tuse· (12.5.37) 

12.5.2 FPGA Implementation 

A fast and flexible implementation of the random number generator is the main 
requirement in this application. FPGAs enjoy several features such as quasi-
ASIC (application specific integrated circuit) speed and programmer-level flex-
ibility, which makes them the most suitable option for the hardware platform. 
Accordingly, we have chosen to implement our generator on a high-performance 
FPGA, the Altera Stratix EP1S10B672C6. Simulation tools for this device are 
available in the Altera Quartus II development environment. We have used the 
Web Edition Software Version 4.2 of such tools. Moreover, all the circuits for 
the FPGA have been developed in VHDL (Very High Speed Integrated Circuit 
Hardware Description Language). 

Figure 12.5.16 shows a simplified representation of the random number generator. 
In Figure 12.5.16.(a) the random number generator is shown together with the out-
put FIFO (first in first out) queue (some signals have been omitted for simplicity). 
The generation of the encoded random numbers is synchronous with the main clock 
signal (CK), with one number generated per clock cycle over signals RN[O:2]. Each 
encoded random number generated by the random number generator is input in 
the FIFO queue which, in turn, allows for asynchronous reading from an external 
master with 32-bit data parallelism. The writing on the queue is clocked by the 
BUFF_WR signal, which is synchronous with CK. However, the queue can suspend 
the random number generation when full by raising FIFO_FULL. The generator 
needs an initial seed of arbitrary length which can be uploaded asynchronously, in 
one or more steps, through the SEED[O:31] and WR signals. Figure 12.5.16.(b) 
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Figure 12.5.16: A simplified representation of the random number generator 
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shows details of the generator. The generation of the random bits is performed by 
a shift register generator of programmable length equal to that of the generating 
polynomiaL The "active" (Le. non-null) coefficients can also be programmed by 
the user. The orders considered for the weak Taylor scheme range from (J = 1.0 
to (J = 3.0, although higher orders can also be straightforwardly implemented. 
When the selected order is (J = 1.0, the random number generator generates num-
bers sampled from a two-point distributed random variable with the probabilities 
described in (12.2.3). Each single bit generated by the shift register generator rep-
resents a valid encoded number. \,yhen the selected order is (J = 2.0, the random 
number generator generates numbers sampled from a three-point distributed ran-
dom variable with the probability distribution (12.2.7). In this case, a sequence of 
three generated random bits, Xl:X3, is used to generate eight equip rob able com-
binations. As described in Section 12.3, the accept/group logic discards two of 
them, uses four to generate a 0 value for the random variable and uses one each 
for values +~ and -'1'3..6... When the selected order is (J = 3.0, the random 
variable is five-point distributed with the probability distribution (12.2.11). In this 
case, a sequence of five random bits, Xl:X5, is used to generate 32 equiprobable 
combinations. The accept/group logic discards two of them, uses ten to generate a 
ovalue, nine each for values +VE and -V/S., and one each for values +V'6K and 
-J6E. All combinatorial functions in the accept/group logic arc optimized. 

12.5.3 Experimental Results 

Table 12.1 shows the main performance results of the proposed implementation 
for a polynomial order of 31 and the different weak Taylor scheme orders. Fck (in 
MHz) is the maximal clock frequency obtained for the random number generator. 
TFPGA , the time (in ns) for generating one multi-point distributed random number, 
is computed as a 103 / Fck . The a term accounts for the fact that some of the 
clock cycles generate a random number that should be rejected; such a factor is 
8/6 for the three-point distributed random variable and 32/30 for the five-point 
distributed one. Tuse , the time spent by the application in using a random number, 
is measured on the option pricing problem with a lognormal dynamics discussed in 
Section 12.4.2. From Table 12.1, it is possible to see that the constraint of (12.5.37) 
is always easily satisfied. Although Tuse obviously depends on the application, 
its range will be similar for comparable Monte Carlo simulations. Tcomm is the 
average time for transferring one random number from the FIFO queue to the 
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Table 12.1: Performance results of the proposed implementation, polynomial order 
;31 

