Population Ecology of the Sydney Rock Oyster Saccostrea Commercialis and the Pacific Oyster Crassostrea Gigas in a New South Wales Estuary

Frederick Rudolf Krassoi

A thesis submitted to the University of Technology, Sydney, in fulfilment of the requirements for the degree of Doctor of Philosophy

2001

Declaration

I certify that this thesis has not already been submitted for any degree and is not being submitted as part of candidature for any other degree.

I also certify that this thesis has been written by me and that any help that I have received in preparing this thesis, and all sources used, have been acknowledged in this thesis.

Frederick Rudolf Krassoi

,

.

Abstract

The Sydney rock oyster *Saccostrea commercialis* is a dominant sessile organism of intertidal rocky shore and mangrove communities of Port Stephens, New South Wales. This study describes patterns of distribution and abundance of *S. commercialis* in these habitats, as well as those of the recently introduced Pacific oyster *Crassostrea gigas*. Observations drawn from these mensurative studies were used to formulate and test hypotheses concerning the importance of some ecological processes in structuring intertidal oyster communities.

A preliminary survey in the spring of 1990 revealed for the first time the presence of C. gigas among S. commercialis rocky shore and mangrove communities in the inner port of Port Stephens. However, few C. gigas were present in the definitive surveys performed 1-2 years later, demonstrating a failure of the 1990 recruits to survive. For the purposes of characterising the intertidal oyster communities, rocky shore and mangrove communities were divided into low, mid and upper intertidal zones. In both communities, the density of S. commercialis increased with intertidal height to above the mid tide level, although a comparison of sites within Port Stephens demonstrated that oyster densities were significantly different within each intertidal zone. The maximum density in the low and mid zone rocky shore plots was approximately 600m⁻². The size class structure of both communities was unimodal, with juvenile oysters poorly represented. This low density of juvenile oysters was despite an apparently abundant supply of S. commercialis larvae. Oysters were found to occur in abundance on mangrove pneumatophores, with the degree of aggregation and size of oyster clumps decreasing with intertidal height. Space was not limited, as most pneumatophores were unoccupied by oysters.

Recruitment anto experimental patches on a rocky shore and mangrove pneumatophore community was assessed over 1 year, and were examined biweekly during peak settlement times. Three to four episodes of recruitment were observed, with the first two suffering complete mortality over the summer period (December through March). Successful recruitment of *S. commercialis* occurred in autumn, although initial mortalities were high across all intertidal zones. The density of recruits decreased with increasing intertidal height in both communities. The presence of adult conspecifics or shells of conspecifics significantly enhanced the density of *S. commercialis* recruits onto model pneumatophores, but this was not always apparent on rocky shore plots. However, densities of recruits did not differ between treatments over time. The upper limit of intertidal distribution in

|||

mangroves and on the rocky shore sites was similar. Recruitment of *C. gigas* was observed in July, but were few in number.

Thermal tolerances of larvae, 1 month-post settlement spat and adults of both *S. commercialis* and *C. gigas* were determined to assess the role of thermal stress in structuring oyster communities. The thermal tolerances of the larvae of the two species were similar. Oysters were more resistant to elevated temperatures with age, although *C. gigas* was less tolerant than *S. commercialis* over short exposures of elevated temperatures. The body temperatures of insolated model oysters were observed in some instances to exceed the thermal tolerances of spat, but not adults. Shading by mangroves reduced oyster body temperatures by up to 13.5°C, to below that where mortality may be expected in spat. The lower relative thermal tolerance of spat may explain the failure of recruits to survive the summer, and the low density of oysters in the upper intertidal zone.

The effect of intra and inter-specific density on survival, size, and shape was tested at low, mid, and upper intertidal zones at 3 sites within Port Stephens. In the upper intertidal zone, high mortalities and reduced growth rates prevented any competitive interactions with both species. However in the low and mid intertidal zones, the presence of both high and low densities of *C. gigas* induced significant mortalities, reductions in size, and changes in shape in *S. commercialis*. This experiment demonstrated the potential competitive pressure faced by *S. commercialis* if density of *C. gigas* recruitment was to increase.

Acknowledgments

I would like to thank Ken Brown, Ian Anderson, Marc Conlon, Les McClusky, Peter Jones, and Ben Pearson for their valuable assistance in the field with the oyster competition experiment. I am indebted to John Nell, Steve Hunter and Wayne O'connor at the Port Stephens Research Centre, NSW Fisheries, whom provided logistical assistance, and John Nell for his support in gaining NSW Government approval to perform a field experiment with the Pacific Oyster in Port Stephens.

