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Abstract

Bi-level programming techniques are developed for decentralized decision prob-
lems with decision makers located in a two-level decision making system; the upper
decision maker is termed the leader while the lower is the follower. Both the leader
and the follower try to optimise their own objective functions and the corresponding
decisions do not control but do affect those of the other level.

This research aims at solving bi-level decision problems with five extensions, i.e.
multiple leaders/followers/objectives, fuzzy coefficients and goals. By using particle
swarm optimisation and/or cut set and/or goal programming and/or Nash equilibrium
concept, related mathematical models and corresponding algorithms are developed to
solve fuzzy linear bi-level decision problems, fuzzy linear multi-objective bi-level de-
cision problems, fuzzy linear multi-follower multi-objective bi-level decision prob-
lems, fuzzy linear goal bi-level decision problems, multi-leader one-follower bi-level
decision problems, one-leader multi-follower bi-level decision problems, and multi-
leader multi-follower bi-level decision problems. A fuzzy bi-level decision support
system is then developed which implements all the algorithms to support bi-level de-
cision making with different features. Finally, by using these bi-level models and
algorithms, we explore possible applications in the fields of railway train set organisa-
tion, railway wagon flow management, strategic bidding in the electricity market, and
supply chains to solve real world bi-level decision problems. The results of experi-
ments show that the models and algorithms are effective for solving real world bi-level
decision problems.
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1 Introduction

1.1 Background

Bi-level programming technologies, initiated by Von Stackelberg (1952), are mainly
developed for solving decentralised management problems with decision makers in a
hierarchical organisation, with the upper termed the leader and the lower the follower
(Bard 1998). In a bi-level decision making, the control of decision factors is partitioned
amongst the leader and follower who seek to optimise their individual objective func-
tions, and the corresponding decisions do not control but do affect that of the other level
(Aiyoshi & Shimizu 1981). The leader attempts to optimise his or her objective func-
tion but he or she must anticipate all possible responses from the follower (Lai 1996).
The follower observes the leader’s decision and then responds to it in a way that is per-
sonally optimal. Because the set of feasible choices available to either decision maker
is interdependent, the leader’s decision affects both the follower’s payoff and allowable
actions, and vice versa.

To motivate a quick understanding of bi-level decision problems, we now give an
example as an illustration. The example is from the relationship between a manufac-
turer and a retailer. Suppose the articles involved are newspapers: the retailer orders
newspapers from the manufacturer and sells them to the readers. Both the manufac-
turer and the retailer wish to make as much profit as possible from their newspaper
sale. The equations to calculate the manufacturer’s profits (F ) and the retailer’s profit
(f ) are as follows:

F = (C −D) ·Q

f =





(A− C)ξ, Q < ξ

(A− C)ξ − C(Q− ξ), Q > ξ

where D is the manufacturing cost, C is the wholesale price per unit, Q is the quantity
ordered by the retailer, ξ is the quantity sold by the retailer, and A is the retail price.

To maximise the profit, the manufacturer wishes the wholesale price and order
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quantity to be as large as possible. However, the manufacturer can only control the
wholesale price, while order quantity is determined by the retailer. Even if the whole-
sale price is controlled by the manufacturer, it is not the case that the larger the whole-
sale price, the higher the profit, because when the wholesale price increases, the retailer
probably decreases the order quantity to avoid profit loss. Now the problem is how to
decide the value of the wholesale price for the manufacturer to maximise profit. This
is a typical bi-level decision problem. The manufacturer is the leader and the retailer
is the follower.

To formulate a bi-level decision problem, suppose the leader controls the vector
x ∈ X ⊆ Rn, while the follower has control over y ∈ Y ⊆ Rm. The leader moves
first by selecting an x in an attempt to minimise his or her objective function F (x, y)

subject to certain constraints. Then, the follower observes the leader’s action and reacts
by choosing a y to minimise his or her own objective function f(x, y) under some
constraints as well. Thus, a bi-level decision problem is formatted as follows:

Definition 1.1.1. (Bard 1998) For x ∈ X ⊆ Rn, y ∈ Y ⊆ Rm, a bi-level decision
problem is defined as:

min
x∈X

F (x, y) (1.1a)

subject to G(x, y) 6 0 (1.1b)

min
y∈Y

f(x, y) (1.1c)

subject to g(x, y) 6 0 (1.1d)

where F : Rn × Rm → R1, G : Rn × Rm → Rp, f : Rn × Rm → R1, and
g : Rn ×Rm → Rq.

Once all functions defining the bi-level decision problem in (1.1) are restricted to
being affine, i.e. have linear formats, the problems will become linear bi-level decision
problems.

In a real case, to formulate bi-level decision problems, the coefficients of the
objective functions and the constraints are sometimes obtained through experiments
or experts’ understanding of the nature of those coefficients. It has been observed
that, in most situations, the possible values of these coefficients are often only im-
precisely or ambiguously known to the experts and cannot be described by precise
values. With this observation, it would certainly be more appropriate to interpret the
experts’understanding of the coefficients as fuzzy numerical data which can be rep-
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resented by means of fuzzy sets (Zadeh 1965). Bi-level linear decision problems in
which the coefficients are characterised by fuzzy numbers are called fuzzy linear bi-
level decision problems.

Definition 1.1.2. (Zhang, Lu & Dillon 2007a) A fuzzy linear bi-level (FLB) decision
problem is defined as :

For x ∈ X ⊆ Rn, y ∈ Y ⊆ Rm, F : X × Y → F (R), and f : X × Y → F (R),

min
x∈X

F (x, y) = c̃T
1 x + d̃T

1 y (1.2a)

subject to Ã1x + B̃1y ¹ b̃1 (1.2b)

min
y∈Y

f(x, y) = c̃T
2 x + d̃T

2 y (1.2c)

subject to Ã2x + B̃2y ¹ b̃2 (1.2d)

where c̃1, c̃2 ∈ F n(R), d̃1, d̃2 ∈ Fm(R), b̃1 ∈ F (Rp), b̃2 ∈ F q(R), Ã1 = (ãij)p×n,

ãij ∈ F (R), B̃1 =
(
b̃ij

)
p×m

, b̃ij ∈ F (R), Ã2 = (ẽij)q×n, ẽij ∈ F (R), B̃2 = (s̃ij)q×m,

s̃ij ∈ F (R), and F (R) is the set of all finite fuzzy numbers.

In a bi-level decision problem, the decision makers from either level may have
several objectives which should be considered simultaneously. Often, these objectives
may be in conflict with each other, with any improvement in one achieved only at the
expense of others. Fuzzy multi-objective linear bi-level decision problems are thus
defined to model and solve linear fuzzy bi-level decision problems in which several
conflicting objectives, for either the leader or the follower, are to be optimised simul-
taneously.

Definition 1.1.3. (Zhang, Lu & Dillon 2007b) A fuzzy multi-objective linear bi-level
(FMOLB) decision problem is defined as:

For x ∈ X ⊆ Rn, y ∈ Y ⊆ Rm, F : X × Y → F s(R), and f : X × Y → F t(R),

min
x∈X

F (x, y) = (c̃T
11x + d̃T

11y, c̃T
21x + d̃T

21y, ..., c̃T
s1x + d̃T

s1y)T (1.3a)

subject to Ã1x + B̃1y ¹ b̃1 (1.3b)

min
y∈Y

f(x, y) = (c̃T
12x + d̃T

12y, c̃T
22x + d̃T

22y, ..., c̃T
t2x + d̃T

t2y)T (1.3c)

subject to Ã2x + B̃2y ¹ b̃2 (1.3d)

where c̃h1, c̃i2 ∈ F n(R), d̃h1, d̃i2 ∈ Fm(R), h = 1, 2..., s, i = 1, 2, ...t, b̃1 ∈ F p(R),
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b̃2 ∈ F q(R), Ã1 = (ãij)p×n, B̃1 =
(
b̃ij

)
p×m

, Ã2 = (ẽij)q×n, B̃2 = (s̃ij)q×m,

ãij, b̃ij, ẽij, s̃ij ∈ F (R).

Although much research has been carried out in the area of bi-level programming,
existing technologies have mainly focused on a specific situation comprising only one
leader and one follower. In cases of real world bi-level decision problems, however,
the lower level of a bi-level decision may involve more than one decision unit. The
leader’s choice is therefore affected by the objectives and strategies of his or her lower
counterparts. For each possible decision from the leader, those followers may have
their own different reactions. The relationships among these multiple followers could
be complex: they may or may not share their decision variables; they may have in-
dividual objectives and constraints but work with others cooperatively, or they may
have common objectives or common constraints (Lu, Shi & Zhang 2006). For exam-
ple, in the newsboy problem, more than one retailer (followers) may be involved. The
manufacturer (leader) tries to establish the most suitable wholesale price to enlarge his
or her profits that is bound to be influenced by the responses from different retailers.
Each retailer has his or her own individual policies to optimise the objective towards
different wholesale prices decided by the manufacturer. These followers may share
the same decision variables, or may have the same objectives or constraints when spe-
cific interests are involved. In such cases, the decision of the manufacturer (the leader)
is partially dependent on the environment data put forward by all these retailers (the
followers). This is a typical multi-follower bi-level decision problem.

In real world bi-level decision problems, there are also decision situations, although
relatively scarce, in which more than one leader is involved. For instance, in an elec-
tricity bidding market, each generating company needs to submit a set of hourly gen-
eration prices and available capacities for each of their electricity generation units for
the following day. According to these data and an hourly load forecast, the market op-
erator allocates the generation output for each unit. The generating companies, located
in the upper level, wish their profit to be as high as possible, while the operator, as the
follower, pursues the lowest cost. In this bi-level decision problem, unlike classical
bi-level problems, there is more than one leader.

In a bi-level decision making process, the leader or follower may set a goal for the
objective that he/she wishes to attain. A preferred solution is then defined to minimise
the deviation from the goal. We again take the newsboy problem as the example.
Although both the manufacturer and retailer wish to maximise their profits, they may
have some expected profit levels (goals) on their minds. As long as the actual profits
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reach these levels, they will be satisfied. Therefore to set goals for objectives aims to
yield a satisfactory solution rather than an optimal one.

This research addresses bi-level decision problems with these particularities: fuzzy
coefficients, multiple objectives for decision makers located either in the upper or the
lower level, more than one followers, many leaders, and goals. Based on the combina-
tion of these specialties, seven bi-level decision problems are identified, i.e. FLB deci-
sion problems, FMOLB decision problems, fuzzy linear multi-follower multi-objective
(FMMLB) bi-level decision problems, fuzzy linear bi-level goal (FLBG) decision
problems, multi-leader one-follower bi-level (MLOFB) decision problems, one-leader
multi-follower (OLMFB) bi-level decision problems, and multi-leader multi-follower
bi-level (MLMFB) decision problems.

These seven problems are the precise research issues focused on this thesis.

1.2 Objectives

Based on the research issues discussed in Section 1.1, three objectives are proposed
in this research.

(1) To develop approaches for bi-level decision problems.

In this research, bi-level decision problems are classified into different cate-
gories by considering factors of fuzzy/crisp coefficients, linear/non-linear formu-
las, multiple/single objective(s), multiple/single leader(s), multiple/single fol-
lower(s), and objective/goal optimisation strategy. Based on these factors, which
impose tremendous influence when formulating bi-level decision problems, seven
different kinds of bi-level decision problems are addressed in this research: FLB
decision problems, FMOLB decision problems, FMMLB decision problems,
FLBG decision problems, MLOFB decision problems, OLMFB decision prob-
lems, and MLMFB decision problems. The mathematical definitions of these
particular bi-level decision problems will be provided and corresponding algo-
rithms for solutions will be developed.

(2) To develop a software system to support bi-level decision making.

This decision support system will be able to identify and build up frameworks
for the seven kinds of bi-level decision problems discussed above. Solutions for
each of these problems will be derived with the help of the algorithms integrated
in the system at the back-end. As a decision making system, it also has functions
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of problem identification, data collection and processing, model input, method
selection, and visualised solution supply.

(3) To explore applications for the bi-level decision making system.

To apply the proposed techniques in this study and to test the correctness and
efficiency of the proposed models and algorithms, applications in railway trans-
portation, electricity market, and supply chains are developed.

1.3 Contributions

Corresponding to the objectives of my research described in Section 1.2, my doc-
torial research produces mainly eight contributions:

(1) Mathematical models for FLBG, FMMLB, MLOFB, OLMFB and MLMFB de-
cision problems. (Objective 1)

(2) PSO-based algorithms for FLB, MLOFB, OLMFB and MLMFB decision prob-
lems. (Objective 1)

(3) λ-cut and goal programming-based algorithms for FLBG and FMOLB decision
problems. (Objective 1)

(4) A fuzzy bi-level decision support system that supports bi-level decision making
from multiple angles. (Objective 2)

(5) A bi-level decision model for railway train set organising optimisation. (Objec-
tive 3)

(6) An OLMFB decision model on railway wagon flow management. (Objective 3)

(7) An MLOFB decision model in electricity markets. (Objective 3)

(8) Bi-level pricing models in supply chains. (Objective 3)

1.4 Organisation of this Thesis

This doctorial thesis consists of ten chapters:
Chapter 1 presents an overview of this research, including research issues, research

objectives, and research contributions.
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Chapter 2 reviews the related research areas, including bi-level programming, lin-
ear bi-level programming, multi-objective linear bi-level (MOLB) programming, multi-
follower bi-level (MFB) programming, multi-leader bi-level (MLB) programming and
fuzzy bi-level programming, the relationship between bi-level programming and other
optimisation problems, complexity and optimality conditions of bi-level problems, ap-
plications of bi-level programming techniques, bi-level decision support systems, and
particle swarm optimisation techniques.

Chapter 3 studies FLB decision problems by presenting a cutset-based decision
model and developing a particle swarm optimisation (PSO)-based algorithm for solv-
ing them.

Chapter 4 studies FMOLB decision problems by presenting a cutset-based decision
model and developing a λ−cut and goal-programming-based algorithm for solving
them.

Chapter 5 studies FMMLB decision problems. A model framework is proposed
to define FMMLB problems by different cooperation in objectives, constraints, and
decision variables among followers. Then three algorithms, i.e. a Branch-and-Bound-
based algorithm, a Kth-Best-based algorithm, and a PSO-based algorithm are devel-
oped for solving them.

Chapter 6 studies FLBG decision problems by proposing a cutset-based decision
model and developing an approximate algorithm for solving them.

Chapter 7 studies general bi-level problems where the objectives and constraints
for leaders and followers may have arbitrary formats. In particular, MLOFB, OLMFB,
and MLMFB decision problems are addressed by giving the mathematical definitions
and developing PSO-based algorithms to solve them.

Chapter 8 presents the development of a fuzzy bi-level decision support system,
which implements the algorithms developed in Chapters 3, 4, 5, 6 and 7 to support
bi-level decision making.

Chapter 9 applies the bi-level programming techniques developed in this study on
real world problems including railway transportation, electricity markets, and supply
chains.

Chapter 10 summarises the entire thesis and highlights the future research work.

1.5 Publications Related to this Thesis

Below is the list of my published, accepted and submitted papers during my PhD
study.
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Published and accepted:

(1) Ya Gao, Guangquan Zhang, Jun Ma, Jie Lu, “A λ-cut and Goal Programming
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1063-6706.

(2) Ya Gao, Guangquan Zhang, Jie Lu, Hui-Ming Wee, “Particle Swarm Optimiza-
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2 Literature Review

2.1 Bi-level Programming

From a historical point of view, bi-level programming is closely related to the eco-
nomic problem of kelberg (Stackelberg 1952) in the field of game theory. The original
formulation for bi-level programming appeared in 1973, in a paper authored by J.
Bracken and J. McGill (1973), although it was W. Candler and R. Norton (1977) who
first used the designation “bi-level” programming. However, it was not until the early
nineteen eighties that these problems started to receive the attention they deserved.

2.1.1 Bi-level Programming and Other Optimisation Problems

The fact that some important mathematical programs, such as minimax problems,
linear integer problems, bilinear problems, and quadratic programming can be viewed
as special instances of bi-level problems illustrates the importance of these problems
in researching bi-level problems.

Although it is simple to view a minimax problem as a bi-level problem, it was
not until 1977 that Gallo and Ulkucu (1977) first exploited the reduction of a bilinear
problem to a linear bi-level problem. This result also established that any integer of
concave quadratic problem can be converted to a bi-level problem. However, this
conversion is not entirely possible since the reciprocal result indicates that there exist
a penalised bilinear problem whose global optimal solutions are also global solutions
of the corresponding bi-level linear problem.

Although some researchers have attempted to establish a link between two ob-
jective optimisation and bi-level problems (Bard 1984a; Unlu 1987), none of them
succeeded so far in proposing conditions which guarantee that the optimal solution of
a given bi-level problem is pareto optimal or efficient for both upper and lower level
objective functions (Shi 2005).

A static Stackelberg problem can differ from a bi-level problem insofar as the upper
level function is minimised. If the reaction set of the follower is not a singleton for
some selections from the leader, then a solution of the static Stackelberg problem may
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not be a solution of the bi-level problem (Shi 2005).

2.1.2 Complexity of Bi-level Programming

The difficulty and complexity of solving a bi-level problem is easily confirmed by
looking at its simplest version, the linear bi-level problem. Examples of linear bi-
level problem with an exponential number of local minima will be generated using the
method proposed by Calamai and Vicente (1994). The tightest complexity result is
from Hansen et al. (1992), where it has been established that a linear bi-level prob-
lem is strongly NP-hard. A linear bi-level problem was then shown to be NP-hard by
Jeroslow (1985) using satisfiability arguments common in computer science. More-
over, Vicente et al. (1994) have shown that only checking local optimality in a linear
bi-level problem is a NP-hard problem. Bard (1991) then provided an alternative proof
by constructively reducing the problem of maximising a strictly convex quadratic func-
tion over a polyhedron to a linear minimax problem.

2.1.3 Optimality Conditions of Bi-level Programming

Research on optimality conditions is one of the central topics in bi-level study.
Several optimality conditions in bi-level programming have been proposed in the liter-
ature.

To formulate optimality conditions, it is often necessary to use the single-level re-
formulation of a bi-level problem. An early research in this direction of replacing the
lower level problem with an infinite number of constraints is shown in (Bard 1984a).
The following attempt, which formulates necessary and sufficient optimality condi-
tions, assumes the lower level problem has a unique strongly stable optimal solution
(Dempe 2001).

Necessary optimality conditions using the reformulation of a bi-level problem un-
der the help of the optimal value function of the lower level problem were studied
by Liu and Han (1997) and Ye (1997). Applying Duality theory to the lower level
problem can derive a minimax problem where optimality conditions can be developed
(Malhotra & Arora 1999). Necessary optimality conditions of Kuhn-Tucker were stud-
ied by Chen et al. (Chen & Florian 1994).

Optimality conditions for set-valued optimisation problems have been derived un-
der different assumptions and have used various differentiability tools. These tools are
sometimes restrictive for bi-level problems due to their special structures (Shi 2005).
The use of a Farkas-Minkowski theorem of the alternatives is demonstrated by Hwang
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(2002). An explicit description of the set valued objective function by finite functions
is used in the literature (Craven & Luu 1997).

2.2 Linear Bi-level Programming

2.2.1 Definition of Linear Bi-level Programming

A large part of the research on bi-level programming techniques has centred on its
linear version, the linear bi-level decision problem, in which all formulas of both the
objective functions and constraints from a leader and the follower are linear functions.
The general form of bi-level programming can be defined as:

Definition 2.2.1. (Bem-Ayed 1993)

min
x∈X

F (x, y) = cT
1 x + dT

1 y (2.1a)

subject to A1x + B1y 6 b1 (2.1b)

min
y∈Y

f(x, y) = cT
2 x + dT

2 y (2.1c)

subject to A2x + B2y 6 b2 (2.1d)

where c1, c2, d1, d2, b1, b2 are constant vectors; A1, A2, B1, B2 are constant matrices;
x, y are vectors of the decision variables of the upper and lower problems, respectively;
F, f are the objective functions of the upper and lower problems, respectively.

Although the definitions of a bi-level decision problem vary considerably from one
reference to another, most recent publications tend to agree on Definition 2.2.1 as the
general form. Nevertheless, there are many attempts to extend the model and expand
its use to more general problems.

2.2.2 Properties for Linear Bi-level Programming

Property 2.2.1. Semi-feasibility (Bem-Ayed 1993)
A point (x, y) is said to be semi-feasible if and only if A1x + B1y 6 b1, A2x +

B2y 6 b2, and x, y > 0. The set of semi-feasible points is a polyhedron called the
semi-feasible region.

Property 2.2.2. Feasibility (Bem-Ayed 1993)
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A point (x0, y0) is said to be feasible if and only if x0 > 0 and y0 is optimal to the
lower problem. The set of feasible points is called the feasible region.

(1) The feasible region is composed of a piecewise linear constraint region consist-
ing of a set of edges and hypersurfaces of the semi-feasible region (Bard 1984a).

(2) The feasible region is connected (Gallo & Ulkucu 1977).

Property 2.2.3. Optimality (Bem-Ayed 1993)
A point (x∗, y∗) is said to be optimal if and only if:

(1) (x∗, y∗) is feasible;

(2) for all feasible points (x0, y0), c∗1 + d∗1 > c1x0 + d1y0;

(3) for all feasible points (x∗, ȳ), if d2ȳ = d2y then d1y
∗ = d1ȳ.

The third condition states that if the lower decision maker is indifferent between
y∗ and y when x is fixed to x∗, then the upper decision maker must also be indifferent
between x∗, y∗ and x∗, ȳ.

Property 2.2.4. Convexity properties
The feasible region of a linear bi-level decision problem does not need be convex

since it is composed of a set of faces of the semi-feasible polyhedron.
Although not necessarily convex, the feasible region of a linear bi-level decision

problem has some of the properties of convex sets:

(1) If the feasible region is compact, then no feasible point can be expressed as a
convex combination of points that are semi-feasible or not feasible. Equivalently,
if a feasible point x is expressed as a convex combination of semi-feasible points,
then the points are also feasible (Gallo & Ulkucu 1977).

(2) Any extreme point of the feasible region is also an extreme point of the semi-
feasible region (Bialas & Karwan 1982).

(3) At least one optimal solution of a linear bi-level decision problem, if there is
one, occurs at a vertex of the feasible region (Bard 1984a).

(4) At least one optimal solution of a linear bi-level decision problem, if there is
one, occurs at a vertex of the polyhedron (Bard 1984a).
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Property 2.2.5. Kuhn-Tucker condition (Kuhn & Tucker 1951)
A necessary condition that (x∗, y∗) solved a bi-level decision problem defined by

Definition 2.2.1 is that there exist row vectors u∗ and v∗ such that (x∗, y∗, u∗, v∗) solves:

min
x∈X

F (x, y) = c1x + d1y (2.2a)

subject to A1x + B1y 6 b1 (2.2b)

A2x + B2y 6 b2 (2.2c)

u(b2 − A2x−B2y) + vy = 0 (2.2d)

x > 0, y > 0, u > 0, v > 0 (2.2e)

This Kuhn-Tucker condition provides a single-level equivalent formulation for a
linear bi-level decision problem.

Property 2.2.6. Inclusion of infimum and supremum constraints (Bem-Ayed 1993)
It means an infimum (inf) constraint has the following form:

w = inf{yj : j = 1, . . . ,m} (2.3)

where w and yj are variables.

Above constraint is equivalent to the following linear programming:

max w (2.4a)

subject to w 6 wj, j = 1, . . . ,m (2.4b)

The constraints of this linear programming guarantee that w is a lower bound while
its objective function guarantees it is the greatest one; therefore it guarantees that w is
an infimum since it is the greatest lower-bound of the set {yj : j = 1, . . . , m}. The
same concepts hold for a supremum (sup) constraint since the constraint is equivalent
to:

−w = sup{−yj : j = 1, . . . , m}

Assume that the original mathematical program containing constraint (2.3) has its
objective function and its other constraints all linear. Replacing (2.3) by (2.4) results
in the inclusion of a lower linear objective function as a constraint and hence the for-
mulation of the problem as linear bi-level programming. Supposing the objective is a
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maximisation problem, three cases are considered:

(1) when w has a (strictly) positive coefficient in the original objective function,
the lower objective in (2.4) is redundant and is discarded. The problem is then
solved as a linear programming;

(2) when w has a (strictly) negative coefficient in the original objective function, the
lower objective in (2.4) is necessary in the formulation. The problem must be
solved as a linear bi-level programming;

(3) when w has a zero coefficient in the original objective, it is sometimes possible to
multiply it by a suitable coefficient and add it to the original constraint; thereby,
we can solve the problem as a linear programming. However, most of the time
this suitable coefficient is hard, and often impossible, to find. Therefore, in this
case, it is usually solved as a linear bi-level programming.

The capability of linear bi-level programming to include infimum constraints al-
lows important extensions such as the formulation of any piecewise linear function.
In particular, the first case applies to concave functions and the second case applies to
convex functions.

2.2.3 Methods for Linear Bi-level Decision Problems

A linear bi-level decision problem has the important property that at least one
global optimal solution is attained at an extreme point of the constraint region (Zhang,
Lu & Dillon 2007c). This result was first established by Candler and Townsley (1982)
for a linear bi-level decision problem with no upper level constraints and with unique
lower level solutions. Later Bard (1984b), Bialas and Karwan (1984b) proved this
result under the assumption that the constraint region is bounded. Based on these
results, there have been nearly two dozen algorithms proposed for solving linear bi-
level decision problems (Bard & Moore 1990; Shi, Lu & Zhang 2005a; Lu, Shi,
Zhang & Ruan 2007b; Shi, Lu & Zhang 2005b; Shi, Lu, Zhang & Zhou 2006; Li,
Tian & Min 2006; White & Anandalingam 1993). These algorithms can be roughly
classified into three categories: the vertex enumeration based approaches (Bard &
Moore 1990; Shi et al. 2005a), which use the important characteristic that at least
one global optimal solution is attained at an extreme point of the constraints set; the
Kuhn-Tucker approaches (Lu et al. 2007b; Shi et al. 2005b; Shi et al. 2006) in which
a bi-level decision problem is transferred into a single level problem that solves the
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leader’s problem while including the follower’s optimality conditions as extra con-
straints; and the heuristics (Li et al. 2006; White & Anandalingam 1993), which are
known as global optimisation techniques based on convergence analysis.

The Kth-Best method proposed by Bialas and Karwan (1984a) is one vertex enu-
meration approach. The method first ranks all extreme points by the upper level op-
timisation problem, then starts from the first point and checks whether it is also an
optimal solution to the follower or not. If the first point is not the Stackelberg solution,
the procedure continues to examine the next best solution to the leader and so on.

The Kuhn-Tucker method is used by Bialas and Karwan (1984a) in their para-
metric complementary pivot algorithm. Bard et al. (1990) replaces the complemen-
tarity constraint (complementary slackness condition) with a separable representation
and applies a general Branch-and-Bound algorithm. Bard (1983) formulates a two-
level programming problem as an equivalent semi-infinite problem and develops his
grid search algorithm through a parametric linear program technique. Unlu (1987)
proposed an algorithm based on bi-criteria programming by using the result of Bard
(1983).

Despite the remarkable success with which Kth-Best and Kuhn-Tucker approaches
have been applied to linear bi-level decision problems, they cannot, however, handle
linear bi-level decision problems well when the constraint functions at the upper-level
are of arbitrary linear forms (Shi et al. 2005b). Shi, Lu, and Zhang (2005c) extended
the definition of linear bi-level solution by adding the constraints from the upper level
to the follower’s feasible set. Based on this definition, they also updated the Kuhn-
Tucker theory for linear bi-level decision problems (Shi et al. 2005b) and developed
the extended Kth-Best approach (Shi et al. 2005a) together with the extended Branch-
and-Bound approach (Shi et al. 2006) to solve a wider class of linear bi-level decision
problems.

Genetic algorithms and simulated annealing algorithms are two up-to-date heuris-
tic directions towards linear bi-level decision problems. Mathieu et al. (1994) pro-
posed the genetic algorithm-based bi-level programming algorithm by reproducing the
leader’s decision vector and solving the lower level linear problem to obtain the fol-
lower’s decision vector. The fitness test involves only the leader’s objective function
and the reproductive plan is controlled by both the population size and selection strat-
egy. Simulated annealing algorithms are derived from statistical mechanics with the
aim of finding near optimal solutions to large-scale problems (Bard 1998). Anan-
dalingam et al. (1992) developed a simulated annealing based bi-level programming
algorithm for linear bi-level decision problems. This algorithm makes use of the fact
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that for a given leader-controlled variable, the follower’s rational reaction can be ob-
tained by solving the lower level linear programming, which implies that only compo-
nents of the leader-controlled variables need to be generated randomly. By introducing
a probability of the replacement of the current point by a new point, it promises a glob-
ally optimal solution statistically. Meanwhile, an additional control parameter known
as the temperature is applied to promote the convergence by lowering it in steps when
virtually no change occurs any more.

2.3 Multi-objective Bi-level Programming

For real world cases, decision making often has multi-objective characteristics,
which have been studied in single level decision making, but only a few studies have
been conducted in bi-level decision making situations (Wen & Hsu 1991). In a bi-
level decision model, the selection of a solution by the leader is also affected by the
follower’s optimal reactions. Therefore, a solution for the leader who has multiple
objectives needs to consider both the solution of the leader’s multiple objectives and
the follower’s decision.

For multi-objective bi-level programming, Shi and Xia (1997) have presented an
interactive algorithm. It first sets goals for a leader’s objectives, then obtains many so-
lutions that are close enough to the goals (larger than some certain “satisfactoriness”).
Fixing the preferences from the leader, the follower’s responses will be obtained one
by one. The final solution is obtained once the follower’s choice is near enough to
that of the leader. However, to set “satisfactoriness” is not a direct job: if it was too
big, there would be no solution at all, while huge computation would be caused by too
small a value.

Recently, an approximation Branch-and-Bound algorithm, which handles multiple
objectives by the weighting method, has been proposed to solve multi-objective bi-
level decision problems with fuzzy demands by Zhang and Lu et al. (2007b).

For one level multi-objective decision problems, there are generally two sets of
methods (Ehrgott & Gandibleux 2003), exact solution methods (Sakawa 1993; Zadeh
1963b; Kuhn & Tucker 1951; Zadeh 1963a), such as scalarisation methods (Sakawa
1993; Zadeh 1963b) and goal programming (Sakawa 1993), and heuristic solution
methods (Augusto, Rabeau, Dépincé & Bennis 2006; Gandibleux, Mezdaoui & Freville
1997; Murata & Ishibuchi 1995), such as genetic algorithm (Murata & Ishibuchi 1995;
Augusto et al. 2006).

For scalarisation methods, several computational methods have been proposed by
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different characterising approaches to Pareto optimal solutions. Among many possible
ways of scalarising, the weighting method, the constraint method, and the weighted
maxmini method have been the most widely used.

The term “goal programming” was first put forward by A. Charnes and W. W.
Cooper to deal with multi-objective linear programming problems in 1961. It is as-
sumed that a decision maker can specify the goals or aspirating levels for the objective
functions. Subsequent studies on goal programming approaches have been numerous.
The key idea behind goal programming is to minimise the deviations from goals or as-
piration levels set by the decision maker. Goal programming therefore, in most cases,
seems to yield a satisfying solution rather than an optimising one. By introducing the
auxiliary variables, the linear goal programming problem can be converted to an equiv-
alent linear programming problem (Charnes & Cooper 1977; Hwang & Yoon 1981).
Goal programming has been further developed by Lee (1972), Ignizio (1983; 1976),
Charnes and Cooper (1977). Recent research on goal programming can be found in
(Lu, Wu & Zhang 2007d; Saad 2005; Hu, Teng & Li 2007; Pramanik & Roy 2007; Li,
Wu & Yang 2004).

Since Schaffer (1984) first applied the genetic algorithm for multi-objective pro-
gramming, many researchers have made efforts in this direction (Murata & Ishibuchi
1995; Augusto et al. 2006). Schaffer proposed the vector evaluated genetic algorithm
(1984) for finding Pareto optimal solutions of multi-objective decision problems. In
his work, a population is divided into disjoint sub-populations that are governed by
different objective functions. Although Schaffer reported some successful results, it
seems that only extreme solutions can be found as the search directions are parallel
to the axes of the objective space (Murata & Ishibuchi 1995). To avoid this prob-
lem, Tadahiko (1995) presented a new genetic algorithm where the selection proce-
dure takes the weights attached to multiple objectives not as a constant but randomly
specified for each selection, thus utilising various search directions. In this field, some
researches have been dedicated to improve the computing efficiency for “real time
control” problem. Augusto (2006) proposed a genetic algorithm with more efficiency
than regular genetic algorithms by the fact that it replaces the worst individuals by the
offspring from the better one while stabilising the population size.

2.4 Multi-leader Bi-level Programming

Although there exists extensive research on bi-level programming with a single
leader, studies on multi-leader bi-level programming are relatively scarce (Nie 2007).
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A multi-leader Stackelberg decision model is generally viewed as one that leads to
chaos or economic warfare (Sherali 1984). Okuguchi (1976; 1978) and Furth (1979)
have presented consistent extensions of Stackelberg’s decision model to the multi-
leader situation in a way that gives equilibrium rather than disequilibrium solutions.
Okuguchi (1976; 1978) considers a leader-leader duopoly, and Furth (1979) extended
this development to include prices. Both these models are based on the leader-firms us-
ing linear estimators or predictors to describe the reactive behaviour of the other firms.
As pointed out by Furth (1979), these models are therefore not true leader-follower
decision models. The leaders make no attempt to manipulate the outputs or prices
of the followers by using true reaction curves. In contrast, in Hanif’s model (1984),
the leader-firms employ true follower reaction curves, and hence yield a true leader-
follower extension to Stackelberg’s model. Subsequent studies (Yu & Wang 2007;
Ehrenmann 2004) mainly focus on seeking a Stackelberg-Nash-Cournot equilibrium.

2.5 Multi-follower Bi-level Programming

The original bi-level programming technique mainly deals with one leader and one
follower decision problems. In real world applications, multiple followers, that is, mul-
tiple decision units at the low level may be involved. Thus, a leader’s decision will be
affected not only by those followers’ individual reactions but also by the relationships
among them. For each possible solution of the leader, those followers may have their
different reactions. The multiple followers may or may not share their decision vari-
ables. They may have their individual objectives and constraints but work with others
cooperatively, or may have their common objectives or common constraints.

For a bi-level programming with multiple followers, a framework has been estab-
lished and a total of 9 sub problems are identified according to different levels of coop-
eration among follower-controlled variables, objectives, and constraints respectively
(Lu et al. 2006).

In a multi-follower bi-level decision problem, the followers may share or partially
share their decision variables in their objectives and constraints. However, there are
eight different sub-cases within the cooperative situation which are determined by the
relationships among the objectives and constraints of the followers (Lu et al. 2006).

(1) followers with shared decision variables have the same objectives and the same
constraints;

(2) followers with shared decision variables have the same objectives but different
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constraints;

(3) followers with shared decision variables have different objectives but the same
constraints;

(4) followers with shared decision variables have different objectives and different
constraints;

(5) followers with partially shared decision variables have the same objectives and
the same constraints;

(6) followers with partially shared decision variables have the same objectives but
different constraints;

(7) followers with partially shared decision variables have different objectives but
the same constraints;

(8) followers with partially shared decision variables have different objectives and
different constraints.

The approach to each sub problem was presented based on the extended Kuhn-
Tucker theorem (Lu, Shi, Zhang & Dillon 2007a).

2.6 Fuzzy Bi-level Programming

Shih et al. (1996) and Lai (1996) first applied the fuzzy approach to bi-level pro-
gramming, although the bi-level problems addressed do not involve fuzzy coefficients.
Their approach is based on the idea that the follower optimises an objective function,
taking the goal of the leader into consideration. Both the leader and the follower elicit
membership functions of fuzzy goals for their objective functions, and in particular, the
leader also specifies those of fuzzy goals for his or her decision variables. The follower
solves a fuzzy programming problem with a constraint on a satisfactory degree of the
leader. This method, however, might cause a final solution that is undesirable because
of inconsistency between the fuzzy goals of the objective function and the decision
variables (Sakawa, Nishizaki & Uemura 2000).

To overcome this problem, Sakawa et al. (2000) developed an interactive fuzzy
approach by deriving a satisfactory solution and updating the satisfactory degrees of
decision makers with considerations of overall satisfactory balance among all levels.
They have used the λ-cut method to defuzzify fuzzy numbers:
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Definition 2.6.1. (Zadeh 1965) The λ-cut of a fuzzy set Ã is defined as an ordinary set
Aλ such that:

Aλ = {x|µÃ(x) > λ} , λ ∈ [0, 1]

If Aλ is a non-empty bounded closed interval, it can be denoted by:

Aλ = [AL
λ , AR

λ ] (2.5)

where AL
λ and AR

λ are the lower and upper bounds of the interval respectively.

In their method, the decision maker at the upper level first denotes the satisfac-
tory degree for all fuzzy coefficients in question, thus transforming the fuzzy bi-level
problem into a non-fuzzy one. Decision makers at both levels specify their own mem-
bership functions by goals that the objective functions should be substantially less than
or equal to some values. As there exist infinite “choices” that meet the requirement
of the satisfactory degree, it is reasonable for both decision makers to optimise their
objectives within these “choices” by maximising the membership functions. Then,
the leader specifies the minimum satisfactory level, and the follower solves the sin-
gle level optimisation problem by adding the leader’s specification as an extra con-
straint. To make an overall satisfactory balance between both levels, Sakawa applied
the method suggested by Zimmermann (1978) and thus transformed the problem into a
linear programming problem. Finally, if the solution, denoted by satisfactory degrees
of the leader and follower, of this linear programming problem meets two require-
ments: first, the leader’s satisfactory degree is not less than a minimum satisfactory
level; second, the ratio of satisfactory degrees between both levels is not beyond the
lower and upper bounds specified by the leader, the algorithm stops, and current solu-
tion is obtained as the final one. Otherwise the leader adjusts the minimum satisfactory
level and recalculates the linear programming problem until the solution is within the
limits.

The methods of both Shih et al. (1996) and Sakawa et al. (2000) are based on
the assumption that decision makers from different levels can essentially cooperate
with each other. For classical bi-level problems, such as the Stackelberg problem
(Stackelberg 1952), which assumes that cooperation is inhibited among decision mak-
ers in different levels, further investigation is still to be carried out.

In our lab, an approximation approach has been developed (Zhang et al. 2007a;
Zhang, Lu & Dillon 2006a; Zhang et al. 2007b; Zhang et al. 2007c; Lu, Wu & Zhang
2007c) based on the FMMLB framework building and models formatting (Lu et al.
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2006; Shi et al. 2005b; Shi, Zhang & Lu 2005c; Shi et al. 2006; Shi et al. 2005a; Lu
et al. 2007a). To compare to fuzzy numbers, the following ranking method has been
used:

Definition 2.6.2. (Zhang, Wu, Remias & Lu 2003) For any n-dimensional fuzzy vec-
tors ã = (ã1, . . . , ãn), b̃ = (b̃1, . . . , b̃n), ãi, b̃i ∈ F (R), under a certain satisfactory
degree α ∈ [0, 1], we define

ã ¹α b̃ iff ai
L
λ 6 bi

L
λ and ai

R
λ 6 bi

R
λ , i = 1, 2, · · · , n, ∀λ ∈ [α, 1]

Definition 2.6.2 means, when comparing two fuzzy numbers, that all values with
membership grades smaller than α are neglected. When two fuzzy numbers cannot be
compared under a certain α by this ranking method, we can adjust α to a larger degree
to achieve the comparison.

For a problem defined by Definition 1.1.2, the solution can be reached by solving
the associated multi-objectives bi-level decision making problem (2.6) under different
cut sets λj , j = 0, 1, . . . , n. (Zhang et al. 2007a):

min
x∈X

(F (x, y))L
λi

= c1
L
λi

x + d1
L
λi

y,

min
x∈X

(F (x, y))R
λi

= c1
R
λi

x + d1
R
λi

y,
(2.6a)

subject to A1
L
λi

x + B1
L
λi

y 5 b1
L
λi

,

A1
R
λi

x + B1
R
λi

y 5 b1
R
λi

,
(2.6b)

min
y∈Y

(f(x, y))L
λi

= c2
L
λi

x + d2
L
λi

y,

min
y∈Y

(f(x, y))R
λi

= c2
R
λi

x + d2
R
λi

y,
(2.6c)

subject to A2
L
λi

x + B2
L
λi

y 5 b2
L
λi

,

A2
R
λi

x + B2
R
λi

y 5 b2
R
λi

.
(2.6d)

where i = 0, 1, . . . , n.
The weighting method is then adopted to further transfer this defuzzified MOLB

decision problem (2.6) into a linear bi-level decision problem, which can be solved
by the extended Branch-and-Bound algorithm (Shi et al. 2006) or extended Kth-Best
approach (Shi et al. 2005a). The final solution is reached when solutions under two ad-
jacent cut sets are near enough. Effective as this approach is, it suffers from expensive
calculation when handling large-sized problems.
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2.7 Applications of Bi-level Programming Techniques

The investigation of bi-level decision problems is strongly motivated by real world
applications, and bi-level programming techniques have been applied with remarkable
success in different domains, such as transportation network design (Clegg, Smith,
Xiang & Yarrow 2001), production planning (Lukac, Soric & Rosenzweig 2006) and
logistics (Zhang & Lu 2007a).

