Variable region gene expression and structural motifs of human polyreactive immunoglobulins

Paul Allen Ramsland

A thesis submitted for the degree of Doctor of Philosophy (PhD) at the University of Technology, Sydney

1997

CERTIFICATE

I certify that this thesis has not already been submitted for any degree and is not being submitted as part of candidature for any other degree.

I also certify that the thesis has been written by me and that any help that I have received in preparing this thesis, and all sources used, have been acknowledged in this thesis.

Signature of Candidate

Production Note: Signature removed prior to publication.

Acknowledgments

Of all the people whom contributed to this work, my special thanks goes to my supervisor Professor Robert L Raison for his excellent support and guidance over the years. Joshua Moses facilitated greatly the sometimes difficult molecular biology involved in this project. Josh's particular attention to detail in every manipulation is a great scientific attribute. Professor Allen B Edmundson provided many stimulating discussions regarding the nature of immunoglobulins and Dr Luke W Guddat helped greatly in establishing my knowledge of protein modelling techniques. Andrew Watts and Kim Andersen were responsible for maintaining the computer workstations that I sat in front of for many hours in Sydney, Amarillo and Oklahoma. Peter Hains for his intuitive knowledge of protein separation methods. Dr Kathryn Weston helped with the use of the flow cytometer. Also, to all those members and friends within the Immunobiology Unit for their help whenever necessary and all the interesting interactions.

My personal thanks to Parisa, not only for the many intellectual forays, but, for her deep friendship, not to mention our many immunodebates. I am especially appreciative of my parents whom have supported me throughout everything. Elizabeth for simply being unique.

Publications arising from this thesis:

Ramsland, P.A., Guddat, L.W., Edmundson, A.B. and Raison, R.L. (1997). Diverse binding site structures revealed in homology models of polyreactive immunoglobulins. *Journal of Computer-Aided Molecular Design*, 11: 453-461.

^{*} A copy of this manuscript is bound in the back of this thesis

Table of contents

Title	i
Certificate	ii
Acknowledgments	iii
Publications arising from this thesis	iv
Table of contents	v
List of figures	х
List of tables	xii
Abbreviations	xii
Abstract	xiv

Section	Title	Page
CHAPTER	Introduction	1
ONE		
1.1	Basic structure of immunoglobulins	1
1.1.1	Genes encoding variable domains of immunoglobulins	2
1.1.2	Characteristics of an intact immunoglobulin molecule	2
1.1.3	The immunoglobulin fold and interactions between the	4
	domains	
1.2	Structure of the immunoglobulin combining site	6
1.2.1	Association of VL and VH domains	8
1.2.2	Framework regions and CDR conformation	10
1.2.3	Shape (topology) of the immunoglobulin combining site	12
1.2.4	Common residues located within immunoglobulin	13
	combining sites	
1.3	Antibody/antigen complexation	14
1.3.1	Relationship of thermodynamic parameters and structure	14
	of antibody/antigen complexation	
1.3.2	The role of hydrogen bonds, van der Waal's	15
	interactions and neutralisation of charged side-chains in	
	antibody/antigen complexation	
1.3.3	Contribution of aromatic residues to antibody/antigen	18
	complexes	