Scheme Order Fck TpPGA Tuse T-cornrn Tdcc 

/3 = 1 162 6.17 18.06 2 :l.85 

/3=2 158 8.42 ;30.44 4 4.4 

/3 = 3 116 9.12 68.60 6.4 6.27 

host memory over the PCI bus. This time increases proportionally to the size in 
bits of the encoded random numbers. :Moreover, in some cases the data require 
extra-alignment bits to match the 32-bit PCI data size. For instance, this applies 
to the case of the 3-bit encoded numbers sampled from a five-point distributed 
random variable. In Table 12.1, Tcornrn is computed based on a transfer rate of 66 
MB/s. However, there exist several implementations over the PCI bus which can 
almost saturate its peak rate of 1;32 MB/s; hence, even smaller values for Tcornrn 
are achievable. Moreover, the upcoming PCI Express™ bus carries the potential 
to further decrease Tcornrn by at least a factor of 4. Based on these parameters and 
thanks to our design choice of combinatorial encoding for the generated random 
numbers, we have proved herewith that data communication is not a performance 
bottleneck in our system. Moreover, we have implemented highly-optimized C 
macros to perform the decoding operation on the host side, thus also limiting Tdec , 

the average time that the host processor takes to decode one encoded random 
number and return it to the requesting application. 

Table 12.2 shows the main performance results for a much higher polynomial order 
of 521. Tuse , Tcornm , and Tdec are not influenced by the polynomial order. It can also 
be seen that the FPGA performance does not suffer from the increased polynomial 
length and in some cases even slightly exceeds that of the polynomial order 31. 
As the implementation still uses a very small fraction of the FPGA resources, we 
cannot see any practical upper bound on the choice of the polynomial length. 

To provide a comparative analysis between software and hardware performance, 
we have implemented both software and hardware versions of the random number 
generator for a comprehensive variety of parameters. In order for the performance 
comparison to be unbiased, we have implemented all software functions as highly 
speed-optimized C macros. The reference PC is a Mobile Pentium 4 2.0 GHz and 
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Table 12.2: Performance results of the proposed implementation, polynomial order 
521 

,---

Scheme Order FCk TFPGA Tuse Tcomm Tiec . 

,B = 1 167 5.99 18.06 2 3.85 ...· 
/3 = 2 157 8.47 30.44 4 4.4 _ 
/3 = :3 135 7,90 68.60 6.4 6.27 

the C compiler used is the Microsoft Visual Studio 6.0 with -02 optimizations. In 
the following, the three dimensions of the polynomial order, number of non-null 
coefficients, and number of points of the random variable are discussed. 

Polynomial order 

A polynomial order n, for a primitive polynomial modulo 2, guarantees a period of 
2n - 1 for the generated random sequence. It is known that the accuracy of a sim-
ulation, based on a pseudo-random sequence, is compromised when the sequence 
length is substantial compared with the period of the random number generator. 
In the light of this, high order polynomials should be preferred. However, in a soft-
ware implementation one faces an increase in generation time when using high order 
polynomials, since they cannot be mapped onto a single primitive-type operand. 
Instead, the hardware implementation does not suffer from any predefined operand 
size. Figure 12.5.17 shows the generation time, Tgen , for the software and hardware 
implementations as a function of the polynomial order, For the software imple-
mentation, Tgen remains approximately stable up to 63 ns and then starts to grow 
with the polynomial order. Yet, the time for the hardware implementation always 
remains constant. In our tests, even larger polynomial sizes did not introduce any 
further delay in the FPGA operations. 

