Moments over the Solution Space of the Travelling Salesman Problem

by

Paul John Sutcliffe

A thesis submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in Computer Science
Faculty of Engineering and Information Technology
University of Technology, Sydney
Certificate of Authorship and Originality

I, Paul John Sutcliffe certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Paul John Sutcliffe
The candidate and author
Dedication

To my wife, my parents and sisters
Acknowledgments

Firstly, I would like to thank my supervisors Professor Jenny Edwards and Doctor Andrew Solomon. Andrew, thanks for everything you taught me. Also thanks for not groaning too loudly at the clumsiness of some of these proofs. I’m hoping our next collaboration will be Über slick. Jenny thanks for your help in all things and particularly for preventing me from “impaling” when I hoped to “imply” and “exiting” when “existing” was intended.

Sincere thanks to the staff and students of the operations research and industrial engineering group at the University of Texas at Austin for making my brief stay there so fruitful. I am particularly grateful for the guidance and encouragement of Professor J. Wesley Barnes and Doctor Bruce Colletti.

I am indebted to Simon de Givry, Thomas Schiex and Christophe Hitte, for their kind provision of the canine RH data set and for its translation into TSP instances.

I would like to extend my thanks to David Plyler, Len Hill, John Bance and Doctor Neil Thomson.

I am grateful for the financial support in the form of a scholarship from the University of Technology Sydney.

Finally, I thank my wife Lisa for her love and extreme patience.
Abstract

In this thesis we consider the statistical properties of the symmetric travelling salesman problem (TSP). Previous work on the statistical properties of the problem has been largely limited to the Euclidean case with vertex coordinates as random variables with known distribution embedded in \mathbb{R}^d, and to the case of independent identically distributed random edge costs. Furthermore, this previous work did not extend to computing the moments, beyond the mean. In the work presented here we consider the more general case of problem instances specified as a set of edge costs and with no (known) embedding or coordinate system available.

For an instance of the problem on n vertices with fixed edge costs we give constructive proofs that the population variance of tour costs over the solution space can be computed in $O(n^2)$, the third central moment can be computed in $O(n^4)$ and the fourth central moment can be computed in $O(n^6)$. These results provide direct methods to compute the moments about the origin and factorial moments of these orders with the corresponding computational complexity. In addition the results provide tractable methods to compute, among other statistics, the standard deviation of tour costs, the skewness of the probability distributions of tour costs over the solution space and kurtosis of this distribution.

In the case of the stochastic TSP with edge costs defined as independently distributed random variables with (not necessarily identical) known mean and variance we provide an $O(n^4)$ algorithm to compute the variance of tour costs.

Given a subgraph S of a tour in an n city TSP, we provide an $O(n^2)$ algorithm to compute the expected tour costs over the solution space of those tours containing S. This is useful in analysing and constructing algorithms such as Gutin’s greedy expectation heuristic.

We demonstrate that the probability distribution of gains over the 2-opt landscape of an n city TSP can be computed in $O(n^4 \log(n))$. This result provides a tractable algorithm to compute, among other statistics the moments of gains over the landscape. The result also provides the 2-opt neutrality (the number of neighbouring solutions with identical cost) of a instance. The result has natural generalisation to the 3-opt landscape (at higher computational complexity). We relate the variance of tour costs over the solution space to that of the gains over the 2-opt landscape of a problem, providing an $O(n^2)$ method to compute the variance of gains over the landscape.

We apply our method to compute the low order moments of the distribution of tour costs to several empirical studies of the solution space. Among other results we: confirm the known relationship between the standard deviation of tour costs and the optimal tour cost; we show a correlation between the skewness and the optimal tour cost; we demonstrate that the moments can be used to estimate the complete probability distribution of tour costs.
Contents

