ANALYSIS OF FUTURE ENERGY PATHWAYS FOR VIETNAM

TIEN MINH DO

Faculty of Engineering and Information Technology
University of Technology, Sydney

A dissertation submitted to the University of Technology, Sydney in fulfilment of the requirements for the degree of Doctor of Philosophy (Engineering).

Certificate of Authorship/Originality

I certify that the work in this thesis has not been previously been submitted for a degree, nor has it been submitted as part of the requirements for a degree, except as fully acknowledged within the text

I also certify that the thesis has been written by me. Any help that I have received in my research work and preparation of the thesis itself has been acknowledged. In addition, I certify that any information sources and literature used indicated in the thesis.

Signature of Candidate

Acknowledgement

I would like to express my great gratitude to the people who have supported me over my Ph.D. course.

Firstly, I sincerely thank my supervisor Prof. Dr. Deepak Sharma for his guidance and encouragement. His insights into the problem, review of material and support throughout my graduate program are appreciated.

The Faculty of Engineering and Information Technology (FEIT) provided financial support for the last year of my study, for which I am graceful. I would also like to express my appreciation to the assistance from the Research Degree Office of the Faculty Engineering and Information Technology, and particular Prof. Hung Nguyen.

I also would like to give my special thanks to the Hanoi University of Science and Technology (HUST) and the Ministry of Education and Training (MOET) Vietnam, where I received scholarship and encouragement from colleagues for my study.

To the former Ph.D. researchers, particularly Dr. Reza Fathollahzadeh A., Dr. Sameer Shrestha and Dr. Debborah Marie Marsh in the Energy Planning and Policy Program, I really appreciated your support and sharing in our research field.

A special note of gratitude goes to Mr. Graham Alliband - Team Leader of the Australian Scholarships for Development in Vietnam (ASDiV); Mrs. Pham Nguyet Anh – Senior Energy Specialist of the World Bank Vietnam (WB); Mr. Nguyen Ngoc Hung, Nguyen Anh Tuan and Nguyen Quoc Khanh from the Institute of Energy, Vietnam (IE); Mrs. Nguyen Kim Anh from the Central Institute for Economic and Management (CIEM) for providing valuable information and data used in this research.

To my family, I thank so much for the incredible support you have given me during my study. I am sincerely graceful to my mother, my father and all my family members for their words of encouragement throughout my candidature.

TABLE OF CONTENTS

Certificate of Authorship/Originality Acknowledgements Table of Contents List of Tables List of Figures List of Relevant Publications Abbreviations Abstract		i ii iii vi viii viii ix xi
-	oter 1. Introduction	
1.1	8	
1.2	J	
1.3	······	
1.4		
1.5		
1.6		
1.7		
Chap	oter 2. Literature review	23
2.1	Introduction	23
2.2	Review of existing energy policies for Vietnam	n24
2.3	Review of the current energy research framew	ork in Vietnam45
2.4	Selection of an appropreate energy research fr	amework for this research 59
2.5	Summary	62
Chap	oter 3. Development of long-term energy scena	arios for Vietnam64
3.1	Introduction	64
3.2	Scenario development	65
	3.2.1 Overview	65
	3.2.2 Identification of key scenario's variables	66
	3.2.3 Scenario's construction	70
	3.2.4 Scenario's description	72
3.3	S Summary	95

Chapter 4. Assessment of energy impacts of scenar	ios99
4.1 Introduction	99
4.2 Energy Markal model	99
4.3 Model set-up	106
4.4 Markal database for vietnam	107
4.4.1 Global data	109
4.4.2 Energy resources	112
4.4.3 End-use energy demands	113
4.4.4 Technologies	126
4.4.5 Environmental emissions	134
4.4.6 Units	
4.5 Results and discussions	135
4.5.1 Primary energy requirements	135
4.5.2 Final energy requirements	146
4.5.3 Electricity generation	
4.5.4 CO2 emissions	
4.6 Summary	158
Chapter 5. Assessment of economy-wide impacts	164
•	
5.1 Introduction	
5.2 Basic input-output framework	
5.3 Scenario modelling using input-output analysis	
5.4 Results and discussions	
5.4.1 Total sectoral outputs	
5.4.2 Wages and salaries	
5.4.3 Employment	
5.4.4 Primary energy intensities	
5.4.5 CO2 emission intensities	
5.5 Overall impacts	209
5.6 Exploration of policy trade-offs	218
5.7 Summary	227