N umber of non-null coefficients 

The "randomness" of the random bits, which is crucial for an effective Monte Carlo 
simulation, is strictly related not only to the order of the generating polynomial 
but also to the choice of its (non-null) coefficients, see Niederreiter (1992). How-
ever, in a software implementation a programmer is tempted to use the polynomial 
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Figure 12.5.17: The generation time as a function of the polynomial order 
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Figure 12.5.18: The generation time as a function of the number of non-null coef-
ficients for a polynomial order of 31 
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Figure 12.5.19: The generation time a..s a function of the number of points of the 
random variable for a polynomial order of 31 

with the smallest number of coefficients , as each introduces an additional compu-
tational load. Figure 12.5.18 shows that the software implementation suffers from 
a proportional delay. Again, the time instead remains constant for our hardware 
implementation as TFPGA remains less than Tuse in all cases of interest . 

MUlti-point random variables 

When high accuracy is required, higher orders of the weak Taylor schemes will even-
tually increase the computational efficiency, even though both the scheme and the 
multi-point distributed random variables are more complex. In any case, speeding 
up the computation of the random variables has a dramatic impact on the simu-
lation time. Figure 12.5.19 shows the generation time, Tgen, for the software and 
hardware implementations as a function of the number of points in the multi-point 
distributed random variable, which refers to 6W2,n, 6W3 ,n and 6W5,n, defined in 
(12.2.3),(12.2.7) and (12.2.11), for a polynomial order of 31. Once again, the soft-
ware time grows steadily, up to 80 ns per value for a five-point distributed random 
variable. The hardware time, instead, increases negligibly. Actually, the increase 
in Tgen is due only to the larger size of the encoded random numbers. The size of 
the encoded random numbers grows as [log2 n], where n is the number of points 
representing the possible values of the multi-point distributed variable, and this 
has an impact on the transfer time , Tco mm , and the decoding time, Tdec , see Tables 
12.1 and 12.2. Figure 12.5.20 shows that the trend is similar for a polynomial order 
of 521. 
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Figure 12.5.20: The generation time as a function of the number of points of the 
random variable for a polynomial order of 521 
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Table 12.3: The generation speedup between harchvare and software 

Sgen(31) S'FPGA(31) S'gen(521) SFPGA(521) 

b.VV2 .n 1.44 1.36 2.;3~j 2.27 
~ 

b. tVI.n 6.84 6.83 9.94 9.86 

b.~V5,n 5.88 
~---- -- -

8.18 I 8.01 12.84 

Speedup 

Table 12.3 reports the speedups achieved with the proposed hardware solutions with 
respect to the optimised software implementation, when considering the multi-point 
distributed random variables .6W2 ,n, .6W1,n and .6TV5 .n and polynomial orders of 31 
and 521. Sgen = Tgensw/TgenHW is the speedup between the generation in hardware 
and that in software. As explained in (12.5.37), TgenHW does not account for the 
generation time on the FPGA device, but it consists, rather, of communication and 
decoding times. The units responsible for such times are mainly the PCI bus and 
the host processor. While Sgen is the main performance figure in our system, it is 
important to report also SFPGA = Tgensw /TFPGA , which is the speedup between the 
generation on the FPGA alone and that in software. This speedup is important 
to express the relative performance of the FPGA device and the host processor in 
the generation of multi-point distributed random variables in view of a possible 
transfer of the whole simulation to FPGAs. Table 12.3 shows that such a speedup 
is as high as 12.84 and could possibly increase by using FPGA development tools 
providing further optimizations. 

Table 12.4 reports the application speedup of the proposed hardware solutions 
with respect to the optimized software implementation Sexe = Texesw /TexcHW when 
the option pricing problem with lognormal dynamics discussed in Section 12.4.2 is 
considered. Table 12.4 shows that the overall application strongly benefits from 
the hardware acceleration, up to almost three times in some cases. This is due 
to the large percentage of the total execution time typically spent on the random 
number generation by the software. Moreover, the speedup increases with the order 
of the polynomial and also with the number of its non-null coefficients, which is 
not shown in the table. Therefore, these speedups become more significant in the 
case of high accuracy simulations. 
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Table 12.4: The application speedup between hardware and software 