Ben-Ayed et al. have applied bi-level formulations to the network design problem
(1988) arising from transportation systems. In the accompanying formulation, a central
planner controls investment costs at the system level, while operational costs depend
on traffic flows, which are determined by the individual users’ route selection. Because
users are assumed to make decisions to maximise their peculiar utility functions, their
choices do not necessarily coincide with the choices that are optimal for the system.
Nevertheless, the central planner can influence the users’ choices by improving some
links, making them relatively more attractive than others. In deciding on these im-
provements, the central planner tries to influence the users’ preferences in such a way
that total costs are minimised. The partition of the control variables between the upper
and lower levels naturally leads to a bi-level formulation (Bard 1998).

A fuzzy bi-level model has been built up by Feng and Wen to control traffic flow
in a disaster area after an earthquake (2005). When a severe earthquake occurs, the
roadway systems usually experience different degrees of damage, thus reducing the
capacity of those roadways, and causing traffic congestion. How to maintain traffic
functions reasonably to facilitate saving more lives will be the utmost mission task
after quakes. The commander of the Emergency-Response Centre of government at
county and city level (the upper level) aims at allowing traffic to go through the disaster
areas as much as possible within the roadway’s capacity, while the road users (located
at the lower level) always choose the shortest route to actualise emergency rescues. To
solve this decision problem, the bi-level technique has been used to provide an efficient
traffic control strategy for recovery from chaos post-earthquake.

Recently, Ji and Shao (2006) formulated a bi-level programming model for a news-
boy problem. The classical newsboy problem is to find the newspaper’s order quantity
so that it maximises the expected profit of the newsboy, which is addressed by most
research on a single level system. Ji and Shao (2006) located the decision makers in-
volved at different decision levels: the manufacturer is considered to be at the top level
controlling the wholesale prices, and the retailers are followers at the lower level who
decide the ordering quantities of newspaper. Both the manufacturer and retailers aim to
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maximise their own profits. By developing a hybrid intelligent algorithm, the classical
newsboy problem with fuzzy demands and price discounts policy was solved under a
two level framework.

Apart from the applications listed above, bi-level decision problems are frequent
in many other real world cases, such as resources allocation (Onaland, Darmawan &
Johnson 1995), network investigation (Hobbs, Metzler & Pang 2000), and engineering
(Ferris & Tin-Loi 2001). These applications have been stimulating factors for the
development of bi-level programming techniques.

2.8 Bi-level Decision Support Systems

A decision support system (DSS) is a system that supports technological and man-
agerial decision making by assisting in the organisation of knowledge about semi-
structured issues (Zhang et al. 2007b).

Since a bi-level programming is a NP-hard problem due to its non-convexity and
non-differentiability (Pei, Tian & Huang 2006), it is almost impossible to calculate a
solution without the help of a software system. DSSs have been developed for mod-
elling decision situations involving more than one decision maker (Fang, Hipel, Kil-
gour & Peng 2003) or under multi-criteria (Mustajoki & Hämäläinen 2007), such as
multi-objective DSSs (Wu, Lu & Zhang 2005) and group DSSs (Lu, Zhang, Ruan &
Wu 2007e). However, few aforementioned DSSs fall into the category where decision
makers are located hierarchically.

2.9 Particle Swarm Optimisation (PSO)

Particle swarm optimisation (PSO) is a heuristic algorithm proposed by James
Kennedy and Russell Eberhart in 1995 (Kennedy & Eberhart 1995). It is one of the
community-intelligent algorithms for searching a global solution, which comes from
the study of a simple model of a bird community and bird behaviour simulation (Zhao
& Gu 2006).

Inspired by the social behaviour of animals such as fish schooling and bird flock-
ing, PSO is a kind of population-based algorithm. The population of PSO is called
“swarm”, and each individual in the swarm is called “particle”. The similarity be-
tween PSO and other evolutionary algorithms lies in the fact that the individual in the
community is moved to a good area according to its fitness to the environment. Un-
like other evolutionary computation methods, however, each particle in PSO has an
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adaptable velocity (position change), according to which it moves in the search space
(Parsopoulos & Vrahatis 2002). Moreover, each particle has a memory, remembering
the best position it has ever visited in the search space (Eberhart & Kennedy 1995).
Thus, its movement is an aggregated acceleration towards its best previously visited
position and towards the best particle of a topological neighborhood.

Suppose current search space for PSO is n−dimensional, then the i−th particle of
the swarm can be represented by a n−dimensional vector, xi = (xi1, xi2, . . . , xin)T .
The velocity (position change) of this particle can thus be represented by another
n−dimensional vector vi = (vi1, vi2, . . . , vin)T . The best previously visited position
of the i−th particle is denoted as pi = (pi1, pi2, . . . , pin)T . Defining g as the index
of the best particle in the swarm (i.e., the g−th particle is the best), and letting the
superscripts denote the iteration number, the swarm is manipulated according to the
following two equations (Eberhart, Simpson & Dobbins 1996):

vk+1
id = wvk

id + crk
1(pid − xk

id) + crk
2(p

k
gd − xk

id)

xk+1
id = xk

id + vk+1
id

(2.7)

where d = 1, . . . , n denotes the d−dimensional vector, i = 1, 2, . . . , N denotes
i−particle, N is the size of the swarm, w is the “inertia weight”, c is a positive constant,
called “acceleration constant”, and r1, r2 are random numbers, uniformly distributed
in [0, 1], and k = 1, 2, . . . determines the iteration number.

To escape from local optimisations, “stretching” technique (Parsopoulos & Vrahatis
2002) can be used. The “stretching” on a objective functions F (x, y) is defined by:

G(x, y∗) = F (x, y) + γ1||x− x∗||(sign(F (x, y∗)− F (x∗, y∗)) + 1)

H(x, y∗) = G(x, y∗) + γ2
sign(F (x,y∗)−F (x∗,y∗))+1
tanh(µ(G(x,y∗)−G(x∗,y∗)))

(2.8)

where γ1, γ2, and µ are arbitrary chosen positive constant, and sign(·) defines the well
known triple valued sign function.

sign(x) =





1, if x < 0;

0, if x = 0;

−1, if x < 0.

As PSO requires only primitive mathematical operators, and is computationally
inexpensive in terms of both memory requirements and speed (Parsopoulos & Vrahatis
2002; Eberhart & Kennedy 1995), it has a good convergence performance and has been
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successfully applied in many fields such as neural network training (Zhang, Zhang,
Lok & Lyu 2007e), integral programming (Kitayama & Yasuda 2006; Rudolph 1994),
minimax problem (Luksan & J 2000), and multi-object optimisation (Ho1, Yang, Ni,
Lo & Wong 2005).

2.10 Summary

In this chapter, we review the concepts, models, properties, and techniques of
bi-level programming, linear bi-level programming, multi-objective bi-level program-
ming, MFB programming, MLB programming, fuzzy bi-level programming and par-
ticle swarm optimisation techniques. This chapter also reviews the relationship be-
tween bi-level programming and other optimisation problems, complexity and optimal-
ity conditions of bi-level problems, applications of bi-level programming techniques,
bi-level decision support systems, and the PSO method. Some of these research results
have built up the foundation for this research in the following chapters.
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3 PSO for Fuzzy Linear Bi-level Decision
Making

This chapter addresses bi-level decision problems featured with fuzzy coefficients,
linear objective functions and constraints. We call them FLB decision problems. Based
on a fuzzy ranking method, we give a mathematical definition of FLB problems. Then
applying the strategy of PSO method, a PSO-based algorithm is presented for solving
FLB decision problems. Finally, some experiments are carried to analyse the parameter
choosing.

3.1 A Model

In this thesis, R represents the set of all real numbers, Rn is a n−dimensional
Euclidean space, F (R) and F n(R) are the set of all finite fuzzy numbers and the set of
all n−dimensional finite fuzzy numbers on Rn respectively. A finite fuzzy number is
a fuzzy number whose 0-cut is an interval whose ends are finite numbers.

Definition 3.1.1. (Zhang et al. 2007a) A fuzzy linear bi-level (FLB) decision problem
is defined as : For x ∈ X ⊆ Rn, y ∈ Y ⊆ Rm, F : X×Y → F (R), and f : X×Y →
F (R),

min
x∈X

F (x, y) = c̃1x + d̃1y

subject to Ã1x + B̃1y ¹ b̃1

min
y∈Y

f(x, y) = c̃2x + d̃2y

subject to Ã2x + B̃2y ¹ b̃2

(3.1)

where c̃1, c̃2 ∈ F n(R), d̃1, d̃2 ∈ Fm(R), b̃1 ∈ F p(R), b̃2 ∈ F q(R), Ã1 = (ãij)p×n,

ãij ∈ F (R), B̃1 =
(
b̃ij

)
p×m

, b̃ij ∈ F (R), Ã2 = (ẽij)q×n, ẽij ∈ F (R), B̃2 = (s̃ij)q×m,

s̃ij ∈ F (R), and F (R) is the set of all finite fuzzy numbers.
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3.2 A PSO-based Algorithm

In this section, we develop a PSO-based algorithm for a FLB problem defined by
Definition 3.1.1. The reasons we choose the PSO method are based on the following
considerations:

Since classical methods for the NP-hard bi-level problem are still inefficient and
lack universality (Zhao & Gu 2006), artificial intelligence based methods offer addi-
tional possibilities. As one of evolutionary computation based methods, PSO can be
used for single level optimisation problems by pushing every potential solution (parti-
cle) towards the best ones. Here we reasonably extend it towards two level situation.
For a bi-level decision problem, we first apply the PSO technique on the leader’s prob-
lem, then for each leader’s particle fixed, we need to use the PSO technique again to
find the optimal response from the follower.

There are many other evolutionary computation methods, such as genetical algo-
rithms, which have been applied to solve crisp bi-level problem successfully. By these
methods, only a small number of individuals keep their “identities” and offsprings
are generated by the interaction in the group. Thus, to find a final optimal solution
largely depends on the validity of the initial population, to guarantee which, the Sim-
plex method can be used to fix the initial population within the constraint area. How-
ever, for optimisation problems involving with fuzzy coefficients, the Simplex method
becomes invalid.

Unlike many other evolutionary optimisation techniques, a particle swarm system
has memory, and knowledge of good solutions is retained by all particles. Individu-
als who fly past optima are tugged to return towards them. This speciality makes it
possible to generate an initial swarm without having to worry about the fuzzy issues
prematurely. Thus, our strategy of handling fuzzy coefficients, which is illustrated in
the following paragraphs, can be integrated perfectly with the PSO technique.

For a problem defined by Definition 3.1.1, the majority of current researches apply
the method that defuzzifies the fuzzy problem first by certain kind of method, then
solves the crisp problem by crisp bi-level optimisation techniques. This method, how-
ever, will lost some information carried by the fuzzy coefficients in the defuzzifying
process.

In this research, a different strategy is used, where optimisation techniques are ap-
plied directly on fuzzy problems. In the procedure of computation, the PSO method is
used on a bi-level problem first without considering its fuzzy coefficients to generate a
swarm, then the fuzzy issue will be handled while each particle is evaluated by com-
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paring them. As each particle represents a crisp solution, we need to compare different
objective function values which are fuzzy numbers under some certain solutions. Here
we use the ranking method defined by Definition 2.6.2 to compare any two fuzzy num-
bers. This strategy fully considers the original information of the fuzzy coefficients,
thus minimising the information loss. This is a different angle to solve fuzzy bi-level
optimisation problems.

The notations used in subsequent paragraphs are explained in Table 3.1.

Table 3.1: The explanation of some notations for Algorithm 1
N the number of candidate solutions (particles) by the leader

within its swarm;
M the number of candidate solutions (particles) by the follower

within its swarm;
xi = (xi1, xi2, . . . , xin)T , i = 1, . . . , N , the ith candidate solution

for the leader;
vi = (vi1, vi2, . . . , vin)T , i = 1, . . . , N , the velocity of xi;
yi =(yi1, yi2, . . . , yim)T , the follower’s choice for each xi from the

leader;
yij = (yij1, yij2, . . . , yijm)T , j = 1, . . . , M , the jth candidate solu-

tion by the follower for the choice xi from the leader;
vij = (vij1, ...vijm)T , j = 1, . . . , M , the velocity of yij;
pi = (pi1, pi2, . . . , pin)T , the best previously visited position of xi;
pij = (pij1, pij2, . . . , pijm)T , the best previously visited position of

yij;
ypi = (ypi1, ypi2, . . . , ypim)T , the response from the follower for the

choice pi from the leader;
CS = (CS1, CS2, . . . , CSn), the recording vector to record if xi is

within constraint area;
g the index of the best particle for the leader in the swarm;
kl current iteration number for the upper-level problem;
kf current iteration number for the lower-level problem;
MaxKl the predefined max iteration number for kl;
MaxKf the predefined max iteration number for kf .

Based on the PSO technique and the strategy for handling fuzzy coefficients, the
algorithm is outlined in Figure 3.1.

First we initiate a swarm comprised by the leader-controlled variables (X particles).
For each particle (xi) in the swarm, we generate the optimal response from the follower
by solving the following problem:
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Figure 3.1: The outline of Algorithm 1

min
y∈Y

f(xi, y) = c̃2xi + d̃2y

subject to Ã1xi + B̃1y ¹ b̃1

Ã2xi + B̃2y ¹ b̃2

(3.2)

To solve Problem (3.2), we also need to generate a population (Y particles), each
of which has a velocity. From every particle pair (xi, yij), a bunch of the follower’s
objective values can be generated, which are inevitably fuzzy numbers. These fuzzy
objective values will be evaluated by comparing any two of them using Definition
2.6.2. Thus we can select the previously visited best positions for each y particles and
the best one among y particles. The position yij and velocity vij for each in Y particles
will be updated using:

v
kf+1
ij = wv

kf

ij + cr
kf

1 (pij − y
kf

ij ) + cr
kf

2 (y
kf

i − y
kf

ij )

y
kf+1
ij = y

kf

ij + v
kf+1
ij

(3.3)

Here, kf is to record current loop. Once kf is larger than some predefined value, yi

will be sent to the leader as the follower’s response for xi.
Above optimisation and computation procedure will also be applied to every parti-

cle pair (xi, yi) to update the position xi and velocity vi of every leader’s particle:

vkl+1
i = wvkl

i + crkl
1 (pi − xkl

i ) + crkl
2 (xkl

g − xkl
i )

xkl+1
i = xkl

i + vkl+1
i

(3.4)

Once the iteration times kl is large enough, current best particle pair (xg, yg) will be
outputted as the final solution. This algorithm is specified in Algorithm 1.
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Algorithm 1: A PSO-based algorithm for FLB decision problems
Input: the coefficients of Problem (3.1)
Output: (xg, yg)
Initialising: kl = 1; pi = (pi1, pi2, . . . , pin)T = (0, 0, . . . , 0)T ;
Sampling: xi = (xi1, xi2, . . . , xin)T ; vi = (vi1, vi2, ...vin)T , i = 1, . . . , N ;
Generating the responses from the follower:
foreach xi do

kf = 1; pij = (pij1, pij2, . . . , pijm)T = (0, 0, . . . , 0)T ;
Sampling: yij = (yij1, yij2, . . . , yijm)T ; vij = (vij1, vij2, ...vijm)T , j = 1, . . . ,M ;

1 CSi = false;
if Ã1x + B̃1y ¹ b̃1 and Ã2xi + B̃2y ¹ b̃2 then

CSi = true;
end
if (pij = (pij1, pij2, . . . , pijm)T = (0, 0, . . . , 0)T ) or (f(xi, yij) ¹ f(xi, pij)) then

pij = (pij1, pij2, . . . , pijm)T = (yij1, yij2, . . . , yijm)T ;
end
Searching the best response yi from pij , j = 1, 2, . . . ,M ; Updating velocities and
positions using Equation (3.3); kf = kf + 1;
if kf > MaxK then

Goto 2;
else

Goto 1;
end

end
2 if CSi = true then

if (pi = (pi1, . . . , pin)T = (0, . . . , 0)T ) or (F (xi, yi) 6 F (pi, ypi)) then
pi = (pi1, pi2, . . . , pin)T = (xi1, xi2, . . . , xin)T ;
ypi = (ypi1, ypi2, . . . , ypim)T = (yi1, yi2, . . . , yim)T ;

end
end
Searching (xg, yg) from pi, and ypi, i = 1, . . . , N ; Updating xi and vi using Equation
(3.4); kl = kl + 1;
if kl > MaxK then

Stop;
else

Goto 2;
end

3.3 Experiments and Analysis

In this section, two numerical examples are employed to test this PSO-based algo-
rithm. Based on the experiments, we discuss the choice of the parameters.

The two numerical examples are listed as follows:
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Example1:
max
x∈X

F (x, y) = 6̃x + 3̃y

subject to − 1̃x + 3̃y ¹ 2̃1

max
y∈Y

f(x, y) = −3̃x + 6̃y

subject to 1̃x + 3̃y ¹ 2̃7

(3.5)

Example2:

max
x∈X

F (x, y) = 6̃x1 + 3̃x2 − 3̃x3 + 6̃y1 − 1̃y2

subject to 1̃x1 − 1̃x2 + 3̃x3 + 1̃y1 + 3̃y2 ¹ 2̃1

2̃1x1 + 2̃7x2 + 1̃x3 − 1̃y1 + 3̃y2 ¹ 2̃7

max
y∈Y

f(x, y) = 3̃x1 + 1̃x2 + 3̃x3 + 2̃1y1 + 2̃7y2

subject to − 3̃x1 + 6̃x2 − 1̃x3 + 3̃y1 + 1̃y2 ¹ 2̃1

3̃x1 + 2̃1x2 + 2̃7x3 + 1̃y1 − 1̃y2 ¹ 2̃7

(3.6)

The membership functions of the coefficients in these examples are as follows:

µ6̃(x) =





0, x < 5

x2−25
11

, 5 5 x < 8

1, x = 6

64−x2

28
, 6 < x 6 8

0, x > 8

, µ3̃(x) =





0, x < 2

x2−4
5

, 2 5 x < 3

1, x = 3

25−x2

16
, 3 < x 6 5

0, x > 5

,

µ−̃1(x) =





0, x < −2

4−x2

3
, −2 5 x < −1

1, x = −1

x2−0.25
0.75

, −1 < x 6 −0.5

0, x > −0.5

, µ−̃3(x) =





0, x < −4

16−x2

7
, −4 5 x < −3

1, x = −3

x2−1
8

, −3 < x 6 −1

0, x > −1

,

µ1̃(x) =





0, x < 0.5

x2−0.25
0.75

, 0.5 5 x < 1

1, x = 1

4−x2

3
, 1 < x 6 2

0, x > 2

, µ3̃(x) =





0, x < 2

x2−4
5

, 2 5 x < 3

1, x = 3

25−x2

16
, 3 < x 6 5

0, x > 5

,
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µ2̃1(x) =





0, x < 19

x2−361
80

, 19 5 x < 21

1, x = 21

625−x2

184
, 21 < x 6 25

0, x > 25

, µ2̃7(x) =





0, x < 25

x2−625
104

, 25 5 x < 27

1, x = 27

961−x2

232
, 27 < x 6 31

0, x > 31

.

These examples are run by the PSO-based algorithm proposed in this chapter,
which was implemented by Visual Basic 6.0, and tested on a desktop computer with
CPU Pentium 4 2.8GHz, RAM 1G, Windows XP.

In the experiments, the inertia weight w is initially set as 1.2, and is gradually
declined towards 0, and the population size is set as 20. Now we adjust the coefficients
of c1 and c2 from 0.5 to 2 respectively. Under every pair of specific c1 and c2, the
two examples are run in the PSO-based algorithm by five times, and different solutions
have been obtained. To evaluate the performance, we compare the solutions obtained
from the PSO-based algorithm with those from the classical fuzzy bi-level algorithms
of the extended Branch-and-Bound algorithm (Zhang et al. 2006a) and the extended
Kth-Best algorithm (Zhang, Lu & Dillon 2006b). Table 3.2 and Table 3.3 list the
experiment result for Example 1 and Example 2 respectively. In Table 3.2, (4x∗,4y∗)
represents the average solution difference between the PSO-based algorithm and the
classical algorithms for every decision vector. The column of “4” sums up the average
difference by every decision vector for every c1, c2 pair. In the column of “Time”, the
average running time are listed which is calculated by seconds. The symbols can be
explained the same way in Table 3.3 for Example 2.

In Table 3.2, we can see that, there is no obvious diversion among the solutions and
the running time is also quite stable. In Table 3.3, where a more complex example is
involved, the most optimal solution occurs at the point where c1 = 0.5, c2 = 2 with the
least average solution fluctuation and least average computation time. At other points
where c1 = 0.5, c2 = 1; c1 = 1, c2 = 1; and c1 = 2, c2 = 1; this PSO-based algorithm
runs efficiently and effectively with stable performance.

Above experiments show this PSO-based algorithm can obtain stable solutions
which are very close to those from the classical methods. Thus, we can come to the
conclusion that the PSO-based algorithm proposed in this chapter can solve FLB prob-
lems quite correctly and effectively by exploring veracious solutions.

What we can not ignore is that the computation time of the PSO-based algorithm
is still much longer than the classical algorithms. This inefficiency comes from the
nature of heuristic strategy which simulates the optimisation process while the classical
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Table 3.2: Summary of the running solutions for Example 1

(c1, c2) (4x∗,4y∗) 4 Time
(0.5, 0.5) (0.00114, 0) 0.00114 54.6
(0.5, 1) (0, 0) 0 52.6
(0.5, 1.5) (0, 0) 0 51
(0.5, 2) (0, 0) 0 50.8
(1, 0.5) (0.00008, 0) 0.00008 59
(1, 1) (0, 0) 0 54
(1, 1.5) (0, 0) 0 52.8
(1, 2) (0.00002, 0) 0.00002 51.8
(1.5, 0.5) (0.0001, 0) 0.0001 56.4
(1.5, 1) (0, 0) 0 53.8
(1.5, 1.5) (0, 0) 0 52.6
(1.5, 2) (0.00006, 0) 0.00006 54.8
(2, 0.5) (0, 0) 0 57.6
(2, 1) (0, 0) 0 53.4
(2, 1.5) (0, 0) 0 52
(2, 2) (0.00004, 0) 0.00004 50.4

Table 3.3: Summary of the running solutions for Example 2

(c1, c2) (4x∗1,4x∗2,4x∗3,4y∗1,4y∗2) 4 Time
(0.5, 0.5) (0.13028, 0.04322, 0.0006, 0.09532, 0) 0.26942 113
(0.5, 1) (0.00402, 0, 0, 0.0008, 0) 0.00482 85.2
(0.5, 1.5) (0.22934, 0, 0, 0.04672, 0.00214) 0.2782 92.6
(0.5, 2) (0.0034, 0, 0, 0.00068, 0) 0.00408 84.8
(1, 0.5) (0.01366, 0, 0, 0.00274, 0) 0.0164 106.4
(1, 1) (0.00416, 0, 0, 0.00084, 0) 0.005 88.8
(1, 1.5) (0.26908, 0, 0, 0.05382, 0) 0.3229 88.8
(1, 2) (0.26908, 0, 0.07884, 0.29356, 0.61704) 1.25852 90
(1.5, 0.5) (0.26908, 0.13478, 0, 0.38254, 0.27306) 1.05946 103.6
(1.5, 1) (0.00354, 0, 0, 0.0007, 0) 0.00424 91.2
(1.5, 1.5) (0.26908, 0, 0, 0.05382, 0) 0.3229 92.6
(1.5, 2) (0.26908, 0, 0, 0.05744, 0.00702) 0.33354 90
(2, 0.5) (0.26908, 0, 0, 0.3405, 0.71414) 1.32372 106.2
(2, 1) (0.00426, 0, 0, 0.00086, 0) 0.00512 92.4
(2,1.5) (0.26908, 0, 0, 0.13452, 0.20054) 0.60414 87.4
(2, 2) (0.26908, 0.03682, 0, 0.11272, 0) 0.41862 88
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methods use the mathematical properties to directly get the solutions. However, using
the mathematical properties sometimes can not reach a solution when these properties
can not be satisfied, while heuristic methods are capable of overpassing these complex
property verification to generate a reasonable solution at all. In many situations, this
reasonable solution is very helpful for a decision maker when making a plan. So the
importance of heuristic method should not be ignored as it explores new direction for
bi-level optimisation.

3.4 Summary

This chapter studies FLB problems where fuzzy coefficients in their objective func-
tions or constraints are represented in any form of membership functions. By intro-
ducing a ranking method based on cut sets, a new concept of optimal solution for FLB
problems is defined. A PSO-based algorithm is proposed in this chapter for solving
FLB problems. The experiments reveal that the PSO-based algorithm is effective to
solve FLB decision problems. This PSO-based algorithm is one of the computation
kernels in a fuzzy bi-level decision support system developed to assist decision makers
to solve realistic FLB problems. This system will be described in Chapter 8 in detail.
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4 Goal Programming for Fuzzy
Multi-objective Linear Bi-level Decision
Making

This chapter addresses bi-level decision problems featured by multiple objectives,
fuzzy coefficients, linear objective functions and constraints. We call them FMOLB
decision problems. First, using a fuzzy ranking method, we give a mathematical defi-
nition for FMOLB decision problems. Then, based on the definition of a distance mea-
sure between two fuzzy vectors using λ-cut, a fuzzy linear bi-level goal (FLBG) model
is formatted and related theorems are proved. Next, a λ-cut and goal-programming-
based algorithm is presented for solving FMOLB decision problems. Finally, a case
study on a newsboy problem is adopted to illustrate the application and executing pro-
cedure of the algorithm and experiments are carried out to discuss and analyse the
performance of this algorithm.

4.1 Definitions, Models and Theorems

The model of a general bi-level decision problem with multiple objectives for both
the leader and follower was given in (Shi & Xia 1997). It is re-formulated in this
chapter as:

For x ∈ X ⊆ Rn, y ∈ Y ⊆ Rm, a multi-objective bi-level (MOB) model is:

min
x∈X

F (x, y) (4.1a)

subject to G(x, y) 6 0 (4.1b)

min
y∈Y

f(x, y) (4.1c)

subject to g(x, y) 6 0 (4.1d)

where F : Rn × Rm → Rs, G : Rn × Rm → Rp, f : Rn × Rm → Rt, and
g : Rn ×Rm → Rq.
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Associated with the MOB problem (4.1), some definitions are listed below:

Definition 4.1.1.

• Constraint region of the MOB (4.1):

S , {(x, y) : x ∈ X, y ∈ Y,G(x, y) 6 0, g(x, y) 6 0}

It refers to all possible combination of choices that the leader and follower may
make.

• Projection of S onto the leader’s decision space:

S(X) , {x ∈ X : ∃y ∈ Y, G(x, y) 6 0, g(x, y) 6 0}

• Feasible set for the follower ∀x ∈ S(X):

S(x) , {y ∈ Y : (x, y) ∈ S}

• The follower’s rational reaction set for x ∈ S(X):

P (x) , {y ∈ Y : y ∈ argmin[f(x, ŷ) : ŷ ∈ S(x)]}

where argmin[f(x, ŷ) : ŷ ∈ S(x)] = {y ∈ S(x) : f(x, y) 6 f(x, ŷ), ŷ ∈
S(x)}.
The follower observes the leader’s action and reacts by selecting y from his or
her feasible set to minimise his or her objective function.

• Inducible region:

IR , {(x, y) : (x, y) ∈ S, y ∈ P (x)}

which represents the set over which a leader may optimise his or her objectives.

To ensure that (4.1) is well posed, it is assumed that S is non-empty and compact,
and that for all decisions taken by the leader, the follower has some room to respond,
i.e., P (x) 6= ∅.

Thus, in terms of the above notations, an MOB problem can be written as:

min{F (x, y) : (x, y) ∈ IR} (4.2)
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Based on the fuzzy ranking method in Definition 2.6.2, an FMOLB decision prob-
lem is defined as:

Definition 4.1.2. For x ∈ X ⊆ Rn, y ∈ Y ⊆ Rm, F : X × Y → F s(R), and
f : X × Y → F t(R),

min
x∈X

F (x, y) = (c̃11x + d̃11y, . . . , c̃s1x + d̃s1y)T (4.3a)

subject to Ã1x + B̃1y ¹α b̃1 (4.3b)

min
y∈Y

f(x, y) = (c̃12x + d̃12y, . . . , c̃t2x + d̃t2y)T (4.3c)

subject to Ã2x + B̃2y ¹α b̃2 (4.3d)

where c̃h1, c̃i2 ∈ F n(R), d̃h1, d̃i2 ∈ Fm(R), h = 1, 2, . . . , s, i = 1, 2, . . . , t, b̃1 ∈
F p(R), b̃2 ∈ F q(R), Ã1 = (ãij)p×n, B̃1 =

(
b̃ij

)
p×m

, Ã2 = (ẽij)q×n, B̃2 = (s̃ij)q×m,

ãij, b̃ij, ẽij, s̃ij ∈ F (R).

To build an FLBG model, a distance measure between two fuzzy vectors is needed.
There are many important measures to compare two fuzzy numbers, such as Hausdorff
distance (Chaudhuri & Rosenfeld 1999), Hamming distance (Diamond & Kloeden
1994), Euclidean distance (Diamond & Kloeden 1994), and the maximum distance
(Kacprzyk 1997). In this chapter, a certain number of λ-cuts will be used to approx-
imate a fuzzy number. A final solution is considered to be reached when solutions
under two adjacent λ-cuts are near enough. To help implement this strategy, a new
distance measure between two fuzzy vectors by using λ−cuts is defined below:

Definition 4.1.3. Let ã = (ã1, ã2, . . . , ãn), b̃ = (b̃1, b̃2, . . . , b̃n) be n−dimensional
fuzzy vectors, Φ = {α 6 λ0 < λ1 < · · · < λl 6 1} be a division of [α, 1], the distance
between ã and b̃ under φ is defined as:

D(ã, b̃) , 1

l + 1

n∑
i=1

l∑
j=0

{|aL
iλj
− bL

iλj
|+ |aR

iλj
− bR

iλj
|} (4.4)

where α is a predefined satisfactory degree.

In this fuzzy distance definition, a satisfactory degree α is used to give more flex-
ibility to compare fuzzy vectors. It is possible that two fuzzy vectors might not be
compared by Definition 4.1.3. For example, when we compare two fuzzy vectors ã

and b̃, if some of the left λ-cuts of ã are less than those of b̃, while some right λ-cuts of
ã are larger than those of b̃, there is no ranking relation between ã and b̃.
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To solve this problem, we can enhance the aspiration levels of the attributes, i.e.,
we can adjust the satisfactory degree α to a point where all incomparable parts are
discarded. It can be understood as a risk taken by a decision maker who neglects all
values with the possibility of occurrence smaller than α. In such a situation, a solution
is supposed to be reached under this aspiration level. So, normally, we take the same
α for both objectives and constraints in one bi-level problem.

Lemma 4.1.1. For any n-dimensional fuzzy vectors ã, b̃, c̃, fuzzy distance D defined

above satisfies the following properties:

(1) D(ã, b̃) = 0, if ãi = b̃i, i = 1, 2, . . . , n

(2) D(ã, b̃) = D(b̃, ã)

(3) D(ã, b̃) 6 D(ã, c̃) + D(c̃, b̃). ¥

Goals set for the objectives of a leader (g̃L) and a follower (g̃F ) in (4.3) are defined
as:

g̃L = (g̃L1, g̃L2, . . . , g̃Ls)
T , (4.5a)

g̃F = (g̃F1, g̃F2, . . . , g̃Ft)
T , (4.5b)

where g̃Li, i = 1, . . . , s, g̃Fj , j = 1, . . . , t are fuzzy numbers with membership func-
tions of µg̃Li

, µg̃Fj
.

Our concern is to make the objectives of both a leader and the follower as near
to their goals as possible. Using the distance measure defined in (4.4), we format an
FLBG problem as:

For x ∈ X ⊆ Rn, y ∈ Y ⊆ Rm, F : X × Y → F s(R), and f : X × Y → F t(R),

min
x∈X

D(F (x, y), g̃L) (4.6a)

subject to Ã1x + B̃1y ¹α b̃1 (4.6b)

min
y∈Y

D(f(x, y), g̃F ) (4.6c)

subject to Ã2x + B̃2y ¹α b̃2 (4.6d)

where Ã1 = (ãij)p×n, B̃1 =
(
b̃ij

)
p×m

, Ã2 = (ẽij)q×n, B̃2 = (s̃ij)q×m, ãij, b̃ij, ẽij, s̃ij ∈
F (R), and α is a predefined satisfactory degree.
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From Definitions 2.6.2, 4.1.2, and 4.1.3, we transfer problem (4.6) into:

min
x∈X

, 1
l+1

s∑
h=1

l∑
j=0

{|cL
h1λj

x + dL
h1λj

y − gL
Lhλj
|+ |cR

h1λj
x + dR

h1λj
y − gR

Lhλj
|}, (4.7a)

subject to A1
L
λj

x + B1
L
λj

y 6 b1
L
λj

,

A1
R
λj

x + B1
R
λj

y 6 b1
R
λj

,

j = 0, 1, . . . , l,

(4.7b)

min
y∈Y

, 1
l+1

t∑
i=1

l∑
j=0

{|cL
i2λj

x + dL
i2λj

y − gL
Fiλj
|+ |cR

i2λj
x + dR

i2λj
y − gR

Fiλj
|}, (4.7c)

subject to A2
L
λj

x + B2
L
λj

y 6 b2
L
λj

,

A2
R
λj

x + B2
R
λj

y 6 b2
R
λj

j = 0, 1, . . . , l,

(4.7d)

where Φ = {α 6 λ0 < λ1 < · · · < λl 6 1} is a division of [α, 1].
For a clear understanding of the idea adopted, define:

vL−
h1 = 1

2
[|

l∑
j=0

cL
h1λj

x +
l∑

j=0

dL
h1λj

y −
l∑

j=0

gL
Lhλj
| − (

l∑
j=0

cL
h1λj

x +
l∑

j=0

dL
h1λj

y −
l∑

j=0

gL
Lhλj

)]

vL+
h1 = 1

2
[|

l∑
j=0

cL
h1λj

x +
l∑

j=0

dL
h1λj

y −
l∑

j=0

gL
Lhλj
|+ (

l∑
j=0

cL
h1λj

x +
l∑

j=0

dL
h1λj

y −
l∑

j=0

gL
Lhλj

)]

vR−
h1 = 1

2
[|

l∑
j=0

cR
h1λj

x +
l∑

j=0

dL
h1λj

y −
l∑

j=0

gR
Lhλj
| − (

l∑
j=0

cR
h1λj

x +
l∑

j=0

dL
h1λj

y −
l∑

j=0

gR
Lhλj

)]

vR+
h1 = 1

2
[|

l∑
j=0

cR
h1λj

x +
l∑

j=0

dL
h1λj

y −
l∑

j=0

gR
Lhλj
|+ (

l∑
j=0

cR
h1λj

x +
l∑

j=0

dL
h1λj

y −
l∑

j=0

gR
Lhλj

)]

h = 1, 2 . . . , s,

vL−
i2 = 1

2
[|

l∑
j=0

cL
i2λj

x +
l∑

j=0

dL
i2λj

y −
l∑

j=0

gL
Fiλj
| − (

l∑
j=0

cL
i2λj

x +
l∑

j=0

dL
i2λj

y −
l∑

j=0

gL
Fiλj

)]

vL+
i2 = 1

2
[|

l∑
j=0

cL
i2λj

x +
l∑

j=0

dL
i2λj

y −
l∑

j=0

gL
Fiλj
|+ (

l∑
j=0

cL
i2λj

x +
l∑

j=0

dL
i2λj

y −
l∑

j=0

gL
Fiλj

)]

vR−
i2 = 1

2
[|

l∑
j=0

cR
i2λj

x +
l∑

j=0

dL
i2λj

y −
l∑

j=0

gR
Fiλj
| − (

l∑
j=0

cR
i2λj

x +
l∑

j=0

dL
i2λj

y −
l∑

j=0

gR
Fiλj

)]

vR+
i2 = 1

2
[|

l∑
j=0

cR
i2λj

x +
l∑

j=0

dL
i2λj

y −
l∑

j=0

gR
Fiλj
|+ (

l∑
j=0

cR
i2λj

x +
l∑

j=0

dL
i2λj

y −
l∑

j=0

gR
Fiλj

)]

i = 1, 2 . . . , t,

(4.8)

where vL−
h1 and vL+

h1 are deviational variables representing the under-achievement and
over-achievement of the hth goal for a leader under the left λ-cut, vR−

h1 and vR+
h1 are

deviational variables representing the under-achievement and over-achievement of the
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hth goal for a leader under the right λ-cut, vL−
i2 , vL+

i2 , vR−
i2 and vR+

i2 are for a follower
respectively.

Associated with the linear bi-level problem (4.7), we now consider the following
bi-level problem:

For (vL−
11 , vL+

11 , vR−
11 , vR+

11 ,. . ., vL−
s1 , vL+

s1 , vR−
s1 , vR+

s1 ) ∈ R4s, X ′ ⊆ X × R4s, (vL−
12 ,

vL+
12 , vR−

12 , vR+
12 ,. . ., vL−

t2 , vL+
t2 , vR−

t2 , vR+
t2 ) ∈ R4t, Y ′ ⊆ Y × R4t, let x = (x1, · · · ,

xn) ∈ X , x′ = (x1, · · · , xn, vL−
11 , vL+

11 , vR−
11 , vR+

11 , . . ., vL−
s1 , vL+

s1 , vR−
s1 , vR+

s1 ) ∈ X ′ ,
y = (y1, · · · , ym) ∈ Y , y′ = (y1, · · · , ym, vL−

12 , vL+
12 , vR−

12 , vR+
12 , . . ., vL−

t2 , vL+
t2 , vR−

t2 ,
vR+

t2 ) ∈ Y ′, and v1, v2, : X ′ × Y ′ → R.

min
x′∈X′

v1 =
s∑

h=1

(vL−
h1 + vL+

h1 + vR−
h1 + vR+

h1 ) (4.9a)

subject to
l∑

j=0

cL
h1λj

x +
l∑

j=0

dL
h1λj

y + vL−
h1 − vL+

h1 =
l∑

j=0

gL
Lhλj

,

l∑
j=0

cR
h1λj

x +
l∑

j=0

dR
h1λj

y + vR−
h1 − vR+

h1 =
l∑

j=0

gR
Lhλj

,

vL−
h1 , vL+

h1 , vR−
h1 , vR+

h1 > 0,

vL−
h1 · vL+

h1 = 0, vR−
h1 · vR+

h1 = 0

h = 1, 2, . . . , s,

A1
L
λj

x + B1
L
λj

y 6 b1
L
λj

,

A1
R
λj

x + B1
R
λj

y 6 b1
R
λj

,

j = 0, 1, . . . , l,

(4.9b)

min
y′∈Y ′

v2 =
t∑

i=1

(vL−
i2 + vL+

i2 + vR−
i2 + vR+

i2 ) (4.9c)

subject to
l∑

j=0

cL
i2λj

x +
l∑

j=0

dL
i2λj

y + vL−
i2 − vL+

i2 =
l∑

j=0

gL
Fiλj

,

l∑
j=0

cR
i2λj

x +
l∑

j=0

dR
i2λj

y + vR−
i2 − vR+

i2 =
l∑

j=0

gR
Fiλj

,

vL−
i2 , vL+

i2 , vR−
i2 , vR+

i2 > 0,

vL−
i2 · vL+

i2 = 0, vR−
i2 · vR+

i2 = 0

i = 1, 2, . . . , t,

A2
L
λj

x + B2
L
λj

y 6 b2
L
λj

,

A2
R
λj

x + B2
R
λj

y 6 b2
R
λj

,

j = 0, 1, . . . , l,

(4.9d)

Theorem 4.1.1. Let (x
′∗, y

′∗) = (x∗,vL−∗
11 ,vL+∗

11 , vR−∗
11 ,vR+∗

11 , . . .,vL−∗
s1 ,vL+∗

s1 , vR−∗
s1 ,vR+∗

s1 ,

y∗, vL−∗
12 ,vL+∗

12 ,vR−∗
12 , vR+∗

12 ,. . .,vL−∗
t2 , vL+∗

t2 , vR−∗
t2 , vR+∗

t2 ) be the optimal solution to bi-

level problem (4.9), then (x∗, y∗) is the optimal solution to the bi-level problem defined
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by (4.7).