1.3.4	Buried surface area at the interface of antibody and antigen		
1.3.5	Role of water at the antibody/antigen interface	19	
1.3.6	Conformational changes in antibody and antigen due to complex formation		
1.4	Polyreactive immunoglobulins	22	
1.4.1	Basic immunology of polyreactive antibodies	22	
1.4.2	Antigen arrays bound by polyreactive antibodies	23	
1.4.3	Gene utilisation and somatic mutation of polyreactive immunoglobulins	24	
1.4.4	Proposed roles of polyreactive antibodies in the immune system	24	
1.4.5	Hypothesised structure of polyreactive immunoglobulin combining sites	26	
1.5	The chronic B lymphocytic leukaemia model of polyreactivity	26	
1.6	The experimental system	27	
CHAPTER	Variable regions of immunoglobulins	28	
TWO	expressed in human chronic B lymphocytic leukaemia		
2.1	Introduction	28	
Z. 1	nitroduction	20	
	Ganas angoding human variable domains	20	
2.1.1	Genes encoding human variable domains	28	
2.1.1 2.1.2	Junctional diversity within variable regions	30	
2.1.12.1.22.1.3	Junctional diversity within variable regions Somatic hypermutation	30 30	
2.1.1 2.1.2	Junctional diversity within variable regions Somatic hypermutation Characteristics of variable region genes utilised by	30	
2.1.12.1.22.1.3	Junctional diversity within variable regions Somatic hypermutation	30 30	
2.1.1 2.1.2 2.1.3 2.1.4	Junctional diversity within variable regions Somatic hypermutation Characteristics of variable region genes utilised by polyreactive antibodies	30 30 31	
2.1.1 2.1.2 2.1.3 2.1.4	Junctional diversity within variable regions Somatic hypermutation Characteristics of variable region genes utilised by polyreactive antibodies Materials and Methods	30 30 31	
2.1.1 2.1.2 2.1.3 2.1.4 2.2 2.2.1	Junctional diversity within variable regions Somatic hypermutation Characteristics of variable region genes utilised by polyreactive antibodies Materials and Methods General reagents	30 30 31 34	
2.1.1 2.1.2 2.1.3 2.1.4 2.2 2.2.1 2.2.2	Junctional diversity within variable regions Somatic hypermutation Characteristics of variable region genes utilised by polyreactive antibodies Materials and Methods General reagents The patients	30 30 31 34 34 34	
2.1.1 2.1.2 2.1.3 2.1.4 2.2 2.2.1 2.2.2 2.2.3	Junctional diversity within variable regions Somatic hypermutation Characteristics of variable region genes utilised by polyreactive antibodies Materials and Methods General reagents The patients Isolation of total cellular RNA Purification of messenger RNA and first strand cDNA	30 30 31 34 34 34 34	
2.1.1 2.1.2 2.1.3 2.1.4 2.2 2.2.1 2.2.2 2.2.3 2.2.4	Junctional diversity within variable regions Somatic hypermutation Characteristics of variable region genes utilised by polyreactive antibodies Materials and Methods General reagents The patients Isolation of total cellular RNA Purification of messenger RNA and first strand cDNA synthesis	30 30 31 34 34 34 35	
2.1.1 2.1.2 2.1.3 2.1.4 2.2 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5	Junctional diversity within variable regions Somatic hypermutation Characteristics of variable region genes utilised by polyreactive antibodies Materials and Methods General reagents The patients Isolation of total cellular RNA Purification of messenger RNA and first strand cDNA synthesis Oligonucleotide primers	30 30 31 34 34 34 35	
2.1.1 2.1.2 2.1.3 2.1.4 2.2 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 2.2.6	Junctional diversity within variable regions Somatic hypermutation Characteristics of variable region genes utilised by polyreactive antibodies Materials and Methods General reagents The patients Isolation of total cellular RNA Purification of messenger RNA and first strand cDNA synthesis Oligonucleotide primers Polymerase chain reaction (PCR)	30 30 31 34 34 34 35 36 36	

2.2.10	Phenotyping of B CLL cells			
2.2.11	Binding of mouse IgG by B CLL cells			
2.3	Results			
2.3.1	Amplification, cloning and sequencing of B CLL	39		
	variable region genes			
2.3.2	Analysis of variable region gene expression	45		
2.3.3	Primary structure of B CLL variable domains			
2.3.4	Phenotyping of B CLL lymphocytes			
2.3.5	Low affinity binding to mouse IgG1 (K.1.21)			
2.4	Discussion	59		
2.4.1	Monoclonality of PBLs from B CLL patients	59		
2.4.2	Immunoglobulin gene usage in B CLL	60		
2.4.3	Incidence of somatic mutation in variable region genes	63		
2.4.4	Junctional diversity in variable regions	64		
2.4.5	Primary structures of variable domains	65		
2.4.6	Low affinity binding to mouse IgG1 by B CLL cells	65		
2.4.7	Conclusion	66		
CHAPTER	Homology modelling of B CLL variable	68		
THREE	regions (Fv): Structural diversity of human			
	polyreactive Ig combining sites			
3.1	Introduction	68		
3.1.1	Homology-based protein modelling	68		
3.1.2	Homology modelling of immunoglobulin variable	70		
	domains			
3.2	Materials and Methods	71		
3.2.1	Immunoglobulins	71		
3.2.2	Computer-aided modelling	71		
3.2.3	Modelling strategy	71		
3.2.4	Comparison of structures	72		
3.3	Results	73		
3.3.1	Validation of modelling strategy	73		
3.3.2	Template models of polyreactive immunoglobulins	76		
3.3.3	Refined Fv models	83		
3.3.4	Electrostatic surface models and location of aromatic	83		
	side-chains in polyreactive binding sites			
3.4	Discussion	93		
3.4.1	Validation of modelling strategy	93		