I wish to thank Ken Brown, and Department of Environmental Biology and Horticulture, UTS for providing motor vehicles, boat, workshop facilities and laboratory space and equipment, and Narelle Richardson for her assistance in attaining these. I am greatly indebted to my employer, the Environment Protection Authority of NSW, and the Ecotoxicology Section in Particular, for the considerable assistance given me in Study Leave, laboratory space and equipment, and most importantly, encouragement and support. In particular, I wish to thank John Chapman and Moreno Julli for their encouragement and assistance.

I am grateful to Ken Brown and Rob Patterson for their critical appraisal of the thesis. Their assistance was invaluable. I also wish to thank David Morrison and Tony Underwood for their useful advice with statistical analysis and design of the competition experiment, respectively. I also wish to thank Richard Lim for acting as my supervisor in Ken Brown's absence during sabatical.

My most heartfelt thanks are to my wife Elizabeth, and my parents Maryanne and Frank for their love, encouragement and support during this long and arduous process.

Finally, I am grateful to my supervisor, Ken Brown, who has provided me with logistical support, critical appraisal, encouragement and friendship over the many years it has taken for this thesis to come to fruition.

V

Table of Contents

DeclarationII
Abstract111
AcknowledgmentsV
Table of Contents
List of TablesIX
List of FiguresXVII
List of Photographic PlatesXXIII
1. INTRODUCTION
1.1 Background
1.2 Comparative Morphology, Biology and Ecophysiology5
1.3 Processes Influencing Oyster Communities
1.4 Aim of the Study11
2. A DESCRIPTIVE SURVEY OF INTERTIDAL OYSTER POPULATION
STRUCTURE
2.1 Introduction
2.1.1 General Introduction
2.1.2 The Description of Pattern13
2.1.3 The Intertidal Distribution of Oysters17
2.1.4 Introduction to Experiment18
2.2 Methods and Materials19
2.2.1 Preliminary Field Investigation19
2.2.2 Assessment of Sample Unit Precision and Accuracy
2.2.3 Mangrove Descriptive Survey
2.2.4 Rocky Shore Descriptive Survey24
2.3. Results
2.3.1 Preliminary Field Investigation
2.3.2 Assessment of Sample Unit Precision and Accuracy
2.3.3 Mangrove Descriptive Survey
2.3.4 Rocky Shore Descriptive Survey
2.4 Discussion
3. ASSESSMENT OF THE UPPER LIMITS OF DISTRIBUTION
3.1 Introduction
3.1.1 General Introduction
3.1.2 Introduction to experimental
3.2 Materials and Methods55
3.2.1 Mangroves
3.2.2 Rocky Shores

3.3 Results	57
3.3.1 Mangroves	
3.3.2 Rocky Shores	66
3.4 Discussion	72
4. ASSESSMENT OF RECRUITMENT, SURVIVAL AND GROWTH ON A ROCKY	
SHORE AND MANGROVE PNEUMATOPHORE COMMUNITY	75
4.1 Introduction	7 5
4.2 Materials and Methods	77
4.2.1 Experiment 1	77
4.2.2 Experiment 2	7 8
4.3 Results	7 9
4.3.1 Experiment 1	79
4.3.2 Experiment 2	
4.4 Discussion	
5. TEMPERATURE TOLERANCE OF OYSTERS.	121
5.1 Introduction	
5.1.1 General Introduction	121
5.1.2 Ambient and Body Temperatures of Intertidal Organisms	121
5.1.3 Temperature Tolerance	124
5.1.4 Temperature and Mortality	
5.1.5 Temperature and Reproduction	
5.2 Introduction to Experiment	
5.3 Methods and Materials	
5.3.1 Temperature Tolerance in Adults, Spat and Larvae	127
5.3.2 Effects of Shell Morphology, Size and Shading on Operative	
Temperature	134
5.4 Results	135
5.4.1 Temperature Tolerance in Adults, Spat and Larvae	
5.4.2 Effects of Shell Morphology and Size on Operative Temperature	
5.4,3 Operative Temperature Over the Tidal Cycle	
5.5 Discussion	
6. ASSESSMENT OF INTER AND INTRA-SPECIFIC DENSITY ON SURVIVAL AND	
GROWTH OF OYSTERS.	
6.1 Introduction	163
6.2 Methods and Materials	
6.3 Results	
6.4 Discussion	
7. SYNTHESIS	
7.1 Processes Influencing Intertidal Oyster Population Structure	

.