Proof. By Definition 4.1.1, let the notations associated with problem (4.7) are
denoted by:

S = {(x, y) : Ak
L
λj

x + Bk
L
λj

y 6 bk
L
λj

,

Ak
R
λj

x + Bk
R
λj

y 6 bk
R
λj

, k = 1, 2, j = 0, 1 . . . , l, } (4.10a)

S(X) = {x ∈ X : ∃y ∈ Y,Ak
L
λj

x + Bk
L
λj

y 6 bk
L
λj

,

Ak
R
λj

x + Bk
R
λj

y 6 bk
R
λj

, k = 1, 2, j = 0, 1 . . . , l, } (4.10b)

S(x) = {y ∈ Y : (x, y) ∈ S} (4.10c)

P (x) = {y ∈ Y : y ∈ argmin Ψ} (4.10d)

where Ψ = 1
l+1

t∑
i=1

l∑
j=0

{|cL
i2λj

x + dL
i2λj

ŷ− gL
Fiλj
|+ |cR

i2λj
x + dR

i2λj
ŷ− gR

Fiλj
|, ŷ ∈ S(x)}

IR = {(x, y) : (x, y) ∈ S, y ∈ P (x)} (4.10e)

Problem (4.7) can be written as

min
x∈X

1

l + 1

s∑

h=1

l∑
j=0

{|cL
h1λj

x + dL
h1λj

y − gL
Lhλj
|+ |cR

h1λj
x + dR

h1λj
y − gR

Lhλj
|}

subject to (x, y) ∈ IR (4.11)

And those of problem (4.9) are denoted by:

S ′ = {(x′, y′) : Ak
L
λj

x + Bk
L
λj

y 6 bk
L
λj

, (4.12a)

Ak
R
λj

x + Bk
R
λj

y 6 bk
R
λj

, k = 1, 2, j = 0, 1 . . . , l

l∑
j=0

cL
h1λj

x +
l∑

j=0

dL
h1λj

y + vL−
h1 − vL+

h1 =
l∑

j=0

gL
Lhλj

,

l∑
j=0

cR
h1λj

x +
l∑

j=0

dR
h1λj

y + vR−
h1 − vR+

h1 =
l∑

j=0

gR
Lhλj

,

vL−
h1 , vL+

h1 , vR−
h1 , vR+

h1 > 0, vL−
h1 · vL+

h1 = 0, vR−
h1 · vR+

h1 = 0, h = 1, 2, . . . , s,

l∑
j=0

cL
i2λj

x +
l∑

j=0

dL
i2λj

y + vL−
i2 − vL+

i2 =
l∑

j=0

gL
Fiλj

,
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l∑
j=0

cR
i2λj

x +
l∑

j=0

dR
i2λj

y + vR−
i2 − vR+

i2 =
l∑

j=0

gR
Fiλj

,

vL−
i2 , vL+

i2 , vR−
i2 , vR+

i2 > 0, vL−
i2 · vL+

i2 = 0, vR−
i2 · vR+

i2 = 0, i = 1, 2, . . . , t, }
S(X ′) = {x′ ∈ X ′ : ∃y′ ∈ Y ′, Ak

L
λj

x + Bk
L
λj

y 6 bk
L
λj

, (4.12b)

Ak
R
λj

x + Bk
R
λj

y 6 bk
R
λj

, k = 1, 2, j = 0, 1 . . . , l,

l∑
j=0

cL
h1λj

x +
l∑

j=0

dL
h1λj

y + vL−
h1 − vL+

h1 =
l∑

j=0

gL
Lhλj

,

l∑
j=0

cR
h1λj

x +
l∑

j=0

dR
h1λj

y + vR−
h1 − vR+

h1 =
l∑

j=0

gR
Lhλj

,

vL−
h1 , vL+

h1 , vR−
h1 , vR+

h1 > 0, vL−
h1 · vL+

h1 = 0, vR−
h1 · vR+

h1 = 0, h = 1, 2, . . . , s,

l∑
j=0

cL
i2λj

x +
l∑

j=0

dL
i2λj

y + vL−
i2 − vL+

i2 =
l∑

j=0

gL
Fiλj

,

l∑
j=0

cR
i2λj

x +
l∑

j=0

dR
i2λj

y + vR−
i2 − vR+

i2 =
l∑

j=0

gR
Fiλj

,

vL−
i2 , vL+

i2 , vR−
i2 , vR+

i2 > 0, vL−
i2 · vL+

i2 = 0, vR−
i2 · vR+

i2 = 0, i = 1, 2, . . . , t, }
S(x′) = {y′ ∈ Y ′ : (x′, y′) ∈ S ′} (4.12c)

P (x′) = {y′ ∈ Y ′ :

y′ ∈ argmin[
t∑

i=1

(v̂L−
i2 + v̂L+

i2 + v̂R−
i2 + v̂R+

i2 ) : ŷ′ ∈ S(x′)]} (4.12d)

IR′ = {(x′, y′) : (x′, y′) ∈ S ′, y′ ∈ P (x′)} (4.12e)

Problem (4.9) can be written as

min
x′∈X′
{

l∑

h=1

(vL−
h1 + vL+

h1 + vR−
h1 + vR+

h1 ) : (x′, y′) ∈ IR′} (4.13)

As (x
′∗, y

′∗) is the optimal solution to problem (4.9), from (4.13), it can be seen
that, ∀(x′, y′) ∈ IR′, we have:

l∑

h=1

(vL−
h1 + vL+

h1 + vR−
h1 + vR+

h1 ) >
l∑

h=1

(vL−∗
h1 + vL+∗

h1 + vR−∗
h1 + vR+∗

h1 )

As:
l∑

j=0

cL
h1λj

x +
l∑

j=0

dL
h1λj

y + vL−
h1 − vL+

h1 =
l∑

j=0

gL
Lhλj

and vL−
h1 · vL+

h1 = 0, h =
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1, 2, . . . , s, we have:

v−h1 + v+
h1 = |

l∑
j=0

cL
h1λj

x +
l∑

j=0

dL
h1λj

y −
l∑

j=0

gL
Lhλj
|,

vL−∗
h1 + vL+∗

h1 = |
l∑

j=0

cL
h1λj

x∗ +
l∑

j=0

dL
h1λj

y∗ −
l∑

j=0

gL
Lhλj
|, h = 1, 2, . . . , s

Similarly, we have:

vR−
h1 + vR+

h1 = |
l∑

j=0

cR
h1λj

x +
l∑

j=0

dR
h1λj

y −
l∑

j=0

gR
Lhλj
|,

vR−∗
h1 + vR+∗

h1 = |
l∑

j=0

cR
h1λj

x∗ +
l∑

j=0

dR
h1λj

y∗ −
l∑

j=0

gR
Lhλj
|, h = 1, 2, . . . , s

So: ∀(x′, y′) ∈ IR′,

|
l∑

j=0

cL
h1λj

x +
l∑

j=0

dL
h1λj

y −
l∑

j=0

gL
Lhλj
|+ |

l∑
j=0

cR
h1λj

x +
l∑

j=0

dR
h1λj

y −
l∑

j=0

gR
Lhλj
|

> |
l∑

j=0

cL
h1λj

x∗ +
l∑

j=0

dL
h1λj

y∗ −
l∑

j=0

gL
Lhλj
|+ |

l∑
j=0

cR
h1λj

x∗ +
l∑

j=0

dR
h1λj

y∗ −
l∑

j=0

gR
Lhλj
|,

h = 1, 2, . . . , s (4.14)

We now prove that the projection of S ′ onto the X × Y space, denoted by S ′|X,Y ,
is equal to S:

On the one hand, ∀(x, y) ∈ S ′|X,Y , from constraints: Ak
L
λj

x+Bk
L
λj

y 6 bk
L
λj

, Ak
R
λj

x+

Bk
R
λj

y 6 bk
R
λj

, k = 1, 2, j = 0, 1 . . . , l, in S ′, we have: (x, y) ∈ S, so S ′|X,Y ⊆ S.
On the other hand, ∀(x, y) ∈ S, by (4.8), we can always find vL−

11 , vL+
11 , vR−

11 ,
vR+

11 ,. . ., vL−
s1 , vL+

s1 , vR−
s1 , vR+

s1 , vL−
12 , vL+

12 , vR−
12 , vR+

12 , . . ., vL−
t2 , vL+

t2 , vR−
t2 , vR+

t2 which
satisfies the constraints of (4.9b) and (4.9d). Together with the inequations of Ak

L
λj

x +

Bk
L
λj

y 6 bk
L
λj

, and Ak
R
λj

x + Bk
R
λj

y 6 bk
R
λj

, k = 1, 2, j = 0, 1 . . . , l, requested by S,
we have (x, vL−

11 , vL+
11 , vR−

11 , vR+
11 ,. . ., vL−

s1 , vL+
s1 , vR−

s1 , vR+
s1 , y ,vL−

12 , vL+
12 , vR−

12 , vR+
12 , . . .,

vL−
t2 , vL+

t2 , vR−
t2 , vR+

t2 ) ∈ S ′, thus (x, y) ∈ S ′|X,Y , S ⊆ S ′|X,Y .
So, we can prove that:

S ′|X,Y = S (4.15)

Similarly, we have

S(x)′|X,Y = S(x) (4.16a)

S(X)′|X,Y = S(X) (4.16b)
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Also, from:

l∑
j=0

cL
i2λj

x +
l∑

j=0

dL
i2λj

y + vL−
i2 − vL+

i2 =
l∑

j=0

gL
Fiλj

and
vL−

i2 · vL+
i2 = 0, i = 1, 2, . . . , t

we have:

vL−
i2 + vL+

i2 = |
l∑

j=0

cL
i2λj

x +
l∑

j=0

dL
i2λj

y −
l∑

j=0

gL
Fiλj
|, i = 1, 2, . . . , t, (4.17a)

Similarly, we have:

vR−
i2 + vR+

i2 = |
l∑

j=0

cR
i2λj

x +
l∑

j=0

dR
i2λj

y −
l∑

j=0

gR
Fiλj
|, i = 1, 2, . . . , t (4.17b)

Thus:
P (x′) = {y′ ∈ Y ′ : y′ ∈ argminΨ′} (4.18)

where Ψ′ =
t∑

i=1

l∑
j=0

{|cL
i2λj

x + dL
i2λj

ŷ − gL
Fiλj
|+ |cR

i2λj
x + dR

i2λj
ŷ − gR

Fiλj
|, ŷ ∈ S(x′)}

From (4.15) and (4.18), we get:

P (x′)|X×Y = P (x) (4.19)

From (4.10e), (4.12e), (4.15) and (4.19), we get:

IR′|X×Y = IR (4.20)

which means, in X × Y space, the leaders of problem (4.7) and (4.9) have the same
optimising space.

Thus, from (4.14) and (4.20), it can be obtained that: ∀(x, y) ∈ IR, we have:
1

l+1

s∑
h=1

l∑
j=0

{|cL
h1λj

x + dL
h1λj

y − gL
Lhλj
|+ |cR

h1λj
x + dR

h1λj
y − gR

Lhλj
|}

> 1
l+1

s∑
h=1

l∑
j=0

{|cL
h1λj

x∗ + dL
h1λj

y∗ − gL
Lhλj
|+ |cR

h1λj
x∗ + dR

h1λj
y∗ − gR

Lhλj
|},

So: (x∗, y∗) is the optimal solution of the problem (4.7).
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Adopting weighting method, (4.9) can be further transferred into (4.21):

min
x′∈X′

v−1 + v+
1 (4.21a)

subject to c1x + d1y

+v−1 − v+
1 =

s∑
h=1

l∑
j=0

(gL
Lhλj

+ gR
Lhλj

),

v−1 , v+
1 > 0,

v−1 · v+
1 = 0

A1
L
λj

x + B1
L
λj

y 6 b1
L
λj

,

A1
R
λj

x + B1
R
λj

y 6 b1
R
λj

,

j = 0, 1, . . . , l,

(4.21b)

min
y′∈Y ′

v−2 + v+
2 (4.21c)

subject to c2x + d2y =
t∑

i=1

l∑
j=0

(gL
Fiλj

+ gR
Fiλj

),

v−2 , v+
2 > 0,

v−2 · v+
2 = 0

A2
L
λj

x + B2
L
λj

y 6 b2
L
λj

,

A2
R
λj

x + B2
R
λj

y 6 b2
R
λj

,

j = 0, 1, . . . , l,

(4.21d)

where v−1 =
s∑

h=1

(vL−
h1 + vR−

h1 ), v+
1 =

s∑
h=1

(vL+
h1 + vR+

h1 ), v−2 =
t∑

i=1

(vL−
i2 + vR−

i2 ), v+
2 =

t∑
i=1

(vL+
i2 + vR+

i2 ), c1 =
s∑

h=1

l∑
j=0

(cL
h1λj

+ cR
h1λj

), d1 =
s∑

h=1

l∑
j=0

(dL
h1λj

+ dR
h1λj

), c2 =

t∑
i=1

l∑
j=0

(cL
i2λj

+ cR
i2λj

), d2 =
t∑

i=1

l∑
j=0

(dL
i2λj

+ dR
i2λj

).

In the above formula, v−1 and v+
1 are deviational variables representing the under-

achievement and over-achievement of goals for a leader, and v−2 and v+
2 are deviational

variables representing the under-achievement and over-achievement of goals for a fol-
lower respectively.

The nonlinear conditions of v−1 · v+
1 = 0, and v−2 · v+

2 = 0 need not be maintained if
the Kuhn-Tucker algorithm(Shi et al. 2005b) together with the Simplex algorithm are
adopted, since only equivalence at an optimum is wanted. Further explanation can be
found from (Charnes & Cooper 1961a). Thus, problem (4.21) is further transformed
into:

For (v−1 , v+
1 ) ∈ R2, X̄ ′ ⊆ X ×R2, (v−2 , v+

2 ) ∈ R2, Ȳ ′ ⊆ Y ×R2, let x = (x1, · · · ,
xn) ∈ X , x̄′ = (x1, · · · , xn, v−1 , v+

1 ) ∈ X̄ ′ , y = (y1, · · · , ym) ∈ Y , ȳ′ = (y1, · · · , ym,
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v−2 , v+
2 , ) ∈ Ȳ ′, and v1, v2 : X̄ ′ × Ȳ ′ → F (R).

min
(x,v−1 ,v+

1 )∈X̄′
v1 = v−1 + v+

1 (4.22a)

subject to c1x + d1y

+v−1 − v+
1 =

s∑
h=1

l∑
j=0

(gL
Lhλj

+ gR
Lhλj

),

A1
L
λj

x + B1
L
λj

y 6 b1
L
λj

,

A1
R
λj

x + B1
R
λj

y 6 b1
R
λj

,

j = 0, 1, . . . , l,

(4.22b)

min
(y,v−2 ,v+

2 )∈Ȳ ′
v2 = v−2 + v+

2 (4.22c)

subject to c2x + d2y =
t∑

i=1

l∑
j=0

(gL
Fiλj

+ gR
Fiλj

),

A2
L
λj

x + B2
L
λj

y 6 b2
L
λj

,

A2
R
λj

x + B2
R
λj

y 6 b2
R
λj

,

j = 0, 1, . . . , l,

(4.22d)

Problem (4.22) is a standard linear bi-level problem which can be solved by the
Kuhn-Tucker algorithm (Shi et al. 2005b).

4.2 A λ-cut and Goal-programming-based Algorithm

Based on the analysis above, we illustrate the λ-cut and goal-programming-based
algorithm in this section.

First, we obtain relevant parameters including the coefficients that define an FMOLB
decision problem, satisfactory degree, and a predefined error (Step 1).

Then, using λ-cuts, we defuzzify the FMOLB decision problem as an MOB deci-
sion problem (Step 2).

Afterwards, by introducing the under-achievement auxiliary variables and over-
achievement auxiliary variables, we need to solve a classical linear bi-level decision
problem under current λ-cuts at this stage (Step 3).

Finally, if the solution difference between current adjacent λ-cuts is close enough
(equal to or smaller than the predefined error) (Step 4), the final solution is expected to
be reached (Step 7). Otherwise, we double the λ-cuts (Step 5), and do the computation
again (Step 6).

the λ-cut and goal-programming-based algorithm is detailed in Algorithm 2.
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Algorithm 2: A λ-cut and goal-programming-based algorithm for FMOLB de-
cision problems

Step 1 (Input) Get relevant coefficients which include: Parameters of (4.3); Parameters
of (4.5); Satisfactory degree: α; and ε > 0.
Step 2 (Initialise) Let k = 1, which is the counter to record current loop. In (4.7),
where λj ∈ [α, 1], let λ0 = α and λ1 = 1 respectively, then each objective will be
transferred into two non-fuzzy objective functions, and each fuzzy constraint is
converted into four non-fuzzy constraints.
Step 3 (Compute) By introducing auxiliary variables v−1 , v+

1 , v−2 and v+
2 , we get the

format of (4.22). The solution (x, v−1 , v+
1 , y, v−2 , v+

2 )2 of (4.22) is obtained by
Kuhn-Tucker approach.
Step 4 (Compare)
if (k = 1) then

(x, v−1 , v+
1 , y, v−2 , v+

2 )1 = (x, v−1 , v+
1 , y, v−2 , v+

2 )2; goto [Step 5];
end
if ||(x, v−1 , v+

1 , y, v−2 , v+
2 )2 − (x, v−1 , v+

1 , y, v−2 , v+
2 )1|| < ε then

goto [Step 7] ;
end
Step 5 (Split) Suppose there are (L + 1) nodes λj , (j = 0, 1, . . . , L) in the interval
[α, 1], insert L new nodes δt (t = 1, 2 . . . , L) in [α, 1] such that: δt = (λt−1 + λt)/2.
Step 6 (Loop) k = k + 1; goto [Step 3];
Step 7 (Output) (x, y)2 is obtained as the final solution.

4.3 A Case Study

A classical newsboy problem is to find a newspaper’s order quantity for maximis-
ing the profit of a newsboy (newspaper retailer) (Ji & Shao 2006). In a real world
situation, both a newspaper manufacturer and a retailer have more than one concern.
Using an FMOLB model, a newsboy problem is expressed as follows: the leader, a
manufacturer controls the decision variable of the wholesale price (x), while the fol-
lower, a retailer, decides his or her order quantity (y). The manufacturer has two main
objectives: to maximise the net profits, represented by F1(x, y), and to maximise the
newspaper quality, by F2(x, y) but subject to some constraints, including the require-
ments of material, marketing cost and labor cost. The retailer also has two objectives
to achieve: to minimise his or her purchase cost, represented by f1(x, y), and to min-
imise the working hours, by f2(x, y) under his own constraints. Meanwhile, both the
manufacturer and the retailer will set goals (gL1, gL2, gF1, gF1) for each of their two
objectives.

When modelling this multi-objective bi-level decision problem, the main difficulty
is to establish coefficients of the objectives and constraints for both the leader and the
follower. We can only estimate some values for material cost, labor cost, etc. according
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to our experience and previous data. For some items, the values can only be assigned by
linguistic terms as about $1000. This is a common case in any organisational decision
practice. By using fuzzy numbers to describe these uncertain values in coefficients, an
FMOLB model can be established for this decision problem.

To illustrate the λ-cut and goal-programming-based algorithm, this newsboy prob-
lem will be solved step by step:

[Step 1]: (Input the relevant coefficients)
1. Coefficients of (4.3):
The newsboy problem is formatted as:

Leader : max
x∈X

F1(x, y) = 6̃x + 3̃y

max
x∈X

F2(x, y) = −3̃x + 6̃y

subject to − 1̃x + 3̃y 6 2̃1

Follower : min
y∈Y

f1(x, y) = 4̃x + 3̃y

min
y∈Y

f2(x, y) = 3̃x + 1̃y

subject to − 1̃x− 3̃y 6 2̃7

where x ∈ R1, y ∈ R1, and X ∈ R+, Y ∈ R+.
The membership functions for this FMOLB are as follows:

µ6̃(x) =





0 x < 5
x2−25

11
5 6 x < 8

1 x = 6
64−x2

28
6 < x 6 8

0 x > 8

, µ3̃(x) =





0 x < 2
x2−4

5
2 6 x < 3

1 x = 3
25−x2

16
3 < x 6 5

0 x > 5

,

µ−̃3(x) =





0 x < −4
16−x2

7
−4 6 x < −3

1 x = −3
x2−1

8
−3 < x 6 −1

0 x > −1

, µ4̃(x) =





0 x < 3
x2−9

7
3 6 x < 4

1 x = 4
36−x2

20
4 < x 6 6

0 x > 6

,
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µ1̃(x) =





0 x < 0.5
x2−0.25

0.75
0.5 6 x < 1

1 x = 1
4−x2

3
1 < x 6 2

0 x > 2

, µ−̃1(x) =





0 x < −2
4−x2

3
−2 6 x < −1

1 x = −1
x2−0.25

0.75
−1 < x 6 −0.5

0 x > −0.5

,

µ2̃1(x) =





0 x < 19
x2−361

80
19 6 x < 21

1 x = 21
625−x2

184
21 < x 6 25

0 x > 25

, µ2̃7(x) =





0 x < 25
x2−625

104
25 6 x < 27

1 x = 27
961−x2

232
27 < x 6 31

0 x > 31

.

2. Suppose the membership functions of the fuzzy goals set for the leader are:

µg̃L1
(x) =





0 x < 15
x2−225

175
15 6 x < 20

1 x = 20
900−x2

500
20 < x 6 30

0 x > 30

, µg̃L2
(x) =





0 x < 4
x2−16

48
4 6 x < 8

1 x = 8
225−x2

161
8 < x 6 15

0 x > 15

.

The membership functions of the fuzzy goals set for the follower are:

µg̃F1
(x) =





0 x < 10
x2−100

225
10 6 x < 15

1 x = 15
400−x2

175
15 < x 6 20

0 x > 20

, µg̃F2
(x) =





0 x < 7
x2−49

32
7 6 x < 9

1 x = 9
121−x2

40
9 < x 6 11

0 x > 11

.

3. Satisfactory degree: α = 0.2

4. ε = 0.15

[Step 2]: (Initialise) Let k=1. Associated with this example, the corresponding
MOBλ problem is:

min
x∈X
|√11λ + 25x +

√
5λ + 4y −√175λ + 225|

+|√64− 28λx + 25−√25− 16λy −√900− 500λ|
min
x∈X
| − √16− 7λx +

√
11λ + 25y −√48λ + 16|

+| − √8λ + 1 +
√

64− 28λ−√225− 161λ|
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subject to −√4− 2λx +
√

5λ + 4y 6
√

80λ + 361

−√−0.75λ + 0.25x +
√

25− 16λy 6
√

625− 184λ

min
y∈Y
|√7λ + 9x +

√
5λ + 4y −√225λ + 100|

+|√36− 20λx + 25−√25− 16λy −√400− 175λ|
min
y∈Y
| − √5λ + 4x +

√
0.75λ + 0.25y −√32λ + 49|

+| − √25− 16λx +
√

4− 3λy −√121− 40λ|
subject to

√
0.75λ + 0.25x +

√
5λ + 4y 6

√
104λ + 625√

4− 3λx +
√

25− 16λy 6
√

901− 232λ

where λ ∈ [0.2, 1].
Referring to the algorithm, only λ0 = 0.2 and λ1 = 1 are considered initially. Thus

four non-fuzzy objective functions and four non-fuzzy constraints for the leader and
follower are generated respectively:

min
x∈X

1
4
{|√27.2x +

√
5y −√260|+ |6x + 3y − 20|

+|√58.4x +
√

21.8y − 20
√

2|+ |6x + 3y − 20|
+| − √14.6x +

√
27.2y −√25.6|+ | − 3x + 6y − 8|

+| − √2.6 +
√

58.4y −√192.8|+ | − 3x + 6y − 8|}
subject to −√3.4x +

√
5y 6

√
377

−x + 3y 6 21

−√0.4 +
√

5y 6
√

645.8

−x + 3y 6 21

min
y∈Y

1
4
{|3x + 2y − 12.04|+ |4x + 3y − 19.1|
+|6x− 5y − 7.4|+ |4x− 3y − 10.63|
+| − 2x + 0.5y − 18.03|+ | − 3x + y − 15|
+| − 5x + 2y − 9|+ | − 3x + y − 9|}

subject to
√

0.4x +
√

5y 6
√

645.8

x + 3y 6 27√
3.4x +

√
21.8y 6

√
914.6

x + 3y 6 27

[Step 3]: (Compute)
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By introducing auxiliary variables v−1 , v+
1 , v−2 , v+

2 , we have:

min
(x,v−1 ,v+

1 )∈X̄′
v−1 + v+

1

subject to 3.083x + 20.076y + v−1 − v+
1 = 54.73,

−1.8x + 2.2y 6 19.4

−x + 3y 6 21

−0.6x + 4.7y 6 24.3

−x + 3y 6 21

min
(y,v−2 ,v+

2 )∈Ȳ ′
v−2 + v+

2

subject to 16.498x + 8.205y + v−2 − v+
2 = 51.337,

0.6x + 2.2y 6 25.4

x + 3y 6 7

1.8x + 4.7y 6 30.2

x + 3y 6 27

Using Branch-and-bound algorithm (Bard & Moore 1990), the current solution is
(1.901,0,0, 2.434,0,0).

[Step 4]: (Compare) Because k=1, goto [Step 5].
[Step 5]: (Split) By inserting a new node λ1 = (0.2 + 1)/2 = 0.6, there are a total

three nodes of λ0 = 0.2, λ1 = 0.6 and λ2 = 1. Then a total six non-fuzzy objective
functions for the leader and follower, together with six non-fuzzy constraints for the
leader and follower respectively, are generated.

[Step 6]: (Loop) k=1+1=2, goto [Step 3], and a current solution of (2.011,0,0,
2.356,0,0) is obtained. As |2.011 − 1.901| + |2.356 − 2.434| = 0.188 > ε = 0.15,
the algorithm continues until the solution of (1.957,0,0, 2.388,0,0) is obtained. The
computing results are listed in Table 4.1.

Table 4.1: Summary of the running solutions
k x y v+

1λ v−1λ v+
2λ v−2λ

1 1.901 2.434 0 0 0 0
2 2.011 2.356 0 0 0 0
3 1.872 2.446 0 0 0 0
4 1.957 2.388 0 0 0 0

[Step 7]: (Output) As |1.957 − 1.872| + |2.388 − 2.2.446| = 0.14 < ε = 0.15,
(x∗, y∗) = (1.957, 2.388) is the final solution of this FMOLB problem. The objectives
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for the leader and follower under (x∗, y∗) = (1.957, 2.388) are:





F1(x
∗, y∗) = F (1.957, 2.388) = 1.957c̃11 + 2.388d̃11

F2(x
∗, y∗) = F (1.957, 2.388) = 1.957c̃12 + 2.388d̃12

f1(x
∗, y∗) = F (1.957, 2.388) = 1.957c̃21 + 2.388d̃21

f2(x
∗, y∗) = F (1.957, 2.388) = 1.957c̃22 + 2.388d̃22

,

Under this solution, the membership functions for the leader’s objectives are shown
in Figure 4.1 and the membership functions for the follower’s objectives are shown in
Figure 4.2.

Figure 4.1: Membership functions of F1(x
∗, y∗) and F2(x

∗, y∗)

Figure 4.2: Membership functions of f1(x
∗, y∗) and f2(x

∗, y∗)
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These fuzzy values shown in Figure 4.1 and Figure 4.2 describe the achievements
of every objective under the solutions. From Figure 4.1 we can see that if the manu-
facturer chooses his or her decision variable as 1.957, the most possible net profit will
be 18.9025, which is very close to the goal set for this objective. The other objective
values can be interpreted the same way.

4.4 Experiments and Evaluation

The algorithm proposed in this chapter was implemented by Visual Basic 6.0, and
run on a desktop computer with CPU Pentium 4 2.8GHz, RAM 1G, Windows XP. To
test the performance of the proposed algorithm, the following experiments are carried
out.

(1) To test the efficiency of the proposed algorithm, we employ ten numerical exam-
ples and enlarge the problem scales by changing the numbers of decision vari-
ables, objective functions and constraints for both leaders and followers from
two to ten simultaneously. For each of these examples, the final solution has
been obtained within five seconds.

(2) To test the performance of the fuzzy distance measure in Definition 4.1.3, we
adjust the satisfactory degree values from 0 to 0.5 on the ten numerical examples
again. At the same time, we change some of the fuzzy coefficients in the con-
straints by moving the points whose membership values equal 0 by 10% from the
left and right respectively. Experiments reveal that, when a satisfactory degree is
set as 0, the average solution will change by about 6% if some of the constraint
coefficients are moved as discussed above. When we increase satisfactory de-
grees, the average solution change decreases. At the point where satisfactory
degrees are equal to 0.5, the average solution change is 0.

From Experiment (1), we can see that this algorithm is quite efficient. The reason
is the fact that final solutions can be reached by solving corresponding linear bi-level
programming problems, which can be handled by the Kuhn-Tucker and the Simplex
algorithms.

From Experiment (2), we can see that if we change some coefficients of fuzzy
numbers within a small range, solutions will be less sensitive to this change under a
higher satisfactory degree. The reason is that, when the satisfactory degree is set to 0,
every λ-cut of fuzzy coefficients from 0 to 1 will be considered. Thus, the decision
maker can certainly be influenced by minor information.
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For a decision making process involved with fuzzy coefficients, decision makers
may sometimes make small adjustment on the uncertain information about the prefer-
ence or circumstances. If the change occurs to the minor information, i.e. with smaller
satisfactory degrees, there should normally be no tremendous change to the final so-
lution. For example, when estimating future profit, the manufacturer may adjust the
possibility of five thousand dollars’ profit from 2% to 3%, while the possibility of one
hundred thousand dollars’ profit remains 100%. In such a situation, there should be no
outstanding change for his or her final decision on the device investment. Therefore,
to increase the satisfactory degrees is an acceptable strategy for a feasible solution.

From the above analysis, the advantages and disadvantages of the algorithm pro-
posed in this chapter are as follows:

(1) This algorithm is quite efficient, as it adopts strategies to transform a non-linear
bi-level problem into a linear problem;

(2) When pursuing optimality, the negative effect from conflicting objectives can be
avoided and a leader can finally reach his or her satisfactory solution by setting
goals for the objectives;

(3) The information of the original fuzzy numbers are considered adequately by
using a certain number of λ-cuts to approximate the final precise solution;

(4) In some situations, this algorithm might suffer from expensive calculation, as the
size of λ-cuts will increase exponentially with respect to iteration counts.

4.5 Summary

This chapter studies FMOLB decision problems by λ-cut and goal programming.
After formulating an FMOLB decision problem, we have proved that the solutions can
be obtained by solving the corresponding linear bi-level decision problem which can
be handled easily by Kuhn-Tuchker and Simplex algorithms. Therefore, it is possible
for the algorithm developed in this research to deal with FMOLB decision problems
stably and effectively. Based on the theoretical proof, a λ-cut and goal-programming-
based algorithm is proposed for FMOLB decision problems, and a newsboy problem
is presented to further explain the idea of this algorithm.

This λ-cut and goal-programming-based algorithm is one of the computation ker-
nels in a fuzzy bi-level decision support system developed to assist decision makers to
solve realistic FMOLB problems. This system will be described in Chapter 8 in detail.
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5 Cutset Strategy and PSO for Fuzzy Linear
Multi-follower Multi-objective Bi-level
Decision Making

This chapter focuses on linear bi-level decision problems that have multiple fol-
lowers, multiple objectives, and fuzzy coefficients in the objectives and/or constraints
of the leaders and/or the followers. We call this kinds of problem fuzzy multi-follower
multi-objective linear bi-level (FMMLB) decision problems.

In this chapter, a framework, which is to define FMMLB decision problems by dif-
ferent cooperation in objectives, constraints, and decision variables among followers,
is presented. Focusing on FMMLB decision problems defined in this framework, three
algorithms, i.e. a Branch-and-Bound-based algorithm, a Kth-Best-based algorithm,
and a PSO-based algorithm are developed. Experiments are then carried to compare
these algorithms, and algorithm choosing is discussed.

5.1 Models

According to eight different cooperation situations among followers (Lu et al.

2006), we extend the models to fuzzy situations and give their corresponding math-
ematic models as below.

Model 1. An FMMLB problem, in which K > 2 followers are involved and there are
shared decision variables yj(j = 1, 2, . . . , K), the same objective functions f(x, y)

and the same constraint functions among them, is defined as follows:
Let x ∈ X ⊆ Rn, yj ∈ Yj ⊆ Rmj , j = 1, 2, . . . , K, y = (y1, . . . , yK) ∈ Y =

(Y1, . . . , YK), F (x, y) : X × Y → F s(R), f(x, y) : X × Y → F t(R), it consists of
finding a solution to the upper level problem:
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min
x∈X

F (x, y) =

(
c̃
(1)
1 x +

K∑
j=1

d̃
(1)
1j yj, . . . , c̃

(1)
s x +

K∑
j=1

d̃
(1)
sj yj

)T

(5.1a)

subject to Ã(1)x +
K∑

j=1

B̃
(1)
j yj ¹ b̃(1) (5.1b)

where c̃
(1)
i ∈ F n(R), d̃

(1)
ij ∈ Fmj(R), Ã(1) ∈ M(F (R))p×n, B̃

(1)
j ∈ M(F (R))p×mj

,
i = 1, 2, . . . , s, j = 1, 2 . . . , K and yj , for each value of x, is the solution of the lower
level problem:

min
yj∈Yj

f(x, y) =

(
c̃
(2)
1 x +

K∑

k=1

d̃
(2)
1k yk, . . . , c̃

(2)
t x +

K∑

k=1

d̃
(2)
tk yk

)T

(5.2a)

subject to Ã(2)x +
K∑

k=1

B̃
(2)
k yk ¹ b̃(2) (5.2b)

where c̃
(2)
i ∈ F n(R), b̃(2) ∈ F q(R), Ã(2) ∈ M(F (R))q×n, B̃

(2)
k ∈ M(F (R))q×mk

,
d̃

(2)
ik ∈ Fmk(R), i = 1, 2, . . . , t, k = 1, 2, . . . , K.

Model 2. An FMMLB problem, in which K > 2 followers are involved and there are
shared decision variables yj(j = 1, 2, . . . , K), the same objective functions f(x, y) but
different constraint functions among them, is defined as follows:

For x ∈ X ⊆ Rn, yj ∈ Yj ⊆ Rmj , j = 1, 2, . . . , K, y = (y1, . . . , yK) ∈ Y =

(Y1, . . . , YK), F (x, y) : X × Y → F s(R), f(x, y) : X × Y → F t(R), it consists of
finding a solution to the upper level problem:

min
x∈X

F (x, y) =

(
c̃
(1)
1 x +

K∑
j=1

d̃
(1)
1j yj, . . . , c̃

(1)
s x +

K∑
j=1

d̃
(1)
sj yj

)T

(5.3a)

subject to Ã(1)x +
K∑

j=1

B̃
(1)
j yj ¹ b̃(1) (5.3b)

where c̃
(1)
i ∈ F n(R), d̃

(1)
ij ∈ Fmj(R), Ã(1) ∈M(F (R))p×n, B̃

(1)
j ∈M(F (R))p×mj

,i =

1, . . . , s, j = 1, 2 . . . , K and yj , for each value of x, is the solution of the lower level
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problem:

min
yj∈Yj ,j=1,...,K

f(x, y) =

(
c̃
(2)
1 x +

K∑

k=1

d̃
(2)
1k yk, . . . , c̃

(2)
t x +

K∑

k=1

d̃
(2)
tk yk,

)T

(5.4a)

subject to Ã
(2)
j x +

K∑

k=1

B̃
(2)
jk yk ¹ b̃

(2)
j (5.4b)

where c̃
(2)
i ∈ F n(R), b̃

(2)
j ∈ F q(R), Ã

(2)
j ∈ M(F (R))q×n, B̃

(2)
jk ∈ M(Fmk(R))q×mk

,
d̃

(2)
jk ∈ Fmk(R), i = 1, 2, . . . , t, k = 1, 2, . . . , K, j = 1, 2, . . . , K.

Model 3. An FMMLB problem, in which K > 2 followers are involved and there are
shared decision variables yj(j = 1, 2, . . . , K) and constraint functions but different
objective functions fi(x, y) among them, is defined as follows:

For x ∈ X ⊆ Rn, yj ∈ Yj ⊆ Rmj (j = 1, 2, . . . , K), y = (y1, . . . , yK) ∈
Y = (Y1, . . . , YK), F (x, y) : X × Y → F s(R), fj(x, y) : X × Y → F t(R) (j =

1, 2, . . . , K), it consists of finding a solution to the upper level problem:

min
x∈X

F (x, y) =

(
c̃
(1)
1 x +

K∑
j=1

d̃
(1)
1j yj, . . . , c̃

(1)
s x +

K∑
j=1

d̃
(1)
sj yj

)T

(5.5a)

subject to Ã(1)x +
K∑

j=1

B̃
(1)
j yj ¹ b̃(1) (5.5b)

where c̃
(1)
i ∈ F n(R), d̃

(1)
ij ∈ Fmj(R), Ã(1) ∈M(F (R))p×n, B̃

(1)
j ∈M(F (R))p×mj

,i =

1, . . . , s, j = 1, 2 . . . , K and yj , for each value of x, is the solution of the lower level
problem:

min
yj∈Yj

fj(x, y) =

(
c̃
(2)
j1 x +

K∑

k=1

d̃
(2)
j1kyk, . . . , c̃

(2)
jt x +

K∑

k=1

d̃
(2)
jtkyk

)T

(5.6a)

subject to Ã(2)x +
K∑

k=1

B̃
(2)
k yk ¹ b̃(2) (5.6b)

where c̃
(2)
ji ∈ F n(R), b̃(2) ∈ F q(R), Ã(2) ∈ M(F (R))q×n, B̃

(2)
k ∈ M(F (R))q×mk

,
d̃

(2)
jik ∈ Fmk(R), i = 1, 2, . . . , t, k = 1, 2, . . . , K, j = 1, 2, . . . , K.

Model 4. An FMMLB problem, in which K > 2 followers are involved and there are
shared decision variables yj(j = 1, 2, . . . , K) but different objective functions fi(x, y)

and constraint functions among them, is defined as follows:
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For x ∈ X ⊆ Rn, yj ∈ Yj ⊆ Rmj (j = 1, 2, . . . , K), y = (y1, . . . , yK) ∈
Y = (Y1, . . . , YK), F (x, y) : X × Y → F s(R), fj(x, y) : X × Y → F t(R) (j =

1, 2, . . . , K), it consists of finding a solution to the upper level problem:

min
x∈X

F (x, y) =

(
c̃
(1)
1 x +

K∑
j=1

d̃
(1)
1j yj, . . . , c̃

(1)
s x +

K∑
j=1

d̃
(1)
sj yj

)T

(5.7a)

subject to Ã(1)x +
K∑

j=1

B̃
(1)
j yj ¹ b̃(1) (5.7b)

where c̃
(1)
i ∈ F n(R), d̃

(1)
ij ∈ Fmj(R), Ã(1) ∈M(F (R))p×n, B̃

(1)
j ∈M(F (R))p×mj

,i =

1, . . . , s, j = 1, 2 . . . , K and yj , for each value of x, is the solution of the lower level
problem:

min
yj∈Yj

fj(x, y) =

(
c̃
(2)
j1 x +

K∑

k=1

d̃
(2)
j1kyk, . . . , c̃

(2)
jt x +

K∑

k=1

d̃
(2)
jtkyk

)T

(5.8a)

subject to Ã
(2)
j x +

K∑

k=1

B̃
(2)
jk yk ¹ b̃

(2)
j (5.8b)

where c̃
(2)
ji ∈ F n(R), b̃

(2)
j ∈ F q(R), Ã

(2)
j ∈ M(F (R))q×n, B̃

(2)
jk ∈ M(Fmk(R))q×mk

,
d̃

(2)
jik ∈ Fmk(R), i = 1, 2, . . . , t, k = 1, 2, . . . , K, j = 1, 2, . . . K.

Model 5. An FMMLB problem, in which K > 2 followers are involved and there
are shared objective functions, shared constraint functions and partial shared decision
variables among the followers, is defined as follows:

For x ∈ X ⊆ Rn, z ∈ Z ⊆ Rh, yj ∈ Yj ⊆ Rmj , j = 1, 2, . . . , K, y =

(y1, . . . , yK) ∈ Y = (Y1, . . . , YK), (y, z) = (y1, . . . , yK , z) ∈ Y × Z, F (x, y, z) :

X × Y × Z → F s(R), f(x, y, z) : X × Y × Z → F t(R), and j = 1, 2, . . . , K, it
consists of finding a solution to the upper level problem:

min
x∈X

F (x, y, z) =

(
c̃
(1)
1 x +

K∑
j=1

d̃
(1)
1j yj + d̃

(1)
1 z, . . . , c̃(1)

s x +
K∑

j=1

d̃
(1)
sj yj + d̃(1)

s z

)T

(5.9a)

subject to Ã(1)x +
K∑

j=1

B̃
(1)
j yj + B̃(1)z ¹ b̃(1) (5.9b)

where b̃(1) ∈ F p(R), c̃(1)
i ∈ F n(R), d̃(1)

ij ∈ Fmj(R), d̃(1)
i ∈ F h(R), Ã(1) ∈M(F (R))p×n,
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B̃
(1)
j ∈ M(F (R))p×mj

, B̃(1) ∈ M(F (R))p×h, i = 1, . . . , s, j = 1, 2 . . . , K and yj , for
each value of x, is the solution of the lower level problem:

min
yj∈Yj ,z∈Z

f(x, y, z) =

(
c̃
(2)
1 x +

K∑

k=1

d̃
(2)
1k yk + d̃

(2)
1 z, . . . , c̃

(2)
t x +

K∑

k=1

d̃
(2)
tk yk + d̃

(2)
t z

)T

(5.10a)

subject to Ã(2)x +
K∑

k=1

B̃
(2)
k yk + B̃(2)z ¹ b̃(2) (5.10b)

where c̃
(2)
i ∈ F n(R), b̃(2) ∈ F q(R), Ã(2) ∈ M(F (R))q×n, B̃

(2)
k ∈ M(F (R))q×mk

,
B̃(2) ∈M(F (R))q×h, d̃

(2)
jk ∈ Fmk(R), d̃

(2)
i ∈ F h(R), i = 1, 2, . . . , t, j = 1, 2, . . . , K.