3.4.2	Modelling the binding sites of polyreactive	
	immunoglobulins	
3.4.3	Refinement of variable domain models	96
3.4.4	Diversity of human polyreactive immunoglobulin	97
	combining sites	
3.4.5	Conclusion	99
CHAPTER	Cloning and bacterial expression of B CLL	100
FOUR	derived immunoglobulins as Fv molecules	
4.1	Introduction	100
4.1.1	Architecture of bacterial expression vectors	100
4.1.2	Denaturation and refolding of insoluble antibody	101
	fragments	
4.1.3	Periplasmic expression of soluble antibody fragments	101
4.1.4	Structural studies using bacterially expressed antibody	102
	fragments	
4.2	Materials and Methods	105
4.2.1	General reagents	105
4.2.2	Oligonucleotide primers	105
4.2.3	Polymerase chain reaction	106
4.2.4	Automated DNA sequencing	106
4.2.5	Cloning of VL and VH genes and construction of a	107
	dicistronic operon in pFLAG-CTS	
4.2.6	PCR site-directed mutagenesis	109
4.2.7	Analysis of expressed proteins	110
4.2.8	Optimisation of protein expression	110
4.2.9	Affinity and size-exclusion chromatography of	111
	bacterially expressed Fv	
4.3	Results	112
4.3.1	Cloning of light and heavy chain variable region genes	112
	derived from B CLL cells into bacterial expression	
	vectors	
4.3.2	Construction of a dicistronic operon for the soluble	114
	expression of VL and VH domains	
4.3.3	Mutagenesis of the Tre dicistronic construct and	114
	sequencing of dicistronic operons of Bel and Tre Fv	
	expression vectors	

4.3.4	Optimisation of protein expression from Bel and Tre		
	pFLAG-CTS (VL-VH) vectors		
4.3.5	Affinity purification of expressed proteins	123	
4.3.6	Size-exclusion chromatography of Bel and Tre bacterial	125	
	expression cultures		
4.4	Discussion	127	
4.4.1	Development of dicistronic vectors for soluble	127	
	expression of B CLL variable region fragments		
4.4.2	Characterisation of protein expressed by Bel and Tre	128	
	pFLAG-CTS (VL-VH) expression systems		
4.4.3	Affinity and size-exclusion chromatography of Bel and	129	
	Tre expressed protein		
4.4.4	Conclusion	131	
CHAPTER	Conclusions and perspective	132	
FIVE			
Appendix A		137	
Appendix B		145	
Appendix C		150	
References		152	

List of figures

Figure	Title	Page
1.1	Schematic representation of stages in the	3
	production of intact antibodies by B cells	
1.2	The immunoglobulin fold	5
1.3	Representation of an Fab molecule	7
1.4	Nature of the VL-VH (Fv) association	9
2.1	Consensus nucleotide sequence of Bel VL region	40
2.2	Consensus nucleotide sequence of Tre VL region	41
2.3	Consensus nucleotide sequence of Yar VL region	42
2.4	Consensus nucleotide sequence of Hod VL region	43
2.5	Consensus nucleotide sequence of Jak VL region	44
2.6	Translated amino acid sequences of five B CLL	49
	light chain V domains	
2.7	Translated amino acid sequences of five B CLL	50
	heavy chain V domains	
2.8	Nature of residues in B CLL CDR loops	51
2.9	Isotyping of B CLL lymphocytes	53
2.10	Two-colour immunofluorescence of B CLL cells	54
2.11	Low affinity binding of mouse $IgG1/\kappa$ (K.1.21) by	56
	B CLL cells	
2.12	Low affinity binding of mouse $IgG1/\kappa$ (K.1.21) by	57
	B CLL cells	
3.1	Comparison of known and predicted conformations	75
	of 3D6 CDR loops	
3.2	Cα representations of the HCDR3 conformations	80
3.3	Side views of the two Yar Fv models	81
3.4a,b	Stereo $C\alpha$ diagrams of the side views of the	84,85
	polyreactive Fv homology models	
3.5a,b	Stereo Ca diagrams of the end-on views of the	86,87
	polyreactive Fv homology models	
3.6	Ramachandran plot of the ψ , ϕ angles for all $C\alpha$	89
	dihedral angles in the Bel Fv homology model	
3.7	Residue by residue comparison of template with	90
	refined Fv models	
3.8	Electrostatic surface representations of the Fv	91
	homology models (end-on views)	