Chapter 6. Policy perspective for Vietnam's energy future		236
6.1	Introduction	236
6.2	Key policy implications of scenario analaysis results	237
6.3	Summary	255
Chapter	r 7. Conclusions and recommendations	262
7.1	Summary and conclusions	262
7.2	Limitations of the research and recommendations for future research	rch278
Append	ix 1. Description of Markal model	282
Append	ix 2. End-use energy forecast	293
Appendix 3. Economic impact results		
Referen	ices	341

List of Tables

Table 1.1	Primary energy balance: Vietnam (1990-2025)	2
Table 1.2:	Vietnam's energy resources	3
Table 1.3:	Data sources	19
Table 2.1	Summary of salient points of the current energy policies in Vietnam	42
Table 2.2	Salient features of energy models	57
Table 3.1:	Major features of the Base scenario	73
Table 3.2:	Major features of the MOD scenario	78
Table 3.3:	Major features of the ADV scenario	83
Table 3.4:	Major features of the MODNO scenario	87
Table 3.5:	Major features of the ADVNO scenario	91
Table 3.6:	Key scenario features	97
Table 4.1:	Seasonal and diurnal time divisions	110
Table 4.2:	Fraction of year in each time slice	110
Table 4.3:	Fossil energy resources available in Vietnam	112
Table 4.4:	Renewable energy potential for Vietnam	112
Table 4.5:	Projected end-use energy demands for the Base scenario (2000-2050)	123
Table 4.6:	Projected end-use energy demands for the MOD scenario (2000-2050)	124
Table 4.7:	Projected end-use energy demands for the ADV scenario (2000-2050)	125
Table 4.8:	Characteristics of refineries in Vietnam	126
Table 4.9:	Characteristics of the natural gas fields and pipelines in Vietnam	127
Table 4.10:	List of power plants in MARKAL database	128
Table 4.11:	Energy consumption for different brick making technology types	130
Table 4.12:	Energy consumption of different steel production technologies	131
Table 4.13:	Energy consumption of the paper production technologies	131
Table 4.14:	Energy consumption of different cement production technologies	132
Table 4.15:	Characteristic parameters of the demand technologies in residential sector	132
Table 4.16:	End-use service per unit of energy consumption in road transport	133
Table 4.17:	Alternative fuels for passenger vehicles	134
Table 4.18:	Emission coefficient of CO2 by fuels	134
Table 4.19:	Emission coefficient of NO _x , SO _x and Particulate emissions	135
Table 4.20:	Primary energy requirements	136
Table 4.21:	Primary energy mix and Energy diversity index	145
Table 4.22:	Final energy requirements	147
Table 4.23:	Electricity generation	151
Table 4.24:	CO2 emissions	156
Table 5.1:	Economic impacts of alternative scenarios for 2025	180
Table 5.2:	Economic impacts of alternative scenarios for 2050	183
Table 5.3:	Primary energy intensities	201
Table 5.4:	CO2 emissions intensities	205
Table 5.5:	Total Outputs at the entire country's economy	210
Table 5.6:	Impacts on wages and salaries at aggregated level	211
Table 5.7:	Impacts on employment at aggregate level	211
Table 5.8:	Percentage differences in total outputs, energy and CO ₂ intensities	213
Table 5.9:	Intensities, multipliers, and their ranks in the Base scenario: 2025 & 2050	221
Table 5.10:	Intensities, multipliers, and their ranks in the MOD scenario: 2025 & 2050	222
Table 5.11:	Intensities, multipliers, and their ranks in the ADV scenario: 2025 & 2050	223
Table 5 12.	Correlation matrix for 2025 and 2050	224