Model 6. An FMMLB problem, in which K > 2 followers are involved and there
are shared objective functions and partially shared decision variables but different con-
straint functions among followers, is defined as follows:

For x ∈ X ⊆ Rn, z ∈ Z ⊆ Rh, yj ∈ Yj ⊆ Rmj , j = 1, 2, . . . , K, y =

(y1, . . . , yK) ∈ Y = (Y1, . . . , YK), (y, z) = (y1, . . . , yK , z) ∈ Y × Z, F (x, y, z) :

X × Y × Z → F s(R), f(x, y, z) : X × Y × Z → F t(R), and j = 1, 2, . . . , K, it
consists of finding a solution to the upper level problem:

min
x∈X

F (x, y, z) =

(
c̃
(1)
1 x +

K∑
j=1

d̃
(1)
1j yj + d̃

(1)
1 z, . . . , c̃(1)

s x +
K∑

j=1

d̃
(1)
sj yj + d̃(1)

s z

)T

(5.11a)

subject to Ã(1)x +
K∑

j=1

B̃
(1)
j yj + B̃(1)z ¹ b̃(1) (5.11b)

where b̃(1) ∈ F p(R), c̃(1)
i ∈ F n(R), d̃(1)

ij ∈ Fmj(R), d̃(1)
i ∈ F h(R), Ã(1) ∈M(F (R))p×n,

B̃
(1)
j ∈ M(F (R))p×mj

, B̃(1) ∈ M(F (R))p×h, i = 1, . . . , s, j = 1, 2 . . . , K and yj , for
each value of x, is the solution of the lower level problem:

min
yj∈Yj ,z∈Z

f(x, y, z) =

(
c̃
(2)
1 x +

K∑

k=1

d̃
(2)
1k yk + d̃

(2)
1 z, . . . , c̃

(2)
t x +

K∑

k=1

d̃
(2)
tk yk + d̃

(2)
t z

)T

(5.12a)

subject to Ã
(2)
j x +

K∑

k=1

B̃
(2)
jk yk + B̃

(2)
j z ¹ b̃

(2)
j (5.12b)
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where c̃
(2)
i ∈ F n(R), b̃(2) ∈ F q(R), Ã

(2)
j ∈ M(F (R))q×n, B̃

(2)
jk ∈ M(F (R))q×mk

,
B̃

(2)
j ∈M(F (R))q×h, d̃

(2)
jk ∈ Fmk(R), d̃

(2)
i ∈ F h(R), i = 1, 2, . . . , t, j = 1, 2, . . . , K.

Model 7. An FMMLB problem, in which K > 2 followers are involved and there
are partially shared decision variables and shared constraint functions but different
objective functions among them, is defined as follows:

For x ∈ X ⊆ Rn, z ∈ Z ⊆ Rh, yj ∈ Yj ⊆ Rmj , j = 1, 2, . . . , K, y =

(y1, . . . , yK) ∈ Y = (Y1, . . . , YK), (y, z) = (y1, . . . , yK , z) ∈ Y × Z, F (x, y, z) :

X × Y × Z → F s(R), f(x, y, z) : X × Y × Z → F t(R), and j = 1, 2, . . . , K, it
consists of finding a solution to the upper level problem:

min
x∈X

F (x, y, z) =

(
c̃
(1)
1 x +

K∑
j=1

d̃
(1)
1j yj + d̃

(1)
1 z, . . . , c̃(1)

s x +
K∑

j=1

d̃
(1)
sj yj + d̃(1)

s z

)T

(5.13a)

subject to Ã(1)x +
K∑

j=1

B̃
(1)
j yj + B̃(1)z ¹ b̃(1) (5.13b)

where b̃(1) ∈ F p(R), c̃(1)
i ∈ F n(R), d̃(1)

ij ∈ Fmj(R), d̃(1)
i ∈ F h(R), Ã(1) ∈M(F (R))p×n,

B̃
(1)
j ∈ M(F (R))p×mj

, B̃(1) ∈ M(F (R))p×h, i = 1, . . . , s, j = 1, 2 . . . , K and yj , for
each value of x, is the solution of the lower level problem:

min
yj∈Yj ,z∈Z

fj(x, y, z) =

(
c̃
(2)
j1 x +

K∑

k=1

d̃
(2)
j1kyk + d̃

(2)
j1 z, . . . , c̃

(2)
t x +

K∑

k=1

d̃
(2)
jtkyk + d̃

(2)
jt z

)T

(5.14a)

subject to Ã(2)x +
K∑

k=1

B̃
(2)
k yk + B̃(2)z ¹ b̃(2) (5.14b)

where c̃
(2)
ji ∈ F n(R), b̃(2) ∈ F q(R), Ã(2) ∈ M(F (R))q×n, B̃

(2)
k ∈ M(F (R))q×mk

,
B̃(2) ∈M(F (R))q×h, d̃

(2)
ji ∈ F h(R), d̃

(2)
jik ∈ Fmk(R), i = 1, 2, . . . , t, j = 1, 2, . . . , K.

Model 8. An FMMLB problem, in which K > 2 followers are involved and there
are partially shared decision variables but different objective and constraint functions
among them, is defined as follows:

For x ∈ X ⊆ Rn, z ∈ Z ⊆ Rh, yj ∈ Yj ⊆ Rmj , j = 1, 2, . . . , K, y =

(y1, . . . , yK) ∈ Y = (Y1, . . . , YK), (y, z) = (y1, . . . , yK , z) ∈ Y × Z, F (x, y, z) :

X × Y × Z → F s(R), f(x, y, z) : X × Y × Z → F t(R), and j = 1, 2, . . . , K, it
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consists of finding a solution to the upper level problem:

min
x∈X

F (x, y, z) =

(
c̃
(1)
1 x +

K∑
j=1

d̃
(1)
1j yj + d̃

(1)
1 z, . . . , c̃(1)

s x +
K∑

j=1

d̃
(1)
sj yj + d̃(1)

s z

)T

(5.15a)

subject to Ã(1)x +
K∑

j=1

B̃
(1)
j yj + B̃(1)z ¹ b̃(1) (5.15b)

where b̃(1) ∈ F p(R), c̃(1)
i ∈ F n(R), d̃(1)

ij ∈ Fmj(R), d̃(1)
i ∈ F h(R), Ã(1) ∈M(F (R))p×n,

B̃
(1)
j ∈ M(F (R))p×mj

, B̃(1) ∈ M(F (R))p×h, i = 1, . . . , s, j = 1, 2 . . . , K and yj , for
each value of x, is the solution of the lower level problem:

min
yj∈Yj ,z∈Z

fj(x, y, z) =

(
c̃
(2)
j1 x +

K∑

k=1

d̃
(2)
j1kyk + d̃

(2)
j1 z, . . . , c̃

(2)
t x +

K∑

k=1

d̃
(2)
jtkyk + d̃

(2)
jt z

)T

(5.16a)

subject to Ã
(2)
j x +

K∑

k=1

B̃
(2)
jk yk + B̃

(2)
j z ¹ b̃

(2)
j (5.16b)

where c̃
(2)
ji ∈ F n(R), b̃

(2)
j ∈ F q(R), Ã

(2)
j ∈ M(F (R))q×n, B̃

(2)
jk ∈ M(F (R))q×mk

,
B̃

(2)
j ∈ M(F (R))q×h, d̃

(2)
ji ∈ F h(R), d̃

(2)
jik ∈ Fmk(R), i = 1, 2, . . . , t, k = 1, 2, . . . , K,

j = 1, 2, . . . , K.

By analysing above eight models and using a weighting method, we can get a
general model (Model G) for FMMLB decision problems:

Definition 5.1.1. For x ∈ X ⊆ Rn, yj ∈ Yj ⊆ Rmj , j = 1, 2, . . . , K, y =

(y1, . . . , yK) ∈ Y = (Y1, . . . , YK), F (x, y) : X × Y → F s(R), f(x, y) : X × Y →
F t(R), it consists of finding a solution to the upper level problem:

min
x∈X

F (x, y) =

(
c̃
(1)
1 x +

K∑
j=1

d̃
(1)
1j yj, . . . , c̃

(1)
s x +

K∑
j=1

d̃
(1)
sj yj

)T

(5.17a)

subject to Ã(1)x +
K∑

j=1

B̃
(1)
j yj ¹ b̃(1) (5.17b)

where c̃
(1)
i ∈ F n(R), d̃

(1)
ij ∈ Fmj(R), Ã(1) ∈M(F (R))p×n, B̃

(1)
j ∈M(F (R))p×mj

,i =
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1, . . . , s, j = 1, 2 . . . , K and yj , for each value of x, is the solution of the lower level
problem:

min
yj∈Yj ,j=1,...,K

f(x, y) =

(
c̃
(2)
1 x +

K∑

k=1

d̃
(2)
1k yk, . . . , c̃

(2)
t x +

K∑

k=1

d̃
(2)
tk yk,

)T

(5.18a)

subject to Ã
(2)
j x +

K∑

k=1

B̃
(2)
jk yk ¹ b̃

(2)
j (5.18b)

where c̃
(2)
i ∈ F n(R), b̃

(2)
j ∈ F q(R), Ã

(2)
j ∈ M(F (R))q×n, B̃

(2)
jk ∈ M(Fmk(R))q×mk

,
d̃

(2)
jk ∈ Fmk(R), i = 1, 2, . . . , t, k = 1, 2, . . . , K, j = 1, 2, . . . , K.

Therefore, we have found that:

(1) Model 1 is a special issue of Model G when Ã
(2)
j = Ã(2), B̃(2)

jk = B̃
(2)
k , b̃(2)

j = b̃(2),
j = 1, 2, . . . , K.

(2) Model 2 has the same format with Model G.

(3) For Model 3, we know that it is a multi-objective programming for followers and
for j = 1, 2, . . . , K, Ã

(2)
j = Ã(2), B̃

(2)
jk = B̃

(2)
k , b̃

(2)
j = b̃(2). We can transform

it to Model G by using a weighting method, i.e., f(x, y), c̃
(2)
r , d̃

(2)
rk in Model G is

equal to fj(x, y), c̃
(2)
jr ,d̃(2)

jrk in Model 3, r = 1, 2, . . . , t, respectively.

(4) For Model 4, We can transform it to Model G by using a weighting method,
i.e. f(x, y), c̃

(2)
r , d̃

(2)
rk in Model G is equal to fj(x, y), c̃

(2)
jr ,d̃(2)

jrk in Model 3, r =

1, 2, . . . , t, respectively.

(5) Models 5, 6 and 7 are special cases of Model 8, respectively.

(6) Model 8 is an FMMLB decision problem in which K followers share variable z.
By using a weighting method, we can obtain:

For x ∈ X ⊆ Rn, z ∈ Z ⊆ Rh, yj ∈ Yj ⊆ Rmj , j = 1, 2, . . . , K, y =

(y1, . . . , yK) ∈ Y = ((Y1, Z), . . . , (YK , Z)), F (x, y, z) : X × Y × Z → F s(R),
f(x, y, z) : X × Y × Z → F t(R), and j = 1, 2, . . . , K, it consists of finding a
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solution to the upper level problem:

min
x∈X

F (x, y, z) =

(
c̃
(1)
1 x +

K∑
j=1

d̃
(1)
1j yj + d̃

(1)
1 z, . . . , c̃(1)

s x +
K∑

j=1

d̃
(1)
sj yj + d̃(1)

s z

)T

(5.19a)

subject to Ã(1)x +
K∑

j=1

B̃
(1)
j yj + B̃(1)z ¹ b̃(1) (5.19b)

where b̃(1) ∈ F p(R), c̃
(1)
i ∈ F n(R), d̃

(1)
ij ∈ Fmj(R), d̃

(1)
i ∈ F h(R), Ã(1) ∈

M(F (R))p×n, B̃
(1)
j ∈ M(F (R))p×mj

, B̃(1) ∈ M(F (R))p×h, i = 1, . . . , s, j =

1, 2 . . . , K and yj , for each value of x, is the solution of the lower level problem:

min
yj∈Yj ,z∈Z

fj(x, y, z) =

(
c̃
(2)
j1 x +

K∑

k=1

d̃
(2)
j1kyk + d̃

(2)
j1 z, . . . , c̃

(2)
t x +

K∑

k=1

d̃
(2)
jtkyk + d̃

(2)
jt z

)T

(5.20a)

subject to Ã
(2)
j x +

K∑

k=1

B̃
(2)
jk yk + B̃

(2)
j z ¹ b̃

(2)
j (5.20b)

where c̃
(2)
ji ∈ F n(R), b̃(2)

j ∈ F q(R), Ã(2)
j ∈M(F (R))q×n, B̃(2)

jk ∈M(F (R))q×mk
,

B̃
(2)
j ∈ M(F (R))q×h, d̃

(2)
ji ∈ F h(R), d̃

(2)
jik ∈ Fmk(R), i = 1, 2, . . . , t, k =

1, 2, . . . , K, j = 1, 2, . . . , K.

Model 8 has the same solution as Model G because it can be transformed into
Model G.

(7) We only need to develop algorithms to solve Model G. Through some transfor-
mation as discussed above, all these eight kinds FMMLB decision problems can
be solved then.

5.2 Algorithms

5.2.1 An Approximation Branch-and-Bound-based Algorithm

We first present related theorems.

Theorem 5.2.1. (Zhang, Lu & Dillon 2007d) For x ∈ X ⊆ Rn, yi ∈ Yi ⊆ Rmi , i =

1, 2, . . . , K, if all the fuzzy coefficients in the fuzzy bi-level problem problem defined by
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Definition 5.1.1 have membership functions :

µz̃(t) =





0 t < αL
λ0

λ1−λ0

αL
λ1
−αL

λ0

(
t− αL

λ0

)
+ λ0 αL

λ0
5 t < αL

λ1

λ2−λ1

αL
λ2
−αL

λ1

(
t− αL

λ1

)
+ λ1 αL

λ1
5 t < αL

λ2

· · · · · ·
λ αL

λl
5 t < αR

λl

λl−λl−1

αR
λl−1

−αR
λl

(
−t + αR

λl−1

)
+ λl−1 αR

λl
5 t < αR

λl−1

· · · · · ·
λ0−λ1

αR
λ1
−αR

λ0

(−t + αR
λ0

)
+ λ0 αR

λ1
5 t 5 αR

λ0

0 αR
λ0

< t

, (5.21)

where z̃ denotes any fuzzy coefficients in model defined by Definition 5.1.1, then, it

is the solution of the problem defined by Definition 5.1.1 that (x∗, y∗) ∈ Rn × Rm

satisfying

min
x∈X

F (x, y1, y2, . . . , yK)L
λj

= c̃L
λj

x +
∑K

s=1 d̃s
L

λj
ys

min
x∈X

F (x, y1, y2, . . . , yK)R
λj

= c̃R
λj

x +
∑K

s=1 d̃s
R

λj
ys

subject to ÃL
λj

x +
∑K

t=1 B̃t
L

λj
yt 6 b̃L

λj
,

ÃR
λj

x +
∑K

t=1 B̃t
R

λj
yt 6 b̃R

λj
,

min
yi∈Yi,i=1,...,K

f(x, y1, y2, . . . , yK)L
λj

=
∑K

i=1 c̃i
L
λj

x +
∑K

i=1 ẽi
L
λj

yi

min
yi∈Yi,i=1,...,K

f(x, y1, y2, . . . , yK)R
λj

=
∑K

i=1 c̃i
R
λj

x +
∑K

i=1 ẽi
R
λj

yi

subject to Ãi
L

λj
x + C̃i

L

λj
yi 6 b̃i

L

λj
,

Ãi
R

λj
x + C̃i

R

λj
yi 6 b̃i

R

λj
,

i = 1, 2, . . . , K,

j = 0, 1, 2, . . . , l.

(5.22)

where λj represents a certain cut set, λj ∈ [0, 1].

Problem (5.22) can be further transferred into the following linear bi-level problem
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by a weighting method:

min
x∈X

F (x, y1, y2, . . . , yK)λj
= c̃L

λj
x +

∑K
s=1 d̃s

L

λj
ys + c̃R

λj
x +

∑K
s=1 d̃s

R

λj
ys

subject to ÃL
λj

x +
∑K

t=1 B̃t
L

λj
yt 6 b̃L

λj
,

ÃR
λj

x +
∑K

t=1 B̃t
R

λj
yt 6 b̃R

λj
,

min
yi∈Yi,i=1,...,K

f(x, y1, y2, . . . , yK)λj
=

∑K
i=1 c̃i

L
λj

x +
∑K

i=1 ẽi
L
λj

yi

+
∑K

i=1 c̃i
R
λj

x +
∑K

i=1 ẽi
R
λj

yi

subject to Ãi
L

λj
x + C̃i

L

λj
yi 6 b̃i

L

λj
,

Ãi
R

λj
x + C̃i

R

λj
yi 6 b̃i

R

λj
,

i = 1, 2, . . . , K,

j = 0, 1, 2, . . . , l.

(5.23)

Theorem 5.2.2. (Zhang et al. 2007d) For x ∈ X ⊆ Rn, yi ∈ Yi ⊆ Rmi , i =

1, 2, . . . , K, a necessary and sufficient condition that x∗, y∗ is a solution of prob-

lem defined by Definition 5.1.1 is that there exist (row) vectors u∗, v∗, z∗ such that

(x∗, y∗, u∗, v∗, z∗) is a solution of :

min
x∈X

F (x, y1, y2, . . . , yK) =
l∑

j=1

(c̃L
λj

x +
K∑

s=1

d̃s
L

λj
ys + c̃R

λj
x +

K∑
s=1

d̃s
R

λj
ys) (5.24a)

subject to ÃL
λj

x +
K∑

t=1

B̃t
L

λj
yt 6 b̃L

λj
,

ÃR
λj

x +
K∑

t=1

B̃t
R

λj
yt 6 b̃R

λj
, (5.24b)

Ãi
L

λj
x + C̃i

L

λj
yi 6 b̃i

L

λj
,

Ãi
R

λj
x + C̃i

R

λj
yi 6 b̃i

R

λj
,

i = 1, 2, . . . , K, j = 0, 1, 2, . . . , l,

u(
l∑

j=1

K∑
t=1

(B̃t
L

λj
+ B̃t

R

λj
)) + v(

l∑
j=1

K∑
i=1

(C̃i
L

λj
+ C̃i

R

λj
))− z (5.24c)

= −
l∑

j=1

K∑
i=1

(ẽi
L
λj

+ ẽi
R
λj

),

u(
l∑

j=1

(b̃L
λj

+ b̃R
λj
− ÃL

λj
x−

K∑
s=1

B̃s
L

λj
yt − ÃR

λj
x−

K∑
s=1

B̃s
R

λj
yt)) (5.24d)
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+ v(
l∑

j=1

K∑
i=1

(b̃i
L

λj
+ b̃i

R

λj
)− Ãi

L

λj
x− C̃i

L

λj
yi − Ãi

R

λj
x− C̃i

R

λj
yi) + z

k∑
i=1

yi = 0.

Based on the extended Branch-and-Bound algorithm (Lu et al. 2007b), we extend it
to fuzzy situations and propose an approximation Branch-and-Bound-based algorithm
for solving FMMLB decision problems in this section.

We first write all the inequalities (except of the leader’s variables) of (5.23) as
gi(x, y) > 0, i = 1, . . . , p + q + m, and note that complementary slackness simply
means uigi(x, y) = 0 (i = 1, . . . , p+q+m). We suppress the complementary term and
solve the resulted linear sub-problem. At each time of iteration the condition (5.24d)
is checked. If it is satisfied, the corresponding point is in the inducible region and
hence a potential solution to (5.23). Otherwise, a Branch-and-Bound scheme is used
to implicitly examine all combinations of the complementarities slackness.

Now, we give some notations for describing the details of the approximation Branch-
and-Bound-based algorithm.

Let W = {1, . . . , p + q + m} be the index set for the terms in (5.24d), F̄ be the
incumbent upper bound on the objective function of the leader. At the k−th level of a
search tree we define a subset of indices Wk ⊆ W , and a path Pk corresponding to an
assignment of either ui = 0 or gi = 0 for i ∈ Wk. Now let

S+
k = {i : i ∈ Wk, ui = 0}

S−k = {i : i ∈ Wk, gi = 0}
S0

k = {i : i /∈ Wk}.

For i ∈ S0
k , the variables ui or gi are free to assume any nonnegative value in the so-

lution of (5.24) with (5.24d) omitted, so complementary slackness will not necessarily
be satisfied.

By using these notations we give all steps of the approximation Branch-and-Bound-
based algorithm in Algorithm 3.

We give some explanations for these steps and their working process as follows.
After initialisation, Step 7 will find a new point which is potentially bi-level fea-

sible. If no solution exists, or the solution does not offer an improvement over the
incumbent (Step 8), the algorithm goes to Step 11 and backtracks.

Step 9 checks the value of uk
i gi(x

k, yk)to determine if the complementary slack-
ness conditions are satisfied. In practice, if

∣∣uk
i gi

∣∣ < 10−6 it is considered to be zero.
Confirmation indicates that a feasible solution of a bi-level program has been found
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Algorithm 3: An approximation Branch-and-Bound-based algorithm for
FMMLB decision problems

Step 1: Given two sets of weights wj1 (j = 1, 2, . . . , s) and wj2 (j = 1, 2, . . . , t) to the
objectives of the leader and the follower respectively, and let

∑s
j=1 wj1 = 1 and∑t

j=1 wj2 = 1.
Step 2: The problem defined by Definition 5.1.1 is transformed to problem (5.23).
Step 3: Set l = 1, a range of errors ε > 0, using the extended Branch-and-Bound
algorithm (Shi et al. 2006) to solve problem (5.23) under current λ− cut.
Step 4: Decompose interval [0, 1] into 2l−1 equal sub-intervals with (2l−1 + 1) nodes λi

(i = 0, · · · , 2l−1) arranged in the order of 0 = λ0 < · · · < λ2l−1 = 1.
Step 5: Transform problem (5.23) to problem (5.24) by using Theorem 5.2.1 and a
weighting method (Bialas & Karwan 1978).
Step 6: (Initialisation) Set k = 0, S+

k = φ, S−k = φ, S0
k = {1, . . . , p + q + m}, and

F̄ =∞.
Step 7: (Iteration k) Set ui = 0 for i ∈ S+

k and gi = 0 for i ∈ S−k . It first attempts to
solve (5.24) without (5.24d). If the resultant problem is infeasible, go to Step 11;
otherwise, put k ← k + 1 and label the solution as (xk, yk, uk).
Step 8: (Fathoming) If F (xk, yk) > F̄ , then go to Step 11.
Step 9: (Branching) If uk

i gi(xk, yk) = 0, i = 1, . . . , p + q + m, then go to Step 10.
Otherwise select i for which uk

i gi(xk, yk) 6= 0 is the largest and label it i1. Put
S+

k ← S+
k ∪ {i1}, S0

k ← S0
k \ {i1}, S−k ← S−k , append i1 to Pk, and go to Step 7.

Step 10: (Updating) Let F̄ ← F (xk, yk).
Step 11: (Backtracking) If no live node exists, go to Step 12. Otherwise branch to the
newest live vertex and update S+

k , S−k , S0
k and Pk as discussed below. Go back to Step 7.

Step 12: (Termination) If F̄ =∞, there is not feasible solution to the current problem.
Otherwise, declare the feasible point associated with F̄ which is the optimal solution
(x, y)2l to the current problem.
Step 13: l = l + 1, repeat Step 4 to Step 12.
Step 14: If ‖(x, y)2l+1 − (x, y)2l‖ < ε, then the solution (x∗, y∗) of the current
problem is (x, y)2l+1 , otherwise, go back to Step 13.
Step 15: Show the result. Terminate.

and at Step 10 the upper bound on the leader’s objective function is updated. Alterna-
tively, if the complementary slackness conditions are not satisfied, the term with the
largest product is used at Step 9 to provide a branching variable. Branching is always
completed on the Kuhn-Tucker multiplier (Bard 1998).

At Step 11, the backtracking operation is performed. Note that a live node is one
associated with a sub-problem that has not yet been fathomed at either Step 7 due to
infeasibility or at Step 8 due to bounding, and whose solution violates at least one
complementary slackness condition. To facilitate book keeping, the path Pk in the
Branch-and-Bound tree is represented by a vector, its dimension is the current depth
of the tree. The order of the components of Pk is determined by their level in the tree.
Indices only appear in Pk if they are in either S+

k or S−k with the entries underlined if
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they are in S−k . Because the algorithm always branches on a Kuhn-Tucker multiplier
first, backtracking is accomplished by finding the rightmost non-underlined component
if Pk, underlining it, and erasing all entries to the right. The erased entries are deleted
from S−k and added to S0

k .
We apply the proposed approximation Branch-and-Bound-based algorithm to solve

a simple FMMLB decision problem to illustrate how the algorithm is used.
In this example, the leader has two objectives F1 and F2. There are two followers,

who share decision variables and constraints but have one individual objective (f11

for the first follower and f21 for the second follower). We can see that this FMMLB
decision problem exactly falls into the category of Model 3.

Example 5.2.1. Consider the following FMMLB decision problem with x ∈ R1, y ∈
R1, and X = {x > 0}, Y = {y > 0},

min
x∈X

F1(x, y) = −1̃x + 2̃y

min
x∈X

F2(x, y) = 2̃x− 4̃y

subject to − 1̃x + 3̃y 6 4̃

min
y∈Y

f11(x, y) = −1̃x + 2̃y

min
y∈Y

f21(x, y) = 2̃x− 1̃y

subject to 1̃x− 1̃y 6 0̃

− 1̃x− 1̃y 6 0̃

where

µ1̃(t) =





0, t < 0,

t2, 0 5 t < 1,

2− t, 1 5 t < 2,

0, 2 5 t.

µ2̃(t) =





0, t < 1,

t− 1, 1 5 t < 2,

3− t, 2 5 t < 3,

0, 3 5 t.

µ3̃(t) =





0, t < 2,

t− 2, 2 5 t < 3,

4− t, 3 5 t < 4,

0, 4 5 t.

µ4̃(t) =





0, t < 3,

t− 3, 3 5 t < 4,

5− t, 4 5 t < 5,

0, 5 5 t.
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µ0̃(t) =





0, t < −1,

t + 1, −1 5 t < 0,

1− t2, 0 5 t < 1,

0, 1 5 t.

We now solve this problem by using the proposed approximation Branch-and-
Bound-based algorithm.

Step 1. Set weights (0.5, 0.5) for the two fuzzy objectives of the leader and of the
follower respectively.

Step 2. The FMMLB decision problem is transformed to the following MOLB
decision problem by using Theorem 5.2.1.

min
x∈X

(F1(x, y))L
λ = (−1̃)L

λx + 2̃L
λy, λ ∈ [0, 1]

min
x∈X

(F1(x, y))R
λ = (−1̃)R

λ x + 2̃R
λ y, λ ∈ [0, 1]

min
x∈X

(F2(x, y))L
λ = 2̃L

λx + (−4̃)L
λy, λ ∈ [0, 1]

min
x∈X

(F2(x, y))R
λ = 2̃R

λ x + (−4̃)R
λ y, λ ∈ [0, 1]

subject to (−1̃)L
λx + 3̃L

λy 5 4̃L
λ , (−1̃)R

λ x + 3̃R
λ y 5 4̃R

λ , λ ∈ [0, 1]

min
y∈Y

(f11(x, y))L
λ = 2̃L

λx + (−1̃)L
λy, λ ∈ [0, 1]

min
y∈Y

(f11(x, y))R
λ = 2̃R

λ x + (−1̃)R
λ y, λ ∈ [0, 1]

min
y∈Y

(f21(x, y))L
λ = (−1̃)L

λx + 2̃L
λy, λ ∈ [0, 1]

min
y∈Y

(f21(x, y))R
λ = (−1̃)R

λ x + 2̃R
λ y, λ ∈ [0, 1]

subject to 1̃L
λx + (−1̃)L

λy 5 0̃L
λ , 1̃R

λ x + (−1̃)R
λ y 5 0̃R

λ , λ ∈ [0, 1]

(−1̃)L
λx + (−1̃)L

λy 5 0̃L
λ , (−1̃)R

λ x + (−1̃)R
λ y 5 0̃R

λ , λ ∈ [0, 1]

Step 3. Let l = 1 and ε = 10−6.
Step 4. Decompose interval [0, 1] into 2l−1 equal sub-intervals with (2l−1+1) nodes

λi, (i = 0, · · · , 2l−1) which is arranged in the order of 0 = λ0 < λ1 < · · · < λ2l−1 = 1.
We now need to solve the following MOLB decision problem

min
x∈X

(F1(x, y))
L(R)
1 = −1x + 2y

min
x∈X

(F1(x, y))L
0 = −2x + y
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min
x∈X

(F1(x, y))R
0 = 0x + 3y

min
x∈X

(F2(x, y))
L(R)
1 = 2x− 4y

min
x∈X

(F2(x, y))L
0 = 1x− 5y

min
x∈X

(F2(x, y))R
0 = 3x− 3y

subject to − 1x + 3y 6 4

− 2x + 2y 6 3

0x + 4y 6 5

min
y∈Y

(f11(x, y))
L(R)
1 = 2x− 1y

min
y∈Y

(f11(x, y))L
0 = 1x− 2y

min
y∈Y

(f11(x, y))R
0 = 3x− 0y

min
y∈Y

(f21(x, y))
L(R)
1 = −1x + 2y

min
y∈Y

(f21(x, y))L
0 = −2x + 1y

min
y∈Y

(f21(x, y))L
0 = 0x + 3y

subject to 1x− 1y 6 0

0x− 2y 6 −1

2x− 0y 6 1

− 1x− 1y 6 0

− 2x− 2y 6 −1.

Step 5. We transform this MOLB problem to a linear bi-level problem by using a
weighting method, and we have:

min
x∈X

F (x, y) = 3x− 6y

subject to − 1x + 3y 6 4

− 2x + 2y 6 3

0x + 4y 6 5
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min
y∈Y

f(x, y) = 3x + 3y

subject to 1x− 1y 6 0

0x− 2y 6 −1

2x− 0y 6 1

− 1x− 1y 6 0

− 2x− 2y 6 −1.

Step 6-12. According to the proposed approximation Branch-and-Bound-based
algorithm, let us rewrite it as follows:

g1(x, y) = 4− (−1x + 3y) > 0

g2(x, y) = 3− (−2x + 2y) > 0

g3(x, y) = 5− (0x + 4y) > 0

g4(x, y) = −(1x− 1y) > 0

g5(x, y) = −1− (0x− 2y) > 0

g6(x, y) = 1− (2x− 0y) > 0

g7(x, y) = 1x + 1y > 0

g8(x, y) = −1− (−2x− 2y) > 0

g9(x, y) = y > 0

and we also have:

min
x∈X

F (x, y) = 3x− 6y

subject to− 1x + 3y 6 4

− 2x + 2y 6 3

0x + 4y 6 5

1x− 1y 6 0

0x− 2y 6 −1

2x− 0y 6 1
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− 1x− 1y 6 0

− 2x− 2y 6 −1

3u1 + 2u2 + 4u3 − u4 − 2u5 − 0u6 − u7 − 2u8 − u9 = −3

9∑
i=1

uigi(x, y) = 0

x > 0, y > 0, u1 > 0, . . . , u9 > 0.

Finally, we get the following linear programming problem with one check condi-
tion.

min
x∈X

F (x, y) = 3x− 6y

subject to − 1x + 3y 6 4

− 2x + 2y 6 3

0x + 4y 6 5

1x− 1y 6 0

0x− 2y 6 −1

2x− 0y 6 1

− 1x− 1y 6 0

− 2x− 2y 6 −1

3u1 + 2u2 + 4u3 − u4 − 2u5 − 0u6 − u7 − 2u8 − u9 = −3

x > 0, y > 0, u1 > 0, . . . , u9 > 0.

At each time of iteration, the following condition is checked.

9∑
i=1

uigi(x, y) = 0.

More specifically, after initialising the data, the algorithm finds a feasible solution to
the Kuhn-Tucker representation with the complementary slackness conditions omitted
and proceeds to Step 9. The current point, x1 = 0, y1 = 1.25, u1 = (0, 0, 0, 3, 0, 0, 0,
0, 0), with F (x1, y1) = −7.5, is not satisfied complementarities so a branching variable
is selected (u4) and the index sets are updated, giving S+

1 = {4}, S−1 = φ, S0
1 =

{1, 2, 3, 5, 6, 7, 8, 9} and P1 = {4}.
In the next four iterations, the algorithm branches on u5, u7, u8 and u9, respectively.
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Now, five levels down in the Branch-and-Bound search tree (Figure 5.1), the current
sub-problem at Step 7 turns out to be infeasible so the algorithm goes to Step 11 and
backtracks. The index sets are S+

5 = {4, 5, 7, 8}, S−5 = {9}, S0
5 = {1, 2, 3, 6} and

P5 = {4, 5, 7, 8, 9}.
So we go to Step 7, and the algorithm turns out to be infeasible. Thus the algorithm

goes to Step 11 and backtracks. The index sets are S+
6 = {4, 5, 7}, S−6 = {8}, S0

6 =

{1, 2, 3, 6, 9} and P6 = {4, 5, 7, 8}.
Go to Step 7 again, and the algorithm turns out to be infeasible, so the algo-

rithm goes to Step 11 and backtracks. The index sets are now S+
7 = {4, 5}, S0

7 =

{1, 2, 3, 6, 8, 9} and P7 = {4, 5, 7}.
Go to Step 7 again, and the algorithm turns out to be infeasible, so the algorithm

goes to Step 11 and backtracks. The index sets are S+
8 = {4}, S−8 = {5}, S0

8 =

{1, 2, 3, 6, 7, 8, 9} and P8 = {4, 5}.
Go to Step 7, a feasible solution is found. It passes the test at Step 8 and satisfies

the complementary slackness conditions at Step 9. Continuing at Step 8, F̄ = −3.
The algorithm backtracks at Step 11 and updates the sets, S+

9 = φ, S−9 = {4}, S0
9 =

{1, 2, 3, 5, 6, 7, 8, 9} and P9 = {4}. Returning to Step 7, another feasible solution
is found, but at Step 8, the value of the leader’s objective function is greater than the
incumbent upper bound, so it goes to Step 11 and backtracks. However, no live vertices
exist. We have found an optimal solution, occurring at the point (x∗, y∗) = (0, 0.5),
(u∗) = (0, 0, 0, 3, 0, 0, 0, 0, 0) with F ∗ = −3 and f ∗ = 1.5. The Branch-and-Bound
tree is shown in Figure 5.1.

0
4
 =
u


0
5
 =
u


0
7
 =
u


0
8
 =
u


0
9
 =
u


0
4
 =
g


0
5
 =
g


0
7
 =
g


0
8
 =
g


0
9
 =
g


3
−
=
F


F
F
 >
*


0


4


2


6


7


1


3
 8


9


7


5


Figure 5.1: A Branch-and-Bound tree

By examining above procedure, we found that the optimal solution occurs at the
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point (x∗, y∗) = (0, 0.5) with

min
x∈X

(F1(x, y))
L(R)
1 = 1

min
x∈X

(F1(x, y))L
0 = 0.5

min
x∈X

(F1(x, y))R
0 = 1.5

min
x∈X

(F2(x, y))
L(R)
1 = −2

min
x∈X

(F2(x, y))L
0 = −2.5

min
x∈X

(F2(x, y))R
0 = −1.5

min
y∈Y

(f1(x, y))
L(R)
1 = −0.5

min
y∈Y

(f1(x, y))L
0 = −1

min
y∈Y

(f1(x, y))R
0 = 0

min
y∈Y

(f2(x, y))
L(R)
1 = 1

min
y∈Y

(f2(x, y))L
0 = 0.5

min
y∈Y

(f2(x, y))R
0 = 1.5

Step 13. When l = 2, we solve the following MOLB decision problem by Step 4

min
x∈X

(F1(x, y))
L(R)
1 = −1x + 2y

min
x∈X

(F1(x, y))L
1
2

= −3

2
x +

3

2
y

min
x∈X

(F1(x, y))L
0 = −2x + 1y

min
x∈X

(F1(x, y))R
1
2

= −
√

2

2
x +

5

2
y

min
x∈X

(F1(x, y))R
0 = 0x + 3y

min
x∈X

(F2(x, y))
L(R)
1 = 2x− 4y

min
x∈X

(F2(x, y))L
1
2

=
3

2
x− 9

2
y

min
x∈X

(F2(x, y))L
0 = 1x− 5y
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min
x∈X

(F2(x, y))L
1
2

=
5

2
x− 7

2
y

min
x∈X

(F2(x, y))R
0 = 3x− 3y

subject to − 1x + 3y 6 4

− 3

2
x +

5

2
y 6 7

2

− 2x + 2y 6 3

−
√

2

2
x +

7

2
y 6 9

2

0x + 4y 6 5

min
y∈Y

(f1(x, y))
L(R)
1 = 2x− 1y

min
y∈Y

(f1(x, y))L
1
2

=
3

2
x− 3

2
y

min
y∈Y

(f1(x, y))L
0 = 1x− 2y

min
y∈Y

(f1(x, y))R
1
2

=
5

2
x−
√

2

2
y

min
y∈Y

(f1(x, y))R
0 = 3x− 0y

min
y∈Y

(f2(x, y))
L(R)
1 = −1x + 2y

min
y∈Y

(f2(x, y))L
1
2

= −3

2
x +

3

2
y

min
y∈Y

(f2(x, y))L
0 = −2x + 1y

min
y∈Y

(f2(x, y))R
1
2

= −
√

2

2
x +

5

2
y

min
y∈Y

(f2(x, y))R
0 = 0x + 3y

subject to 1x− 1y 6 0
√

2

2
x− 3

2
y 6 −1

2

0x− 2y 6 −1

3

2
x−
√

2

2
y 6
√

2

2

2x− 0y 6 1
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− 3

2
x− 3

2
y 6 −1

2

− 1x− 1y 6 0

−
√

2

2
x−
√

2

2
y 6
√

2

2

− 2x− 2y 6 −1.

By Step 5 to Step 12, we have

min
x∈X

F (x, y) =

(
3 +

5−√2

2

)
x− 10y

subject to− 1x + 3y 6 4

− 3

2
x +

5

2
y 6 7

2

− 2x + 2y 6 3

−
√

2

2
x +

7

2
y 6 9

2

4y 6 5

min
y∈Y

f(x, y) =

(
5−√2

2
+ 3

)
x +

(
5−√2

2
+ 3

)
y

subject to 1x− 1y 6 0
√

2

2
x− 3

2
y 6 −1

2

0x− 2y 6 −1

3

2
x−
√

2

2
y 6
√

2

2

2x− 0y 6 1

− 3

2
x− 3

2
y 6 −1

2

− 1x− 1y 6 0

−
√

2

2
x−
√

2

2
y 6
√

2

2

− 2x− 2y 6 −1
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The optimal solution occurs at the point (x∗, y∗) = (0, 0.5) with

min
x∈X

(F1(x, y))
L(R)
1 = 1

min
x∈X

(F1(x, y))L
1
2

= 0.75

min
x∈X

(F1(x, y))L
0 = 0.5

min
x∈X

(F1(x, y))R
1
2

= 1.25

min
x∈X

(F1(x, y))R
0 = 1.5

min
x∈X

(F2(x, y))
L(R)
1 = −2

min
x∈X

(F2(x, y))L
1
2

= −2.25

min
x∈X

(F2(x, y))L
0 = −2.5

min
x∈X

(F2(x, y))L
1
2

= −1.75

min
x∈X

(F2(x, y))R
0 = −1.5

min
y∈Y

(f1(x, y))
L(R)
1 = −0.5

min
y∈Y

(f1(x, y))L
1
2

= −0.75

min
y∈Y

(f1(x, y))L
0 = −1

min
y∈Y

(f1(x, y))R
1
2

= −
√

2/4

min
y∈Y

(f1(x, y))R
0 = 0

min
y∈Y

(f2(x, y))
L(R)
1 = 1

min
y∈Y

(f2(x, y))L
1
2

= 0.75

min
y∈Y

(f2(x, y))L
0 = 0.5

min
y∈Y

(f2(x, y))R
1
2

= 1.25

min
y∈Y

(f2(x, y))R
0 = 1.5.

Step 14. When (x, y) = (0, 0.5), we have ‖(x, y)22 − (x, y)21‖ = 0 < ε.
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Step 15. The solution of the problem is (x, y) = (0, 0.5) such that

min
x∈X

F1(x, y) = 0.5× 2̃

min
x∈X

F2(x, y) = −0.5× 4̃

min
y∈Y

f11(x, y) = 0.5× 2̃

min
y∈Y

f21(x, y) = −0.5× 1̃.

This example shows how the approximation Branch-and-Bound-based algorithm is
used to solve an FMMLB decision problem.

5.2.2 An Approximation Kth-Best-based Algorithm

We first present related definitions and theorems.
For the problem defined by Definition 5.1.1, we give the following definition to

provide a solution concept for the related MOLB decision problems defined by (5.22).

Definition 5.2.1. (1) Constraint region of the MOLB decision problem (5.22):

S ,{(x, y) : x ∈ X, y ∈ Y, ÃL
λj

x +
K∑

t=1

B̃t
L

λj
yt 6 b̃L

λj
, ÃR

λj
x +

K∑
t=1

B̃t
R

λj
yt 6 b̃R

λj
,

Ãi
L

λj
x + C̃i

L

λj
yi 6 b̃i

L

λj
, Ãi

R

λj
x + C̃i

R

λj
yi 6 b̃i

R

λj
, i = 1, . . . , K, j = 0, 1, . . . , l.}

It refers to all possible combination of choices that a leader and followers may
make.