3.9	Aromatic residues potentially contacting antigen	92
4.1	Dicistronic expression vector for soluble Fv	108
	expression	
4.2	Cloning of the VL and VH region genes of B CLL	113
	immunoglobulins into bacterial expression vectors	
4.3	Ligation-PCR construction of VL-VH dicistronic	115
	operons	
4.4	Site-directed mutagenesis of the first codon of Tre	116
	VL region gene	
4.5	DNA and translated amino acid sequence of the Bel	117
	Fv pFLAG-CTS (VL-VH) dicistronic construct	
4.6	DNA and translated amino acid sequence of the Tre	118
	Fv pFLAG-CTS (VL-VH) dicistronic construct	
4.7	Time course of Bel and Tre Fv expression in	120
	pFLAG-CTS	
4.8	Optimisation of IPTG concentration	121
4.9	Host E.coli cell strains	122
4.10	Affinity purification of expressed protein	124
4.11	Size-exclusion chromatography of bacterial	126
	expression culture supernatants	

List of tables

Table	Title	Page
2.1	Analysis of light chain variable region gene	46
	expression in B CLL patients	
2.2	Mutations from germline Ig light chain gene	47
	sequences	
2.3	Analysis of heavy chain variable region gene	48
	expression in B CLL patients	
2.4	Phenotypes of B CLL lymphocytes	55
2.5	Low affinity binding to mouse IgG1 by B CLL	58
	cells	
3.1	Comparison of the 3D6 crystal structure with the	74
	homology Fv model of 3D6	
3.2	Variable domains used to construct Fv model	78
	framework regions	
3.3	CDR sequences of the polyreactive Fv molecules	79
	and the CDR templates selected for modelling	
3.4	Interchain interaction energies of two alternative	82
	Yar Fv models	
3.5	Fv model stereochemistry after positional	88
	refinement	

Abbreviations

Ab	antibody	IgM	immunoglobulin with μ isotype heavy chains
Ag	antigen	IPTG	isopropylthiogalactoside
Az	sodium azide	J	joining gene
B CLL	chronic B lymphocytic	L	light chain
	leukaemia		
BSA	bovine serum albumin	MFI	mean fluorescence intensity
C	constant gene/domain	MHC	major histocompatibility
			complex
$\mathbf{C}\alpha$	alpha carbon atom	PAGE	polyacrylamide gel
			electrophoresis
CDR	complementarity	PBL	peripheral blood
	determining region		lymphocytes
CIAA	24:1 Choroform:isoamyl	PBS	phosphate buffered saline
	alcohol		
CRI	cross reactive idiotype	PCR	polymerase chain reaction
D	diversity gene	RBS	ribosome binding site
			(Shine/Dalgarno sequence)
DNA	deoxyribonucleic acid	RF	rheumatoid factor
Fab	fragment antigen binding	rms	root mean square
Fc	fragment crystalline	rmsd	root mean square deviation
Fd	heavy chain fragment of	RNA	ribonucleic acid
	Fab (VH-CH1)		
Fr	framework region	scFv	single chain variable region
			fragment (Fv)
$\mathbf{F}\mathbf{v}$	fragment variable	SDS	sodium dodecyl sulfate
Н	heavy chain	TBS	tris-HCl buffered saline
H-bond	hydrogen bond	TdT	terminal deoxy-transferase
HEL	hen egg-white lysozyme	V	variable gene/domain
Ig	immunoglobulin	vdW	van der Waal's
IgG	immunoglobulin with γ	3D	three-dimensional
	isotype heavy chains		