Scheme Order S'exe (:31) Sexe (521) 

(J= 1 1.11 1.32 

(J = 2 2.26 2.93 

/3=3 1.76 2.09 

From Table 12.4, it appears that the application speedup for a weak Taylor scheme 
of order fJ = 2.0 is greater than that for order /3 = 3.0. However, such a result 
is not general since the measured times and speedups can depend significantly on 
the compiler used. To verify that, we measured Tuse also with another compiler, 
the Mingw port of Gee. Here we obtained 14, 47 and 57 ns per random number 
for a weak Taylor scheme of order 1, 2, and 3, respectively. Such times, when 
compared to those obtained by the Microsoft compiler and reported in Tables 12.1 
and 12.2, seem to be in better proportion with the complexity of the operations in 
(12.2.4), (12.2.8) and (12.2.12). With such times, the application speedup for the 
weak Taylor scheme of order fJ = 2.0 is equivalent to that of order fJ = 3.0. 



Chapter 13 

Conclusions and Further Directions of 
Research 

13.1 Conclusions 

Discrete time approximations for SDEs with jumps have been presented in this 
thesis. New moment estimates of multiple stochastic integrals involving Poisson 
jump measures and their compensated counterparts have been derived. Using 
these estimates and the Wagner-Platen expansion, we have proved convergence 
theorems for strong and weak higher order approximations. Additionally, new, effi-
cient strong approximations, including derivative-free, drift-implicit and predictor-
corrector schemes, have been proposed. The new strong predictor-corrector schemes 
appear to be of particular interest because of their efficiency and numerical sta-
bility properties. Various numerical experiments have confirmed the theoretically 
derived numerical properties of the new strong and weak higher order schemes. 
Furthermore, efficient implementations of simplified weak schemes based on ran-
dom bit generators and dedicated hardware accelerators have been developed and 
tested. The thesis demonstrates that progress has been made in the development of 
the theory of numerical solution of SDEs with jumps via simulation. This progress 
raises new interesting and challenging research problems for the development of an 
advanced theory. 

13.2 Further Directions of Research 

There are several possible directions of future research which directly derive from 
the results obtained. First, extensive numerical experiments with the new methods 
should be conducted to obtain clear measurements of their numerical efficiency and 
stability when applied to specific SDEs in finance. An important application of dis-
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crete time approximations arises in the pricing and hedging of complex interest rate 
derivatives under the LIBOR market model with jumps, see Glasserman & Kou 
(2003). As discussed in Chapter 2, the corresponding high-dimensional non-linear 
dynamics require the use of efficient discrete time approximations. Glasserman & 
Merener (2003a) analyzed certain schemes for these types of dynamics. A compar-
ative analysis of the performances of the schemes presented in this thesis, when 
applied to the LIBOR market model with jumps, is therefore a topic of preferred 
future research. Furthermore, several authors, including Higham & Mao (2005), 
Kahl & Jackel (2005), Lord, Koekkoek & van Dijk (2006), Broadie & Kaya (2006), 
and Andersen (2007), have recently analyzed the problem of the numerical approx-
imation of the SDEs describing the Heston model, see Heston (1993). In Heston 
(1993) a transform method was proposed, which allows the fast evaluation of Eu-
ropean type derivatives. However, for the pricing of exotic derivatives, simulation 
methods are usually employed. It remains a challenge to derive efficient higher 
order schemes for these particular dynamics when jumps are included. The deriva-
tion of numerically stable, higher order schemes for the Bates models, see Bates 
(1996), which is a jump augmented Heston model, is a research topic with strong 
practical background. 

Numerical stability is of crucial importance for the effectiveness of discrete time 
approximations also in the presence of jumps. Therefore, a second important topic 
of future research is a detailed analysis of the numerical stability properties of the 
schemes presented in this thesis. Such analysis could follow the lines of Higham & 
Kloeden (2005, 2006, 2007) for implicit strong schemes. Of particular interest are 
the numerical stability properties of the new strong predictor-corrector schemes. 