(2) Projection of S onto the leader’s decision space:

S(X) ,{x ∈ X : ∃y ∈ Y, ÃL
λj

x +
K∑

t=1

B̃t
L

λj
yt 6 b̃L

λj
, ÃR

λj
x +

K∑
t=1

B̃t
R

λj
yt 6 b̃R

λj
,

Ãi
L

λj
x + C̃i

L

λj
yi 6 b̃i

L

λj
, Ãi

R

λj
x + C̃i

R

λj
yi 6 b̃i

R

λj
,

i = 1, . . . , K, j = 0, 1, . . . , l.}
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(3) Feasible set for the followers ∀x ∈ S(X):

S(x) , {y ∈ Y : ÃL
λj

x +
K∑

t=1

B̃t
L

λj
yt 6 b̃L

λj
, ÃR

λj
x +

K∑
t=1

B̃t
R

λj
yt 6 b̃R

λj
,

Ãi
L

λj
x + C̃i

L

λj
yi 6 b̃i

L

λj
, Ãi

R

λj
x + C̃i

R

λj
yi 6 b̃i

R

λj
,

i = 1, . . . , K, j = 0, 1, . . . , l.}

(4) The followers’ rational reaction set for x ∈ S(x):

P (x) , {y ∈ Y : y ∈ argmin[f(x, ŷ) : ŷ ∈ S(x)]}

where argmin[f(x, ŷ) : ŷ ∈ S(x)] = {y ∈ S(x) : f(x, y) 6 f(x, ŷ), ŷ ∈
S(x)}.
The followers observe the leader’s action and reacts by selecting y from his or
her feasible set to minimise his or her objective function.

(5) Inducible region:

IR , {(x, y) : (x, y) ∈ S, y ∈ P (x)}

which represents the set over which a leader may optimise his or her objectives.

Theorem 5.2.3. (Zhang et al. 2006b) The inducible region defined by (5) can be written

equivalently as a piecewise linear equality constraint comprised of supporting hyper

planes of S.

Corollary 5.2.1. (Zhang et al. 2006b) The MOLB problem (5.22) is equivalent to min-

imising over a feasible region comprised of a piecewise linear equality constraint.

Corollary 5.2.2. (Zhang et al. 2006b) A solution for problem (5.22) occurs at a vertex

of IR.

Theorem 5.2.4. (Zhang & Lu 2007a) The solution (x?, y?) of problem (5.22) occurs

at a vertex of S.

Corollary 5.2.3. (Zhang & Lu 2007a) If x is an extreme point of IR, it is an extreme

point of S.

Theorem 5.2.4 and Corollary 5.2.2 have provided theoretical foundation for the
fuzzy kth-best approach. It means that by searching extreme points on the constraint
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region S, we can efficiently find an optimal solution for an FMOLB problem. Accord-
ing to the objective function of the upper level, we order all the extreme points on S in
descending order, and select the first extreme point to check if it is on the inducible re-
gion IR. If yes, the current extreme point is the optimal solution. Otherwise, continue
the process.

More specifically, let (x[1], y[1]), . . . , (x[N ], y[N ]) denote the N ordered extreme points
to the linear programming problem:

min

{
s∑

j=1

wj1

(
n∑

i=0

(
cj1

L
αi

x + dj1
L
αi

y
)

+
n∑

i=0

(
cj1

R
αi

x + dj1
R
αi

y
))

: (x, y) ∈ S

}

(5.25)

such that

s∑
j=1

wj1

(
n∑

i=0

(
cj1

L
αi

x[i] + dj1
L
αi

y[i]

)
+

n∑
i=0

(
cj1

R
αi

x[i] + dj1
R
αi

y[i]

))
6

s∑
j=1

wj1

(
n∑

i=0

(
cj1

L
αi

x[i+1] + dj1
L
αi

y[i+1]

)
+

n∑
i=0

(
cj1

R
αi

x[i+1] + dj1
R
αi

y[i+1]

))
,

i = 1, . . . , N. (5.26)

Let ȳ denote the optimal solution to the following problem

min(f(x[i], y) : y ∈ S(x[i])) (5.27)

We only need to find the smallest i under which y[i] = ȳ.
Let us write (5.27) as follows

min f(x, y)

subject to y ∈ S(x)

x = x[i]

(5.28)

Based on the definitions and theorems presented above and the extended Kth-Best
algorithm (Shi et al. 2005a), we extend it to fuzzy situations and propose an approxi-
mation kth-best-based algorithm for solving FMMLB decision problems in Algorithm
4.

We apply the proposed approximation kth-best-based algorithm to solve a simple
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Algorithm 4: An approximation kth-best-based algorithm for FMMLB decision
problems

Step 1: Given two sets of weights wj1 (j = 1, . . . , s) and wj2 (j = 1, . . . , t) to the
objectives of the leader and the followers respectively, let

∑s
j=1 wj1 = 1 and∑t

j=1 wj2 = 1.
Step 2: The problem defined by Definition 5.1.1 is transformed to Problem (5.23).
Step 3: Set l = 1, a range of errors ε > 0, to solve Problem (5.23) by following steps.
step 3.1: Put i = 1. Solve Problem (5.23) with the Simplex method to obtain the
optimal solution (x[1], y[1]) . Let W = {(x[1], y[1])}, T = ∅ . Go to Step 2.
Step 3.2: Solve Problem (5.28) with the bounded simplex method. Let ȳ denote the
optimal solution to (5.28). If ȳ = y[i], stop; (x[i], y[i] is the global optimum to Problem
(5.23). Otherwise, go to Step 3.
Step 3.3: Let W[i] denote the set of adjacent extreme points of x[i], y[i] such that

(x, y) ∈W[i] implies
∑s

j=1 wj1

(∑n
i=0

(
cj1

L
αi

x[i] +dj1
L
αi

y[i]

)
+

∑n
i=0

(
cj1

R
αi

x[i] + dj1
R
αi

y[i]

))
6

∑s
j=1 wj1

(∑n
i=0

(
cj1

L
αi

x[i+1] + dj1
L
αi

y[i+1]

)
+

∑n
i=0

(
cj1

R
αi

x[i+1] + dj1
R
αi

y[i+1]

))
.

Let T = T ∪ {(x[i], y[i]} and W = (W ∪W[i]) T . Go to Step 4.
Step 3.4: Set i = i + 1 and choose x[i], y[i] so that
∑s

j=1 wj1

(∑n
i=0

(
cj1

L
αi

x[i] + dj1
L
αi

y[i]

)
+

∑n
i=0

(
cj1

R
αi

x[i] + dj1
R
αi

y[i]

))
=

min{∑s
j=1 wj1

(∑n
i=0

(
cj1

L
αi

x + dj1
L
αi

y
)

+
∑n

i=0

(
cj1

R
αi

x + dj1
R
αi

y
))

: (x, y) ∈
W}. Go back to Step 2.
Step 4: Decompose interval [0, 1] into 2l−1 equal sub-intervals with (2l−1 + 1) nodes λi

(i = 0, · · · , 2l−1) arranged in the order of 0 = λ0 < · · · < λ2l−1 = 1.
Step 5: If ‖(x, y)2l+1 − (x, y)2l‖ < ε, then the solution (x∗, y∗) of the problem is
(x, y)2l+1 , otherwise, go back to Step 3.1.
Step 6: Show the results, terminates.

FMMLB decision problem to illustrate how the algorithm is used.
In this example, the leader has one objective F . There are two followers, who share

decision variables and one objective f but have one individual constraints. We can see
that this FMMLB decision problem exactly falls into the category of Model 2.

Example 5.2.2. Consider the following FMMLB decision problem with x ∈ R1, y ∈
R1, and X = {x > 0}, Y = {y > 0}:

min
x∈X

F (x, y) = 1̃x− 2̃y

subject to − 1̃x + 3̃y 6 4̃
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min
y∈Y

f(x, y) = 1̃x + 1̃y

subject to 1̃x− 1̃y 6 0̃

− 1̃x− 1̃y 6 0̃

where

µ1̃(t) =





0, t < 0,

t2, 0 5 t < 1,

2− t, 1 5 t < 2,

0, 2 5 t.

µ2̃(t) =





0, t < 1,

t− 1, 1 5 t < 2,

3− t, 2 5 t < 3,

0, 3 5 t.

µ3̃(t) =





0, t < 2,

t− 2, 2 5 t < 3,

4− t, 3 5 t < 4,

0, 4 5 t.

µ4̃(t) =





0, t < 3,

t− 3, 3 5 t < 4,

5− t, 4 5 t < 5,

0, 5 5 t.

µ0̃(t) =





0, t < −1,

t + 1, −1 5 t < 0,

1− t2, 0 5 t < 1,

0, 1 5 t.

We now solve this problem by using the proposed approximation kth-best-based
algorithm.

Step 1. The original problem is transferred to the following problem by using
Theorem 5.2.1.

min
x∈X

(F (x, y))c = 1x− 2y

min
x∈X

(F (x, y))L
0 = 0x− 3y

min
x∈X

(F (x, y))R
0 = 2x− 1y

subject to − 1x + 3y 6 4

− 2x + 2y 6 3

0x + 4y 6 5

min
y∈Y

(f(x, y))c = 1x + 1y
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min
y∈Y

(f(x, y))L
0 = 0x + 0y

min
y∈Y

(f(x, y))R
0 = 2x + 2y

subject to 1x− 1y 6 0

0x− 2y 6 −1

2x− 0y 6 1

− 1x− 1y 6 0

0x− 0y 6 0

− 2x− 2y 6 −1

Step 2. This problem is then transferred to the following linear bi-level problem by
using a weighting method.

min
x∈X

F (x, y) = 3x− 6y

subject to − 1x + 3y 6 4

− 2x + 2y 6 3

0x + 4y 6 5

min
y∈Y

f(x, y) = 3x + 3y

subject to 1x− 1y 6 0

0x− 2y 6 −1

2x− 0y 6 1

− 1x− 1y 6 0

0x− 0y 6 0

− 2x− 2y 6 −1

Step 3. According to the extended Kth-Best approach proposed in (Shi et al.

2005a), we obtain the following problem:

min
x∈X

F (x, y) = 3x− 6y

subject to − 1x + 3y 6 4

− 2x + 2y 6 3
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0x + 4y 6 5

1x− 1y 6 0

0x− 2y 6 −1

2x− 0y 6 1

− 1x− 1y 6 0

0x− 0y 6 0

− 2x− 2y 6 −1

Let i = 1, and solve the above problem with the Simplex method to obtain the
optimal solution (x[1], y[1]) = (0, 1.25). Let W = {0, 1.25} and T = ∅. Go to Step 2.

Loop 1:
By (5.28), we have:

min
x∈X

f(x, y) = 3x + 3y

subject to − 1x + 3y 6 4

− 2x + 2y 6 3

0x + 4y 6 5

1x− 1y 6 0

0x− 2y 6 −1

2x− 0y 6 1

− 1x− 1y 6 0

0x− 0y 6 0

− 2x− 2y 6 −1

x = 0

y 6 0

Using the bounded Simplex method, we have ȳ = 0.5. Because ȳ 6= y[i], we
go to Step 3. We have W[i] = {(0.5, 1.25), (0, 0.5), (0, 1.25)}, T = {(0, 1.25)} and
W = {(0, 0.5), (0.5, 1.25)}, then go to Step 4. Update i = 2, and choose (x[i], y[i]) =

(0.5, 1.25), then go to Step 2.
Loop 2:
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By (5.28), we have:

min
x∈X

f(x, y) = 3x + 3y

subject to − 1x + 3y 6 4

− 2x + 2y 6 3

0x + 4y 6 5

1x− 1y 6 0

0x− 2y 6 −1

2x− 0y 6 1

− 1x− 1y 6 0

0x− 0y 6 0

− 2x− 2y 6 −1

x = 0.5

y 6 0

Using the bounded Simplex method, we have ȳ = 0.5. Because ȳ 6= y[i], we go to
Step 3. We have W[i] = {(0.5, 1.25), (0, 0.5), (0, 1.25)}, T = {(0, 1.25), (0.5, 1.25)}
and W = {(0, 0.5), (0.5, 0.5)}, then go to Step 4. Update i = 3, and choose (x[i], y[i]) =

(0, 0.5), then go to Step 2.
Loop 3:
By (5.28), we have:

min
x∈X

f(x, y) = 3x + 3y

subject to − 1x + 3y 6 4

− 2x + 2y 6 3

0x + 4y 6 5

1x− 1y 6 0

0x− 2y 6 −1

2x− 0y 6 1

− 1x− 1y 6 0
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0x− 0y 6 0

− 2x− 2y 6 −1

x = 0

y 6 0

Using the bounded Simplex method, we have ȳ = 0.5. Because ȳ = y[i], we go
to Step 3. We stop here. (x[i], y[i]) = (0, 0.5) is the global solution to this example,
By examining above procedure, we found that the optimal solution occurs at the point
(x∗, y∗) = (0, 0.5).

Step 4. The result is

min
x∈X

(F (x, y))c = −1

min
x∈X

(F (x, y))L
0 = −1.5

min
x∈X

(F (x, y))R
0 = −0.5

min
y∈Y

(f(x, y))c = 0.5

min
y∈Y

(f(x, y))L
0 = 0

min
y∈Y

(f(x, y))R
0 = 1

Consequently, under this solution, we have the objective functions for both the
leader and the follower as follows:

min
x∈X

F (x, y) = 1̃x− 2̃y = c̃

min
y∈Y

f(x, y) = 1̃x + 1̃y = d̃

x = 0, y = 0.5

where

µc̃(t) =





0, t < −1.5,
t+1.5
0.5

, −1.5 5 t < −1,
−0.5−t

0.5
, −1 5 t < −0.5,

0, −0.5 5 t.

µd̃(t) =





0, t < 0,
t

0.5
, 0 5 t < 0.5,

1−t
0.5

, 0.5 5 t < 1,

0, 1 5 t.
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5.2.3 A PSO-based Algorithm

In this section, we apply the PSO technique on FMMLB decision problems and
develop an algorithm accordingly. The detailed algorithm is specified in Algorithm 5.
The notations used in subsequent paragraphs are explained in Table 5.1.

Table 5.1: The explanation of some notations for Algorithm 5
N the number of candidate solutions (particles) by the leader

within its swarm;
M the number of candidate solutions (particles) by the followers

within its swarm;
m =

∑K
i=1 mi, the total number of decision variables from follow-

ers;
xi = (xi1, xi2, . . . , xin)T , i = 1, . . . , N , the ith candidate solution

for the leader;
vi = (vi1, vi2, . . . , vin)T , i = 1, . . . , N , the velocity of xi;
yi =(yi1, yi2, . . . , yim)T , the followers’ choice for each xi from the

leader;
yij = (yij1, yij2, . . . , yijm)T , j = 1, . . . , M , the jth candidate solu-

tion by the followers for the choice xi from the leader;
vij = (vij1, ..., vijm)T , j = 1, . . . , M , the velocity of yij;
pi = (pi1, pi2, . . . , pin)T , the best previously visited position of xi;
pij = (pij1, pij2, . . . , pijm)T , the best previously visited position of

yij;
ypi = (ypi1, ypi2, . . . , ypim)T , the response from the followers for

the choice pi from the leader;
CS = (CS1, CS2, . . . , CSn), the recording vector to record if xi is

within constraint area;
g the index of the best particle for the leader in the swarm;
kl current iteration number for the upper-level problem;
kf current iteration number for the lower-level problem;
MaxKl the predefined max iteration number for kl;
MaxKf the predefined max iteration number for kf .

Figure 5.2 shows the outline of this PSO-based algorithm. It first samples the
leader-controlled variables to get some candidate choices for a leader. Then, we use
PSO method together with the stretching technology (Parsopoulos & Vrahatis 2002)
to get followers’ response for every leader’s choice. Thus a pool of candidate solutions
for both the leader and the followers is formed. By pushing every solution pair moving
towards current best ones, the whole solution pool is updated. Once a solution is
reached for the leader, we use the stretching technology (Parsopoulos & Vrahatis 2002)
to escape the local optimisation. We repeat this procedure by a pre-defined count and
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reach a final solution.

Figure 5.2: The outline of Algorithm 5

First we initiate a swarm comprised by the leader-controlled variables (X particles).
For each particle (xi) in the swarm, we fix xi and pass it to the followers as a constant.
Then the optimal response from the followers can be generated by solving the follow-
ing single level optimisation problem:

min
yi∈Yi

f(x, y1, y2, . . . , yK) = ãx +
∑k

i=1 ẽiyi

subject to D̃ix + C̃iyi ¹α d̃i

i = 1, 2, . . . , K

(5.29)

To solve Problem (5.29), we also need to generate a population (Y particles), each
of which has a velocity. Both the Y particles and the corresponding velocities are ran-
dom number distributed among a pre-defined range. The followers thus have many
candidate solutions of (xi, yij, i = 1, 2, . . . , N, j = 1, 2, . . . , M ). From every particle
pair (xi, yij), a bunch of the followers’ objective values can be generated, which are
inevitably fuzzy numbers. These fuzzy objective values will be evaluated by compar-
ing any two of them using Definition 2.6.2. By this ranking method, we can select the
previously visited best positions for all y particles and the best one among y particles.
Then the stretching technology will be used to erase local solutions. Having current
best positions, we adjust the velocities which are redirected towards these best posi-
tions. Then every y particle will be moved by its corresponding velocity. Specifically,
we use the following equations to update the position (yij) and velocity (vij) for each
in Y particles:

v
kf+1
ij = wv

kf

ij + cr
kf

1 (pij − y
kf

ij ) + cr
kf

2 (y
kf

i − y
kf

ij )

y
kf+1
ij = y

kf

ij + v
kf+1
ij

(5.30)

Here, kf is to record current loop. Once kf is larger than some predefined value, yi
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Algorithm 5: A PSO-based algorithm for FMMLB decision problems
Input: Parameters of the problem defined by Equation (5.17) and Equation (5.18)
Output: (xg, yg)
Sampling:
xi = (xi1, xi2, . . . , xin)T ;
vi = (vi1, vi2, ...vin)T , i = 1, . . . , N ;
Generating the responses from the follower:
foreach xi do

kf = 1;
pij = (pij1, pij2, . . . , pijm)T = (0, 0, . . . , 0)T ;
Sampling:
yij = (yij1, yij2, . . . , yijm)T ;
vij = (vij1, vij2, ...vijm)T , j = 1, . . . , M ;

1 CSi = false;
if Ã1x + B̃1y ¹ b̃1 and Ã2xi + B̃2y ¹ b̃2 then

CSi = true;
end
if (pij = (pij1, pij2, . . . , pijm)T = (0, 0, . . . , 0)T ) or (f(xi, yij) ¹ f(xi, pij)) then

pij = (pij1, pij2, . . . , pijm)T = (yij1, yij2, . . . , yijm)T ;
end
Stretching for global solution for follower by (2.8);
Searching the best response yi from pij , j = 1, 2, . . . ,M ;
Updating velocities and positions using Equation (5.30);
kf = kf + 1;
if kf > MaxK then

Goto 2;
else

Goto 1;
end

end
2 if CSi = true then

if (pi = (pi1, . . . , pin)T = (0, . . . , 0)T ) or (F (xi, yi) 6 F (pi, ypi)) then
pi = (pi1, pi2, . . . , pin)T = (xi1, xi2, . . . , xin)T ;
ypi = (ypi1, ypi2, . . . , ypim)T = (yi1, yi2, . . . , yim)T ;

end
end
Stretching for global solution for leader by (2.8);
Searching (xg, yg) from pi, and ypi, i = 1, . . . , N ;
Updating xi and vi using Equation (5.31);
kl = kl + 1;
if kl > MaxK then

stop
else

Goto 2;
end
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will be sent to the leader as the followers’ response for xi.
Having obtained the responses of yi, i = 1, 2, . . . , K, from the followers, the

leader’s objective values for each xi can be calculated. We then use the fuzzy ranking
method defined by Definition 2.6.2 again to compare these objective values and select
the best position for each xi and the best one among them, which can make the most
optimal objective values. After using the stretching technology on current found best
ones, the PSO technique is applied for every particle pair (xi, yi) to update the position
(xi) and velocity (vi) of every leader’s particle:

vkl+1
i = wvkl

i + crkl
1 (pi − xkl

i ) + crkl
2 (xkl

g − xkl
i )

xkl+1
i = xkl

i + vkl+1
i

(5.31)

Once the iteration times kl is large enough, current best particle pair (xg, yg) will
be outputted as the final solution.

5.3 Experiments

In this section, we employ one numerical example to test the performance of the
three FMMLB algorithms developed in this chapter. Based on the experiments, we
then discuss the choice for these algorithms.

Suppose the example is as:

Leader : max
x∈X

F (x, y1, y2) = −3̃x + 3̃y1 + 2̃1y2

subject to − 3̃x + 6̃y1 + 4̃y2 ¹α 3̃

Follower 1 : min
y1∈Y1

f(x, y2) = 6̃x + 4̃y1

Follower 2 : min
y2∈Y2

f(x, y2) = 3̃x + 1̃y2

subject to 3̃x + 3̃y1 ¹α 2̃1

−1̃x + 1̃y2 ¹α −1̃

where X = {x > 0}, Y1 = {y1 > 0}, and Y2 = {y2 > 0}.
The membership functions for this FMMLB problem are as follows:
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µ−̃3(x) =





0 x < −4

(16− x2)/7 −4 5 x < −3

1 x = −3

(x2 − 1)/8 −3 < x 6 −1

0 x > −1

, µ3̃(x) =





0 x < 2

(x2 − 4)/5 2 5 x < 3

1 x = 3

(25− x2)/16 3 < x 6 5

0 x > 5

.

µ2̃1(x) =





0 x < 19

(x2 − 361)/80 19 5 x < 21

1 x = 21

(625− x2)/184 21 < x 6 25

0 x > 25

, µ6̃(x) =





0 x < 5

(x2 − 25)/11 5 5 x < 6

1 x = 6

(64− x2)/28 6 < x 6 8

0 x > 8

.

µ4̃(x) =





0 x < 3

(x2 − 9)/7 3 5 x < 4

1 x = 4

(36− x2)/20 4 < x 6 6

0 x > 6

, µ1̃(x) =





0 x < 0.5

(x2 − 0.25)/0.75 0.5 5 x < 1

1 x = 1

(4− x2)/3 1 < x 6 2

0 x > 2

.

µ−̃1(x) =





0 x < −2

(4− x2)/3 −2 5 x < −1

1 x = −1

(x2 − 0.25)/0.75 −1 < x 6 −0.5

0 x > −0.5

.

This example was run by the approximation Branch-and-Bound-based algorithm,
the approximation Kth-Best-based algorithm, and the PSO-based algorithm proposed
in this chapter, which were implemented by Visual Basic 6.0, and tested on a desktop
computer with CPU Pentium 4 2.8GHz, RAM 1G, Windows XP.

In the experiments, we compare the solutions obtained from the approximation
Branch-and-Bound-based algorithm, the approximation Kth-Best-based algorithm, and
the PSO-based algorithm. For the PSO-based algorithm, the inertia weight w is ini-
tially set as 1.2, and is gradually declined towards 0, and the population size is set as
20. Now we adjust the parameters of c1 and c2 from 0.5 to 2 respectively. Under every
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pair of specific c1 and c2, this example was run in the PSO-based algorithm by five
times, and different solutions have been obtained. To evaluate the performance, Table
5.2 lists the experiment result, where (4x∗,4y∗1,4y∗2) represents the average solu-
tion difference between the PSO-based algorithm and the classical algorithms, i.e. the
approximation Branch-and-Bound-based algorithm and the approximation Kth-Best-
based algorithm, for every decision vector. The column of “4” sums up the average
difference by every decision vector for every c1, c2 pair. In the column of “Time”, the
average running time is listed which is calculated by seconds.

Table 5.2: Summary of the running solutions

(c1, c2) (4x∗,4y∗1,4y∗2) 4 Time
(0.5, 0.5) (0.68834, 0.04396, 0.17334) 0.90564 46.2
(0.5, 1) (0.68276, 0.0276, 0.17334) 0.8837 42.4
(0.5, 1.5) (0.68526, 0.10666, 0.17334) 0.96526 41
(0.5, 2) (0.67506, 0.04536, 0.17334) 0.89374 40.6
(1, 0.5) (0.69212, 0.01128, 0.17334) 0.87674 40.2
(1, 1) (0.69074, 0.04364, 0.17334) 0.97074 38.4
(1, 1.5) (0.68626, 0.04422, 0.17334) 0.90382 39
(1, 2) (0.69294 , 0.10666 , 0.17334 ) 0.97294 38.6
(1.5, 0.5) (0.67422 , 0.04572 , 0.17334 ) 0.89328 39
(1.5, 1) (0.69262 , 0.10666 , 0.17334 ) 0.97262 39.8
(1.5, 1.5) (0.66826 , 0.04642 , 0.17334 ) 0.88802 39
(1.5, 2) (0.6918 , 0.04352 , 0.17334 ) 0.90866 39.6
(2, 0.5) (0.6926 , 0.0434 , 0.17334 ) 0.90934 39
(2, 1) (0.6869 , 0.04412 , 0.17334 ) 0.90436 38.4
(2, 1.5) (0.68622 , 0.0861 , 0.17334 ) 0.94566 38.6
(2, 2) (0.68336 , 0.04458 , 0.17334 ) 0.90128 39.6

It can be seen from Table 5.2 that the approximation Branch-and-Bound-based
algorithm and the approximation Kth-Best-based algorithm can reach exactly the same
result, which can demonstrate that in a certain degree these two algorithms are effective
to solve FMMLB decision problems.

Meanwhile, we can see the solutions obtained from the PSO-based algorithm are
quite close from those from the approximation Branch-and-Bound-based algorithm
and the approximation Kth-Best-based algorithm, and do not fluctuate much with the
parameters’ change. These illustrate that the performance of the PSO-based algorithm
is quite stable.

From the fact that the approximation Branch-and-Bound-based algorithm and the
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approximation Kth-Best-based algorithm can reach exactly the same result which is
very close to the result from the PSO-based algorithm, we can come to the conclusion
that these three algorithms are valid to solve FMMLB decision problems.

What we can not ignore is that the computation time of the PSO-based algorithm
is still much longer than the classical algorithms. This inefficiency comes from the
nature of heuristic strategy which simulates the optimisation process while the classical
methods use the mathematical properties to directly reach the solution. However, using
the mathematical properties sometimes can not reach a solution when these properties
can not be satisfied, while heuristic methods are capable of overpassing these complex
property verification to generate a reasonable solution at all. In many situations, this
reasonable solution is very helpful for a decision maker when making a plan.

5.4 Summary

This chapter addresses FMMLB decision problems. First we propose a model
framework to define FMMLB problems by different cooperation in objectives, con-
straints, and decision variables among followers. Then using cutset strategy and PSO,
three algorithms, i.e. an approximation Branch-and-Bound-based algorithm, an ap-
proximation Kth-Best-based algorithm, and a PSO-based algorithm are developed to
solve FMMLB decision problems. Experiments are carried and comparisons are made
among these algorithms. Based on the experiments, we discuss the choice among these
algorithms.
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6 Cutset Strategy for Fuzzy Linear Goal
Bi-level Decision Making

Goal programming requests a decision maker to set a goal for the objective that
he/she wishes to attain. A preferred solution is then defined to minimise the deviation
from the goal. Therefore goal programming seems to yield a satisfactory solution
rather than an optimal one. In fuzzy linear bi-level decision problems, when both a
leader and a follower set goals for their objectives respectively, the problem becomes a
fuzzy linear bi-level goal (FLBG) decision problem, which is addressed in this Chapter.
After presenting a FLBG model, a λ−cut-based algorithm is developed. A numerical
example is then employed to demonstrate the model and the proposed algorithm.

6.1 A Model

Definition 6.1.1. A λ−cut-based FLBG model is defined as:

min
x∈X
|cL

1λj
x + dL

1λj
y − gL

Lλj
|,

min
x∈X
|cR

1λj
x + dR

1λj
y − gR

Lλj
|, (6.1a)

subject to A1
L
λj

x + B1
L
λj

y 5 b1
L
λj

,

A1
R
λj

x + B1
R
λj

y 5 b1
R
λj

,
(6.1b)

min
y∈Y
|cL

2λj
x + dL

2λj
y − gL

Fλj
|,

min
y∈Y
|cR

2λj
x + dR

2λj
y − gR

Fλj
|, (6.1c)

subject to A2
L
λj

x + B2
L
λj

y 5 b2
L
λj

,

A2
R
λj

x + B2
R
λj

y 5 b2
R
λj

j = 0, 1, 2, ..., l,

(6.1d)

where c̃1, c̃2 ∈ F n(R), d̃1, d̃2 ∈ Fm(R), b̃1 ∈ F p(R), b̃2 ∈ F ∗(Rq), Ã1 = (ãij)p×n,

B̃1 =
(
b̃ij

)
p×m

, Ã2 = (ẽij)q×n, B̃2 = (s̃ij)q×m, ãi, b̃i,d̃i, ãij , b̃ij , ẽij , s̃ij ∈ F (R).

This model uses λ−cut to defuzzify and describe a FLBG decision problem. Based
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on this model, a λ−cut-based algorithm will be presented in next section.

6.2 A λ−cut-based Algorithm

For a clear understanding of the idea adopted, we define:

vL−
1λj

= 1
2
[|cL

1λj
x + dL

1λj
y − gL

Lλj
| − (cL

1λj
x + dL

1λj
y − gL

Lλj
)]

vL+
1λj

= 1
2
[|cL

1λj
x + dL

1λj
y − gL

Lλj
|+ (cL

1λj
x + dL

1λj
y − gL

Lλj
)]

vR−
1λj

= 1
2
[|cR

1λj
x + dR

1λj
y − gR

Lλj
| − (cR

1λj
x + dR

1λj
y − gR

Lλj
)]

vR+
1λj

= 1
2
[|cR

1λj
x + dR

1λj
y − gR

Lλj
|+ (cR

1λj
x + dR

1λj
y − gR

Lλj
)]

vL−
2λj

= 1
2
[|cL

2λj
x + dL

2λj
y − gL

Fλj
| − (cL

2λj
x + dL

2λj
y − gL

Fλj
)]

vL+
2λj

= 1
2
[|cL

2λj
x + dL

2λj
y − gL

Fλj
|+ (cL

2λj
x + dL

2λj
y − gL

Fλj
)]

vR−
2λj

= 1
2
[|cR

2λj
x + dR

2λj
y − gR

Fλj
| − (cR

2λj
x + dR

2λj
y − gR

Fλj
)]

vR+
2λj

= 1
2
[|cR

2λj
x + dR

2λj
y − gR

Fλj
|+ (cR

2λj
x + dR

2λj
y − gR

Fλj
)]

(6.2)

Associated with FLBG problems defined by (6.1), we now consider the following
bi-level decision problem:

For (vL−
1λj

, vL+
1λj

, vR−
1λj

, vR+
1λj

) ∈ R4, X ′ ⊆ X × R4, (vL−
2λj

, vL+
2λj

, vR−
2λj

,vR+
2λj

) ∈ R4,
Y ′ ⊆ Y × R4, let x = (x1, · · · , xn) ∈ X , x′ = (x1, · · · , xn, vL−

1λj
, vL+

1λj
, vR−

1λj
,

vR+
1λj

) ∈ X ′, y = (y1, · · · , ym) ∈ Y , y′ = (y1, · · · , ym, vL−
2λj

, vL+
2λj

, vR−
2λj

, vR+
2λj

) ∈ Y ′, and
vL

1λj
, vR

1λj
,vL

2λj
, vR

2λj
: X ′ × Y ′ → F (R).

min
x′∈X′

vL
1λj

= vL−
1λj

+ vL+
1λj

min
x′∈X′

vR
1λj

= vR−
1λj

+ vR+
1λj

(6.3a)

subject to cL
1λj

x + dL
1λj

y + vL−
1λj
− vL+

1λj
= gL

Lλj
,

cR
1λj

x + dR
1λj

y + vR−
1λj
− vR+

1λj
= gR

Lλj
,

vL−
1λj

, vL+
1λj

, vR−
1λj

, vR+
1λj

> 0,

vL−
1λj
· vL+

1λj
= 0,

vR−
1λj
· vR+

1λj
= 0,

A1
L
λj

x + B1
L
λj

y 5 b1
L
λj

,

A1
R
λj

x + B1
R
λj

y 5 b1
R
λj

,

(6.3b)
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min
y′∈Y ′

vL
2λj

= vL−
2λj

+ vL+
2λj

min
y′∈Y ′

vR
2λj

= vR−
2λj

+ vR+
2λj

(6.3c)

subject to cL
2λj

x + dL
2λj

y + vL−
2λj
− vL+

2λj
= gL

Fλj
,

cR
2λj

x + dR
2λj

y + vR−
2λj
− vR+

2λj
= gR

Fλj
,

vL−
2λj

, vL+
2λj

, vR−
2λj

, vR+
2λj

> 0,

vL−
2λj
· vL+

2λj
= 0,

vR−
2λj
· vR+

2λj
= 0,

A2
L
λj

x + B2
L
λj

y 5 b2
L
λj

,

A2
R
λj

x + B2
R
λj

y 5 b2
R
λj

j = 0, 1, 2, ..., l

(6.3d)

Theorem 6.2.1. Let (x
′∗, y

′∗) = (x∗, vL−∗
1λj

, vL+∗
1λj

, vR−∗
1λj

, vR+∗
1λj

, y∗, vL−∗
2λj

, vL+∗
2λj

, vR−∗
2λj

, vR+∗
2λj

)

be the optimal solution to bi-level decision problem (6.3), then (x∗, y∗) is the optimal

solution to the bi-level decision problem defined by (6.1).

Proof. By Definition 4.1.1, let the notations associated with Problem (6.1) are
denoted by:

S = {(x, y) : Ai
L
λj

x + Bi
L
λj

y 5 bi
L
λj

, Ai
R
λj

x + Bi
R
λj

y 5 bi
R
λj

,

i = 1, 2, j = 0, 1, 2, ..., l} (6.4a)

S(X) = {x ∈ X : ∃y ∈ Y, Ai
L
λj

x + Bi
L
λj

y 5 bi
L
λj

, Ai
R
λj

x + Bi
R
λj

y 5 bi
R
λj

,

i = 1, 2, j = 0, 1, 2, ..., l} (6.4b)

S(x) = {y ∈ Y : (x, y) ∈ S} (6.4c)

P (x) = {y ∈ Y : y ∈ argmin[|cL
2λj

x + dL
2λj

ŷ − gL
Fλj
|,

|cR
2λj

x + dR
2λj

ŷ − gR
Fλj
| : ŷ ∈ S(x)]} (6.4d)

IR = {(x, y) : (x, y) ∈ S, y ∈ P (x)} (6.4e)

Problem (6.1) can be written as

min{|cL
1λj

x + dL
1λj

y − gL
Lλj
|, |cR

1λj
x + dR

1λj
y − gR

Lλj
| : (x, y) ∈ IR}} (6.5)
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and those of problem (6.3) are denoted by:

S ′ ={(x′, y′) : Ai
L
λj

x + Bi
L
λj

y 5 bi
L
λj

, Ai
R
λj

x + Bi
R
λj

y 5 bi
R
λj

,

vL−
iλj
· vL+

iλj
= 0, vR−

iλj
· vR+

iλj
= 0, i = 1, 2,

cL
1λj

x + dL
iλj

y + vL−
1λj
− vL+

1λj
= gL

Lλj
,

cR
1λj

x + dR
iλj

y + vR−
1λj
− vR+

1λj
= gR

Lλj
,

cL
2λj

x + dL
2λj

y + vL−
2λj
− vL+

2λj
= gL

Fλj
, (6.6a)

cR
2λj

x + dR
2λj

y + vR−
2λj
− vR+

2λj
= gR

Fλj
,

j = 0, 1, . . . , l}
S(X ′) ={x′ ∈ X ′ : ∃y′ ∈ Y ′, Ai

L
λj

x + Bi
L
λj

y 5 bi
L
λj

, Ai
R
λj

x + Bi
R
λj

y 5 bi
R
λj

,

vL−
iλj
· vL+

iλj
= 0, vR−

iλj
· vR+

iλj
= 0, i = 1, 2,

cL
1λj

x + dL
iλj

y + vL−
1λj
− vL+

1λj
= gL

Lλj
,

cR
1λj

x + dR
iλj

y + vR−
1λj
− vR+

1λj
= gR

Lλj
, (6.6b)

cL
2λj

x + dL
2λj

y + vL−
2λj
− vL+

2λj
= gL

Fλj
,

cR
2λj

x + dR
2λj

y + vR−
2λj
− vR+

2λj
= gR

Fλj
,

j = 0, 1, ...l}
S(x′) ={y′ ∈ Y ′ : (x′, y′) ∈ S ′} (6.6c)

P (x′) ={y′ ∈ Y ′ : y′ ∈ argmin[v̂L−
2λj

+ v̂L+
2λj

, v̂R−
2λj

+ v̂R+
2λj

: ŷ′ ∈ S(x′)]} (6.6d)

IR′ ={(x′, y′) : (x′, y′) ∈ S ′, y′ ∈ P (x′)} (6.6e)

Problem (6.3) can be written as

min{vL−
1λj

+ vL+
1λj

, vR−
1λj

+ vR+
1λj

: (x′, y′) ∈ IR′} (6.7)

As (x
′∗, y

′∗) is the optimal solution to Problem (6.3), from (6.7), it can be obtained
that, ∀(x′, y′) ∈ IR′, we have: vL−

1λj
+ vL+

1λj
> vL−∗

1λj
+ vL+∗

1λj
, and vR−

1λj
+ vR+

1λj
> vR−∗

1λj
+

vR+∗
1λj

.
As cL

1λj
x + dL

1λj
y + vL−

1λj
− vL+

1λj
= gL

Lλj
and vL−

1λj
· vL+

1λj
= 0, we have

vL−
1λj

+ vL+
1λj

= |cL
1λj

x + dL
1λj

y − gL
Lλj
|,

and
vL−∗

1λj
+ vL+∗

1λj
= |cL

1λj
x∗ + dL

1λj
y∗ − gL

Lλj
|.
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So:
|cL

1λj
x + dL

1λj
y − gL

Lλj
| > |cL

1λj
x∗ + dL

1λj
y∗ − gL

Lλj
| (6.8a)

Similarly, we can get that:

|cR
1λj

x + dR
1λj

y − gR
Lλj
| > |cR

1λj
x∗ + dR

1λj
y∗ − gR

Lλj
| (6.9a)

Now we prove that the projection of S ′ onto the X × Y space, denoted by S ′|X,Y ,
is equal to S:

On the one hand, ∀(x, y) ∈ S ′|X,Y , from constraints: Ai
L
λj

x+Bi
L
λj

y 5 bi
L
λj

, Ai
R
λj

x+

Bi
R
λj

y 5 bi
R
λj

, i = 1, 2 in S ′, we have: (x, y) ∈ S, so S ′|X,Y ⊆ S

On the other hand, ∀(x, y) ∈ S, by (6.2), we can always find such vL−
iλj

, vL+
iλj

, vR−
iλj

,
vR+

iλj
, i = 1, 2, which make constraints: vR−

iλj
· vR+

iλj
= 0, i = 1, 2, cL

1λj
x + dL

iλj
y + vL−

1λj
−

vL+
1λj

= gL
Lλj

, cR
1λj

x + dR
iλj

y + vR−
1λj
− vR+

1λj
= gR

Lλj
, cL

2λj
x + dL

2λj
y + vL−

2λj
− vL+

2λj
= gL

Fλj
,

and cR
2λj

x + dR
2λj

y + vR−
2λj
− vR+

2λj
= gR

Fλj
satisfied. Together with the inequations of

Ai
L
λj

x + Bi
L
λj

y 5 bi
L
λj

, and Ai
R
λj

x + Bi
R
λj

y 5 bi
R
λj

, i = 1, 2 requested by S, we have
(x, vL−

1λj
, vL+

1λj
, y, vR−

2λj
, vR+

2λj
) ∈ S ′, thus (x, y) ∈ S ′|X,Y , S ⊆ S ′|X,Y .

So, we can prove that
S ′|X,Y = S (6.10)

Similarly, we have

S(x)′|X,Y = S(x) (6.11a)

S(X)′|X,Y = S(X) (6.11b)

Also, from cL
2λj

x + dL
2λj

y + vL−
2λj
− vL+

2λj
= gL

Fλj
and vL−

2λj
· vL+

2λj
= 0, we have:

vL−
2λj

+ vL+
2λj

= |cL
2λj

x + dL
2λj

y − gL
Fλj
| (6.12)

Similarly, we have:

vR−
2λj

+ vR+
2λj

= |cR
2λj

x + dR
2λj

y − gR
Fλj
| (6.13)

Thus:

P (x′) ={y′ ∈ Y ′ : y′ ∈ argmin[|cL
2λj

x + dL
2λj

ŷ − gL
Fλj
|,

|cR
2λj

x + dR
2λj

ŷ − gR
Fλj
| : ŷ′ ∈ S(x′)]} (6.14)
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From (6.10) and (6.14), we have:

P (x′)|X×Y = P (x) (6.15)

From (6.4e), (6.6e), (6.10) and (6.15), we have:

IR′|X×Y = IR (6.16)

which means, the leaders of (6.1) and (6.3) share the same optimising space in X × Y

space.
Thus, from (6.8) and (6.16) and the discussions above, we have: ∀(x, y) ∈ IR

|cL
1λj

x + dL
1λj

y − gL
Lλj
| > |cL

1λj
x∗ + dL

1λj
y∗ − gL

Lλj
|,

|cR
1λj

x + dR
1λj

y − gR
Lλj
| > |cR

1λj
x∗ + dR

1λj
y∗ − gR

Lλj
|

So, (x∗, y∗) is the optimal solution of Problem (6.1).