List of Tables

Table 2.1. The values of ID, IC, and GI indices at maximum regularity,
randomness and clumping17
Table 2.2. Percentage of oysters identified as Crassostrea gigas among 3
intertidal zones during the preliminary survey in August 1990
Table 2.3. ANOVA of standardised (square root transformed) number of S.
commercialis sampled from 'mid' zone of Taylors Beach mangrove
community29
Table 2.4. Matrix of Tukey HSD pairwise comparison probabilities of
'mid' zone Taylors Beach mangrove community using 3 quadrat sizes
Table 2.5. ANOVA of standardised number (square root transformed) of S.
commercialis sampled from mid zone of Corlette Pt. rocky shore
community
Table 2.6. The number and size of <i>C. gigas</i> found the mangrove study sites,
pooled from ten 0.25 m ⁻² quadrats32
Table 2.7. ANOVA of S. commercialis abundance at 3 mangrove sites
sampled from the 'low' intertidal zone
Table 2.8. ANOVA of S. commercialis abundance data from 3 mangrove
sites sampled from the 'mid' zone34
Table 2.9. ANOVA of S. commercialis abundance data from 3 mangrove
sites sampled from the 'upper' zone34
Table 2.10. Matrix of Tukey HSD pairwise comparison probabilities of S.
commercialis abundance data at 3 mangrove sites from the 'low' zone
Table 2.11. Matrix of Tukey HSD pairwise comparison probabilities of S.
commercialis abundance data at 3 mangrove sites from the 'mid' zone
Table 2.12. Chi-square goodness-of-fit tests for the agreement between
the observed frequency distribution of the number of S. commercialis per
pneumatophore
Table 2.13. Estimates of 3 indices of dispersion determined from the
frequency of S. commercialis per pneumatophore in 3 intertidal zones
sampled from the mangrove community at Taylors Beach
Table 2.14. ANOVA of S. commercialis abundance at 3 rocky shore sites
sampled from the 'low' intertidal zone45
Table 2.15. ANOVA of S. commercialis abundance at 3 rocky shore sites
sampled from the 'mid' intertidal zone45
Table 2.16. ANOVA of S. commercialis abundance at 3 rocky shore sites
sampled from the 'upper' intertidal zone45

Table 2.17. Matrix of Tukey HSD pairwise comparison probabilities of S.	
commercialis abundance data at 3 rocky shore sites from the 'low' zone	47
Table 2.18	47
Table 2.19. The number and size of C. gigas found in the rocky shore study	
sites, pooled from ten 0.25 m ⁻² quadrats	4 8
Table 3.1. The mean and standard deviation of the height of 5 (where	
possible) uppermost oysters occurring on each of 5 mangrove trees along 3	
transects at Karuah River, Tilligerry Creek, and Taylors Beach	64
Table 3.2. ANOVA of S. commercialis square-root transformed upper tidal	
height data on 5 mangrove trees along 3 transects at 3 sites	6 4
Table 3.3. ANOVA of S. commercialis square-root transformed upper tidal	
height data on 5 mangrove trees (each along 3 transects) at 6 stations along	
the intertidal gradient at the Karuah River site	65
Table 3.4. Matrix of Tukey HSD pairwise comparison probabilities of S.	
commercialis upper limits data between stations along the tidal gradient at	
Karuah River site	6 5
Table 3.5. ANOVA of S. commercialis square-root transformed uppermost	
oyster length data on 5 mangrove trees (each along 3 transects) at 6	
stations along the intertidal gradient at the Karuah River site	65
Table 3.6. Matrix of Tukey HSD pairwise comparison probabilities of S.	
commercialis upper oyster length data between stations along the tidal	
gradient at Karuah River site	66
Table 3.7. The mean and standard deviation of the height of 10 uppermost	
oysters occurring on each of 3 rocky shore transects at Corlette Pt., Tanilba	
Bay, and Greenplay Pt	71
Table 3.8. ANOVA of S. commercialis square-root transformed upper tidal	
height data along 3 transects at 3 rocky shore sites	72
Table 3.9. ANOVA of S. commercialis square-root transformed upper	
oyster length data along 3 transects at 3 rocky shore sites	72
Table 4.1a. ANOVA of S. commercialis transformed (square-root +1)	
number of recruits on rocky shore treatments at mid and lower intertidal	
zones on 11 December 1993	85
Table 4.1b, Tukey HSD matrix of probabilities for the main effect	
'treatment' on the number of S. commercialis recruits per 0.03 m-2 on 29	
January 1994	8 5
Table 4.2a. ANOVA of S. commercialis transformed (square-root+1)	
number of recruits on rocky shore treatments at mid and lower intertidal	
zones on 29 January 1994	85