The derivation of a convergence theorem for regular weak approximations in the 
case of pure jump SDEs is another challenging project of future research. As in 
the case of strong schemes, this research would aim to relax the differentiability 
conditions on the jump coefficient. Ideas of Glasserman & Merener (2003a), who 
obtained weak convergence for schemes up to weak order {3 = 2.0 for jump-diffusion 
SDEs under mild conditions on the jump coefficient, could be useful for this prob-
lem. 

Another topic of future research is the design of regular weak derivative-free, 
predictor-corrector and simplified schemes. In particular, a moment condition for 
regular weak schemes, similar to that presented for pure diffusion SDEs in Kloeden 
& Platen (1999), would be needed to assess the convergence of such general regular 
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weak approximations. A remark in Liu & Li (2000) suggests a moment condition 
to hold for regular weak schemes, without providing any proof. A topic of future 
research is therefore the derivation of a full proof under which the above mentioned 
moment condition is sufficient to obtain the desired order of weak convergence for 
given classes of SDEs with jumps. Note that because of the peculiar properties 
of higher order moments of increments of the Poisson processes, which differ from 
those of diffusions, the jump-diffusion case requires particular care and it is not 
obvious that the conjecture in Liu & Li (2000) holds. 

The design of efficient weak schemes involving automatic step size control is another 
interesting topic for future research. The work of Mordecki, Szepessy, Tempone 
& Zouraris (2006) addresses this problem in the case of the Euler scheme. Of 
particular interest would be the design of weak predictor-corrector schemes with 
step size control. 

Also hardware accelerators for weak schemes should be further explored. One 
possible extension of our current research is the implementation of entire Monte 
Carlo simulation algorithms on field programmable gate arrays. Furthermore, the 
Monte Carlo simulation of SDEs is generally suitable for parallel implementations, 
see Petersen (1987). A parallel implementation of the weak schemes presented in 
this thesis can lead to high speedups. 

Another field of investigation is that of the numerical approximation of stocha-
stic partial differential equations with jumps, see Hausenblas (2003, 2006). Typi-
cally, after an initial space discretization, which can be performed, for instance, by 
Galerkin or finite differences methods, see Kloeden (2002), one obtains a system 
of high-dimensional SDEs. The schemes developed in this thesis could be useful 
to obtain efficient approximations of stochastic partial differential equations with 
jumps. Also in the numerical solution of forward-backward SDEs with jumps, 
methods similar to those developed in this thesis could be employed. A method for 
forward-backward SDEs with jumps based on an Euler scheme has been proposed 
in Bouchard & Romuald (2005). 

Another interesting direction of future research is the design of discrete time ap-
proximations for SDEs driven by Wiener processes and infinite activity jump pro-
cesses. A proper truncation of the small jumps may lead to efficient schemes based 
on those developed in this thesis. This would also cover the simulation of Levy 
processes. 



280 CHAPTER 13. CONCLUSIONS 

The last important direction of future research that we would like to mention re-
gards the smoothness conditions on the payoff function usually required by weak 
convergence theorems to guarantee higher order of weak convergence. Weak con-
vergence theorems for non-smooth payoffs for the Euler scheme have been presented 
in Bally & Talay (1996a, 1996b) and Guyon (2006), in the case of pure diffusion 
SDEs, and in Hausenblas (2002), in the case of pure jump SDEs. An extension of 
these results to higher order schemes for jump diffusions would be highly desirable 
for applications such as option pricing. 

Of broader scope are the following two directions of research. First, of great im-
portance is the development of efficient simulation methods for high-dimensional 
systems of SDEs with jumps. These typically arise in important financial appli-
cations. Second, the development of variance reduction techniques is crucial for 
the efficiency of Monte Carlo simulations. We remark that in this thesis we have 
addressed the problem of designing efficient methods to reduce the systematic error 
generated by the time discretization. However, as previously discussed, to obtain 
accurate results one should develop efficient variance reduction techniques, thus re-
ducing the statistical error generated in practical applications of the Monte Carlo 
simulation methods proposed. 