By adopting a weighting method, (6.3) can be further transferred into (6.17):

min
x′∈X′

vL−
1λj

+ vL+
1λj

+ vR−
1λj

+ vR+
1λj

(6.17a)

subject to cL
1λj

x + dL
1λj

y + vL−
1λj
− vL+

1λj
= gL

Lλj
,

cR
1λj

x + dR
1λj

y + vR−
1λj
− vR+

1λj
= gR

Lλj
,

vL−
1λj

, vL+
1λj

, vR−
1λj

, vR+
1λj

> 0,

vL−
1λj
· vL+

1λj
= 0,

vR−
1λj
· vR+

1λj
= 0,

A1
L
λj

x + B1
L
λj

y 5 b1
L
λj

,

A1
R
λj

x + B1
R
λj

y 5 b1
R
λj

,

(6.17b)

min
y′∈Y ′

vL−
2λj

+ vL+
2λj

+ vR−
2λj

+ vR+
2λj (6.17c)

subject to cL
2λj

x + dL
2λj

y + vL−
2λj
− vL+

2λj
= gL

Fλj
,

cR
2λj

x + dR
2λj

y + vR−
2λj
− vR+

2λj
= gR

Fλj
,

vL−
2λj

, vL+
2λj

, vR−
2λj

, vR+
2λj

> 0,

(6.17d)
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vL−
2λj
· vL+

2λj
= 0,

vR−
2λj
· vR+

2λj
= 0,

A2
L
λj

x + B2
L
λj

y 5 b2
L
λj

,

A2
R
λj

x + B2
R
λj

y 5 b2
R
λj

j = 0, 1, ..., l

The non-linear conditions of vL−
iλj
· vL+

iλj
= 0, and vR−

iλj
· vR+

iλj
= 0, i = 1, 2 need not

be maintained if the Kuhn-Tucker approach(Shi et al. 2005b) together with Simplex
algorithm are adopted, since only equivalence at an optimum is wanted. Further expla-
nation can be found from (Charnes & Cooper 1961b). Thus Problem (6.17) is further
transformed into:

For (v−1λj
, v+

1λj
), ∈ R2, X̄ ′ ⊆ X×R2, (v−2λj

, v+
2λj

) ∈ R2, Ȳ ′ ⊆ Y ×R2, let x = (x1,
· · · , xn) ∈ X , x̄′ = (x1, · · · , xn, v−1λj

, v+
1λj

) ∈ X̄ ′ , y = (y1, · · · , ym) ∈ Y , ȳ′ = (y1,
· · · , ym, v−2λj

, v+
2λj

, ) ∈ Ȳ ′, and v1λj
, v2λj

: X̄ ′ × Ȳ ′ → F (R).

min
x̄′∈X̄′

v1λj
= v−1λj

+ v+
1λj (6.18a)

subject to (cL
1λj

+ cR
1λj

)x + (dL
1λj

+ dR
1λj

)y + v−1λj
− v+

1λj
= gL

Lλj
+ gR

Lλj
,

A1
L
λj

x + B1
L
λj

y 5 b1
L
λj

,

A1
R
λj

x + B1
R
λj

y 5 b1
R
λj

,

(6.18b)

min
ȳ′∈Ȳ ′

v2λj
= v−2λj

+ v+
2λj (6.18c)

subject to (cL
2λj

+ cR
2λj

)x + (dL
2λj

+ dR
2λj

)y + v−2λj
− v+

2λj
= gL

Fλj
+ gR

Fλj
,

A2
L
λj

x + B2
L
λj

y 5 b2
L
λj

,

A2
R
λj

x + B2
R
λj

y 5 b2
R
λj

(6.18d)

j = 0, 1, ..., l

where v−iλj
= vL−

iλj
+ vR−

iλj
, v+

iλj
= vL+

iλj
+ vR+

iλj
, i = 1, 2.

Problem (6.18) is a standard linear bi-level decision problem, which can be solved
by Kuhn-Tucker approach (Shi et al. 2005b).

Based on discussions above, the λ−cut-based algorithm for solving FLBG prob-
lems is detailed as Algorithm 6:
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Algorithm 6: A λ−cut-based algorithm for FLBG decision problems
Step 1 (Input)
Get relevant coefficients of a FLBG problem which include coefficients of problem
defined by Definition 3.1.1, coefficients of g̃L and g̃F , satisfactory degree: α, ε > 0
Step 2 (Initialising)
Let k = 1, which is the counter to record current loop.
In (6.1), where λj ∈ [α, 1], let λ0 = α and λ1 = 1 respectively, then each objective will
be transferred into four non-fuzzy objective functions, and each fuzzy constraint is
converted into four non-fuzzy constraints.
Step 3 (Computing)
By introducing auxiliary variables v−iλj

and v+
iλj

, i = 1, 2, we get the format of (6.18).
The solution (x, v−1λj

, v+
1λj

, y, v−2λj
, v+

2λj
)2 of (6.18) is obtained by Kuhn-Tucker

approach.
Step 4 (Comparison)
If (k = 1) Then

(x, v−1λj
, v+

1λj
, y, v−2λj

, v+
2λj

)1 = (x, v−1λj
, v+

1λj
, y, v−2λj

, v+
2λj

)2;
goto [Step 5];

Else If (|(x, v−1λj
, v+

1λj
, y, v−2λj

, v+
2λj

)2 − (x, v−1λj
, v+

1λj
, y, v−2λj

, v+
2λj

)1| < ε ) Then
goto [Step 7] ;

EndIf
Step 5 (Splitting)
Suppose there are (L + 1) nodes λj , (j = 0, 2, 4, ..., 2L) in the interval [α, 1] , insert L
new nodes λj , (j = 1, 3..., 2L− 1) which satisfy:

λ2j+1 = (λ2j + λ2j+2)/2, (j = 0, 1, 2, ..., L− 1).

Step 6 (Loop)
k=k+1;
goto [Step 3];

Step 7 (Output)
(x, y)2 is obtained as a final solution.

6.3 An Example

This section employs a numerical example to show the running procedure of the
proposed algorithm.

[Step 1](Input relevant coefficients):
1) Coefficients of (3.1):
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Suppose the FLB problem is defined below:

max
x∈X

F (x, y) = c̃1x + d̃1y

subject to Ã1x + B̃1y 6 b̃1

min
y∈Y

f(x, y) = c̃2x + d̃2y

subject to Ã2x + B̃2y 6 b̃2

where x ∈ R, y ∈ R, and X = x > 0, Y = y > 0.
The membership functions of the coefficients of the objective functions and the

constraints of both the leader and the follower are as follows:

µc̃1(x) =





0, x < 5
x2−25

11
, 5 5 x < 8

1, x = 6
64−x2

28
, 6 < x 6 8

0, x > 8

, µd̃1
(x) =





0, x < 2
x2−4

5
, 2 5 x < 3

1, x = 3
25−x2

16
, 3 < x 6 5

0, x > 5

.

µc̃2(x) =





0, x < −4

16−x2

7
, −4 5 x < −3

1, x = −3

x2−1
8

, −3 < x 6 −1

0, x > −1

, µd̃2
(x) =





0, x < 5

x2−25
11

, 5 5 x < 6

1, x = 6

64−x2

28
, 6 < x 6 8

0, x > 8

.

µÃ1
(x) =





0, x < −2

4−x2

3
, −2 5 x < −1

1, x = −1

x2−0.25
0.75

, −1 < x 6 −0.5

0, x > −0.5

, µB̃1
(x) =





0, x < 2

x2−4
5

, 2 5 x < 3

1, x = 3

25−x2

16
, 3 < x 6 5

0, x > 5

.

µÃ2
(x) =





0, x < 0.5

x2−0.25
0.75

, 0.5 5 x < 1

1, x = 1

4−x2

3
, 1 < x 6 2

0, x > 2

, µB̃2
(x) =





0, x < 2

x2−4
5

, 2 5 x < 3

1, x = 3

25−x2

16
, 3 < x 6 5

0, x > 5

.
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µb̃1
(x) =





0, x < 19

x2−361
80

, 19 5 x < 21

1, x = 21

625−x2

184
, 21 < x 6 25

0, x > 25

, µb̃2
(x) =





0, x < 25

x2−625
104

, 25 5 x < 27

1, x = 27

961−x2

232
, 27 < x 6 31

0, x > 31

.

2) The membership functions for the fuzzy goals of g̃L and g̃F are:

µg̃L
(x) =





0, x < 15

x2−225
175

, 15 5 x < 20

1, x = 20

900−x2

500
, 20 < x 6 30

0, x > 30

, µg̃F
(x) =





0, x < 4

x2−16
48

, 4 5 x < 8

1, x = 8

225−x2

161
, 8 < x 6 15

0, x > 15

.

3) Satisfactory degree: α = 0.2

4) ε = 0.01

[Step 2](Initialise):
let k=1. Associated with this example, the corresponding λ-cut set based FLBG

problem is:

min
x∈X
|√11λ + 25x +

√
5λ + 4y −√175λ + 225|

min
x∈X
|√64− 28λx +

√
25− 16λy −√900− 500λ|

subject to −√4− 3λx +
√

5λ + 4y 6
√

80λ + 36

−√0.75λ + 0.25x +
√

25− 16λy 6
√

625− 184λ

min
y∈Y
| − √16− 7λx +

√
11λ + 25y −√48λ + 16|

min
y∈Y
| − √8λ + 1x +

√
64− 28λy −√225− 161λ|

subject to
√

0.75λ + 0.25x +
√

5λ + 4y 6
√

104λ + 625
√

4− 3λx +
√

25− 16λy 6
√

961− 232λ

where λ ∈ [0.2, 1].
Referring to the algorithm, only λ0 = 0.2 and λ1 = 1 are considered initially. Thus

four non-fuzzy objective functions and four non-fuzzy constraints for the leader and
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follower are generated respectively:

min
x∈X
|5.2x + 2.2y − 16.1|

min
x∈X
|6x + 3y − 20|

min
x∈X
|7.6x + 4.7y − 28.3|

min
x∈X
|6x + 3y − 20|

subject to − 1.8x + 2.2y 6 19.4

−x + 3y 6 21

−0.6x + 4.7y 6 24.3

−x + 3y 6 21

min
y∈Y
| − 3.8x + 5.2y − 5.1|

min
y∈Y
| − 3x + 6y − 8|

min
y∈Y
|1.6x + 7.6y − 13.9|

min
y∈Y
| − 3x + 6y − 8|

subject to 0.6x + 2.2y 6 25.4

x + 3y 6 27

1.8x + 4.7y 6 30.2

x + 3y 6 27

[Step 3](Compute):
By introducing auxiliary variables v−i , v+

i , i = 1, 2, we get:

min
(x,v−1 ,v+

1 )∈X̄′
v−1 + v+

1

subject to 24.8x + 12.9y + v−1 − v+
1 = 84.4,

−1.8x + 2.2y 6 19.4

−x + 3y 6 21

−0.6x + 4.7y 6 24.3

−x + 3y 6 21
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min
(y,v−2 ,v+

2 )∈Ȳ ′
v−2 + v+

2

subject to − 11.4x + 24.8y + v−2 − v+
2 = 35,

0.6x + 2.2y 6 25.4

x + 3y 6 7

1.8x + 4.7y 6 30.2

x + 3y 6 27

Using extended Branch-and-Bound approach (Shi et al. 2006), current solution is
(2.15366,0,0, 2.39243,0,0).

[Step 4](Compare) : Because k = 1, goto [Step 5]

[Step 5](Split): By inserting a new node λ1 = (0.2 + 1)/2 = 0.6, there are total
three nodes of λ0 = 0.2, λ1 = 0.6 and λ2 = 1. Then total twelve non-fuzzy objective
functions for the leader and follower together with twelve non-fuzzy constraints for
the leader and follower respectively are generated.

[Step 6](Loop): k = 1 + 1 = 2, goto [Step 3], and current solution of (2.17093, 0,
0, 2.41756, 0, 0) is obtained. As |2.15366− 2.17093|+ |2.39243− 2.41756| = 0.04 >

ε = 0.01, the algorithm keep going until the solution of (2.13535, 0, 0, 2.42797, 0, 0)
is obtained. The computing results are listed in Table 6.1.

Table 6.1: Summary of the running solutions
k x y v+

1λ v−1λ v+
2λ v−2λ

1 2.15366 2.39243 0 0 0 0
2 2.17093 2.41756 0 0 0 0
3 2.12393 2.43436 0 0 0 0
4 2.13535 2.42797 0 0 0 0

[Step 7](Output): As |2.12393 − 2.13535| + |2.43436 − 2.42797| = 0.0178 <

ε = 0.02, (x∗, y∗) = (2.1354, 2.4280) is the final solution of this FLBG decision
problem. The objectives obtained for the leader and the follower under (x∗, y∗) =

(2.1354, 2.4280) are:





F (x∗, y∗) = F (2.1354, 2.4280) = 2.1354c̃1 + 2.4280d̃1

f(x∗, y∗) = F (2.1354, 2.4280) = 2.1354c̃2 + 2.4280d̃2
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Figure 6.1: Membership functions of F (x∗, y∗) and f(x∗, y∗)

and their membership functions are shown in Figure 6.1.
Above example illustrated the detailed working process of the proposed algorithm.

6.4 Summary

This chapter studies FLBG decision problems. In a bi-level decision model, the
leader and/or the follower may wish that their objectives attain to some goals, which
are different from simple optimisation problems. An FLBG model has been proposed,
and a λ−cut-based algorithm for solving FLBG decision problems has been developed.
A numerical example is employed to further explain this algorithm. This algorithm is
implemented in the fuzzy bi-level decision support system which will be discussed in
Chapter 8.
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7 Nash-equilibrium-based Concept and PSO
for General Bi-level Decision Making

This chapter studies general bi-level decision making, which means, the objec-
tive and constraint functions for leader(s) and follower(s) do not have to be linear.
We classify general bi-level decision problems into multi-leader one-follower bi-level
(MLOFB) decision problems, one-leader multi-follower bi-level (OLMFB) decision
problems, and multi-leader multi-follower bi-level (MLMFB) decision problems. Then
we give the corresponding definitions and models, based on which, PSO-based algo-
rithms are developed to solve them.

7.1 Multi-leader One-follower Bi-level Decision Mak-
ing

7.1.1 Definitions and Models

Definition 7.1.1. An MLOFB decision problem is defined as :
For x1 ∈ X1 ⊆ Rm1 , . . . , xL ∈ XL ⊆ RmL , y ∈ Y ⊆ Rn, X = X1×X2×. . .×XL,

Fi, f : X × Y → R1, L > 2

min
xi∈Xi

Fi(x1, . . . , xL, y), i = 1, . . . , L (7.1a)

subject to gik(x1, . . . , xL, y) 6 0, k = 1, . . . , ik, i = 1, . . . , L (7.1b)

min
y∈Y

f(x1, . . . , xL, y) (7.1c)

subject to qj(x1, . . . , xL, y) 6 0, j = 1, . . . , p (7.1d)

In this MLOFB model defined above, there are L leaders, one follower, and both
the leaders and the follower have their individual control variables, objectives and con-
straints.

Relating to this MLOFB model, following are some basic terms and symbols.

Definition 7.1.2.
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(1) Constraint region of MLOFB problem (7.1):

S ,{(x1, . . . , xL, y) : (x1, . . . , xL) ∈ X, y ∈ Y, gik(x1, . . . , xL, y) 6 0,

qj(x1, . . . , xL, y) 6 0}, i = 1, . . . , L, k = 1, . . . , ik, j = 1, . . . , p

It refers to all possible combination of choices that the leaders and the follower
may make.

(2) Projection of S onto the leaders’ decision space:

S(X) ,{(x1, . . . , xL) ∈ X : ∃y ∈ Y, gik(x1, . . . , xL, y) 6 0,

qj(x1, . . . , xL, y) 6 0, i = 1, . . . , L, k = 1, . . . ik, j = 1, . . . , p}

(3) Feasible set for the follower:

∀x = (x1, . . . , xL) ∈ X ,

Q(x) , {y ∈ Y : q1(x1, . . . , xL, y) 6 0, . . . , qp(x1, . . . , xL, y) 6 0}

(4) The follower’s rational reaction set:

for x ∈ S(x)

P (x) , {y ∈ Y : y ∈ argmin[f(x, ŷ) : ŷ ∈ Q(x)]}

where argmin[f(z) : z ∈ Z] = {z∗ ∈ Z|f(z∗) 6 f(z), z ∈ Z}.
The follower observes the leaders’ action and reacts by selecting y from his or
her feasible set to minimise his or her objective function.

(5) Inducible region:

IR , {(x, y) : (x, y) ∈ G, y ∈ P (x)}

which represents the set over which leaders may optimise their objectives.

In terms of above notation, an MLOFB decision problem can be written as:

min{Fi(x, y) : (x, y) ∈ IR}, i = 1, . . . , L (7.2)
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In a real world MLOFB decision problem, the leaders have their individual vari-
ables, objective and constraints. However, a decision from any particular leader will
be inevitably made by guessing other leaders’ strategies. In this case, the upper level
optimisation problem is a kind of game problem, and the whole problem becomes
a multi-leader-one-follower bi-level game (MLBG) problem. This kind of MLBG
optimisation problem is different from common single objective, multi-objective or
bi-level optimisation problems. The objective of an MLBG problem is to search for
equilibria solutions. An MLBG problem is also different from the conventional game
mode which has no hierarchical structure, and whose main concern is to search for a
Nash equilibrium solution in some sense. Addressed to MLBG decision problems, we
need to give the definition of a solution, and then develop a method by this solution
definition.

Definition 7.1.3. A tuple (x∗1, . . . , x
∗
L) ∈ IR is said to be a generalised Nash equilib-

rium optimal solution of an MLOFB decision problem if (x∗i , y
∗) satisfy the following

inequality:

Fi(x
∗
1, . . . , x

∗
i−1, x

∗
i+1, y

∗) 6 Fi(x
∗
1, . . . , x

∗
i−1, xi, x

∗
i+1, y

∗), i = 1, . . . , L

To obtain the Nash equilibrium solution for an MLOFB decision problem, we de-
fine the optimal reaction from a leader as follows:

If the i−th leader knows the strategies x−i of other leaders, then the optimal reac-
tion of the i−th leader is represented by a mapping:

(xi) = ri(x−i),

that solves the sub problem:

min
xi∈Xi

Fi(x1, . . . , xL, y) (7.3a)

subject to gik(x1, . . . , xL, y) 6 0, k = 1, . . . , ik (7.3b)

min
y∈Y

f(x1, . . . , xL, y) (7.3c)

subject to qj(x1, . . . , xL, y) 6 0, j = 1, . . . , p (7.3d)

Our aim is to make the choice from every leader as close to the rational reaction
as possible. A solution is supposed to be the Nash equilibrium when we reach a point
where the choices from all leaders are close enough to their corresponding rational
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reactions. Based on this strategy, we redefine an MLOFB problem (7.1) as:

Definition 7.1.4.

min
xi∈Xi

F (x1, . . . , xL, y) =
L∑

i=1

|xi,−ri(x−i)|, i = 1, . . . , L (7.4a)

subject to gik(x1, . . . , xL, y) 6 0, k = 1, . . . , ik, i = 1, . . . , L (7.4b)

min
y∈Y

f(x1, . . . , xL, y) (7.4c)

subject to qj(x1, . . . , xL, y) 6 0, j = 1, . . . , p (7.4d)

7.1.2 A PSO-based Algorithm

In this section, we use the strategy adopted in the PSO method to develop a PSO-
based algorithm to reach a Nash equilibrium solution for an MLOFB decision problem.

Figure 7.1 outlines the main structure of this algorithm. We first sample the leaders-
controlled variables to get some candidate choices for leaders. Then, we use the PSO
method together with the stretching technology (Parsopoulos & Vrahatis 2002) to get
the follower’s response for every choice from leaders. Thus a pool of candidate so-
lutions for both the leaders and the follower is formed. By pushing every solution
pair moving towards current best ones, the whole solution pool is updated. Once a
solution is reached for the leader, we use the stretching technology (Parsopoulos &
Vrahatis 2002) to escape the local optimisation. We repeat this procedure by a pre-
defined count and reach a final solution.

Figure 7.1: The outline of the PSO-based algorithm for MLOFB problems

The detailed algorithm is specified in Algorithm 7 and Algorithm 8. Notations used
in the algorithms are detailed in Table 7.1.
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Algorithm 7: Generate the response from a follower
Step 1 Input the values of x1, . . . , xL from the L leaders;
Step 2 Sample Nf candidates yi and the corresponding velocities vyi , i = 1, . . . , Nf ;
Step 3 Initiate the follower’s loop counter kf = 0;
Step 4 Record the best particles pyi and y∗ from Pyi , i = 1, 2, . . . , Nf :
if yi satisfy (7.4d) AND f(x1, . . . , xL, yi) < f(x1, . . . , xL, pyi), then pyi = yi.
For each pyi , if f(x1, . . . , xL, pyi) < f(x1, . . . , xL, y∗), then y∗ = pyi ;
Step 5 Update velocities and positions using
vK+1
yi

= wfvK
yi

+ cfrK
1f (pyi − yK

i ) + clr
K
2f (y∗K − yK

i )
yK+1

i = yK
i + vK+1

yi

Step 6 kf = kf + 1;
Step 7 If kf > MaxKf OR the solution changes for several consecutive generations
are small enough, then we use Stretching technology to obtain the global solution and
goto Step 8. Otherwise goto Step 5;
Step 8 Output y∗ as the response from the follower.

Algorithm 8: Generate optimal strategies for leaders
Step 1 Sample Nl particles of (x11, . . . , xL1), . . . , (x1Nl

, . . . , xLNl
), and the

corresponding velocities (v11, . . . , vL1), . . . , (v1Nl
, . . . , vLNl

);
Step 2 Initiate the leaders’ loop counter kl = 0;
Step 3 For k−particle, k = 1, . . . , Nl, calculate the optimal response
ri(x−i), i = 1, . . . , L;
Step 3.1 Sample Nl particles xi within the constraints of xi;
Step 3.2 By calling Algorithm 7, we calculate the rational response from the follower;
Step 3.3 Using PSO technique, we obtain ri(x−i), i = 1, . . . , L;
Step 4 Calculate the function value of every particle by (7.4a);
Step 5 Record pxij , x∗ij , j = 1, . . . , Nl:
For each xij , j = 1, . . . , Nl, if xij satisfy (7.4c) AND F (xij) < F (pxij ), then
pxij = xij ;
For each pxij , if F (pxij ) < F (x∗i ), then x∗i = pxij ;
Step 6 Move particles by best positions:
vK+1
xij

= wlv
K
xij

+ clr
K
1l (pxij − xK

ij ) + clr
K
2l (x

∗K
ij − xK

ij )
xK+1

ij = xK
ij + vK+1

xij

Step 7 kl = kl + 1;

Step 8 If
L∑

i=1
|xi − ri(xi)| 6 ε OR kl > MaxKl, we use the Stretching technology to

current leaders’ solutions to obtain the global solution. Otherwise goto Step 3.
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Table 7.1: The explanation of some notations in Algorithms 7 and 8
Nl the number of candidate solutions (particles) for the leaders
Nf the number of candidate solutions (particles) for the follower
xij the j−th candidate solutions for the controlling variables from

i−th leader
pxij

the best previously visited position of xij

x∗i current best one for particle xij, j = 1, . . . , Nl

vxij
the velocity of xij

kl current iteration number for the upper-level problem
yi i−th candidate solution for the controlling variables from the

follower
pyi

the best previously visited position of yi

y∗ current best one for particle y
vyi

the velocity of yi

kf current iteration number for the lower-level problem
MaxKl the predefined max iteration number for kl

MaxKf the predefined max iteration number for kf

7.2 One-leader Multi-follower Bi-level Decision Mak-
ing

7.2.1 Definitions and Models

Definition 7.2.1. A one-leader multi-follower bi-level (OLMFB) decision problem is
defined as :

For x ∈ X ⊆ Rm ⊆ Rm, y1 ∈ Y1 ⊆ Rn1 , . . . , yL ∈ YL ⊆ RnL , Y = Y1 × Y2 ×
. . .× YL, F, fi : X × Y → R1, L > 2

min
x∈X

F (x, y1, . . . , yL) (7.5a)

subject to gj(x, y1, . . . , YL) 6 0, j = 1, . . . , p (7.5b)

min
yi∈Yi

fi(x, y1, . . . , yL), i = 1, . . . , L (7.5c)

subject to qik(x, y1, . . . , yL) 6 0, k = 1, . . . , ik, i = 1, . . . , L (7.5d)

In this OLMFB model defined above, there are one leader and L followers. Both a
leader and followers have their individual control variables, objectives and constraints.

Relating to this OLMFB model, the following are some basic terms and symbols:

Definition 7.2.2.
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(1) Constraint region of OLMFB problem (7.5):

S ,{(x, y1, . . . , yL) : x ∈ X, (y1, . . . , yL) ∈ Y, j = 1, . . . , p,

gj(x, y1, . . . , yL) 6 0, qik(x, y1, . . . , yL) 6 0, k = 1, . . . , ik, i = 1, . . . , L

It refers to all possible combination of choices that the leader and followers may
make.

(2) Projection of S onto the leader’s decision space:

S(X) , {x ∈ X : ∃y ∈ Y, gj(x, y1, . . . , yL) 6 0, j = 1, . . . , p,

qik(x, y1, . . . , YL) 6 0, k = 1, . . . , ik, i = 1, . . . , L}

(3) Feasible set for the followers:

∀x ∈ X, Q(x) ,{y = (y1, . . . , yL) ∈ Y : qik(x, y1, . . . , yL) 6 0,

k = 1, . . . , ik, i = 1, . . . , L, }

(4) The followers’ rational reaction set:

for x ∈ S(x), P (x) , {y ∈ Y : y ∈ argmin[f(x, ŷ) : ŷ ∈ Q(x)]}

where argmin[f(z) : z ∈ Z] = {z∗ ∈ Z|f(z∗) 6 f(z), z ∈ Z}.
The followers observe the leader’s action and react by selecting y from their
feasible set to minimise their objective functions.

(5) Inducible region:

IR , {(x, y) : (x, y) ∈ G, y ∈ P (x)}

which represents the set over which a leader may optimise his or her objective.

In terms of above notation, an OLMFB decision problem can be written as:

min{F (x, y) : (x, y) ∈ IR} (7.6)
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7.2.2 A PSO-based Algorithm

Like MLOFB decision problems, in an OLMFB decision problem, when a follower
has to make his or her decision based on estimating or guessing optimisation strategies
from other followers, the “game playing relationship” among them needs to be consid-
ered to calculate an overall solution. However, if a follower’s choice is influenced by
only the leader and his or her own concerns, the problem is then a common OLMFB
problem, addressed to which, a PSO-based algorithm is developed in this section.

The detailed algorithm is specified in Algorithm 9 and Algorithm 10. Notations
used in the algorithm are detailed in Table 7.2.

Algorithm 9: Generate the response from a follower
Step 1 Input coefficients of x;
Step 2 Sample Nf candidates yil and the corresponding velocities vyil

, i = 1, . . . , Nf ;
Step 3 Initiate the follower’s loop counter kf = 0;
Step 4 Record the best particles pyil

and y∗l from yil, i = 1, . . . , Nf : if yil satisfy (7.5d )
AND fl(x, yil) < fl(x, pyil

), then pyil
= yil;

For each pyil
, if fl(x, pyil

) < fl(x, y∗l ), then y∗l = pyil
;

Step 5 Update velocities and positions using
vK+1
yi

= wfvK
yi

+ clr
K
1f (pyi − yK

i ) + clr
K
2f (y∗K − yK

i ) and yK+1
i = yK

i + vK+1
yi

Step 6 kf = kf + 1;
Step 7 If kf > MaxKf OR the solution changes for several consecutive generations
are small enough, then we use the stretching technology to obtain the global solution
and goto Step 8. Otherwise goto Step 5;
Step 8 Output y∗l as the response form the l−th follower.

Algorithm 10: Generate the optimal strategy for a leader
Step 1 Sample Nl particles of x1, . . . , xNl

, and the corresponding velocities v1, . . . , vNl
;

Step 2 Initiate the leaders’ loop counter kl = 0;
Step 3 For k−th particle, k = 1, . . . , Nl, calculate the optimal responses from l − th
follower by Algorithm 9, l = 1, . . . , L;
Step 4 Calculate the objective value of every particle by (7.5a);
Step 5 Record pxi , x∗, i = 1, . . . , Nl:
For each xi, i = 1, . . . , Nl, if xi satisfies (7.5b) AND F (xi) < F (pxi), then pxi = xi;
For each pxi , if F (pxi) < F (x∗), then x∗ = pxi ;
Step 6 Move particles by best positions:
vK+1
xi

= wlv
K
xi

+ clr
K
1l (pxi − xK

i ) + clr
K
2l (x

∗K
i − xK

i )
xK+1

i = xK
i + vK+1

xi

Step 7 kl = kl + 1;

Step 8 If
m∑

i=1
|xK+1

i − xK
i | 6 ε OR kl > MaxKl, we use Stretching technology to

current leaders’ solutions to obtain the global solution. Otherwise, goto Step 3.
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Table 7.2: The explanation of some notations in Algorithms 9 and 10
Nl the number of candidate solutions (particles) for the leader
Nf the number of candidate solutions (particles) for each follower
xj the j−th candidate solution for the leader
pxi

the best previously visited position of xj

x∗ current best one for particle xj, j = 1, . . . , n
vxj

the velocity of xj

kl current iteration number for the upper-level problem
yij i−th candidate solution for the j−follower
pyij

the best previously visited position of yij

y∗i current best one for particle yij, i = 1, . . . , Nf

kf current iteration number for the lower-level problem
MaxKl the predefined max iteration number for kl

MaxKf the predefined max iteration number for kf

7.3 Multi-leader Multi-follower Bi-level Decision Mak-
ing

7.3.1 Definitions and Models

Definition 7.3.1. A multi-leader multi-follower bi-level (MLMFB) decision problem
is defined as :

For x1 ∈ X1 ⊆ Rm1 , . . . , xL ∈ XL ⊆ RmL , y1 ∈ Y1 ⊆ Rn1 , . . . , yM ∈ YM ⊆ RnM

X = X1×X2× . . .×XL, y ∈ Y = Y1×Y2× . . .×YM Fi, fj : X ×Y → R1, L > 2,
M > 2, i = 1, . . . , L, j = 1, . . . , M .

min
xi∈Xi

Fi(x1, . . . , xL, y1, . . . , yM), i = 1, . . . , L (7.7a)

subject to gik(x1, . . . , xL, y1, . . . , yM) 6 0, k = 1, . . . , ik, i = 1, . . . , L (7.7b)

min
yj∈Yj

fj(x1, . . . , xL, y1, . . . , yM), j = 1, . . . , M (7.7c)

subject to qjk(x1, . . . , xL, y1, . . . , yM) 6 0, (7.7d)

k = 1, . . . , jk, j = 1, . . . ,M

In this MLMFB model defined above, there are L leaders, M follower, and both
the leaders and the followers have their individual control variables, objectives and
constraints.
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Relating to this MLMFB model, following are some basic terms and symbols:

Definition 7.3.2.

(1) Constraint region of MLB problem (7.7):

S , {(x1, . . . , xL, y1, . . . , yM) : (x1, . . . , xL) ∈ X, (y1, . . . , yM) ∈ Y,

gik(x1, . . . , xL, y1, . . . , yM) 6 0, qjk(x1, . . . , xL, y1, . . . , yM) 6 0,

j = 1, . . . , M, k = 1, . . . , jk}

It refers to all possible combination of choices that the leaders and followers may
make.

(2) Projection of S onto the leaders’ decision space:

S(X) , {(x1, . . . , xL) ∈ X : gik(x1, . . . , xL, y1, . . . , yM) 6 0,

qjk(x1, . . . , xL, y1, . . . , yM) 6 0,

i = 1, . . . , L, k = 1, . . . , ik, j = 1, . . . , M, k = 1, . . . , jk}

(3) Feasible set for the followers: ∀x = (x1, . . . , xL) ∈ X,

Q(x) , {(y1, . . . , yM) ∈ Y : qjk(x1, . . . , xL, y1, . . . , yM) 6 0,

j = 1, . . . , M, k = 1, . . . , jk}

(4) The followers’ rational reaction set: for x ∈ S(x), y = (y1, . . . , yM),

P (x) , {(y1, . . . , yM) ∈ Y : y ∈ argmin[f(x, ŷ) : ŷ ∈ Q(x)]}

where argmin[f(z) : z ∈ Z] = {z∗ ∈ Z|f(z∗) 6 f(z), z ∈ Z}.
The followers observe the leaders’ action and react by selecting y from their
feasible sets to minimise their objective functions.

(5) Inducible region:

IR , {(x, y) : (x, y) ∈ G, y ∈ P (x)}

which represents the set over which leaders may optimise their objectives.
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In terms of above notation, an MLMFB decision problem can be written as:

min{Fi(x, y) : (x, y) ∈ IR, i = 1, . . . , L} (7.8)

Now we define a Nash equilibrium optimal solution for an MLMFB decision prob-
lem as follows:

Definition 7.3.3. A tuple (x∗1, . . . , x
∗
L) ∈ IR is said to be a generalised Nash equi-

librium optimal solution of an MLMFB decision problem if (x∗1, . . . , x
∗
L, y∗1, . . . , y

∗
M)

satisfy the following inequality:

Fi(x
∗
1, . . . , x

∗
i−1, x

∗
i+1, y

∗
1, . . . , y

∗
M) 6 Fi(x

∗
1, . . . , x

∗
i−1, xi, x

∗
i+1, y

∗
1, . . . , y

∗
M),

i = 1, . . . , L

To obtain the Nash equilibrium solution for an MLMFB decision problem, we
define the optimal reaction from a leader as follows:

If the i−th leader knows the strategies x−i of other leaders, then the optimal reac-
tion of the i−th leader is represented by a mapping:

(xi) = ri(x−i),

that solves the sub problem:

min
xi∈Xi

Fi(x1, . . . , xL, y1, . . . , yM) (7.9a)

subject to gik(x1, . . . , xL, y1, . . . , yM) 6 0, k = 1, . . . , ik, i = 1, . . . , L (7.9b)

min
yj∈Yj

fj(x1, . . . , xL, y1, . . . , yM), j = 1, . . . ,M (7.9c)

subject to qjk(x1, . . . , xL, y1, . . . , yM) 6 0, (7.9d)

k = 1, . . . , jk, j = 1, . . . , M

Our aim is to make the choice from every leader as close to the rational reaction
as possible. A solution is supposed to be the Nash equilibrium when we reach a point
where the choices from all leaders are close enough to their corresponding rational
reactions. Based on this strategy, we redefine an MLMFB problem (7.7) as:
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Definition 7.3.4.

min
xi∈Xi

F (x1, . . . , xL, y1, . . . , yM) =
L∑

i=1

|xi,−ri(x−i)|, i = 1, . . . , L (7.10a)

subject to gik(x1, . . . , xL, y1, . . . , yM) 6 0, k = 1, . . . , ik, i = 1, . . . , L (7.10b)

min
yj∈Yj

fj(x1, . . . , xL, y1, . . . , yM), j = 1, . . . , M (7.10c)

subject to qjk(x1, . . . , xL, y1, . . . , yM) 6 0, (7.10d)

k = 1, . . . , jk, j = 1, . . . , M

7.3.2 A PSO-based Algorithm

In this section, we use the strategy adopted in the PSO method to develop a PSO-
based algorithm to reach a Nash equilibrium solution for an MLMFB decision prob-
lem.

Figure 7.2 outlines the main structure of this algorithm. We first sample the leaders-
controlled variables to get some candidate choices for leaders. Then, we use the PSO
method together with the stretching technology (Parsopoulos & Vrahatis 2002) to get
the followers’ response for every leader’s choice. Thus a pool of candidate solutions for
both the leaders and the followers is formed. By pushing every solution pair moving
towards current best ones, the whole solution pool is updated. Once a solution is
reached for the leaders, we use the stretching technology (Parsopoulos & Vrahatis
2002) to escape local the optimisation. We repeat this procedure by a pre-defined
count and reach a final solution.

Figure 7.2: The outline of the PSO-based algorithm for MLMFB problems

The detailed algorithm is specified in Algorithm 11 and Algorithm 12. Notations
used in the algorithms are detailed in Table 7.3.
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Algorithm 11: Generate the response from the m−th follower
Step 1 Input the values of x1, . . . , xL from the L leaders;
Step 2 Sample Nf candidates yil and the corresponding velocities vyil

, i = 1, . . . , Nf ;
Step 3 Initiate the follower’s loop counter kf = 0;
Step 4 Record the best particles pyil

and y∗l from yil, i = 1, . . . , Nf :
if yil satisfy (7.5d ) AND fl(x, yil) < fl(x, pyil

), then pyil
= yil.

For each pyil
, if fl(x, pyil

< fl(x, y∗l ), then y∗l = pyil
.

Step 5 Update velocities and positions using
vK+1
yi

= wfvK
yi

+ clr
K
1f (pyi − yK

i ) + clr
K
2f (y∗K − yK

i )
yK+1

i = yK
i + vK+1

yi

Step 6 kf = kf + 1;
Step 7 If kf > MaxKf OR the solution changes for several consecutive generations
are small enough, then we use Stretching technology to obtain the global solution and
goto Step 8. Otherwise goto Step 5;
Step 8 Output y∗l as the response form the m−th follower.

Algorithm 12: Generate optimal strategies for leaders
Step 1 Sample Nl particles of (x11, . . . , xL1), . . . , (x1Nl

, . . . , xLNl
), and the

corresponding velocities (v11, . . . , vL1), . . . , (v1Nl
, . . . , vLNl

);
Step 2 Initiate the leaders’ loop counter kl = 0;
Step 3 For k−th particle, k = 1, . . . , Nl, calculate the optimal response
ri(x−i), i = 1, . . . , L
Step 3.1 Sample Nl particles xi within the constraints of xi;
Step 3.2 For m = 1 to M, we calculate the rational response from the m−th follower by
calling Algorithm 11 ;
Step 3.3 Using PSO technique, we obtain ri(x−i), i = 1, . . . , L
Step 4 Calculate the function value of every particle by (7.4a);
Step 5 Record pxij , x∗ij , j = 1, . . . , Nl:
For each xij , j = 1, . . . , Nl, if xij satisfy (7.4c) F (xij) < F (pxij ), then pxij = xij ;
For each pxij , if F (pxij ) < F (x∗i ), then x∗i = pxij ;
Step 6 Move particles by best positions:
vK+1
xij

= wlv
K
xij

+ clr
K
1l (pxij − xK

ij ) + clr
K
2l (x

∗K
ij − xK

ij )
xK+1

ij = xK
ij + vK+1

xij

Step 7 kl = kl + 1;

Step 8 If
L∑

i=1
|xi − ri(xi)| 6 ε OR kl > MaxKl, we use Stretching technology to

current leaders’ solutions to obtain the global solution.

7.4 Summary

This chapter studies general bi-level problems where the objectives and constraints
for leaders and followers may have arbitrary formats. We divide general bi-level deci-
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Table 7.3: The explanation of some notations in Algorithms 11 and 12
Nl the number of candidate solutions (particles) for the leaders
Nf the number of candidate solutions (particles) for the followers
xij the j−th candidate solutions for the controlling variables from i−th

leader
pxij

the best previously visited position of xij

x∗i current best one for particle xij, j = 1, . . . , Nl

vxij
the velocity of xij

kl current iteration number for the upper-level problem
yij i−th candidate solution for the j−follower
pyi

the best previously visited position of yi

pyij
the best previously visited position of yij

y∗i current best one for particle yij, i = 1, . . . , Nf

kf current iteration number for the lower-level problem
MaxKl the predefined max iteration number for kl

MaxKf the predefined max iteration number for kf

sion problems into three categories, one with multiple leaders, one with multiple fol-
lowers, and one with both multiple leaders and multiple followers at the same time.
After giving mathematical definitions of MLOFB, OLMFB and MLMFB decision
problems by Nash-equilibrium-based concept, PSO-based algorithms are developed
to solve them respectively. These algorithms are implemented in the bi-level decision
support system in Chapter 8. Some of these algorithms will be used to solve real world
bi-level decision problems in Chapter 9.
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8 A Fuzzy Bi-level Decision Support System

This chapter develops a fuzzy bi-level decision support system (FBDSS), which in-
corporates the optimisation algorithms developed in this study for both linear and non-
linear bi-level decision problems, to help decision makers in bi-level situation achiev-
ing well-informed solutions. Meanwhile, decision makers can adjust their subjective
preference to obtain balance among different objectives during the solution process
through interacting with the system. Furthermore, this FBDSS can solve bi-level de-
cision problems with fuzzy coefficients. It is also helpful to experts who establish the
fuzzy coefficients in both objective functions and constraints. Through experiments
conducted on this FBDSS, they can compare and refine any coefficient in a bi-level
decision model for more accurate definition and format.

8.1 System Configuration and Main Interfaces

The FBDSS is developed in the Microsoft 32-bit Windows environment. We adopt
the object-oriented approach and implement it by Microsoft Visual Basic 6.0. With
the Windows-based interface, it takes full advantages of the graphical capabilities of
Windows environment that enables users to exploit the capabilities of the system.

In the main interface, as shown in Figure 8.1, the menu includes items of “File”,
“Methods”, “Model”, “Result”, and “Help” that perform all kinds of decision support
activities. Figure 8.2 shows the overall structure of the menu, where we can create
a linear bi-level decision model or a general (linear or non-linear) bi-level decision
model by clicking the item of “New a general bi-level model” or “New a linear bi-
level model”; clear current model configuration by clicking “Reset current model”
item; trigger the “approximation Branch-and-Bound-based algorithm”, “approxima-
tion Kth-Best-based algorithm”, “PSO-based algorithm” or “goal-programming-based
algorithm” by the items of “Approximation B B”, “Approximation kbest” “PSO” or
“Approximation goal”; display the solution for current bi-level decision model (linear
or non-linear) by clicking “Linear optimisation result” or “General bi-level optimisa-
tion result” respectively.
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Figure 8.1: The main interface of the FBDSS

Figure 8.2: The menu structure of the FBDSS

8.2 System Structure

As a specific type of DSS, this FBDSS provides computerised assistance to the
decision makers in a decentralised organisation to gather knowledge about a bi-level
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decision problem and control the decision making process for a better-informed deci-
sion.