List of Figures

Figure 1.1:	Primary energy demand and supply balance	4
Figure 1.2:	Investment requirements for energy sector infrastructure development	5
Figure 1.3:	CO2 emissions by sector	6
Figure 1.4:	Overview of the research framework	13
Figure 3.1:	Key scenario variables	70
Figure 4.1:	Components in MARKAL energy system	101
Figure 4.2:	MARKAL Reference Energy System	102
Figure 4.3:	Simplified MARKAL software system diagram	105
Figure 4.4:	Vietnam Reference Energy System	108
Figure 4.5:	Monthly load curves for Vietnam's power system	111
Figure 4.6:	Primary energy requirements	137
Figure 4.7:	Coal requirements	139
Figure 4.8:	Oil requirements	140
Figure 4.9:	Gas requirements	140
Figure 4.10:	Hydro requirements	141
Figure 4.11:	Renewable energy requirement	142
Figure 4.12:	Energy intensity	143
Figure 4.13:	Per capita primary energy consumption	144
Figure 4.14:	Primary energy mix	144
Figure 4.15:	Final energy requirements	146
Figure 4.16:	Share of final energy requirements by fuels	148
Figure 4.17:	Share of final energy requirements by sector	149
Figure 4.18:	Electricity generation mix by fuel types	152
Figure 4.19:	Generation capacity requirements	154
Figure 4.20:	Capacity mix by plant types	155
Figure 4.21:	CO2 emissions	157
Figure 4.22:	Shares of CO2 emissions by sector	158
Figure 5.1:	Basic structure of an Input-output table	166
Figure 5.2:	Energy Oriented Input-output Model: A Schematic Diagram	172
Figure 5.3:	Steps to update the input-output model for a future year	173
Figure 5.4:	Income Impacts in MOD Scenario	190
Figure 5.5:	Income Impacts in ADV Scenario	191
Figure 5.6:	Impacts on Employment in the MOD Scenario	196
Figure 5.7:	Impacts on Employment in the ADV Scenario	197
Figure 5.8:	Total outputs vs. energy and CO ₂ intensities (2025)	214
Figure 5.9:	Total outputs vs. energy and CO ₂ intensities (2050)	215
Figure 7.1:	Summary of energy and economic impacts and policy implications	265

List of relevant publications

- 1. Tien Minh Do, Deepak Sharma, Ngoc Hung Nguyen, *Review of Existing Energy Framework for Vietnam*, GMSARN International Journal, Vol. 3 (2009), pp. 13-22
- 2. Tien Minh Do and Deepak Sharma, *Analysis of Long-term Energy Pathways for Vietnam, using Energy Scenarios*, Proceedings of the Fourth GMSARN International Conference, Halong, Vietnam 2009
- 3. Tien Minh Do and Deepak Sharma, *Exploration of Alternative Fuels pathways for Vietnam's Transportation, Using Scenarios Analysis*, Proceedings of the Fifteenth International Conference on Automotive Engineers, Hanoi, Vietnam, 2009.
- 4. Tien Minh Do and Deepak Sharma, *Analysis of Long-term Energy Pathways for Vietnam, using Energy Scenarios*, GMSARN International Journal (to be published)

List of Abbreviations

AAECP ASEAN-Australia Economic Cooperation Program

ADB Asian Development Bank ADV Advanced Scenario

AIT Asian Institute of Technology

APAEC ASEAN Plan of Action for Energy Cooperation
ASEAN The Association of Southeast Asian Nations

BAS Base Scenario

BETs Biomass Energy Technologies

BF Blast Furnace

BIGCC Biomass Integrated Gasification Combined Cycle

bn. Billion

BOF Blast Oxygen Furnace

BOTs Built-Operate-Transfer Projects

CC Combined Cycle

CCS Carbon Capture Sequestration
CDM Clean Development Mechanism
CGE Computable General Equilibrium

CNG Compressed Natural Gas

CO₂ Carbon Dioxide

CRS Constant Return to Scale
DRI Direct Reduced Iron
DSM Demand Side Management

EAF Electric Arc Furnace

EFORM Energy Flow Optimization Model

EU European Union

EVN Vietnam Electricity Group FDI Foreign Direct Investment

GAMS General Algebraic Modelling System

GDP Gross Domestic Product GEM General equilibrium Model

GHG Greenhouse Gas

GSO General Statistic Office of Vietnam

GW Gigawatt
GWh Gigawatt-hours

IE Institute of Energy, Vietnam IEA International Energy Agency

IEEJ Institute of Energy Economics, JapanIGCC Integrated Gasification Combined CycleIPCC Intergovernmental Panel on Climate Change