^{*} Infrequently used and common abbreviations are not included in this list

Abstract

Polyreactive immunoglobulins (Ig) exhibit a capacity to recognise multiple, structurally dissimilar antigens through a single combining site. This characteristic differentiates these Igs from monoreactive Igs which bind to a single antigen, usually with high specificity and affinity. Chronic B lymphocytic leukaemia (B CLL) is a malignancy identified by the incessant accumulation, in the peripheral circulation, of B lymphocytes of a mature and resting morphology. B CLL malignant cells generally express both surface IgM and the pan T cell antigen CD5. Moreover, the IgM on the surface of these CD5 positive B CLL cells is frequently polyreactive. This thesis examines the structural diversity found in the combining sites of B CLL derived Igs in an attempt to elucidate the structural basis of polyreactive antigen binding displayed by a significant proportion of human Igs. The genes encoding the variable (V) domains of five B CLL derived IgM antibodies (Bel, Tre, Yar, Hod and Jak) were cloned and sequenced (Chapter Two). When the light chain V domain genes were aligned with the closest germline VL and JL coding DNA sequences it was determined that there was either a complete absence of somatic mutation (Tre, Yar and Jak) or a minimal number of mutations (Bel and Hod) present in the rearranged VL domain genes. A remarkable fidelity in the splicing of VL to JL genes was noted suggesting that the diversity, normally introduced through variability of splicing VL to JL, is reduced in Igs expressed by B CLL cells. Furthermore, the markedly reduced primary structural diversity was highlighted when two of the VL domain genes (Yar and Hod) were found to be different in sequence by only four nucleotides and two amino acids. The heavy chain V domain genes of the same five Igs were sequenced in another study (Brock, 1995), however, it was interesting to analyse the sequences of the VH domain genes and compare them with the VL domain genes. The naive or germline nature of the B CLL antibodies was reflected in the VH genes by either an absence or a low frequency of mutations within these sequences compared with germline immunoglobulin gene sequences. No obvious conserved motif, which could be related to polyreactivity, was observed when the primary protein sequence was analysed for distribution of identical or similar amino acids. Thus, homology modelling was used to construct three-dimensional models of the Fv (VL-VH) portions of the five B CLL IgM molecules to examine the structures of the combining sites of these Igs (Chapter Three). Framework regions were constructed using X-ray coordinates taken from highly homologous human variable domain structures. Complementarity determining regions (CDR) were predicted by grafting loops, taken from known Ig structures, onto the Fv framework models. The CDR templates were selected, where possible, to be of the same length and of high residue identity or

similarity. If a single template CDR was not appropriate to model a particular CDR the loop was built from loop stems of known conformation, followed by chain closure with a β-turn. Template models were refined using standard molecular mechanics simulations. The binding sites were either relatively flat or contained a deep cavity at the VL-VH domain interface. Further differences in topology were the result of some CDR loops protruding into the solvent. Examination of the electrostatic molecular surface did not reveal a common structural feature within the binding sites of the five polyreactive Fv. While two of the binding cavities were positively charged the other three structures displayed either negatively charged or predominantly hydrophobic combining sites. These findings suggested that a diversity of structural mechanisms are involved in polyreactive antigen binding. Residues within CDRs which have aromatic side-chains and are partially exposed to solvent were distributed across large regions of the combining sites. It is possible that these aromatic residues are responsible for the conserved binding to mouse Igs observed (Chapter Two) for the B CLL derived polyreactive IgM molecules. Two Fv molecules (Bel and Tre) were cloned as dicistronic constructs, into the bacterial expression vector pFLAG. expression of the Fvs was fully characterised and unfortunately the VL and VH of Bel and Tre Igs did not associate in an appropriate manner to yield large quantities of purified Fv (Chapter Four). Expression of correctly folded and stabilised fragments of human polyreactive immunoglobulins would enable the structural basis for the polyreactive binding phenomenon to be fully explored using protein crystallography.