The structure of the FBDSS is depicted in Figure 8.3. Within this architecture, five
modules are involved, i.e. “user interface”, “model management”, “algorithm engine”,
“updating system”, and “visualisation”. Data are collected through the user interface,
and formatted as a corresponding bi-level decision model by “model management”
module. The core calculations are carried in “algorithm engine” over this model, and
solution is outputted through “visualisation” module to the end user by “user inter-
face”.

Figure 8.3: The system structure of the FBDSS

These modules are detailed below:

(1) User Interface:

Data can enter the system from two sources: system users and data sets. A user
can key in the data directly through the interface, which will build a bi-level de-
cision model. Meanwhile, the data may be stored in terms of existed projects and
be retrieved for later calculation. These data are passed to the “model manage-
ment” module where “algorithm engine” can be triggered to run for a solution.

Outputs from the system include feasible solutions and all objectives for both
the leader and the follower. If a leader is not satisfied with current solution for
a fuzzy bi-level decision problem, he/she can adjust the satisfactory degree and
trigger the algorithm engineer for another solution.

(2) Model Management:

The “model management” module formulates a bi-level problem in terms of ob-
jectives and constraints based on the user’s input, and controls the model retrieval
and use. The modelling procedure contains three major steps consisting of the
generation of objectives, constraints and the elicitation of a certain satisfactory
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degree for a fuzzy bi-level decision problem. These functions are data driven,
each requiring a set of coefficients.

(3) Algorithm Engine:

The “algorithm engine” performs the core calculation in the system including
defuzzification, comparison among fuzzy sets, and bi-level optimisation. While
a non-linear bi-level decision problem can only be solved by the PSO-based
algorithms, the system provides three options i.e. the approximation Branch-
and-Bound-based algorithm, the approximation Kth-Best-based algorithm, and
the PSO-based algorithm for fuzzy linear bi-level decision problems. For multi-
objective bi-level problems, an extra option of the goal-programming-based al-
gorithm is provided in the system for decision makers to choose. Once the sat-
isfactory degree is adjusted in the user interface module, the “algorithm engine”
will be triggered to run on the selected bi-level decision model retrieved from
the “model management” module.

(4) Updating System:

In this FBDSS, update routines are provided from two aspects, i.e. users can
modify an established bi-level decision model retrieved from the model base;
and users can adjust the satisfactory degree to obtain solutions under different
aspiration levels for a fuzzy bi-level decision model.

To define a fuzzy bi-level decision model, a set of crisp numbers are employed
to describe the fuzzy objective functions and constraints by fixing four points
and the format of a fuzzy number. The capacity of incorporating new infor-
mation into the established crisp numbers sometimes may introduce conflicts
between constraints, or cause an existing feasible solution invalid. However the
satisfactory-degree-adjustable mechanism can reduce the possibility of the non-
solution situation.

(5) Visualisation:

To model a fuzzy bi-level decision problem, we need the information on objec-
tives and constraints for both the leader and the follower. As fuzzy numbers are
used to interpret coefficients, the way to describe fuzzy sets becomes crucial.

To solve a bi-level decision problem, we need to search equilibrium between the
leader and the follower, both of who achieve the optimality while the leader takes
the priority within the constraints. To describe this equilibria, the visualisation
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module will complete the presentation and interpretation functions. The output
solutions will help the user identify preferred equilibrium, and give insights into
how they can be achieved. As some bi-level decision problems addressed involve
fuzzy numbers, their final objective values for both the leader and the follower
are inevitably fuzzy numbers.

To implement the functions of intuitive fuzzy number input and pellucid fuzzy
objective output, we describe a fuzzy number by the information of the formats
of the left and right functions, and the two points where the membership value
equal zero, and the other two points where the membership value equal one.
Here, the formats of membership functions can be selected as linear, quadratic,
cubic, exponential, and logarithmic. Figure 8.8 shows a window to identify a
fuzzy number, and Figure 8.11 shows a window to display a fuzzy objective.

8.3 Decision Support Process

8.3.1 Linear Bi-level Decision Support

The whole decision supporting procedure for linear bi-level decision problems by
this FBDSS involves three phases, i.e. problem identification, preference elicitation,
and solution searching. The relationship among these phases is illustrated in Figure
8.4.

Figure 8.4: Optimisation process by the FBDSS

The first phase is to set up a framework for a problem in which the decision will
be made. In this framework, we define what the decision makers wish to achieve
as objectives, and any limitations and conditions as constraints. In specification, the
following data need to be input to set up the framework.

(1) The number of followers and the number of decision variables, objectives and
constraints for the leader, as shown in Figure 8.5;
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(2) The variables, objectives and constraints for a leader, as shown in Figure 8.6;

(3) The variables, objectives and constraints for followers, as shown in Figure 8.6;

(4) The max/min choice for individual objective, as shown in Figure 8.7;

(5) The fuzzy coefficients occurred in the objectives and constraints, which should
be entered one by one in Figure 8.8.

Figure 8.5: Interface for variable input-linear-1

The second phase is to elicit the preferences of decision makers. Once there exist
multiple options, the decision makers at both levels are allowed to rank these options
by assigning specific weights. (Refer to Figure 8.9 and Figure 8.10)

The final phase is to search a solution. Once a bi-level decision model is built
up, the window, as shown in Figure 8.9, can be activated to reach a solution. In
this window, the “approximation Branch-and-Bound-based algorithm”, “approxima-
tion Kth-Best-based algorithm”, or the “PSO-based algorithm” can be selected as the
approach for the current linear bi-level problem by clicking the option button of “B B”,
“K Best” or “PSO”. Provided the problem is a multi-objective bi-level decision prob-
lem and the decision maker chooses the goal-programming-based algorithm to solve
it, the window, as shown in Figure 8.10, can be activated to reach a solution. In this
window, the “approximation Branch-and-Bound-based algorithm”, or the “approxi-
mation Kth-Best-based algorithm” can be selected as the default approach used by the
goal-programming-based algorithm.
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Figure 8.6: Interface for variable input-linear-2

Figure 8.7: Interface for variable input-linear-3
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Figure 8.8: The input window for the membership function of a fuzzy number

Figure 8.9: Interface for result displaying-linear

In the windows shown as Figure 8.9 and Figure 8.10, by adjusting the slider or
keying in a value in the text box above the slider, a user can set a specific satisfactory
degree for all membership functions of the fuzzy numbers. Thus, a solution under a
specific satisfactory degree chosen by the user can be obtained.

By clicking the “Run” button in windows shown as Figure 8.9 and Figure 8.10,
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Figure 8.10: Interface for result displaying-goal

the optimisation algorithm selected will run and the solutions will be shown and the
corresponding fuzzy objective can be displayed in the window shown as Figure 8.11
sequentially.

Figure 8.11: The window for displaying a fuzzy objective

If a leader is not satisfied with current solution, he/she can change the weights for
each objective or adjust the satisfactory degree for another solution.
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8.3.2 Non-linear Bi-level Decision Support

To solve a non-linear bi-level decision problem, we need to build a framework for
the problem in which the decision will be made. In this framework, we define what
the decision makers wish to achieve as objectives, and any limitations and conditions
as constraints. As non-linear formulas have very flexible and unexpected forms, this
system gives tremendous flexibilities to users by providing text boxes to input objective
and constraint functions. In specification, the following data need to be input to set up
a non-linear model.

(1) The number of leaders and followers, as shown in Figure 8.12;

(2) The variables, objectives and constraints for the leaders and followers, as shown
in Figure 8.13;

(3) The fuzzy coefficients (if there are fuzzy coefficients involved in the problem)
occurred in the objectives and constraints, which should be entered in Figure
8.14, and whose membership functions could be entered one by one in Figure
8.8;

(4) The max/min choice for individual objective, as shown in Figure 8.14;

(5) The “>”, “6”, or “=” choice for individual constraint, as shown in Figure 8.14;

(6) The function formats for objectives and constraints for both leaders and follow-
ers, as shown in Figure 8.14.

To facilitate formula inputting, a list box, as shown in Figure 8.14 can be activated
to show variable names entered in Figure 8.13. Thus users can refer to the variable
names to reduce the chance of mistyping.

Once a non-linear bi-level decision model is established, a window shown in Figure
8.15 will show up to display the solutions and objective values for both leaders and fol-
lowers. If there are fuzzy coefficients involved in this model, the objective values will
be fuzzy numbers. In such a situation, a window shown in Figure 8.16 will be shown to
display the solutions and fuzzy objective values for both leaders and followers. Once
a user clicks the text box of an objective value, a button labelled as “membership” will
show up. The clicking of this “membership” button will activate a window shown in
Figure 8.17 to display the corresponding fuzzy value for the objective.
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Figure 8.12: Interface for variable input-nonlinear-1

Figure 8.13: Interface for variable input-nonlinear-2
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Figure 8.14: Interface for variable input-nonlinear-3

Figure 8.15: Interface for output-nonlinear
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Figure 8.16: Interface for output-with-fuzzy-coefficients-nonlinear-1

Figure 8.17: Interface for output-with-fuzzy-coefficients-nonlinear-2

8.4 Summary

This chapter presents an FBDSS developed to support bi-level decision making.
This system has four features. The first is that the system can process and solve fuzzy
bi-level problems with different satisfactory degrees. The second is that the system
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can deal with any form of membership functions of coefficients in a fuzzy bi-level
decision model. The third is that the system involves several methods to suit much
wider bi-level decision making circumstances under various uncertain environments.
The last one is that this system can recognise and deal with a large amount of arbitrary
function inputs, which gives much flexibilities for decision makers to describe their
particular bi-level decision problems. When choosing a specific method to solve a bi-
level decision problem, the approximation Branch-and-Bound-based algorithm and the
approximation Kth-Best-based algorithm are recommended for a decision maker if a
linear bi-level decision problem is involved as these two algorithms can reach precise
solutions with faster running compared to the PSO-based algorithm, which is however
the only option for a non-linear bi-level decision problem.
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9 Bi-level Decision Applications

This chapter applies the techniques developed in this study on real world bi-level
decision problems in the fields of railway train set organisation, railway wagon flow
management, electricity markets, and supply chains. Bi-level decision models are es-
tablished for these problems and the algorithms developed in this research are applied
to reach solutions for these problems.

9.1 A Bi-level Decision Model for Railway Train Set
Organising Optimisation

9.1.1 Background

Railway transportation, as one of the most important vehicles ways, has always
been playing an irreplaceable role in social economics. For railway freight trans-
portation, about 80% of the whole transportation time is allotted to the operations
of loading/unloading, transferring, and overhauling in railway technical stations (Li &
Du 2002). The working state of technical stations, therefore, will influence the whole
overpass ability of the railway network. Thus the research on the railway transportation
optimisation will be bound to focus on the operation of technical stations. The main
methodologies used include scheduling theory (Li & Du 2002), graph theory (Li &
Du 2002; Wang 2004), mathematical programming (Li & Du 2002), and operational
theory (Li & Du 2002). Also, some scholars have addressed the problem of traffic
controlling from multiple levels’ angle (Feng & Wen 2005; Berezinski, Holubiec &
Petriczek 1994; Shi, Fang, Li, Mo & Huang 2003).

Train set organisation (TSO) is to arrange the train set in railway freight transporta-
tion. Most current research by bi-level techniques on traffic controlling centers on the
transformation network design and layout (Feng & Wen 2005). Little research has
been conducted towards TSO problems from multiple levels’ angle. In this section,
we use the bi-level method to study the problem of TSO in the railway running and
management.
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9.1.2 Problem Analysis

Train set organisation, aiming at arranging the train set in railway freight trans-
portation and with extraordinary professional and technical specialties, is one of the
main subjects in railway transportation management. The objectives of TSO include:
to make the transportation efficient and even; to use the transporting device reasonably;
and to promote the cooperation among different departments involved in the freighting
procedure. The term of “organising” here means arranging, deciding and managing,
while “train set organising” acts to arrange the train set, make decisions on related
issues, and manage the procedure in railway transportation.

There exist multiple levels among the running of TSO, i.e. the “national railway
network level” the top, the “local bureau railway network level” the second, the “sta-
tions” the third, and the “operating group” the bottom. However, as the operating
objects of both the national railway network and the local bureau railway network are
train set, while those of the two lower levels are trains, the organisation of TSO can
be generalised into two levels: the railway network the leader, and the stations the
followers. Thus bi-level programming techniques can be used to analyse the problem.

The main concerns of the railway network are to decide the train type (pick-up-and-
drop-train, district-train, transit-train, or through-train), the train constitution, the train
number, and the detailed route of the departing train set. The objectives of the railway
network include: improving the transportation capacity and service speed, reducing
the cost, balancing the working rhythm among divisions, and assigning the break-up
and make-up jobs among different stations rationally.

The tasks assigned to a station are to constitute normative train set required by the
railway network from all kinds of freight wagons that stop by this station. Involved
with these tasks, there also include a series of relevant operations, such as: collecting
or delivering, shunting, loading/unloading, and wagon checking. The main concerns of
stations include: making the operating efficient, economical and safe; rationally using
the transportation devices such as track, shunting locomotive, and hump; deciding the
operation steps together with its schedules; and cooperating among steps within the
schedule-frame of the railway network.

Two levels though TSO can be divided into, the separate levels still share intrin-
sic consistency. For the upper level, when making a TSO plan, the railway network
must consider the influence from the specific operating ability and device conditions
of stations, while calculating the influence factors from itself such as the amount and
destinations of trains and the track conditions; For stations located at the lower level,
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when implementing the working goals, they should try their best to harmonise between
their own operation abilities and the working arrangement from their top counterpart.

Railway stations can be grouped into two classes: “through stations” and “techni-
cal stations”. Compared with technical stations, through stations are small sized and
their daily works, mainly on helping trains go through or two train set from oppo-
site directions meet, are simple and the workload are small. Except for all the func-
tions of through stations, technical stations are to make new train set by breaking up
the old ones and adding transship trains and trains originated there. Tasks also in-
clude: arrival/departure operating, collection-and-delivering operating, shunting, load-
ing/unloading, and wagon checking. We generalise these operations at technical sta-
tions as “shunting and transship operation”.

For the reason of facilitating the modelling, we simplify the tasks of TSO by as-
suming that:

1) The railway transportation supply is less than the demand; the aim of TSO is to
fully use the transportation ability to provide as much transportation as possible.

2) The topo structure of a railway network is a circle formed by train lines. This is
to embody the continuous nature of the net and transportation circulation.

3) The main line is double-track with every track’s direction fixed, which means
there allowed two train set running in reverse directions between two stations si-
multaneously. This is to avoid the meeting problem of two train set with opposite
running directions.

4) Within a railway net, there located only technical stations, and runs only one
type of trains, the “district trains”, which are from one technical station A and
to the other technical station B. Between A and B there is no other technical
stations.

5) The unit workload of “shunting and transship operation” for all technical stations
are the same. In other words, every technical station shares the identical amount
of operating time for the same train set.

Based on these assumptions above, the decision-maker on a railway network wishes
that the density of train set (calculated by the time intervals between any two adjacent
running train set) and the length of train set (the number of trains of any train set) as
large as possible to obtain the maximal transport capacity. However, for the sake of
safety, the density has its upper limit set by the railway network. And restricted by the
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motive power of locomotive and the useful length limit of arrival-departure track, the
train set length has its upper limit as well.

Ignoring the constraints by a railway network, the stations, on one hand, wish the
length of train set large because the larger the length, the more efficient the operating
and the lower the unit operating cost. The operating efficiency is the amount of trains
shunted and transshipped per unit time, while the unit operating cost is the cost for ev-
ery single train. On the other hand, the operating time for shunting and transshipping,
which influences the cost, will increase if the length of train set increases. However,
the overall effect of the trains set length is that the general unit operating cost will
decrease with the increase of the train set length.

From the analysis above, we can include that, for the variable of the length of train
set, the two levels share the same objective: the larger the length of the train set the
better. For the variable of the density of train set, the decision makers at the upper
level pursue its minimum while those at the lower level wish it change with the train
set length in the same direction. Generally speaking, the shunting and transshipping
time in stations is larger than the safe time intervals of any two adjacent running train
sets, so the variable of the density of train set is determined by the lower level, the
stations, while the variable of the length of train set is controlled by the top level, the
railway network.

9.1.3 Model Building

Based on the analysis above, a bi-level decision model of TSO is built as:
For x = (x1, x2, ..., xn) ∈ X ⊂ Rn, y ∈ Y ⊂ Rm, F , f : X × Y → F (R),

Leader: Decision-maker of the railway network

max
x∈X

F (x, y) =
a1 ·

∑n
i=1 wi · xi∑n

i=1 wi · yi

(9.1a)

subject to
n∑

i=1

wi · xi < m (9.1b)

n∑
i=1

wi · yi > c1 (9.1c)
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the i-th follower: the i-th technical station

min
yi

fi(xi, yi) = −b1 · xi − b2 · yi (9.1d)

subject to c2 6 xi

yi

6 c3 (9.1e)

yi > c4 (9.1f)

Explanation:

1) Variables:

xi: the length of train set for the i-th station, which is the number of trains of any
train set controlled by the leader, the decision-maker of the railway network.

yi: the density of train set for the i-th station, which is the time interval be-
tween any two adjacent running train set, controlled by the i-th follower, the i-th
technical station.

2) Coefficients and constants:

n: the number of technical stations in the railway network.

wi: the relative weight for the i-th station in the railway network.

a1: the time interval. If a1 = 24, then a1/
∑n

i=1 wi ·yi means the number of train
set going through the network within 24 hours. a1

∑n
i=1 wi · xi/

∑n
i=1 wi · yi is

the number of trains going through the network per day, and a1 > 0.

m: the maximum number of trains of any train set regulated by the “Safety
Terms”. When the trains are empty, the main concern is not to exceed the length
limit. When the trains are loaded, the weight limit becomes the decisive factor.
However, for the sake of safety, when computing, both the length and weight
must meet the requirements. No matter whether it is the weight or length, the
ultimate limit is put on the number of trains.

c1: the minimum time interval between any trains list regulated by the “Safety
Terms”.

b1 and b2: the weights set for the influencing power by the length and density to
the unit cost.

c2 and c3: the lower and upper number limits of the trains for technical stations
to shunt and transship per time unit.
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c4: the least time for the technical stations to complete the shunting and trans-
shipping.

3) Formula:

(9.1a) means the leader aims at obtaining the maximum throughput capacity
within certain period of time.

∑n
i=1 wi · xi/

∑n
i=1 wi · yi means the number of

trains shunted and transshipped per time unit.

(9.1b) means the length of train set has its upper limit imposed by the locomo-
tive’s motive power and the arrival-departure track’s useful length. When the
trains are loaded, except for the length limit, there is still weight restriction set
upon the train set, which means, the weights of goods loaded together with the
weights of trains cannot exceed its upper limit.

(9.1c) means any two adjacent running train set cannot be too close for the sake
of safety. c1 is the minimum time interval between any trains list according to
the “Safety Regulation”.

(9.1d) means the followers wish that the cost is as low as possible. The first
part of (9.1d) means the more the length of trains set, the more efficient of the
shunting, and the lower the unit cost. The second part means the longer the train
set remains in the station, the higher the cost.

(9.1e) means technical stations have their own lower and upper time limit to
shunt and transship trains.

(9.1f) means there exists a least period of time for the technical station to com-
plete the operation.

9.1.4 Experiments

In this section, we take the railway freight operation in a railway station “Station
A” into consideration. Station A is a technical railway station with the duty of man-
aging both the passenger transportation and freight transportation within the precinct
of its Railway Bureau. The data collected from Station A cover the duration between
November 1, 2006 and December 31, 2006.

Suppose the trains shunted and transshipped are to the direction of Station B, which
is another station located next to Station A along its downlink. And the weight distri-
bution of trains is listed in Table 9.1, with the locomotive is SS1(137 ton, 1.9 unit
length).
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Table 9.1: Train set distribution
WT WS (ton) Load (ton) % EL
B23 38 40 3 2.1

P64A 26 58 3 1.5
G70 23 58 9 1.1
G60 23 50 50 1.1
G70 23 55 35 1.1

The terms in Table 9.1 are explained as below:

WT: wagon type, the type of wagon used.

WS: wagon suttle, the weight of the empty wagon.

Load: the weight of the goods loaded.

EL: equivalent length, the equivalent length of a wagon is calculated from the front
clasp to the rear clasp, with the unit length as 11 meters. If the equivalent length
is “1.1”, then its actual length is 11× 1.1 = 12.1 meters.

According to the model defined by (9.1), the coefficients are calculated and dis-
cussed below:

• a1: as the computation is within the “Basal Daily Working Plan”, which is
to arrange wagon assignment and schedule necessary operations based on the
“Trains Running Chart”, ‘Trains Shunting Plan”, “Detailed Rules on Technical
Station Management”, and constraints set by operating spots, the computing of
the freighting wagon organisation is limited within a working day of 24 hours.
So a1 is set to 24.

• m: limited by the pulling ability of the locomotive and the territorial landform,
such as grading, within Station A’s precinct, the weight of train set must not be
larger than 3500 tons; The departure track used for trains set to the direction to
Station B is Track IV, Filed II, whose effective length is 890 meters. Deduced by
30 meters of braking distance, which is left for trains to stop safely, the maximum
length for the trains set is 860 meters.

Taking the constitution of the trains listed in Table 9.1, we set 1 “unit train” as a
virtue train whose equivalent length, denoted by l1 (meters), and weight, denoted



PHD Thesis, UTS 144

by w1 (ton), are calculated below:

l1 = 2.1× 0.03 + 1.5× 0.03 + 1.1× 0.09

+ 1.1× 0.5 + 1.1× 0.35

= 1.142

w1 = (38 + 40)× 0.03 + (26 + 58)× 0.03

+ (23 + 58)× 0.09 + (23 + 50)× 0.5

+ (23 + 55)× 0.35

= 66.95

The maximum number of such empty “unit train”, denoted by me, is (860 −
1.9 × 11)/(1.142 × 11) = 66, and the maximum number of such loaded “unit
train”, denoted by ml, is (3500− 137)/66.95 = 50.

From above analysing and computing, we obtain

m = min{me,ml} = min{66, 50} = 50.

• c1: for the sake of safety, the pursuing distance, the minimum distance interval
between any adjacent running trains list, is 10 kilometers, which costs about 0.2
hours in the journey from Station A to Station B. So c1 is set to 0.2.

• b1 and b2: we set the weights of length and density of trains set on the cost of the
station as 0.4 and 0.6 respectively.

• c2 and c3: the least number of trains Station A can shunt and transship is 30 per
hour, while the max number is 150.

• c4: the least time for Station A to complete the shunting and transshipping for a
train set is 0.68 hour.

Thus, the bi-level problem defined by (9.1) is specilised as (9.2) in Station A:

Leader: Decision-maker of the railway network

Objective: max
x

F (x, y) =
24x

y
(9.2a)

subject to x < 50 (9.2b)

y > 0.2 (9.2c)
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Follower: Station A

Objective: min
y

f(x, y) = −0.4x− 0.6y (9.2d)

subject to 30 6 x

y
6 150 (9.2e)

y > 0.68 (9.2f)

As illustrated in Fig. 9.1, the triangle “ABC” depicts the constraint region for this ex-
ample. The dotted lines with arrows of “F” and “f” represent the optimising directions
for the leader and follower respectively. The optimal solution to this example occurs
at the point (x∗, y∗) = (50, 1.67) with F ∗ = 718.6 and f ∗ = −21.002, which means,
the railway network will obtain its maximum throughput capacity of 718.6 trains per
day, if the decision makers of the railway network set the average number of train to
50, followed by Station A setting the time interval between every two adjacent train
sets to 1.67 hour.

Figure 9.1: Geometry of the bi-level programming

9.1.5 Conclusions

In this section, the bi-level nature in train set organisation has been first put forward
by abstracting and simplifying railway trains management. First, the bi-level decision
model is developed. Then, this model is applied to Station A for a real case study. The
testing result obtained from Station A is reasonable and could be helpful to its train
organisation. However, as a lot of practical details have to be ignored for articulating
the model building, this model has its limitations when applied directly for TSO deci-
sion making. Future efforts will be focused on relating more practical and randomly
occurred issues from field work.
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9.2 A Bi-level Optimisation Strategy on Railway Wagon
Flow Management

9.2.1 Background

Railway freight transportation, as one of the most important transportation meth-
ods, has always been playing an irreplaceable role in social economics. The optimi-
sation on wagon flow organisation and management can impose tremendous influence
for both railway bureaus and technical stations.

Railway wagon flow management (RWFM) is to arrange wagon flows in railway
freight transportation. One of the key issues faced by RWFM is how to arrange wagons
generated or transferred in technical stations to form new wagon flows, while aiming
at making transportation cost minimum and under constraints from both technical sta-
tions and rail tracks. An optimised solution to this problem can not only ensure freights
to be sent to the destinations economically, but also make full use of all transportation
facilities, thus reduce jamming probabilities and improve the transportation ability as
a whole.

Due to the difficulties arising from both wagon routing and marshalling plan op-
timisation, it is even more difficult to integrate these two issues. The most popular
way is to choose wagon routs first, then optimise the marshalling plans in every sta-
tion. Although this strategy can decrease the problem solving difficulties, it still can
not reach global optimisation solutions as the benefits from the most optimised routing
can be offset by some extra workload brought in stations (Lin & Zhu 1996). Other
methodologies used include scheduling theory (Ginzberg & Stohr 1982), graph the-
ory (Ginzberg & Stohr 1982; Lu et al. 2007e), mathematical programming (Ginzberg
& Stohr 1982; Zhang & Lu 2007b), 0-1 programming (Lin & Zhu 1996), and op-
erational theory (Ginzberg & Stohr 1982). Also, some scholars have addressed the
problem of traffic controlling from multiple levels’ angle (Feng & Wen 2005; Zhang
& Lu 2007a; Yu, Dang & Wang 2006; Gao, Zhang, Lu & Gao 2007).

Most current research by bi-level techniques on traffic controlling centers on the
transformation network design and layout (Feng & Wen 2005; Lu et al. 2007b). Little
research has been conducted towards wagon flow management problems from multi-
ple levels’ angle. In this research, we use a bi-level method to study the problem of
RWFM.
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9.2.2 Problem Analysis

Before establishing the bi-level decision model for RWFM, we list some terms used
in following content.

(1) Local wagon flow: Wagons that are loaded/uploaded or repaired in one technical
station are called local wagon flow for this station.

(2) Local district wagon flow: Some wagons are loaded/uploaded or repaired in
intermediate stations between two technical stations. This kind of wagon flow is
called local district wagon flow for the two technical stations.

(3) Long-distance wagon flow: For a technical station, if a wagon flow is not its
local wagon flow or local district wagon flow but belongs to another technical
station (local wagon flow or local district wagon flow), this wagon flow is called
long-distance wagon flow for this technical station.

(4) Service operation: To assist on the marshalling operation within one station,
some auxiliary operations must be made, including: taking-out and placing-in
of cars, picking-up and dropping trains, loading/uploading goods, and repairing.
We call this kind of auxiliary operation as service operation.

RWFM, characterised by monopolisation, is usually run by three levels, i.e. rail-
way ministry level, railway bureau level, and station level. However, when carrying
out tasks assigned by its corresponding superior, a lower level can arrange its own
resources to achieve as much profit as possible. The communication among levels
is through marshalling plans which are designed by upper level but implemented by
the lower counterparts. Marshalling plans are regulations on organising vans which
may be destined to different destinations to form van lists. Optimisation on marshal-
ing plans aims at minimising the time spent for centralising and detention in technical
stations.

In this research, we take railway bureaus as leaders, and stations as followers. A
railway bureau controls the workload and working rhythm of the stations in its admin-
istration area. A station, while controlling its own producing resources, decides which
specific method it will use to achieve tasks to be carried in this station. Thus, the cost
in a station is determined by both the station and its upper administrator, the railway
bureau. However, the most optimal cost level for a station does not necessarily pro-
duce the most ideal cost status for the railway bureau who seeks an equilibrium with
traffic and cost. Although there locates the railway ministry above railway bureaus
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and technical stations, this study, while not focusing on the reciprocal decision relation
between a railway ministry and its bureaus, only takes the decision from the railway
ministry as input constraints.

Once a railway bureau selects a marshaling plan, it means two kinds of data are
determined. One is the technical station sequences where some marshaling operation
will be carried for every long-distance wagon flow. The other is the number of vans to
be marshaled in every station. For the leader (the decision maker in a railway bureau),
his or her decision involves whether accepting a carriage and the way to deliver it.
The marshaling plans made by a railway bureau involve only long-distance wagons. In
some technical stations, some long-distance wagons should be merged or separated to
decrease cost in stations and increase traffic efficiencies.

Technical stations perform marshalling operations as well as relevant following ser-
vices, such as collecting, delivering, shunting, loading/unloading, and wagon check-
ing. The facilities of these services depend on the quality of marshalling operation
which is performed beforehand. Having local wagons, local district wagons and long-
distance wagons as three kinds of marshalling objectives, marshalling operations with
local wagons and local district wagons are flexible in technical stations. Stations can
determine the extent and depth of the marshalling operation for local wagons and local
district wagons. The better performed of marshalling operation, the easier the follow-
ing services and thus the lower the cost. With the objective of making the costs as low
as possible, technical stations reasonably marshal local wagons and local district wag-
ons as thorough as possible. However, profound marshalling operation will inevitably
raise the cost and the time allocated for marshalling in a technical station within some
limitations. Thus a technical station will seek a best point where its marshalling oper-
ations can bring itself the lowest cost. The decision on how to marshal local wagons
and local district wagons becomes key content for technical stations.

Among 1440 minutes a day, some time is allocated for other operations than mar-
shaling. Also, some marshaling operations are fixed so that a technical station can
not adjust it. Thus, a station can only decide on flexible wagon flows within available
working time. A station needs first to distribute working time between local wagons
and local district wagons, then divide it among different sections of a local district
wagon flow. Based on it, a station will decide the amount of marshaling a day, the
amount of wagons and time for every marshaling.

Generally speaking, technical stations make decisions from the following aspects.

(1) Marshaling percentage
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Influenced by time limitation, some marshaling operations can be executed to
only some wagons while others must be treated as if they had the same sequence
number (the same destination station) to reduce marshaling load. Thus, the per-
centage of wagons which will be marshaled is a decision made by a technical
station.

(2) Shunting choice

Within limited working time, a technical station can decrease the shunting pre-
cision to finish a marshaling operation on time. Different shunting precisions
occur in both sort-shunting and group-shunting. For sort-shunting, every wagon
should be placed sequentially by their destinations. For group-shunting, mar-
shaling is supposed to be finished as long as wagons with the same destination
are placed together. Group-shunting takes less working time than sort-shunting.

(3) Marshaling precision

Marshaling can be divided into different precise degrees. Actually, the destina-
tion of a wagon can be defined from generality to nicety by stations, operation
areas, operation lines, or operation spots. The more precise, the more working
time will be needed.

To facilitate modelling the RWFM problem, we have the following assumptions:

(1) Marshalling difficulty is decided by the disorder degree of the wagon flow to be
marshaled. Disorder degree depends on the destination stations of every wagon
and the relationship among them, which occurs randomly. In this research, we
hold that the disorder degrees for wagon flows have no difference.

(2) Marshalling costs from two train flows, one of which is from Station A to Sta-
tion B and the other is from Station B to Station A, may have trivial difference
on marshalling cost. When making plans and calculating the cost, decision mak-
ers sometimes need to consider the influence from these differences. However,
compared with other influencing factors, the influence from different directions
is trivial and can be ignored. In this research, we hold that the marshalling costs
with two train flows with different directions are exactly the same.

9.2.3 An OLMFB Decision Model on RWFM problems

From the analysis in Section 9.2.2, we can see that a RWFM is a kind of OLMFB
problem. Based on the OLMFB decision model developed in Section 7.2.1 and the
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analysis on RWFM problems in Section 9.2.2, an OLMFB decision model for RWFM
is built in this section:

For x = (x1, x21, x22, . . ., x2m) ∈ X ⊂ Rm+1, yi = (ηli, ηdi,y1Gil,y1Sil,y1Gid,y1Sid,
y2Gil,y2Sil,y2Gid,y2Sid,y2ik) ∈ Yi ⊂ R11, F , f : X × Yi → F (R), i = 1, 2, . . . , n

max
x∈X

F (x, y) =
∑

pj ,lj∈D

(pj × lj)[Jw(1− rj)− C̄wj
(x)]

+
∑
si∈S

[qdi
(x1)× ξi × Js − Csi

(x, yi)] (9.3a)

subject to pju min 6 pju 6 pju max, j = 1, 2, . . . , m (9.3b)

pjd min 6 pjd 6 pjd max, j = 1, 2, . . . , m (9.3c)

mj min 6 x2j 6 mj max, j = 1, 2, . . . , m (9.3d)

mj min = max{Iju × tTjd, Ijd × tTjd}, j = 1, 2, . . . , m (9.3e)

0 6 qdi 6 vi (9.3f)

0 6 q2i + qdi 6 ui (9.3g)

min
yi∈Yi

fi(x, yi) =
∑
si∈S

[(C ′
z1i + c′′z1i + c′′′z1i + C ′

z2i + C ′′
z2i + Cz3i)(1 + Aiσ

Bi
i ) +4C2i]

(9.4a)

subject to qi = q′di
+

∑

dk∈Di

q′′dik + qzi (9.4b)

Tilmin 6 ηli × qdi × (y1Gil × y2Gil × TGi + y1Sil × y2Sil × TSi)

+ qdi × Sil × Tsi 6 Tilmax (9.4c)

Tidmin 6 ηdi × qdi × (y1Gild × y2Gid × TGi + y1Sid × y2Sid × TSi)

+ qdi × Sid × Tsi 6 Tidmax (9.4d)

i = 1, 2, . . . , m (9.4e)

where

C̄wj
(x) = C̄w0 +

C̄w1j

pj

+
C̄w2j

x2j

+ ¯4Cwj
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¯4Cwj
= |pju − pjd| ×

C̄ ′
w2j

x2j × pj

Iju =
pju

1440× ϕju

Ijd =
pjd

1440× ϕjd

C ′
z1i = C̄ ′

z1i × q′di

C̄ ′
z1i = Z ′

10i +
Z11i

a′1iq̄
b′1i
di

+ Z12i((y1Gil + 2× y1Sil + y1i)
b′2i + (y2Gil + y2Sil)

b′3i + ηli
b′4i)

C ′′
z1i = C̄ ′′

z1i × q′′di

C̄ ′′
z1i = Z ′′

10i +
Z11i∑

dk∈Di

a′′1ikx
b′′1ik
2ik

+ Z12i ×
∑

dk∈Di

[a2ik((y1Gil + 2× y1Sil + y1i)
b′′2ik

+ y2ik
b′′3ik + ηdik

b′′4ik)]

C ′′′
z1i = C̄ ′′′

z1i × qzi

C̄ ′′′
z1i = Z ′′′

10i +
Z11i∑

dk∈Di

a′′′1ikx
b′′′1ik
2ik

C ′
z2i = C̄ ′

z2i × q′di

C̄ ′
z2i = Z ′

20i +
Z ′

21i

α′21i((y1Gil + y1Sil + y1i)
β′21i + (y2Gil + y2Sil)

β′22i + ηli
β′23i)

C ′′
z2i = C̄ ′′

z2i × q′′di

C̄ ′′
z2i = Z ′′

20i +
Z ′′

21i∑
dk∈Di

α′′21i((y1Gil + 2× y1Sil + y1i)
β′′21i + y2ik

β′′22i + ηdik
β′′23i)

Cz3i = Ni × C̄cx

Ni =
∑

dk∈Di

[(Cdi + CcHi × ςik)× x2ik + C ′′
fikq

′′
dik] + C ′

fi × q′di

C ′
fi =

Z ′
3i

[α′3i((y1Gil + y1Sil + y1i)
β′31i + (y2Gil + y2Sil)

β′32i + ηli
β′33i)]

C ′′
fik =

Z ′′
3i

[α′′3ik((y1Gil + 2× y1Sil + y1i)
β′′31ik + y2ik

β′′32ik + ηdik
β′′33ik)]

4C2i = (
∑

dk,dl∈Di,k 6=i

|x2ik − x2il| × nkl)× Z4i

Z4i = Z40i +
Z41i∑

dk,dl∈Di,k 6=i

α4ik|x2ik − x2il|
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Explanation:

1) Controlling variables:

x1: Assignment of wagons which will go through the area administrated by a
railway bureau and have more than one shunting operation in some technical
station in this area.

x2j: The number of vans within a shunted wagon list from the j−th section,
which is from one technical station to another in a railway bureau.

x2ik: The number of wagons in a wagon list which is to the k−th section in the
i−th station.

ηli: Percentage of wagons to be marshaled for local wagon list in the i−th station.

ηdi: Percentage of wagons to be marshaled for local district wagon list in the
i−th station.

ηdik: Percentage of wagons to be marshaled for local district wagon list to the
k−th direction in the i−th station.

y1Gil: The percentage of wagons to be marshaled by group-shunting of local
wagons in the i−th station.

y1Sil: The percentage of wagons to be marshaled by sort-shunting of local wag-
ons in the i−th station.

y1Gid: The percentage of wagons to be marshaled by group-shunting of local
district wagons in the i−th station.

y1Sid: The percentage of wagons to be marshaled by sort-shunting of local dis-
trict wagons in the i−th station.

y2Gil: The shunting precision for local wagons to be marshaled by group-shunting
in the i−th station.

y2Sil: The shunting precision for local wagons to be marshaled by sort-shunting
in the i−th station.

y2Gid: The shunting precision for local district wagons to be marshaled by group-
shunting in the i−th station.

y2Sid: The shunting precision for local district wagons to be marshaled by sort-
shunting in the i−th station.

y2ik: The shunting precision for local district wagon flow marshaled in the i−th
station to the k−th direction.
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2) Other variables: While decision makers from both the upper and lower levels
directly control variables of x and y, there are some other variables whose values
are influenced by x and y directly or indirectly. These variables are summarised
below:

Variables influenced by x1

pj: The average wagon flow in the j−th section. pj = pju + pjd.

pju: The average wagon flow in the j−th section in up-direction, which fluctu-
ates with the change of x1.

pjd: The average wagon flow in the j−th section in down-direction, which fluc-
tuates with the change of x1.

qdi: The number of local district wagons and local wagons operated per day in
the i−th station.

q′di
: The number of local wagons operated in the i−th station.

q′′dik: The number of local district wagons operated to the k−th direction in the
i−th station.

q′′di
: The number of local district wagons operated in the i−th station.

q2i: The number of long-distance wagons operated in the i−th station.

ξi: The loading percentage in the i−th station.

rj: The percentage of empty to loaded wagon kilometres in the j−th section. rj

fluctuates with the change of x1.

Variables influenced by x

qzi: The number of wagons marshaled in the i−th station a day.

ςik: The number of long distance wagons to the k−th direction in the i−th sta-
tion.

nkl: the number of wagon lists some of whose wagons have been added/removed
from the k−th section to the l−th section.

Variables influenced by y

y1i: Marshalling degree, which is determined by different operating depth such
as group shunting, sort-shunting and the fit degree of the regulation of “Safety
terms”, for the local district wagon in the i−th station.

σi: The average time difference among the operations for local wagon flow, local
district wagon flow, and long-distance wagon flow in the i−th station.
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Variables influenced by x and y

qi: The number of wagons operated in the i−th station.

3) Coefficients and constants:

S = {si, i = 1, 2, . . . , n}: The set of the technic stations administrated by a
railway bureau.

D = {dj, j = 1, 2, . . . , m}: The set of the train running sections administrated
by a railway bureau.

Di = {dk, k = 1, 2, . . . , l}: The set of train running sections which are adjacent
to Station i.

lj: The hauling distance in the j−th section, which is a constant.

Jw: Railway average tariff, which is a constant.

C̄w0: Freight traffic fixed unit cost.

C̄w1j
: The freight traffic unit cost in the j−th section per day per kilometer.

C̄w2j
: Hauling cost in the j−th section per wagon per kilometer.

C̄w′2j
: The locomotive cost in the j−th section per kilometer when there is no

wagon hauled by the locomotive.

Js: Fees charged per wagon.

pju min: The minimum wagon flow which can meet the requisite traffic demand
required for the j−th section in up-direction.

pju max: The maximum wagon flow which can be run for the j−th section in
up-direction.

pjd min: The minimum wagon flow which can meet the requisite traffic demand
required for the j−th section in down-direction.

pjd max: The maximum wagon flow which can be run for the j−th section in
down-direction.

mj max: The maximum number of wagons to form a wagon list in the j−th
section. It is determined by the locomotive hauling limit and the useful length of
the receiving and departure tracks in the j−th section.

vi: The maximum possible number of wagons that can be operated by service
operation in the i−th station.
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ui: The maximum possible number of wagons that can be marshalled in the i−th
station.

ϕju: The percentage of time that can be used a day (1440 minutes) for freight
transportation in the j−th section in the up direction.

ϕjd: The percentage of time that can be used a day (1440 minutes) for freight
transportation in the j−th section in the down direction.

tTju: The minimum time interval between two wagon lists of the j−th section in
the up direction regulated by the train working diagram.

tTjd: The minimum time interval between two wagon lists of the j−th section in
the down direction regulated by the train working diagram.

Z ′
10i: The minimum cost for marshalling one local wagon in the i−th station.

This cost happens in an ideal situation when the number of wagons to be mar-
shaled is large enough and the marshalling degree is deep enough for one mar-
shalling operation.

Z11i: Coefficient for the effect from centralised marshalling operation.

q̄di: The number of local wagons to be marshaled for one marshalling operation.
It is determined by the loading/uploading capacity in the i−th station.