Certificate of Originality

Acknowledgments

Abstract

1 Introduction

1.1 Definition of the TSP

1.1.1 Example TSPs

1.2 Motivation for this Research

1.3 Outline and Author’s Contribution

2 The Relationships Between the TSP and other Problems

2.1 Computability of the TSP

2.2 Approximation of the TSP

2.3 Types and Variations of the TSP

2.3.1 Euclidean and Geometric TSPs

2.3.2 TSP with Triangular Inequality

2.4 More Graph Theoretic Definitions

2.5 Other Problems

2.5.1 Minimum Spanning Trees

2.5.2 Hamiltonian Cycle Problem

2.5.3 Asymmetric TSP

2.5.4 Summary

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Tour Construction Methods</td>
<td>16</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Branch and Bound</td>
<td>16</td>
</tr>
<tr>
<td>3.1.2</td>
<td>The Doubling Algorithm</td>
<td>18</td>
</tr>
<tr>
<td>3.1.3</td>
<td>Christofides’ Algorithm</td>
<td>19</td>
</tr>
<tr>
<td>3.1.4</td>
<td>Nearest Neighbour</td>
<td>21</td>
</tr>
<tr>
<td>3.1.5</td>
<td>Clarke and Wright</td>
<td>21</td>
</tr>
<tr>
<td>3.1.6</td>
<td>Insertion Heuristics</td>
<td>22</td>
</tr>
<tr>
<td>3.1.7</td>
<td>The Greedy Heuristic</td>
<td>23</td>
</tr>
<tr>
<td>3.1.8</td>
<td>Gutin and Yeo Algorithm</td>
<td>24</td>
</tr>
<tr>
<td>3.1.9</td>
<td>Linear and Integer Programming</td>
<td>24</td>
</tr>
<tr>
<td>3.1.10</td>
<td>Neural Net Methods</td>
<td>25</td>
</tr>
<tr>
<td>3.2</td>
<td>Tour Improvement and Landscapes</td>
<td>26</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Neighbourhoods and Landscapes</td>
<td>26</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Landscapes and the TSP</td>
<td>27</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Basic Tour Perturbation Operations</td>
<td>28</td>
</tr>
<tr>
<td>3.2.4</td>
<td>The k-opt Move</td>
<td>30</td>
</tr>
<tr>
<td>3.2.5</td>
<td>Distance in Landscapes</td>
<td>32</td>
</tr>
<tr>
<td>3.3</td>
<td>Tour Improvement Algorithms</td>
<td>32</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Iterative Improvement</td>
<td>32</td>
</tr>
<tr>
<td>3.3.2</td>
<td>The Metropolis Algorithm</td>
<td>33</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Simulated Annealing</td>
<td>33</td>
</tr>
<tr>
<td>3.3.4</td>
<td>The Lin-Kernighan Algorithm</td>
<td>35</td>
</tr>
<tr>
<td>3.3.5</td>
<td>Tabu Search</td>
<td>42</td>
</tr>
<tr>
<td>3.3.6</td>
<td>Evolutionary Algorithms</td>
<td>43</td>
</tr>
<tr>
<td>3.3.7</td>
<td>Ant Colony Optimisation</td>
<td>44</td>
</tr>
<tr>
<td>3.4</td>
<td>Summary and Relevance to this Thesis</td>
<td>47</td>
</tr>
<tr>
<td>4</td>
<td>Statistics and the TSP</td>
<td>49</td>
</tr>
<tr>
<td>4.1</td>
<td>Statistical Preliminaries</td>
<td>49</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Measure Spaces</td>
<td>49</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Probability Spaces</td>
<td>50</td>
</tr>
<tr>
<td>4.1.3</td>
<td>Distribution Functions and Random Variables</td>
<td>50</td>
</tr>
</tbody>
</table>
4.1.4 Independent Random Variables 52
4.1.5 Expected Value and Moments 52
4.1.6 Distributions and Processes 55
4.2 Probabilistic results on the TSP 60
4.3 The Stochastic TSP 60
 4.3.1 Probability Distribution of the Euclidean TSP 62
 4.3.2 Random Edge Cost Results 67
4.4 Sampling Results and the TSP 68
 4.4.1 Distribution of Optimal Cost Tour 68
 4.4.2 Relationship Between the Sample Variance of Tour Costs
 and the Optimal Tour Cost 69
4.5 Statistical Properties of Landscapes 70
 4.5.1 Elementary Landscapes 70
 4.5.2 Random Walks on Landscapes 72
4.6 The Empirical Result of Boese et al. 73
4.7 Conclusions ... 75

5 A Perfect TSP .. 76
 5.1 Definition of a Perfect TSP 76
 5.1.1 An Algorithm to Construct a Perfect TSP 77
 5.1.2 Computability of the Perfect TSP 79
 5.2 Tour Operations ... 80
 5.3 Examples of the Distribution of Costs 81
 5.4 Conclusion .. 84

6 The Expected Value of Tour Costs over Subsets of the Solution Space 86
 6.0.1 The Stochastic TSP as a Generalisation of the Fixed
 Edge Cost TSP .. 87
 6.0.2 The Number of Tours Containing Various Edges 87
 6.1 The Expected Value of Tour Costs over the Solution Space . 88
 6.2 The Expected Value of Tour Costs over Subsets of the Solution
 Space ... 89
CONTENTS

6.3 Conclusion and Further Research 92

7 The Variance of Tour Costs ... 94
 7.1 Fixed Edge Costs ... 94
 7.1.1 The Variance Theorem with Fixed Edge Costs 94
 7.2 Random Edge Costs .. 99
 7.3 Depth and Problem Size .. 102
 7.3.1 Real World Problems ... 103
 7.4 Conclusions and Future Research 105

8 The Third Moment of Costs over the Solution Space 107
 8.1 Third Moment of Tour Costs 107
 8.1.1 The Third Moment Theorem 108
 8.1.2 Reducing the Computational Complexity 112
 8.2 Empirical Results .. 115
 8.2.1 Skewness Versus Problem Size 115
 8.2.2 Skewness Versus Optimal Tour Cost 117
 8.3 Conclusions and Future Research 119

9 The Fourth Moment of Costs over the Solution Space 121
 9.1 The Fourth Moment of Tour Costs 121
 9.2 The Fourth Moment Theorem 122
 9.3 Conclusions and Future Research 127

10 Statistics over the 2-opt Landscape 129
 10.0.1 The 2-opt Landscape of the TSP 129
 10.1 The Probability Distribution of Gains 131
 10.1.1 Equivalent Edges ... 131
 10.2 The Variance of Gains .. 132
 10.3 Computing the Distribution of Gains 136
 10.4 Conclusions and Future Research 136

11 Future Research and Applications 138
 11.1 The Moment Problem .. 139