Table 4.2b. Tukey HSD matrix of probabilities for the main effect'treatment' on the number of S. commercialis recruits per 0.03 m ⁻² on 29January 1994
Table 4.3a. ANOVA of S. commercialis transformed (square-root +1) number of recruits on rocky shore treatments at mid and lower intertidal
zones on 12 February 199486
Table 4.3b. Tukey HSD matrix of probabilities for the main effect
'treatment' on the number of S, commercialis recruits per 0.03 m ⁻² on 12
February 1994
Table 4.4a. ANOVA of S. commercialis transformed (square-root +1)
number of recruits on rocky shore treatments at mid and lower intertidal
zones on 25 February 199487
Table 4.4b. Tukey HSD matrix of probabilities for the main effect
'treatment' on the number of <i>S. commercialis</i> recruits per 0.03 m ⁻² on 25
February 1994
Table 4.5. ANOVA of S. commercialis transformed (square-root +1)
number of recruits on rocky shore treatments at mid and lower intertidal
zones on 13 March 199487
Table 4.6a. ANOVA of S. commercialis transformed (square-root+1)
number of recruits on rocky shore treatments at mid and lower intertidal
zones on 26 March 199488
Table 4.6b. Tukey HSD matrix of probabilities for the main effect
'treatment' on the number of S. commercialis recruits per 0.03 m ⁻² on 26
March 1994
Table 4.7a. ANOVA of S. commercialis transformed (square-root +1)
number of recruits on rocky shore treatments at mid and lower intertidal
zones on 23 April 1994
Table 4.7b. Tukey HSD matrix of probabilities for the interaction of the
main effects 'treatment' and 'zone' on the number of S. commercialis
recruits per 0.03 m ⁻² on 23 April 199489
Table 4.8 ANOVA of S. commercialis transformed (square-root +1)
number of recruits on rocky shore treatments at mid and lower intertidal
zones on 13 May 1994
Table 4.9. ANOVA of S. commercialis transformed (square-root +1)
number of recruits on rocky shore treatments at mid and lower intertidal
zones on 18 June 1994
Table 4.10a. ANOVA of S. commercialis transformed (square-root +1)
number of recruits on rocky shore treatments at mid and lower intertidal
zones on 23 July 1994

Table 4.10b. Tukey HSD matrix of probabilities for the main effect
'treatment' on the number of S. commercialis recruits per 0.03 m ⁻² on 23
July 1994
Table 4.11. ANOVA of S. commercialis transformed (square-root +1)
number of recruits on rocky shore treatments at mid and lower intertidal
zones on 17 September 199490
Table 4.12. ANOVA of S. commercialis transformed (square-root +1)
number of recruits on rocky shore treatments at mid and lower intertidal
zones on 5 November 1994, n=2491
Table 4.13. ANOVA of S. commercialis transformed (square-root +1)
number of recruits on rocky shore treatments at mid and lower intertidal
zones on 3 December 199491
Table 4.14. Regression of square root transformed density data of recruits
at Corlette Point, from age 5 days post settlement
Recruitment of oysters in mangroves 106
Table 4.15. The size range and rate of growth of S. commercialis spat
occurring on 3 model pneumatophore treatments over 3 intertidal zones in
1994
Table 4.16a. ANOVA of S. commercialis transformed (square-root +1)
number of recruits on model pneumatophore treatments at 3 intertidal
zones on 29 January 1994111
Table 4.16b. Tukey HSD matrix of probabilities for interaction between
zone and treatment on the number of S. commercialis recruits per sample
unit on 29 January 1994111
Table 4.17a. ANOVA of S. commercialis transformed (square-root +1)
number of recruits on model pneumatophore treatments at 3 intertidal
zones on 26 March 1994112
Table 4.17b. Tukey HSD matrix of probabilities for interaction between
zone and treatment on the number of S. commercialis recruits per sample
unit on 26 March 1994112
Table 4.18a ANOVA of S. commercialis transformed (square-root +1)
number of recruits on model pneumatophore treatments at 3 intertidal
zones on 13 May 1994113
Table 4.18b. Tukey HSD matrix of probabilities for interaction between
zone and treatment on the number of S. commercialis recruits per sample
unit on 13 May 1994113
Table 5.1. ANOVA of S. commercialis untransformed survival data at six
temperature treatments