Appendix A 

Appendix: Inequalities 

We present here some inequalities, see Ash (1972) and Ikeda & Watanabe (1989), 
that we have used in the thesis. 

A.I Finite Inequalities 

Consider a sequence of pairs of real numbers {(ai, bi), 'i E {I, ... , n}}, with n E N. 

Lemma A.I.1 (Cauchy-Schwarz Inequality) 

n 2 n n

(L aibi) ~ La; L b;. (1.1.1) 
;=1 ;=1 ;=1 

Corollary 1 
n 2 n(La;) ~ n La;. (1.1.2) 

i=l i=l 

Lemma A.I.2 (Holder Inequality) 

Let 1 < p < 00, 1 < q < 00 and (lip) + (llq) = 1. Then 

It aibij ~ (t lail P ) ~ (t Ibilq) i. (1.1.3) 
i=l ;=1 i=l 

Corollary 2 Let 1 < p < 00, then 

n n 

(Lair ~ nP- 1 Laf. (1.1.4) 
;=1 ;=1 

A.2 Integral Inequalities 

Let (r.l, A, {1) be a measurable space and consider two functions 1, 9 : r.l ---+ Itt 

28] 
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Lemma A.2.1 (Cauchy-Schwarz Inequality) 

If f and 9 E L2(f-L), then fg E U(f-L) and 

(1.2.1) 

Corollary 3 

(1.2.2) 

Lemma A.2.2 (Holder Inequality) 

Let 1 < p < 00, 1 < q < (X) and (lip) + (llq) = 1. If f E LP(f-L) and 9 E Lq (f-L) , 
then f 9 E L1 (f-L) and 

(1.2.3) 

Corollary 4 Let 1 < p < (X) and f E LP(/-l). Then 

(1.2.4) 

Lemma A.2.3 (Gronwall Inequality 1) 

Let O!, (3 : [tOl T] --+ lR be integrable with 

o::; a(t) ::; (3(t) + c t O!(s )ds (1.2.5)lto 
for t E [tOl T] and C > O. Then 

a(t) ::; (3(t) + cit eC (t-S)(3(s)ds. (1.2.6) 
to 

Lemma A.2.4 (Gronwall Inequality 2) 

Let f : [tOl T] --+ lR be a nonnegative integrable function and o!, (3 : [tOl T] --+ lR be 
continuous functions on [tOl T]. If 

a(t) ::; (3(t) + it f(s) O!(s)ds (1.2.7) 
to 

for t E [tOl TJ, then  

a(t) ::; (3(t) + lot f(s )(3(s )ds exp (jt f(u)du). (1.2.8)  
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Moreover, 	if f3 is non-decreasing, then 

a(t) ~ f3(t) exp (lot f(u)du). (1.2.9) 

Lemma A.2.5 (Jensen's Inequality) 

Let X be a random variable wdh finite first moment and 9 : lR -7 lR be a convex 
function. Then we have 

g( E(X)) ~ E(g(X)). 	 (1.2.10) 

A.3 Martingale Inequalities 

Let us consider a right-continuous martingale X = {xtJ t E [0, T]} such that 
E(IXtIP) < 00 for t E [0, T]. Then we have the following inequalities. 

Lenlma A.3.l (Maximal Martingale Inequality) 

p({wEn: sup IXs(w)1 2 a}) ~ ~E(IXtIP) (1.3.1) 
0::; 8::; t aP 

for a > 0, p 2 1 and t E [0, T]. 

Lemma A.3.2 (Doob's Inequality) 

E(~~~tIXsIP) ~ (p~ lYE(IXtIP) (1.3.2) 

for p > 1 and t E [0, T]. 
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