IPPs Independent Power producers

JICA Japan International Cooperation Agency

kgOE Kilogram of Oil Equivalence KTOE Kilo ton of Oil Equivalence

kW Kilowatt kWh Kilowatt-hour

LEAP The Long Range Energy Alternative Planning

LNG Liquefied Natural Gas
LPG Liquefied petroleum Gas

MARKAL MARKet Allocation Model

MEDEE Model for Evaluation of Energy Demand

MESSAGE Model for Energy Supply Systems Analysis and their General

Environmental Impact

MJ Mega Joules

MOD Moderate Scenario

mn. Million

MOC Ministry of Construction
MOIT Ministry of Industry and Trade

MONRE Ministry of Natural Resources and Environment

MOT Ministry of Transport

MPI Ministry of Planning and Investment

MTOE Megaton of oil equivalent

MW Megawatt MWh Megawatt-hour

NGCC Natural Gas Combined Cycle

NO_x Nitrogen Oxides

ODA Official Development Assistance

OECD Organisation for Economic Co-operation and Development

OVA Other Value Added

QHR(Z)(Y) Fraction of year for season, time-of-day

PJ Petajoules PM Prime Minister PV Photovoltaic

PVN Vietnam National Oil and Gas Group

RES Reference Energy System

SO₂ Sulphur Dioxide

TJ Terajoules tn. Trillion

TWh Terawatt-hour

USA United States of America

VINACOMIN Vietnam National Coal and Mineral Industries Group

VNCA Vietnam Cement Association VND Vietnam Currency Unit

VR Vietnam Registration

WASP The Wien Automatic System Planning

WB The World Bank \$ United State Dollars

Abstract

This research conducts an in-depth analysis of the long-term impacts of alternative energy options for Vietnam up to 2050, with a view to identify an energy pathway that would meet the country's energy needs in a sustainable manner. Three scenarios (Base, MOD and ADV), developed in this research, represent a range of energy policy measures that Vietnam could adopt in order to achieve its economic, energy and environmental goals. The Base scenario reflects a continuation of the current policy trends while the MOD and ADV scenarios represent higher levels of commitment to economic growth, energy diversity and reduction of energy import dependency and CO2 emissions.

The impacts of these scenarios are analysed in this research using a comprehensive framework that consists of an energy optimization model (MARKAL model) and energy-oriented input—output model. The energy impacts are analysed in terms of how the country's primary and final energy requirements would evolve in response to alternative energy policies. And, the analysis of economic impacts focuses on how such evolution would affect sectoral outputs, income, employment, and energy and CO2 intensities.

The analysis suggests that if the current policy trends (as represented by the Base scenario) continue, by 2050, Vietnam would experience a fifteen-fold rise in primary energy requirements, and twenty-six-fold increase in CO2 emissions. The country's import dependency will increase to about 84% in the case of primary energy requirements and 100% in the case of oil. This would potentially invite insecurity of energy supply and cause serious environmental pollution due to the high share of fossil fuels (more than 90%) in total energy consumption. The severity of these impacts could, however, be reduced by adopting appropriate policy measures as demonstrated in the MOD and ADV scenarios. These measures include energy savings and renewable energy promotion and CO₂ restrictions. This would result in a reduction of primary energy requirements (by 6.6 and 9.3%), imported energy (by 14 and 18%), in the MOD and ADV scenarios, respectively, as compared with the Base levels, and CO2 emissions to the 1990 Kyoto level. Further, the analyses suggest that the economy-wide impacts of these policy measures are likely to be rather benign at the aggregate (national) level –

equivalent to a decrease in total output, wages and salaries, and employment in 2050 of merely 0.03%, 1% and 0.39%, respectively, in the ADV scenario as compared with the Base scenario. These impacts at disaggregated levels would, however, be more diverse and rather significant for some sectors. In 2050, for example, the main beneficiaries, which are cultivation, manufacturing, and construction sectors, would enjoy 1.4, 1.8 and 1.6% increase in total output, wages and salaries, and employment, while the main losers which are the conventional energy sectors (coal, oil and electricity) would suffer a decline in total output, income and employment of 14.6, 13.8 and 8.2%, as compared with the Base scenario.

Further, this research is a good example that demonstrates the importance of undertaking comprehensive analyses (both at macro- and micro-levels) in formulating energy policies. The disaggregated analyses could help avoid the pitfalls of basing policy decisions on aggregate analyses alone. Such disaggregate analyses also make transparent the sectoral linkages and provide more robust bases for developing trade-offs and compromises to achieve desirable policy outcomes. That is a novelty and one of the main contributions of this research to strengthening the energy policy settings in Vietnam.