Table 5.2. Matrix of Tukey HSD pairwise comparison probabilities of S.	
commercialis survival data at six temperatures13	7
Table 5.3. ANOVA of C. gigas untransformed survival data at six	
temperature treatments	7
Table 5.4. Matrix of Tukey HSD pairwise comparison probabilities of C.	
gigas survival data at six temperatures13	8
Table 5.5. ANOVA of arc sine transformed proportion of S. commercialis	
larvae to develop to D-veliger stage at six temperature treatments	8
Table 5.6. Matrix of Tukey HSD pairwise comparison probabilities of S.	
commercialis larvae which developed to D-veliger stage at six	
temperatures	9
Table 5.7. ANOVA of arc sine transformed proportion of C. gigas larvae to	
develop to D-veliger stage at six temperature treatments	9
Table 5.8. Matrix of Tukey HSD pairwise comparison probabilities of S.	
commercialis larvae which developed to D-veliger stage at six	
temperatures	9
Table 5.9. The LT50 and 95% confidence limits of S. commercialis and C.	
gigas spat at 2, 6, and 8 h exposures. nr refers to confidence interval being	
not reliable, given the absence of a temperature treatment with any partial	
mortality14	5
Table 5.10. The LT50 (^O C) and 95% confidence limits of S. commercialis	
and C. gigas at 2, 6, and 8 h exposures. nr refers to confidence interval	
being not reliable, given the absence of a temperature treatment with any	
partial mortality14	8
Table 5.11. Mean and standard deviation of length, width and height of	
oyster shell (models and live oysters) used in shell morphology, size and	
shading experiments	0
Table 5.12 Tide and weather data for Sydney on the 8th and 9th of	
February, 1995	3
Table 5.13. The LT50 estimates for several oyster species, including	
those determined in this study for S. commercialis and C. gigas, at various	
periods of exposure	3
Table 6.1 The proportions and densities of S. commercialis and C. gigas in	
each of 9 experimental treatments to test the appropriate inter and intra-	
specific interactions	8
Table 6.2a Tukey HSD matrix of probabilities for the site*zone	
interaction of mortality in the 10 S. commercialis treatment	6
Table 6.2b Tukey HSD matrix of probabilities for the site*zone	
interaction of size of 10 S. commercialis treatment	6

Table 6.2c Tukey HSD matrix of probabilities for site of the size in 10 S.
commercialis treatment at 27 October 1990
Table 6.3a Tukey HSD matrix of probabilities for the site*zone
interaction of mortality in the 10 C. gigas treatment
Table 6.3b Tukey HSD matrix of probabilities for the site*zone
interaction of size of 10 C. gigas treatment
Table 6.3c Tukey HSD matrix of probabilities for the site*zone
interaction of shape of 10 C. gigas treatment
Table 6.4 a ANOVA of S. commercialis transformed (arc-sin) mortality
data at 3 intra-specific densities, intertidal zones and sites
Table 6.4 b. Tukey HSD matrix of probabilities for the site*zone*density
interaction of mortality between the 3 S. commercialis intra-specific
densities at each zone and site
Table 6.5. ANOVA of C. gigas transformed (arc-sin) mortality data at 3
intra-specific densities, intertidal zones and sites
Table 6.6 a. ANOVA of S. commercialis square-root transformed oyster
size (length x width, mm $^{-2}$) at 3 intra-specific densities, intertidal zones
and sites
Table 6.6 b. Tukey HSD matrix of probabilities for the site*zone*density
interaction in size between the 3 S. commercialis intra-specific densities at
each zone and site 186
Table 6.7 a. ANOVA of C gigas square-root transformed oyster size
(length x width, mm ⁻²) at 3 intra-specific densities, intertidal zones and
sites
Table 6.7 b. Tukey HSD matrix of probabilities for the site*zone*density
interaction in size between the 3 C. gigas intra-specific densities at each
zone and site
Table 6.8 a. ANOVA of S. commercialis square-root transformed oyster
shape (width/length) at 3 intra-specific densities, intertidal zones and
sites
Table 6.8 b. Tukey HSD matrix of probabilities for density on shape
between the 3 S. commercialis intra-specific densities
Table 6.9 a. ANOVA of C. gigas square-root transformed oyster shape
(width/length) at 3 intra-specific densities, intertidal zones and sites
Table 6.9 b. Tukey HSD matrix of probabilities for site*zone*density
interaction on shape between the 3 C. gigas intra-specific densities at each
zone and site189
Table 6.10 a. ANOVA of S. commercialis transformed (arc-sin)
mortalities at 3 densities (10 S. commercialis only, 10 S. commercialis