Z12i: Coefficient for the effect from deepened marshalling operation. It is an
average additional cost spent for one wagon for marshalling operation.

Ai, Bi, a
′
1i, b

′
1i, b

′
2i, b

′
3i, b

′
4i, a

′′
1ik, b′′1ik,α′21i, β

′
21i, β

′
22i, β

′
23i′, α′′21i, β

′
21i, β

′′
22i, β

′′
23i, α

′
3ik,

β′31ik, β′32ik, β′33ik, α
′′
3ik, β′′31ik, β′′32ik, β′′33ik: Coefficients which are to be obtained

through statistic data.

Z ′′
10i: The minimum cost for marshalling one local district wagon in the i−th

station. This cost happens in an ideal situation when the number of wagons to
be marshaled is large enough and the marshalling degree is deep enough for one
marshalling operation.

Z ′′′
10i: The minimum cost for marshalling one long distance wagon in the i−th

station. This cost happens in an ideal situation when the number of wagons to
be marshaled is large enough and the marshalling degree is deep enough for one
marshalling operation.

Z ′
20i: The minimum cost for service operation for one local wagon in the i−th

station. This cost happens in an ideal situation when marshalling is deep enough
such that service operation can be operated easily and conveniently.
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Z ′
21i: The additional cost for service operation for one local wagon in the i−th

station. This cost happens when marshalling is superficial thus service operation
become unhandy.

Z ′′
20i: The minimum cost for service operation for one local district wagon in the

i−th station. This cost happens in an ideal situation when marshalling is deep
enough such that service operation can be operated easily and conveniently.

Z ′′
21i: The additional cost for service operation for one local district wagon in

the i−th station. This cost happens when marshalling is superficial thus service
operation become unhandy.

Cdi: The coefficient on centralisation and detention for local wagon flow, which
is a number between eight and twelve. The number is decided by specialties
from different wagon flows.

CcHi: The coefficient on centralisation and detention for long distance wagon
flow, which is a number between eight and twelve.

Z ′
3i: Coefficient on service facilitation for local wagons, which equals the addi-

tional halting time when service operation is totally inconvenient.

Z ′′
3i: Coefficient on service facilitation for local district wagons, which equals

the additional halting time when service operation is totally inconvenient.

Z40i: The basic cost for adding/removing one wagon to/from a wagon list in the
i−th station. This cost happens when the number of wagons to be added/removed
is large enough.

Z41i: The additional cost for adding/removing one wagon to/from a wagon list in
the i−th station. This cost happens when the number of wagons to be added/removed
is small enough (equaling one).

C̄cx: The cost for one wagon to halt one hour, which is caused by wagon depre-
ciation.

Sil: The percentage of wagons which have special safety requirement of local
wagons in the i−th station.

Sid: The percentage of wagons which have special safety requirement of local
district wagons in the i−th station.

Tsi: Average time to marshal a wagon which has special safety requirement in
the i−th station.

Tilmin: The least time for marshaling one local wagon list in the i−th station.
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Tilmax: The time spent for marshaling one local wagon list with the highest
specification and completeness in the i−th station.

Tidmin: The least time for marshaling one local district wagon list in the i−th
station.

Tidmax: The time spent for marshaling one local district wagon list with the
highest specification and completeness in the i−th station.

4) Formula:

(9.3a) describes a railway bureau’s objective which aims at achieving the maxi-
mum profit for freight operation administrated by this railway bureau. It has two
parts: the profit from the railway network and technical stations in this bureau.

(9.3b) and (9.3c) mean that wagon flows in both up-direction and down-direction
have their minimum and maximum limits. Thus the total number of vans from
one station to another has its limits too.

(9.3d) and (9.3e) tell how the limits set for wagon flows in up-direction and
down-direction are determined and calculated.

(9.3f) and (9.3g) mean the number of long-distance wagon flows to be mar-
shalled in technical stations can not exceed their operating abilities.

(9.4a) is the objective for a technical station, which aims at lowering its operation
cost. The operation cost is from three parts: local wagon flow, local district
wagon flow, and long-distance wagon flow.

(9.4b) denotes how the operation cost for local wagon flow, local district wagon
flow, and long-distance wagon flow are calculated.

(9.4c)-(9.4d) mean there exist minimum and maximum limits for marshalling
both local wagon flow and local district wagon flow.

5) Symbols:

F1: The economical benefit of the railway network within the area administrated
by a railway bureau.

F2: The economical benefit obtained by all of the technical stations adminis-
trated by the railway bureau.

C̄wj
: The freight traffic unit cost in the j−th section.

¯4Cwj
: Additional unit cost in the j−th section.
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Csi
: The operating cost in the i−th station. It fluctuates with the change of

controlling variables from both the leader and the followers.

Iju: The number of wagons that go through the j−th section in the up direction
per minute.

mj min: The minimum number of wagons to form a wagon list in the j−th sec-
tion.

Ijd: The number of wagons that go through the j−th section in the down direc-
tion per minute.

C ′
z1i: Daily cost spent for marshalling local wagon flow for the i−th station.

C ′′
z1i: Daily cost spent for marshalling local district wagon flow for the i−th

station.

C ′′′
z1i: Daily cost spent for marshalling long-distance wagon flow for the i−th

station.

C ′
z2i: Daily cost spent for service operation made for local wagon flow for the

i−th station.

C ′′
z2i: Daily cost spent for service operation made for local district wagon flow

for the i−th station.

Cz3i: Daily cost spent for centralising and detention wagons in the i−th station.

4C2i: Different sections may have different requests on the number of wagon
lists to be run in that section. Thus adding/reducing wagons may be needed in
technical stations to meet the requirements of its adjacent sections. 4C2i is the
daily cost spent for adding/reducing wagons in the i−th station.

C̄ ′
z1i: Average daily cost spent for marshalling one local wagon for the i−th

station.

C̄ ′′
z1i: Average daily cost spent for marshalling one local district wagon for the

i−th station.

C̄ ′
z2i: Average daily cost spent for service operation made for local wagon flow

for the i−th station.

C̄ ′′
z2i: Average daily cost spent for service operation made for local district wagon

flow for the i−th station.

Ni: The total hours spent by all wagons which are halted in the i−th station.
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C ′
fi: The number of additional hours spent for service operation for a local

wagon in the i−th station.

C ′′
fik: The number of additional hours spent for service operation for a local

district wagon to the k−th direction in the i−th station.

Z4i: The cost spent for adding/removing one wagon.

9.2.4 Experiments

In this section, we consider the RWFM problem in a railway bureau “Bureau A”.
Within the area administrated by Bureau A, there are three technical stations: Station
A, Station B, and Station C. Connecting these stations, we have three sections: Section
A that connects Station A and Section B, Section B that connects Station B and Section
C, and Section C that connects Station C and Station A. We list the values of some of
the main coefficients, which are used to build up the RWFM OLMFB decision model,
in Table 9.2 and 9.3.

Table 9.2: Summary of the coefficient values in the case study - 1

Stations pju min pju max pjd min pjd max ui vi

A 10 29 10 29 19 19
B 10 29 10 29 19 19
C 10 29 10 29 19 19

Table 9.3: Summary of the coefficient values in the case study - 2

Sections Tilmin Tilmax Tidmin Tidmax

A 15 minutes 20 minutes 15 minutes 22 minutes
B 15 minutes 23 minutes 15 minutes 25 minutes
C 15 minutes 22 minutes 15 minutes 21 minutes

To help the decision maker in Bureau A make an optimal RWFM plan, we use the
PSO-based algorithm developed in Section 7.2.2, which was implemented by Visual
Basic 6.0, and tested on a desktop computer with CPU Pentium 4 2.8GHz, RAM 1G,
Windows XP. By 342 seconds running, the solutions for Bureau A are reached and
summarised in Table 9.4.
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Table 9.4: Summary of the solutions for Bureau A and the Stations

Stations pju pjd qdi + q′di q2i x2k y1Gil y1Sil y1i

A 24 28 42 10 18 0.2 0.78 0.41
B 27 23 38 12 11 0.55 0.67 0.35
C 24 17 25 16 7 0.53 0.98 0.48

Table 9.5: Summary of the solution differences

Stations pju pjd qdi + q′di q2i x2k y1Gil y1Sil y1i

A 0.002 0.12 0.1 0.05 0.37 0.16 0.00043 0.1
B 0.04 0.29 0.02 0.27 0.42 0.33 0.01 1.23
C 0.17 0.37 0.42 0.07 0.57 0.02 0.27 0.09

To test the stability of this PSO-based algorithm, this case has been run six times
by the algorithm. The solution variances are summarised in Table 9.5.

In Table 9.5, we can see that, there is no tremendous diversion among the solutions
obtained. For every running, the solution has been obtained within 400 seconds. Thus,
we can come to the conclusion that the PSO-based algorithm proposed in this study
could explore veracious solutions for RWFM problems with quite effective and stable
performance.

9.2.5 Conclusions

In this research, the bi-level nature of RWFM has been put forward. A RWFM
OLMFB decision model has been developed. We apply this model and the PSO-based
algorithm on a case study. Experiment results show that the approach proposed in this
research could effectively deal with RWFM problems. However, as a lot of practical
details have to be ignored for articulating the model building, this decision model has
its limitations when applied directly for RWFM decision making. Future efforts will
be focused on relating more practical and randomly occurred issues from field works.
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9.3 Competitive Strategic Bidding Optimisation in Elec-
tricity Markets 1

9.3.1 Background

Throughout the world, electric power industries are undergoing enormous restruc-
turing processes from nationalised monopolies to individual organisations in a com-
petitive market (Huang & Pai 2002) with the support of digital ecosystems. Because
of the significance and particularity of electricity energy to national economics and
society (Guerrero, Hang & Uceda 2008), electricity markets must be operated under
extensive conditions of absolute security and stabilisation. The research on electricity
markets has attracted many researchers, owners and managers from electricity entities
and authorities with the development of current digital ecosystems. The competitive
mechanism of day-ahead markets is one very important research issue in the electricity
market study, which can be described as follows. Each generating company submits
a set of hourly (half-hourly) generation prices and the available capacities for the fol-
lowing day. According to this data and an hourly (half-hourly) load forecast, a market
operator allocates generation output for each unit.

Nowadays, the viewpoint that electric power industries are monopoly industries is
in doubt and has been extensively challenged. Many countries are considering chang-
ing the operation of their electric power industries. The aim of marketing electric
power industries is to break the monopoly and introduce competition. As no determi-
nate operation model for electricity markets exists, the marketing procedure of elec-
tric power industries varies from country to country. Generally speaking, there are
three kinds of running models in electricity markets: the power pool model, wholesale
competitive model, and retail competitive model. These models adopt three kinds of
electric power trading methods: long term contract, day-ahead market, and facility ser-
vice. Among them, day-ahead market is the most competitive and active part, which
imposes great influence on profits for each participant in the market. Specifically, each
generating company submits a set of generation prices and other related data, based on
which the market operator makes a generating plan for the following day. To optimise
this procedure, many models and algorithms have been proposed.

A lot of research has been done on how to strategically bid prices for those gener-
ating companies, and how to dispatch generation output for market operators to each

1The work presented in this section is a joint research with Professor Guoli Zhang, from the Depart-
ment of Mathematics and Physics, North China Electric Power University, China.
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of their units. David and Wen (David & Wen 2000) conducted a literature survey on
strategic bidding in competitive electricity markets. Literature (Li & Shahidehpour
2007; Haghighat, Seifi & Ashkan 2007) uses supply function equilibrium model to
maximise generating companies’ profits and obtain a Nash equilibrium in a day-ahead
electricity market. Literature (Wen & Kumar 2001; Weber & Overbye 2002; Pang
& Fukushima 2005) uses game theory (Munz, P.Schumm, A.Wiesebrock & Allgower
2007) to build a strategic bidding model for generating companies and reach a Nash
equilibrium solution. However, these models do not include ramp rate constraints,
which are crucial to guarantee a real optimal solution. In addition, because strategic
bidding problems involve two hierarchical optimisations, and are different from a con-
ventional game model, a new Nash equilibrium is needed as a solution. Furthermore,
because strategic bidding problems involve two hierarchical optimisations, and there
exists a game relationship among the upper partners, the decision from every game
player (generating company) will be influenced by other players (generating compa-
nies) as well as by the generating dispatch policy from the lower partner (the market
operator). This problem is different from a conventional game model, and a new Nash
equilibrium is thus needed as a solution. From the literature, only Pang and Fukushima
(Pang & Fukushima 2005) have discussed the generalised Nash equilibrium concept.
However, their method is still not suitable for describing a strategic bidding problem
in electricity markets. Literature (Bjondal & Jornsten 2005) has used a bi-level opti-
misation method to build a generation output allocation model, but does not consider
competitive bidding problems from generating companies. Literature (Fampa, Bar-
roso, Candal & Simonetti 2008) has built a competitive strategic bidding model using
bi-level optimisation by means of the Cournot and Bertrand model, but did not include
ramp rate constraints in their model.

Compared with current research on bidding problems in electricity markets, this
study applies bi-level techniques in electricity markets to build up an MLOFB decision
model for strategic bidding problems including the ramp rate constraints.

9.3.2 Bidding Strategy Analysis in Competitive Electricity Mar-
kets

In an auction-based day-ahead electricity market, each generating company will try
to maximise its own profit by strategic bidding. Normally, each generating company
submits a set of hourly (half-hourly) generation prices and available capacities for the
following day. Based on this data and an hourly-load (half-hourly-load) forecast, a
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market operator will allocate generation output. In this section, under the analysis
of bidding strategy optimisation problems, we build a competitive strategic bidding
model for generating companies and a generation output dispatch model for a market
operator in a day-ahead electricity market.

A Strategic Pricing Model for Generating Companies

In the upper level, each generating company is concerned with how to choose a
bidding strategy, which includes generation price and available capacity. Many bid-
ding functions have been proposed. For a power system, the generation cost function
generally adopts a quadratic function of the generation output, i.e. the generation cost
function can be represented as

Cj(Pj) = ajP
2
j + bjPj + cj (9.5)

where Pj is the generation output of generator j, and aj, bj, cj are co-efficient of gen-
eration cost function of generator j.

The marginal cost of generator j is calculated by:

λj = 2ajPj + bj (9.6)

It is a linear function of its generation output Pj . The rule in a goods market may
expect each generating company to bid according to its own generation cost. Therefore,
we adopt this linear bid function. Suppose the bidding for the j-th unit at time t is

Rtj = αtj + βtjPtj (9.7)

where t ∈ T is the time interval, T is time interval number, j represents the unit
number, Ptj is the generation output of unit j at time t, and αtj and βtj are the bidding
coefficients of unit j at time t.

According to the justice principle of “the same quality, the same network, and the
same price”, we adopt a uniform marginal price (UMP) as the market clearing price.
Once the energy market is cleared, each unit will be paid according to its generation
output and UMP. The payoff of the i-th generating company is:

Fi =
T∑

t=1

(
∑
j∈Gi

UMPtPtj −
∑
j∈Gi

(ajP
2
tj + btjPtj + ctj)) (9.8)

where Gi is the suffix set of the units belonging to the i-th generating company. Each
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generating company wishes to maximise its own profit Fi. In fact, Fi is the function
of Ptj and UMPt, and UMPt is the function of all units’ bidding αtj , βtj and output
power Ptj , which will impact on each other. Therefore, we establish a strategic pricing
model for generating companies as follows:

max
αtj ,βtj ,j∈Gi

Fi = Fi(αt1, βt1, · · · , αtN , βtN , Pt1, · · · , PtN)

=
T∑

t=1

(UMPtPti −
∑
j∈Gi

(ajP
2
tj + bjPtj + cj)) (9.9)

i = 1, 2, · · · , L (9.10)

where L is the number of generating companies, Ptj =
∑

j∈Gi
Ptj , t = 1, 2, · · · , T .

The profit calculated for each generating company will consider both Ptj and UMPt,
which can be computed by a market operator, according to the market clearing model.

A Generation Output Dispatch Model for a Market Operator

A market operator actually represents the consumer electricity purchase from gen-
erating companies, under the conditions of security and stabilisation. The objective of
a market operator is to minimise the total purchase fare, while encouraging generating
companies to use a bid price as low as possible. It is reasonable that the lower the price,
the more the output. Thus, the function value of a market operator’s objective will be
calculated according to the bidding price. Most previous strategic bidding models do
not include ramp rate constraints, without which the solution for generating dispatch
may not be a truly optimal one. We should consider the ramp rate constraints in the real
world when modelling a generating dispatch. However, if a model includes ramp rate
as a constraint, the number of decision variables involved in the problem will increase
dramatically, which requires a more powerful solution algorithm. Based on the anal-
ysis above, we build a market operator’s generation output dispatch model as follows:

min
Ptj

f = f(αt1, βt1, · · · , αtN , βtN, Pt1, · · · , PtN) =
T∑

t=1

N∑
j=1

RtjPtj (9.11a)

subject to
N∑

j=1

Ptj = PtD (9.11b)

Pjmin 6 Ptj 6 Pjmax (9.11c)
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−Dj 6 Ptj − Pt−1,j 6 Uj, t = 1, 2, · · · , T (9.11d)

where t ∈ T is the time interval, T is the time interval number, j represents the
unit number, Ptj is the generation output of unit j at the time t, and αtj and βtj are the
bidding co-efficients of unit j at the time t, PtD is the load demand at the time t, Pjmin

is the minimum output power of the j-th unit, Pjmax is the maximum output power of
the j-th unit, Dj is the maximum downwards ramp rate of the j-th unit, and Uj is the
maximum upwards ramp rate of the j-th unit.

After receiving all generating companies’ bid data, a market operator determines
the output power of each unit and UMPt in time slot t. UMPt can be calculated
according to the following steps:

Step 1 calculate output power of each unit j for all time slot t using formula 9.11;

Step 2 compute bidding Rtj corresponding to the generation output Ptj;

Step 3 account UMPt = maxN
j=1 Rtj .

9.3.3 An MLOFB Decision Model in Competitive Electricity Mar-
kets

From the analysis above, we know that in an auction-based day-ahead electricity
market, each generating company tries to maximise its own profit by strategic bidding,
and each market operator tries to minimise its total electricity purchase fare. The
decision of one will influence the other. This is a typical bi-level decision problem,
which has multi-leaders and only one follower, with generating companies as leaders
and a market operator as a follower.

By combining the strategic pricing model defined in (9.9) with the generation out-
put dispatch model defined in (9.11), we establish an MLOFB decision model for com-
petitive strategic bidding-generation output dispatch in an auction-based day-ahead
electricity market as follows:

max
αtj ,βtj ,j∈Gi

Fi = Fi(αt1, βt1, · · · , αtN , βtN , Pt1, · · · , PtN)

=
T∑

t=1

(UMPtPti −
∑
j∈Gi

(ajP
2
tj + bjPtj + cj)) (9.12)

i = 1, 2, · · · , L (9.13)
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min
Ptj

f = f(αt1, βt1, · · · , αtN , βtN, Pt1, · · · , PtN) =
T∑

t=1

N∑
j=1

RtjPtj (9.14)

subject to
N∑

j=1

Ptj = PtD (9.15)

Pjmin 6 Ptj 6 Pjmax (9.16)

−Dj 6 Ptj − Pt−1,j 6 Uj, t = 1, 2, · · · , T (9.17)

where αtj and βtj are the bidding co-efficients of unit j at time t, αtmin, αtmax, βtmin,
βtmax are the lower and upper limits for αtj and βtj respectively, L is the number
of generating companies, Ptj =

∑
j∈GL

Ptj , Pjmin is the minimum output power of the

j-th unit, Pjmax is the maximum output power of the j-th unit, Dj is the maximum
downwards ramp rate of the j-th unit, and Uj is the maximum upwards ramp rate of
the j-th unit.

9.3.4 Experiments

In this section, we employ a real world strategic bidding problem in an electricity
market to test the MLOFB decision model and use the PSO-based algorithm developed
in section 7.1.2 to solve the problem.

Test Data

In order to test the effectiveness of the proposed bi-level decision model and the
PSO-based algorithm when solving the model defined by (9.12), a typical competitive
strategic bidding case consisting of three companies with six units and twenty-four
time-intervals is chosen. The generation cost function can be calculated by using (9.5),
where the cost co-efficients of unit j and other technical data are given in Table 9.6,
the load demands for each time interval t are given in Table 9.7.

In Table 9.6, Units 1 and 2 belong to the first generating company, Units 3 and
4 belong to the second generating company, and Units 5 and 6 belong to the third
generating company.

To simplify computation, the limit of strategic bidding coefficients does not vary by
different time slots and we suppose: αtmin = 7, αtmax = 9, βtmin = 0.0002, βtmax =

0.007, t = 1, 2, · · · , T, j = 1, 2, · · · , N .
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Table 9.6: Technical data of units - 1

Unit aj Pmin Pmax bj cj Dj Uj

No. (MW) (MW) (MW/h) (MW/h)
1 0.00028 50 680 4.10 150 80 85
2 0.00312 30 150 4.50 80 45 60
3 0.00048 50 360 4.10 109 60 65
4 0.00324 60 240 3.74 125 45 80
5 0.00056 60 300 3.82 130 70 80
6 0.00334 40 160 3.78 100 55 40

Table 9.7: Technical data of units - 2

t 1 2 3 4 5 6 7 8
PtD 1033 1000 1013 1027 1066 1120 1186 1253
t 9 10 11 12 13 14 15 16

PtD 1300 1340 1313 1313 1273 1322 1233 1253
t 17 18 19 20 21 22 23 24

PtD 1280 1433 1273 1580 1520 1420 1300 1193

Experiment Results

This example is run by the PSO-based algorithm proposed in Section 7.1.2, which
was implemented by Visual Basic 6.0, and tested on a desktop computer with CPU
Pentium 4, 2.8GHz, RAM 1G, Windows XP. The running results are listed from Table
9.8 to Table 9.12.

Under these solutions, the objective values for both the leaders and the follower are
listed in Table 9.12.

Experiment Analysis and Evaluation

In this section, a strategic bidding problem in an electricity market is employed.
By the PSO-based algorithm, solutions are reached for both the generating companies
and the market operator to help them make strategic decisions. From the experiment,
we can see that the MLOFB decision model can effectively model strategic bidding
problems from electricity markets. Existing models either fail to deal with the gaming
relationships among generating companies or ignore the hierarchical nature between
generating companies and a market operator. By considering the gaming and bi-level
relationships among generating companies and market operators simultaneously, the
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Table 9.8: Running results for αtj from the example

t(column) j (row) 1 2 3 4 5 6
1 7.37 7.61 7.32 7.03 7.27 8.98
2 8.76 7.74 8.71 7.15 8.13 7.10
3 7.18 8.89 8.60 8.84 8.55 8.26
4 7.36 8.33 7.31 8.28 8.73 7.70
5 7.10 8.80 8.51 8.75 8.46 8.17
6 8.59 7.57 8.54 8.98 7.96 8.93
7 7.11 7.35 7.06 8.77 7.01 8.72
8 8.45 8.90 7.87 8.85 7.82 8.80
9 8.29 8.00 8.24 7.95 7.66 7.37

10 8.42 7.39 8.37 8.81 7.79 8.76
11 7.57 7.28 7.52 7.23 8.94 7.18
12 7.02 7.99 8.97 7.94 8.39 7.36
13 7.49 7.20 7.44 7.15 8.86 7.10
14 8.25 7.22 8.20 8.64 7.62 8.59
15 8.04 7.74 7.98 7.69 7.40 7.11
16 8.11 8.56 7.53 8.51 7.48 8.45
17 8.68 8.92 8.63 8.34 8.58 8.29
18 8.08 7.05 8.03 8.47 7.45 8.42
19 8.50 8.21 7.92 8.16 7.86 7.57
20 8.68 7.65 8.63 7.07 8.04 7.02
21 8.41 8.12 7.83 8.07 7.78 7.49
22 7.91 8.88 7.33 8.30 7.27 8.25
23 8.43 8.67 8.38 8.09 8.33 8.04
24 7.24 8.21 7.19 8.16 7.14 8.11

MLOFB decision model can better reflect the features of real-world strategic bidding
problems in electricity markets and format these problems more practically.

9.3.5 Conclusions

With the development of digital ecosystems, competitive strategic bidding optimi-
sation of generating companies in electricity markets becomes more practically im-
portant and technically implementable. This section applies bi-level programming and
swarm algorithms to model competitive strategic bidding decision-making in electric-
ity markets and obtain solutions. Experiment results show that the proposed PSO-
based algorithm can achieve a generalised Nash equilibrium for an MLOFB problem
in an electricity market by providing generating companies with competitive strategic
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Table 9.9: Running results for βtj from the example

t(column) j (row) 1 2 3 4 5 6
1 0.00089 0.00205 0.00321 0.00438 0.00554 0.00670
2 0.00208 0.00074 0.00440 0.00307 0.00673 0.00539
3 0.00641 0.00077 0.00193 0.00310 0.00426 0.00542
4 0.00278 0.00644 0.00510 0.00377 0.00063 0.00609
5 0.00048 0.00164 0.00280 0.00397 0.00513 0.00629
6 0.00382 0.00249 0.00615 0.00481 0.00348 0.00034
7 0.00350 0.00467 0.00583 0.00699 0.00135 0.00251
8 0.00022 0.00568 0.00435 0.00121 0.00667 0.00353
9 0.00687 0.00123 0.00420 0.00536 0.00653 0.00089
10 0.00556 0.00423 0.00109 0.00655 0.00522 0.00208
11 0.00060 0.00176 0.00292 0.00408 0.00525 0.00641
12 0.00626 0.00493 0.00179 0.00045 0.00411 0.00278
13 0.00147 0.00263 0.00379 0.00496 0.00612 0.00048
14 0.00051 0.00597 0.00464 0.00150 0.00696 0.00382
15 0.00449 0.00565 0.00682 0.00118 0.00234 0.00350
16 0.00551 0.00237 0.00103 0.00469 0.00336 0.00022
17 0.00106 0.00222 0.00339 0.00455 0.00571 0.00687
18 0.00406 0.00092 0.00638 0.00324 0.00191 0.00556
19 0.00658 0.00094 0.00391 0.00507 0.00624 0.00060
20 0.00295 0.00162 0.00527 0.00394 0.00080 0.00626
21 0.00065 0.00362 0.00478 0.00595 0.00031 0.00147
22 0.00580 0.00266 0.00132 0.00498 0.00365 0.00051
23 0.00368 0.00484 0.00600 0.00036 0.00333 0.00449
24 0.00220 0.00586 0.00452 0.00138 0.00684 0.00551

Table 9.10: Running results for UMPt from the example

t =1 t =2 t =3 t =4 t =5 t =6 t =7 t =8
17.81 8.62 1.49 8.19 2.77 4.35 14.31 4.43
t =9 t =10 t =11 t =12 t =13 t =14 t =15 t =16
8.75 6.40 13.45 12.30 1.06 9.47 18.93 15.88
t =17 t =18 t =19 t =20 t =21 t =22 t =23 t =24
14.39 18.87 5.42 11.10 19.35 14.60 18.23 7.34

bidding within network security constraints.
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Table 9.11: Running results for Ptj from the example

t(column) j (row) 1 2 3 4 5 6
1 493 150 50 240 60 40
2 445 145 63 232 70 45
3 443 140 76 224 80 50
4 442 135 89 216 90 55
5 466 130 102 208 100 60
6 505 125 115 200 110 65
7 556 120 128 192 120 70
8 608 115 141 184 130 75
9 640 110 154 176 140 80

10 665 105 167 168 150 85
11 623 100 180 160 160 90
12 593 110 193 152 170 95
13 538 105 206 144 180 100
14 478 108 231 165 210 130
15 412 109 252 150 200 110
16 333 130 285 180 210 115
17 275 130 320 210 220 125
18 268 150 360 240 260 155
19 322 120 300 200 211 120
20 390 150 360 240 290 150
21 326 150 355 230 299 160
22 266 143 356 240 270 145
23 191 120 320 239 280 150
24 207 100 300 200 254 132

Table 9.12: Objective values for the decision makers

The 1st generat-
ing company

The 2nd gener-
ating company

The 3rd generat-
ing company

The market op-
erator

73313 65799 46376 225272
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9.4 Bi-level Pricing Models in a Supply Chain 2

9.4.1 Background

Due to rapid technological innovation and severe competition, in hi-tech industries
like computers and communication, the upstream component price and the downstream
product cost usually decline significantly with time. In such a background, an effective
pricing supply chain model becomes crucial. In a supply chain, both a buyer and a
vendor aim to maximise their profits in the inventory system but their decisions are
related with each other in a hierarchical way. By taking a buyer and a vendor as
the leader respectively, this section establishes two bi-level pricing models for pricing
problems for a buyer and a vendor in a supply chain. These two models consider a
buyer and a vendor as the leader and the follower alternatively, allowing them make
decisions sequentially and fully considering the mutual influences from each other.

9.4.2 Bi-level Pricing Models

In this section, by switching the leader/follower role respectively between a buyer
and a vendor, two bi-level pricing models are developed for them in a supply chain.

In a buyer-vendor system, a buyer’s net profit can be calculated by Yang et al.
(2007):

NPb =
Pm0D

ln(1− rm)
[eH ln(1−rm) − 1]− Pb0Q

1− (1− rb)
H

1− (1− rb)
H

mn

− FbHPb0Q

2mn

1− (1− rb)
H

1− (1− rb)
H

mn

−mnCb

(9.18)

A vendor’s net profit can be calculated by Yang et al. (2007):

NPv = Pb0Q
1− (1− rb)

H

1− (1− rb)
H

mn

− Pv0mQ
1− (1− rv)

H

1− (1− rv)
H
n

− FvHPv0(m− 1)Q

2n

1− (1− rv)
H

1− (1− rv)
H
n

− nCv

(9.19)

In (9.18), a buyer controls m, the number of buyer’s lot size deliveries per vendor’s
lot size; and rm, the weekly decline-rate of market price to the end-consumer. In
(9.19), a vendor controls n, the number of orders that a vendor places for the item

2The work presented in this section is a joint research with Professor Hui-Ming Wee, from the
Department of Industrial and Systems Engineering, Chung Yuan Christian University, Taiwan.
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from a supplier in the planning horizon; rb, the weekly decline-rate of the buyer’s
purchase cost; and rv, the weekly decline-rate of the vendor’s purchase cost. All other
parameters defined in the problem are constants. The explanations of symbols used in
the above two formulas are listed in Table 9.13.

Table 9.13: Explanations on symbols used in (9.18) and (9.19)

n number of orders that a vendor places for the item from a sup-
plier in the planning horizon

m the number of a buyer’s lot size deliveries per vendor’s lot size
Q a buyer’s lot size
rb the weekly decline-rate of a buyer’s purchase cost
D the weekly demand rate
rv the weekly decline-rate of a vendor’s purchase cost
rm the weekly decline-rate of market price to an end-consumer
H the weekly length of the planning horizon
Fv a vendor’s holding cost per dollar per week
Fb a buyer’s holding cost per dollar per week
Cv a vendor’s ordering cost per order
Cb a buyer’s ordering cost per order
Pv0 a vendor’s unit purchase cost at the initial time
Pb0 a buyer’s unit purchase cost at the initial time
Pm0 the market price to an end consumer at the initial time
Pv(t) a vendor’s unit purchase cost in week t
Pb(t) a buyer’s unit purchase cost in week t
Pm(t) a market price to an end consumer in week t
NPv a vendor’s net profit in the planning horizon
NPb a buyer’s net profit in the planning horizon
NP the joint net profit of both a vendor and a buyer in the planning

horizon

When making the pricing strategy, if we take the point of view from a buyer to
make his or her profit a priority over a vendor, we can make the buyer as the leader
and a vendor as the follower. By combining Formulas (9.18) and (9.19), we establish
a bi-level pricing model in a supply chain as follows:



PHD Thesis, UTS 173

max
m,rm

NPb(m, rm, n, rb, rv) =
Pm0D

ln(1− rm)
[eH ln(1−rm) − 1]− Pb0Q

1− (1− rb)
H

1− (1− rb)
H

mn

− FbHPb0Q

2mn

1− (1− rb)
H

1− (1− rb)
H

mn

−mnCb (9.20a)

subject to m > 0

0.0001 6 rm 6 0.5 (9.20b)

max
n,rb,rv

NPv(m, rm, n, rb, rv) = Pb0Q
1− (1− rb)

H

1− (1− rb)
H

mn

− Pv0mQ
1− (1− rv)

H

1− (1− rv)
H
n

− FvHPv0(m− 1)Q

2n

1− (1− rv)
H

1− (1− rv)
H
n

− nCv

(9.20c)

subject to n > 0

0.0001 6 rb 6 0.5

0.0001 6 rv 6 0.5 (9.20d)

In this model, both a buyer and a vendor adjust their own controlling variables
respectively, wishing to maximise their own profits, under specific constraints. The
buyer is the leader, who makes decision first; and the vendor is the follower, who
makes decision after the buyer.

If we take the point of view from a vendor to make his or her profit a priority
over a buyer, we can make the vendor as the leader and a buyer as the follower. By
combining (9.18) and (9.19), we establish another bi-level pricing model in a supply
chain as follows:

max
n,rb,rv

NPv(m, rm, n, rb, rv) = Pb0Q
1− (1− rb)

H

1− (1− rb)
H

mn

− Pv0mQ
1− (1− rv)

H

1− (1− rv)
H
n

− FvHPv0(m− 1)Q

2n

1− (1− rv)
H

1− (1− rv)
H
n

− nCv (9.21a)

subject to n > 0

0.0001 6 rb 6 0.5

0.0001 6 rv 6 0.5 (9.21b)
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max
m,rm

NPb(m, rm, n, rb, rv) =
Pm0D

ln(1− rm)
[eH ln(1−rm) − 1]− Pb0Q

1− (1− rb)
H

1− (1− rb)
H

mn

− FbHPb0Q

2mn

1− (1− rb)
H

1− (1− rb)
H

mn

−mnCb (9.21c)

subject to m > 0

0.0001 6 rm 6 0.5 (9.21d)

In this model, both a buyer and a vendor adjust their own controlling variables respec-
tively, wishing to maximise their own profits, under specific constraints. The vendor is
the leader, who makes decision first; and the buyer is the follower, who makes decision
after the buyer.

9.4.3 Experiments

In this section, we illustrate the models developed in this study by the following
numerical example where the parameters are given as follows:

(1) The demand rate per week, D = 400 units

(2) The vendor’s unit purchase cost at the initial time, Pv0 = $4

(3) The buyer’s unit purchase cost at the initial time, Pb0 = $5

(4) The market price to the end consumer from the buyer at the initial time, Pm0 =

$6

(5) The buyer’s ordering cost per order, Cb = $30

(6) The vendor’s ordering cost per order, Cv = $1, 000

(7) The buyer’s holding cost per dollar per week, Fb = 0.004

(8) The vendor’s holding cost per dollar per week, Fv = 0.004

(9) Time horizon considered, H = 52 weeks

Yang et al.(2007) deals with this problem by solving a single level optimisation
problem: NP = NPb + NPv, where only the net profit of a buyer and a vendor must
be the same and only m and n are adjustable decision variables. We relax the constraint
of equal profit, and add rm, rb, and rv as decision variables. By using the PSO-based
algorithm in Section 7.2.2 to solve problems defined by Formulas (9.20) and (9.21), we
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obtain solutions for both the buyer and vendor. To evaluate the results of this research,
we compare these results with the results from the original model by Yang et al. (2007)
under a different negotiation factor α, which is defined as α = NPv/NPb. To make
the comparison fair and reasonable, besides m and n, we add rm, rb, and rv as decision
variables to be changeable to maximise the profit in Yang et al’s model (2007). Table
9.14 lists solutions from this research and solutions from the model by Yang et al.
(2007).

Table 9.14: Summary and comparison of running results
m rm N rb rv NPb NPv

Yang et al. (2007)
(α > 2)

2 0.0001 9 0.0068 0.5 35,008 69,946

Yang et al. (2007)
(1.5 6 α 6 2)

2 0.0001 9 0.01 0.5 41,280 63,710

Yang et al. (2007)
(1 6 α 6 1.5)

2 0.0001 9 0.017 0.5 52,990 52,068

Yang et al. (2007)
(0.5 6 α 6 1)

1 0.0001 9 0.032 0.5 68,548 36,605

Yang et al. (2007)
(α < 0.5)

Not applicable

This study (buyer as
leader)

5 0.0071 6 0.0372 0.0753 52,399 16,866

This study (vendor as
leader)

3 0.0015 7 0.0026 0.0767 21,359 64,165

From Table 9.14, we can see that, using the bi-level pricing model (buyer as leader)
developed in this paper, the buyer’s profit will increase compared with Yang’s model
when α > 0.5. If the vendor is taken as the leader, he or she can achieve a profit
increase when α 6 2, which is true for most pricing problems in a supply chain. As the
follower, the vendor or the buyer is bound to lose, despite the range of the negotiation
factor α. This is understandable, because in a bi-level decision situation, we always
take the leader’s interest as a priority.

These results reveal that when applying bi-level programming technologies on pric-
ing problems in supply chains, some improvements can be achieved for a play (a buyer
or a vendor) if he or she is the leader.

In the two-stage vendor-buyer inventory system, our experimental data show that
the vendor, as leader, outperforms the buyer as leader. This is because a vendor, as
the leader, improves the actual consumption rates; the vendor making the first decision
ensures that production matches demand more closely, reduces inventory and improves
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business performance. This is why the VMI (vendor managed inventory) has become
very popular in recent years.

9.5 Summary

In this chapter, we apply bi-level programming techniques on three application
fields of railway transportation, electricity markets and supply chains. To begin with, a
non-linear bi-level decision model is used to analyse railway train set organising opti-
misation problems. Then, an OLMFB decision model and an MLOFB decision model
are built up on railway wagon flow management and day-ahead electricity markets re-
spectively. Finally, bi-level decision models are established for pricing problems in
supply chains. Addressed to these real world problems, the PSO-based algorithms
are used to reach solutions for decision makers in railway industries, electricity mar-
kets and supply chains. The experiments show that these bi-level decision models and
algorithms are quite reasonable by effectively providing optimisation solutions.
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10 Summary and Future Study

10.1 Summary of this Thesis

This thesis studies on the topic of bi-level decision making with different fea-
tures: multiple leaders/followers/objectives, fuzzy coefficients, arbitrary formats for
objectives and constraints. By combining these features, seven bi-level decision prob-
lems are addressed in this thesis: FLB decision problems, FMOLB decision prob-
lems, FMMLB decision problems, FLBG decision problems, MLOFB, OLMFB, and
MLMFB decision problems.

Based on the modelling of these seven bi-level decision problems by λ−cut and the
Nash equilibrium concept, corresponding algorithms are proposed. By implementing
these algorithms, an FBDSS is developed to support bi-level decision making. Apply-
ing the bi-level programming techniques developed in this study, bi-level problems in
the fields of railway transportation, electricity markets and supply chains are explored
and solved by the FBDSS.

10.2 Future Study

Our future research on bi-level decision making can take many directions. Some
are listed below:

(1) Multi-level decision problems. Bi-level decision making is only a special case
of multi-level decision making. To extend current bi-level programming tech-
niques to deal with more complicated situations on three or more level optimi-
sation problems will be one of our future studies.

(2) Bi-level decision problems which are hard, or impossible, to describe by
mathematical optimisational models. Existing bi-level programming tech-
niques have almost exclusively focused on bi-level decision problems whose
objective and constraint functions can be generalised as specific mathematical
forms. However, most bi-level applications only have the information stored in
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large databases, from which it is almost impossible to generate their mathemati-
cal definitions. Such a situation has frequently appeared in real world problems.
Unfortunately, modelling and solving a formless bi-level decision problem has
not received much attention in the research literature. To deal with bi-level deci-
sion problems which cannot be modelled by mathematical forms will be a new
direction in bi-level decision making in the future.

(3) Further explorations on real world bi-level problems. Many real world de-
cision problems have hierarchical features, such as 1) optimisation units exist
within a predominantly hierarchical structure; 2) each lower level executes its
plans after, and in view of, decisions made at the upper level; 3) each unit inde-
pendently optimises its objective but is affected by the actions of other units; 4)
all relevant information is stored in a database from which it is very difficult to
generalise the mathematical formulations for the problem. However, to model
and solve them by appropriate bi-level programming techniques is still a chal-
lenge, as many special situations exist for a real world optimisation problem. Our
future effort will be channelled into applying the existing bi-level programming
techniques to real world bi-level decision problems, and adapting or extending
existing bi-level programming techniques to real world bi-level decision prob-
lems.
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List of Symbols and Abbreviations

R the set of all real numbers
Rn n−dimensional Euclidean space
F (R) the set of all finite fuzzy numbers on R

F n(R) the set of all n−dimensional finite fuzzy numbers on Rn

M(F (R))n×m the set of n×m fuzzy matrix on R

LB linear bi-level
FLB fuzzy linear bi-level
FMOLB fuzzy multi-objective linear bi-level
MOB multi-objective bi-level
MOLB multi-objective linear bi-level
FMMLB fuzzy multi-follower multi-objective linear bi-level
FLBG fuzzy linear bi-level goal
MLOFB multi-leader one-follower bi-level
OLMFB one-leader multi-follower bi-level
MLMFB multi-leader multi-follower bi-level
FMOLBG fuzzy multi-objective linear bi-level bi-level goal
DSS decision support system
FBDSS fuzzy bi-level decision support system
PSO particle swarm optimisation
MLB multi-leader bi-level
MFB multi-follower bi-level
MLBG multi-leader-one-follower bi-level game
TSO train set organisation
RWFM railway wagon flow management
VMI vendor management inventory
UMP uniform marginal price
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