+10 C. gigas, and 10 S. commercialis +20 C. gigas), intertidal zones and Table 6.10 b Tukey HSD matrix of probabilities for the zone*density interaction of mortality in S. commercialis subject 10 and 20 C. gigas, compared with 10 S. commercialis alone, at each zone 194 Table 6.11. ANOVA of C. gigas transformed (arc-sin) mortalities at 3 densities (10 C. gigas only, 10 C. gigas +10 S. commercialis and 10 C. Table 6.12 a. ANOVA of S. commercialis square-root transformed oyster size (length x width, mm^{-2}) at 3 densities (10 S. commercialis only, 10 S. commercialis + 10 C. gigas, and 10 S. commercialis + 20 C. gigas), Table 6.12 b. Tukey HSD matrix of probabilities for the site*zone*density interaction of the size of S. commercialis subject 10 and Table 6.13 a. ANOVA of C gigas square-root transformed oyster size (length x width, mm-2) at 3 densities (10 C. gigas only, 10 C. gigas +10 S. commercialis and 10 C. gigas +20 S. commercialis), intertidal zones and Table 6.13 b. Tukey HSD matrix of probabilities for the zone*density interaction of the size of C. gigas subject to 10 and 20 S. commercialis, compared with 10 C. gigas alone, at each zone 197 Table 6.14 a. ANOVA of S. commercialis square-root transformed oyster shape (width/length) at 3 densities (10 S. commercialis only, 10 S. commercialis + 10 C. gigas, and 10 S. commercialis + 20 C. gigas), intertidal zones and sites 198 Table 6.14 b. Tukey HSD matrix of probabilities for the zone*density interaction of the shape of S. commercialis subject 10 and 20 C. gigas , compared with 10 S. commercialis alone, at each zone 198 Table 6.15 a. ANOVA of C. gigas square-root transformed oyster shape (width/length) at 3 densities (10 C. gigas only, 10 C. gigas +10 S. commercialis and 10 C. gigas +20 S. commercialis), intertidal zones and Table 6.15 b. Tukey HSD matrix of probabilities for the zone*density interaction of the shape of C. gigas subject to 10 and 20 S. commercialis, compared with 10 C. gigas alone, at each zone 199 Table 6.15 c. Tukey HSD matrix of probabilities for the site*density interaction of the shape of C. gigas subject to 10 and 20 S. commercialis, compared with 10 C. gigas alone, at each site 199

List of Figures

Figure 2.1. Map of rocky shore and mangrove sampling sites in Port
Stephens, NSW
Figure 2.2. Diagram of a mangrove community, typical of those in Port
Stephens
Figure 2.3. Diagram of a rocky shore community, typical of those in Port
Stephens
Figure 2.4. The precision of successive number of sample units sampled
from the 'mid' zone of the Taylors beach mangrove community29
Figure 2.5. The precision of successive number of sample units sampled
from the 'mid' zone of the Corlette Pt. rocky shore community
Figure 2.6. Mean (± 1 standard deviation) of S. commercialis abundance
data sampled from 3 intertidal zones from a) Taylors Beach, b) Karuah
River and c) Tilligerry Creek
Figure 2.7. Power of the ANOVA of S. commercialis abundances at 3 sites
sampled in 3 zones to avoid a Type II error
Figure 2.8 a,b. Percent frequency of S. commercialis in various size
classes in the a) Tilligerry Ck. and b) Karuah River mangrove community37
Figure 2.10 a,b,c. Observed and expected frequency distributions based
on the Poisson distribution series for the a) 'low' zone, b) 'mid' zone , and
c) 'upper' zone of the Taylors Beach mangrove community41
Figure 2.11 a,b,c. Observed and expected frequency distributions based
of the negative-binomial distribution series for the a) 'low' zone, b) 'mid'
zone , and c) 'upper' zone of the Taylors Beach mangrove community42
Figure 2.12 a,b,c. Mean and standard deviation of S. commercialis
abundance data sampled from 3 intertidal zones at a) Corlette Point, b)
Tanilba Point, and c) Greenplay Point44
Figure 2.13. The power (1-B) of the ANOVA of S. commercialis abundance
data at 3 rocky shore sites sampled in 3 zones, to avoid a Type II error
Figure 2.14 a,b,c. Percent frequency of S. commercialis in various size
classes in the a) Corlette Point, b) Tanilba Point, and c) Greenplay Point
rocky shore communities49
Figure 3.1. The vertical profile of the Karuah River mangrove
community, with the mean upper limit of distribution of S. commercialis
and <i>C. gigas</i> 60

Figure 3.2. The vertical profile of the Taylors Beach mangrove
community, with the mean upper limit of distribution of S. commercialis
and <i>C. gigas</i>
Figure 3.3. The vertical profile of the Tilligerry Creek mangrove
community, with the mean upper limit of distribution of S. commercialis
and <i>C. gigas</i>
Figure 3.4. The mean and standard error of the uppermost height of S.
commercialis at stations 6 to 11 at the Karuah river site, expressed in cm
above ISLW
Figure 3.5. The mean and standard error of the shell lengths of the
uppermost S. commercialis at stations 6 to 11 at the Karuah river site
Figure 3.6. The vertical profile of the Corlette Point rocky shore
community, with the mean upper limit of distribution of S. commercialis
and <i>C. gigas</i>
Figure 3.7. The vertical profile of the Tanilba Bay rocky shore
community, with the mean upper limit of distribution of S. commercialis
and <i>C. gigas</i>
Figure 3.8. The vertical profile of the Greenplay Point rocky shore
community, with the mean upper limit of distribution of S. commercialis
and <i>C. gigas</i>
Figure 3.9 The mean and standard error of the intertidal height of the
uppermost S. commercialis and C. gigas at 3 rocky shores sites
Figure 3.10 The mean and standard error of the oyster length of the
uppermost S. commercialis and C. gigas at 3 rocky shores sites
Figure 4.1 The mean and standard error of the number of S. commercialis
recruits 0.03 m ⁻² when first observed post-settlement
Figure 4.2 The mean and standard error of the number of S. commercialis
recruits per 0.03 m ⁻² in the low intertidal zone from 11 December 1993
to 3 December 1994
Figure 4.3 The mean and standard error of the number of S. commercialis
recruits per 0.03 m ⁻² in the mid intertidal zone from 11 December 1993
to 3 December 1994,
Figure 4.4 The mean and standard error of the number of S. commercialis
recruits per 0.03 m ⁻² in the upper intertidal zone from 11 December
1993 to 3 December 199496
Figure 4.5 The mean number of recruits per 0.03 m ⁻² in the 'bare rock'
treatment of the low intertidal zone from 11 December 1993 to 3 December
1994, by size class (mm)97

Figure 4.6 The mean number of recruits per 0.03 m ⁻² in the
'rock+shell' treatment of the low intertidal zone from 11 December 1993
to 3 December 1994, by size class (mm)
Figure 4.7 The mean number of recruits per 0.03 m ⁻² in the
'rock+oysters' treatment of the low intertidal zone from 11 December
1993 to 3 December 1994, by size class (mm)
Figure 4.8 The mean number of recruits per 0.03 m ⁻² in the 'bare rock'
treatment of the mid intertidal zone from 11 December 1993 to 3
December 1994, by size class (mm)100
Figure 4.9 The mean number of recruits per 0.03 m ⁻² in the
'rock+shell' treatment of the mid intertidal zone from 11 December 1993
to 3 December 1994, by size class (mm)
Figure 4.10 The mean number of recruits per 0.03 m ⁻² in the
'rock+oysters' treatment of the mid intertidal zone from 11 December
1993 to 3 December 1994, by size class (mm)102
Figure 4.11 The mean number of recruits per 0.03 m ⁻² in the 'bare
rock' treatment of the upper intertidal zone from 11 December 1993 to 3
December 1994, by size class (mm)103
Figure 4.12 The mean number of recruits per 0.03 m ⁻² in the
'rock+shell' treatment of the upper intertidal zone from 11 December
1993 to 3 December 1994, by size class (mm)
Figure 4.13 The mean number of recruits per 0.03 m ⁻² in the
'rock+oysters' treatment of the upper intertidal zone from 11 December
1993 to 3 December 1994, by size class (mm)105
Figure 4.14. The median (± range) of S. commercialis shell length found
in rocky shore experimental plots at Corlette Point 106
Figure 4.15 The number of S. commercialis spat in various size classes
Figure 4.16 The number of S. commercialis spat in various size classes
on 5 a)'model pneumatophore', b)'model+shell' and c)'model+oyster'
experimental models in the mid intertidal zone from 29 January to 23
July, 1994
Figure 4.17 The number of S. commercialis spat in various size classes
on 5 a)'model pneumatophore', b)'model+shell' and c)'model+oyster'
experimental models in the upper intertidal zone from 29 January to 23
July, 1994
Figure 4.18 The mean and standard error o the total number of S .
commercialis recruits observed on 5 experimental units in the a)low,
b)mid and c)upper intertidal zone from 29 January to 23 July, 1994

Figure 5.1. Mean and standard error of survival to 48 h of S.
commercialis and C. gigas larvae mL ⁻¹ at six temperature treatments
Figure 5.2. Correlation of S. commercialis 48hr larval survival against
temperature treatments 15° to 24°C, and 24° to 30°C
Figure 5.3. Correlation of C. gigas 48hr larval survival against
temperature treatments 15 ⁰ to 24 ⁰ C, and 24 ⁰ to 30 ⁰ C
Figure 5.4. The percent of S. commercialis and C. gigas larvae developed to
prodisochonch I D-veliger stage at 48 h over six temperature treatments
Figure 5.5. Air and S. commercialis spat soft body temperature recorded
in the 38o temperature treatment
Figure 5.6. Mortalities of S, commercialis spat exposed to six
temperatures over 2, 6 and 8 h 144
Figure 5.7. Mortalities of C. gigas spat exposed to six temperatures over
2, 6 and 8 hr
Figure 5.8. Comparison of S. commercialis and C. gigas spat mortalities
over an 8 hr exposure to 38oC145
Figure 5.9. Air and S. commercialis soft body temperature recorded in the
38o temperature treatment146
Figure 5.10. Mortalities of S. commercialis exposed to six temperatures
over 2, 6 and 8 h 147
Figure 5.11. Mortalities of C. gigas exposed to six temperatures over 2, 6
and 8 h 147
Figure 5.12. Comparison of S. commercialis and C. gigas mortalities over
an 8 hr exposure to 44°C148
Figure 5.13 The mean and standard error of temperature measurements
of model oysters (Te) and real oysters from mid intertidal zone
Figure 5.14. The mean and standard error of the Te measured from model
oysters with shells from low, mid and upper intertidal zone
Figure 5.15. Comparison of the operative temperature (Te) of adult and
spat mid tidal zone models
Figure 5.16. The effect of different shading regimes on the operative
temperature (Te) of adult oysters
Figure 5.17 The temperature of a model oyster measured hourly over 48
h in the upper intertidal zone attached to a pneumatophore and resting on
silt in an unshaded area cleared of mangroves154
Figure 5.18 Comparison of body temperature of mangrove shaded and
unshaded model oysters in the upper intertidal zone, on the 8th and 9th of
February 1995

Figure 5.19 Comparison of body temperature of mangrove shaded model
oysters in the upper, mid, and low (unshaded) intertidal zone, on the 8th
and 9th of February 1995156
Figure 5.20. Comparison of body temperature of unshaded model oysters
in the low, mid, and upper intertidal zone, on the 8th and 9th of February
1995
Figure 5.21. The maximum temperatures recorded daily from model
oysters in the low (unshaded), mid (shaded by mangrove), and upper
(shaded by mangrove) intertidal zones from the 7th to the 21st February,
1995
Figure 5.22. The maximum temperatures recorded daily from mangrove
shaded and unshaded model oysters in the upper intertidal zone from the 7th
to the 21st February, 1995158
Figure 5.23. The maximum temperatures recorded daily from mangrove
shaded and unshaded model oysters in the mid intertidal zone from the 7th to
the 21st February, 1995
Figure 6.1 Map Port Stephens NSW, indicating experimental sites
Figure 6.2 a,b. The relationship between size (length x width) and
weight (whole oyster) 174
Figure 6.3. The percent mortality in low density monospecific treatments
of S. commercialis and C. gigas at 3 intertidal sites and zones
Figure 6.4. The size (length x width) of S. commercialis and C. gigas in
low density monospecific treatments at 3 intertidal sites and zones
Figure 6.5. The shape (width/length) of S. commercialis and C. gigas in
low density monospecific treatments at 3 intertidal sites and zones
Figure 6.6. The mean and standard error of % mortalities of S.
commercialis and C. gigas in 3 monospecific densities, intertidal zones and
sites
Figure 6.7. The mean and standard error of the size of S. commercialis and
C. gigas in 3 monospecific densities, intertidal zones and sites
Figure 6.8. The mean and standard error of the shape of S. commercialis
and C. gigas in 3 monospecific densities, intertidal zones and sites 192
Figure 6.9 The mean and standard error of the % mortality of S.
commercialis and C. gigas subject to 0, +10 and +20 of the other species
(ie, total densities of 10, 20, and 30 respectively), at 3 intertidal zones
and sites200
Figure 6.10 The mean and standard error of the size of S. commercialis
and C. gigas subject to 0, +10 and +20 of the other species (ie, total
densities of 10, 20, and 30 respectively), at 3 intertidal zones and sites

List of Photographic Plates

Plate 1.1 a,b. Communities of Saccostrea commercialis in Port Stephens
NSW
Plate 1.2. Morphological features which distinguish Saccostrea
commercialis and Crassostrea gigas6
Plate 1.3. Various ecomorphic forms of mature S. commercialis commonly
found within Port Stephens
Plate 3.1. Photograph of graduated hardwood stake and water-level hose
used to determine intertidal height of oysters in mangrove communities
Plate 5.1, Photographs of paraffin wax filled model Sydney rock oysters
used to measure operative temperature (Te) from a) oyster shell types
collected from the low, mid and upper intertidal zones, b) spat and adult
oyster shell types, and c) oysters with dataloggers used to record
temperatures in the field131
Plate 6.1. Photographic examples of experimental plates at the start of the
experiment with a) 10 density, b) 20 density, and c) 30 density
treatments of S. commercialis
Plate 6.2. Examples of experimental oysters grown in the monospecific
low density treatments after 18 months in the field at Salamander Bay, at a)
low, b) mid, and c) upper intertidal zones171
Plate 6.3. Examples of experimental oysters grown in the high density
treatment (20 C. gigas + 10 S. commercialis) after 18 months in the field
at Salamander Bay, at a) low, b) mid, and c) upper intertidal zones 172